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Heat exposure assessment based on individual daily 

mobility patterns in Dhaka, Bangladesh 
 
Abstract   

Despite a growing body of evidence indicating increasing health impacts from heat 5 

exposure secondary to climate change, previous studies have assessed heat exposure 

based only on the residential locations of individuals. Such assessments may be 

imprecise as they do not reflect the impact of people’s daily mobility patterns. 

Furthermore, most studies have focused on urban areas in developed countries, whilst 

relatively little is known about the situation in developing nations, particularly a tropical 10 

climate region where heat exposure is severe for residents. As a case study in Dhaka, 

Bangladesh, we conducted a heat exposure assessment by integrating individual 

mobility data which was obtained from a questionnaire survey. Estimates of heat 

exposure were made using remotely sensed land surface temperature data. Population 

exposures based on residential locations were compared to a dynamic exposure model 15 

that incorporated mobility. Especially for people in suburban areas, we found the 

traditional assessment method based on the static residential model underestimated 

exposure compared to the dynamic model owing to the fact that some residents migrate 

into the city center each day where they tend to experience higher temperatures. We 

found small differences in heat exposure levels between social groups stratified by gender, 20 

age, and income based on the dynamic and static models. These results demonstrate that 

integration of mobility patterns may be important when comparing exposure levels 

between urban and suburban populations. Our findings may raise issues regarding new 

remediation measures against urban heat islands, such as reviewing the distribution of 

health resources or generating a risk map.  25 
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1. Introduction 

Epidemiological studies have repeatedly demonstrated that heat exposure has an 

adverse effect on human health, with high temperatures being associated with both 

increased mortality and morbidity (Bassile and Cole 2010, Åström et al. 2011). For 35 

example, cardiovascular and respiratory diseases (Almeida et al. 2010), diarrhea 

(Hashizume et al. 2007) as well as mental health problems (Hansen et al. 2008) have 

been shown to be associated with elevated temperature. The mechanisms by which heat 

impacts health are largely associated with the triggering of often pre-existing chronic 

conditions (Vandentorren et al. 2006). These effects are evident in a range of 40 

international settings, including Asia (Pudpong and Hajat 2011), Europe (Michelozzi et 

al. 2009), North America (Kestens et al. 2011), and Oceania (Schaffer et al. 2012). 

 

Urban heat islands (UHIs) are the phenomenon of a modified thermal climate generally 

caused by urbanization, and the urbanized area is often warmer than the surrounding 45 

non-urbanized area (Voogt and Oke 2003). UHIs are defined for different layers of the 

urban atmosphere, or for a range of types of surfaces and subsurface (Oke 1995). In this 

research, we specifically focused on surface urban heat islands (SUHI) which can be 

observed as the spatial patterns of upwelling thermal radiance captured by a remote 

sensor (Voogt and Oke 2003). In SUHI, warming is mostly caused by the modification of 50 

land surfaces using materials that effectively store short wave radiation, with waste heat 

from energy creation being a secondary contributor. 
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There is a growing concern that the effects of UHIs may increase the magnitude of 

population exposure to heat (Patz et al. 2005). Coupled with the effects of global warming, 55 

studies suggest that UHIs may magnify the severity, duration, and frequency of extreme 

climate events such as heat waves in urban areas (Åström et al. 2011). There is a 

consequent pressing need to accurately assess population exposure to heat in order to 

establish efficient preventive measures (Almeida et al. 2010). 

 60 

Previous research on heat exposure assessment suffers from two main limitations. 

Firstly, most studies have focused on urban areas in developed countries, whilst little is 

currently known about the situation in developing nations, largely due to a lack of data 

(Hashizume et al. 2009). Secondly, typical assessments of human heat exposure are 

based solely on the residential locations of individuals. Thus, they may be imprecise as 65 

they do not reflect the impact of people’s daily mobility patterns on heat exposure.  

 

The development of Geographic Information Systems (GIS) has enabled us to capture 

and model human mobility (Sekimoto et al. 2013) providing the potential to update the 

methods used in the field of environmental exposure assessment. Their use has typically 70 

focused on air pollution exposure (e.g., Hatzopoulou and Miller 2010, Dhondt et al. 2012). 

Several studies found that environmental exposure assessment which integrates 

population mobility substantially alters estimated pollutant exposure levels compared 

to assessment which assumes people are static at their homes (e.g., Beckx et al. 2009a).  

 75 

Research suggests that individual mobility is constrained and characterized by two 

major factors: physical and socio-cultural circumstances (Briggs 2005, Hagerstrand 

1970). Physical circumstance, particularly where an individual lives, is an important 

determinant of people’s daily travel patterns (Hagerstrand 1970, Dhondt et al. 2012, 

Beckx et al. 2009a). For example, those who reside in suburbs often travel into the urban 80 
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core to work or study, or for other purposes (Brainard et al. 2002), and this may 

substantially affect the magnitude of their exposure to environmental risks. Dhondt et 

al. (2012) conducted health impact assessments using measurements of population 

exposure to air pollutants which integrated people’s mobility estimated through agent-

based simulation framework in regions of Belgium. They found integrating population 85 

mobility models altered estimated exposure levels to NO2 and ozone at the municipal 

level, and better predicted health outcomes compared to exposure assessment based 

solely on residential locations.  

 

Socio-cultural circumstance, specifically population characteristics such as age, gender, 90 

and socio-economic circumstance, also has a role to play determining individual mobility 

patterns (Briggs 2005, Hagerstrand 1970). Beckx et al. (2009b) showed large intra-day 

differences in air pollution exposure estimates between gender and socio-economic 

classes in the Netherlands. They suggested to target exposure reductions at the most 

critical places and times for particular social groups for more efficient policy measures, 95 

considering different mobility patterns between these groups (Beckx et al. 2009b).  

 

Focusing on social groups and their mobility-based exposure has another important 

aspect. Several particular social groups, such as the very young, the elderly, and the poor, 

are relatively vulnerable to heat exposure (Yardley et al. 2011, Chan et al. 2012). 100 

Furthermore, some case studies have shown that these vulnerable groups are more 

prone to be exposed to heat (e.g., Wong et al 2016, Huang et al. 2011). Most previous 

studies which focused on disparities in environmental exposure have been based on 

static assessment, but neglected effect of population mobility on the exposure level, and 

thus the magnitude of disparity found might be biased if estimates are poorest for the 105 

most mobile members of the population.   
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A mobility-based heat exposure analysis, as a rare case study, was conducted in Leipzig, 

Germany (Schlink et al. 2014). They found that the different algorithms which simulated 

population mobility generate substantially different mobility patterns and levels of heat 110 

exposure. This indicated that integrating mobility patterns has the potential to advance 

assessment of thermal burden compared to the traditional static assessment. 

Nevertheless, the effect of physical circumstances (i.e. urban v.s. suburb areas) and social 

groups on mobility-based heat exposure have not been widely examined in previous 

research. Further, the situation in a developing country, particularly a tropical climate 115 

region where heat exposure is severer for residents, is still not well known. 

 

Dhaka is the capital city of Bangladesh with high temperatures and where only limited 

work on heat exposure has been undertaken. The setting is important because the 

development of UHIs in Dhaka is being accelerated by a reduction in green spaces and 120 

increases in impervious surfaces associated with uncontrolled land development from 

rapid population growth (Raja and Neema 2013). In Bangladeshi cities there is 

particular concern that heat-related health problems may be magnified by poor adaptive 

capacities (Patz et al. 2005), as well as by the limited availability of medical care 

(Byomkesh et al. 2012). In this research we examined if and how incorporating individual 125 

daily mobility data might provide improved exposure assessment (hereafter termed 

“dynamic exposure assessment”) compared to analyses based on traditional 

measurements of heat exposure (hereafter “static exposure assessment”) , as a case study 

in Dhaka.  

 130 

In this work we aimed to determine the factors affect mobility-based population exposure, 

and how the models may inform possible remediation measures against thermal burdens. 
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For this, we firstly evaluated how our findings vary by urban setting (i.e., urban core v.s. 

suburbs), hypothesizing that places of people’s residences and destinations of daily travel 

may have a significant effect on the heat exposure of individuals. Secondly, we analyzed 135 

if heat exposure varies between different social groups and how the integration of 

mobility patterns might alter any estimated inequalities in exposure. 

 

2. Methodology 

2.1. Study area 140 

Dhaka consists of the Dhaka Metropolitan Area (DMA) and its surrounding suburbs, 

located in the central part of the country (Figure 1). While Bangladesh is recognized as 

an economically impoverished south Asian country (Lewis 2011), several urban areas, 

including Dhaka city, are currently accomplishing strong and stable economic growth 

(Muzzini and Aparicio 2013, Lewis 2011). These economic developments are resulting in 145 

rapid urbanization of the city (Muzzini and Aparicio 2013) but are simultaneously 

generating a range of environmental issues, including UHI (Muzzini and Aparicio 2013, 

Byomkesh et al. 2012). 
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Figure 1. Study area: Dhaka Metropolitan Area (DMA) and surrounding suburban areas, 

Bangladesh 

 

2.2. Population mobility data 165 

Two principal datasets (questionnaire-based mobility data and remotely sensed land 

surface temperature data) were used for this study. The estimates of population mobility 

were constructed as follows: a survey was conducted by the Japan International 

Cooperation Agency (JICA) in the study area (Sekimoto et al. 2013, JICA 2010). The 

study area covers 108 zones (Figure 1), and 1% of the population in each zone was 170 

randomly selected from a list of names of electors collected by the Dhaka City Council. 

The zones were administrative boundaries within the city –“wards” in DMA, and “thana” 

and subdivided thana outside the DMA (see Figure 1). Wards are the smallest 

administrative boundaries in Bangladeshi urban areas (Zinia and McShane 2018). A 

thana is defined as a sub-district in the country in terms of police jurisdiction units. 175 
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Because some thana are substantially larger than others, those large thanas were 

subdivided into smaller zones for more comprehensive sampling for the questionnaire 

survey. 

 

JICA conducted face-to-face interviews by visiting the selected households’ residences in 180 

2009. All household members were asked questions on their daily travel pattern of the 

working day immediately before the survey date. The questions included the departure 

place of each trip and destination (e.g., a workplace or school), the departure and arrival 

times of the trip, how long they stayed at their destination, and their modes of transport. 

We assumed that the initial departure places are their residential locations. The survey 185 

also requested information on the socio-demographic characteristics of the respondents 

(e.g., age, sex, and income level). In Dhaka, many workers are non-regular employment 

and regularly change their income. Therefore, each person’s monthly income of the 

month immediately before the survey date of the questionnaire was requested to provide 

a more stable measure. The population mobility data was called “person trips” (Sekimoto 190 

et al. 2011). The overall available sample population from the person trip data was 42,114 

individuals and each individual had one recoded trip within a day. 

 

We developed a mobility model using the person trip data (Sekimoto et al. 2011, Sekimoto 

et al. 2013). The address information on the home location and trip destination of each 195 

participant in the person trip data was only available at the level of 108 zones. So as to 

more precisely estimate starting point and end point of each trip, we used Landscan, 

which provided data on spatial distribution of population at 1km2 level. Two steps were 

employed. Firstly, using the zone boundary GIS map provided by JICA, zones 

corresponding to the home and destination of each trip were identified. Secondly, the 200 

Landscan was used to estimate both locations within each corresponding zone. Landscan 
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provides information on spatial distribution of both the daytime and nighttime 

population of Dhaka city. These were estimated through a model based on characteristics 

of land cover, road networks, slopes (as an indicator of suitability for residences) and 

settlement locations identified through high resolution imagery analysis (for the details, 205 

see GIST, 2015). In order to locate trip start points the zone boundaries, and associated 

residential populations, were overlaid on the resampled Landscan data and estimates of 

the likely population of each 100m cell were made based on the boundaries within which 

the cell fell along with the corresponding area population count. The population quotient 

was used as a probability to estimate trip origins. Likewise trip end points were 210 

estimated using the population estimates as well as end point locations reported at the 

zone level in the questionnaire.  

 

The route taken between the origin and destination was computed using the Dijkstra 

method (a minimum route-search process) (Sekimoto et al. 2011). It was assumed that 215 

individuals would travel at a constant speed, which was computed as the mean of the 

speeds associated with the different travel modes reported. 

 

2.3. Heat exposure assessment 

The magnitude of heat exposure was then estimated using remotely sensed land surface 220 

temperature (LST) data derived from satellite images captured by a Moderate Resolution 

Imaging Spectroradiometer (MODIS) equipped on Tera and Aqua American satellites 

launched in 1999 and 2002 respectively by the National Aeronautics and Space 

Administration (NASA) (Rajasekar and Weng 2009, Østby et al. 2014). LST has been 

widely measure of heat exposure level in research. For example, Laaidi et al. (2012) 225 

found that areas with high LST were associated with a higher mortality rate among 

elderly populations when a heatwave occurred in Paris, France in 2003. The frequency 
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of image capture of Dhaka by MODIS is four times daily 1:30 am, 10:30 am, 1:30 pm, 

and 10:30 pm; and the spatial resolution of the images was 1 km2. 

 230 

We computed three different metrics to measure magnitudes of heat exposure: the 

maximum LST exposure (‘max exposure’) between the four time points, which was 

defined as the highest exposure on each individual experienced within a day; the 

minimum LST exposure (‘min exposure’) between the four time points; and the ‘exposure 

gap’ which was the difference in temperature between the maximum and minimum LST 235 

exposure during each day. All of these are previously established indicators of heat 

exposure risks (Gosling et al. 2009, Laaidi et al. 2012), and they were computed for both 

the dynamic and static assessment models. 

 

April 2009 was chosen as the target period. April was appropriate month for this study 240 

because, in Dhaka, the hottest months are April, May, and June (Hashizume et al. 2007), 

and LST data for May and June is poorer due to images being frequently obscured by 

cloud cover during the rainy season. The year 2009 was chosen since the mobility data 

described below are based on the questionnaire survey conducted in year 2009.  

 245 

Using a GIS, the magnitude of heat exposure on each individual at each time point (i.e., 

1:30 am, 10:30 am, 1:30 pm, and 10:30 pm) on each day was calculated according to the 

LST value where the individual was at the corresponding time. Therefore, in the static 

assessment, the individuals’ exposure levels were consistently assumed to be the LST 

value in their residential locations, whilst in the dynamic assessment the exposure level 250 

of each individual depended on where that person was located (at home, commuting, or 

at work/school). Because LST values of some 1 km2 grids are not available for April due 

to the cloud cover, we calculated monthly average of max, min, and gap of LST exposure 
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values on each individual, and the values were used as the heat exposure metrics in the 

subsequent analyses. 255 

 

To describe how dynamic assessment alters heat exposure levels compared to the static 

one, we present results according to the location of individuals (location based analysis) 

as well as social group (social group analysis). For the location based analysis we divided 

the sample into four groups: those who live within the DMA and stay there all day, those 260 

who live within the DMA but commute into the suburbs during the daytime, those from 

the suburbs who remain there all day, and those from suburbs who migrate into the DMA 

during the daytime. For the social group analysis, we present results according to an 

aggregation by gender, age, and monthly income. Paired 2-sided t-tests were conducted 

to test the statistical significance of the difference between dynamic exposure and static 265 

exposure estimates for each mobility group and each social group. 

 

All analyses were implemented using ArcGIS10.1 (ESRI Inc.) and R (Version 3.0.1, 

package “maptools”). All statistical analyses in this study were performed using PASW 

statistics 18 and R (Version 3.0.1). 270 

 

3. Results 

Figures 2a and b demonstrate the distributions of the monthly averages of LST at 1:30 

pm and 1:30 am respectively in April 2009. As anticipated, both in the daytime and at 

night, the areas surrounding the city center had the highest LST values, while relatively 275 

low LSTs were observed in the suburbs. These spatial variations in LST clearly showed 

that an UHI existed in the study area.  

 

The spatial distributions of the sample population at 1:30 am and 1:30 pm are shown 

in Figures 2c and 2d respectively. During both day and night time, southern and 280 
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western areas in the DMA were the most populated. In the suburbs surrounding the 

DMA, the nighttime population was sparse, whereas the daytime population increased 

somewhat and dispersed.    

 

 285 

Figure 2. Distribution of land surface temperature (LST) and population changes within 
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one day in Dhaka, Bangladesh. a) Distribution of LST at 1:30 pm (monthly average for 

April 2009). b) Distribution of LST at 1:30 am (monthly average for April 2009). c) 

Sample population at 1:30 am. d) Sample population at 1:30 pm  

 290 

Table 1 illustrates the averages of the heat exposure assessments for the four mobility 

groups for the max and min exposure and exposure gap estimates based on the dynamic 

and static models. To compare the differences between the exposure levels based on the 

dynamic model and those of the static model, we subtracted the static estimates from 

the dynamic estimates.  295 

 

The four groups of mobility patterns showed clear trends. Firstly, for the three exposure 

metrics, the two groups who stayed in either within DMA or suburbs all day had little 

difference in estimated exposures when comparing the dynamic and static estimates. On 

the other hand, for max exposure and exposure gap the suburban group migrating to the 300 

city center during the daytime had large differences (2.01 ℃ and 1.9 ℃ respectively), 

and these were statistically significant. This suggests that the static model 

systematically underestimated actual heat exposures for these migrating suburban 

populations. Furthermore, max exposure and the exposure gap for the group who move 

from the DMA to the suburbs were overestimated (i.e., around -2.44 ℃ and -2.42 ℃ for 305 

max exposure and exposure gap values respectively) when the static model was applied, 

and again this was statistically significant.   

 

On the other hand, for min exposure, the difference was consistently small for all 

mobility groups because people are likely to experience min exposure around their home 310 

locations, even if the mobility pattern was integrated, although differences were still 

statistically significant. 
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Figures 3 illustrates the spatial distribution of differences between the dynamic and 

static assessments for max exposure values for the four mobility groups. There was large 315 

variation across the zones. For example, for the suburban population who migrate to the 

city center, the differences in values were between -1.94 ℃ and 9.10 ℃ (Figure 3-d), 

whilst differences for the group moving from the DMA to the suburbs were between     

-6.71 ℃ and 3.59 ℃ (Figure 3-b). 
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Table 1. Average differences in heat exposure levels between four mobility groups based on the dynamic and static models 320 

a)those who live within the DMA and stay there all day. b) those who live within the DMA but commute into the suburbs during the 

daytime. c) those from the suburbs who remain there all day. d) those from suburbs who migrate into the DMA during the daytime. 

 Max exposure Min exposure Exposure gap       

Mobility 

type 
Dynamic Static Difference Dynamic Static Difference Dynamic Static Difference 

Sample 

size 

Male 

(%) 
Age groups (%) 

a) 36.94 36.96 -0.03** 24.64 24.63 0.01** 12.3 12.33 -0.03** 40542 53.4% Under 15:  20.0% 

 ±0.81 ±0.87 ±0.8 ±0.25 ±0.26 ±0.07 ±0.83 ±0.87 ±0.79   15-39:    53.5% 

            40-64:    24.4% 

            Over 64:   2.1% 

b) 34.55 36.99 -2.44** 24.57 24.58 -0.01 9.97 12.41 -2.43** 345 78.0% Under 15:  2.6% 

 ±1.76 ±0.91 ±1.92 ±0.27 ±0.28 ±0.11 ±1.79 ±0.91 ±1.91   15-39:    53.9% 

            40-64:    41.2% 

            Over 64:   2.3% 

c) 34.59 34.65 -0.06 23.32 23.3 0.02** 11.28 11.35 -0.08 917 48.4% Under 15:  30.2%  

 ±1.74 ±1.92 ±1.68 ±0.68 ±0.69 ±0.16 ±1.64 ±1.63 ±1.67   15-39:    50.6% 

            40-64:    18.3%  

            Over 64:   0.9% 

d) 36.78 34.78 2.01** 23.41 23.3 0.1** 13.38 11.47 1.9** 310 64.2% Under 15:  11.6%  

 ±1.03 ±2.11 ±2.12 ±0.71 ±0.74 ±0.3 ±1.14 ±1.68 ±2.07   15-39:    58.1% 

            40-64:    27.4%  

                        Over 64:   2.9% 
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Unit of exposure:℃ 

 Plus-minus values are average ±SD    325 

**P < 0.01   



17 

 

 

Figure 3. Spatial distribution of differences between the dynamic and static 

assessments for max exposure values for the four mobility groups. a) those who live 

within the DMA and stay there all day. b) those who live within the DMA but 330 

commute into the suburbs during the daytime. c) those from the suburbs who remain 

there all day. d) those from suburbs who migrate into the DMA during the daytime. 
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Table 2 shows the results of the social group analyses. We found that males and adults 

are more mobile than the rest of the population. Income level was positively related to 

travel distance. However only small differences were found between static and dynamic 335 

exposures in the three exposure estimates; all of the differences in estimated exposure 

were less than 0.2℃, although most were statistically significant. Comparing the groups, 

we also found very weak evidence of disparity of heat exposure for both dynamic and 

static assessments with very small disparities for all of the three exposure metrics. 

 340 
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Table 2. Result of the social group analysis: Differences in heat exposure levels between different social groups (stratified by gender, age 

and monthly income) based on the dynamic and static models 360 

  Max exposure Min exposure Exposure gap  

Population 

characteristics  

Median 

travel 

distance 

(km) 

Dynamic Static Difference  Dynamic Static Difference  Dynamic Static Difference  
Sample 

size 

Gender            

Male 9.1 36.85±0.93 36.9±0.99 -0.05±1** 24.6±0.35 24.59±0.35 0.01±0.08** 12.25±0.91 12.31±0.91 -0.05±0.99** 22541 

Female 6.4 36.88±0.96 36.89±1 -0.01±0.79** 24.6±0.35 24.59±0.36 0.01±0.08** 12.28±0.91 12.3±0.92 -0.02±0.78** 19570 

Age 
           

Under 15 3.7 36.88±0.98 36.87±1.04 0.01±0.68 24.59±0.37 24.58±0.38 0.01±0.08** 12.29±0.9 12.28±0.93 0±0.66 8441 

15 - 39 8.6 36.86±0.94 36.9±0.99 -0.03±0.94** 24.6±0.35 24.59±0.36 0.01±0.08** 12.26±0.91 12.3±0.92 -0.04±0.93** 22512 

40 - 64 10.2 36.86±0.94 36.92±0.96 -0.07±0.98** 24.61±0.34 24.6±0.34 0.01±0.08** 12.25±0.92 12.32±0.91 -0.07±0.97** 10290 

Over 64  9 36.87±0.88 36.88±0.95 -0.02±0.96 24.6±0.32 24.59±0.34 0.01±0.09** 12.27±0.88 12.3±0.9 -0.03±0.93 871 

Monthly   
   

   
    

Income (taka)     

0 7.4 36.89±0.95 36.89±1.01 0±0.79 24.6±0.35 24.59±0.36 0.01±0.08** 12.29±0.9 12.3±0.93 -0.01±0.78 17539 

1 - 100,00 8.4 36.82±0.94 36.86±0.99 -0.04±0.98** 24.58±0.37 24.57±0.37 0.01±0.09** 12.24±0.92 12.29±0.91 -0.04±0.97** 6275 

100,01 - 200,00 12.2 36.86±0.89 36.93±0.94 -0.07±1.08** 24.61±0.33 24.61±0.33 0.01±0.08** 12.25±0.86 12.33±0.89 -0.08±1.07** 4975 

>200,00 14.9 36.79±0.97 36.94±0.96 -0.15±1.16** 24.61±0.32 24.6±0.33 0.01±0.08** 12.18±0.96 12.34±0.91 -0.16±1.14** 4884 

Unit of exposure:℃   Plus-minus values are average ±SD  ** P < 0.01 

3 samples have no information on their gender 

Monthly income were only stated for people aged 15 or over 
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4. Discussion  

This study conducted two different heat exposure assessments as a case study in Dhaka, 365 

Bangladesh, where UHIs are common (Raja and Neema, 2013). Population-based 

exposures to heat using only residential locations were compared to a dynamic exposure 

model that incorporated mobility to better explore public health implications.  

 

We found that especially for suburban populations who move into the city center in the 370 

daytime, the traditional assessment method based on the static residential model 

underestimated the magnitude of heat exposure compared to the dynamic model. From 

both policy and public health perspectives, consideration needs to be taken of the fact 

that the victims of heat exposure from UHI reside not only within the city center, but 

also in the suburbs. On the other hand, we also found that the static model overestimated 375 

the LST exposure level of people from several other areas in the DMA.  

 

The sample sizes of mobility type b) and d) were relatively small compared to the sample 

size of a) and c) (residents in the city core) (see Table 1), but our methodology is adaptable 

into different contexts (see Dhondt et al. 2012 for example). For example, Japan is known 380 

as the country where many workers have long commutes from suburban districts to the 

central business district (OECD 2011), and Japanese urban areas also suffer from the 

heat island phenomena. In this context, our methodology may be useful to better  

understand population heat exposure patterns in such settings.  

 385 

Over the different social groups, we found only weak evidence of a disparity in heat 

exposure estimation for both the dynamic assessment and the static assessment. This 

result does not accord with previous studies which found disparity, although all are from 

outside Bangladesh and did not integrate mobility (e.g. Wong et al. 2016, Huang et al. 
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2011). However, Dhaka is rapidly growing city in terms of population and urbanization, 390 

and there are serious concerns of magnification of UHI and urban poverty (Lewis 2011). 

Therefore, any disparity in heat exposure whereby vulnerable groups are more likely 

exposed still may have potential to be apparent in the study area. Like many other 

developing countries, census records are not available in Bangladesh, and thus 

questionnaire surveys such as that we used have an important role to play to identify 395 

the distribution of social groups as well as disparities in environmental exposure levels. 

 

Although we did not attempt to directly estimate health impacts of the estimated heat 

exposure levels, there is some evidence available from past studies. Laaidi et al. (2012) 

found that a 0.4℃ increase at nighttime in LST exposure significantly elevated the risk 400 

of mortality in the elderly in Paris, France, based on data from the heat wave in 2003. 

Although this study did not integrate the effect of individual mobility patterns, this 

suggests that a small difference in LST might have significant health effect.  

 

There are several caveats to this work. The first limitation is related the nature of 405 

remotely sensed LST data. Whilst the LST data allows to assess outdoor heat exposure 

with relatively high spatial resolution, we could not integrate data regarding the effects 

of indoor environments on heat exposure, especially the effects of air conditioning in 

residences, offices, or schools. Nevertheless, we believe that the effects of air conditioners 

may be relatively limited in Bangladeshi cities compared to cities in developed countries, 410 

owing to the poor diffusion rate and quality of cooling facilities, as well as the frequent 

occurrence of electricity outages (Muzzini and Aparicio, 2013). Further, the heat 

exposure metrics were calculated based on where the individual was at each of the four 

single time points of capturing the satellite images, and thus length of stay outside of 

these time points was not fully considered. 415 
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Second, the daily mobility data was based on a questionnaire survey that may not 

capture any unusual travel patterns. Therefore, our model may potentially overestimate 

heat exposure compared to the actual personal exposure if people exhibit different 

migration patterns to normal in particularly hot weather. Additionally, the questionnaire 420 

only asked about the travel pattern on working days; and thus, the mobility of the 

individuals during weekends and holidays is not known. 

 

Third, since we resampled the original 108 zones data into the 1km2 Landscan grid, there 

may be some distortion of the spatial distribution of the starting and ending points of 425 

trips compared to the actual distribution, and this effect may be magnified if the zone is 

geographically larger. 

 

Fourth, there is also no information of rejection rate in the questionnaire survey which 

was based on a quote sample. The representativeness of the sample, in terms of travel 430 

behavior, to the general population is untested. In addition, the slum dwellers, one of the 

most economically deprived groups, may be underrepresented on the electors list, the 

sample ledger of this study. Slum dwellers often informally settle in Dhaka (Nazrul 2003). 

 

Population mobility data can play a significant role in updating environmental exposure 435 

assessments. This study has demonstrated that mobility data shows potential in 

enabling refinements in heat exposure assessments, although the magnitude of 

differences observed between the static and dynamic assessments were relatively small 

in this case. This type of assessment could be also applied for measuring exposure to 

other environmental burdens, such as noise (Brainard et al. 2004), which is also 440 

recognized as an important environmental risk in the urban areas of most countries. 
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Another concern is commuting time itself; some studies showed that long commuting 

time may have potential to negative health effect on the commuters (Oliveira et al. 2015, 

Wang and Yang 2019). Mobility data may contribute to clarify the distribution of this 

exposure across population groups and possible negative health impacts. The findings 445 

gained from revised exposure assessments for a range of environmental risks may in 

turn raise new urban planning issues like the need for reallocation of health resources 

such as emergency clinics and cooling stations to help mitigate thermal burdens 

(Johnson and Wilson 2009). A risk map may also contribute as a communication tool and 

may even have the potential to change mobility patterns amongst high-risk individuals 450 

(Johnson and Wilson 2009). 
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