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Abstract 21 

 Seasonal prediction of extreme precipitation has long been a challenge especially 22 

for the East Asian Summer Monsoon region, where extreme rains are often disastrous 23 

for the human society and economy. This paper introduces a decision-tree (DT) method 24 

for predicting extreme precipitation in the rainy season over South China in April-June 25 

(SC-AMJ) and the North China Plain in July-August (NCP-JA). A number of preceding 26 

climate indices are adopted as predictors. In both cases, the DT models involving ENSO 27 

and NAO indices exhibit the best performance with significant skills among those with 28 

other combinations of predictors and are superior to their linear counterpart, the binary 29 

logistic regression model. The physical mechanisms for the DT results are demonstrated 30 

by composite analyses of the same DT path samples. For SC-AMJ, an extreme season 31 

can be determined mainly via two paths: the first follows a persistent negative NAO 32 

phase in February-March; the second goes with decaying El Niño. For NCP-JA, an 33 

extreme season can also be traced via two paths: the first is featured by ‘non El Niño’ 34 

and an extremely negative NAO phase in the preceding winter; the second follows a 35 

shift from El Niño in the preceding winter to La Niña in the early summer. Most of the 36 

mechanisms underlying the decision rules have been documented in previous studies, 37 

while some need further studies. The present results suggest that the decision-tree 38 

approach takes advantage of discovering and incorporating various nonlinear 39 

relationships in the climate system, hence is of great potential for improving the 40 

prediction of seasonal extreme precipitation for given regions with increasing sample 41 

observations. 42 
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 44 

1. Introduction 45 

 Seasonal extreme precipitation events have disastrous influences especially in the 46 

densely populated East Asian regions during the rainy monsoon season. The disasters 47 

related to extreme precipitation (e.g. flooding, urban waterlogging and landslides) 48 

happen almost every year. As a prominent example, devastating floods due to excessive 49 

extreme rains over the whole season hit most of eastern China in the summer of 1998, 50 

causing an economic loss of hundreds of billions of dollars and a death toll of thousands 51 

(National Climate Center, 1998). A recent example was in May 2016, when successive 52 

extreme rains hit South China leading to waterlogging, landslides, debris flow and other 53 

subsequent disasters across the region (Li et al., 2018). Prediction of whether there will 54 

be such extreme rainfall events in a specific region in upcoming months or season is 55 

undoubtedly helpful for reducing the risk of disastrous extreme events. 56 

 However, few operating agencies over the world make seasonal prediction of 57 

regional extreme precipitation events. One of the most common targets of the seasonal 58 

climate prediction is the seasonal total precipitation (usually in form of the percentage 59 

precipitation anomaly for a given region). Clearly, an anomaly of seasonal total 60 

precipitation does not necessarily indicate the signal of seasonal extreme precipitation 61 

events. A typical case was in 2016 in South China, where the seasonal total precipitation 62 

did not show a significant anomaly but severe floods happened due to excessive 63 

extreme rains (Wang et al., 2017). It is implied that the physical mechanism for 64 



anomalous total precipitation should be different from that for extreme rains. Therefore, 65 

it is beneficial to explore the predictability and develop direct predictive methods for 66 

the seasonal extreme precipitation events for affected regions. 67 

Previous studies have suggested that the seasonal extreme precipitation 68 

accumulation during the rainy season in eastern China should be of considerable 69 

potential predictability (Wei et al., 2017). However, the signal at any individual station 70 

is weak due to strong local weather noise. Using a summarizing index of extreme 71 

precipitation for a reasonably large region and a typical temporal aggregation period is 72 

a natural way to enhance the signal linking to large-scale predictors (Li and Wang, 73 

2017).  74 

One of the most common means for seasonal prediction is the use of a coupled 75 

general circulation model (CGCM) by operational agencies. However, the seasonal 76 

prediction of precipitation over the East Asian Summer Monsoon (EASM) region 77 

remains a long-standing challenge for dynamical models. Recent studies showed that 78 

the prediction of the seasonal total precipitation by physical models such as CGCMs 79 

has remained at a limited level of skill (Wang et al., 2009; Wang et al., 2015), not to 80 

mention that of the extreme precipitation.  81 

 A number of empirical methods have been proposed to predict seasonal 82 

precipitation in the EASM region (Fan et al., 2008; Wu et al., 2009; Yim et al., 2014). 83 

Various precursors were discovered and some of the associated physical mechanisms 84 

have been well documented. For example, many studies have noted that the decaying 85 

phase of El Niño influences the climate of East Asian by inducing a persistent 86 



anomalous anticyclone over the western North Pacific (Wang et al., 2000; Wang et al., 87 

2003; Wu et al., 2010). Some studies suggested that the tri-pole pattern of sea surface 88 

temperature anomaly (SSTA) associated with a negative phase of the North Atlantic 89 

Oscillation (NAO) could persist in different seasons and have impacts on the climate in 90 

East Asia by triggering a wave train in the mid-high latitudes (Watanabe, 2004; Wu et 91 

al., 2009). Gong and Ho (2003) found that the boreal spring Arctic Oscillation (AO) 92 

had a negative correlation with the following summer rainfall in the mid-lower reaches 93 

of the Yangtze River; while Nan and Li (2003) showed significant positive correlations 94 

between the boreal spring Southern Hemisphere annular mode (SAM) and the 95 

following summer rainfall in the same region. The influence from decadal and multi-96 

decadal factors such as Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal 97 

Oscillation (AMO) is also reported and documented by a number of studies (Zhu and 98 

Yang, 2003; Zhang et al., 2013; Zhu et al., 2016; Si and Ding, 2016; Pei et al., 2017, 99 

Yang et al., 2017). Different predictive models were then developed. Most of the 100 

published models are linear and for prediction of the seasonal total precipitation. Li and 101 

Wang (2017) followed similar procedures to establish multiple linear regression models 102 

for prediction of the number of extreme rainy days in regions of China.  103 

 Since the climate system is nonlinear, any linear model is an approximation to the 104 

underlying physical process and usually only suitable for a limited time period. Outside 105 

the given time window, the model’s prediction skill decreases rapidly. This is a common 106 

problem in the field of statistical climate prediction, which sometimes is attributed to 107 

inter-decadal climate shifts or nonstationary relationships between different 108 



components of the climate system. Another problem arises from linear models usually 109 

requiring linearly ‘independent’ predictors. This is not easily satisfied since the 110 

components in the climate system are often related to each other to varying degrees. 111 

Consequently, a linear model can only incorporate very few nearly independent 112 

predictors but omits many potentially important factors simply due to their linear 113 

correlation with the selected predictor. However, the effect of a predictor cannot be 114 

simply represented by another correlated predictor in a nonlinear system.  115 

 In this study, we introduce a decision-tree (DT) approach to prediction of the 116 

seasonal extreme precipitation events in given regions in China, and compare its 117 

performance with that of binary logistic regression model, a class of generalized linear 118 

model. DT is a classic data mining method but has not yet been well applied in climate 119 

prediction. The method is not constrained by independence between predictors and 120 

hence allows the discovery and involvement of all possible relationships between the 121 

input factors and the target variable as long as there are sufficient training samples. This 122 

is suitable for prediction of a nonlinear system such as the climate.  123 

 The data and the target variables of prediction are described in Section 2. The 124 

methods are introduced in Section 3. The resultant models and their skills are 125 

demonstrated in Section 4, followed by the physical interpretation of the DT models in 126 

Section 5. A summary of the study with discussion is in Section 6. 127 

 128 

2. Data and target variables 129 

2.1  Data 130 



Daily precipitation records from 824 stations over China were obtained from the 131 

National Meteorological Information Center, China Meteorological Administration. We 132 

selected a subset of 675 stations without missing records during the period between 1 133 

January 1960 and 31 December 2013. Eastern China is densely covered by this subset 134 

of stations.  135 

The monthly-mean sea level pressure (SLP), 850 hPa horizontal winds, and 500 136 

hPa geopotential heights (GPH), gridded at a horizontal resolution of 2.5°× 2.5°, were 137 

taken from the National Center for Environmental Prediction and National Center for 138 

Atmospheric Research (NCEP/NCAR) reanalysis datasets (Kalnay et al., 1996). The 139 

monthly-mean sea surface temperature (SST) records from the COBE-SSTs dataset 140 

were also used (Ishii et at., 2005).  141 

A number of climate indices were applied as the potential predictors. The Niño-3.4, 142 

AO, NAO, AMO and detrended AMO indices are available from the NOAA database. 143 

The PDO index series is from Nathan Mantua at UW/JISAO 144 

(http://research.jisao.washington.edu/pdo/). An East Asian winter monsoon (EAWM) 145 

index is available following Wang and Chen (2014). The southern annular mode index 146 

is available following Nan and Li (2003). All the climate indices are monthly, based on 147 

which the seasonal mean indices are calculated when necessary. 148 

2.2 Definition of an Extreme Precipitation Event 149 

In eastern China, most of precipitation in a year occurs during the EASM season. 150 

To focus on this rainy season’s extreme precipitation, we adopt an accumulated index 151 

similar to that of Li and Wang (2017), i.e., the number of extreme precipitation days 152 



(EPD) during the rainy season for a given region. The procedures to decide whether a 153 

wet day is an EPD are as follows: (1) use all the available wet days’ rainfall amounts to 154 

obtain a cumulative distribution function (cdf) for a station; (2) determine the empirical 155 

90th percentile of the cdf as the threshold to identify an EPD for this station. Following 156 

these procedures, all EPDs can be identified for each station. Thus, we can obtain the 157 

accumulated number of EPDs (AEPD) within a time period (e.g. a month, season and 158 

year), for each station. Averaging all stations’ AEPDs within a region results in a 159 

regional mean AEPDs (MAEPD) for the region.  160 

To distinguish between extreme event and non-extreme event for a region, a 161 

threshold (e.g. one standard deviation above the mean value of the MAEPD) was 162 

adopted to partition the yearly samples into two categories: one for those above the 163 

threshold, representing a “real” extreme event (labeled as “above”) and one for those 164 

below the threshold (labeled as “below”). Varying the threshold (e.g. from 0.5 to 1.1 165 

standard deviations above the mean of the MAEPD), we can obtain different partition 166 

results representing extreme and non-extreme events to the different extreme levels.  167 

2.3 Target of Prediction 168 

The climatological distribution of monthly AEPD is given in Figure 1. For eastern 169 

China, the seasonal cycle is prominent, with most EPDs in the warm season (from April 170 

to August). Few EPDs occur in the winter (from December to February, not shown in 171 

the figure). As the summer monsoons advance northward during the warm season, the 172 

peak of EPDs demonstrates a propagation from south to north. In April-Jun, there are 173 

more EPDs in southern China; in July-August, the center of extreme precipitation shifts 174 



to the North China Plain. Two target regions are therefore outlined as (1) Southern 175 

China (20°N - 32°N, 110°E - 122°E) for April–June (SC-AMJ, hereafter) and (2) North 176 

China Plain (32°N - 42°N, 110°E - 135°E) for July–August (NCP-JA, hereafter). 177 

The time series of the seasonal precipitation indices for the two target regions are 178 

shown in Figures 2. The numbers of total precipitation days in both regions exhibits a 179 

decreasing trend during the past decades. This was mainly due to decreases of light 180 

rains across the country in association with global warming as explored by previous 181 

studies (Yan and Yang 2000; Qian et al., 2007). However, MAEPD demonstrates quite 182 

stationary interannual variability, which implies that the mechanisms for extreme 183 

precipitation days and total precipitation days could be different. In the present 184 

predictive modeling analysis, we use the MAEPD partition results in these two regions 185 

as the target variables.  186 

 187 

3.  Methods 188 

3.1  Decision Tree Model 189 

When the extreme precipitation frequencies are divided into two categories with a 190 

given threshold (above or below the threshold), a prediction model for such categorical 191 

data is essentially a classifier. Such a classifier holds a set of rules related to the 192 

predictors. Suppose ],...,[ 1 pXXX = is the predictor vector. Each of its components193 

piX i ,...,1, =  represents a predictor, either a discrete or continuous variable. A 194 

realization of the predictor vector is expressed as ],...,[ 1 pxx . The response variable 195 

or predicted target is denoted asY , whose values are taken as a two-element set, say196 



}0,1{ . A realization of the response variable is expressed asy . The rule in a classifier is 197 

a mapping or function )(XfY =  . Based on a specification ],...,[ 1 pxx  of the 198 

predictors, the classifier is to determine the response value y   of the predictand. 199 

Typically, the rule is built by analyzing or learning from a training set of samples. An 200 

independent set of samples is needed for validation of the performance of the built 201 

model. The generation of the classification rules is critical for building a category-202 

predictive model. 203 

The DT model is one type of classifiers. As indicated in its name, DT has a tree-204 

like structure, where each internal node denotes a test on a predictor, each branch is the 205 

outcome of the test, and the leaf node holds a class label (Han et al., 2011). The rule 206 

induction of DT is based on the information entropy (IE) proposed in the pioneering 207 

work by Claude Shannon in his information theory (Shannon, 1948). Assume the 208 

response variable Y has m possible outcomes and each outcome holds a probability of 209 

mipi ,...,1, =  ( 2=m in the present case). The Shannon’s information entropy, as 210 

defined in the formula (1), can serve as an index to measure the impurity of the variable. 211 

𝐼𝑛𝑓𝑜(𝑌) = −∑ 𝑝𝑖 𝑙𝑜𝑔2( 𝑝𝑖)
𝑚
𝑖=1   (1) 212 

A large value of )(YInfo  implies a high level of impurity. It is easy to show that more 213 

categories in Y or a more even distribution of the categories in Y should result in a 214 

larger value of )(YInfo  , or in other words, a higher level of impurity. This is in 215 

accordance with common physical intuition. An alternative index to measure the 216 

impurity of a variable is the Gini index, defined as 217 

𝐼𝑛𝑓𝑜(𝑌) = 1 − ∑ 𝑝𝑖
2𝑚

𝑖=1  (2)

 

218 



It has similar characteristics as Shannon’s IE. In this study, we will use both indices to 219 

generate the DT for extreme precipitation event prediction and compare their results.  220 

Select a predictor iX . A binary split on iX  partitions the training set S  into 1S221 

and 2S  . Another index is defined to measure the impurity of the variable after the 222 

partition: 223 

𝐼𝑛𝑓𝑜𝑋𝑖(𝑌) =
|𝑆1|

|𝑆|
𝐼𝑛𝑓𝑜(𝑆1) +

|𝑆2|

|𝑆|
𝐼𝑛𝑓𝑜(𝑆2)  (3) 224 

where ||   denotes the number of sample in a set. This index is the weighted average 225 

of IEs for the subsets after the partition. The more impurity, the larger the value of226 

)(YInfo
iX , and vice versa. For the seasonal prediction here, we prefer a binary split on 227 

iX  generating two branches from a node rather than a multiway split leading to more 228 

than two branches. This is partly because multi-splits fragment the data too quickly, 229 

leaving insufficient data at the next level down. Besides, multiway splits can be 230 

achieved by a series of binary splits (Hastie et al., 2008). 231 

The reduction in impurity that would be incurred by a split on iX  is 232 

𝛥𝐼𝑛𝑓𝑜𝑋𝑖(𝑌) = 𝐼𝑛𝑓𝑜(𝑌) − 𝐼𝑛𝑓𝑜𝑋𝑖(𝑌)  (4) 233 

The predictor that maximizes the reduction in impurity is selected as the splitting 234 

predictor. The predictor and either its splitting subset (for a discrete-valued predictor) 235 

or split-point (for a continuous-valued predictor) together form the splitting criterion. 236 

Iterating the above processes results in a decision tree. Theoretically, the training set 237 

can be finally split into a number of pure subsets, the leaf nodes, as long as there are 238 

enough predictors. However, it is easy to overfit the data when the sample size of a 239 

subset is too small. In this situation, continuing to partition the training data will only 240 



result in lengthy but meaningless branches. Thus, we need some criteria to decide when 241 

to stop partitioning and let the current set form a leaf node. We adopt a stopping criterion 242 

that there must be at least 5 samples in a leaf node, considering the relatively small 243 

sample size in the present study. 244 

3.2 Binary Logistic Regression Model 245 

 For a comparison, the binary logistic regression model is also applied, which is a 246 

common method to estimate the probability that one case (e.g. extreme event) is present 247 

for a binary predictand, given the values of predictors. In fact, it is a type of generalized 248 

linear models and has the following form as 249 

log(
𝜋

1−𝜋
) = 𝛽0 + 𝛽1𝑋1 +⋯+ 𝛽𝑝𝑋𝑝  (5) 250 

where 𝜋 is the probability of one of the two cases, X = [𝑋1, ⋯ , 𝑋𝑝] is the predictor 251 

vector, and β = [𝛽0, ⋯ , 𝛽𝑝] is the regression coefficient vector. Although it is not a 252 

strictly linear model, we can still notice that it assumes a linear relationship between 253 

the natural logarithm of the odds (log odds) and the predictors, which makes it suffer 254 

from similar drawbacks with ordinary linear models. 255 

3.3 Methods for Validation 256 

Since the predictand is a binary categorical variable and both models are making 257 

probability prediction, the receiver operating characteristic (ROC) curve is an 258 

appropriate tool to validate the model and compare between different models. A ROC 259 

curve is constructed based on the probability prediction results of testing samples. It 260 

reflects the changing relationship between hit rate and false alarm rate when the 261 

probability threshold changes between 0 and 1, separating the probability prediction 262 



results into positive and negative events. Hit rate is the proportion of correct forecast 263 

positive events in all observed positive events, while the false alarm rate is the 264 

proportion of false forecast positive events in all negative events. False alarm rates and 265 

hit rates are shown on the horizontal and vertical axes, respectively. A perfect model 266 

should produce a ROC curve composed of the left and upper boundary lines, while a 267 

random model will produce the diagonal line as its ROC curve. A skillful model should 268 

produce a ROC curve located in the left-upper corner of the rectangle box. The closer 269 

to the left-upper corner the curve, the more skillful the model. Thus, the area under the 270 

curve (AUC) is a good measure of the model’s skill. Quantitatively, AUC represents 271 

the probability for a model to distinguish between two given (positive and negative) 272 

samples. For the present study, AUC is applied as a primary index for model validation. 273 

The Wilcoxon-Mann-Whitney test (Wilks, 2011) is applied to estimate, in terms of 274 

AUC, whether the DT model performs statistically better than a random prediction. 275 

Based on AUC, the Brier Skill Score is also calculated for the model, using 276 

climatological probabilities as the reference forecasts. 277 

Accuracy (ACC) is another commonly used index to validate a prediction model. 278 

ACC is simply defined as the ratio of all correct forecast events to the total number of 279 

samples. ACC may fail when applied to unbalanced sample sets, because a bad model 280 

may produce a high accuracy by simply predicting the dominant class but omitting the 281 

minor class. This is just the case for the extreme precipitation prediction, because the 282 

defined extreme rainfall seasons might be rare. Therefore, ACC, hit rate and false alarm 283 

rate should be combined to comprehensively determine a model’s performance. In 284 



practical, an optimal cut-off point can be obtained given the costs under the four types 285 

of forecast, namely hit, false alarm, miss and correct rejection (Metz, 1978). Since these 286 

costs are usually application-oriented and unknown, we simply adopt the point with the 287 

largest ACC in the ROC curve as the optimal point and use the ACC, hit rate and false 288 

alarm rate corresponding to this point to evaluate the built model. 289 

 290 

4. Results 291 

4.1 Building the Predictive Models 292 

 A series of monthly predictors representing large-scale oceanic and atmospheric 293 

conditions between the preceding December and the first month of the target season 294 

(April for SC-AMJ and June for NCP-JA) are selected for building the predictive 295 

models. Therefore, the models make at least 0-lead predictions. The seasonal predictors, 296 

i.e., the 3-month-running averages of the corresponding monthly predictors, are also 297 

used. In summary, the climate indices used in the present study as potential predictors 298 

include those preceding monthly and seasonal indices of NINO3.4 (NINO34), EAWM, 299 

AO, NAO, PDO, AMO, and SAM. As mentioned supra, the relevant climate 300 

relationships have been well documented between these potential precursors and 301 

precipitation in eastern China. However, few studies synthesized their combined effects 302 

into a nonlinear predictive model for seasonal extreme precipitation events. The DT 303 

method provides a way to cope with this issue. More factors have been considered when 304 

building the models, including the regional mean anomalies of SLP, 500 hPa 305 

geopotential height, and SST in the regions of significant leading correlation with the 306 



MAEPD time series. The method for selecting these factors (Table S1) can be found in 307 

the supplemental material. 308 

 To fit a model of true skill, the sample set should be partitioned into two subsets 309 

with one for model training and the other for model testing. In this study, we randomly 310 

select around 75% samples to train the model and the rest to test the fitted model. 311 

Moreover, the binary partition of the sample set should keep the ratio of the “above” 312 

class number to the “below” class number identical for the subsets. To evaluate the 313 

sample partition uncertainty, we repeat the above with random partitions and model 314 

building processes multiple times and use the mean ROC curve of the models to 315 

represent the performance of one experiment. Here, an experiment consists of a 316 

threshold for defining an extreme event and a combination of predictors. It is found that 317 

the mean ROC curve tends to be stable after 12 times of random partition. Thus, we 318 

build 12 models for each experiment. 319 

Theoretically, the DT method is able to use the combination of all predictors as 320 

input and find the optimal paths to form a tree to classify between “above” and “below” 321 

classes for the training samples. However, since the sample size is relatively small for 322 

the present study, a simultaneous input of the predictors may result in an overfitted 323 

model, which usually performs badly on the test sample set. To avoid this problem, we 324 

carry out a series of experiments with all possible combinations of different types of 325 

predictors. For example, with p types of predictors, we firstly carry out p experiments, 326 

of which each considers only one type of predictor (e.g. NINO34). Then, we have
2
pC  327 

experiments by including two types of predictors,
3
pC  experiments by including 328 



three …until including all types of predictors. This is the method of exhaustion. As 329 

mentioned above, an experiment also involves a threshold for defining an extreme event. 330 

In this study, we adopt a series of thresholds for each combination of predictors, such 331 

as 0, 0.1, 0.2, …,1.5 standard deviations above the mean climatology. Comparing the 332 

mean AUCs of the models between different combinations of predictors, the 333 

combination with the largest mean AUC value is selected as the best combination and 334 

the types of predictors used in this combination are considered to be the most important 335 

factors for the prediction target. With this best combination of predictors, a further 336 

comparison of the mean AUCs of the models corresponding to different thresholds of 337 

extremes leads to the threshold for defining an extreme event that has the best 338 

predictability. Finally, the most balanced DT model was chosen from the 12 models 339 

corresponding to this best threshold for physical interpretation. The same procedures 340 

are applied to build the binary logistic regression models. A flowchart illustrating the 341 

whole procedure for SC_AMJ is shown in the supplementary (Figure S1). 342 

4.2 Selected Predictors 343 

 It is found that, for both regions, the maximum mean AUC values are taken when 344 

two types of predictors are used: NINO34 and NAO, no matter building a DT model or 345 

binary logistic regression model. Thus, NINO34 and NAO are deemed as two robust 346 

factors for the prediction of extreme precipitation event for both cases. For a DT model, 347 

the experiments using the Gini index have higher skills than those using Shannon’s IE. 348 

In the following, therefore, we only show the modeling results based on the Gini index 349 

for a DT model.  350 



4.3 Best Thresholds to Define Extreme Events 351 

Within the models using the combination of ENSO and NAO as predictors, the 352 

predictability of events in different extreme levels is revealed by comparing the 353 

performance between models trained by different samples resulting from varying 354 

thresholds. Results from the DT models show that, for both regions, the mean AUCs 355 

demonstrate a first increasing then decreasing trend, peaking at around one standard 356 

deviation above the mean (red lines in Figure 3). Considering the decreasing trend is 357 

probably caused by deficiency of “above” samples to train a meaningful model when 358 

an extremely large threshold is adopted, we suggest that the reasonably extreme events 359 

are better predicted. Similar conclusions can also be made from the results of binary 360 

logistic regression model (blue lines in Figure 3). Thus, one standard deviation above 361 

the mean is a more robust and appropriate threshold to define an extreme precipitation 362 

season, regarding the modeling skill. For the following analysis, we have chosen the 12 363 

models trained from the samples categorized by this threshold. 364 

4.4 Comparison between DT models and Binary Logistic Regression Models 365 

For SC-AMJ, the two mean ROC curves are shown in Figure 4a: one from DT 366 

model and the other from the binary logistic regression model. The logistic model 367 

shows a slightly higher value of AUC. However, its ROC curve shows a slower rising 368 

rate than that of DT model when the false alarm rate is low. This means that, to reach 369 

the same hit rate, the logistic model will make more false alarms, which will deteriorate 370 

its performance. For NCP-JA, the mean AUC of DT model is larger than that of logistic 371 

model and the rising rate of the ROC curve of DT model is also quicker than that of 372 



logistic model when we keep the false alarm rate at a relatively low level (Figure 373 

4b).Thus, for the two regions, the performance of the DT method is superior to that of 374 

the binary logistic regression model. Moreover, the DT model provides by its decision 375 

rules a natural and intuitive way to interpret the nonlinear interaction between different 376 

predictors to generate an extreme precipitation event. This is different from traditional 377 

linear models, which always produce a prediction result based on superposition of the 378 

linearly independent predictors. DT is a knowledge-discovery process, automatically 379 

producing the nonlinear relationship when the predictive model is built. The discovered 380 

relationships in the decision rules of a DT model can be further analyzed to understand 381 

the underlying physics. 382 

4.5 Balanced Models and Validations 383 

 To extract robust decision rules, we compare the decision rules between 12 models. 384 

It is found that all models demonstrate similar rules, even though there are minor 385 

differences due to the uncertainty from random partitioning between the training and 386 

testing sets. Such uncertainty arises from the fact that random partitions may lead to 387 

biased formations of the training and testing sets. For example, ideally, there should be 388 

nearly equal ratios of samples with different mechanisms in both the training and testing 389 

sets, but in practice, with limited samples, a larger ratio of samples with certain 390 

mechanisms may fall into the training set, compared to the testing set. In the ideal case, 391 

all mechanisms are properly induced by the training process, leading to relatively high 392 

prediction skill on the testing set. Otherwise, the mechanisms induced in the trained 393 

model do not match those in the testing set, hence leading to poor skills. For this reason, 394 



we choose the most balanced tree with a relatively high AUC value for the extraction 395 

of decision rules and physical interpretation since such a model most likely involves all 396 

mechanisms properly for the generation of extreme precipitation events.  397 

 For SC-AMJ, the selected model is marked as Model 0, with an AUC value of 0.9 398 

and a BSS value of 38% (Table 1), which is strongly suggested as skillful by the 399 

Wilcoxon-Mann-Whitney test (p=0.015). The corresponding decision tree is shown in 400 

Figure 5a. For this model, the numbers of training samples and testing samples are 39 401 

and 15 respectively. The “above” label samples in the training set are the years of 1962, 402 

1975, 1977, 1983, 1998 and 2006 while the remaining 3 “above” samples, 1973, 1995 403 

and 2010, fall into the testing set. In the ROC curve of this model, the hit rate 404 

corresponding to the maximum accuracy (87%) point is 100% and the false alarm rate 405 

is 15% (Table 1). This means that such a model is able to discover all above-threshold 406 

extreme precipitation events at the cost of a small false alarm rate. We can also find that 407 

this model contains two leaf nodes with relatively large portions of the “above” sample. 408 

The paths leading to these nodes involve possible physical processes generating the 409 

extreme precipitation events. The first path (Path1_SC) is related to negative NAO 410 

phases in February and March (NAO_MAR ≤ -0.56→ NAO_FEB ≤ -0.47) while the 411 

second path (Path2_SC) does not necessarily need a negative phase of NAO in February 412 

but requires an El Niño state in preceding winter (NAO_MAR > -413 

0.56→NINO34_DEC>1.04). The “above” sample of 2010 in the testing set falls into 414 

the leaf node of Path1_SC while the other two (1973 and 1985) end in the leaf node of 415 

Path2_SC. 416 



 For NCP-JA, the selected model is marked as Model 8, with an AUC value of 417 

0.97and a BSS value of 51% (Table1), which is also significantly skillful over a random 418 

prediction following the Wilcoxon-Mann-Whitney test (p=0.003). The decision tree is 419 

shown in Figure 5b. The training set for this model includes 40 samples with 9 above-420 

labeled years, 1962, 1964, 1969, 1973, 1985, 1988, 1996, 1998 and 2007; the remaining 421 

14 samples with 3 above-labeled years, 1963, 1995 and 2010, form the testing set. The 422 

maximum accuracy point in the ROC curve holds a value of 0.93 and the corresponding 423 

hit rate and false alarm rate are 67% and 0% respectively (Table 1). There are also two 424 

leaf nodes with a relatively high ratio of above-labeled sample. The first (Path1_NCP) 425 

indicates a weak positive Niño state and an extremely negative phase of NAO in the 426 

preceding winter (NINO34_JAN ≤ 0.81 → NAO_DEC ≤ -1.28). The second 427 

(Path2_NCP) involves a transition from a Niño state in preceding winter to a weak cold 428 

phase in early summer (NINO34_JAN>0.81→ NINO34_JUN ≤ -0.13). The “above” 429 

sample of 1963 in the testing set falls into the leaf node of Path1_NCP while another 430 

one (2010) ends in the leaf node of Path2_NCP. 431 

 To make a physical understanding of the mechanisms generating the regional 432 

extreme precipitation, we pool all “above” samples from both training and testing sets 433 

in a leaf node for a composite analysis. For SC-AMJ, the “above” samples of 1975, 434 

1977, 2006 and 2010 fall into the leaf node of Path1_SC, while those of 1973, 1983, 435 

1995 and 1998 fall into the leaf node of Path2_SC. For NCP-JA, the leaf node of 436 

Path1_NCP contains the “above” samples of 1962, 1963 and 1996, while that of 437 

Path2_NCP contains the “above” sample years of 1964, 1969, 1973, 1988, 1998, 2007 438 



and 2010. 439 

 440 

5. Physical Interpretation 441 

 Warm season precipitation over East Asia is always associated with the strength 442 

and position of the western North Pacific subtropical high (WNPSH). To produce 443 

superfluous rainfall over this region in two months or a season, a steady position of the 444 

WNPSH and mostly steady cold air mass activities from the inland north are important 445 

conditions. Under such conditions, a fierce and persistent interaction between the humid 446 

warm southerlies and cold northerlies meet along the northwestern flank of the WNPSH, 447 

leading to persistent extreme rains in the region. This fact is exactly reflected in the 448 

decision rules of the present models.  449 

For SC-AMJ, the composite SLP and 850 hPa wind fields of Path1_SC show that 450 

a weak anomalous anticyclone is located over the Philippine Sea, favorable for 451 

transporting moisture into South China by the significant southwesterlies along its 452 

northwest flank (Figure 6a). In this case, the WNPSH extends more westward than its 453 

climatological position (Figure 7a). Over the mid-high latitudes, a wave train extends 454 

from the North Atlantic to the North Pacific, with two significant anomalous highs over 455 

the Ural Mountains and a large area from the Okhotsk Sea to the Aleutian Islands, 456 

respectively, and an anomalous low in the Eurasian Continent in between (Figure 6c). 457 

Previous studies showed that such a mid-high latitude circulation pattern favors inland 458 

cold air masses intruding to southeastern China (Zhao et al., 1998). Thus, a combination 459 

of these low latitude and mid-high latitude circulation patterns result in more-than-usual 460 



persistent subtropical fronts over South China, leading to an extremely rainy season. To 461 

maintain such persistent circulation patterns, the ocean condition should play an 462 

important role. As the simultaneous SSTA distribution shows, weak cold anomalies 463 

occur in the central and eastern equatorial Pacific and expand northwestward to the 464 

southeastern Philippine Sea, but from the South China Sea to the eastern Philippine Sea 465 

SST anomalies are warm (Figure 6e). The cooling in the southeastern Philippine Sea 466 

enhances the anticyclone over the area and drives it to extend westward. Meanwhile, 467 

the North Atlantic Ocean demonstrates a tripole SSTA pattern with a strong positive 468 

center to the north of 50°N, a weak positive center to the south of 30°N, and a weak 469 

negative center in between (Figure 6e). The tripole pattern triggers the wave train over 470 

the mid-high latitudes, as demonstrated in previous studies (Watanabe 2004; Sung et 471 

al., 2006; Wu et al., 2009). This pattern is usually accompanied by a negative NAO 472 

phase as a result of air-sea interaction (Pan et al., 2005). An analysis of the evolution of 473 

the SSTA from January to June reveals that under the rules of Path1_SC (Figure 8), the 474 

tripole pattern exists as early as in the preceding winter and persists into early summer 475 

(Ogi et al., 2003 and 2004). According to previous studies, the mechanisms for this 476 

tripole pattern to persist change with seasons. In winter, the negative NAO and the 477 

tripole SSTA pattern are coupled by a positive feedback (Pan, 2005); while in spring, a 478 

negative NAO induces the tripole SSTA pattern then the pattern maintains itself into 479 

early summer through the ocean memory (Wu et al., 2009). Anyway, a preceding 480 

persistent negative NAO phase favors an increase of extreme precipitation over South 481 

China in the AMJ season. In Path1_SC, there is little SSTA developing or decaying in 482 



the tropical Pacific (Figure 8). It is suggested that the mid-high latitude circulation 483 

pattern induced by the tripole SSTA pattern in the North Atlantic favors cold air mass 484 

activities into eastern Asia in the preceding months, thus preventing the WNPSH from 485 

moving northward and keeping it to the southeast of southern China during the AMJ 486 

season. 487 

 The composite results of Path2_SC show a significant anomalous anticyclone over 488 

western North Pacific (Figure 6b). It is a much stronger anomalous anticyclone than in 489 

the case of Path1_SC, extending from the South China Sea to south of Japan. The 490 

significant southwesterlies along its northwestern flank transport moisture into South 491 

China. The WNPSH extends extremely westward into the South China Sea (Figure 7b). 492 

In the mid-high latitudes, there is a weak anomalous high over the Ural Mountains and 493 

a saddle over the Okhotsk Sea (Figure 6d). The composite SSTA shows a Niño state in 494 

the eastern tropical Pacific (Figure 6f). In fact, such a circulation pattern results from 495 

decaying El Niño (Wang et al., 2000). The evolution of the SSTA indicates that the 496 

preceding winter is featured by a strong El Niño, decaying but not totally disappearing 497 

until the early summer (Figure 9). There is no consensus on the mechanism for 498 

maintaining the western North Pacific anomalous anticyclone. Some studies suggested 499 

that the air-sea interaction between the anomalous anticyclone and the SSTA pattern 500 

during the decaying phase of El Niño could favor its persistence (Wang et al., 2000; 501 

Wang et al., 2003). Others suggested that the warming in the Indian Ocean during the 502 

decaying phase of El Niño should play a more important role (Xie et al., 2009; Wu et 503 

al., 2010). However, not all decaying El Niño events result in extreme precipitation over 504 



SC-AMJ. The composite analysis shows that those years following Path2_SC without 505 

extreme precipitation over SC-AMJ are corresponding to the decaying of a central 506 

Pacific El Niño (Figures not shown). A central Pacific El Niño shifts the tropical heating 507 

center into the area near the international dateline, resulting in two descending centers 508 

to its west and east, respectively. The one in the west strengthens and shifts the WNPSH 509 

westward, exerting more control over South China (Yuan et al., 2012). Thus, a decaying 510 

central Pacific El Niño is not favorable for extreme precipitation over South China. 511 

Since there are limited samples for El Niño events, the decision tree model is unable to 512 

identify such a rule. Nevertheless, the decaying of El Niño remains as a good indicator 513 

for predicting extreme precipitation events over SC-AMJ. 514 

 For NCP-JA, the first path is also featured by preceding negative NAO states, but 515 

also on the condition that the preceding NINO34 index is negative. The evolution of 516 

the SSTA in the tropical Pacific verified this point (Figure 11). The simultaneous tripole 517 

SSTA pattern in the North Atlantic remains but tends to be vague in the composite map 518 

for July-August while the north Pacific shows a strong warm center (Figure 10e). Under 519 

such conditions, there remains the wave train of two anomalous highs and one 520 

anomalous low over the Eurasian Continent. The two anomalous highs are weak but 521 

the low over Mongolia is quite strong (Figure 10c). This circulation pattern favors cold 522 

air mass activities invading into northern China. In the mid-lower latitudes, the seasonal 523 

advance of the WNPSH favors the formation of fronts over NCP-JA. An anomalous 524 

anticyclone extends from southern China to Japan (Figure 10a), favorable for 525 

transporting strong moisture along its northwest flank into North China. Another route 526 



of moist transportation originated from the Indian Ocean, traveling through 527 

southwestern China then into North China (Figure 10a). The fronts formed by humid 528 

warm and cold air interaction produce extremely excessive precipitation in the region. 529 

It is noteworthy that, in this case, the WNPSH is much weaker than usual (Figure 7c). 530 

For Path2_NCP, the decision rule involves a shift from positive SSTA anomalies 531 

in the eastern tropical Pacific in the preceding winter to negative anomalies in the early 532 

summer. A significant anomalous anticyclone is located to the south of Japan and 533 

extends westward to cover southern China (Figure 10b). A significant positive 534 

anomalous high corresponds to a large-scale blocking situation over the northern 535 

Pacific. Over Mongolia, there is a weak anomalous low (Figure 10d). These favor 536 

formation of fronts over NCP following similar reasons to those in Path1_NCP. The 537 

simultaneous SST anomalies in the eastern tropical Pacific show La Niña status (Figure 538 

10f). Tracing the development of La Niña, we find that it follows the decay of El Niño 539 

from the preceding winter to the early summer (Figure 12). Such a fact was also noted 540 

by Li and Wang (2017), who applied a regression analysis regarding the extreme rainfall 541 

day index over North China (north of 30°N). Two connected anomalous anticyclones 542 

over western North Pacific are a typical result from a decaying El Niño (Wang at al., 543 

2000). But different from that, the anomalous anticyclone over the western North 544 

Pacific more northwestward (Figure 7d), possibly due to developing of La Niña. During 545 

the development of La Niña, cooling in the eastern tropical Pacific and warming in the 546 

southeast of the Philippine Sea strengthen the Walker cell over the Pacific and force the 547 

WNPSH to extend northwestward. Consequently, the anomalous anticyclone over the 548 



western North Pacific occurs between the north of Philippine Sea and the south of Japan 549 

and stretches westward over southern China, leading to a rain belt shifting from the 550 

mid-lower reaches of the Yangtze River to NCP. 551 

 552 

6. Summary and Discussions 553 

 By this study, we developed decision tree models to predict the seasonal extreme 554 

precipitation for two regions in eastern China. The DT models output a probability 555 

prediction of a “yes” or “no” extreme precipitation season. A series of preceding 556 

monthly and seasonal climate indices were used as the predictors. The experiments with 557 

different combinations of predictors suggested that the models involving ENSO and 558 

NAO indices as the predictors should be the best for the regional cases. The DT models 559 

demonstrated the main rules to generate extreme precipitation over the regions, with 560 

underlying physical processes understood via composite analyses of the same-route 561 

sample observations.  562 

For SC-AMJ, there were two main paths leading to extreme precipitation. Path 1 563 

involved a persistent negative NAO phase in February-March, coupled with a tripole 564 

SSTA pattern in the North Atlantic. The air-sea interaction and the memory of the ocean 565 

maintain the tripole SSTA pattern, which triggers a wave train over the mid-high 566 

latitude Eurasian continent. Such an anomalous circulation pattern favors cold air mass 567 

intruding into eastern China with persistent front formation over South China, hence 568 

causing extreme rains. Path 2 was featured by the El Niño state in the preceding winter, 569 

followed by a decaying phase of El Niño, leading to more-than-usual extreme 570 



precipitation over South China.  571 

For NCP-JA, there are also two main paths leading to more-than-usual extreme 572 

precipitation. The first involves an extremely negative NAO phase in the preceding 573 

winter coupled with the tripole SSTA pattern persisting from the preceding winter to 574 

the early summer. These trigger a wave train including an extremely strong anomalous 575 

low over Mongolia and an anomalous high over the North Pacific. This circulation 576 

pattern favors cold air activities into northern China and front formation over NCP. The 577 

second path involves a shift from El Niño in the preceding winter to weak La Niña in 578 

the early summer. A decaying El Niño helps to maintain an anomalous anticyclone 579 

during the spring and early summer in the northwestern Pacific, which favors more-580 

than-usual extreme precipitation over NCP. Although the monthly or seasonal climate 581 

indices are selected as predictors, the interpretation of the physical mechanisms for 582 

seasonal extreme precipitation is different from that for seasonal total precipitation 583 

revealed by previous studies. Here, we emphasize that a seasonal extreme precipitation 584 

event is the result of a combination of different preceding climate states that should be 585 

above or below some ‘extreme’ levels (e.g., NINO34_JAN >0.8 & NINO34_JUN < -586 

0.13 indicate extreme precipitation event in NCP_JA). If the preceding climate states 587 

are outside these ranges, no extreme precipitation event will be triggered. 588 

The present results also suggested that the seasonal extreme precipitation over 589 

eastern China should be closely related with typical SSTA patterns in the Pacific and 590 

the North Atlantic. It is reasonable to have ENSO indices as decisive predictors in the 591 

present model, as ENSO is the most important source of interannual variability of 592 



global climate. The DT model also captured the influence of SSTA in the North Atlantic 593 

on the atmospheric circulation over the far downstream regions. Moreover, we noted 594 

that the DT model incorporating only SAM indices also had some skill for prediction 595 

of extreme precipitation over SC-AMJ. This is in accordance with the study of Nan and 596 

Li (2003), but the mechanism needs further study. 597 

For comparison, we tried to use the climatological mean of the extreme 598 

precipitation index as a threshold to define an extreme precipitation season and then 599 

applied the same procedures to build the DT models. However, the resultant models 600 

showed little skill. Considering that such an undertaking makes little difference from 601 

partitioning the total precipitation into more- and less-than-usual classes, we suggest 602 

that the seasonal extreme precipitation should be more predictable than the seasonal 603 

total precipitation is for the study regions. This point was also implied in some previous 604 

studies (e.g., Wang and Yan, 2011). 605 

Caveats exist due to the limited observations in the present study. With limited 606 

samples, any statistical modeling, including the DT, is easily influenced by sampling 607 

uncertainty and should be understood with caution. The analyses of underlying physical 608 

processes did help validating the modeling. Insufficient samples also restrict the DT 609 

method to discover more accurate or complete decision path for the generation of an 610 

extreme event. One example has been shown above that not all decaying Pacific El 611 

Nino events result in extreme precipitation events over SC_AMJ. Another example is 612 

the incomplete description of the decadal or multidecadal change due to lack of samples. 613 

Wu and Wang (2002) had documented a decadal change of the relationship between the 614 



seasonal precipitation anomaly over North China and the mean SST anomaly over 615 

Nino3.4 region, where the correlation was positive during 1962-77 but shifted to 616 

negative during 1978-93. They further pointed out that the decadal change was possibly 617 

due to two anomalous heating sources: one from the Philippine Sea and the other from 618 

Indian. The present DT model for NCP_JA only integrated the positive relationship 619 

between the extreme precipitation event over this region and the anomalous Nino3.4 620 

index, even though the mean SST anomaly in Philippine Sea was also used as a potential 621 

predictor. The reason is also probably due to a lack of samples which prevents the DT 622 

model from discovering the modulating effects from other factors. Another issue arises 623 

from the use of accumulated extreme precipitation indices which probably mixes up 624 

extreme events induced by different weather or circulation systems (e.g., frontal system 625 

and landfall tropical cyclone). A possible solution is to model the extreme events from 626 

different sources separately. 627 

Nevertheless, the DT method used here demonstrated great potential of skillful 628 

seasonal prediction of the regional extreme precipitation, with quite consistent 629 

performance even with limited samples. It is hopeful to incorporate more physical 630 

factors / mechanisms in the DT models with increasing observations, so as to improve 631 

the predictive performance with time. 632 
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 824 

Tables 825 

Table 1. Performance of the most balanced models for the two regions. The results are 826 

calculated based on the predictions of the testing sets. AUC means area under the 827 

ROC curve; BSS is the Brier skill score calculated using climatological probabilities 828 

as the reference forecasts. Accuracy, hit rate and false alarm rate are the measures 829 

corresponding to the cut-off point with maximum accuracy. 830 

 AUC BSS Accuracy Hit rate False alarm rate 

SC_AMJ 0.90 38% 87% 100% 15% 

NCP_JA 0.97 51% 93% 67% 0% 

 831 



Figure captions 832 

 833 

Figure 1. The climatological distribution of extreme precipitation days for each month. 834 

An extreme precipitation day is defined as the one whose daily precipitation amount is 835 

larger than the 90th percentile of the daily precipitation distribution. Results from 836 

December, January and February are not shown since there are no extreme precipitation 837 

days in these three months. 838 



 839 

Figure 2. The spatial-temporal mean precipitation indices: a) extreme precipitation days 840 

for SC_AMJ, b) precipitation days for SC_AMJ, c) extreme precipitation days for 841 

NCP_JA and d) precipitation days for NCP_JA. 842 

 843 

Figure 3.  The 12-model mean AUC changing with varying threshold to define an 844 

extreme precipitation year, red lines for DT model while blue lines for binary logistic 845 

regression model, a) for SC-AMJ, b) for NCP-JA. A mean AUC is calculated using the 846 



mean ROC curve from the 12 models. A threshold is represented as how many times 847 

standard deviations above the climatological mean. The black dash lines show the 848 

position of an AUC of 0.5 which indicates no prediction skill. 849 

 850 

Figure 4. The ROC curves for the experiments with ENSO and NAO indices as the 851 

predictors, a) for SC-AMJ and b) for NCP-JA. Each thin line represents the ROC curve 852 

from one of the 12 DT models. The blue heavy line is the mean ROC curve of the 12 853 

DT models, from which the mean AUC is calculated. The red heavy line is the mean 854 

ROC curve of the 12 binary logistic regression models. The ROC curves for the 12 855 

binary logistic regression models are not shown here. The red dash line represents the 856 

ROC curve from a random prediction model of no skill. The blue and red areas show 857 

the standard errors of mean ROC for DT model and binary logistic regression model 858 

respectively.  859 



 860 

Figure 5. The most balanced decision trees corresponding to Figures 4a and 4b, named 861 

as Model 0 and Model 8, respectively. The first line in a non-leaf node (e.g. 862 

NAOI_MAR ≤ -0.555) is the statement to generate a binary branch. A “true” answer 863 

to this statement always leads to the left branch while the right branch is arrived 864 

following a “false” answer. 865 

 866 

Figure 6. Simultaneous composite results for the two main paths in Model 0 for SC-867 

AMJ. (a) and (b) for SLP anomalies (shaded area, units: hPa) and horizontal wind 868 



anomalies at 850hPa (arrows, units: m/s); (c) and (d) for the geopotential height 869 

anomalies at 500 hPa (units: gpm); (e) and (f) for the SST anomalies (units: K). The 870 

left column for path 1 and the right column for path 2. The wind vectors, dotted areas 871 

(for SLP and H500) and areas encircled by black lines (for SST) are statistically 872 

significant using a t-test at the significance level of 0.05 for the hypothesis of no 873 

difference between the samples following and not following the paths. 874 

 875 

Figure 7.  The simultaneous composite isopleth of 5880 gpm at 500 hPa level. The red 876 

lines represent the composite results and the black lines represent the climatology. (a) 877 

Path1_SC, (b) Path2_SC, (c) Path1_NCP, and (d) Path2_NCP. 878 



 879 

Figure 8. The evolution of monthly SST anomalies (units: K) for Path1_SC in Model 0 880 

for SC-AMJ. Areas encircled by black lines are statistically significant using a t-test at 881 

the significance level of 0.05 for the hypothesis of no difference between the samples 882 

following and not following the path. 883 

 884 

Figure 9. The evolution of monthly SST anomalies (units: K) for Path2_SC in Model 0 885 



for SC-AMJ. Areas encircled by black lines are statistically significant using a t-test at 886 

the significance level of 0.05 for the hypothesis of no difference between the samples 887 

following and not following the path. 888 

 889 

Figure 10. Simultaneous composite results for the two main paths in Model 8 for NCP-890 

JA. (a) and (b) for SLP anomalies (shaded area, units: hPa) and horizontal wind 891 

anomalies at 850hPa (arrows, units: m/s); (c) and (d) for the geopotential height 892 

anomalies at 500 hPa (units: gpm); (e) and (f) for the SST anomalies (units: K). The 893 

left column for path 1 and the right column for path 2. The wind vectors, dotted areas 894 

(for SLP and H500) and areas encircled by black lines (for SST) are statistically 895 

significant using a t-test at the significance level of 0.05 for the hypothesis of no 896 

difference between the samples following and not following the paths. 897 



 898 

Figure 11. The evolution of monthly SST anomalies (units: K) for Path1_NCP in Model 899 

8 for NCP-JA. Areas encircled by black lines are statistically significant using a t-test 900 

at the significance level of 0.05 for the hypothesis of no difference between the samples 901 

following and not following the path. 902 



 903 

Figure 12. The evolution of monthly SST anomalies (units: K) for Path2_NCP in Model 904 

8 for NCP-JA. Areas encircled by black lines are statistically significant using a t-test 905 

at the significance level of 0.05 for the hypothesis of no difference between the samples 906 

following and not following the path. 907 
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