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Summary  

Plant pathogens are a significant challenge in agriculture despite our best efforts to combat 

them. One of the most effective and sustainable ways to manage plant pathogens is to use 

genetic modification (GM) and genome editing, expanding the breeder’s toolkit. For use in 

the field, these solutions must be efficacious, with no negative effect on plant agronomy, 

and deployed thoughtfully. They must also not introduce a potential allergen or toxin. 

Expensive regulation of biotech crops is prohibitive for local solutions. With 11-30% average 

global yield losses and greater local impacts, tackling plant pathogens is an ethical 

imperative. We need to increase world food production by at least 60% using the same 

amount of land, by 2050. The time to act is now and we cannot afford to ignore the new 

solutions that GM provides to manage plant pathogens.   

 

Key words  

plant disease, resistance, Genetic modification, food security, biotechnology, plant 

pathogens. 

 

I. Introduction  

From the earliest days of farming, plant disease and pests have been a critical challenge for 

farmers. Though mankind has split the atom, travelled to the moon, and connected the 

world, plant pathogens continue to be a significant challenge to food security despite our 
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best efforts to thwart them (Fig. 1).  Estimates of average global losses to diseases and pests 

range from 11-30% (Oerke & Dehne, 2004; Savary et al., 2019).  Importantly, crop losses are 

highest in regions that suffer from food insecurity already (Savary et al., 2019). Losses from 

diseases would be far worse without past steady advances in agricultural practices, including 

cultural controls, agrochemical use, and plant breeding. However, we have learned that 

there are no silver bullets and that an integrated approach is needed to combat plant 

diseases, combining the best technologies and practices that are available. 

The benefits of an integrated approach can be seen in the management of stem rust 

in wheat, a disease that caused periodic costly epidemics in the US between 1918 and 1960 

(Pardey et al., 2013). Only the combined effort of cultural practices (removal of barberry, 

the sexual host of this pathogen), improved chemical control (development of 

demethylation inhibitor and quinone outside inhibitor fungicides) and an extensive breeding 

program spearheaded by Norman Borlaug have enabled the containment of this particular 

disease of wheat.  

However, there are limitations to such efforts. Some pesticides are rapidly losing 

efficacy due to pathogen evolution, and their use faces increasingly strict regulations to 

minimize unwanted side effects (Geiger et al., 2010; Bolton et al., 2012; Lamichhane et al., 

2015; Wieczorek et al., 2015; Godoy et al., 2016; Berger et al., 2017). Crop breeding can 

produce resistance to individual diseases, but it is challenging to select for genetic resistance 

against multiple diseases simultaneously while maintaining the strong performance traits of 

elite varieties. For example, wheat blast is an emerging disease that will require wheat 

breeders to select for blast resistance while maintaining resistance against stem rust (Islam 

et al., 2016). To make matters more complicated, new races of stem rust have emerged and 

must also be tackled to ensure stability of the world’s wheat supply (Singh et al., 2015). And 

finally, the introgression of a single resistance via classical breeding facilitates pathogen 

adaption to that resistance.  

The disease issues of wheat are not an isolated example, and challenges like these 

are becoming more frequent as global warming and increased global trade facilitates the 

spread of known and emerging pathogens (Bebber et al., 2014). On top of these issues is the 

fundamental reality that 821 million people do not have enough to eat (FAO et al., 2018). 

The world population is projected to reach nearly 10 billion in 2050 (United Nations, 2017).  

This brings with it, the associated need to increase world food production by at least 60% 
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(Alexandratos & Bruinsma, 2012; United Nations, 2017) With this development in mind, 

tackling plant pathogens is not a mere academic exercise but an ethical imperative that 

requires action.  

One of the most effective and sustainable ways to manage plant pathogens is to use 

genetic modification (GM) and genome editing to expand the genetic tools available to 

breeders. In this review, we present an inventory of genetic disease solutions currently 

available for bacterial, viral, fungal and oomycete pathogens. We will highlight the success 

stories of the potential of GM technologies and will outline what is needed for the effective 

deployment and realization of the benefits they offer. Examples of genetic disease solutions 

are listed in Table 1. We evaluate these examples in light of population growth and other 

challenges and describe the trends that will shape the future.  

 

II. Intervention based on pathogen recognition and effectors 

Research over the past 20 years has led to an increasingly refined knowledge of the 

plant immune system and its surveillance capacity. It is able to distinguish “self” from “non-

self” as well as perturbations of “self” by monitoring the extracellular and intracellular 

environment (Jones & Dangl, 2006; Cook et al., 2015). However, pathogens can overcome 

this system in an evolutionary arms race, producing proteins and molecules called effectors 

that are used to suppress host immunity and manipulate the plant cell to facilitate 

colonization (Cook et al., 2015; Uhse & Djamei, 2018). Effectors are secreted into the 

extracellular environment or delivered in an orchestrated way into the host. This is often 

done via specialized mechanisms such as the type III secretion systems of bacteria, haustoria 

of fungi and oomycetes and the stylet of nematodes (Panstruga & Dodds, 2009; Galán et al., 

2014; Bird et al., 2015; Espada et al., 2016; Deng et al., 2017; Lo Presti & Kahmann, 2017). 

Plants have two main surveillance systems to detect pathogen incursions. One class 

of receptors, known as Pattern Recognition Receptors (PRRs), monitors the extracellular 

environment for conserved pathogen molecules such as flagellin, the bacterial elongation 

factor Tu, and chitin (Gómez-Gómez & Boller, 2000; Zipfel et al., 2006; Miya et al., 2007; 

Faulkner et al., 2013; Cao et al., 2014; Hind et al., 2016). This class also recognizes 

extracellular effectors that increase pathogen virulence (Wang et al., 1996; Thomas et al., 

1997; Rep et al., 2005; van den Burg et al., 2006; van Esse et al., 2007; Catanzariti et al., 

2015; Pruitt et al., 2015), and has been recently reviewed (Boutrot & Zipfel, 2017).  
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Intracellular pathogen effectors are recognized by another class of receptors that 

make up a large family of proteins characterized structurally by a nucleotide binding site 

(NBS) and Leucine Rich repeats (LRR) that are known as Nod Like receptors (NLR) proteins 

(Dodds & Rathjen, 2010; Jones et al., 2016). This large family is well characterized and can 

be distinguished into two major groups in plants by features at their N terminus; one set has 

a Toll/interleukin-1 receptor like (TIR) domain and the other a coiled coil (CC) domain (Jones 

et al., 2016) which confer discrete signalling capacity. Some NLRs have integrated domains 

that resemble/contain effector targets such as heavy metal associated binding domains, 

WRKY domains and RPM1-interacting protein 4 (RIN4) (Le Roux et al., 2015; Maqbool et al., 

2015; Sarris et al., 2016). Finally, an additional layer of the NLR resistance network is 

emerging in Solanaceous plants, a clade of helper NLRs has been identified which connect to 

several NLRs that detect pathogens (Wu et al., 2017).  

In the ongoing evolutionary arms race, some pathogens use the plant’s defences 

against itself by misdirecting the host immune system to produce an immune response to 

the wrong pathogen in order to maintain host susceptibility. For example, some bacterial 

pathogens hijack the Coronatine-insensitive protein 1 (COI1) jasmonate receptor, rewiring 

defence responses to activate jasmonate responses and concomitantly suppress the more 

effective salicylic acid defence pathway (He et al., 2004). Similarly, the necrotrophic fungal 

pathogens Stagonospora nodorum and Pyrenophora tritici-repentis activate an 

inappropriate cell death response benefiting the pathogen by triggering the NLR receptor 

Tsn1 (Faris et al., 2010).  

Knowledge of the plant surveillance system has provided strategies to intervene at 

the point of pathogen perception. Extended or novel recognition capacity can be created in 

a number of ways, for example (i) by introducing receptors from other plants with novel 

recognition specificity (Fig. 2a,b; Tai et al., 1999; Foster et al., 2009; Lacombe et al., 2010; 

Tripathi, JN et al., 2014; Albert et al., 2015; Kawashima et al., 2016; Steuernagel et al., 2016; 

Witek et al., 2016; Ghislain et al., 2018), (ii) through modification of the integrated domains 

in NLRs that are targeted by the pathogen (Maqbool et al., 2015), (iii) or by reactivation of 

NLR genes disabled by effectors through the introduction of novel helper NLRs (Wu et al., 

2017). Another original strategy is the design of so called “NLR protease traps”. This strategy 

makes use of NLRs that can recognize cleavage of plant proteins by specific pathogen 

proteases. This detection leads to a subsequent activation of immunity. Modification of the 
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proteins monitored by such NLRs such that the cleavage site will be targeted by a different 

pathogen protease can broaden or alter the specificity of the plant’s immune response (Kim 

et al., 2016). 

Beyond strategies based on pathogen recognition, a growing understanding of 

effectors and their function has allowed interventions at the point of pathogen modulation 

of host responses. For example, knowledge of the plant targets of effector activity reveals 

which host components are manipulated to promote disease. This knowledge has been 

successfully applied to interfere with these points of vulnerability by removing them 

(Bozkurt et al., 2014; Boevink et al., 2016; Yang et al., 2016; Murphy et al., 2018) or 

replacing them with variants that are immune to effector action but retain the native 

function in the host (Zhang et al., 2015). In the case of bacterial pathogens expressing 

transcription activator-like (TAL) effectors that activate expression of susceptibility genes in 

the host, resistance can be engineered by deletion of the TAL DNA binding sites in the 

promoter (Li et al., 2012; Jia et al., 2017). Another approach to engineer resistance to these 

bacterial pathogens is to add TAL effector binding sites to a cell-death-promoting 

(“executor”) gene that is triggered by the TAL effectors present in common pathotypes 

(Hummel et al., 2012; Wang et al., 2018a).  

Resistance of an entire plant species to all isolates of a microbial species is classically 

referred to as non-host or species resistance. This non-host resistance is brought about by 

physical factors, the plant immune system, and a general inability of the non-adapted 

pathogen to evade and/or disarm the plants immune system (Nürnberger & Lipka, 2005). 

However, non-host resistance does not represent a single phenomenon that can be used to 

engineer resistant crops. For example, most plant–pathogen systems can’t be neatly 

classified into the two extremes of host/non-host systems (Bettgenhaeuser et al., 2014). In 

addition, there is no single mechanism behind non-host resistance but various distinct and 

unique mechanisms (Cook et al., 2015). Therefore, the approaches that traditionally have 

been contained in the term non-host resistance that are not perception-related will be 

discussed in other sections of the review.  

Resistance that is provided by NLRs and PRRs is robust, mechanistically well 

understood and, in the case of NLRs, often results in strong immunity. There are clear 

advantages to working with the plant’s innate immune system. Introduced receptors 

activate signalling pathways that are already in place in the plant. Importantly, activation of 
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defences generally only occurs when a pathogen is perceived, minimizing the cost to the 

plant overall. Furthermore, crop plants already contain hundreds of these receptors; 

therefore, the likelihood that they are potential allergens or toxins is vanishingly small. 

Indeed, a late blight resistant potato containing an NLR receptor introduced from a wild 

relative is currently on the market in the U.S. (www.isaaa.org/). This is an important 

advance, but care must also be taken to deploy resistance genes durably; pathogens are 

extremely adaptive and single recognition specificities can be rapidly overcome by pathogen 

evolution.  

 

III. Intervention by modification of defence signalling and regulation 

Perception of pathogens by the plant surveillance system is translated into defence 

responses through hormones, signalling pathways, and changes in defence genes. The major 

plant hormones involved in plant defences are salicylic acid (SA), jasmonate (JA), and 

ethylene (ET). In addition, there is extensive cross-talk with essentially all other hormonal 

signalling pathways, including gibberellins, auxin, brassinolide, cytokinins, and abscisic acid 

(reviewed by Robert-Seilaniantz et al., 2011; De Vleesschauwer et al., 2014; Berens et al., 

2017). Most major signalling components seem to be conserved throughout angiosperms 

(Berens et al., 2017), with some variations in the details of signalling, cross talk, and mode of 

defence against different types of pathogens (De Vleesschauwer et al., 2014; Berens et al., 

2017). In general, SA primarily mediates resistance to biotrophic pathogens, while JA in 

concert with ET mediates resistance to necrotrophic pathogens.  There is cross-inhibition 

between SA and JA resulting in trade-offs between resistance to biotrophs and necrotrophs. 

Constitutive induction of SA or JA signalling produces resistance to pathogens ordinarily 

controlled by these responses but produces pleiotropic effects on growth and yield. 

One way to engineer resistance without causing such pleiotropic side effects is to 

tightly control the timing and location of gene expression. An example of this strategy is the 

use of the TL1-binding factor 1 (TBF1) promoter and leader sequences. TBF1 contains two 

pathogen-responsive upstream open reading frames to drive expression of either a 

constitutively active NLR protein or  non-expressor of pathogenesis-related genes 1 (NPR1), 

a key regulator of SA response, in rice (Xu et al., 2017). The combined effects of 

transcriptional and translational control produced resistance to rice blast without a notable 

yield penalty.  
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A naturally occurring example of localized pathway overexpression is the 

quantitative resistance to biotrophic pathogens that is conferred by the loss of function of 

Downy Mildew Resistance 6 (DMR6) in Arabidopsis (van Damme et al., 2008; Zeilmaker et 

al., 2015). DMR6 is widely conserved and encodes a salicylate-5-hydroxylase that is induced 

around pathogen infection sites (Zhang et al., 2017).   Loss of DMR6 function presumably 

increases the local SA concentration at the infection site (Zeilmaker et al., 2015). This 

knowledge was used to engineer a loss of function allele of a DMR6 homolog in tomato. This 

resulted in a quantitative resistance to biotrophic pathogens (de Toledo Thomazella et al., 

2016).  

Defence responses are controlled by networks of transcriptional regulators (Tsuda 

& Somssich, 2015). Therefore, overexpression of specific transcription factors is a potential 

strategy to engineer resistance if pleiotropic effects on yield can be avoided. One interesting 

case is the rice gene Ideal Plant Architecture 1 (IPA1)/OsSPL14 where a natural allelic variant 

increased both yield and resistance to rice blast. Specific phosphorylation of the IPA1 

protein in response to blast infection alters IPA1 binding specificity. This shift in specificity 

allows the protein to bind to and activate WRKY45, a defence regulatory transcription 

factor, providing quantitative resistance. In contrast, non-phosphorylated IPA1 promotes 

expression of at least one yield-related gene (Wang et al., 2018b). If this post-translational 

regulation is conserved, IPA1 expression may be useful to control disease in other crops. 

  

IV. Intervention by targeting recessive traits/susceptibility genes  

Plant breeders have long been aware of recessive disease resistances, which have 

been identified in two ways, through mutagenesis and via breeding. With the onset of 

genome editing technologies, it is now possible to readily reconstitute recessive traits in 

other species. Many recessive traits can be generated by other methods in diploid crops, but 

genome editing opens up the possibility of reconstitution in polyploid crops such as wheat 

and potato. Most well-understood recessive resistance traits remove or alter host factors 

needed for pathogen infection and hence are known as susceptibility genes. However, there 

are exceptions such as the dmr6 mutation discussed above which alters signalling pathways. 

Recessive resistance can be very broad and durable as exemplified by the powdery mildew 

resistance conferred by the Mildew resistance locus O (mlo) allele, which is effective in 

crops as diverse as apple, tomato, barley and wheat (Kusch & Panstruga, 2017). In the case 
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of the complex wheat genome, all three homoeoalleles of mlo were targeted simultaneously 

using genome editing techniques (Wang et al., 2014). Alleles of mlo that give strong 

resistance unfortunately also give strong pleiotropic phenotypes (Kusch & Panstruga, 2017). 

However, the mlo allele can now be easily modified with gene editing tools. This could allow 

more precise calibration between achieving mlo mediated resistance and minimizing mlo 

mediated pleiotropic effects (Fig. 2c; Nekrasov et al., 2017). Still, care should be taken with 

mlo modification because the allele may result in enhanced susceptibility to other 

pathogens. Known examples are the necrotrophic fungi Magnaporthe oryzae, Fusarium 

graminearum, and Ramularia collo-cygni, which all are more virulent on host with an mlo 

background (Jarosch et al., 1999; Jansen et al., 2005; McGrann et al., 2014). This increased 

susceptibility may be particularly relevant in wheat, where blast disease caused by 

Magnaporthe oryzae pathotype Triticum is a critical emerging pathogen (Islam et al., 2016).  

Another widely deployed recessive resistance that has potential value as a genome 

editing target is potyvirus resistance mediated by variants of the Eukaryotic translation 

initiation factor 4E (eIF4E). This type of resistance was first observed in mutants of 

Arabidopsis thaliana exhibiting loss-of-susceptibility to tobacco etch virus (TEV; Potyvirus) 

due to a deficiency in the eIFiso4E gene, an isoform of eIF4E (Lellis et al., 2002). Next to A. 

thaliana eIF4E-mediated resistance against potyviruses is found in several resistant crop 

cultivars including pepper (Capsicum annuum), lettuce (Lactuca sativa), and wild tomato 

(Solanum habrochaites) (Ruffel et al., 2002; Nicaise et al., 2003; Ruffel et al., 2005). 

However, the plasticity in editing eIF4E appears to be restricted, because simple knockouts 

often result either in severe pleiotropic effects or lack of effect due to redundancy (Bastet et 

al., 2017). Therefore, editing of eIF4E may be more successful when guided by naturally 

existing allelic variation (Bastet et al., 2017). Another example of a naturally-occurring 

recessive resistance allele is bacterial spot 5 (bs5), which was identified in pepper breeding 

populations as a Xanthomonas resistance locus (Jones et al., 2002). The basis of resistance is 

a six base pair deletion in Bs5, a CYSTM protein, resulting in a protein product that lacks two 

amino acids in a highly conserved domain (Iliescu et al., 2013). Knockout mutations of 

CYSTM proteins give rise to severe growth and reproduction defects (Albert et al., 2015). 

This suggests that the specific change in bs5 preserves other housekeeping functions and 

selectively interferes with pathogen action. Bs5 is widely conserved, raising the possibility 
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that the bs5 phenotype may be recapitulated by creating the specific six base pair deletion 

in other plants susceptible to Xanthomonas, such as tomato.  

Forward genetic approaches have yielded only a few targets for modification without 

incurring strong pleiotropic phenotypes in crops. Furthermore, recessive traits are typically 

not favoured by breeders, and therefore few have been molecularly characterized. The best 

and most widely deployed traits have been identified from nature. We therefore predict 

that the most effective recessive resistance traits will be those inspired by naturally 

occurring variants found in older breeding populations or wild relatives. 

 

V. Intervention via other dominant plant resistance genes  

PFLP and Hrap 

Two interesting examples of plant proteins that confer disease resistance in various 

crops in a dominant fashion are the Plant Ferredoxin-Like Protein (PFLP) (Lin et al., 1997; 

Dayakar et al., 2003) and the Hypersensitive Response-Assisting Protein (HRAP) (Chen et al., 

1998; Chen et al., 2000). Both proteins were isolated from sweet pepper (Capsicum 

annuum) and enhance the production of reactive oxygen species and the hypersensitive 

response in reaction to harpins produced by gram negative bacteria (Choi et al., 2013). 

HRAP may act in the extracellular space where it could contribute to dissociation of harpins 

into active monomers or dimers, facilitating recognition by the plant (Chen et al., 1998; 

Chen et al., 2000). PFLP, formerly called Amphipathic Protein 1 (AP1), shows high similarity 

to ferredoxin proteins that function as electron carriers in photosynthetic tissues, where 

they are involved in many metabolic processes (Lin et al., 1997; Dayakar et al., 2003). Both 

PFLP and HRAP are effective against multiple bacterial pathogens when overexpressed in 

rice, banana, and other species (Tang et al., 2001; Ger et al., 2002; Liau et al., 2003; Huang 

et al., 2004; Pandey et al., 2005; Huang et al., 2007; Yip et al., 2007; Tripathi et al., 2010; 

Namukwaya et al., 2012; Ger et al., 2014; Tripathi, L et al., 2014). Field trials conducted in 

Uganda with PFLP- and HRAP-expressing bananas indicate both genes are highly effective 

against bacterial wilt caused by Xanthomonas campestris (Fig. 2d), while no negative impact 

on yield or plant morphology was observed (Tripathi, JN et al., 2014; Tripathi et al., 2017). In 

addition, a bioinformatic approach did not reveal any potential allergenicity or toxicity 

associated with either of these proteins (Jin et al., 2017). A combination of PFLP or HRAP did 
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not have a synergistic or additive effect, yet the resistance in bananas that express both 

genes may be more durable (Muwonge et al., 2016).  

PFLP and HRAP are valuable tools to engineer resistance to bacterial pathogens. Lack 

of mechanistic insights makes it difficult to predict what the full and long-term effect of 

these proteins could be on plant health and agronomic performance. Additionally, the effect 

of overexpression of these genes on the performance on fungal, viral or oomycete 

pathogens has not been investigated. However, the urgent need to find a solution against 

bacterial wilt of banana, combined with successful field trials where no negative effects 

were observed, argue for a staggered deployment combined with detailed monitoring of 

performance of HRAP and PFLP in the field. 

 

Detoxification enzymes 

Plant enzymes that neutralize fungal toxins can play a role in plant defences, and 

transfer of their genes can improve resistance (Johal & Briggs, 1992). For example, Fusarium 

head blight is a significant fungal disease of wheat, as well as source of mycotoxins in food 

that can poison humans and animals. Expression of a barley UDP-glucosyltransferase in 

wheat metabolizes the Fusarium graminearum toxin deoxynivalenol to a less-toxic 

derivative, leading to reduced symptoms of Fusarium head blight in the field (Li et al., 2015). 

Similarly, oxalic acid is a virulence factor for Sclerotinia sclerotiorum, and transfer of oxalate 

oxidase from wheat produces significant resistance to Sclerotinia in many species, including 

peanut, tomato, potato, oilseed rape and soybean (Donaldson et al., 2001; Schneider et al., 

2002; Hu et al., 2003; Dong et al., 2008; Walz et al., 2008; Partridge-Telenko et al., 2011).  

 

Wheat APR genes 

The adult-plant resistance (APR) or “slow rusting” genes of wheat are another class 

of potentially transferable resistance genes. These genes produce dominant partial 

resistance to multiple biotrophic pathogens in mature plants but not in seedlings. Several 

APR genes are known, but only two, Lr34 and Lr67, have been cloned. Lr34 encodes an ATP-

binding cassette (ABC) transporter with an unknown substrate. The resistance allele in the D 

genome contains two specific mutations and is dominant over the other native Lr34 alleles 

in hexaploid wheat (Krattinger et al., 2009). Wheat lines carrying Lr34 are partially resistant 

to multiple biotrophic pathogens including stem rust, stripe rust, leaf rust, and powdery 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

mildew. As a consequence, Lr34 has been widely used in breeding. Similarly, the wheat Lr67 

resistance gene is a specific dominant allele of a hexose transporter that provides resistance 

to multiple rusts and powdery mildew. The protein encoded by the Lr67 resistance allele is 

inactive in sugar transport, so it is likely to have a dominant negative effect (Moore et al., 

2015). Introduction of the Lr34 resistance allele by transformation into rice (Krattinger et al., 

2016), barley (Risk et al., 2013), sorghum (Schnippenkoetter et al., 2017), maize (Sucher et 

al., 2017) and durum wheat (Rinaldo et al., 2017) and of Lr67 to barley (Milne et al., 2018) 

also produced resistance to biotrophic pathogens. Like mlo, the mechanism in which 

resistance is triggered by Lr34 and Lr67 is poorly understood, though it likely involves 

induction of biotic or abiotic stress responses that precondition the host to limit pathogen 

growth. Expression of these genes in some heterologous plants, e.g. Lr34 in barley (Risk et 

al., 2013), has produced deleterious effects, while in other cases, e.g. Lr34 in durum wheat 

(Rinaldo et al., 2017), no obvious negative phenotypes were noted. Given the likely 

dominant negative mode of action of these proteins, relative quantities of wild-type vs. 

mutant proteins may need to be optimized in each system. This may also suggest that these 

types of resistances are more applicable to polyploid crops than diploid crops. 

 

VI. Intervention with antimicrobial peptides 

Over the past decades, antimicrobial peptides and proteins have received a lot of 

attention as potential tools to create disease resistant crops. Antimicrobials are produced by 

organisms across all kingdoms and are a part of their innate immune systems (Brogden, 

2005). Their activity is quite diverse and includes destruction of fungal cell walls, membrane 

permeabilization, transcriptional inhibition and ribosome inactivation (Dempsey et al., 1998; 

van der Biezen, 2001; Brogden, 2005). Crops have been designed that express or over-

express (i) plant-derived compounds such as pathogenesis-related (PR) proteins and 

defensins that are normally produced during the plant’s defence response, (ii) antimicrobial 

proteins or peptides derived from microorganisms or animal cells, or (iii) synthetic peptides 

designed based on sequences of existing antimicrobial compounds (Dempsey et al., 1998; 

van der Biezen, 2001; Castro & Fontes, 2005; Montesinos, 2007; Ali et al., 2018). Unlike the 

success of crops expressing anti-insecticidal proteins from Bacillus thuringensis (Bt) that 

have been commercialized in different countries around the world, no crops expressing 

antimicrobial proteins have been commercialized to date (www.isaaa.org/). Development of 
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crops engineered to express antimicrobials is challenging as antimicrobial proteins can often 

have phytotoxic effects, lead to over-activation of stress responses, resulting in undesired 

phenotypes such as negative yield impacts, or have adverse effects on human or animal 

health (Montesinos, 2007). However, careful design or selection of suitable antimicrobials, 

followed by assessment of the agronomic performances of the engineered crops as well as 

of the potential impact on human or animal health may yet yield potential new solutions to 

crop diseases.  

 

VII. Intervention using RNA interference 

RNA interference (RNAi) was first discovered in plants as a mechanism to recognize 

and defend against non-self-nucleic acids. In addition to this defensive role, RNAi is a 

fundamental mechanism for the regulation of endogenous genes. Initiation of RNAi 

production occurs after double stranded RNA or endogenous microRNAs are processed by 

Dicer-like proteins. The resulting small interfering (si) RNAs can be recruited by Argonaute 

(AGO) proteins that recognize and cleave complementary strands of RNA resulting in gene 

silencing. RNAi-based resistance can be engineered against many viruses by expressing 

“hairpin” structures, double stranded RNA molecules that contain viral sequences, or simply 

by overexpressing dysfunctional viral genes (reviewed in Rosa et al., 2018). Moreover, a 

single double-stranded RNA molecule can be processed into a variety of siRNAs and thereby 

effectively target several viruses using one hairpin construct. While viruses fight back with 

proteins that inhibit the silencing machinery of plants, the use of RNAi has nonetheless been 

validated as a powerful strategy to control many plant viruses (e.g. Lawson et al., 1990; 

Tricoli et al., 1995; Ferreira et al., 2002; Bonfim et al., 2007; Scorza et al., 2013), as well as 

nematodes (Huang et al., 2006) and insects (Baum et al., 2007; Bolognesi et al., 2012). The 

impact of RNAi technology deployed as a GM solution against viruses is powerfully 

demonstrated by the “Rainbow papaya” (Fig. 2e). Introduction of the Rainbow papaya has 

averted a collapse of the Hawaiian papaya industry from a severe outbreak of papaya 

ringspot virus in the 1990s (Ferreira et al., 2002; Gonsalves et al., 2004). Since its 

introduction, twenty years ago, the GM trait introduced into Rainbow papaya has provided 

sustainable and effective control of the virus. A similar GM trait has been used to engineer 

virus resistant squash, which has an even longer commercial history (Tricoli et al., 1995). 
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 Following on these successes, RNAi has been explored as a strategy to control fungi 

and oomycetes as well, and initial patent applications for methods to control fungi using 

RNAi were made as early as 2006 (Roberts et al., 2007). Fungicide target genes in the 

pathogen are obvious candidates for this approach, as disruption is known to be lethal. 

Indeed, significant effects have been observed in Fusarium species by targeting the 

cytochrome P450, family 51 (Cyp51) genes that underlie the azole fungicide target sterol 

14α-demethylase with host-induced gene silencing (HIGS) (Koch et al., 2013). Additional 

pathogen genes that have been targeted include pathogenicity factors, developmental 

genes, and genes involved in metabolism. HIGS of a Verticillium hydrophobin gene resulted 

in strong resistance to V. dahliae in cotton (Zhang et al., 2016). Similarly, HIGS targeted to a 

cellulose gene and a highly expressed conserved gene of Bremia lactucae resulted in high 

levels of resistance to this pathogen in lettuce (Govindarajulu et al., 2015). More often, 

however, HIGS experiments produce quantitative effects, for example when targeting rust 

fungi (Panwar et al., 2013; Panwar et al., 2018; Yin & Hulbert, 2018) and virulence factors of 

V. dahliae in tomato (Song & Thomma, 2018). Overall, HIGS seems to be quite effective 

against some pathogens (Govindarajulu et al., 2015; Wang et al., 2016) but ineffective 

against others (Kettles et al., 2018). However, there appears to be an apparent disconnect 

between the earliest publications and patent filings on HIGS a decade ago and practical 

examples of HIGS deployed in the field. This may suggest that although effects are observed, 

they are not strong enough to provide field level solutions to many pathogens.  

 Until recently, it was unclear how small RNA molecules would be exchanged 

between host and pathogens. However, compelling evidence shows that small RNAs are 

delivered to fungal pathogens via extracellular vesicles (Cai et al., 2018). A better 

understanding of this process in diverse plant-pathogen interactions may allow us to better 

optimize HIGS strategies to provide field-relevant levels of resistance. In short, RNAi appears 

to be a promising additional control strategy in the arsenal of plant breeders against at least 

some pathogens. The modular nature of RNAi is especially suitable to multiplexing via 

synthetic biology approaches. In addition, RNAi strategies may be particularly relevant when 

no pathogen resistance can be identified in natural populations.  
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VIII. Practical path to deployment  

After a solution against a crop disease is discovered in the lab, it must pass several 

further hurdles. The first of these hurdles is that it also must be effective in the field without 

reducing agronomic performance. Subsequently, a commercial development process 

requires generation and evaluation of a large number of transgenic lines to choose a 

transgenic event that only has the specific and intended modifications. Once this rigorous 

vetting procedure has been completed, introgression of this event into commercial cultivars 

and development of a regulatory dossier is initiated (reviewed by Prado et al., 2014). 

A genetically modified crop must meet regulatory approval in each country in which 

it will be grown or imported. Regulatory requirements in different countries are not 

standardized, and this increases the complexity of the task (Prado et al., 2014). Costs are 

often prohibitive, with estimates for international product deregulation between $7 and 

$35M (Kalaitzandonakes et al., 2007; Phillips McDougall, 2011) out of a total estimated 

product development cost of $136M (Phillips McDougall, 2011). A cost-benefit calculation is 

fundamental to determining the commercial practicality of different disease resistance 

solutions. As an example, Box 1 summarizes the data needed to deregulate a transgenic 

disease-resistant crop in the United States. In the US, the Food and Drug Administration 

(FDA) assesses evidence for the safety of any added protein and the substantial equivalence 

of the crop to its non-transgenic equivalent. The Environmental Protection Agency (EPA) 

assesses the consumer safety and lack of environmental impact of any “plant incorporated 

protectant”. The United States Department of Agriculture (USDA) assesses the potential of 

the new plant to be a weed or plant pest. The level of evidence required for any of these 

points is determined by the relative risk of the introduced trait. As mentioned above, the 

first immune receptor has been deregulated in the US: the blight resistance gene Rpi-vnt1 in 

potato. In this case, the EPA and FDA accepted arguments that the protein is present at 

vanishingly small amounts, is not a potential allergen, and is similar to proteins already 

consumed (Clark et al., 2014; FDA, 2015; EPA, 2017). Therefore, animal feeding studies and 

extensive biochemical analyses on purified protein, which would have been extremely 

difficult in the case of an NLR (Bushey et al., 2014), were not required. However, a 

hypothetical product expressing high levels of an artificial antimicrobial protein without a 

history of safe consumption would require more extensive evidence for safety and have 

concomitantly higher regulatory costs. Given the costs, time, and risk involved in developing 
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and deregulating GM crops, only very high-value traits on broad acreage crops are currently 

commercially viable targets. Only a handful of crop diseases, for example soybean rust and 

potato late blight, meet this economic threshold.  

The USDA has recently released guidelines for the regulatory status of plants 

produced by gene editing, stating that certain classes of changes that could have been 

accomplished by traditional breeding are not subject to regulation if they were produced 

without plant pest sequences (i.e. not by Agrobacterium transformation). These changes 

include deletions, single nucleotide changes, and insertions of DNA from a sexually 

compatible relative (USDA, 2018). Although disease-resistant food crops may still be subject 

to regulation by the FDA and EPA, this ruling drastically decreases the cost of bringing many 

types of disease resistant crops to market in the United States. In contrast to the 

scientifically based and pragmatic US guidelines, a recent ruling in the EU states that all 

plants produced by gene editing are still subject to the same regulation as transgenic plants 

(Callaway, 2018). This effectively rules out the use of gene editing for any crop grown in or 

exported to Europe, robbing European growers of powerful solutions that could lead to 

more sustainable agriculture. 

  

IX. Path to market in Africa 

Africa is the continent where there is the greatest need and opportunity for agricultural 

growth, given the expected population growth and amount of unused arable land. 

Genetically modified or edited crops could play a significant role in helping Africa’s 

agriculture to meet the needs of its growing population. Currently, adoption of GM crops in 

Africa is limited; they are commercially available only in Sudan (cotton) and South Africa 

(maize, cotton and soybean) (ISAAA, 2017). The adoption of GM crops in those countries has 

been successful, and acreage has increased steeply since they were first introduced (ISAAA, 

2017). At present, several other countries in Africa have regulatory frameworks in place and 

are conducting field trials to prepare for general release when government policies allow. 

These countries are Ethiopia, Kenya, Uganda, Tanzania, Mozambique, Malawi, Swaziland, 

Cameroon, Nigeria, Ghana, and Burkina Faso (ISAAA, 2017). In Uganda, field trials are being 

conducted with potato expressing a stack of immune receptors providing protection against 

potato late blight disease as well as bananas that are resistant to bacterial wilt (Fig. 2a; 

Tripathi, L et al., 2014; Ghislain et al., 2018).  
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Regulatory costs and time associated with the process can vary greatly and depend 

on the crop, the country, the developer, and the inserted genes. Costs estimates for the 

development of a single GM variety (late blight resistant potato) in a developing country by 

a not-for-profit institution vary from $1.4 - 1.6 million over 8 - 9 years of review (Schiek et 

al., 2016). In many African countries, genome edited crops are expected to be regulated 

through the GM regulatory framework, similarly to the laws in Europe (ISAAA, 2017).  

 In Africa, as elsewhere, a second major barrier to advancing genetically engineered 

disease resistance is public concern about the safety of GM crops, despite an overwhelming 

body of evidence for the safety of these crops (National Academies of Science, Engineering 

and Medicine, 2016). This is unfortunate, given the potential for GM to address food losses 

caused by plant disease which would help to increase food production locally to 

accommodate a rapidly growing population. Africa’s close ties to Europe influence its 

attitudes about GM crops, which are generally conservative and not based on scientific 

facts. Given the challenges that lie ahead, a shift to a scientific and pragmatic stance on the 

use of GM technology would be timely. The success of adoption of GM crops in Sudan and 

South Africa and the ongoing trials and safety assessments in other African countries might 

convince the public and politicians to open the doors to these molecular breeding 

approaches. 

 

X. How to deploy resistance durably 

It is clear that plant pathologists and breeders have uncovered a versatile arsenal of 

solutions to bring to bear against plant pathogens that offers great potential for global food 

security and sustainability. However, plant pathogens are highly adaptable and have much 

faster life cycles than their plant hosts, and thus resistance conferred by most single genes 

or modes of action will be easily defeated. This reality is a key challenge for classical 

breeding, because durable resistance generally requires combinations of multiple resistance 

genes and quantitative trait loci (QTLs) at different locations in a genome. The problem is 

compounded by introgression of new resistances from non-elite cultivars and wild relatives, 

which are often subject to yield loss due to linkage drag. Moreover, when a new disease or 

breeding goal appears, breeding for the new and existing traits becomes even more 

complex. Last, some important crop plants are notoriously difficult to breed, such as the 

tetraploid potato, sugarcane, and the (almost) sterile banana. 
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Genetic modification allows several dominant disease resistance genes to be 

introduced together in a single well-characterized region of the genome overcoming many 

of these challenges. Critically, it’s possible to introduce several dominant resistance traits 

into elite cultivars, polyploid crops, sterile plants, and parental lines to be used in 

subsequent breeding efforts. Even if additional breeding is required, the key combined 

resistances will remain intact as a single locus. Unlike dominant resistance traits, recessive 

resistances present more of a challenge as they cannot be combined at a single locus, but 

genome editing in base breeding lines can accelerate the process of introducing these 

resistances.  

Each resistance approach reviewed here took years of collaborative research effort. 

Many of the solutions were found by tapping into the large but not unlimited genetic 

diversity found in nature. It is therefore critical that thoughtful, durable deployment and 

stewardship of these hard-won resources is achieved. The definition of durable resistance is 

fluid, and in each case is dependent on the strength of resistance required and the time that 

is needed for the resistance to hold (Brown, 2015). The question must be - does the 

combined solution work well enough and long enough? 

Given the requirement for clear resistance phenotypes in the field, many combined 

solutions will include the strong resistance conferred by NLR genes. Several factors influence 

the durability of combined NLR genes; major factors being the impact on virulence of the 

pathogen, the strength of the resistance, the exposure of a pathogen to an NLR, the total 

inoculum in the environment, and the capacity of the pathogen for sexual recombination (or 

lack thereof) (McDonald & Linde, 2002; Brown, 2015; Stam & McDonald, 2018). Although 

these factors likely play a role in the durability of each of the other resistance mechanisms 

reviewed here, the points of impact are likely to be different. Therefore, combining several 

modes of action will potentially result in resistance that is both effective and long lasting. 

For example, an NLR stack of Tm-22 and Tm-2 is predicted to be durable, as the two 

mutations in the movement protein of tomato mosaic virus that are required to overcome 

this resistance are predicted to disrupt function of the viral movement protein (Lanfermeijer 

et al., 2005). However, even greater durability may be achieved by combining these two 

genes with a different mode of action such as a hairpin RNAi construct.  
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Both the private and public sectors should pursue ever more durable ways of using 

the agricultural resources at hand. In the long run, a shift away from environmental and 

genetic uniformity in agricultural systems will result in a more durable status quo between 

crop and pathogens (McDonald & Stukenbrock, 2016).  However, a critical assessment 

needs to be made on the time lines this would take, and at what cost to the efficiency and 

productivity of monoculture-based agriculture this change would come. Compared to an 

average of 13 years to deploy new transgenic lines, it can be debated whether an overhaul 

of the agricultural system before the population peak of 2050 is desirable or even possible. 

The pragmatic approach is to work with the best possible solutions that we have available 

today to ensure we will be in a position to deploy even better solutions later this century.  

 

XI. Trends that shape the future 

There are several trends that will impact the way in which we will design solutions 

and deploy traits. As exemplified in the paragraph above, it is important that several traits 

can be combined into one locus, preferably with a known location in the genome. This 

presents a unique technical challenge as cassettes need to be designed that contain multiple 

traits against one disease. An important trend therefore is the technical advance that is 

made to construct cassettes that contain multiple traits. Already, this is feasible to a certain 

extent, as has been demonstrated with gene stacks that contain 3 NLRs that recognize P. 

infestans (Ghislain et al., 2018, Fig. 2a.) and a 5 R gene stack in wheat against wheat stem 

rust (Michael Ayliffe, personal communication). Although generating cassettes with multiple 

large inserts has traditionally been challenging, recent technical advances such as Gene 

Assembly in Agrobacterium by Nucleic acid Transfer using Recombinase technologY 

(GAANTRY) enable generation of stable cassettes with up to 10 gene with at total size of 

28.5 KbP (Collier et al., 2018). Therefore, the generation of a cassette that can effectively 

target one or two key diseases is now technically feasible. As traits are dominant, 

combinations can subsequently be made via breeding. An example of what such a strategy 

may look like is the commercial maize line known by its trade name SmartStax™. To 

generate this line, four different biotech maize lines were crossed which resulted in the 

combination of six Bt genes and two herbicide tolerance genes, providing control for weeds 

and lepidopteran insects. Nonetheless, the ability to generate large stacks of combined 

traits will be a critical development over the coming years.  
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For gene stacks to be functional, the causal genes that underlie resistance must be 

identified. For many crops the reservoir of cloned resistance genes is still limited. However, 

the second trend is that new affordable sequencing technologies combined with 

bioinformatic approaches allow for ever faster identification of causal resistance genes. This 

can now already be done, even in complex genomes such as wheat and potato and wild 

relatives of crops such as Pigeonpea (Kawashima et al., 2016; Steuernagel et al., 2016; Witek 

et al., 2016). In addition, obtaining a good quality reference genome assembly is now 

reduced to standard practice. With the ever-dropping cost of sequencing and increase in 

processing power these approaches will soon become commonplace. This capability is 

important because it allows scientists to explore the rich genetic diversity of crop relatives. 

Nature has had millions of years to test and select resistance mechanisms, providing a 

wealth of potentially validated strategies. By making use of affordable, powerful sequencing 

capacity, wild germplasm can be mined for a distribution of resistance traits at the centre of 

origin. As many pathogens have co-evolved with a wild progenitor species, a resistance trait 

against a specific disease that is overrepresented in the centre of origin of a wild progenitor 

may reflect that this trait is particularly effective with little cost to the host (Stam et al., 

2017). 

A third trend is the miniaturization of sequencing technologies. Pathogen detection 

and analyses of the microbiome with a portable DNA sequencer has already succesfully 

been executed (Hu et al., 2019). By the time most solutions developed today will reach the 

field, such real-time monitoring of pathogen populations in the field will be possible and 

likely standardised enough to be performed by growers or agronomists. A better 

understanding of pathogen population structure and dynamics may inform the best 

intervention strategy (genetic or other) against a given disease, for example via 

identification of key effectors.  

No review would be complete without mentioning the fourth trend, which is the 

expanding use of genome editing tools. Genome editing can already be used to produce 

recessive traits; however, as we set out in this review, relatively few effective recessive 

targets have been identified. In addition, most targets that are simple knock-outs have 

already been introduced via tilling, except in polyploid crops. Editing also provides the ability 

to precisely modify existing resistance genes or their expression, allowing the in situ 

conversion of a susceptible allele to a resistant one. Use of genome editing to integrate 
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dominant resistance traits at a single locus will have even broader benefits, although it is 

important to note that this is already feasible using site-specific recombination (SSR) 

systems (Srivastava & Thomson, 2016). However, more efficient introduction of traits, or 

replacement of single traits in a stack may be accomplished via genome editing technologies 

(Rinaldo & Ayliffe, 2015). In addition, genes can be introduced anywhere in the genome. For 

instance, introducing new resistance genes next to already existing resistance loci could 

generate greater flexibility for the breeder. Gene stacks could be created and updated by 

precise addition and removal of genes. Finally, precise gene editing would introduce less 

“foreign” DNA than Agrobacterium transformation, which may help deregulation in some 

countries. However, this is a legislative and not a scientific advantage.  

A final trend that is developing in parallel is the rapid progress in protein structural 

biology techniques such as cryo-EM. This will allow for a better understanding of NLR and 

PRR function.  Unlike the other trends described here, this trend has the capacity to be truly 

transformative in the way plant disease is tackled. The first step toward designing 

recognition specificity has already been made via modification of HMA domains in NLRs with 

integrated domains (Maqbool et al., 2015). In addition, some NLR families can recognize 

multiple effectors from different pathogens via direct interaction (Saur et al., 2019). Unlike 

PRR proteins, how NLRs signal has been one of the long-standing questions in plant 

pathology. However, two recent landmark publications describe the mechanism of 

activation for the A. thaliana HOP-ACTIVATED RESISTANCE 1 (ZAR1) protein using cryo-EM 

techniques (Wang et al., 2019a; Wang et al., 2019b). All this information can be coupled to 

advances that are made in deep learning and synthetic biology, such those already used in 

drug discovery (Chen et al., 2018). This may enable scientists to develop recognition 

specificities for key pathogen effectors in the form of designer NLRs and PRRs.  

 

XII. The time is now 

 We have in hand the means to thwart plant diseases that have plagued mankind 

since the dawn of agriculture. The genetic methods to combat disease reviewed here are 

more effective, environmentally friendly, and safer than many current, common methods of 

control. We need to double our food production in 50 years, and 70% of this increase needs 

to be achieved by adopting new technology. Therefore, we cannot ignore these approaches. 

However, almost none of the currently available GM solutions have reached growers, in 
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large part due to consumer anxieties, even though the most ardent opponents of the 

technology ironically know the least about science and genetics (Fernbach et al., 2019), and 

the scientific consensus is that GM crops are as safe as those developed by classical 

breeding (National Academies of Sciences & Engineering and Medicine, 2016). 

Unfortunately, some legislators ignore the facts about GM safety and benefits, thus blocking 

solutions that would benefit society broadly (Court of Justice of the European Union, 2018). 

Due to global trade, Europe’s conservative attitude towards GM crops impacts agriculture 

worldwide, including those regions where GM crops could have great local benefits. To 

break this deadlock, interdisciplinary approaches that include social scientists need to be 

taken, and scientists should stay in dialogue with consumers and policy makers. It is up to 

this generation of scientists, seed companies, international agricultural organizations, and 

legislators to responsibly deploy the valuable and available genetic disease solutions to help 

reduce the footprint of agriculture on the planet while increasing its yield.  
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FIGURES AND TABLES 

 

Table 1: Examples of genetic disease solutions currently available for bacterial, viral, 

fungal and oomycete pathogens.  

 

POINT OF 
INTERVENTION 

GM TECHNOLOGY EXAMPLE REFERENCES 

    Pathogen perception Interspecies transfer of PRRs EFR Lacombe et al., 2010; 
Schoonbeek et al., 2015; 
Schwessinger et al., 2015; 
Boschi et al., 2017; Kunwar et 
al., 2018  

 Interspecies transfer of NLRs Rpi-Vnt1 Foster et al., 2009; 
www.isaaa.org/ 

  Bs2 Horvath et al., 2012  

 Modification of NLRs Pikp-1 Maqbool et al., 2015 

 NLR protease trap PBS1 kinase Kim et al., 2016 

 NLR resurrection NRCs (NLR helpers) Wu et al., 2017 
 

Pathogen effector 
binding 

Deletion of effector targets MAPK3K StVIK1 Murphy et al., 2018 

 Modification of effector 
binding sites 

COI1 Zhang et al., 2015 

 Deletion of effector binding 
sites 

Os11N3/OsSWEET14 Li et al., 2012 

 Addition of effector binding 
sites  

Xa27 Hummel et al., 2012 

Defence signalling 
pathway 

Altered expression of signalling 
components 

NPR1 Xu et al., 2017 

 Altered expression of 
transcription factors 

IPA1/OsSPL14 Wang et al., 2018b 
 
 

Recessive resistance 
alleles 

Gene deletion mlo Kusch & Panstruga, 2017 

 Gene modification bs5 Iliescu et al., 2013  
 

Dominant plant 
resistance alleles 

Interspecies transfer of 
signalling components 

PFLP Huang et al., 2007; Namukwaya 
et al., 2012; J. N. Tripathi et al., 
2014; Tang et al., 2001; Huang 
et al., 2004; Ger et al., 2014; Yip 
et al., 2007; Liau et al., 2003 

 Transfer of detoxifying 
enzymes targeting pathogen 
toxins 

Oxalate oxidase Donaldson et al., 2001; 
Schneider et al., 2002; Hu et al., 
2003; Dong et al., 2008; Walz et 
al., 2008; Partridge-Telenko et 
al., 2011 

 Transfer of adult-plant 
resistance (APR) alleles 

Lr34 Krattinger et al., 2016; Risk et 
al., 2013; Schnippenkoeter et 
al., 2017; Sucher et al., 2017; 
Rinaldo et al., 2017 

Antimicrobial Transfer of antimicrobials from Rs-AFP defensin Jha and Chattoo, 2010; Li et al., 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

compound 
production 

plants 2011  

 Transfer of antimicrobials from 
microorganisms or animals 

Virus KP4 Clausen et al., 2000; Schlaich et 
al., 2006; Quijano et al., 2016  

 Expression of synthetic 
antimicrobials 

MsrA1 Osusky et al., 2000; Rustagi et 
al., 2014  
 

RNAi Viral gene silencing through 
RNAi 

Coat protein or 
replicase domain 
gene from papaya 
ringspot virus 

Fitch et al., 1992; Ferreira et al., 
2002; Ye and Li, 2010; 
www.isaa.org/ 

  AC1 from bean 
golden mosaic virus 

Bonfim et al., 2007; 
www.isaaa/org 

  Coat protein gene 
from plum pox virus 

Scorza et al., 2013; 
www.isaaa.org/  

  Coat protein gene 
from potato virus Y† 

Lawson et al., 1990;  
www.isaaa.org/ 

  Putative replicase 
domain or helicase 
domain gene from 
potato leaf roll virus* 

Lawson et al., 2001;   
www.isaaa.org/  

  Coat protein gene 
from cucumber 
mosaic cucumovirus, 
zucchini yellow 
mosaic potyvirus, 
and watermelon 
mosaic potyvirus 2 

Tricoli et al., 1995; 
www.isaaa.org/  

 Fungal and oomycete gene 
silencing through RNAi 

HAM34 or CES1 gene 
of Bremia lactucae 

Govindarajulu et al., 2015 

    

 

Crops that are currently in the market are shown in bold. 

†NewLeaf Y(R) potato, no longer commercially available 

*NewLeaf Plus(R) potato, no longer commercially available 

 

 

Figure 1. Major disease outbreaks in the last 150 years and current critical disease 

challenges.  

(a) A timeline of major disease outbreaks: (i) Introduction of the oomycete Phytophthora 

infestans which causes Potato late blight results in the Irish potato famine in which 1 million 

people die and 1.5 million people emigrate. (ii) The rust fungus Hemileia vastatrix wipes out 

the coffee crop in Sri Lanka; the British become tea drinkers. (iii) The vascular fungal 

pathogen causing Fusarium wilt of banana nearly wipes out the Gros Michel variety; the 
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resistant Cavendish banana is adopted. (iv) The fungus Cochliobolus miyabeanus which 

causes Brown spot disease of rice is a factor in the Great Bengal Famine in which 2 million 

people die of starvation. (v) Bacterial leaf blight of rice (Xanthomonas oryzae pv. oryzae) 

causes epidemics throughout Southeast Asia with yield losses up to 80%. (vi) Witches’ 

broom caused by the fungus Moniliophthora perniciosa is causing losses of up to 75% of 

annual cacao production in Brazil. (vii) The new Fusarium wilt isolate TR4 is identified and 

threatens Cavendish banana. (viii) Ringspot virus devastates the papaya industry in Hawaii; 

a genetically modified (GM) variety is introduced that resists infection. (IX) A new race of the 

stem rust fungus Puccinia graminis (UG99) is spreading throughout Africa and the Middle 

East, threatening the world wheat supply. (X) Asian soybean rust caused by Phakopsora 

pachyrhizi reaches Brazil, costing growers $2 billion annually in damages and control 

measures. (b) Examples of current disease challenges in major agricultural regions in the 

world that cause significant losses such as corn stalk and ear rots in the US (4.15 %), 

Soybean rust in Brazil (6.65%), Stem rust of wheat in sub-Saharan Africa (8.89%), Bacterial 

blight of rice in India (8.51 %) and Fusarium head blight of wheat in China (8.75%). Source: 

Savary et al., (2019) 

Pictures: Gibberella zeae (corn ear rot) (Photo by Scot Adams, via Flickr, CC BY 2.0); 

Phakopsora pachyrhizi (Asian soybean rust) (Photo by Peter van Esse); Puccinia graminis f. 

sp. tritici (Wheat stem rust) (Photo by Yue Jin); Xanthomonas oryzae f. sp. oryzae (Bacterial 

blight) (Photo provided by IRRI under creative commons licence); Fusarium graminearum 

(Fusarium head blight) (Photo by Gary C. Bergstrom, Cornell University). 

 

Figure 2. Success stories with different points of intervention: (a) The 3R potato contains 3 

NLRs effective against P. infestans, which is present as a single mating type in Uganda and 

Kenya. (b) The cell-surface receptor EFR provides field level of resistance against the 

devastating tomato wilt pathogen Ralstonia solanacearum. (c) The Tomelo, genome edited 

tomato has resistance against powdery mildew due to modification of the mlo gene.  (d) 

Heterologous expression of hypersensitive response-assisting protein (Hrap) and plant 

ferredoxin-like protein (Pflp) from sweet pepper provides field level resistance against 

Xanthomonas wilt disease in banana. (e) Overexpression of a virus coat protein in papaya 

provides commercial control against Papaya ringspot virus in Hawaii. In each case, the 

control plant(s) are on the left and the transgenic plants on the right. Pictures: photos 
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provided by (a) Marc Ghislain, © International Potato Center; (b) Dr. Sanju Kunwar and Dr. 

Mathews Paret, University of Florida; (c) Sophien Kamoun, The Sainsbury Laboratory. (d) 

Photo reprinted by permission from Springer Nature Customer Service Centre GmbH: 

Springer Nature, Nature Biotechnology, Field trial of Xanthomonas wilt disease-resistant 

bananas in East Africa, Tripathi et al, 2014. (e) Photo provided by Dennis Gonsalves, 

republished with permission of the American Phytopathological society, from “Virus coat 

protein transgenic papaya provides practical control of Papaya ringspot virus in Hawaii, 

Ferreira et al., 86, 2002”; permission conveyed through Copyright Clearance Center, Inc. 

 

Box 1 Regulatory authorities and scope of regulation of bioengineered crops in the United 

States (EPA, 2019; FDA, 2019; USDA, 2019).  
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