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Summary

Plant pathogens are a significant challenge in agriculture despite our best efforts to combat them.

One of the most effective and sustainable ways to manage plant pathogens is to use genetic

modification (GM) and genome editing, expanding the breeder’s toolkit. For use in the field, these

solutions must be efficacious, with no negative effect on plant agronomy, and deployed

thoughtfully. They must also not introduce a potential allergen or toxin. Expensive regulation of

biotech crops is prohibitive for local solutions.With 11–30%average global yield losses and greater

local impacts, tackling plant pathogens is an ethical imperative. We need to increase world food

production by at least 60%using the same amount of land, by 2050. The time to act is now andwe

cannot afford to ignore the new solutions that GM provides to manage plant pathogens.

I. Introduction

From the earliest days of farming, plant disease and pests have been
a critical challenge for farmers. Although mankind has split the
atom, travelled to the moon and connected the world, plant
pathogens continue to be a significant challenge to food security
despite our best efforts to thwart them (Fig. 1). Estimates of average
global losses to diseases and pests range from 11–30% (Oerke &
Dehne, 2004; Savary et al., 2019). Importantly, crop losses are
highest in regions that already suffer from food insecurity (Savary
et al., 2019). Losses from diseases would be far worse without past

steady advances in agricultural practices, including cultural
controls, agrochemical use and plant breeding. However, we have
learned that there are no ‘silver bullets’. An integrated approach is
needed to combat plant diseases, combining the best technologies
and practices that are available.

The benefits of an integrated approach can be seen in the
management of stem rust in wheat, a disease that caused periodic
costly epidemics in the USA between 1918 and 1960 (Pardey et al.,
2013). Only the combined effort of cultural practices (removal of
barberry, the sexual host of this pathogen), improved chemical
control (development of demethylation inhibitor and quinone
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outside inhibitor fungicides) and an extensive breeding program
spearheaded by Norman Borlaug have enabled the containment of
this particular disease of wheat.

However, there are limitations to such efforts. Some pesticides
are rapidly losing efficacy due to pathogen evolution, and their use
faces increasingly strict regulations to minimize unwanted side
effects (Geiger et al., 2010; Bolton et al., 2012; Lamichhane et al.,
2015; Wieczorek et al., 2015; Godoy et al., 2016; Berger et al.,
2017). Crop breeding can produce resistance to individual diseases,
but it is challenging to select for genetic resistance against multiple
diseases simultaneously while maintaining the strong performance
traits of elite varieties. For example, wheat blast is an emerging
disease that will require wheat breeders to select for blast resistance
while maintaining resistance against stem rust (Islam et al., 2016).

To make matters more complicated, new races of stem rust have
emerged and must also be tackled to ensure the stability of the
world’s wheat supply (Singh et al., 2015). Finally, the introgression
of a single resistance via classical breeding facilitates pathogen
adaption to that resistance.

The disease issues of wheat are not an isolated example, and
challenges such as these are becoming more frequent as global
warming and increased global trade facilitate the spread of known
and emerging pathogens (Bebber et al., 2014). Top of these issues is
the fundamental reality that 821 million people do not have
enough to eat (FAO et al., 2018). The world population is
projected to reach nearly 10 billion in 2050 (United Nations,
2017). This forecast brings with it the associated need to increase
world food production by at least 60% (Alexandratos &Bruinsma,
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Fig. 1 Major disease outbreaks in the last 150 yr and current critical disease challenges. (a) A timeline of major disease outbreaks: (i) Introduction of the
oomycetePhytophthora infestanswhich causes potato late blight results in the Irishpotato famine inwhich1millionpeopledie and1.5millionpeople emigrate.
(ii) The rust fungusHemileiavastatrixwipesout the coffee crop in Sri Lanka; theBritishbecome teadrinkers. (iii) Thevascular fungal pathogencausingFusarium
wilt of banana nearly wipes out the Gros Michel variety; the resistant Cavendish banana is adopted. (iv) The fungus Cochliobolus miyabeanus, which causes
Brown spot disease of rice is a factor in theGreat Bengal Famine inwhich 2million people die of starvation. (v) Bacterial leaf blight of rice (Xanthomonas oryzae

pv. oryzae) causes epidemics throughout Southeast Asia with yield losses up to 80%. (vi) Witches’ broom caused by the fungusMoniliophthora perniciosa is
causing losses of up to 75% of annual cacao production in Brazil. (vii) The new Fusariumwilt isolate TR4 is identified and threatens Cavendish banana. (viii)
Ringspot virus devastates the papaya industry in Hawaii; a GM variety is introduced that resists infection. (ix) A new race of the stem rust fungus Puccinia
graminis (UG99) is spreading throughout Africa and the Middle East, threatening the world wheat supply. (x) Asian soybean rust caused by Phakopsora
pachyrhizi reaches Brazil, costing growers US$2 billion annually in damages and control measures. (b) Examples of current disease challenges in major
agricultural regions in the world that cause significant losses such as corn stalk and ear rots in the USA (4.15%), Soybean rust in Brazil (6.65%), Stem rust of
wheat in sub-SaharanAfrica (8.89%),bacterial blightof rice in India (8.51%)andFusariumheadblightofwheat inChina (8.75%). Source: Savaryet al. (2019).
Pictures:Gibberella zeae (corn ear rot) (photograph by Scot Adams, via Flickr, CC BY 2.0); Phakopsora pachyrhizi (Asian soybean rust) (photograph by Peter
vanEsse);Pucciniagraminis f. sp. tritici (Wheat stem rust) (PhotobyYue Jin);Xanthomonasoryzae f. sp.oryzae (bacterial blight) (photographprovidedby IRRI
under creative commons licence); Fusarium graminearum (Fusarium head blight) (photograph by Gary C. Bergstrom, Cornell University, USA).
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2012; United Nations, Department of Economic and Social
Affairs, Population Division, 2017) With this development in
mind, tackling plant pathogens is not a mere academic exercise but
an ethical imperative that requires action.

One of the most effective and sustainable ways to manage plant
pathogens is to use GM and genome editing to expand the genetic
tools available to breeders. In this review, we present an inventory of

the genetic disease solutions currently available for bacterial, viral,
fungal and oomycete pathogens.Wewill highlight the success stories
of the potential of GM technologies and will outline what is needed
for the effective deployment and realisation of the benefits they offer.
Examples of genetic disease solutions are listed in Table 1. We
evaluate these examples in light of population growth and other
challenges and describe the trends that will shape the future.

Table 1 Examples of genetic disease solutions currently available for bacterial, viral, fungal and oomycete pathogens.

Point of intervention GM technology Example References

Pathogen perception Interspecies transfer of PRRs EF-Tu receptor (EFR) Lacombe et al. (2010); Schoonbeek et al.
(2015); Schwessinger et al. (2015); Boschi
et al. (2017); Kunwar et al. (2018)

Interspecies transfer of NLRs Rpi-Vnt1 Foster et al. (2009); www.isaaa.org/
Bs2 Horvath et al. (2012)

Modification of NLRs Pikp-1 Maqbool et al. (2015)
NLR protease trap PBS1 kinase Kim et al. (2016)
NLR resurrection NRCs (NLR helpers) Wu et al. (2017)

Pathogen effector
binding

Deletion of effector targets MAPK3K StVIK1 Murphy et al. (2018)
Modification of effector binding sites COI1 Zhang et al. (2015)
Deletion of effector binding sites Os11N3/OsSWEET14 Li et al. (2012)
Addition of effector binding sites Xa27 Hummel et al. (2012)

Defence signalling
pathway

Altered expression of signalling
components

NPR1 Xu et al. (2017)

Altered expression of transcription
factors

IPA1/OsSPL14 Wang et al. (2018b)

Recessive resistance
alleles

Gene deletion mlo Kusch & Panstruga (2017)
Gene modification bs5 Iliescu et al. (2013)

Dominant plant
resistance proteins

Interspecies transfer of signalling
components

PFLP Huang et al. (2007); Namukwaya et al.
(2012); J. N. Tripathy et al. (2014); Tang
et al. (2001); Huang et al. (2004); Ger
et al. (2014); Yip et al. (2007); Liau et al.
(2003)

Transfer of detoxifying enzymes
targeting pathogen toxins

Oxalate oxidase Donaldson et al. (2001); Schneider et al.
(2002); Hu et al. (2003); Dong et al.
(2008); Walz et al. (2008); Partridge-
Telenko et al. (2011)

Transfer of adult plant resistance
(APR) alleles

Lr34 Krattinger et al. (2016); Risk et al. (2013);
Schnippenkoetter et al. (2017); Sucher
et al. (2017); Rinaldo et al. (2017)

Antimicrobial
compound
production

Transfer of antimicrobials from
plants

Rs-AFP defensin Jha & Chattoo (2010); Li et al. (2011)

Transfer of antimicrobials from
microorganisms or animals

Virus KP4 Clausenet al. (2000); Schlaichet al. (2006);
Quijano et al. (2016)

Expression of synthetic
antimicrobials

MsrA1 Osusky et al. (2000); Rustagi et al. (2014)

RNAi Viral gene silencing through RNAi Coat protein or replicase domain gene from
Papaya ringspot virus

Fitch et al. (1992); Ferreira et al. (2002); Ye
& Li (2010); www.isaaa.org/

AC1 from bean golden mosaic virus Bonfim et al. (2007); www.isaaa/org
Coat protein gene from plum pox virus Scorza et al. (2013); www.isaaa.org/
Coat protein gene from potato virus Y Lawson et al. (1990); www.isaaa.org/
Putative replicase domain or helicase domain

gene from potato leaf roll virus
Lawson et al. (2001); www.isaaa.org/

Coat protein gene from cucumber mosaic
cucumovirus, zucchini yellow mosaic
potyvirus and watermelon mosaic
potyvirus 2

Tricoli et al. (1995); www.isaaa.org/

Fungal and oomycete gene silencing
through RNAi

HAM34 or CES1 gene of Bremia lactucae Govindarajulu et al. (2015)

Examples that are currently in the market are shown in bold.
1NewLeaf Y� potato, no longer commercially available.
2NewLeaf Plus� potato, no longer commercially available.
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II. Intervention based on pathogen recognition and
effectors

Research over the past 20 yr has led to an increasingly refined
knowledge of the plant immune system and its surveillance
capacity. It is able to distinguish ‘self’ from ‘nonself’ as well as
perturbations of ‘self’ by monitoring the extracellular and intra-
cellular environment (Jones & Dangl, 2006; Cook et al., 2015).
However, pathogens can overcome this system in an evolutionary
arms race, producing proteins and molecules called effectors that
are used to suppress host immunity andmanipulate the plant cell to
facilitate colonisation (Cook et al., 2015; Uhse & Djamei, 2018).
Effectors are secreted into the extracellular environment or
delivered in an orchestrated way into the host. This process is
often done via specialisedmechanisms such as the type III secretion
systems of bacteria, haustoria of fungi and oomycetes and the stylet
of nematodes (Panstruga & Dodds, 2009; Gal�an et al., 2014; Bird
et al., 2015; Espada et al., 2016; Deng et al., 2017; Lo Presti &
Kahmann, 2017).

Plants have two main surveillance systems to detect pathogen
incursions. One class of receptors, known as pattern-recognition
receptors (PRRs), monitors the extracellular environment for
conserved pathogen molecules such as flagellin, the bacterial
elongation factor Tu, and chitin (G�omez-G�omez & Boller, 2000;
Zipfel et al., 2006; Miya et al., 2007; Faulkner et al., 2013; Cao
et al., 2014; Hind et al., 2016). This class also recognises extracel-
lular effectors that increase pathogen virulence (Wang et al., 1996;
Thomas et al., 1997;Rep et al., 2005; van denBurg et al., 2006; van
Esse et al., 2007; Catanzariti et al., 2015; Pruitt et al., 2015), and
has been recently reviewed (Boutrot & Zipfel, 2017).

Intracellular pathogen effectors are recognized by another class
of receptors that make up a large family of proteins characterised
structurally by a nucleotide binding site (NBS) and leucine-rich
repeats (LRR) that are known as NOD-like receptors (NLR)
proteins (Dodds & Rathjen, 2010; Jones et al., 2016). This large
family is well characterised and can be divided into two major
groups in plants by features at their N terminus: one set has a Toll/
interleukin-1 receptor-like (TIR) domain and the other a coiled coil
(CC) domain (Jones et al., 2016), which confer discrete signalling
capacity. Some NLRs have integrated domains that resemble/
contain effector targets such as heavy metal-associated binding
domains, WRKY domains and RPM1-interacting protein 4
(RIN4) (Le Roux et al., 2015; Maqbool et al., 2015; Sarris et al.,
2016). Finally, an additional layer of theNLR resistance network is
emerging in Solanaceous plants, a clade of helper NLRs has been
identified and that connect to several NLRs that detect pathogens
(Wu et al., 2017).

In the ongoing evolutionary arms race, some pathogens use the
plant’s defences against itself by misdirecting the host immune
system to produce an immune response to the wrong pathogen to
maintain host susceptibility. For example, some bacterial
pathogens hijack the Coronatine-insensitive protein 1 (COI1)
jasmonate receptor, rewiring defence responses to activate jas-
monate responses and concomitantly suppress the more effective
salicylic acid defence pathway (He et al., 2004). Similarly, the
necrotrophic fungal pathogens Stagonospora nodorum and

Pyrenophora tritici-repentis activate an inappropriate cell death
response benefiting the pathogen by triggering the NLR receptor
Tsn1 (Faris et al., 2010).

Knowledge of the plant immune system has provided strategies
to intervene at the point of pathogen perception. Extended or novel
recognition capacity can be created in a number of ways, for
example by introducing receptors from other plants with novel
recognition specificity (Fig. 2a,b; Tai et al., 1999; Foster et al.,
2009; Lacombe et al., 2010; J. N. Tripathy et al., 2014; Albert
et al., 2015;Kawashima et al., 2016; Steuernagel et al., 2016;Witek
et al., 2016; Ghislain et al., 2019); through modification of the
integrated domains in NLRs that are targeted by the pathogen
(Maqbool et al., 2015); or by reactivation ofNLR genes disabled by
effectors through the introduction of novel helperNLRs (Wu et al.,
2017). Another original strategy is the design of the so-called ‘NLR
protease traps’. This strategy makes use of NLRs that can recognise
the cleavage of plant proteins by specific pathogen proteases. This
detection leads to a subsequent activation of immunity. Modifi-
cation of the proteins monitored by such NLRs, such that the
cleavage site will be targeted by a different pathogen protease, can
broaden or alter the specificity of the plant’s immune response
(Kim et al., 2016).

Beyond strategies based on pathogen recognition, a growing
understanding of effectors and their function has allowed
interventions at the point of pathogen modulation of host
responses. For example, knowledge of the plant targets of effector
activity reveals which host components are manipulated to
promote disease. This knowledge has been successfully applied to
interfere with these points of vulnerability by removing them
(Bozkurt et al., 2014; Boevink et al., 2016; Yang et al., 2016;
Murphy et al., 2018) or replacing them with variants that are
immune to effector action but retain the native function in the host
(Zhang et al., 2015). For bacterial pathogens expressing transcrip-
tion activator-like (TAL) effectors that activate the expression of
susceptibility genes in the host, resistance can be engineered by
deletion of the TAL DNA binding sites in the promoter (Li et al.,
2012; Jia et al., 2017). Another approach to engineer resistance to
these bacterial pathogens is to add TAL effector binding sites to a
cell-death-promoting (‘executor’) gene that is triggered by the TAL
effectors present in common pathotypes (Hummel et al., 2012;
Wang et al., 2018a).

Resistance of an entire plant species to all isolates of a microbial
species is classically referred to as nonhost or species resistance. This
nonhost resistance is brought about by physical factors, the plant
immune system, and a general inability of the nonadapted
pathogen to evade and/or disarm the plant’s immune system
(N€urnberger & Lipka, 2005). However, nonhost resistance does
not represent a single phenomenon that can be used to engineer
resistant crops. For example, most plant–pathogen systems cannot
be neatly classified into the two extremes of host/nonhost systems
(Bettgenhaeuser et al., 2014). In addition, there is no single
mechanism behind nonhost resistance but various distinct and
uniquemechanisms (Cook et al., 2015). Therefore, the approaches
that traditionally have been contained in the term nonhost
resistance that are not perception-related will be discussed in other
sections of the review.
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Resistance that is provided by NLRs and PRRs is robust,
mechanistically well understood and, for NLRs, often results in
strong immunity. There are clear advantages to working with the
plant’s innate immune system. Introduced receptors activate
signalling pathways that are already in place in the plant.
Importantly, activation of defences generally only occurs when a
pathogen is perceived, minimising the cost to the plant overall.
Furthermore, crop plants already contain hundreds of these
receptors, therefore the likelihood that they are potential allergens
or toxins is vanishingly small. Indeed, a late blight resistant potato
containing an NLR receptor introduced from a wild relative is
currently on the market in the USA (www.isaaa.org/). This is an
important advance, but care must also be taken to deploy resistance
genes durably; pathogens are extremely adaptive and single
recognition specificities can be rapidly overcome by pathogen
evolution.

III. Intervention by modification of defence signalling
and regulation

Perception of pathogens by the plant’s immune system is translated
into defence responses through hormones, signalling pathways and
changes in defence genes. The major hormones involved in plant
defences are salicylic acid (SA), jasmonate (JA), and ethylene (ET).

In addition, there is extensive crosstalk with essentially all other
hormonal signalling pathways, including gibberellins, auxin,
brassinolide, cytokinins, and abscisic acid (reviewed by Robert-
Seilaniantz et al., 2011;DeVleesschauwer et al., 2014; Berens et al.,
2017). Most major signalling components seem to be conserved
throughout angiosperms (Berens et al., 2017), with some variations
in the details of signalling, crosstalk, and mode of defence against
different types of pathogens (De Vleesschauwer et al., 2014; Berens
et al., 2017). In general, SA primarily mediates resistance to
biotrophic pathogens, while JA in concert with ET mediates
resistance to necrotrophic pathogens. There is cross-inhibition
between SA and JA resulting in tradeoffs between resistance to
biotrophs and necrotrophs. Constitutive induction of SA or JA
signalling produces resistance to pathogens ordinarily controlled by
these responses but produces pleiotropic effects on growth and
yield.

One way to engineer resistance without causing such pleiotropic
side effects is to tightly control the timing and location of gene
expression. An example of this strategy is the use of the TL1-
binding factor 1 (TBF1) promoter and leader sequences. TBF1
contains two pathogen-responsive upstream open reading frames
to drive expression of either a constitutively active NLR protein or
non-expressor of pathogenesis-related genes 1 (NPR1), a key
regulator of SA response, in rice (Xu et al., 2017). The combined

Fig. 2 Success storieswithdifferentpoints of intervention: (a) The3Rpotato contains threeNLRs effective againstPhytophthora infestans,which is present as a
single mating type in Uganda and Kenya. (b) The cell-surface EF-Tu receptor (EFR) provides field level of resistance against the devastating tomato wilt
pathogen Ralstonia solanacearum. (c) The Tomelo, genome-edited tomato has resistance against powdery mildew due to modification of themlo gene. (d)
Heterologous expression of hypersensitive response-assisting protein (Hrap) and plant ferredoxin-like protein (Pflp) from sweet pepper provides field level
resistance against Xanthomonas wilt disease in banana. (e) Overexpression of a virus coat protein in papaya provides commercial control against Papaya
ringspot virus in Hawaii. In each case, the control plant(s) are on the left and the transgenic plants on the right. Pictures: photographs provided by (a) Marc
Ghislain,© International Potato Center; (b) Dr Sanju Kunwar andDrMathews Paret, University of Florida; (c) Sophien Kamoun, The Sainsbury Laboratory. (d)
Photograph reprinted by permission fromSpringer NatureCustomer ServiceCentreGmbH: SpringerNature,NatureBiotechnology, field trial ofXanthomonas
wilt disease-resistant bananas in East Africa, (L. Tripathi et al., 2014). (e) Photograph provided by Dennis Gonsalves, republished with permission of the
American Phytopathological Society, from Ferreira et al. (2002). Permission conveyed through Copyright Clearance Center, Inc.
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effects of transcriptional and translational control produced
resistance to rice blast without a notable yield penalty.

A naturally occurring example of localised pathway overexpres-
sion is the quantitative resistance to biotrophic pathogens that is
conferred by the loss of function of downy mildew resistance 6
(DMR6) in Arabidopsis (vanDamme et al., 2008; Zeilmaker et al.,
2015). DMR6 is widely conserved and encodes a salicylate-5-
hydroxylase that is induced around pathogen infection sites (Zhang
et al., 2017). Loss of DMR6 function presumably increases the
local SA concentration at the infection site (Zeilmaker et al., 2015).
This knowledge was used to engineer a loss-of-function allele of a
DMR6 homologue in tomato. This allele resulted in a quantitative
resistance to biotrophic pathogens (de Toledo Thomazella et al.,
2016).

Defence responses are controlled by networks of transcriptional
regulators (Tsuda & Somssich, 2015). Therefore, the overexpres-
sion of specific transcription factors is a potential strategy to
engineer resistance if pleiotropic effects on yield can be avoided.
One interesting case is the rice gene Ideal Plant Architecture 1
(IPA1)/OsSPL14 in which a natural allelic variant increased both
yield and resistance to rice blast. Specific phosphorylation of the
IPA1 protein in response to blast infection alters IPA1 binding
specificity. This shift in specificity allows the protein to bind to and
activate WRKY45, a defence regulatory transcription factor,
providing quantitative resistance. By contrast, nonphosphorylated
IPA1 promotes the expression of at least one yield-related gene
(Wang et al., 2018b). If this posttranslational regulation is
conserved, IPA1 expression may be useful to control disease in
other crops.

IV. Intervention by targeting recessive
traits/susceptibility genes

Plant breeders have long been aware of recessive disease resistances,
which have been identified in two ways, through mutagenesis and
via breeding. With the onset of genome-editing technologies, it is
now possible to readily reconstitute recessive traits in other species.
Many recessive traits can be generated by other methods in diploid
crops, but genome editing opens up the possibility of reconstitution
in polyploid crops such as wheat and potato.Most well understood
recessive resistance traits remove or alter host factors needed for
pathogen infection and hence are known as susceptibility genes.
However, there are exceptions such as the dmr6mutation discussed
above that alters signalling pathways. Recessive resistance can be
very broad and durable, as exemplified by the powdery mildew
resistance conferred by the mildew resistance locus O (mlo) allele,
which is effective in crops as diverse as apple, tomato, barley and
wheat (Kusch&Panstruga, 2017). For the complexwheat genome,
all three homoeoalleles of mlo were targeted simultaneously using
genome-editing techniques (Wang et al., 2014). Alleles ofmlo that
give strong resistance unfortunately also give strong pleiotropic
phenotypes (Kusch & Panstruga, 2017). However, the mlo allele
can now be easily modified with gene-editing tools. This process
could allow a more precise calibration between achieving mlo-
mediated resistance and minimising mlo-mediated pleiotropic
effects (Fig. 2c; Nekrasov et al., 2017). Still, care should be taken

with mlo modification because the allele may result in enhanced
susceptibility to other pathogens. Known examples are the
necrotrophic fungi Magnaporthe oryzae, Fusarium graminearum
and Ramularia collo-cygni, which all are more virulent in hosts with
an mlo background (Jarosch et al., 1999; Jansen et al., 2005;
McGrann et al., 2014). This increased susceptibility may be
particularly relevant in wheat, in which blast disease caused by
Magnaporthe oryzae pathotype Triticum is a critical emerging
pathogen (Islam et al., 2016).

Another widely deployed recessive resistance that has potential
value as a genome-editing target is potyvirus resistancemediated by
variants of eukaryotic translation initiation factor 4E (eIF4E). This
type of resistance was first observed in mutants of Arabidopsis
thaliana that exhibited loss of susceptibility to tobacco etch virus
(TEV; Potyvirus) due to a deficiency in the eIFiso4E gene, an
isoform of eIF4E (Lellis et al., 2002). Similar toA. thaliana, eIF4E-
mediated resistance against potyviruses is found in several resistant
crop cultivars including pepper (Capsicum annuum), lettuce
(Lactuca sativa), and wild tomato (Solanum habrochaites) (Ruffel
et al., 2002, 2005; Nicaise et al., 2003). However, the plasticity in
editing eIF4E appears to be restricted, because simple knockouts
often result either in severe pleiotropic effects or a lack of effect due
to redundancy (Bastet et al., 2017). Therefore, editing of eIF4E
may be more successful when guided by naturally existing allelic
variation (Bastet et al., 2017). Another example of a naturally
occurring recessive resistance allele is bacterial spot 5 (bs5), which
was identified in pepper breeding populations as a Xanthomonas
resistance locus (Jones et al., 2002). The basis of resistance is a six
base pair deletion in Bs5, a CYSTM protein, resulting in a protein
product that lacks two amino acids in a highly conserved domain
(Iliescu et al., 2013). Knockoutmutations ofCYSTMproteins give
rise to severe growth and reproduction defects (Albert et al., 2015).
This situation suggests that the specific change in bs5 preserves
other housekeeping functions and selectively interferes with
pathogen action. Bs5 is widely conserved, raising the possibility
that the bs5 phenotypemay be recapitulated by creating the specific
six base pair deletion in other plants susceptible to Xanthomonas,
such as tomato.

Forward genetic approaches have yielded only a few targets for
modification without incurring strong pleiotropic phenotypes in
crops. Furthermore, recessive traits are typically not favoured by
breeders, and therefore few have been molecularly characterised.
The best andmost widely deployed traits have been identified from
nature. We therefore predict that the most effective recessive
resistance traits will be those inspired by naturally occurring
variants found in older breeding populations or wild relatives.

V. Intervention via other dominant plant resistance
genes

1. Plant ferredoxin-likeprotein andhypersensitive response-
assisting protein

Two interesting examples of plant proteins that confer disease
resistance in various crops in a dominant fashion are plant
ferredoxin-like protein (PFLP) (Lin et al., 1997; Dayakar et al.,
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2003) and hypersensitive response-assisting protein (HRAP)
(Chen et al., 1998, 2000). Both proteins were isolated from sweet
pepper (Capsicum annuum) and enhanced the production of
reactive oxygen species and the hypersensitive response in reaction
to harpins produced byGram-negative bacteria (Choi et al., 2013).
HRAPmay act in the extracellular space, where it could contribute
to dissociation of harpins into active monomers or dimers,
facilitating recognition by the plant (Chen et al., 1998, 2000).
PFLP, formerly called amphipathic protein 1 (AP1), shows high
similarity to ferredoxin proteins that function as electron carriers in
photosynthetic tissues, where they are involved in many metabolic
processes (Lin et al., 1997; Dayakar et al., 2003). Both PFLP and
HRAP are effective against multiple bacterial pathogens when
overexpressed in rice, banana, and other species (Tang et al., 2001;
Ger et al., 2002, 2014; Liau et al., 2003; Huang et al., 2004, 2007;
Pandey et al., 2005; Yip et al., 2007; Tripathi et al., 2010;
Namukwaya et al., 2012; L. Tripathy et al., 2014). Field trials
conducted in Uganda with PFLP- and HRAP-expressing bananas
indicated that both genes are highly effective against bacterial wilt
caused by Xanthomonas campestris (Fig. 2d), while no negative
effect on yield or plant morphology was observed (J. N. Tripathi
et al., 2014, 2017). In addition, a bioinformatic approach did not
reveal any potential allergenicity or toxicity associatedwith either of
these proteins (Jin et al., 2017). A combination of PFLP or HRAP
did not have a synergistic or additive effect, yet resistance in bananas
that express both genes may be more durable (Muwonge et al.,
2016).

PFLP and HRAP are valuable tools to engineer resistance to
bacterial pathogens. The lack of mechanistic insights makes it
difficult to predict what the full and long-term effect of these
proteins could be on plant health and agronomic performance.
Additionally, the effect of overexpression of these genes on the
performance of fungal, viral or oomycete pathogens has not been
investigated. However, the urgent need to find a solution against
bacterial wilt of banana, combined with successful field trials in
which no negative effects were observed, argue for a staggered
deployment combined with detailedmonitoring of performance of
HRAP and PFLP in the field.

2. Detoxification enzymes

Plant enzymes that neutralise fungal toxins can play a role in
plant defences, and transfer of their genes can improve
resistance (Johal & Briggs, 1992). For example, Fusarium head
blight is a significant fungal disease of wheat, as well as a
source of mycotoxins in food that can poison humans and
animals. Expression of a barley UDP-glucosyltransferase in
wheat metabolises the Fusarium graminearum toxin deoxyni-
valenol to a less toxic derivative, leading to reduced symptoms
of Fusarium head blight in the field (Li et al., 2015). Similarly,
oxalic acid is a virulence factor for Sclerotinia sclerotiorum, and
transfer of oxalate oxidase from wheat produces significant
resistance to Sclerotinia in many species, including peanut,
tomato, potato, oilseed rape and soybean (Donaldson et al.,
2001; Schneider et al., 2002; Hu et al., 2003; Dong et al.,
2008; Walz et al., 2008; Partridge-Telenko et al., 2011).

3. Wheat adult plant resistance genes

The adult plant resistance (APR) or ‘slow rusting’ genes ofwheat are
another class of potentially transferable resistance genes. These
genes produce dominant partial resistance to multiple biotrophic
pathogens inmature plants but not in seedlings. Several APR genes
are known, but only two, Lr34 and Lr67, have been cloned. Lr34
encodes an ATP-binding cassette (ABC) transporter with an
unknown substrate. The resistance allele in the D genome contains
two specific mutations and is dominant over the other native Lr34
alleles in hexaploid wheat (Krattinger et al., 2009). Wheat lines
carrying Lr34 are partially resistant to multiple biotrophic
pathogens including stem rust, stripe rust, leaf rust and powdery
mildew. As a consequence, Lr34 has been widely used in breeding.
Similarly, the wheat Lr67 resistance gene is a specific dominant
allele of a hexose transporter that provides resistance to multiple
rusts and powdery mildew. The protein encoded by the Lr67
resistance allele is inactive in sugar transport, so it is likely to have a
dominant negative effect (Moore et al., 2015). Introduction of the
Lr34 resistance allele by transformation into rice (Krattinger et al.,
2016), barley (Risk et al., 2013), sorghum (Schnippenkoetter et al.,
2017),maize (Sucher et al., 2017) anddurumwheat (Rinaldo et al.,
2017) and of Lr67 to barley (Milne et al., 2018) also produced
resistance to biotrophic pathogens. As for mlo, the mechanism by
which resistance is triggered by Lr34 and Lr67 is poorly
understood, although it is likely to involve the induction of biotic
or abiotic stress responses that precondition the host to limit
pathogen growth. Expression of these genes in some heterologous
plants, for example Lr34 in barley (Risk et al., 2013), has produced
deleterious effects while, in other cases for example Lr34 in durum
wheat (Rinaldo et al., 2017), no obvious negative phenotypes were
noted. Given the likely dominant negative mode of action of these
proteins, relative quantities of wild-type vs mutant proteins may
need to be optimised in each system.This situationmay also suggest
that these types of resistances aremore applicable to polyploid crops
than diploid crops.

VI. Intervention with antimicrobial peptides

Over the past decades, antimicrobial peptides and proteins have
received a lot of attention as potential tools to create disease-
resistant crops. Antimicrobials are produced by organisms across all
kingdoms and are a part of their innate immune systems (Brogden,
2005). Their activity is quite diverse and includes destruction of
fungal cell walls, membrane permeabilisation, transcriptional
inhibition and ribosome inactivation (Dempsey et al., 1998; van
der Biezen, 2001; Brogden, 2005). Crops have been designed that
express or over-express (1) plant-derived compounds such as
pathogenesis-related (PR) proteins and defensins that are normally
produced during the plant’s defence response, (2) antimicrobial
proteins or peptides derived from microorganisms or animal cells,
or (3) synthetic peptides designed based on sequences of existing
antimicrobial compounds (Dempsey et al., 1998; van der Biezen,
2001; Castro & Fontes, 2005; Montesinos, 2007; Ali et al., 2018).
Unlike the success of crops expressing anti-insecticidal proteins
from Bacillus thuringensis (Bt) that have been commercialised in
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different countries around the world, no crops expressing antimi-
crobial proteins have been commercialised to date (www.isaaa.org/
). Development of crops engineered to express antimicrobials is
challenging as antimicrobial proteins can often have phytotoxic
effects, lead to over-activation of stress responses, resulting in
undesired phenotypes such as negative yield impacts, or have
adverse effects on human or animal health (Montesinos, 2007).
However, careful design or selection of suitable antimicrobials,
followed by assessment of the agronomic performances of the
engineered crops as well as of the potential impact on human or
animal health may yet yield potential new solutions to crop
diseases.

VII. Intervention using RNA interference

RNA interference (RNAi) was first discovered in plants as a
mechanism to recognise and defend against nonself nucleic acids.
In addition to this defensive role, RNAi is a fundamental
mechanism for the regulation of endogenous genes. Initiation of
RNAi production occurs after double-stranded RNA or endoge-
nous microRNAs are processed by Dicer-like proteins. The
resulting small interfering (si)RNAs can be recruited by Argonaute
(AGO) proteins that recognise and cleave complementary strands
of RNA, resulting in gene silencing. RNAi-based resistance can be
engineered against many viruses by expressing ‘hairpin’ structures,
double-stranded RNA molecules that contain viral sequences, or
simply by overexpressing dysfunctional viral genes (reviewed in
Rosa et al., 2018). Moreover, a single double-stranded RNA
molecule can be processed into a variety of siRNAs and thereby
effectively target several viruses using one hairpin construct. While
viruses fight back with proteins that inhibit the silencingmachinery
of plants, the use of RNAi has nonetheless been validated as a
powerful strategy to control many plant viruses (e.g. Lawson et al.,
1990; Tricoli et al., 1995; Ferreira et al., 2002; Bonfim et al., 2007;
Scorza et al., 2013), as well as nematodes (Huang et al., 2006) and
insects (Baum et al., 2007; Bolognesi et al., 2012). The impact of
RNAi technology deployed as a GM solution against viruses is
powerfully demonstrated by the ‘Rainbow papaya’ (Fig. 2e).
Introduction of the Rainbow papaya averted a collapse of the
Hawaiian papaya industry from a severe outbreak of Papaya
ringspot virus in the 1990s (Ferreira et al., 2002; Gonsalves et al.,
2004). Since its introduction, 20 years ago, the GM trait
introduced into Rainbow papaya has provided a sustainable and
effective control of the virus. A similar GM trait has been used to
engineer virus-resistant squash, which has an even longer com-
mercial history (Tricoli et al., 1995).

Following on these successes, RNAi has been explored as a
strategy to control fungi and oomycetes as well, and initial patent
applications formethods to control fungi usingRNAiweremade as
early as 2006 (Roberts et al., 2007). Fungicide target genes in the
pathogen are obvious candidates for this approach, as disruption is
known to be lethal. Indeed, significant effects have been observed in
Fusarium species by targeting the cytochrome P450, family 51
(Cyp51) genes that underlie the azole fungicide target sterol 14a-
demethylase with host-induced gene silencing (HIGS) (Koch et al.,
2013). Additional pathogen genes that have been targeted include

pathogenicity factors, developmental genes and genes involved in
metabolism. HIGS of a Verticillium hydrophobin gene resulted in
strong resistance to V. dahliae in cotton (Zhang et al., 2016).
Similarly, HIGS targeted to a cellulose gene and a highly expressed
conserved gene of Bremia lactucae resulted in high levels of
resistance to this pathogen in lettuce (Govindarajulu et al., 2015).
More often, however, HIGS experiments produce quantitative
effects, for example when targeting rust fungi (Panwar et al., 2013,
2018; Yin & Hulbert, 2018) and virulence factors of V. dahliae in
tomato (Song&Thomma, 2018).Overall,HIGS seems to be quite
effective against some pathogens (Govindarajulu et al., 2015;
Wang et al., 2016) but ineffective against others (Kettles et al.,
2018). However, there appears to be an apparent disconnect
between the earliest publications and patent filings on HIGS a
decade ago and practical examples of HIGS deployed in the field.
This may suggest that, although effects are observed, they are not
strong enough to provide field level solutions to many pathogens.

Until recently, it was unclear how small RNA molecules would
be exchanged between host and pathogens. However, compelling
evidence has shown that small RNAs are delivered to fungal
pathogens via extracellular vesicles (Cai et al., 2018). A better
understanding of this process in diverse plant�pathogen interac-
tions may allow us to better optimise HIGS strategies to provide
field-relevant levels of resistance. In short, RNAi appears to be a
promising additional control strategy in the arsenal of plant
breeders against at least some pathogens. The modular nature of
RNAi is especially suitable to multiplexing via synthetic biology
approaches. In addition, RNAi strategies may be particularly
relevant when no pathogen resistance can be identified in natural
populations.

VIII. Practical path to deployment

After a solution against a crop disease is discovered in the
laboratory, it must pass several further hurdles. The first of these
hurdles is that it also must be effective in the field without reducing
agronomic performance. Subsequently, a commercial develop-
ment process requires the generation and evaluation of a large
number of transgenic lines to choose a transgenic event that only
has the specific and intended modifications. Once this rigorous
vetting procedure has been completed, introgression of this event
into commercial cultivars and development of a regulatory dossier
is initiated (reviewed by Prado et al., 2014).

A genetically modified crop must meet regulatory approval in
each country where it will be grown or imported. Regulatory
requirements in different countries are not standardised, and this
situation increases the complexity of the task (Prado et al., 2014).
Costs are often prohibitive, with estimates for international
product deregulation between US$7M and US$35M (Kalaitzan-
donakes et al., 2007; Phillips McDougall, 2011) out of a total
estimated product development cost of US$136M (Phillips
McDougall, 2011). A cost�benefit calculation is fundamental to
determining the commercial practicality of different disease-
resistance solutions. As an example, Box 1 summarises the data
needed to deregulate a transgenic disease-resistant crop in theUSA.
In the USA, the Food andDrug Administration (US FDA) assesses

� 2019 INRA

New Phytologist� 2019 New Phytologist Trust
New Phytologist (2020) 225: 70–86

www.newphytologist.com

New
Phytologist Tansley review Review 77

http://www.isaaa.org/


evidence for the safety of any added protein and the substantial
equivalence of the crop to its nontransgenic equivalent. The
Environmental Protection Agency (USEPA) assesses the consumer
safety and lack of environmental impact of any ‘plant incorporated
protectant’. TheUnited StatesDepartment of Agriculture (USDA)
assesses the potential of the newplant to be aweed or plant pest. The
level of evidence required for any of these points is determined by
the relative risk of the introduced trait. As mentioned above, the
first immune receptor has been deregulated in theUS: the Rpi-vnt1
receptor with effectivity against late blight of potato. In this case,
the US EPA and FDA accepted arguments that the protein is
present at vanishingly small amounts, is not a potential allergen,
and is similar to proteins already consumed (Clark et al., 2014;
FDA, 2015; EPA, 2017). Therefore, animal feeding studies and
extensive biochemical analyses on purified protein, which would
have been extremely difficult in the case of an NLR (Bushey et al.,
2014), were not required. However, a hypothetical product that
expressed high levels of an artificial antimicrobial protein without a
history of safe consumption would requiremore extensive evidence
for safety and have concomitantly higher regulatory costs. Given
the costs, time, and risk involved in developing and deregulating
GM crops, only very high-value traits on broad acreage crops are
currently commercially viable targets. Only a handful of crop

diseases, for example soybean rust and potato late blight, meet this
economic threshold.

TheUSDAhas recently released guidelines for the regulatory status
of plants produced by gene editing, stating that certain classes of
changes that couldhave been accomplished by traditional breeding are
not subject to regulation if they were produced without plant pest
sequences (that is not by Agrobacterium transformation). These
changes include deletions, single nucleotide changes, and insertions of
DNA from a sexually compatible relative (USDA, 2018). Although
disease-resistant food crops may still be subject to regulation by the
FDA and EPA, this ruling drastically decreases the cost of bringing
many typesofdisease-resistant crops tomarket in theUSA.By contrast
with the scientifically based and pragmatic US guidelines, a recent
ruling in the European Union states that all plants produced by gene
editing are still subject to the same regulation as transgenic plants
(Callaway, 2018). This effectively rules out the use of gene editing for
any crop grown in or exported to Europe, robbing European growers
of powerful solutions that could lead to more sustainable agriculture.

IX. Path to market in Africa

Africa is the continent where there is the greatest need and
opportunity for agricultural growth, given the expected population

Authority

• Potential for the plant to become a pest
• Disease and pest susceptibilities
• Expression of gene products, new enzymes, or changes to plant metabolism
• Weediness and impact on sexually compatible plants
• Changes to agricultural or cultivation practices
• Effects on non-target organisms
• Potential for gene transfer to other organisms

• Applications or uses of the bioengineered food
• Sources, identities, and functions of introduced genetic material
• Purpose of the modification, and its expected effect on the composition/properties of the food
• Identity and function of expression products encoded by the introduced genetic material,
  including an estimate of the concentration of any expression product in the bioengineered crop
  or food derived thereof
• Known or suspected allergenicity and toxicity of expression products, or compounds produced
  as a result of their influence on the plant
• Comparison of plant composition to unmodified varieties, with emphasis on important nutrients,
  and toxicants that occur naturally in the food

• Risks to human health, non-target organisms and the environment
  - Identification of new genetic material and all new proteins
  - Mammalian toxicity testing of all new proteins
  - Comparison of new proteins to known toxins and allergens
  - Toxicity testing on birds, fish, earthworms, and representative insects
  - Toxicity testing on insects related to target insect pests
  - Length of time required for new proteins to degrade in the environment
• Potential for gene flow
• Resistance management

US Department of Agriculture
(USDA)

Food and Drug Administration
(FDA)

Assessment of:

Environmental
Protection Agency
(EPA)

Box 1 Regulatory authorities and scope of regulation of bioengineered crops in the United States (EPA, 2019; FDA, 2019; USDA, 2019)
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growth and amount of unused arable land. Genetically modified or
edited crops could play a significant role in helping Africa’s
agriculture to meet the needs of its growing population. Currently,
adoption of GM crops in Africa is limited as they are commercially
available only in Sudan (cotton) and South Africa (maize, cotton
and soybean) (ISAAA, 2017). The adoption of GM crops in those
countries has been successful, and acreage has increased steeply
since they were first introduced (ISAAA, 2017). At present, several
other countries in Africa have regulatory frameworks in place and
are conducting field trials to prepare for general release when
government policies allow. These countries are Ethiopia, Kenya,
Uganda, Tanzania, Mozambique, Malawi, Swaziland, Cameroon,
Nigeria,Ghana, andBurkinaFaso (ISAAA, 2017). InUganda, field
trials are being conductedwith potato expressing a stack of immune
receptors providing protection against potato late blight disease, as
well as bananas that are resistant to bacterial wilt (Fig. 2a;
L. Tripathy et al., 2014; Ghislain et al., 2019).

Regulatory costs and time associated with the process can vary
greatly and depend on the crop, the country, the developer and the
inserted genes. Cost estimates for the development of a single GM
variety (late blight resistant potato) in a developing country by a
not-for-profit institution vary from US$1.4 million to US$1.6
million over 8–9 yr of review (Schiek et al., 2016). Inmany African
countries, genome-edited crops are expected to be regulated
through the GM regulatory framework, similarly to the laws in
Europe (ISAAA, 2017).

In Africa, as elsewhere, a second major barrier to advancing
genetically engineered disease resistance is public concern about the
safety of GM crops, despite an overwhelming body of evidence for
the safety of these crops (National Academies of Science,
Engineering and Medicine, 2016). This situation is unfortunate,
given the potential for GM to address food losses caused by plant
disease. This, in turn, can help to increase food production locally
to accommodate a rapidly growing population. Africa’s close ties to
Europe influence its attitudes about GM crops, which are generally
conservative and not based on scientific facts. Given the challenges
that lie ahead, a shift to a scientific and pragmatic stance on the use
ofGMtechnologywould be timely. The success of adoption ofGM
crops in Sudan and South Africa and the ongoing trials and safety
assessments in other African countries might convince the public
and politicians to open the doors to these molecular breeding
approaches.

X. How to deploy resistance durably

It is clear that plant pathologists and breeders have uncovered a
versatile arsenal of solutions to bring to bear against plant
pathogens that offers great potential for global food security and
sustainability. However, plant pathogens are highly adaptable and
have much faster life cycles than their plant hosts, and therefore
resistance conferred by most single genes or modes of action will
be easily defeated. This reality is a key challenge for classical
breeding, because durable resistance generally requires combina-
tions of multiple resistance genes and quantitative trait loci
(QTLs) at different locations in a genome. The problem is
compounded by introgression of new resistances from non-elite

cultivars and wild relatives, which are often subject to yield loss
due to linkage drag. Moreover, when a new disease or breeding
goal appears, breeding for the new and existing traits becomes even
more complex. Last, some important crop plants are notoriously
difficult to breed, such as the tetraploid potato, sugarcane, and the
(almost) sterile banana.

Genetic modification allows several dominant disease-resistance
genes to be introduced together in a single well-characterised region
of the genome overcomingmany of these challenges. Critically, it is
possible to introduce several dominant resistance traits into elite
cultivars, polyploid crops, sterile plants andparental lines to be used
in subsequent breeding efforts. Even if additional breeding is
required, the key combined resistances will remain intact as a single
locus. Unlike dominant resistance traits, recessive resistances
present more of a challenge as they cannot be combined at a single
locus, but genome editing in base breeding lines can accelerate the
process of introducing these resistances.

Each resistance approach reviewed here took years of collabo-
rative research effort. Many of the solutions were found by tapping
into the large, but not unlimited, genetic diversity found in nature.
It is therefore critical that thoughtful, durable deployment and
stewardship of these hard-won resources is achieved. The definition
of durable resistance is fluid, and in each case is dependent on the
strength of resistance required and the time that is needed for the
resistance to hold (Brown, 2015). The questionmust be– ‘Does the
combined solution work well enough and long enough?’

Given the requirement for clear resistance phenotypes in the
field, many combined solutions will include the strong resistance
conferred by NLR genes. Several factors influence the durability of
combined NLR genes; major factors being the impact on virulence
of the pathogen, the strength of the resistance, the exposure of a
pathogen to an NLR, the total inoculum in the environment, and
the capacity of the pathogen for sexual recombination (or lack
thereof) (McDonald & Linde, 2002; Brown, 2015; Stam &
McDonald, 2018). Although these factors are likely to play a role in
the durability of each of the other resistance mechanisms reviewed
here, the points of impact are likely to be different. Therefore,
combining several modes of action will potentially result in
resistance that is both effective and long lasting. For example, an
NLR stack of Tm-22 and Tm-2 is predicted to be durable, as the
two mutations in the movement protein of tomato mosaic virus
that are required to overcome this resistance are predicted to disrupt
function of the viral movement protein (Lanfermeijer et al., 2005).
However, even greater durability may be achieved by combining
these two genes with a different mode of action such as a hairpin
RNAi construct.

Both the private and public sectors should pursue ever more
durable ways of using the agricultural resources at hand. In the long
run, a shift away from environmental and genetic uniformity in
agricultural systemswill result in amore durable status quobetween
crop and pathogens (McDonald& Stukenbrock, 2016). However,
a critical assessment needs to be made on the timelines that this
would take and at what cost to the efficiency and productivity of
monoculture-based agriculture this change would come. Com-
pared with an average of 13 yr to deploy new transgenic lines, it can
be debated whether an overhaul of the agricultural system before
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the population peak of 2050 is desirable or even possible. The
pragmatic approach is to work with the best possible solutions that
we have available today to ensure we will be in a position to deploy
even better solutions later this century.

XI. Trends that shape the future

There are several trends that will affect the way in which we will
design solutions and deploy traits. As exemplified in the paragraph
above, it is important that several traits can be combined into one
locus, preferably at a known location in the genome. This approach
presents a unique technical challenge as cassettes need to be
designed that contain multiple traits against one disease. An
important trend therefore is the technical advance that is made to
construct cassettes that contain multiple traits. Already, this is
feasible to a certain extent, as has been demonstrated with gene
stacks that contain three NLRs that recognise P. infestans (Ghislain
et al., 2019, Fig. 2a) and a five R gene stack in wheat against wheat
stem rust (Michael Ayliffe, personal communication). Although
generating cassettes with multiple large inserts has traditionally
been challenging, recent technical advances such as Gene Assembly
in Agrobacterium by Nucleic acid Transfer using Recombinase
technologY (GAANTRY) has enabled the generation of stable
cassettes with up to 10 genes with at total size of 28.5 kbp (Collier
et al., 2018). Therefore, the generation of a cassette that can
effectively target one or two key diseases is now technically feasible.
As traits are dominant, combinations can subsequently bemade via
breeding. An example of what such a strategy may look like is the
commercial maize line known by its trade name SmartStaxTM. To
generate this line, four different biotech maize lines were crossed
and resulted in the combination of six Bt genes and two herbicide
tolerance genes, providing control for weeds and lepidopteran
insects. Nonetheless, the ability to generate large stacks of
combined traits will be a critical development over the coming
years.

For gene stacks to be functional, the causal genes that underlie
resistance must be identified. For many crops the reservoir of
cloned resistance genes is still limited.However, the second trend is
that new affordable sequencing technologies combined with
bioinformatic approaches allow ever faster identification of causal
resistance genes. This identification can now already be done, even
in complex genomes such as wheat and potato and wild relatives of
crops such as pigeonpea (Kawashima et al., 2016; Steuernagel et al.,
2016; Witek et al., 2016). In addition, the ability to obtain a good
quality reference genome assembly is now reduced to standard
practice.With the ever-dropping cost of sequencing and increase in
processing power these approaches will soon become common-
place. This capability is important because it allows scientists to
explore the rich genetic diversity of crop relatives. Nature has had
millions of years to test and select resistancemechanisms, providing
a wealth of potentially validated strategies. By making use of
affordable, powerful sequencing capacity, wild germplasm can be
mined for a distribution of resistance traits at the centre of origin. As
many pathogens have co-evolved with a wild progenitor species, a
resistance trait against a specific disease that is overrepresented in

the centre of origin of a wild progenitor may reflect that this trait is
particularly effective with little cost to the host (Stam et al., 2017).

A third trend is the miniaturisation of sequencing technologies.
Pathogen detection and analyses of themicrobiomewith a portable
DNA sequencer has already successfully been executed (Hu et al.,
2019). By the time that most solutions developed today will reach
the field, such real-timemonitoring of pathogen populations in the
field will be possible and likely standardised enough to be
performed by growers or agronomists. A better understanding of
pathogen population structure and dynamics may inform the best
intervention strategy (genetic or other) against a given disease, for
example via identification of key effectors.

No review would be complete without mentioning the fourth
trend,which is the expanding use of genome-editing tools.Genome
editing can already be used to produce recessive traits, however as
we set out in this review relatively few effective recessive targets have
been identified. In addition,most targets that are simple knockouts
have already been introduced via tilling, except in polyploid crops.
Editing also provides the ability to precisely modify existing
resistance genes or their expression, allowing the in situ conversion
of a susceptible allele to a resistant one. Use of genome editing to
integrate dominant resistance traits at a single locus will have even
broader benefits, although it is important to note that this approach
is already feasible using site-specific recombination (SSR) systems
(Srivastava & Thomson, 2016). However, the more efficient
introduction of traits, or replacement of single traits in a stack may
be accomplished via genome-editing technologies (Rinaldo &
Ayliffe, 2015). In addition, genes can be introduced anywhere in
the genome. For instance, introducing new resistance genes next to
already existing resistance loci could generate greater flexibility for
the breeder. Gene stacks could be created and updated by precise
addition and removal of genes. Finally, precise gene editing would
introduce less ‘foreign’ DNA than Agrobacterium transformation,
which may help deregulation in some countries. However, this is a
legislative and not a scientific advantage.

A final trend that is developing in parallel is the rapid progress in
protein structural biology techniques such as cryo-EM. This will
allow a better understanding ofNLR andPRR function.Unlike the
other trends described here, this trend has the capacity to be truly
transformative in the way plant disease is tackled. The first step
towards designing recognition specificity has already beenmade via
the modification of HMA domains in NLRs with integrated
domains (Maqbool et al., 2015). In addition, some NLR families
can recognise multiple effectors from different pathogens via direct
interaction (Saur et al., 2019). Unlike PRR proteins, how NLRs
signal has been one of the long-standing questions in plant
pathology. However, two recent landmark publications have
described the mechanism of activation for the A. thaliana HOP-
ACTIVATED RESISTANCE 1 (ZAR1) protein using cryo-EM
techniques (Wang et al., 2019a,2019b). All this information can be
coupled to advances that are made in deep learning and synthetic
biology, such those already used in drug discovery (Chen et al.,
2018). This situation may enable scientists to develop recognition
specificities for key pathogen effectors in the formof designerNLRs
and PRRs.
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XII. The time is now

We have in hand the means to thwart plant diseases that have
plagued mankind since the dawn of agriculture. The genetic
methods to combat disease reviewed here are more effective,
environmentally friendly and safer than many current, common
methods of control. We need to double our food production in
50 yr, and 70% of this increase needs to be achieved by adopting
new technology. Therefore, we cannot ignore these approaches.
However, almost none of the currently available GM solutions
have reached growers, in large part due to consumer anxieties,
even though the most ardent opponents of the technology
ironically are the least informed about science and genetics
(Fernbach et al., 2019), and the scientific consensus is that GM
crops are as safe as those developed by classical breeding
(National Academies of Sciences & Engineering and Medicine,
2016). Unfortunately, some legislators ignore the facts about
GM safety and benefits, therefore blocking solutions that would
benefit society broadly (Court of Justice of the European Union,
2018). Due to global trade, Europe’s conservative attitude
towards GM crops has affected agriculture worldwide, including
those regions where GM crops could have great local benefits.
To break this deadlock, interdisciplinary approaches that include
social scientists need to be taken, and scientists should stay in
dialogue with consumers and policy makers. It is up to this
generation of scientists, seed companies, international agricul-
tural organisations, and legislators to responsibly deploy the
valuable and available genetic disease solutions to help reduce
the footprint of agriculture on the planet while increasing its
output.
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