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Highlights:  

 An investigation into an automatic computational framework for lateral flow assays 

 Critical examination of the data structure, features and algorithms  

 Pseudo control colours were proposed as a new feature within the optimal feature set 

 Proposed scheme offers high accuracy and fulfils ASSURED criteria 
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Abstract 

This paper aims to deliberately examine the scope of an intelligent colourimetric test that 

fulfils ASSURED criteria (Affordable, Sensitive, Specific, User-friendly, Rapid and robust, 

Equipment-free, and Deliverable) and demonstrate the claim as well.  This paper presents an 

investigation into an intelligent image-based system to perform automatic paper-based 

colourimetric tests in real-time to provide a proof-of-concept for a dry-chemical based or 

microfluidic, stable and semi-quantitative assay using a larger dataset with diverse conditions. 

The universal pH indicator papers were utilised as a case study. Unlike the works done in the 

literature, this work performs multiclass colourimetric tests using histogram-based image 

processing and machine learning algorithm without any user intervention. The proposed 

image processing framework is based on colour channel separation, global thresholding, 

morphological operation and object detection. We have also deployed aserver-based 

convolutional neural network framework for image classification using inductive transfer 

learning on a mobile platform. The results obtained by both traditional machine learning and 

pre-trained model-based deep learning were critically analysed with the set evaluation criteria 

(ASSURED criteria). The features were optimised using univariate analysis and exploratory 

data analysis to improve the performance. The image processing algorithm showed >98% 

accuracy while the classification accuracy by Least Squares Support Vector Machine (LS-

SVM) was 100%. On the other hand, the deep learning technique provided >86% accuracy, 

which could be further improved with a large amount of data. The k-fold cross-validated LS-

SVM based final system, examined on different datasets, confirmed the robustness and 

reliability of the presented approach, which was further validated using statistical analysis. 

The understaffed and resource-limited healthcare system can benefit from such an easy-to-use 

technology to support remote aid workers, assist in elderly care and promote personalised 

healthcare by eliminating the subjectivity of interpretation.  
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1. Introduction 

There is less than one physician per thousand population for more than 44% of the World 

Health Organisation (WHO) member states (World Health Organization, 2017). Even in a 

developed country such as the UK, there are only 2.806 doctors for every 1000 people.  The 

longevity of human life has given rise to increasing the understanding of age-related 

disabilities and diseases, which can create significant burdens on already over-burdened 

healthcare systems. To support the elderly population, which is expected to increase to 1.91 

billion in 2050 (P. D. of the Department of Economic and S. A. of the United Nations 

Secretariat, 2012), and limit the spread of pandemics, an intelligent, clearer and easier system 

with the least error-prone diagnosis results is required for both patients and clinicians. In the 

absence of expert clinical staff, there is a requirement for systems that are easily operable. 

Such a system could be used by aid workers in remote places to support primary healthcare, 

in time of epidemic and environmental monitoring for many purposes such as identifying safe 

drinking water. The easy-to-use system could support the growing need of the elderly 

population as well. Therefore, the early diagnosis facility, the disproportional ratio of health 

professionals (doctor, expert, staff, carer) to patients and the advancement of technology is 

influencing the field of healthcare prompting the sector of mobile phone-based microscopy, 

assays, and sensing platforms for Point-Of-Care (POC) diagnostics (Contreras-naranjo, Wei 

and Ozcan, 2016; Rajan and Glorikian, 2009).  

The colourimetric tests are the prominent technologies used in the POC systems. The 

colourimetric tests for diagnosis purposes are being utilised for decades. The Lateral Flow 

Assay (LFA), a type of colourimetric test scheme, is more commonly either a qualitative or a 

semi-quantitative assay. The LFA are mainly popular for POC platforms since they are easy-

to-use, fast and low-cost. However, they often suffer from limited specificity and sensitivity 

due to the limitation of materials including biochemical components (Koczula and Gallotta, 

2016).  

The naked-eye and colour chart based colourimetric tests including LFA expect the user to 

possess a perfect colour vision, whereas colour blindness is a common genetic deficiency. 

Globally, one in twelve men is colour blinded (NHS Choices, 2016).  There are more than 2.7 

million colour blind people in the United Kingdom (Colour Blind Awareness). Moreover, 

perception of colour can vary from person to person and reading from colour charts can be 

complicated for non-clinicians. As a POC system, the integration of computational system to 
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LFA can enhance the overall diagnosis experience such as the research conducted by Ozkan 

(2017). In this work, we explored the computational solutions to provide an automatic 

colourimetric decision that fulfils our evaluation criteria.    

This paper aims to provide a proof-of-concept for a dry-chemical based or microfluidic, stable 

and semi-quantitative assay using a larger dataset with diverse conditions. At first, this paper 

provides a context of the evaluation criteria and presents the rationale for the evaluation 

criteria (Section 2), followed by defining the assay types from the perspective of computer 

vision (Section 3). The current point of view in the field of POC systems is from a number of 

disciplines; dominated by biochemistry, nanotechnology and optoelectronics. Findings 

concerning such systems have presented the prospect of isolated individual colourimetric 

components but often lack the rigorous detailing of how such a system can be and should be 

designed. Therefore, there is a need for an extensive study to deal with the inadequacy to 

perceive colourimetric tests from the frame of computer vision.  The challenges include the 

quest for searching a suitable image processing technique for robust operation of 

colourimetric tests. There is a requirement of knowledge exploration for such techniques to 

develop a better understanding of colourimetric test data, which can facilitate better 

management of the computational complexity of such data. Hence, experiments are designed 

accordingly; the detail of sample preparation is provided in Section 4, followed by the 

proposed image processing framework to separate the region of interest (ROI) from images of 

colourimetric tests.  

Analysing the extracted features from ROIs could help to create domain-specific knowledge. 

Identifying the key features and how the features are being analysed can play a crucial role in 

the core model of a colourimetric Decision Support System (DSS). Thus, feature optimisation 

and feature analysis techniques would be a promising contribution, which is investigated in 

Section 6, and extended to exploring classification and regression algorithms and further 

expanded to consider the potential of utilising more advanced machine learning techniques in 

Section 7. 

The purpose of this paper is to deliberately examine the scope of an intelligent colourimetric 

test that can reason about and interpret the colourimetric data, fulfils our defined evaluation 

criteria and demonstrate the claim as well.  The paper also asserts the contribution regarding 

the pseudo-control colour.  

2. Evaluation Criteria 

WHO prefers the diagnostic system to be inexpensive, disposable and easy-to-use 

(Khademhosseini, 2011; Wang, Xu and Demirci, 2010). Such a diagnostic system should 
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follow the criteria called ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid 

and robust, Equipment-free, and Deliverable) (Kettler, White and Hawkes, 2004). This paper 

studies, how a computational system can act as an expert to perform colourimetric test 

complying with the ASSURED criteria.  

2.1 Affordable technology  

The mobile phones have a high penetration rate (GSMA Intelligence), making it widely 

accessible and affordable technology to the resource-limited setting. By 2019, the number of 

mobile phone users is expected to reach 5.07 billion (Statista, 2015). From the computational 

context, the use of a mobile phone can act as an affordable-ASSURED technology.  The 

mobile phone can effectively eliminate the operating cost by minimising the requirement of 

plate readers and analysers.  

In general, paper-based assays such as Sicard et al. (2015) are more affordable and suitable 

for less trained personnel. A mobile-enabled paper-based assay can enhance the processing of 

result (Roda et al., 2016; Lopez-Ruiz et al., 2014), ease the effort to interpret the result and 

make the result conveniently communicable (Sicard et al., 2015). The objective of such a 

system is not aimed to replace the biochemical systems but instead to assist (Kim et al., 

2017a), simplify (Lopez-Ruiz et al., 2014) or accelerate (Tania et al., 2017) the process. For 

example, when it is difficult to provide visually distinguishable colours, such systems can aid 

to provide a better decision (Abuhassan et al., 2017; Shabut et al., 2018). Therefore, this work 

aims to develop a system which is computationally efficient to be deployed on the mobile 

platform, making it an affordable system.  

2.2 Specific and Sensitive Performance  

The next ASSURED criteria are specificity and sensitivity, which require the system to have 

low false negative and false positives. Although, it is a common practice for the computation 

systems to present the result in terms of accuracy, evaluating the performance of the system 

only with accuracy can be misleading.  

2.3 User-friendly System  

The ASSURED criteria put emphasis on the minimum requirement of training from the users. 

The ratio between health professionals and patients are imbalanced worldwide. The global 

understaffed health systems can benefit from technologies that provide ease of use. These 

easy to use systems can support the associated need of growing elderly population, provide 

more autonomy to users for personalised healthcare at home settings, and more importantly in 

remote locations where there is a scarcity of trained medical personnel.  
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Exploring the existing literature, this research suggests, the user-friendly system should not 

only require less medical training but also should not demand high technical skills from the 

user.  Therefore, the system should require minimum user interactions or interventions with 

the system in order to provide a decision. In the reported articles on colourimetric tests, there 

are systems that require users to aid with the data pre-processing techniques e.g. cropping and 

seed points by the user (Rahmat et al., 2018; Mutlu et al., 2017; Solmaz et al., 2018). No 

detail description was provided in the article (Mutlu et al., 2017) regarding the cropping 

mechanism, therefore, the authors assume the cropping was performed manually without any 

intelligent image processing method.  Solmaz et al. (2018) and Mutlu et al. (2017) utilised 

smartphones, whereas Rahmat et al. (2018) used a scanner for image acquisition. The 

cropping techniques used in these articles eliminated the segmentation process. However, the 

technique compromises the ease of use, compelling the user to possess technical skills.  

2.4 Rapid and Robust System  

The next criteria are to make the system rapid and robust. This work mainly focuses on 

machine learning based computational systems.  To evaluate the rapidness, the training time 

should be taken into account so that the system can support in time of any sudden outbreak 

such as climate change-related diseases (Kabir, Rahman and Milton, 2014). However, the 

testing time should be considered as the execution time. On the other hand, robustness is a 

vast term and has a direct impact on the ease of use of the system. In order to provide 

reproducible and accurate results, if there are many rigid guidelines for the user to follow, 

then the system preserves lower robustness as well as reduced user-friendliness. In this case, 

the robustness could be in terms of the format of the data or regarding the environmental 

settings.  

The lighting condition is one of the biggest concerns for image processing, especially medical 

imaging. The ambient light can have a huge impact on the RGB value. Therefore, lighting 

condition is considered as a key factor of the robustness (Solmaz, 2018; H. Kim, Awofeso, 

Choi, Jung, & Bae, 2017; Mutlu et al., 2017). Solmaz et al. (2018) considered 7 illumination 

conditions to train the model. The light condition can be channelled through additional 

optomechanical attachments such as H. Kim et al., 2017. The algorithm proposed by Mutlu et 

al. (2017) for the classification of pH test strips showed equal performance with and without 

such hardware attachments. The study (Mutlu et al., 2017) considered three different lighting 

conditions while experimenting without any hardware.  

The camera to sample position can influence the image processing requirements as well as the 

classification performance. The mobile applications available in the app stores utilise a 

guideline or virtual plate to limit the location of the sample position as well as the distance of 
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the camera (Sicasys Software GmbH, 2017; Enzo Life Sciences inc., 2015; Alidans srl, 2015). 

Mutlu et al. (2017) utilised six different orientations of the pH test strips (Merck, Germany), 

effectively varying the position of the sample from the camera lens as well as from the source 

of the light. Although the purpose of the variety in the rotation was to train the system for 

robust orientation of the sample, the images were manually rotated before training to maintain 

the same alignment. However, the system does not include any automatic image processing 

technique, rather rely on the user to crop the image.  

Another parameter for robustness is interoperability (e.g. hardware compatibility, application 

programming interface or API). A mobile-enabled algorithm was tested on the paper strips to 

present a system with inter-phone repeatability by Yetisen, Martinez-Hurtado, Garcia-

Melendrez, da Cruz Vasconcellos, & Lowe (2014). The downside of the system is longer 

calibration time. The performance of another smartphone application for paper-based saliva-

alcohol testing was evaluated by (Kim et al., 2017a) on five different smartphones, effectively 

varying the hardware and software components including phone-camera. However, the 

system involves additional hardware for illumination and imaging consistency.  

Therefore, the criteria of robustness might be immeasurable, because how much autonomy a 

single system can provide without compromising the rest of the parameters of the ASSURED 

criteria is an optimisation issue. In this work, we evaluate the robustness or R-criteria by 

computational complexity and adaptability.  

2.5 Equipment-free System  

The next ASSURED criterion is whether the system equipment free. This criterion is closely 

associated with the cost of the system. If the system can turn the smart device such as mobile 

phone and tablet into colourimetric test reader, essentially there is no need for additional 

equipment. The standard practice for colourimetric tests involves plate reader e.g. 96 well 

plate reader utilising light absorbance for wet-chemical based quantitative tests, analysers for 

paper-based test strips and naked-eye tests for qualitative tests. In literature, substantial 

amount of the reported articles on mobile-enabled systems utilised additional hardware 

attachment to channel the lights, enhance the image or ease the image processing technique 

(Kim et al., 2017a; Hussain et al., 2017; Kim et al., 2017b; Masawat, Harfield and Namwong, 

2015).  

2.6 Deliverable System  

The last criterion is- the system should be deliverable implying it should be accessible by 

those who will use the system.  There is a close relation between affordable and deliverable 

systems. According to the World Bank, more households are likely to possess mobile phones 
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than a toilet (World Bank Group, 2016). Therefore, a computationally efficient system to be 

deployable as a mobile-enabled system is supposed to be more accessible than the specialised 

devices.  

Therefore, the aim of this work is to design and develop a system that fulfils ASSURED 

criteria. Our goal includes a system that is intelligent to make it automatic and user 

intervention free; computationally efficient to be deployed in the mobile environment; 

adaptable to comply with variability; computationally efficient, making the system rapid and 

the specificity and sensitivity should be balance and high to produce a reliable accuracy.   

3. Assay Type  

The assay type can be defined in many ways such as based on time point, number of analytes, 

signal amplification method, type of the substrate and format of the result. In terms of 

detection method, this work considers the assay involving visible colour spectrum only and 

based on the format of the result, this paper mainly focuses on the semi-quantitative assay.  

Based on the number of analytes, the colourimetric assay can be a single target or multiplex. 

However, this work considers sample in image format. Therefore, it is important for the 

decision making elements to realise the number of objects associated with a single sample.  

   

(a) (b) (c) 

Fig.  1: Number of targets in the image. (a) TB-test: image contains six filled wells. In other 

words, there are six samples. From the computer vision perspective, there are six objects. (b) 
pH indicator paper: four objects separated by blue boxes belong to the same pH test, (c) 

Multiplex assay: each object is directed to a different target   

i) Single object/ Sample:  

Different type of targets and objects associated with the colourimetric test are shown in 

Fig.  1 for the readers to visualise the variety of the ROI within the scope of this research 

area. In Fig.  1(a), the ROI is the samples or filled wells in a 96-well assay plate involving 

plasmonic enzyme-linked immunosorbent assay or ELISA (Shabut et al., 2018). There are 

six samples in the image. A single sample is outlined with a red box. In this case, the 
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single object or well represents a single sample obtained from a single source or subject 

i.e. urine of an individual and a single test i.e. TB-antigen specific antibody detection. For 

an image of 96-well plate, there can be multiple samples (maximum 96 samples). Our 

earlier works involve such wet-chemicals based colourimetric test (Tania, Lwin and 

Hossain, 2016; Abuhassan et al., 2017; Shabut et al., 2018; Tania et al., 2018).  

ii) Multiple objects/Sample:  

The main focus of this paper is the type of assay shown in Fig.  1 (b), which is an image 

of a universal pH indicator paper. The ROI is the colour pads. Depending on the brand, 

the commercially available pH indicator paper can have one or multiple colour pads to 

provide a decision on a single pH level. The pH paper strips using multiple colour pads 

for a single test type are more reliable. Therefore, this research involves such a test paper 

for pH level detection.  

Table 1: Region of interest, feature-set and classification algorithm for paper-based assays 

Reference  Object/ 

sample 

Histogram 

Features 

Colour 

Spaces  

Algorithm  Result  

Accuracy  

H. Kim et al. 
(2017) 

Single Mean, 
Median, 

Mode, Bin 

median and 
Bin centroid  

RGB, 
HSV, 

YUV, 

LAB 

LDA, SVM, 
ANN 

80%; 
100%  

Solmaz et al. 

(2018) 

Single  With and 

without grey-

world 
corrected 

mean 

RGB, 

HSV, 

LAB 

LS-SVM, 

RF 

90.3%; 

95% 

Mutlu et al. 

(2017) 

Multi Mean of 

JPEG, RAW 
and RAWc 

RGB  LS-SVM 100%  

Rahmat et al. 

(2018) 

Multi* Mean  RGB Euclidean 

distance  

95.45%  

*Multi-object per sample but single object per target (Multiplex assay) 
LDA: Linear Discriminant Analysis; SVM: Support Vector Machine; ANN: Artificial Neural 

Network; LS-SVM: Least squares support vector machine; RF: Random Forest 

 

The reported articles using paper-based assays for the various application considered both 

single colour pad or object per sample as well as multiple ROIs or objects that belong to the 

same test (Table 1).  In this paper, multiple objects i.e. colour pads belong to the single 

sample as well as a single test. In Fig.  1 (b), the image of a paper strip indicating pH 3 has 4 

colour pads. This paper mentions the block of colour pads as objects/ sample. These objects 

are collectively responsible to produce a decision. As these objects, outlined in blue boxes, 



10 

 

are detected individually in this work, the features per colour pad are multiplied by the 

number of objects/ sample.  

iii) Multi-test/ Image and Single object/ test:   

The multiplex assays are capable to perform multiple tests on a single sample using the same 

test strip. Each object, block or colour pad in Fig.  1(c) represents different test type such as 

glucose, pH, protein and ketone. In this paper, we have used an intelligent image processing 

scheme to detect objects/sample in the pH test strip. As the objects are detected individually, 

the same approach can be implemented to the multiplex assays, e.g. urine dipstick test as well. 

Therefore, in addition to the pH test strips, for the proof of concept, a separate dataset of 

untested blank urine dipstick was utilised to evaluate the strength of the image processing 

algorithm, which is one of the contributions of this paper.  

4. Experimental Selection 

4.1 Materials Preparation 

As a paper-based LFA, this work mainly focuses on pH indicator universal test strips. The pH 

ranging from 3.0 to 10.0 was considered for this work. As the objective of this work is to 

deliver a proof of concept, the whole range (0-14) was not considered. In this work, we used 

buffer solutions to ensure more stability and longevity of the solution, therefore increasing the 

reliability of the overall experiment.   

For pH 3.0-5.0, the citrate buffer was prepared as               diluted in deionised water, 

where  = X citric acid (C6H8O7) and  = Y sodium citrate (Na3C6H5O7), where X and Y 

represents the concentration in molar or M (Gomori Buffers). Traditionally 0.1M is used. 

However, a higher concentration would result in longevity of the solution. Similarly, for pH 

6.0-7.0, the phosphate buffer was prepared from NaH2PO4 and Na2HPO4. Using NaHCO3 as 

the weak base and Na2CO3 as the strong base, buffer solution for pH 9 was prepared. The pH 

8 and 10 were tested by commercially available NIST traceable borate pH buffer solution 

(Fisher Scientific, UK). The pH level measurements were controlled with calibrated pH meter 

(HI 208, Hanna Instruments). The calibration was conducted with standard buffer of pH 4 and 

pH 7.  

The Fisherbrand
®
 pH test strips were immersed in the prepared pH solutions. The test strips 

instantly form the colour and change it quickly after drying. Therefore, images were captured 

rapidly. Some of the test strips were allowed to dry on tissue paper, while some of them were 

purposefully not allowed to dry the residue on tissue paper. The purpose of it was to make the 

dataset more robust.  
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4.2 Experimental Setup and Dataset  

In this work, the images were captured by Samsung Galaxy S6. The SM-G920F camera 

(f/1.9, exposure time 1/50 second, focal length 4mm, maximum aperture 1.85, 35mm focal 

length =28, normal exposure program, without flash) was set on its default mode.  The idea is 

to utilise the strength of the available camera with minimum user interactions. The camera 

automatically adjusted the white balance, ISO speed, metering mode and set the brightness by 

the internal software of the smartphone. The detail of the experimental setup is provided in 

the Supplementary Document 1.   

4.3 Dataset  

The original dataset in Table 2 is utilised to investigate the required image processing 

framework, classification algorithm and an optimum number of features. The original dataset 

contains 520 images.  Let us denote the samples of pH 3-9 in the original dataset as ‘D-o1-9’. 

Once the model was developed, the rest of the datasets were utilised to explore the merits and 

capabilities of the proposed scheme. 

Table 2: Dataset  

Sl.  Name Description  Brand  Lighting 

Environment  

Device Samples/ 

class 

Total  

1 original 

U
n
iv

er
sa

l 
p
H

 i
n
d
ic

at
o
r 

p
ap

er
 

F
is

h
er

b
ra

n
d

®
 p

H
 

               Samsung 

Galaxy 

S6 

65 520 

2                         Samsung 

Galaxy 

S6 

65 65 

3 D-   Images captured in 

without any 

controlled light 

Samsung 

Galaxy 

S6 

15 120 

4 D-                   Samsung 

Galaxy 

S6 

15 120 

5 D-                    Samsung 

Galaxy 

S6 

15 120 

6 D-i                iPad Pro 20 20 

7 D-j                Samsung 20 20 
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Galaxy 

J3 Prime 

8      Hicarer-pH 

Test Strips-

01 

               Samsung 

Galaxy 

S6 

65 65 

9 untested 

urine 

dipstick  

Reagent 

strips for 

urinalysis  

Multistix® 

GP, Siemens 

               Samsung 

Galaxy 

S6 

5 5 

Total 1,055 

D-    D-    D-    =D-lights 

In literature, Mutlu et al. (2017) used single test strip per class and extended the dataset by 

changing the format of the file, the orientation of the test strip and capturing the image of the 

same strip for 5 times. Their study did not repeat the test on pH strips to consider potential 

anomalies. They tried to compensate for the issue by capturing the image of the same test 

strip using different controlled-lighting conditions. The authors acknowledge that presented 

case study is a stable assay which is not subject to as many variations as Shabut et al. (2018). 

However, the dataset of Dhar, Mehta, & Sit (2017) indicated that even a stable paper assay 

can have nonconformities when the solution is not held within the colour pads and it is spread 

across the base paper, which can increase the false positive ROI area during image processing 

and act as a noise during classification. Consideration of such noise level at different test 

attempt would have asserted statistical likelihood and demonstrated a more reliable system by 

Mutlu et al. (2017). Therefore, in order to rectify this issue, in our paper, the dataset contains 

65 images of individual pH indicator strips for each of the mentioned levels. The samples 

were allowed to have any arbitrary orientation as well as position within the sample plane 

exposed to the camera (Fig. S1.2).  
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Fig.  2: Proportion and distribution of the dataset 

The original dataset was utilised to develop the system from image pre-processing to feature 

extraction and classification. Using 10-fold cross-validation, the dataset assisted in optimising 

the features and identifying the best suitable classifier. Later, 535 images were considered as 

the extended dataset to evaluate the concept using a wider latitude. The proportion of data 

distribution is illustrated with a heat-map (Fig.  2). 

The purpose of using these extended datasets was to evaluate the robustness of the image 

processing algorithm, the stability of the classifier and reliability of the overall system by 

investigating the following questions.  

i) How the system performs on an unseen data under a similar condition?  

- (        ) 

ii) Can the system be trained for a similar assay from a different commercial brand?  

- (    ) 

iii) Does the image process algorithm adaptable to analogous assay type?  

- (untested urine dipstick) 

iv) Is the system trainable for images under different illumination condition without fine-

tuning the image processing framework, feature set and hyper-parameters? -(D-lights) 

v) Is the system trainable for images captured by different devices without fine-tuning 

the image processing framework, feature set and hyper-parameters?  

- (D-i and D-j) 

Extended Dataset 

Among these extended samples, aside from the urine dipstick, the rest of the samples were 

immersed in pH buffer solutions. 

p
H

 l
ev

el
 

Dataset 
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i) At first, a dataset (        ) was created using the same assay brand and same 

ambient condition, placing the test strips in an arbitrary position within the sample 

plane with the aim to create more diverse conditions. This          dataset was 

used as a testing dataset to validate the system on the entirely unseen data.  

ii) In order to validate the robustness of the image processing algorithm, universal pH 

indicator paper of a different brand (Hicarer-pH Test Strips-01) was utilised, denoted 

as      papers. The dimension, including the thickness of the colour pads of      

papers is slightly different than the original dataset. The colour pads in      papers 

are densely situated and the base papers are more hydrophilic than our original test 

strips. Therefore, the image-processing technique would have to deal with more noise 

for these test papers.  

iii) In the reported articles (Yetisen et al., 2014; Rahmat et al., 2018; Smith et al., 2016; 

Chen, Wu and Dong, 2014; Wirth et al., 2018), the urine dipstick is a well-utilised 

example of LFA using with and without additional hardware.  Due to the resemblance 

of the assay, a urine dipstick was included in the extended dataset. Similar to these 

multi-object assays, e.g. original dataset, the urine dipstick has multiple colour pads. 

Although these assays are different in terms of the number of targets, the image 

processing framework should be able to segment the ROIs. Image of a single untested 

urine dipstick was captured five times with a slight variation in the position for 

repeatability. Due to different targets, the dataset was not used for classification.  

iv) The reported articles emphasize creating a diverse dataset by considering different 

illumination conditions and mobile devices (Kim et al., 2017a; Solmaz et al., 2018). 

Therefore, we have further extended our dataset (Table 2) to include the additional 

three different illumination conditions as described in the experimental setup. The 

original dataset was generated in an indoor laboratory environment. Without the 

ceiling lights (in the presence of    ), for each pH level, 15 samples were generated- 

a) without any controlled light, using natural daylight only (D-    b) using warm 

light (D-   ) and c) using cold light (D-  ). Therefore, from 120 independent pH tests, 

360 images were produced using these lighting conditions (D-  , D-   , D-  ). From 

this point forward, these images are collectively denoted as ‘D-lights’.  

v) The properties of images captured with different devices may vary due to the camera, 

optics and imaging software (Solmaz et al., 2018), even when the interoperability 

issue (Yetisen et al., 2014) of the mobile application is not considered. Hence, a small 
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dataset
1
 (D-i and D-j) was generated from images captured using different devices to 

explore the impact (Table 2).  

To summarise the overall dataset, this work includes an LFA dataset of 1,055 images in total.  

This paper investigated the colourimetric classification method using both traditional machine 

learning as well as deep learning techniques. The deep learning technique is capable to 

circumvent the effort to find the perfect features for an image-based system. However, the 

traditional machine learning techniques, both classification and regression, require image 

processing and feature extraction to provide the features as the input of the classifier or 

regressor. Therefore, this paper sequentially discusses the data pre-processing steps for 

classification and regression, followed by a separate attempt using deep learning models to 

provide a colourimetric decision.  

5. Image processing of the paper strips 

An expert system is a knowledge-based system that employs knowledge about its application 

domain and uses an inferencing (i.e. reason) procedure to solve problems that would 

otherwise require human competence or expertise. The arrangement expert systems in the 

imaging context have been utilised in diversified fields as exemplified in (Janke, Castelli and 

Popovič, 2019; Seo and Shin, 2019; Dang et al., 2019; Shabut et al., 2018; Carbonera, Abel 

and Scherer, 2015). This paper utilises such an expert system that can interpret the visual 

knowledge to identify objects in the assay based on the stated characteristics and provide a 

classification of the colourimetric test. The use of an intelligent image processing scheme can 

make a colourimetric system more user-friendly
2
 by reducing the required user intervention to 

produce the result. A robust image processing algorithm can also eliminate the necessity of 

the additional hardware attachments.  

  

                                                   

1 The dataset of D-i and D-j are relatively small (<30 samples for 2 classes). Rest of the pH 

samples per class, e.g. original dataset, contain 65 images per class. Therefore, D-i and D-j 
2 The authors are not referring to user-interface. The user-friendly system is defined in the introduction, 

i.e. a system which promotes ease of use and requires less medical or technical trainings. 
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Table 3: Variability regarding imaging 

Premise  Parameter Specifics 

Camera 

parameter 

Resolution 

(MP) 

Low: 3.2 (Cooper et al., 2012) 

High: 20.7 (Kim et al., 2017a) 

ISO Varying from 50 (Alankus et al., 2018) to  

800 (Karlsen 2018; Lopez-Ruiz et al., 2014). 

Auto (Karlsen 2018) 

Other 

parameters 

Constant (Mutlu et al., 2017) 

Auto (Solmaz et al., 2018) 

Camera to 

sample 

position 

Distance Low: 5cm (Yetisen et al., 2014) 

High: 2 feet (Feng et al., 2014) 

Exposure 

(Angle) 

Parallel (Alankus et al., 2018) 

Tilted (Karlsen and Dong 2017) 

Image acquisition is an essential step in an image-based system. The imaging condition can 

undoubtedly influence the image quality as well as colours. A wide range of smartphone 

camera specifications along with intrinsic and extrinsic parameters has been explored in the 

literature such as the International Organization for Standardization (ISO), flash and focus. 

Such explorations are exemplified in Table 3. Within this context, an important parameter to 

be considered is the distance between the camera and the sample. Alankus et al. (2018) kept 

this distance as 30 cm and Solmaz et al. (2018) as 16cm, whereas Yetisen et al. (2014) chose 

the distance to be rather small by setting it as 5 cm. Sicard et al. (2015) defined close distance 

as 6cm away. Feng et al. (2014) kept the Google Glass more than 2 feet away to capture good 

quality images. Our research suggests that instead of setting a hard constraints on the distance 

between camera and sample, a study should consider the following while capturing images: i) 

the primary objective should be a good quality image; ii) sample plane should be exposed to 

the camera in a certain way that ROI is clearly visible, without any blurriness, hence focus 

should be adequate, which can be easily handled by modern phone cameras and iii) capability 

of the image processing algorithm. The image processing algorithm may use object detection 

based on geometric features. In such cases, the physical size of the sample in an image may 

play a decisive role. Advanced image processing algorithm such as deep learning is known 

for its ability to recognise objects despite its size. However, a heavy algorithm such as deep 

learning might not be suitable for real-time native application in resource-limited settings. 

Another circumstance regarding this distance issue could be the noise filtering process in an 



17 

 

image processing algorithm. The conventional noise filtering, for example, the morphological 

operation may define the noise by connectivity. Therefore, a guideline should be provided to 

the user, if the system gets easily affected by any variation in this distance. On the other hand, 

a rigid guideline would affect ease-of-use. Under the circumstances, this paper maintains the 

camera to sample position within close proximity as most of the reported articles (Yetisen et 

al., 2014; Shabut et al., 2018), retaining the average 35mm focal length around 28 as 

mentioned in Section 4.2.  

In our earlier work (Abuhassan et al., 2017; Shabut et al., 2018) on wet-chemicals based 

colourimetric test, we segmented the images using k-means clustering (Arthur and 

Vassilvitskii, 2007), which was an iterative method that was responsible to generate an 

enormous amount of garbage-files. As it can be visualised from Fig.  1(a), the colour of the 

samples of the qualitative test are bluish pink and pinkish blue. The R and B channels had an 

overlap. Therefore, k-means provided a better performance among the histogram thresholding 

based image processing techniques. In this work, the associated colour of the samples are 

mostly colour opponents. Using k-means would create more garbage-files to accommodate 

the images of multiple clusters before selecting the best cluster. Moreover, due to multiple 

colour opponent objects of the same sample, it would be difficult to keep these colour pads in 

the same cluster. This issue can be visualised in Fig.  3. 



18 

 

K=2

K=3

 

Fig.  3: kmeans clustering (Arthur and Vassilvitskii, 2007), varying k=2 to 3. 

Being a ‘multi-object/ sample’ type colourimetric test, the ROIs divided into different clusters 

would occupy more memory space and the feature extraction stage would require more 

iterations, essentially taking more time to process. Therefore, exploring several image 

processing algorithms as shown in Fig.  4, the context is provided in (Shabut et al., 2018; 

Achanta et al., 2012; Bradley and Roth, 2007; Otsu, 1979), this paper presents an image 

processing framework circumventing the iterative approach, making it more suitable for 

mobile environments of limited storage and processing capacity.  
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Fig.  4: Exploration of relevant image processing algorithms exemplified using an image of 

class label pH 3 

The key steps of the algorithm are illustrated as a framework in Fig.  5. The purpose of this 

detailed framework was to ease the consequent processing and reproducibility of the outcome.  
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Fig.  5: Image processing framework 

At first, the dimension of the images was reduced by dynamic scaling (Supplementary 

Document 2). For a known imaging condition, the height and the width of the image will not 

vary to a great extent. However, it may vary due to the factors such as the position of the 

camera, size of the plate and camera configuration (Fig.  6). Thus, the size reduction was 

performed dynamically based on the size of the input image and proportionally so that the 

geometry of the ROI was not deformed, giving the users more flexibility towards imaging 

condition.  

 

   
(a) (b) (c) 

Fig.  6: Variation in the size, shape and location of the objects. (a) Reaction kinetics of 

alkaline phosphatase on paper3, where the outline of the shape of the object is ambiguous  (b) 

pH and nitrite detection by (Lopez-Ruiz et al., 2014), which is case of multi-object and multi-

test per image, (c) ELISA for analysing pro-inflammatory protein production (IL-6)4, where 

                                                   

3 Courtesy: Dr Mohidus Samad Khan, Department of Chemical Engineering, Bangladesh University of 

Engineering and Technology, Bangladesh 
4 Courtesy: Charys Palmer and the Department of Biomedical and Forensic Science, Anglia 
Ruskin University.  
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the position of the samples and closely associated background and sample colour is making 

the object detection challenging  

Following size reduction, colour filtering using a low pass filter (LPF) was applied to allow 

only a specific spectrum from the RGB values.  

    = 8-bit unsigned integer array of filtered image in red channel 

    = 8-bit unsigned integer array of filtered image in green channel 

    = 8-bit unsigned integer array of filtered image in blue channel 

The examples used in this paper, both universal pH strip and urine dipstick contain multi-

objects per sample. In our original dataset, the relevant colours in the selected paper strip can 

be placed in 5 clusters or groups in theory.  

       

{
 
 
 
 

 
 
 
 
                               

              

                               

               

                               
              

                               
              

                              

      ………………….. (Eq. 1) 

In order to separate these clusters, clustering algorithm such as k-means, k-medoids and c-

means can be used. However, as explained earlier (Fig.  3), for rapid execution, the relevant 

colours should be categorised as either foreground region of interest (ROI) or background 

colours (e.g. paper, tricyte).  
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Fig.  7: Histogram based image segmentation  

The colour gamut of the presented case for all class labels are shown in Fig.  7 in the form of 

point clouds for better visualisation of the colour distribution. It is difficult to perceive the 

content in the R, G and B channel from the colour histogram in Fig.  7. Therefore, an example 

of the contents of the background and foreground in all three channels is shown in Fig.  8.  

 

(a) 

 
 

(b) (c) 
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(d) (e) 

  
(f) (g) 

Fig.  8: (a) paper strip tested on pH 3, zoomed ROI and histogram of the zoomed image in 

green and blue channel, (b) input image ‘a’ in red (R) channel, (c) histogram of R channel, (d) 

image ‘a’ in green (G) channel, (e) histogram of G channel, (f) image ‘a’ in blue (B) channel, 

(g) histogram of B channel 

For better visualisation, Fig.  8(a) illustrates one of the input images (class label: pH 3) along 

with its magnified ROI. Fig.  8(a) also contains the histogram of green and blue channels of 

the magnified ROI for the better conception of the intensity vs. number of pixels. When the 

channels are separated as it is mentioned in the framework (Fig.  5), the R channels holds both 

background as well foreground pixels, shown in Fig.  8 (b) and (c).  The red components of 

the input image appear brighter in the red channel, as exemplified in Fig.  8(b), which is not 

sufficient to effectively distinguish the foreground colours from the background.  

From the colour histogram analysis (Fig.  7 and Fig.  8), it can be observed that the higher 

band of G (green channel) and B (blue channel) holds the background pixels from   . Due to 

the type of the case study, the threshold level of the green channel overlaps with the 

foreground pixels of one of the four groups in Eq. 1. From Fig.  8(f), it is clearly visible that 

the background is better perceivable in blue channel, as the brightness of the foreground was 

significantly low. Therefore, the background separation can be performed more convincingly 

in blue channel.  

The intensity of    was then normalised by Otsu (1979), prior to converting it into a binary 

image. Without the colour channel separation, the Otsu is not adequate enough to provide a 

reproducible performance. This issue can be visualised in Fig.  4. This paper explored several 

other alternatives, as shown in Fig.  3 and Fig.  4, which either resulted in a higher 

computational complexity or less reproducibility that are more sensitive to imaging condition. 

Therefore, this paper emphasises on the presented framework (Fig.  5). The step-by-step 

output of the framework is exemplified with an input image of class label pH 3 in the 

Supplementary Document 3.  
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In continuation of the proposed framework, at this point after the binary conversion, the 

processed image only contained   . The logical negative of the matrix would provide the 

foreground pixels.  

To extract all the blocks of the colour pad, Euler number property was utilised.  

I= Binary foreground pixels 

      = Objects in I by 8-connectivity, where          

   = Number of holes in       

     =                           

C = Connected components by 2-D Euler Number (    ) 

All the pixels in C lower than the threshold value were eliminated to remove the noise in the 

binary image. Therefore, the image contained the pixel position of ROI only. As it is 

mentioned earlier, the main focus of this paper is the assays that contain multi-objects per 

sample where the number of objects per sample would vary from assay to assay. In our 

original dataset as well as the      dataset, the universal pH test papers hold 4 colour pads 

and the decision of the pH level depends on the combination of these colour pads. Therefore, 

an object counting rule was deployed to increase the reliability of the system, discarding the 

false positives.  

  = 8-bit unsigned integer array from a logical array containing C  

  {

       
       
       

 

The final output obtained by the AND gate operation can be expressed as   and illustrated in 

Fig.  7 as the segmented image. 

 

Fig.  9: Performance of the image processing algorithm 

The performance of the algorithm or framework (Fig.  5) is illustrated in Fig.  9. The overall 

image processing performance showed >98% accuracy. The accuracy of the image processing 

algorithm is calculated based on Table S3. 1 (Supplementary Document 3). Considering the 
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fact that the light source ‘5’ in Fig. S1.2 (Supplementary Document 1) varied during winter 

and spring in the UK while the images were taken, the image processing method exhibited 

good accuracy and reliable for the indoor environment.  

After image segmentation, due to rule-based noise filtering, false positive ROI area was 

minimum. The image processing framework showed >97% accuracy for pH 4-10. Among the 

pH levels, the algorithm showed comparatively poor performance on pH 3. Further 

investigation revealed that the light source of Eq. S1.2 (Supplementary Document 1) had 

more variation on the days when dataset of pH 3 was generated, which created more shadows 

on the images. The position of the sample plate (Fig. S1.2, Supplementary Document 1) was 

kept constant for all the experiments. There were shadows due to the ambient objects that 

could have been avoided by moving the sample plane based on ‘5’ (Fig. S1.2, Supplementary 

Document 1). 

Original size:

2899x5312x3

(uint8)

2.62 MB

Extracted 

features: 

1x29 (double)

1 KB

 

Fig.  10: Example of dimension reduction at different stage 

In this work, we also evaluated the possibility of performance degradation of the histogram 

based image processing algorithm due to scaling operation tested on MATLAB in desktop 

environment. Without scaling and keeping the rest of the framework same, the full-sized 

images provided 98.94% accuracy on average. If the framework (Fig.  5) is followed, then the 

mean accuracy of the image processing algorithm was 98.23% (Fig. 9). Therefore, it can be 

stated that the dynamic scaling had a negligible impact on the image quality. There is an 

emphasis on scaling in the literature for mobile-enabled medical image processing (Bourouis 

et al., 2014). As the image processing algorithm in this work was not affected by resizing, 

after applying dynamic scaling, the maximum dimension of the image was 300 on average. 

The dimension reduction at a different stage, without compromising the performance, 

effectively reduced the overall memory occupancy of the system (Fig.  10), making it suitable 

for the mobile environment.  

While the testing framework (Fig.  5) for the extended datasets, as shown in Fig.  11, the 

proposed hybrid image processing algorithms were found to be robust enough to successfully 

separate the ROI of      papers without any additional fine-tuning.  
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Sample Input Image Segmented image 

pH 10 

  

Untested urine 

Dipstick  

  

Fig.  11: Image processing of      paper using pH 10 buffer solution and untested urine 

dipstick  

In order to further examine the adaptability of the image processing algorithm, another 

example (Multistix® GP, Siemens) of lateral flow assay was utilised, consisting 8 pads for 

different indicators (such as glucose, ketone, pH). There are two additional blocks for 

reference. These pads or blocks have similar length and width as our original dataset. 

However, the thickness and block-to-block distance are different. Moreover, the base is made 

of trycite, which are more hydrophobic than paper and has different reflectance. These test 

strips are multi-objects/ sample assays, however, each of these objects is designated or 

targeted for different test (e.g. pH, glucose) performed on the same sample (e.g. urine of a 

subject). Although each image contains multiple objects for a single test strip, they are single 

object/ target, known as multiplex assay. As illustrated in Fig.  11, the image processing 

framework (Fig.  5) was successful to separate the ROI of the multiplex assay of urine 

dipstick.  

Different illumination conditions can influence the performance of an image processing 

algorithm (Smith et al., 2014). However, the proposed image processing framework showed 

consistent performance for D-  , D-    and D-  . The framework provided 353 correct 

segmentation out of 360 images with 98.06% accuracy.  
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−                    ...              ∆                      *                  

Fig.  12: Histogram of an image of a pH test strip under different illumination across three 

colour channels. In the colour histogram, the horizontal and vertical axis represents the 

intensity and the frequency or number of pixels, respectively. 

The same pH test strip under different illumination conditions is visibly showing different 

histogram pattern using the same mobile phone camera in Fig.  12. The histograms in Fig.  12 

confirm the need to include diverse illumination condition to develop a robust system, which 

is supported by the reported articles as well (Kim et al., 2017a; Solmaz et al., 2018).  

   

- Samsung Galaxy S6                        iPad Pro                   Samsung Galaxy J3 Prime 

Fig.  13: Histogram of an image of a pH test strip across three colour channels using different 

mobile phone cameras. In the colour histogram, the horizontal and vertical axis represents the 

intensity and the frequency or number of pixels, respectively. 

In Fig.  13, the impact of capturing an image of the same pH test strip using same illumination 

condition can be observed while incorporating the camera of a number of personal devices. 

Comparing the colour histogram of Fig.  12 and Fig.  13, it appeared that the images can be 

more affected by the illumination condition than the variation of the mobile devices.  

In addition to Samsung Galaxy S6 (original dataset), the images were captured by two other 

devices: iPad Pro and Samsung Galaxy J3 Prime. The sizes of these devices are different, 

which effectively varied the exposure plane shown in Fig. S1.2 (Supplementary Document 1). 
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Device Input Image Segmented Image 

iPad Pro 

  

Samsung Galaxy  
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Fig.  14: Image segmentation by different devices 

Therefore, the focal length of these devices had to be adjusted for the consistency of the 

overall system. The dimension of Samsung Galaxy J3 Prime is similar to Samsung Galaxy S6. 

Therefore, no adjustments were conducted on the focal length for this device. The iPad Pro 

was held at 11 inches away, varying the 35mm focal length within 66-68.  It should also be 

mentioned that the images captured by the different devices varied in size due to the system-

defined standardisation. Nevertheless, the image processing algorithm (Supplementary 

Document 2) showed consistent performance (Fig.  14) to segment the images captured by 

different devices. It was also observed that the presented system is capable of handling such 

variation in the focal length. 

Due to the optimised intelligent components of the image processing algorithm 

(Supplementary Document 2, the image processing steps presented in this paper was initiated 

with the input image as it is captured, rather cropping the ROI to such as Mutlu et al. (2017) 

or time consuming object detection process such as Yetisen et al. (2014) as a separate step 

and consequently feeding the rest of the algorithm to analyse the profile that passed in the 

centre of the paper strip, or a smaller ROI. This alternative course of action than Mutlu et al. 

(2017) and Yetisen et al. (2014) aided in reducing the computational complexity without 

compromising the performance (Fig.  9). As mentioned earlier, ‘performance’ is defined by 

the evaluation criteria including execution time and operability within resource-limited 

settings. Integration of a step to consider a smaller ROI or only the centre of the strip would 

have obligated the system to the certain assays and reduce flexibility to be adapted to a 

different exposure of the ROI or variation in the shape, type, location and relative position of 

the objects within an assay. Evidence of the claim is demonstrated in Fig.  11, which could be 

further replicated, enhanced and validated for other paper-based assays.  
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6. Classification and Regression of the Segmented Images  

6.1 Feature Extraction 

Once the ROIs were segmented, the characteristics of these samples were analysed from its 

colour moments. In our earlier study (Abuhassan et al., 2017), we have utilised lower order 

colour moments,    (Sergyan, 2008) in only LAB colour space      for all the colour 

channels      to classify wet-chemical based qualitative colourimetric tests. For stable paper 

assays such as pH indicator strips and urine dipsticks, the required feature-set may vary. 

Therefore, the impact of different attributes is required to be analysed. Let’s assume, the 

required features for colourimetric tests can be expressed as Eq. 2.    

                                   ….. (Eq. 2) 

The feature-set in Abuhassan et al. (2017) can be described as Eq. 3, where 6 colour moments 

were considered in L, a and b channel, discarding the entropy in L channel. As the images 

involved single objects per sample, there were 17 features in total.  

                                 …… (Eq. 3)   
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Fig.  15: Feature extraction framework  

The feature extraction framework is illustrated in Fig.  15. In this work, the colour differences 

in LAB colour space are calculated in a closed loop as additional features (Tania et al., 2017). 

If the colour block is    and position of the block is        , then let’s calculate the colour 

difference for each block calculated from its previous block using the following equation.  

    
              

            
             

            
             

  

          
       ……… (Eq. 4) 

The features generated from Eq. 4 are novel features, where a pseudo-control colour set is 

generated for each individual test using the user input image itself. However, in real life 

situation, one would require to compare the tested paper assay with a colour chart. This colour 

chart holds the control colour for the block or sample. In the literature, the colour of the block 

is often tracked against the colour chart (Rahmat et al., 2018; Solmaz et al., 2018). In this 
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work, we have also used the colour difference of each colour block from the corresponding 

control colour block      as part of the feature-set.  

    
              

          
             

          
             

  

        
       ……….   (Eq. 5) 

In Eq. 2,           was obtained from Eq. 4 and Eq. 5, which could be stated as Eq. 6.  

               
      

   ….. (Eq. 6) 

The case study involves multi-objects for single sample per image, which elongated the 

feature set. Therefore, initially, 440 features
5
 in total were considered to train the 

classification model.  

6.2 Classification and Feature Analysis 

6.2.1 Feature Selection 

Understandably, the most important features for a colourimetric test would be colours, which 

was reflected in the reported articles as well (Table 4). An inadequate feature-set can lead 

towards under-fitting, whereas an elongated one would result in a higher dimension of the 

feature-set which would cost the system in higher computation time and occupying more 

memory space of the personal devices. 

  

                                                   

5 Eq. 4: No of features: 1 x4=4; Eq. 5: No of features: 1 x4=4; Eq. 2: (6 colour moments x 4 blocks x 3 

colour channels x 6 colour spaces)+ Eq. 6= = 432 features + Eq. 6; Eq. 6: No of features 4+4=8. 

Therefore, Eq. 2= 432+8= 440 features  
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Table 4: Feature analysis methods 

Attribute Description Reference  

Colour moment Mean Rahmat et al. (2018); 

Mutlu et al. (2017) 

Multiple Kim et al. (2017a) 

Colour difference Initial   end point Wang et al. (2016); 

Vashist et al. (2015) 

Colour space RGB Rahmat et al. (2018); 

Mutlu et al. (2017); 

Soni and Jha (2017); 

Wang et al. (2016b); 

Sicard et al. (2015) 

HSL Akraa et al. (2018) 

HSV Lopez-Ruiz et al. (2014) 

LAB Alankus et al. (2018); 

Konnaiyan et al. (2017) 

Multiple Kim et al. (2017a) 

Grey value Weighted mean Khan and Garnier (2013) 

Green channel Barbosa et al. (2015) 

Rule-based Sicard et al. (2015) 

The conventional semi-quantitative test via RDT often offers a colour chart, for example, the 

colour chart for urine dipstick. Rahmat et al. (2018) provided the colourimetric measurement 

using only ∆E calculation. On the other hand, Vashist et al. (2015) provided the colourimetric 

decision by plotting the pixel intensity against the concentration of the analyte. Konnaiyan et 

al. (2017) utilised correlation graph. The use of PCA is also quite prevailing  (Akraa et al., 

2018). Jonas et al. (2016) performed a colour comparison from its ratio. Garg et al. (2014) 

utilised a calibration curve to determine the concentration of glucose. Although a colour chart 

was available for the dipstick used by Shen, Hagen and Papautsky (2012), the study used a 

calibration curve to measure the pH level. A binary decision for substance tracing in Smith et 

al. (2014) was availed from the known cocaine standards.  

On the other hand, this work performed feature expansion to consider a wide range of 

potentially important and relevant features, mostly signal features, before performing any 
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feature selection and optimisation. At first, the classifiers were trained using 440 colour 

features. Among the standard classifiers including discriminant analysis, support vector 

machines (SVMs), k-nearest neighbours (KNNs) and ensemble methods, the ensemble 

method called Subspace discriminant analysis showed the best performance. Using 30 base 

learners and subspace dimension of 220, the classifier provided 99.4% accuracy with three 

misclassifications. The training was conducted in 33.418 s and the prediction speed was 350 

observations/s. However, more features would mean more model complexity and requirement 

of more storage and processing capacity. Therefore, the number of features is required to be 

optimised. The optimisation was conducted using univariate analysis at different stages. For 

the convenience of faster training, the analysis was executed via MATLAB classification 

learner application.  

The use of histogram features in the reported articles can be observed in Table 1. This paper 

systematically investigated the impact of the histogram features including colour moments 

and colour spaces. Additionally, the impact of control colours was studied as well. We have 

explored the colour moments in LAB colour space to begin with.  

Based on the univariate analysis conducted on          , the best performing features were 

found to be mean and energy (Fig.  16). These two features comprise good signal, performing 

as proficient (97.1% accuracy) as the combined features of          . Considering the fact 

that we are analysing the colourimetric tests, the average colour or brightness of the ROI is a 

key feature. The mean colour value is considered to be the most important features in the 

reported articles as well (Mutlu et al., 2017; Rahmat et al., 2018). On the other hand, the 

energy in L, a and b are the amplified brightness level. Therefore, energy is directly linked 

with the performance of the mean colours. Due to the reflectance on the two dimensional 

surface, the unbiased standard deviation within each colour pad did not provide significant 

contrast to improve the classification performance. The mode of colours on the solid surface 

of individual ROI without any opto-mechanical attachment can be misleading. Because, the 

system would be susceptible to the ambient lighting environment. The mode is supposed to 

provide effective information, if the ROI is scaled such as hardware systems of CLINITEK 

Status® + Analyzer and the wavelength is filtered (Siemens Healthcare GmbH, 2018). On 

ideal condition, there should not be any asymmetry of colour distribution, therefore the 

SKEW can also be discarded from the feature-set.   Hence, among the features from       , 

only mean and energy were considered to train the classifier.  
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Std: Standard deviation; Col M: Colour Moments; All: 440 features in 6 colour spaces. The 

features with dotted outlines are functions of           

Fig.  16: Performance of the features  

As illustrated in Fig.  16, the control colours were also found to be influential features. Only 

the control colours are sufficient enough to provide a 98.7% accurate classification using Eq. 

6, which was studied further while exploring and fine-tuning the classifier. Similar to our 

earlier work (Tania et al., 2017) on the wet-chemical based colourimetric test, the colour 

differences (Eq. 4-6) are considered in LAB space only. The L, a and b, imitating the 

nonlinear response of the human eyes, can also resemble the uniform changes in perceived 

colour facilitated by the uniform changes in the LAB- components. Therefore, the control 

colour related calculations were computed in a colour space which has more advantages at 

Euclidean space.  

 
1: Mean; 2: Energy; 3: Mean, energy and Eq. 4; 4: Colour moments. 1-4 are the performances 

by the best performing classifier excluding LS-SVM; 5: LS-SVM using Mean, energy and Eq. 
4 

Fig.  17: Performance of colour spaces  

After the initial assessment of the colour moments and control colours as features, the colour 

spaces were appraised (Fig.  17). H. Kim et al. (2017) utilised four colour spaces to provide a 

colourimetric decision, whereas Solmaz et al. (2018) used three (Table 1). Mutlu et al. (2017) 

used RGB images in JPEG along with capturing the images at the RAW format. The standard 

devices capture the image in sRGB colour space. In this paper, we have studied the 

performance of six colour spaces on the original dataset. Both HSV and LAB are closer to 
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human colour perception. HSV separates the intensity from the colour information. Therefore, 

for a robust system, HSV can help to deal with the lighting condition and shadows. Similarly, 

the ‘a’ and ‘b’ channel of LAB colour space signifies the colour. HSV is a cylindrical model, 

which gives the LAB more advantage over HSV. The linearisation of linearised gamma-

corrected RGB (L-RGB) was conducted using the sRGB standard. Among the colour spaces, 

the LAB was found to be the most influential colour space.  The strength of the LAB is the 

perceptual uniformity property. 

Another popular dimension reduction technique, principal component analysis (PCA) 

combining correlated attributes to create superior new features did not improve the overall 

performance. Therefore, based on the performance of different features and colour spaces, 

mean, energy and the control colours in three channels of LAB were chosen to be feature-set 

(32 features) to explore the performance of the classifiers.  

6.2.2 Performance of Classification Methods  

Exploring 440 features, the selected 32 features were identified as the good features to ensure 

that the classifiers are trained with signals, not noise. Different supervised learning techniques 

were evaluated to provide the semi-quantitative colourimetric classification. The list of 

classifiers includes LS-SVM, LDA and RF which provided good accuracy in the reported 

articles for similar classification task (Mutlu et al., 2017; Solmaz et al., 2018; Dhar, Mehta 

and Sit, 2017). The classifiers were trained and 10-fold cross-validated by the original dataset, 

followed by a re-evaluation of the good features.  

After careful selection of 32 features, SVM, KNN and discriminant analysis exhibited similar 

performance in Fig.  18 (>98% accuracy). The overall performance from the discriminant 

analysis was good. For a different combination of the good features, the LDA and quadratic 

discriminant analysis (QDA) outperformed each other. Therefore, subspace discriminant also 

exhibited good performance as an ensemble method. The performance of Random Forest was 

also notable. However, the LS-SVM (Suykens and Vandewalle, 1999; Suykens et al., 2002) 

showed the best performance using the selected performance as illustrated in Fig.  18. Due to 

the weighted function with a modified cost function, it is more robust than SVM. The 

performance of LS-SVM was consistent for any good features in any colour space (Fig.  17 

and Fig.  18).  
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1: Mean; 2: Mean and energy; 3: Mean, energy and Eq. 4; 4: Mean, energy and Eq. 5; Mean, 

energy and Eq. 6 

Fig.  18: Performance of different classifiers 

After identifying the best performing classifier using good features or signals, the selected 32 

features were explored again which revealed the features can be further reduced to 28. The 

selected 32 features, including both feature-set of control colours (i.e. Eq. 6), LS-SVM 

provided 100% accuracy. As shown in Fig.  18, in addition to mean and energy, the use of 

only one feature-set of control colours i.e. either Eq. 4 or Eq. 5, is capable to provide 100% 

accurate colourimetric classification for LFA. Therefore, instead of Eq. 6, only one set of 

control colours can be used. 

In order to specify between the choices of control colours, this paper suggests, it is better to 

use the pseudo control colours (Eq. 4), especially for multi-object single-target colourimetric 

tests. The control colours (Eq. 5) generated from the colour chart are the features generated 

one time, acting as a ground truth may widely vary from the condition where the user input 

image is captured. Thus, the user input can appear as a noisy image. The pseudo control 

colours (Eq. 4) are generated each time using the user input itself. Therefore, these features 

are more reliable. 
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Table 5, it can be observed that the specificity and sensitivity achieved by LS-SVM is also 

100%, which are our key evaluation criteria. Among the reported articles in Table 1, Mutlu et 
al. (2017) performed the colourimetric classification utilising the same application i.e. paper-

based pH test strip. Similar to Mutlu et al. (2017), this paper also found LS-SVM to be the 

best performing classifier for the presented classification problem. Mutlu et al. (2017) showed 

that, with and without apparatus, the system can exhibit the same performance. The 
experiment of Mutlu et al. (2017) without any apparatus included 270 images to provide the 

classification of pH strips, which explains the confidence interval (CI) percentage in Table 5. 
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Table 5: Performance of LS-SVM 

Ref.  Number 

of 

classes 

Number 

of 

samples/ 

class 

Sensitivity/ 

class (%) 

Specificity/ 

class (%) 

Accuracy 

(%) 

Value 95% CI Value 95% 

CI 

Value 95% CI 

Mutlu et 

al. (2017) 

15 18 100 81.47- 

100 

100 98.56-

100 

100 98.66-

100 

This work 8 65 100 94.48-

100 

100 99.19-

100 

100 99.29-

100 

Mutlu et al. (2017) utilised images saved in different file formats which increased the volume 

of the data, however, did not carry any significance in terms of features or classifiers. 

Therefore, the effective feature-set of the experiment of  Mutlu et al. (2017) can be considered 

as the mean colours at RGB colour space. Using the feature-set of Mutlu et al. (2017) on our 

original dataset, the performance degraded from 100% to 98.85% accuracy (Fig.  19), which 

can be perceived from the data generation point of view. Due to the light source ‘5’ (Fig. 

S1.2, Supplementary Document 1) and use of 65 independent test strips for each class, the 

original dataset contains much robust data, whereas Mutlu et al. (2017) used the same pH test 

strip at different orientation using 3 different light sources. The same 12 features, i.e. mean 

colours in LAB colour space showed better performance due to its strength of colour 

separation and handling shadows. The RGB is good at modelling the output of the phone 

camera, but LAB is closer to the ‘human colour perception’ and the presented problem deals 

with mimicking the naked-eye measurement of the colourimetric tests using computer vision. 

Therefore, the LAB is certainly a better choice of colour space.  

 
Using original dataset- 1: Mean ; 2: Mean and energy; 3: Mean, energy and Eq. 4; 

4: Using          and 28 features (mean, energy and Eq. 4); 

5: Using      and 28 features (mean, energy and Eq. 4) 
*Using the feature-set of Mutlu et al. (2017) 

Fig.  19: Comparative performance of selected featured in LAB and RGB using LS-SVM 

To further explore the performance of the classifier as well as the optimised 28 features on 

unseen images and validate the system using a similar lateral flow assay, we extended our 

experiment using           and       from Table 2. The extended experiment can validate 
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the reliability, adaptability and robustness of the system. The          contains 65 images 

of pH test strips of level 10 at various random orientation. The classifier was not effected by 

more variation in the orientation, as it provided 100% accuracy using 10 fold cross validation 

(Fig.  19).  

In order to validate the system’s adaptability to similar lateral flow assays,      dataset was 

utilised. A similar dataset is available in GitHub (Dhar, Mehta and Sit, 2017). However, there 

are only 10 samples per class available in the open source domain. The pH indicating colours 

of      dataset are different than our original dataset, therefore the classifier was re-trained 

using the optimised 28 features, keeping rest of the hyper-parameters same. The 10 fold cross 

validation showed consistent result with 100% accuracy (Fig.  19).  

Using a pH indicator paper of different brand (     dataset) effectively changed the colours 

of each block for the same class label. There was a slight variation in the block size and block 

to block distance as well. As the performance of the system was as good as the original 

dataset, it justifies our choice of the classifier as well as the feature set, confirming the 

reliability and adaptability of the system.  

After finalising the classifier, optimising the features and cross-sectional performance 

evaluation, the extended dataset (D-lights) was utilised. As mentioned earlier, due to a 

significant shift in the colour histogram (Fig.  12 and Fig.  13), consideration of such diversity 

would enhance the reliability of the system. After including these 360 images with the 

original dataset, the optimised features and LS-SVM showed consistent performance for the 

dataset (D-lights). The effect was further analysed separately without including the original 

dataset (Fig.  19).  

Using the optimised 28 features on all three datasets of paper-based universal pH test strips, 

the performance of the top performing classifiers were evaluated using statistical approach. 

The analysis is provided in the Supplementary Document 4, based on which it can be stated 

that LS-SVM outperformed the rest of the algorithms for all the dataset, which justifies our 

choice of the algorithm. 

6.3 Regression  

The qualitative colourimetric test can be seen as a pure classification problem, whereas the 

quantitative colourimetric test can be presented as a regression problem. The semi-

quantitative colourimetric tests such as pH test can be described with a classification as well 

as a regression model.  
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Fig.  20: Performance of Gaussian Process Regression. RMSE: 0.22 

Among different regression models such as linear, support vector machine and ensemble 

methods, the Gaussian Process regression (GPR) (Rasmussen et al., 2006) showed better 

performance using the optimised 28 features (Fig.  20). The performance was compared by 

the square root of the mean squared error (RMSE). It is an estimation of the standard 

deviation of the error distribution. The coefficient of determination (R
2
) value suggested that 

the model can explain approximately 99% of the variability in the selected response variables. 

It took 11.51 seconds to train the model and the prediction speed was approximately 7300 

observations per second. We have utilised isotropic kernel. The covariance function,          

estimates the course of response at point    effecting the response at a further point   , where 

   = predictor values,             and    . The Euclidean distance between     

and   ,           
 (     ) 

   . If    = target,    = signal standard deviation,      

and    = characteristic length scale,     , then the kernel function having same length scale 

for each predictor utilised in this work can be expressed as the following:  

Covariance function,            
    

   

  
 
   

   
  

( 
   

  
)
 

In this work, as the system was trained on <1000 samples using the best performing features 

only, the GPR performed better than the other models due to well-balanced bias and variance, 

smoothing, optimised hyper-parameters and local generalisation. The kernel scale parameter 

attained the random basis for random feature expansion utilising sub-sampling based 

heuristics. The model may require further rectification using continuous pH levels 

(quantitative) as well as a larger dataset to substantiate the performance.  

7. Deep Learning using Pre-trained Model 

The deep learning has brought some recent success for image classification including object 

identification reducing the exasperation of the image processing (Krizhevsky, Sutskever and 
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Hinton, 2012; Szegedy et al., 2015; He et al., 2015). However, in order to train the system 

using deep learning, it is essential to have a large dataset, and a powerful and high performing 

computational system. Therefore, in this work we have utilised transfer learning approach 

using pre-trained models such as AlexNet (Krizhevsky, Sutskever and Hinton, 2012), two 

versions of Inception (Szegedy et al., 2015) and ResNets (He et al., 2015) allowing us to train 

the model with less number of samples and faster computation. To the best of authors’ 

knowledge, this is the first attempt to perform the colourimetric test using deep learning.  
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(b) 

Fig.  21: (a) Layers of AlexNet and (b) Mobile-enabled server based pH test using AlexNet 

At first, the input images require re-sizing to comply with the pre-trained models. After 

loading the pre-trained CNN, the final layers are replaced to fine-tune the model. An example 

is shown in Fig.  21. After training the model, the result can be pass on to the subsequent 

stages. In case of inception modules based GoogLeNet, the final three layers of the network 

have to be replaced to retrain the model with our dataset. These three layers are: 1000 fully 

connected layer called 'loss3-classifier', softmax and the output layer. These layers embrace 

the mechanism to train the model from the extracted features into class probabilities and 
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labels. In case of an advanced version of GoogLeNet i.e. Inception-v3, the final three layers 

are replaced and connected to the 313
th
 connection that performs average pooling.  

Similarly to GoogLeNet, the final layers has to be replaced to fine-tune the model of 50 layers 

deep ResNet-50 and 101 layers deep ResNet-101.  However, unlike AlexNet, the learning rate 

of the intermediate layers of Inception models and ResNets were set to zero to minimise the 

training time and prevent overfitting. For example, the GoogLeNet comprises 22 layers with 

144 connections. Computation of selected gradients is prevented by freezing initial 110 

connections up to inception_5a module, effectively making the process faster.   

Table 6: Deep learning based pH test using transfer learning 

Model AlexNet GoogleNet Inception 3 ResNet 50 ResNet 101 

Elapsed time 

(min) 

6.00 13.19 47.27 35.39 67.13 

Size (MB) 668 67 232 259 456 

Accuracy 

(%) 

86.86 50 55.26 63.82 71.05 

As it can be observed from Table 6, the training time was comparatively faster due to the 

smaller dataset as well as suspension of the learning rates of all the parameters of the earlier 

layers (apart from AlexNet). The memory size mentioned in Table 6, contains all the variables 

including the training and testing dataset. Considering the original dataset, 70% of the dataset 

was used for training and the rest for testing. The models were trained by a single CPU and 

then uploaded to the MATLAB server. An example is illustrated in Fig.  21, where the server 

based system was deployed on MATLAB Mobile. MATLAB mobile exploiting a third party 

application
6
 to capture the new images on site.  

The pre-trained model utilised in this work is relying more on the pseudo colours or the 

illumination rather the colour feature itself. Therefore, in the absence of distinct geometric 

features, the performance of Table 6 is perceivable. These convolutional networks require 

more fine-tuning, longer training cycle and larger dataset to further investigate regarding the 

poor performance by the pre-trained models.   

  

                                                   

6 At this moment, MATLAB mobile cannot pull input image without using any third party application.  
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Table 7: Training Time and Model Size  

Algorithm AlexNet LS-SVM 

Features -- 12 24 28 32 440 

Elapsed 

time (sec) 

360 0.1087 0.1101 0.1162 0.1234 0.1941 

Size (KB) 198.8x10
3
 80 127 142 158 1.228 x10

3
 

On the other hand, the best performing classifier using traditional machine learning 

techniques in this paper for the presented problem was found to be LS-SVM that does not 

require GPU, smaller in size to be deployed on mobile devices as a native application and can 

be trained using a smaller dataset with reliability and adaptability. One of the advantages of 

deep learning for image classification is subsiding the feature extraction and analysis steps at 

the data pre-processing stage. In order to generate a high accuracy using LS-SVM, the 

features required to be carefully selected.  

Considering the existing resources and the demand for POC solutions, the use of deep 

learning does not comply with our evaluation criteria, i.e. ASSURED criteria. The trained 

model uploaded on the server, is bigger in size (Table 6) making it less suitable for the mobile 

devices. Using traditional machine learning techniques, Kim et al. (2017) showed that the 

stand-alone mobile application is two times faster than the server-based application for paper-

based assays, which would worsen for larger models such as Table 6. The cloud operated 

system would require a more secure system in case of sensitive data such as health 

information.  

8. Discussion  

The presented intelligent system is consisting of both qualitative (visual primitives) and 

quantitative (signal features) nature of the visual knowledge. Exploring both traditional 

machine learning as well as deep learning approach, this paper suggests that traditional 

machine learning techniques both classification and regression are efficient enough to 

perform rapid, specific and sensitive colourimetric tests due to reliance on the colour 

histograms features only. The use of deep learning for colourimetric detection would be 

similar ‘to break a butterfly upon a wheel’.The colourimetric classification would require the 

pre-trained model to search for only the colours even when the rest of the geometric features 

are similar, and the occurrence of those colours are in the same location. Therefore, it is more 

logical to use a simpler machine learning model for the colourimetric classification, instead of 
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building more deep layers which would require more processing capacity, memory size, 

larger dataset and more dependency on the cloud-based approach.  

This work evaluates the performance of analogues computational systems for lateral flow 

assays using ASSURED criteria. In the absence of the exact dataset, in this work we have 

compared the performance based on the concept of recently reported high accuracy systems 

(Table 8).  

 

 

Table 8: Comparative performance using ASSURED criteria   

Reference Application A S S U R E D 

H. Kim et 
al. (2017) 

Alcohol 
saliva test 

↓ PPV-NPV:  
>95% 

↓ Robust, 
<30s 

No Yes 

Solmaz et 

al. (2018) 

H2O2 ↑ N/A N/A ↓ Robust, 

N/A 

Yes Yes 

Mutlu et al. 

(2017) 

pH test ↑ 100% 100% ↓ Robust, 

N/A 

Yes Yes 

Rahmat et 
al. (2018) 

Urine 
dipstick  

↑ >98.25% >98.25% ↓ Not 
robust, 

N/A 

Yes Yes 

This work pH test ↑ 100% 100% ↑ Robust, 
Real 

time  

Yes Yes 

N/A: Information not available 

As discussed in Section 2, the affordable systems are more likely to be equipment free and 

more accessible. In Table 8, the expense of the systems are comparative, e.g. although the 

additional hardware attachment is low-cost and straightforward (Kim et al., 2017a), it would 

be still more costly than a system which does not require such attachments at all. The 

presented system in this paper utilises the built-in camera of the smart devices such as mobile 

phone without enhancing or channelling the light with any additional hardware such as Kim, 

Awofeso, Choi, Jung, & Bae (2017), making the system convincingly more portable and 

easily operable.  

The accuracy of the reported articles is presented in Table 1. The specificity and sensitivity 

(or similar metric such as precision-recall, type I- type II error, PPV-NPV) are often not 
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described in the articles. Based on the available information, a comparison is provided in 

Table 8. It should be also taken into account that the dataset of Table 8 varied in terms of a 

number of test strips, images of the same sample for repeatability and variation within the 

dataset. The data were often pre-processed manually or with an aid of additional hardware.  

Using the original dataset, we have trained the better performing classifiers affirmed in the 

reported articles using the same feature-set as mentioned in Table 1. In the case of a few 

missing hyper-parameter values, we have utilised the default values in MATLAB. In Table 9, 

Rahmat et al. (2018) is excluded as it involves the same feature-set as Mutlu et al. (2017). 

Analysing the performance from these tables, the justification behind the choice of our 

classifier, i.e. LS-SVM is well supported by Table 1 and clearly evident from Table 9. Among 

the classifiers, artificial neural network (ANN) with 10 hidden layers (Kim et al., 2017a) 

showed a poor performance, which requires further investigation.  

Table 9: Comparison of Accuracy (%) 

Features LDA SVM ANN RF Sub disc LS-SVM 

H. Kim et al. 

(2017) 
Failed 97.7 68.8 97.9 99.6 100 

= 97.7 

Solmaz et al. 

(2018) 
98.7 97.5 57.8 96.3 98.3 99.62 

Mutlu et al. 

(2017) 
88.1 96.9 64.2 91.2 76 98.85 

This work 98.5 97.1 83.1 96.5 92.7 100 

Both paper test strips of H. Kim et al. (2017) and Solmaz et al. (2018) has only one colour 

pad. Therefore, average binning of four colour pads could not aid the classifier in Table 9 

while reproducing Kim’s work using our dataset. H. Kim et al. (2017) utilised hardware 

attachment as well, which helped to discard noise from the colour signals. In this paper, using 

the feature-set and classifier on our original dataset, the attained accuracy was 97.7%, 

whereas the same feature-set provided a higher accuracy using LS-SVM as well as the 

ensemble classifiers (Table 9). The performance of the combination of the features of Solmaz 

et al. (2018) in Table 9 can be perceived from the performance of mean colours in different 

colour spaces in Fig.  16. A detailed comparison with Mutlu et al. (2017) is already presented 

earlier in Section 6.2.  

In Table 8, different work included a different element of robustness. As described earlier, the 

robustness of the system can be represented by adaptability. In this work, we utilised 
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analogous separate data set to evaluate the adaptability of the image processing algorithm, 

selected optimised feature-set and classifier. The system was found to be adaptable to the new 

sample sets.  

The elapsed time for training and prediction for the systems described the reported articles on 

our original dataset is shown in Fig.  22. A ranking in Fig.  22 is provided based on the 

computational cost and model size. A higher number of features would undoubtedly increase 

the size of the model. The size can also get affected by the complexity of the classifier itself.  

 

 

Fig.  22: Elapsed time in seconds. The rank is provided based on the elapsed time.  

The system proposed in this paper, does not involve heavy algorithm or extensive iterations, 

making it computationally efficient to be deployed on the mobile devices using native 

features without requiring it to process the image or analyse the features on the server (Table 

6, Fig. 2(b) and Solmaz et al. (2018)). Therefore, the system is real-time and more secure. For 

the other R-criteria, i.e. robustness, we have also included different orientation of the sample 

to vary the camera to sample position. The randomness of the light source ‘5’ in Fig. S1.2 

(Supplementary Document 1) created variation in the illumination condition.  

Based on the elapsed time, our work showed similar rapidness as Mutlu et al. (2017). The 

combined use of three different classifiers along with a larger feature-set by H. Kim et al. 

(2017) resulted in considerably larger model size and higher computational time.  

The overall performance of the system, evaluated by the ASSURED criteria, is summarised 

below.  

- Due to intelligent histogram based- image processing technique, the system is user-

friendly. Unlike the literature (Table 8), the system is completely automatic and does 

not require any user intervention. To provide this autonomy without compromising 

the accuracy (98.94% accuracy to separate the ROI), the hybrid algorithms were 

H. Kim et al. (2017)

Solmaz et al. (2018)

Mutlu et al. (2017)

This work
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optimised while developing the image processing framework in Fig.  5; the accuracy 

was well maintained despite the change of the condition as demonstrated using the 

extended dataset.  

- The developed system can automatically process the image of the assays without any 

additional hardware component. The system is equipment-free, does not have any 

operating cost and accessible. Conceptually, the proposed system is deployable on the 

mobile platform as described in (Shabut et al., 2018) and to similar colour-based 

applications such as (El-Bendary et al., 2015; Smith et al., 2014).   

- The system possesses the adaptability to work on similar assays without 

compromising the performance, confirmed by experiments conducted on the assay 

from a different brand (     dataset) as well as urine dipstick.  To the best of the 

authors’ knowledge, there is no such evaluation for robustness performed in the 

literature. 

- Due to less iterative image processing, optimised feature-set and selection of the 

classifier, the computational complexity was optimised (Fig.  10 and Table 7). The 

result can be produced in real-time, conceptually faster than the mentioned works in 

Table 8.  

- The system was trained under the semi-controlled ambient condition on a balanced 

dataset using cross-validation. The performance was validated on completely unseen 

data. The system showed high accuracy, specificity and sensitivity for colour 

classification without compromising the degree of freedom.  

9. Conclusion  

This paper presented a computational system for paper-based lateral flow assays suitable to 

act as a standalone system on the POC platform, whether integrated to a server or not. Due to 

technical and economic feasibility, we have utilised universal pH indicator papers, possessing 

multi-objects/sample to demonstrate the proof of concept. This paper investigated, designed 

and developed an immaculate image processing framework to separate multiple colour pads 

in the universal pH indicator paper with >98% accuracy, tested and validated by varying 

assays. The intelligent decision-making component of the proposed frameworks, allows a 

complete separation of the ROI, despite the ambient condition.  

 After separating the ROI, this paper proposed an exclusive feature-set, i.e. pseudo-control 

colours to be part of the feature-set. Exploring 440 features for the LFA dataset, the optimised 
feature-set was found to be mean, energy and pseudo-control colours. For the stated case 

study, the 10-fold cross-validated training and testing for 520 samples was conducted within 

0.11 seconds with 99.29-100% accuracy (95% CI). The extensive analysis based on the 
evaluation criteria suggested our system to be more compatible with the ASSURED criteria 

than existing similar works. Among the reported articles, the research conducted by Mutlu et 
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al. (2017) is the most similar research performed in this paper. Therefore, we have deployed 

Mutlu’s method using our dataset to present a fair comparison. Both of these studies attained 
100% accuracy to provide semi-quantitative colourimetric decisions. Due to the meticulously 

tested reliability of the system on an adequate amount of appropriate data, our claim is well 

supported by the precise experimental results. The critical assessment conducted in this paper 

suggests our system to be more robust and more reliable due to bigger and more variant 
dataset and experimentations on more features and classifiers using case studies of similar 

applications.  The reliability can be quantified from the performance on a different dataset in 

Fig.  19 and 95% confidence interval in   
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Table 5.  

Based on the performance of the proposed framework and insights gather from the 

experiments conducted, the acquired and developed knowledge regarding the image-based 

colourimetric system can be well utilised to similar mobile-enabled expert systems that 

requires visual knowledge interpretation based on the colour perception, especially where the 

imaging is conducted in the ambient condition (Shabut et al., 2018; El-Bendary et al., 2015).  

10. Future Works  

In future, more elements of robustness such as different devices and few more controlled-

illumination conditions can also be considered. This should aid in rectifying shadow effect as 

well as improving the image segmentation accuracy more than this work (98.94%).  

In addition to traditional machine learning techniques, this paper also utilised pre-trained 

models of deep learning. Due to the need of high processing computational systems including 

GPU and advanced mobile phones, deep learning including these pre-trained models deficit 

many attributes (A, E, D) of the ASSURED criteria at this moment. However, ensuring a 

better performance (S, S, R) from deep learning, its future prospect for colourimetric tests 

could be better, especially for telemedicine services where the system already involves a 

cloud-based approach.  
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