
Clustering and phase transitions in a 2D superfluid

with immiscible active impurities

Umberto Giuriato1, Giorgio Krstulovic1 and Davide Proment2

1 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire
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Abstract. Phase transitions of a finite-size two-dimensional superfluid of bosons in

presence of active impurities are studied by using the projected Gross–Pitaevskii model.

Impurities are described with classical degrees of freedom. A spontaneous clustering of

impurities during the thermalization is observed. Depending on the interaction among

impurities, such clusters can break due to thermal fluctuations at temperatures where

the condensed fraction is still significant. The emergence of clusters is found to increase

the condensation transition temperature. The condensation and the Berezinskii–

Kosterlitz–Thouless transition temperatures, determined numerically, are found to

strongly depend on the volume occupied by the impurities: a relative increase up to a

20% of their respective values is observed, whereas their ratio remains approximately

constant.
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1. Introduction

When a fluid composed of bosons is cooled down or the number of particles is increased,

the system experiences a phase transition giving rise to a macroscopic state known

as Bose–Einstein condensate (BEC) [1]. Since its first experimental observation by

Anderson et al. [2], BECs have been realized in systems of very different nature such as

cold atomic gases [1, 3], solid-state quasiparticles [4, 5] and light in optical micro-cavities

[6]. Whereas in three spatial dimensions a condensate is stable with respect to thermal

fluctuations, in two dimensions such fluctuations can destroy the long-range order of the

system. This is a general result in statistical field theory known as the Mermin–Wagner–

Hohenberg theorem [7, 8]: it states that a continuous symmetry cannot be spontaneously

broken in dimensions lower than three, otherwise large-scale Goldstone modes would

have an infinite infrared contribution to the two-point correlator. This theorem assumes

the thermodynamic limit, that is the system size being infinite. However, for a finite

system, condensation can be recovered, having a transition temperature Tλ that vanishes

as the inverse of the logarithm of the system size.

Although condensation is formally forbidden in an infinite two-dimensional system,

a peculiar phase transition of a different nature has attracted the attention of physicists

and mathematicians since its independent discovery in the early 70’s by Berezinskii,

Kosterlitz and Thouless (BKT) [9, 10, 11]. The BKT transition is an infinite-order

topological phase transition and manifests itself in systems that belong to the same

universality class. By approaching the BKT transition temperature, TBKT, from below,

the system switches from a gas of bounded vortex-antivortex pairs to a gas of free

vortices, moving from a quasi-ordered phase to a disordered one. The BKT transition

has been observed in BECs made of dilute gases [12, 13, 14, 15, 16], exciton-polaritons

[17], liquid helium films [18] and studied theoretically and numerically [19, 20, 21, 22];

for a review on the topic, see for instance [3].

The purpose of this article is to study how the statistical mechanical properties

of a two dimensional superfluid of bosons are affected by the presence of impurities.

Particles and impurities have been used in superfluids since the early experiments in
4He [23] mainly with detection purposes: electrons, ions and neutral impurities such as

hydrogen particles and excimers have been exploited to visualize quantized vortices, to

study their dynamics and the statistics of superfluid (quantum) turbulence [24, 25, 26].

More recently, the investigation of the interaction between one or more impurities and

superfluids has been the main topic of experiments in cold atoms [27, 28], superfluids

of light [29, 30] and polaritons in semiconductor microcavities [31]. On the theoretical

side, the dynamics of impurities in a BEC has been also addressed [32], as well as the

properties of 3He and H impurities on thin 4He films [33, 34]. In addition, Rica &

Roberts studied how a collection of impurities affects the ground-state of a BEC by

using a mean field model [35]. In this last work, four phases were identified, depending

on the value of the interaction couplings. In particular, if the scattering lengths between

impurity fields are positive, impurities behave as localized objects, they separate from
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the condensate and present a hard-sphere repulsion between each other.

We investigate here impurity clustering and phase transitions occurring in a minimal

model that mimics such situation: the Gross–Pitaevskii (GP) equation coupled with

active immiscible impurities having classical degrees of freedom. Such model was

introduced in [36] and recently used in two-dimensional numerical simulations to study

impurity-impurity and impurity-vortex interactions [37, 38]. Finite-temperature BECs

can be studied by using the projected GP equation, that is obtained by introducing

a cut-off kmax in Fourier space: this regularizes the classical mean-field ultra-violet

divergence. The projected GP model is an effective model to study the condensation

transition in two and three dimensions [39, 40, 41, 21] and superfluid vortex dynamics

at finite temperature [42, 43, 44].

2. Theoretical model and numerical results

2.1. Model for impurities in a superfluid

We generalize the projected GP model to include the dynamics of active impurities.

The model is then described by the Hamiltonian

H =

∫ (
~2

2m
|∇ψ|2 +

g

2
|PG[|ψ|2]|2 +

NI∑
i=1

VI(|x− qi|)PG[|ψ|2]
)

dx

+

NI∑
i=1

p2
i

2MI

+

NI∑
i<j

Vrep(|qi − qj|), (1)

where ψ is the collective wave-function of bosons having mass m, and g = 4πas~2/m
being as the s-wave scattering length of bosons interaction. NI is the total number of

impurities of mass MI, that are described using their classical position and momentum

qi and pi, respectively. The strong repulsive potential VI determines the shape of

the impurities by creating a large depletion in the fluid density. Vrep is a repulsive

potential between impurities. The Galerkin projector PG truncates the system acting

in Fourier space as PGψ̂k = θ(kmax − k)ψ̂k with θ(·) the Heaviside function, ψ̂k the

Fourier transform of ψ(x) and k the wave vector. The equations of motion are directly

obtained by varying (1):

i~
∂ψ

∂t
= PG[− ~2

2m
∇2ψ + gPG[|ψ|2]ψ +

NI∑
i=1

VI(|x− qi|)ψ] (2)

MIq̈i = −
∫
VI(|x− qi|)PG[∇|ψ|2] dx−

NI∑
j 6=i

∇Vrep(qij), (3)

where qij = |qi − qj| and we have replaced pi = MIq̇i. The previous set of equations

exactly conserves the Hamiltonian, the number of bosons N =
∫
|ψ|2dx and momentum

P =
∫

i~
2

(
ψ∇ψ − ψ∇ψ

)
dx +

∑
i pi.
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Figure 1. (Color online) Snapshots of the fluid density during the GP temporal

evolution of a state with 40 impurities (dark holes).

The impurities in the system feel an attractive force mediated by the superfluid

density field [35, 37]. However, unlike the case of impurities described by classical fields

[35], in the model (1) no repulsion mediated by the fluid exists. In order to mimic such a

hard-sphere repulsion, we consider the Lennard–Jones-like potential Vrep(r) = εr12min/r
12,

as in [37]. We fix the energy ε in order to set the minimum of the total interaction energy

between impurities at zero temperature at a distance rmin. Note that the specific shape of

Vrep is not important, as long as it reproduces a hard-sphere repulsion. For the impurities

potential we use a smoothed hat-potential VI(r) = V0(1 − tanh [(r2 − a2I )/4∆l2])/2,

where aI sets the characteristic radius of the impurity and ∆l is a smoothing parameter.

Finally, let us notice that in absence of impurities and at zero temperature, eq.(2) can

be linearized about a uniform density state |ψ|2 = ρ∞/m, defining the phonon (sound)

velocity c =
√
gρ∞/m2 with dispersive effects taking place for length scales smaller than

the healing length ξ =
√

~2/2gρ∞.

We integrate the system (2-3) by using a pseudo-spectral code with Nres uniform

grid points per direction of a squared domain of size L = 2π. We set kmax = Nres/3 so

that the truncated system exactly conserves all the invariants (provided that initially

PGψ = ψ and PGVI = VI) [44], c = ρ∞ = 1, V0 = 10 and ε = 0.00674. As the

healing length changes with temperature, we parametrize the solutions of (2-3) using

its value taken at zero temperature. In thermal states, the only relevant dimensionless

parameters are L/ξ, aI/ξ, NI, the relative mass M = MI/ρ∞πa
2
I and ξkmax. We set

L/ξ = 128. The value of ξkmax controls the strength of the nonlinear interactions and

it is kept fixed to ξkmax = 2π/3. For this value, most of the excitations are phonons

when the condensate fraction is large. For instance, it is compatible with the one used

in [39], that is ξkmax ∼ 2; such value applies to a gas of 87Rb atoms.

We start by presenting a long temporal evolution of a system having 40 impurities of

massM = 0.1, radius aI = 4ξ, initially located at random positions (avoiding overlaps)

and having zero velocity. The density field of the initial condition is displayed in figure

1 (t = 0ξ/c). Impurities correspond to dark holes. During the time evolution, the

short-range interaction among impurities mediated by the fluid let them collapse into

small clusters (t = 815ξ/c); waves with random phases are generated, populating small

length scales and starting the thermalization process. This thermal noise induces the
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clusters to move in a stochastic way, and to grow further (t = 1691ξ/c). Eventually,

the system reaches thermal equilibrium where only one big cluster is observed in a bath

of thermalized waves, (t = 10965ξ/c). A movie of the the evolution is available in the

Supplementary Data.

2.2. Grand-canonical thermal states

The evolution illustrated in figure 1 is an example of thermalization occurring in the

micro-canonical ensemble, as the thermal state is achieved keeping all the invariants

conserved. Such dynamical process is numerically costly and does not directly provide

access to the conjugate thermodynamical variables: temperature and chemical potential

(here we only consider zero momentum states). To overcome these issues, in [44] a

stochastic relaxation was introduced in order to efficiently generate thermal states in the

grand-canonical ensemble. We make use of this approach adapting it to the Hamiltonian

(1). The stochastic dynamics is ruled by

~
∂ψ̂k

∂t
= − ∂F

∂ψ̂∗k
+

√
2~
β
ξ̂k (4)

∂qi
∂t

= −∂F
∂qi

+

√
2

β
ξqi , MI

∂q̇i
∂t

= −∂F
∂q̇i

+

√
2MI

β
ξ q̇i (5)

where F = H−µN is the free energy of the system, µ is the chemical potential controlling

the number of bosons and β is the inverse temperature; ξ̂k, ξ
q
i and ξ q̇i are independent

Gaussian white noises of unit variance. It can be shown by using the Fokker-Planck

equation associated to (4-5), that the stationary probability distribution is given by

the Gibbs grand-canonical distribution P[ψ̂k,qi, q̇i] ∝ e−βF . In the micro-canonical

ensemble, P[ψ̂k,qi, q̇i] is also the stationary solution of the Liouville equation that

describes the evolution of the phase-space distribution of the Hamiltonian system (1)

[44]. It is evident from (5) that varying the impurity masses modifies only the variance

of impurity momenta in the steady state. Namely, the configurations of impurities in

the steady state and the statistical properties of the thermalized system are independent

of impurity masses. We define the temperature as T = 1/kNβ, with kN = L2/N and

N = πk2max the total number of Fourier modes. With this definition T is an energy per

unit of surface such that at low temperatures F ≈ TL2, because of equipartition. With

these choices, intensive quantities remain constant when increasing the system size. In

addition, we fix the total density mass ρ̄ = mN/L2 = 1 by dynamically adjusting the

chemical potential [44]. We use (4-5) to study the effect of impurities on the superfluid

condensed fraction n0 defined as

n0 =
〈
∣∣∫
V ′ ψ(x) dx

∣∣2〉T
〈
∫
V ′ |ψ(x)|2 dx〉T

, (6)
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Figure 2. (Color online) (a): Condensed fraction as a function of the temperature

for different values of rmin. Temperatures are expressed in units of the condensation

temperature with no impurities T 0
λ . (b): Snapshots of the density field in the steady

state at different temperatures in the case of high repulsion (rmin = 11ξ) among

impurities. (c): The same of (b) but for low repulsion (rmin = 8ξ). Scans are

performed with NI = 31 and aI = 4ξ.

where V ′ is the domain excluding the region occupied by the impurities and 〈·〉 stands

for average over realizations at temperature T ‡.

2.3. Clustering of impurities

We first perform a temperature scan without impurities. The condensed fraction is

shown in figure 2(a) (solid blue line). The transition temperature Tλ is the lowest

temperature where the condensed fraction can be considered negligible. We estimate

it in a consistent way adopting the following numerical protocol: we take the points

around which n2
0(T ) is close to zero and we perform a linear interpolation of it. Tλ is

then determined by finding the point where the linear fit vanishes. From now on, we

indicate with T 0
λ the transition temperature in the system without impurities. Then, we

perform temperature scans varying the repulsive potential parameter rmin with a fixed

number of impurities NI = 31 having radius aI = 4ξ. The results are also shown in figure

2. In figures 2(b) and 2(c) snapshots of in the steady date are displayed respectively

in the case of high and low repulsion among impurities. For both cases we report

three different temperatures. Depending on the strength of the repulsion potential

two different behaviors of n0 can be observed, as it is clear in figure 2(a). When the

repulsion among impurities is strong enough (blue markers, rmin ≥ 11ξ), clusters are

broken already at temperatures lower than T 0
λ (see figure 2(b)) and impurities have no

‡ This definition gives the same result as n0 =
(
|〈ψ〉T |2
N

)(
|〈ψ〉T=0|2

N

)−1
= |〈ψ〉T |2

|〈ψ〉T=0|2
. For numerical

convenience we use the latter in our computations.
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Figure 3. (Color online) (a): Impurity-impurity interaction EI↔I as a function of

their distance ∆q/ξ (dotted black line) and repulsive potential (dotted-dashed golden

line) for rmin = 8ξ. Different markers correspond to total energy EI↔I + Vrep for

different values of rmin. (b): Relative impurity distance δ2(T ) as a function of the

normalized temperature T/Tcl. Scans are performed with NI = 31 and aI = 4ξ. The

ratios Tcl/Tλ are 7.41, 2.51, 1.5, 1.02, 0.53, 0.002 for rmin from 8ξ to 12ξ respectively.

The markers refer to the same legend as in figure 2.

appreciable effect on n0. On the other hand, for rmin ≤ 10.5ξ (red markers) impurities

remain clustered and lead to an increase of the n0 at medium-high temperatures (see

figure 2(c)).

It has been shown that impurities experience a short-range attractive force,

mediated by the superfluid density [35, 37]. This interaction is characterized by a

potential energy, denoted here EI↔I. We compute this energy numerically by measuring

the full GP free energy of the ground state with two impurities placed at a distance

∆q, without the contribution of the repulsion. The constant contribution to EI↔I is

eventually set to zero. Impurities are then repelled because of Vrep, generating cluster

structures as the one observed in figure 1(d). However, if thermal fluctuations are

large enough, the bound among impurities can be broken. In figure 3(a) we compute

the interaction energy between two impurities at zero temperature EI↔I, as a function

of their distance ∆q (dotted black line). As a reference, the figure also displays the

repulsive potential Vrep with rmin = 2aI (dotted-dashed golden line). The sum of both

potentials is displayed in the same figure for different values of rmin: for sufficiently small

values of rmin, a potential well ∆U centered at rmin appears. We thus expect a pair of

impurities to split in a finite time at the temperature Tcl ∼ ∆U/kN , as in a standard

escape problem from a potential well [45]. In order to quantify this clustering transition,

we measure the average square distance between impurities and their center of mass

δ2(T ) =
d2(T )− d2(0)

d2(0)
, with d2(T ) =

NI∑
j=1

〈|qj−qcm|2〉 and qcm =

NI∑
j

qj
NI

.(7)

Figure 3(b) displays δ2(T ) as a function of T/Tcl for different values of rmin. A transition

around Tcl is indeed observed, where discrepancies are likely due to oversimplifications

made in the estimation of Tcl, namely by neglecting the many-body impurity interactions

and by using the interaction potential obtained at T = 0. For weak repulsion, even if
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Figure 4. (Color online) (a): Condensed fraction as a function of temperature

for different values of the filling fraction Φ. Temperatures are expressed in units

of the condensation temperature with no impurities T 0
λ . (b): Condensed fraction

as a function of the temperature normalized with Tλ(Φ). Scans with rp = 4ξ and

rmin = 2rp = 8ξ.

the condensate vanishes, impurities still feel the density-mediated attraction.

2.4. Condensation and BKT transition temperatures in presence of impurity clusters

Studying different values of rmin allowed us to show that an increasing of n0 occurs

only when the fluid depletion, due to the presence of impurities, is confined to a large

connected region at all temperatures. Therefore such effect can not be simply explained

by the local increase of density in regions not occupied by impurities. In the following

we consider hard-sphere impurities by fixing rmin = 2aI. In order to quantitatively

characterize the change in n0, we study how the condensation transition changes when

varying the filling fraction

Φ = 1− |〈ψ〉T=0|2
〈|ψ|2〉T=0

, (8)

which corresponds to the fraction of the total volume occupied by the impurities. In

figure 4(a) the condensed fraction is shown for different values of Φ, obtained by varying

the number of impurities. It is evident that the larger is the number of clustered

impurities, the higher results the condensation transition temperature. We explicit the

dependence of the transition temperature on the filling fraction as Tλ(Φ).

The condensation temperature Tλ(Φ) is measured for different values of Φ following

the same procedure explained in the previous section. In figure 5(a) the relative increase

∆Tλ = (Tλ(Φ)− T 0
λ )/T 0

λ is displayed. Remarkably, ∆Tλ scales linearly with Φ growing

up to 20%. We have checked by varying the number of impurities, their size and the

parameter rmin for values lower than 2aI, that n0 only depends on Φ and T (data not
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Figure 5. (Color online) (a): Relative increments of Tλ and TBKT as a function of

the filling fraction Φ. The relative increment of the ratio TBKT

Tλ
is also shown. (b):

Spatial correlation function g1(r) for three different temperatures (lower, close and

higher than TBKT) with and without impurities.

shown). Despite the change on Tλ, the condensed fraction curves collapse as expected

to a single one, once plotted versus T/Tλ(Φ) (see figure 4(b)).

Finally, we briefly address the role of impurities in the the BKT transition. A

detailed study will be left for a further work. This phase transition manifests through

a change in the behavior of the correlation function g1(r) = 〈ψ(0)ψ∗(r)〉 at the BKT

transition temperature TBKT. At T < TBKT, it presents a power-law decay g1(r) ∼ r−α,

where α depends linearly on the temperature; at high temperatures, it exhibits the

standard exponential decay of disordered systems. In figure 5(b) we show g1(r) at

different temperatures (lower, close and higher than TBKT) where these two behaviors

are clearly distinguishable. The BKT transition temperature can be thus determined

by finding where g1(r) abruptly changes its behavior [46]. With no impurities and

the parameters used in this article, the BKT transition takes place at TBKT = 0.83T 0
λ .

Note that because of the Mermin–Wagner–Hohenberg theorem [7, 8], the condensation

critical temperature vanishes as 1/ logL in the thermodynamic limit, so in principle

for a very large system we could have T 0
λ < TBKT. We do not address such limit

in this article. The presence of impurities in the system modifies the decay of g1(r)

by shifting TBKT to higher temperatures. Figure 5(a) also displays the relative increase

∆TBKT = (TBKT(Φ)−T 0
BKT)/T 0

BKT of the BKT transition temperature for different filling

fractions Φ. Although Tλ and TBKT both grow up to 20% when the Φ is increased, their

ratio remains almost constant. Let us remark that there are no important effects on

TBKT if impurities are not clustered.

The increase of the transition temperatures Tλ and TBKT can be explained by a

simple phenomenological argument. Large objects in the system, such as the clustered

impurities, modify the fluid wave-function boundary conditions. In particular, they
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impose effective Dirichlet boundary condition leading to symmetries in Fourier space,

decreasing the number of active modes. At a given temperature, with less active modes,

the energy is smaller and thus a higher temperature is necessary to induce a transition.

We stress that this result is general and does not depend on the choice of the repulsion

potential Vrep, as long as it is sufficiently short-range to allow the formation of a large-

size cluster at all T < Tλ. Our results could apply as well to two-component BECs,

with the components having different condensation temperatures and strong repulsion

between them. Finally, the same effect on the condensation curve will occur in three

dimensions, as it comes from a geometrical effect.

3. Discussion

In this article we studied thermal states of two-dimensional superfluids with active

impurities. We demonstrated how the phase transitions are affected by the emergence

of impurity clusters, opening up the possibility to raise the transition temperatures

in experiments by doping superfluids with specific types of impurities. Such result

rises new questions that would be interesting to address in detail. In particular, it

is remarkable that the presence of impurities does not disorder the system inducing

a loss of coherence. Is there a maximum value of the critical temperature that can

be reached using impurities, or it will continue to increase until the impurities occupy

the full domain? Could the modification of the condensation curve be rephrased as a

competition between the full perimeter and the full area of the impurities? Moreover,

this system presents a rich behaviour that, up our knowledge, has not yet been addressed

in details. For instance, during the thermalisation dynamics, impurities cluster similarly

to a diffusion-limited aggregation process [47]. Also, a complete study of the BKT

transition, considering the opposite limit Tλ < TBKT, needs to be investigated and

might devise new interesting physics.
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