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Wheat is one of the major crops in the world, with a global demand expected to reach 850 million tons by 2050 that is clearly
outpacing current supply. The continual pressure to sustain wheat yield due to the world’s growing population under fluctuating
climate conditions requires breeders to increase yield and yield stability across environments. We are working to integrate deep
learning into field-based phenotypic analysis to assist breeders in this endeavour. We have utilised wheat images collected by
distributed CropQuant phenotyping workstations deployed for multiyear field experiments of UK bread wheat varieties. Based
on these image series, we have developed a deep-learning based analysis pipeline to segment spike regions from complicated
backgrounds. As a first step towards robust measurement of key yield traits in the field, we present a promising approach that
employ Fully Convolutional Network (FCN) to perform semantic segmentation of images to segment wheat spike regions. We also
demonstrate the benefits of transfer learning through the use of parameters obtained from other image datasets. We found that the
FCN architecture had achieved a Mean classification Accuracy (MA) >82% on validation data and >76% on test data and Mean
Intersection over Union value (MIoU) >73% on validation data and and >64% on test datasets. Through this phenomics research,
we trust our attempt is likely to form a sound foundation for extracting key yield-related traits such as spikes per unit area and
spikelet number per spike, which can be used to assist yield-focused wheat breeding objectives in near future.

1. Background

As one of the world’s most important cereal crops, wheat is a
staple for human nutrition that provides over 20% of human-
ities calories and is grown all over the world on more arable
land than any other commercial crops [1]. The increase of
population, rapid urbanisation inmany developing countries,
and fluctuating climate conditions indicate that the global
wheat production is expected to have a significant increase in
the coming decades [2]. According to the Food&Agriculture
Organisation of the United Nations, the world’s demand for
cereals (for food and animal feed) is expected to reach 3
billion tonnes by 2050 [3]. Nevertheless, it is critical that this
increase of crop production is achieved in a sustainable and
resilient way, for example, through deploying new and useful

genetic variation [4]. By combining suitable genes and traits
assembled for target environments, we are likely to increase
yield and yield stability to address the approaching global
food security challenge [5].

One effective way to breed resilient wheat varieties in
fluctuating environmental conditions to increase both yield
and the sustainability of crop production is to screen lines
based on key yield-related traits such as the timing and
duration of the reproductive stage (i.e., flowering time),
spikes per unit area, and spikelet number per spike. Based
on the performance of these traits, breeders can select lines
and varieties with better yield potential and environmental
adaptation [6–8]. However, our current capability to quantify
the above traits in field conditions is still very limited. The
trait selection approach still mostly depends on specialists’
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visual inspections of crops in the field as well as their
evaluation of target traits based on their experience and
expertise of the crop, which is labour-intensive, relatively
subjective, and prone to errors [9, 10]. Hence, how to utilise
computing sciences (e.g., crop imaging, computer vision and
machine learning) to assist the wheat breeding pipeline has
become an emerging challenge that needs to be addressed.

With rapid advances in remote sensing and Internet-of-
Things (IoT) technologies in recent years, it is technically
feasible to collect huge amounts of image- and sensor-based
datasets in the field [11, 12]. Using unmanned aerial vehicles
(UAVs) or fixed-wing light aircrafts [13–15], climate sensors
[16], ground-based phenotyping vehicles [17, 18], and/or large
in-field gantry systems [19, 20], much crop growth and
development data can be collected. However, new problems
have emerged from big data collection, which include the
following: (1) existing remote sensing systems cannot locate
the right plant from hundreds of plots, at the right time; (2)
it is not possible to capture high-frequency data (e.g., with
a resolution of minutes) to represent dynamic phenological
traits (e.g., at booting and anther extrusion stages) in the
field; (3) how to extract meaningful phenotypic information
from large sensor- and image-based data; (4) traditional
computer vision (CV) and machine learning (ML) are not
suitable for carrying out phenotypic analysis for in-field plant
phenotyping datasets, because they contain large variations
in quality and content (e.g., high-dimensional multispectral
imagery) [21–23].Hence,many breeders and crop researchers
are still relying on the conventional methods of recording,
assessing, and selecting lines and traits [24–27].

The emerging artificial intelligence (AI) based robotic
technologies [28–30] and distributed real-time crop pheno-
typing devices [31, 32] have the potential to address the first
two challenges as they are capable of acquiring continuous
visual representations of crops at key growth stages. Still,
the latter two challenges are more analytically oriented and
require computational resolutions to segment complicated
backgrounds under changeable field lighting conditions [33,
34]. As a result, ML-based phenotypic analysis is becoming
more and more popular in recent years. Some representative
approaches that use CV and ML for traits extraction in
plant research are as follows: PhenoPhyte [35] uses the
OpenCV [36] library to segment objects based on colour
space and adaptive thresholding, so that leaf phenotypes can
be measured; PBQuant [37] employs the Acapella� library
to analyse cellular objects based on intensity distribution and
contrast values; MorphoLeaf [38], a plug-in of the Free-D
analysis software, performs morphological analysis of plants
to study different plant architectures; BIVcolor [39] uses a
one-class classification framework to determine grapevine
berry size using the MATLAB’s Image Processing Toolbox;
Phenotiki [40] integrates off-the-shelf hardware components
and easy-to-use Matlab-based ML package to segment and
measure rosette-shaped plants; Leaf-GP [41] combines open-
source Python-based image analysis libraries (e.g., Scikit-
Image [42]) and the Scikit-Learn [43] library to measure
growth phenotypes of Arabidopsis and wheat based on
colour, pattern, and morphological features; state-of-the-art
deep learning (e.g., Convolutional Neural Network, CNN)

has been employed to carry out indoor phenotyping for
wheat root and shoot images using edge- and corner-based
features [44]; finally, recent advances have been made in the
application of deep learning to automate leaf segmentation
and related growth analysis [45, 46].

Most of the above solutions rely on relatively high-
clarity images, when camera positions are fixed and lighting
conditions are stable; however, it is not possible to reproduce
imagery with similar quality in complicated field conditions,
where yield-related traits were assessed. For this reason,
we have explored the idea of isolating regions of interest
(ROI, i.e., spike regions) from noisy background so that
sound phenotypic analysis could be carried out. Here, we
describe the approach of applying a Fully Convolutional
Network (FCN) [47] to segment spike regions from wheat
growth images based on annotated image data collected by
CropQuant (CQ) field phenotyping workstations [32]. The
target traits can be seen in Supplementary Figure 1, for
which we have utilised the transfer learning approach to load
ImageNet [48, 49] parameters to improve the performance of
the learning model. In addition, we investigated the effects of
two input image sizes when training the FCN, as well as the
model’s performance at each key growth stage.

To our knowledge, the FCN approach has not been
applied to classify spike regions in field conditions. The
result of our work is based on three-year wheat image series,
which is highly correlated with ground truth data manually
labelled. Furthermore, through the evaluation of outputs of
each max-pooling layer in the learning architecture, novel
vision-based features can be derived to assist crop scientists
to visually debug and assess features that are relevant to the
trait selection procedure. We believe that the methodology
presented in this work could have important impacts on
the current ML-based phenotypic analysis attempts for seg-
menting and measuring wheat spike regions.The phenotypic
analysis workflow concluded in our work is likely to form
a reliable foundation to enable future automated phenotypic
analysis of key yield-related traits such as spike regions, key
growth stages (based on the size of detected spike regions),
and spikelets per unit area.

2. Methods

2.1. Wheat Field Experiments. To assess key yield-related
traits for UK bread wheat, we have utilised four near isogenic
lines (NILs) of bread wheat in field experiments, representing
genetic and phenotypic variation with the similar genetic
background called “Paragon”, an elite UK spring wheat that
is also used in the Biotechnology and Biological Sciences
ResearchCouncil’s (BBSRC)Designing FutureWheat (DFW)
Programme. The four NILs include Paragon wildtype (WT),
Ppd (photoperiod insensitive), and Rht genes (semidwarf)
genotypes cloned at John Innes Centre (JIC) [50, 51], which
were monitored by distributed CQ workstations in real field
environments andmeasuredmanually during the key growth
stages in wheat growing seasons from 2015 to 2017.

2.2. Image Acquisition. The Red-Green-Blue (RGB) image
series used in this study were collected from 1.5-metre-wide
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Figure 1: Wheat growth image series collected by CropQuant workstations, from 2015 growing season to 2017 growing season, ranging from
booting to grain filling stages.

(5-metre-long) wheat plots during a three-year field exper-
iment. To generate continuous vision representation of key
growth stages of the crop in the field, four CQ worksta-
tions were dedicated to conduct high-frequency (one image
per hour) and high-resolution (2592x1944 pixels) imaging
in order to acquire target yield-related traits expression.
BetweenMay and July in three growing seasons (i.e., covering
booting, GS41–GS49, to grain filling stages, GS71–GS77),
over 60 GB image datasets have been generated by CQ
devices. For each growing season, 30 representative images
were selected for the deep-learning based phenotypic analy-
sis.

In order to maintain similar contrast and clarity of
wheat images in varied lighting conditions in the field,
the latest versions of open-source picamera imaging library
[52] and Scikit-image [42] were employed to automate
the adjustment of white balance, exposure mode, shutter
speed, and calibration during the image acquisition. In-field
image datasets were synchronised with centralised storage
at Norwich Research Park (NRP) using the Internet-of-
Things based CropSight system [53]. Figure 1 shows the
wheat plot images acquired by CQ workstations from 2015
to 2017 (in columns), indicating that images selected for
the yield-related traits analyses were under varying in-field
illumination conditions and weather conditions, containing
a range of background objects during the experiments.

2.3.Wheat Growth Datasets for Training, Validation, and Test-
ing. Because images were collected from three consecutive
years that cover four key growth stages (Figure 1), we decided
to use the 2015 dataset to train themodels, because of the con-
stant clarity and contrast of the image series.Then, we use the
2016 dataset to validate our learning model and the final year,
i.e., the 2017 dataset, to test the model. This training strategy
gives us a reasonably robust validation of the performance of
our model as the unseen dataset in 2017 can be utilised to
test the generalisation of the model. Figure 2 illustrates the
distribution of selected images in each growth stage in each
growing season (30 images per year, 90 in total). Amongst
these datasets, the flowering stage has the highest number
(37 out of 90), followed by ear emergence (22 images), grain
filling stages (19 images), and booting (12 images).The reason
for this arrangement is that the flowering stage represents the
phase when spikes are fully emerging, whereas wheat spikes
are normally partially hidden at booting and heading stages
(i.e., GS41-59 [8]). It is worth noting that the 2015 dataset
does not contain many booting images due to the short-term
nature of wheat booting, which normally finishes within 1-
2 days. Hence, it is an interesting test case for us to train a
deep-learningmodel that can segment spike regions collected
in multiple years during the process of ear emergence (e.g.,
spikes have partially emerged) under challenging in-field
lighting conditions.
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Figure 2: The distribution of selected images in each growth stage collected in three-year field experiments, which are used for training,
validation, and testing when establishing the deep-learning architecture.
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Figure 3: The training, validation, and testing strategy for developing Fully Convolutional Networks (FCN). (a) The selection of subimages
for manually labelling spike regions, (b) training an FCN to segment spike regions with the manual labelled data, and (c) performing model
testing at the image level to predict spikes.

2.4. The Workflow for Training and Testing. We randomly
sampled subimages from the original images for training and
testing. Figure 3 explains a high-level workflow that we fol-
lowed, including the selection of subimages for wheat growth
image series, manually labelling spike regions at the image
level (Figure 3(a)), training a FCN with manual labelled data
(Figure 3(b)), andperformingmodel testing at the image level
for predicting spike regions (Figure 3(c)). Similar to standard
convolutional neural network approaches, a sliding window
is used to validate performance on the 2016 and then test on
the 2017 dataset. We experimented with two sliding windows
(512×512 and 128×128 pixels) together with a fixed stride of s
to create predictions of wheat spike regions in each window.

The window size corresponds to the subimage size that is
chosen by experimental setting. The result of the workflow
is a prediction map with size w × h × cl, where w and
h correspond to the original image’s width and height and
cl is the number of classes, two in our case. Results from
experimentation on different sizes of the sliding window are
discussed in Result section.

2.5. Fully Convolutional Network. We applied the FCN
approach for our semantic segmentation problem, in partic-
ular FCN-8 due to its enhanced results for similar problems.
FCN associates each pixel with a specific class label. The
novelty and advantage of applying FCN in this study is
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Figure 4: The FCN-8 learning architecture used for segmenting wheat spike regions.

that it transforms the nonspatial output produced by the
deep classifier to a spatial one that is required during the
semantic segmentation task. This is accomplished through
transforming the fully connected layers attached at the end
of the deep classifier, so that image level prediction can
be produced. Fully convolutional layers that replace fully
connected layers can preserve the spatial information of
target objects and hence enable the pixel level prediction
[47]. This approach provides a solution to localise and detect
targeted objects based on manually labelled training datasets
constructed in previous steps. However, the output of the
FCN at this stage has a lower resolution than the original
input image and yields a coarse output. To tackle this down
sampling problem, FCNs were proposed to reverse the effect
of repetitive subsampling through upsampling [54]. The
upsampling method is based on backward convolution (also
called deconvolution). Furthermore, FCN provides another
enhancement by applying a concept called skip connection
(see detailed explanation below). This takes advantage of the
hierarchy resulting from any convolutional neural network
that starts with local feature maps describing the finest
information (i.e., edges, contrast, etc.) and ends with the
coarsest information that describe the semantics of the target
objects (i.e., themore generic features of the region).TheFCN
combines those levels to produce amore detailed outputmap.

2.6. Learning Architecture. The learning architecture of the
FCN model established for segmenting spike regions is
presented in Figure 4, which consists of four components:

(1) Very deep convolutional network: the first compo-
nent of FCN is the so-called very deep convolu-
tional network (VGG 16-layer net, VGG16 [54]).
The segmentation-equipped VGG net (FCN-VGG16
or VGG16) has outperformed other classifiers such
as AlexNet [49] and GoogLeNet [55] when it was
selected as the base for FCN. It is a CNN classifier that
achieved the first and second places in the ImageNet
localisation and classification competition.Therefore,

we have selected VGG16 as the base classifier for the
task of spike segmentation. It has 12 convolutional
layers arranged in five increasing convolutional depth
blocks (Figure 4): (1) the first block, conv1, consists
of two convolutional layers with a depth (number of
filters) of 64; (2) the second block, conv2, consists
of two convolutional layers with a depth of 128; (3)
the third block, conv3, consists of three convolutional
layers with a depth of 256; and (4) the fourth and
fifth blocks, conv4 and conv5, respectively, consist
of three convolutional layers with a depth of 512.
After each convolutional layer, there is a rectification
nonlinearity layer (ReLU) [56].The filter size selected
for all convolutional layers is 3 × 3 with a stride of 1.
The reason for choosing such a small receptive field
is that a nonlinearity layer can be followed directly
to make the model more discriminative [54]. After
each block, a max-pool layer is added with a pooling
size of 2 × 2 with a stride of 2. There are three
fully connected layers at the end of the classifier.
The first two fully connected layers, FC6 and FC7,
have a depth (units) of 4,096, which are replaced by
convolutional layers (conv6 and conv7). The depth of
the last connected layer is 1000, which corresponds to
the number of classes in the ImageNet competition.
The sixteenth (last) layer is the softmax prediction
layer, which comes after the last connected layer. It is
worth noting that the last connected layer is removed
in our architecture as our task requires prediction for
two and not 1000 classes.

(2) Fully convolutional layers: the second component of
FCN is replacing the first two fully connected layers
FC6 and FC7 in VGG16 with two convolutional ones
(conv6 and conv7). This setting is designed to restore
the spatial information of spike regions on a given
image.

(3) Deconvolutional layers and feature fusion: even
though restoring the spikes’ spatial details can help
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Table 1: FCN training hyperparameters.

Stage Hyperparameter Value

Initialisation
Weights (i) He et al. [55] (scratch)

(ii) ImageNet (transfer)
Bias 0

Dropout Rate 𝑝 0.5
Intermediate Non Linearity Unit ReLu
Epochs 125 – 150

Optimisation (SGD)

Learning Rate 0.001
Momentum 0.9

Decay 0.0016
Mini Batch 20

with the segmentation task that involves predicting
dense output, the output from the fully convolutional
layers is still coarse due to the repeat application
of convolutions and subsampling (max-pool), which
reduces the output size. In order to refine the coarse
output and retain the original resolution of the
input, the model fuses the learned features from
three positions in VGG16 with the upsampling layers.
Upsampling or deconvolutional layers reverse the
effect of the repetitive application of subsampling
and convolving by learning backward convolution. In
order to apply the fusion operation, three prediction
layers were added: (1) after the last fully convolution
layer FC7, (2) after the fourth max-pool P4, and (3)
after the thirdmax-pool P3.The reason for predicting
at different positions is to fuse lower level informa-
tion obtained from the lower layers together with
higher-level information obtained from the higher
layers, which can further refine the output. Next, the
output of the first prediction layer is upsampled by
applying the first deconvolutional layer.Then, the first
upsampled output (FCN-32) is fused with the second
prediction layer (Score P4) by applying element-wise
summation, where the first skip connection occurs. It
is worth noting that a cropping operation is applied
to the upsampled output, so that it matches the size of
the second prediction output.Then, the output would
be upsampled using the second deconvolutional layer
(FCN-16) to be fused with the output of the last
prediction layer (Score P3), where the second skip
connection occurs. Lastly, a final deconvolutional
operation is applied to the output to be upsampled to
the input size of the original image (FCN-8), as FCN-
8 can obtain better results than FCN-16 and FCN-32
due to its recovery of more boundary details through
fusing features during skip connections.

(4) Softmax layer: the last layer of FCN is a 2-class
softmax [57] calculating the probability of each pixel
for each class. In our case, two classes (i.e., spike
region and background) have been computed.

2.7. Cost Function. According to any common semantic
segmentation task [47], for each pixel xij in an image I with a

size of h × w × d, a corresponding pixel label class tj from a
probability distribution {0, 1} is assigned. The predicted class
of a certain pixel yij is the outcome of the last softmax layer,
which generates a probability distribution such that 0≤ yij ≤ 1.
The learning task is to find a set of parameters (i.e., weights) 𝜃
that, for a particular loss function l(yij(xij, 𝜃)), will achieve the
minimum distance of the probability distribution between
the target class tj and the predicted class yi. The cost function
used here is cross entropy, L, which calculates the negative log
likelihood of the predicted class yj:

𝐿 = −
𝑚

∑
𝑗=1

𝑡𝑗 log𝑦𝑗 (1)

where m is the number of classes and in our case is 2,
corresponding to spikelet area versus background.

2.8. Training Hyperparameters. Hyperparameters need to be
initialised before the training process starts. Then, the train-
ing algorithm learns new parameters as part of the learning
process [57]. Summary the FCN training hyperparameters
values used in our study are listed in Table 1, including the
following:

(1) Weight 𝜃 (parameters)/Bias initialisation: it is good
practice when training any deep-learningmodel from
scratch to initialise the weights with random values
and the bias with 0. We have chosen an initialisation
technique [55] that achieves the optimal results when
training from scratch. Their technique generates a
mean centred normal distribution with standard
deviation 𝜎 equal to √2/𝑛𝑙 where nl is the number of
inputs in a certain layer 𝑙.

(2) Dropout rate probability: this parameter serves as
a regulariser to reduce the model overfitting [58].
It determines how many units can be deactivated
randomly for every training iteration in a certain
layer. In our model, two dropout layers, with a value
of 0.5 for 𝑝, are added after every fully convolutional
layer FC6 and FC7.

(3) Intermediate nonlinearity unit: this is an essential
component in any CNN that focuses on highlighting
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and emphasising the relevant features of the data
and the task. As a default, we have selected Rectified
Linear Unit (ReLu) for this parameter which is an
element-wise thresholding operation that is applied
on the output of the convolutional layer (resulting
feature map) to suppress negative values: 𝐹(𝑥) =
max(0, x) where 𝑥 is an element in the feature map.

(4) Epochs: this refers to the number of training iteration,
which was set to 125-150.

(5) Optimisation algorithm: the weights are updated for
every learning iteration using minibatch stochastic
gradient descent (SGD) with momentum:

vt = 𝛾vt−1 + 𝜂∇𝜃J (𝜃) , 𝜃 = 𝜃 − v𝑡 (2)

see [59].
The initial learning rate was chosen as 0.001 with a
decay of 0.0016 for every epoch. The momentum 𝛾 is
the default 0.9 and the selected minibatch is 20.

(6) To investigate the effect of transfer learning, we kept
the number of filters and layers while establishing the
CNN architecture, because we want to keep all factors
(e.g., filters and layers) stable in order to investigate
the effect of these factors.

2.9. Training and Validation of the Architecture. We have
selected the 2015 dataset for training FCN and the 2016
dataset as the validation set to observe if there is overfitting
of the model. However, these images have high resolution
(2592×1944). It is not computationally viable to train the
model directly using these images, even via a powerful
GPU cluster (64GB). Furthermore, we expect that less
computing power will be available when deploying models.
Therefore, we needed to seek a viable approach to balance
the computational complexity and learning outcomes. As
a result, we randomly sampled subimages and experiment
with two different subsizes, 450 images (512×512 pixels) and
8999 subimages (128×128 pixels), with correspondingmanual
labels. These were used to investigate whether a larger size
subimage could result in better detection outcomes.

We have utilised an early stopping technique when train-
ing themodel. Early stopping allows us to keep a record of the
validation learning (e.g., cost and accuracy) for each learning
epoch. It is a simple and inexpensive way to regularise the
model and prevent overfitting as early as possible [57, 60].
We have selected the validation cost as the metric to observe
for early stopping. The maximum epochs for observing the
change in validation cost are 20 epochs. In other words, if
the validation cost has not been decreased for 20 epochs,
the model training will be stopped and the model weights
resulting from the lowest validation cost are saved. We have
found that themodel for all our experimental trials converges
after training for 125 to 150 epochs.

In addition to training the FCN from scratch, we wanted
to investigate whether the transfer learning approach [61] can
produce improvements in the validation accuracy. One of
the advantages of using deep segmentation architectures that

are built on top of state-of-the-art classifiers is that we can
apply transfer learning. Transfer learning can be described
as using “off-the-shelf” pretrained parameters obtained from
millions of examples in thousands of object categories such
as the ImageNet database [48]. These parameters represent a
general library of features that can be used for the first layers
of any CNNmodel since the first layers are only capturing the
low-level features of objects (corners, borders, etc.). It is then
possible to only fit the higher-level layers of the CNN that are
more task and data oriented. Therefore, we can initialise the
CNNmodelwith the pretrained parameters and proceedwith
training the higher layers instead of initialising with random
values and training from scratch. The application of transfer
learning is extremely beneficial when there are limitations in
the sample size and/or variation of example datasets as those
are essential to train any sound deep architecture. Therefore,
for our work, we have loaded the pretrained weights from the
ImageNet challenge to theVGG16 and then trained themodel
with the same hyperparameter settings described previously.

2.10. Experimental Evaluation of the Segmentation. We eval-
uate the performance of FCN on both 2016 and 2017 datasets.
The evaluation is conducted to test the segmentation per-
formance of FCN considering multiple experimental setups.
For example, the use of pretrained parameters when training
the model (transfer learning) is compared with training from
scratch and the use of different subimage sizes is also com-
pared. Furthermore, we compared the performance on each
growth stage separately as this might discover interesting
interconnections between the monitored growth stages that
have strong correlation to the grain production. To verify the
result of the segmentation, we report the following metrics
that are commonly used in semantic segmentation work [47,
49, 62]:

(1) Global Accuracy (GA) measures the total number of
pixels that were predicted correctly over all classes
divided by the total number of pixels in the image.The
GA can be calculated using

𝐺𝐴 =
∑𝑖 𝑡𝑝 𝑖
𝑛𝑝

(3)

where∑𝑖 𝑡𝑝 𝑖 is the number of pixels that are predicted
correctly for each class 𝑖 and np is the total number of
pixels in a given image.

(2) Mean class Accuracy (MA) is the mean of spike and
nonspike region accuracy.The accuracy for each class
can be calculated using

𝐶𝑙𝑎𝑠𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑𝑖 𝑛𝑖𝑖
𝑡𝑖

(4)

where∑𝑖 𝑛𝑖𝑖 is the number of pixels that are predicted
correctly to be of class 𝑖 and 𝑡𝑖 is the number of pixels
of a certain class 𝑖.

(3) Mean Intersection over Union (MIoU) is the mean of
IoU of each class. MIoU is considered the harshest



8 Plant Phenomics

Table 2: Quantitative results of segmentation performance for the 2016 dataset when training FCN from scratch by initialising the weights
using He et al.’s method [55] and by loading pretrained ImageNet parameters showing different evaluation metrics.

Initialisation GA MA Spike Accuracy MIoU Spike IoU
He et al. [55] 92.4 80.14 64.3 70.0 48.02
ImageNet Parameters 93.54 82.13 67.55 73.0 53.0

Table 3: Quantitative results of segmentation performance for the 2017 dataset when training FCN from scratch by initialising the weights
using He et al.’s method and by loading pre-trained ImageNet parameters showing different evaluation metrics.

Initilisation GA MA Spike Accuracy MIoU Spike IoU
He et al. [55] 88.18 70.30 46.61 59.4 31.76
ImageNet Parameters 90.12 76.0 57.0 64.30 40.0

metric amongst all because of its sensitivity towards
methods with a high false positive 𝑓𝑝 rate or false
negative 𝑓𝑛 rate or both:

𝐼𝑜𝑈 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝 + 𝑓𝑛
(5)

where, 𝑓𝑝, 𝑡𝑝, and 𝑓𝑛 denote, respectively, false posi-
tive, true positive, and false negative predictions.This
metric was also used in the VOC PASCAL challenge
[63]. In our case, it penalises methods that are more
inclined towards predicting a spike region pixel as
background or vice versa.

We reported the spike region and background measures
separately for two reasons: (1) it is important to observe the
model performance to recognise the spike region not the
background; (2) it is clear that the ratio of background pixels
to the spike region pixels is high, especially in early growth
stages (i.e., booting and heading) where fewer or no spikelets
can be found at the image level, indicating that some images
can exhibit imbalanced class distribution. Consequently, it
is important to observe evaluation measurements for both
classes in the context of such class imbalances.

3. Results

3.1. Transfer Learning. The results in Tables 2 and 3 report
on the experiments comparing the FCN model trained from
scratch with parameters learned from the reported ImageNet
classification [49] task on the segmentation of the 2016 and
2017 datasets, respectively. Table 2 shows that MA and MIoU
have been improved by 1.99 % and 3%, respectively, when
using the pretrained parameters in the 2016 set. Particularly,
the results of spike regions show an increase in both Spike
Accuracy and Spike IoU by 3.25 % and 4.98 %.

The results in Table 3 illustrate that MA and MIoU have
improved by 5.7 % and 4.9 % in the 2017 set when using the
pretrained parameters. Notably, the results of the spike region
show an increase in both Spike Accuracy and Spike IoU of
10.39 % and 8.24 %, respectively.

From the results presented in Tables 2 and 3, it is clear
that transfer learning has a positive effect on improving
performance for both validation and testing datasets. To

further verify this finding, we present Precision-Recall curves
in Figure 5 for each growth stage for the testing and validation
datasets. The left-most subfigures show two graphs that
represent the Precision-Recall curves of the models trained
from scratch, whereas the right-most graphs represent the
curves after loading ImageNet parameters. The top two
graphs refer to the 2016 validation dataset, whereas the
bottom graphs present results for the 2017 dataset. Although
relatively subtle due to the limited sample size, it is noticeable
that the transfer learning produces a “lift” effect on the
Precision-Recall curves in both years. It is also evident that
performance is particularly improved for later growth stages
(fromflowering and anthesis onwards, when spikes were fully
emerged). Given the positive effect of transfer learning, we
used this approach in more detailed analyses on different
subimage sizes and growth stages.

Figure 6 shows the segmentation performance using MA
and MIoU for the 2016 and 2017 image series when training
FCN by loading pretrained ImageNet parameters. The Y-
axis represents the values of MA/MIoU (in percentage) and
X-axis represents the image ID arranged by its associated
growth stage from 2016 to 2017, the smaller ID the earlier
growth stage in the growing season (i.e., booting or heading).
Figure 6(a) indicates thatMA andMIoU are relatively similar
in all images, but there is a trend in growth stage as the
earlier growth stages achieve lower evaluation metrics scores
and the later growth stages achieve higher metrics scores.
However, Figure 6(b) does not show a similar trend in 2017;
instead, both metrics scores are fluctuating in values across
the monitored growth stages. This may indicate that the
images in the 2017 series are more challenging, for example,
more unexpected objects in the field, less image clarity, and
changeable lighting conditions.

3.2. Different Subimage Sizes. Tables 4 and 5 illustrate a
comparison of two different sets of subimages, 128×128 and
512×512, for spike segmentation on the 2016 and 2017 datasets.
In both cases, for almost all measures, the larger subimage
sizes produce better performance. For the 2016 set, the MIoU
and Spike IoU have increased by 2.68% and 6.9% respectively
using the 512x512 subimage size, whereas the MA and Spike
Accuracy have improved by 6.03% and 13.55%. For the 2017
set, the MIoU and Spike IoU have increased by 4.3% and
9.9% using the 512x512 subimage size, and the MA and Spike
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Figure 5: Precision-Recall curves showing the segmentation performance and growth stage curves. (a, b) Training from scratch 2016 series
(A) and loading pretrained ImageNet parameters series 2016 series (B) to report the segmentation performance at different monitored growth
stages. (c, d) Training from scratch series (A) and loading pretrained ImageNet parameters using series (B) in 2017.
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Figure 6: Quantitative results (MA andMIoU) to assess segmentation performance. (a)The 2016 images trained by FCN 8 using pretrained
ImageNet parameters. (b) The 2017 image dataset trained by FCN 8 through loading pretrained ImageNet parameters.

Table 4: Quantitative results of segmentation performance for the 2016 dataset when training FCN with two different subimage size 𝑆 (i.e.,
128×128 and 512×512) showing different evaluation scores.

𝑆 GA MA Spike Accuracy MIoU Spike IoU
128×128 93.15 76.1 54.0 70.32 46.1
512 × 512 93.54 82.13 67.55 73.0 53.0

Table 5: Quantitative results of segmentation performance for the 2017 dataset when training FCN with two different subimage size 𝑆 (i.e.,
128×128 and 512×512) showing different evaluation metrics scores.

𝑆 GA MA Spike Accuracy MIoU Spike IoU
128×128 90.0 67.02 37.0 60.0 30.1
512 × 512 90.12 76.0 57.0 64.30 40.0
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Table 6: Quantitative results of segmentation performance of FCN for the 2016 dataset reported for each growth stage.

Growth Stage GA MA Spike Accuracy MIoU Spike IoU
Late booting (GS45-47) 97.41 67.6 37.3 55.0 12.33
Heading (GS51-59) 92.72 77.01 59.2 62.0 31.0
Flowering (GS61-69) 93.30 84.0 70.3 77.0 61.0
Grain filling (GS71-73) 94.0 87.12 77.14 80.14 67.53
Mean 93.54 82.13 67.55 73.0 53.0

Table 7: Quantitative results of segmentation performance of FCN for 2017 dataset reported for each growth stage.

Growth Stage GA MA Spike Accuracy MIoU Spike IoU
Middle/late booting (GS43-47) 93.22 60.75 28.0 49.0 3.0
Heading (GS51-59) 91.3 77.7 61.1 64.1 37.4
Flowering (GS61-69) 89.0 80.0 66.0 69.4 51.14
Grain filling (GS71-73) 88.24 80.0 55.03 68.0 50.0
Mean 90.12 76.0 57.0 64.30 40.0

Accuracy have improved by 8.98% and 20%. As a result, we
can see that selecting a larger subimage size is likely to lead to
better results based on the selected segmentation metrics.

3.3. Phenotypic Analysis of Yield and Growth Traits. In
Table 6, we report the spike segmentation result according to
the growth stages to further investigate FCN’s performance
for each growth stage in 2016. Note that the 2016 dataset does
not contain early or middle booting and hence we could only
test late booting. Notably, the model performed very well in
both flowering and grain filling stages. For example, in the
grain filling stage, the MA andMIoU are 87.12 % and 80.14%,
respectively, whereas in the flowering stage, the MA is 84.0%
and the MIoU is 77.0 %. In the heading stage, the model has
also achieved good results with the MA and MIoU equal to
77.01% and 62.0%. However, FCN has not led to good results
in booting, where the MA is 67.6% and IoU is 55.0%. This is
not surprising as not enough representative images for this
stage were available in the training data.

In Table 7, we report the spike segmentation results based
on the wheat growth stages in 2017. The table shows that
the model performed well in the flowering stage with the
MA equal to 80% and MIoU equal to 69.4%, which is likely
achieved due to more imagery data presented in this stage in
2017. The heading stage results and the grain filling stage are
similar to the flowering stage. However, themodel performed
worse on the booting stage, corresponding to the lack of data
for this stage in the training set. The results show that FCN
performance increases with the development of spikes and it
performs better if more representative training data can be
included when developing the learning model.

It is worth noting that, for both the 2016 and 2017 results,
the GA values for the booting stage are higher compared to
the other stages, which is not the case for any other evaluation
metrics.Thismay be caused by themajority of the pixels being
background in early growth stages, as those are predicted
correctly by the GA metric, which focuses on predicting

the sum of pixels regardless of the class. It does, however,
reinforce the need for more than one single evaluationmetric
to assess the fitness of learning models as the GA value
may not truly reflect the ability of the model during the
segmentation.

3.4. Visualisation of FCN Intermediate Activation. In order
to understand and interpret more about the features that
FCN is utilising when testing wheat subimages, we have
visualised feature maps that are output by each layer in the
FCN in the first five blocks (conv1-conv5) [64]. As illustrated
in Figure 7, the subimage chosen is from image ID 215
(see supplementary data), which scored the highest spike
accuracy amongst all images. To simplify the presentation,
we only show a number of feature maps that are output
by three layers (i.e., Conv1 Block Maxpool, Conv3 Block
Maxpool, and Conv5 BlockMaxpool), where regions that are
coloured from bright yellow to green indicate where FCN
is activated, whereas the darker colour shows regions that
are being ignored by the FCN. For example, we can observe
that early layers of FCN (Conv1, max-pooling output) are
activated by the spikelet-like objects. However, they show
very low-level detail information, correlating with the fact
that early layers in CNNs capture the lower level of features
such as edge and corner-featured objects.

Thenext featuremaps (Conv3,max-pooling output) show
that the FCN is more focused on the shape and texture-
based features, which are considered higher-level abstract
features. The last feature maps (Conv5, max-pooling output)
shows that the FCN is only preserving the general size-
and texture-based features of spike regions as the low-level
information has been lost due to repetitive application of
pooling operations. In addition, image comparison with
original images suggests that the FCN not only recognises
spike regions, but also captures other background objects
such as sky, soil, and leaves throughout these layers, which
leads to segmentation results in Figures 8 and 9.
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Conv1 Block Maxpool Layer Output

Conv3 Block Maxpool Layer Output

Conv5 Block Maxpool Layer Output

Figure 7: The selection of filters of three intermediate layers (Conv1, Conv3, and Conv5 Block Maxpool outputs) showing activated features
that could be used for visually assessing FCN on wheat subimages.

4. Discussion

We have presented a fully convolutional model to perform
a complex segmentation task to analyse key yield-related
phenotypes for wheat crop based on three-year growth image
series. In comparison with many machine learning based
indoor phenotypic analysiswith ideal lighting and image con-
ditions [65], our work is based on crop growth image series
collected in real-world agricultural and breeding situations,
where strong wind, heavy rainfall, irrigation and spraying
activities can lead to unexpected quality issues. Still, through
our experiments, we have proved that the deep-learning
approach can lead to promising segmentation performance
and the application of transfer learning could result in better
spike region segmentation across the monitored key growth
stages.

Our work shows that the selection of a larger subimage
size (512x512) for the sliding window results in best segmen-
tation performance.This approach translates to higher classi-
fication performance (see Tables 2 and 3). In the original FCN
research, the algorithmwas comparedwhen running on orig-
inal images and on smaller randomly sampled patches. The
conclusion was that the algorithm trained on original images
converged faster than on randomly subsampled patches,
indicating the bigger images led to better performance. In our

case, the subsampled images are comparable in size to the
testing images in the original FCN experimentation. When
we compare the two subsampling sizes (128x128 and 512x512),
smaller subimages results do not contain relevant spike
information, which could be the reason why subsampling
larger images has led to better results in ourwork. In addition,
it is noticeable that enlarging the perception of the model
(i.e., selecting larger input size) was beneficial when learning
surrounding objects as it can introduce variation in spike
regions such as objects that may appear in subimages during
training.This approach has translated to better segmentation
performance for our work.

The unique shape of spikes may require more attention
around the boundary (see Figures 8 and 9). In many cases,
the FCNwas successful to some extent in recovering the spike
boundary details, which may be due to fusing the features
from three locations in the model (conv3-maxpool, conv4-
maxpool, and first upsampling layer). The 2015 training
dataset was balanced in terms of different weather condi-
tions, from sunny scenes (high exposure of illumination) to
rainy and cloudy scenes. The segmentation of spike regions
with high and normal lighting conditions was reasonable.
However, the model has captured some background objects
that were not present in the training dataset such as grass.
For example, Figure 9 shows grass regions (to the bottom
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Figure 8: Visualisation of the segmentation result for the 2016 image series. (a) Original image. (b) Ground truth (GT). (c) The result of
trained FCN-8 from scratch. (d) The result of trained FCN-8 by loading pretrained ImageNet parameters (from left to right, images were
selected to represent different key growth stages).

left of the images) have been wrongly recognised as spike
areas. Based on our vision assessment using the method
discussed in Figure 7, this error might be caused by severe
light exposure, similar colour- and pattern-based features.
Again, we believe that more training data could improve the
models to avoid such artefacts.

In general, loading pretrained ImageNet parameters (i.e.,
transfer learning) was beneficial. It has improved the results
in 2016 and 2017 sets and also improved the FCN perfor-
mance for each growth stage (see Precision-Recall curves in
Figure 5). Using transfer learning has reduced the false pos-
itive rate during the detection of spike regions. This may be
because the additional images from ImageNet have enhanced
the FCN performance as more examples of different object
boundaries and their features are available to the learning
algorithm.

As verified in the results section, the FCN has achieved
higher accuracy and IoU scores in the later growth stages
such as flowering and grain filling. The performance of the
FCN was poor in both booting and heading stages and also
for spikes partially covered by leaves (Figure 9). The main
reason behind this, we believe, is that the distribution of
images for different growth stages is unbalanced, with limited
booting images represented in the training data. To improve

the results of this exploration, more images during booting
and heading, when wheat spikes are emerging, will improve
the performance of CNN-based models. More importantly,
images should be as representative as possible, e.g., including
different lighting conditions, variety of background objects,
and with different image quality. Furthermore, to address in-
field phenotypic analysis challenges caused by image quality
(a common problem in real-world field experiments), we
suggest that the manually labelled datasets should contain
sufficient noise information (e.g., grass and unexpected
objects) and regions of interest under varied lighting con-
ditions. When possible, comparisons should be performed
within similar crop growth stages as those may be more
realistic. Another potential solution is to introduce artificially
created images to mimic noise and unexpected objects and
add them to the training datasets.

5. Conclusions

In this work, we have explored a method that combines
deep learning and computer vision to discriminate wheat
spike regions on wheat growth images through a pixel-based
segmentation. This method was implemented using Python
with a TensorFlow backend, which provides the framework
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Figure 9: Visualisation of the segmentation result for the 2017 image series. (a) Original image. (b) Ground truth (GT). (c) The result of
trained FCN-8 from scratch. (d) The result of trained FCN-8 by loading ImageNet parameters. Images were selected to represent different
key growth stages.

for us to establish the FCN architecture. We can then move
from the training phase to the final 2-class prediction at
the image level. Our goal was to obtain a classifier that can
analyse wheat spike regions using the standard deep-learning
approach, with little knowledge of wheat spike dimensional
and spatial characteristics. We fulfilled this requirement by
establishing an FCN model to segment spike regions in
wheat growth image series acquired in three consecutive
years, with varied weather conditions. The spike regions in
all images have been annotated at pixel level by specialists
using an annotating tool [66]. The model performance was
verified on both validation (the 2016 image set) and testing
(the 2017 image set) datasets. We have found that FCN was
relatively successful at detecting the spike regions in both
2016 (MA: 82.13%) and 2017 (MA: 76.0%). In addition, FCN
performed better when trained on larger subimages sizes.
We then applied transfer learning to improve the perfor-
mance of our FCN model by loading parameters learned
from ImageNet, and this has led to a positive impact on
the segmentation results. The limitations of our research
can be summarised by three points: (1) the model had
limited success when identifying spike regions in booting and

heading; this may be caused by a lack of training data at
the two stages; (2) the model encountered some unexpected
background objects such as grass, and this has increased
false positive rates; again, we believe that more training
data or data augmentation could resolve this issue; (3) the
model performed relatively poorly on the 2017 set due to
challenging lighting and weather conditions. We might be
able to overcome some of these image-based limitations by
including more historic or artificial images in the training
set as well as exploring other deep-learning segmentation
architectures such as DeepLap [67] and also some traditional
ML segmentation methods. We will also trial other learning
tasks in a multitask learning environment to improve the
soundness of the solution.

Abbreviations

CNNs: Convolutional neural networks
DL: Deep learning
ML: Machine learning
ReLU: Rectified linear units
UK: The United Kingdom.
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Data Availability

The dataset supporting the results is available at https://
github.com/tanh86/ws seg/tree/master/CQ, which includes
source code and other supporting data in the GitHub reposi-
tory.

Additional Points

Availability and Requirements. Operating system(s): Plat-
form independent. Programming language: Python 3. Re-
quirements: TensorFlow, Keras, NumPy, Scikit-image, and
OpenCV 3.x.
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