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Abstract
Phase transitions of a finite-size two-dimensional superfluid of bosons 
in presence of active impurities are studied by using the projected Gross–
Pitaevskii model. Impurities are described with classical degrees of freedom. 
A spontaneous clustering of impurities during the thermalization is observed. 
Depending on the interaction among impurities, such clusters can break due 
to thermal fluctuations at temperatures where the condensed fraction is still 
significant. The emergence of clusters is found to increase the condensation 
transition temperature. The condensation and the Berezinskii–Kosterlitz–
Thouless transition temperatures, determined numerically, are found to 
strongly depend on the volume occupied by the impurities: a relative increase 
up to a 20% of their respective values is observed, whereas their ratio remains 
approximately constant.
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1.  Introduction

When a fluid composed of bosons is cooled down or the number of particles is increased, 
the system experiences a phase transition giving rise to a macroscopic state known as Bose–
Einstein condensate (BEC) [1]. Since its first experimental observation by Anderson et  al 
[2], BECs have been realized in systems of very different nature such as cold atomic gases  
[1, 3], solid-state quasiparticles [4, 5] and light in optical micro-cavities [6]. Whereas in three 
spatial dimensions a condensate is stable with respect to thermal fluctuations, in two dimen-
sions such fluctuations can destroy the long-range order of the system. This is a general result 
in statistical field theory known as the Mermin–Wagner–Hohenberg theorem [7, 8]: it states 
that a continuous symmetry cannot be spontaneously broken in dimensions lower than three, 
otherwise large-scale Goldstone modes would have an infinite infrared contribution to the 
two-point correlator. This theorem assumes the thermodynamic limit, that is the system size 
being infinite. However, for a finite system, condensation can be recovered, having a transition 
temperature Tλ that vanishes as the inverse of the logarithm of the system size.

Although condensation is formally forbidden in an infinite two-dimensional system, a 
peculiar phase transition of a different nature has attracted the attention of physicists and 
mathematicians since its independent discovery in the early 70s by Berezinskii, Kosterlitz and 
Thouless (BKT) [9–11]. The BKT transition is an infinite-order topological phase transition 
and manifests itself in systems that belong to the same universality class. By approaching the 
BKT transition temperature, TBKT, from below, the system switches from a gas of bounded 
vortex-antivortex pairs to a gas of free vortices, moving from a quasi-ordered phase to a dis
ordered one. The BKT transition has been observed in BECs made of dilute gases [12–16], 
exciton-polaritons [17], liquid helium films [18] and studied theoretically and numerically 
[19–22]; for a review on the topic, see for instance [3].

The purpose of this article is to study how the statistical mechanical properties of a two 
dimensional superfluid of bosons are affected by the presence of impurities. Particles and 
impurities have been used in superfluids since the early experiments in 4He [23] mainly with 
detection purposes: electrons, ions and neutral impurities such as hydrogen particles and exci-
mers have been exploited to visualize quantized vortices, to study their dynamics and the 
statistics of superfluid (quantum) turbulence [24–26]. More recently, the investigation of the 
interaction between one or more impurities and superfluids has been the main topic of experi-
ments in cold atoms [27, 28], superfluids of light [29, 30] and polaritons in semiconductor 
microcavities [31]. On the theoretical side, the dynamics of impurities in a BEC has been also 
addressed [32], as well as the properties of 3He and H impurities on thin 4He films [33, 34]. In 
addition, Ricaand Roberts studied how a collection of impurities affects the ground-state of a 
BEC by using a mean field model [35]. In this last work, four phases were identified, depend-
ing on the value of the interaction couplings. In particular, if the scattering lengths between 
impurity fields are positive, impurities behave as localized objects, they separate from the 
condensate and present a hard-sphere repulsion between each other.

We investigate here impurity clustering and phase transitions occurring in a minimal 
model that mimics such situation: the Gross–Pitaevskii (GP) equation coupled with active 
immiscible impurities having classical degrees of freedom. Such model was introduced in 
[36] and recently used in two-dimensional numerical simulations to study impurity-impurity 
and impurity-vortex interactions [37, 38]. Finite-temperature BECs can be studied by using 
the projected GP equation, that is obtained by introducing a cut-off kmax in Fourier space: 
this regularizes the classical mean-field ultra-violet divergence. The projected GP model is an 
effective model to study the condensation transition in two and three dimensions [21, 39–41] 
and superfluid vortex dynamics at finite temperature [42–44].
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2. Theoretical model and numerical results

2.1.  Model for impurities in a superfluid

We generalize the projected GP model to include the dynamics of active impurities. The model 
is then described by the Hamiltonian

H =

∫ (
�2

2m
|∇ψ|2 + g

2
|PG[|ψ|2]|2 +

NI∑
i=1

VI(|x − qi|)PG[|ψ|2]

)
dx

+

NI∑
i=1

p2
i

2MI
+

NI∑
i<j

Vrep(|qi − qj|),
�

(1)

where ψ is the collective wave-function of bosons having mass m, and g = 4πas�2/m being as 
the s-wave scattering length of bosons interaction. NI is the total number of impurities of mass 
MI, that are described using their classical position and momentum qi and pi, respectively. 
The strong repulsive potential VI determines the shape of the impurities by creating a large 
depletion in the fluid density. Vrep is a repulsive potential between impurities. The Galerkin 
projector PG truncates the system acting in Fourier space as PGψ̂k = θ(kmax − k)ψ̂k with θ(·) 
the Heaviside function, ψ̂k the Fourier transform of ψ(x) and k the wave vector. The equa-
tions of motion are directly obtained by varying (1):

i�
∂ψ

∂t
= PG[−

�2

2m
∇2ψ + gPG[|ψ|2]ψ +

NI∑
i=1

VI(|x − qi|)ψ]� (2)

MIq̈i = −
∫

VI(|x − qi|)PG[∇|ψ|2] dx −
NI∑
j�=i

∇Vrep(qij),� (3)

where qij = |qi − qj| and we have replaced pi = MIq̇i. The previous set of equations exactly 
conserves the Hamiltonian, the number of bosons N =

∫
|ψ|2dx  and momentum 

P =
∫ i�

2

(
ψ∇ψ − ψ∇ψ

)
dx +

∑
i pi.

The impurities in the system feel an attractive force mediated by the superfluid density 
field [35, 37]. However, unlike the case of impurities described by classical fields [35], in 
the model (1) no repulsion mediated by the fluid exists. In order to mimic such a hard-sphere 
repulsion, we consider the Lennard–Jones-like potential Vrep(r) = εr12

min/r12, as in [37]. We fix 
the energy ε in order to set the minimum of the total interaction energy between impurities at 
zero temperature at a distance rmin. Note that the specific shape of Vrep is not important, as long 
as it reproduces a hard-sphere repulsion. For the impurities potential we use a smoothed hat-
potential VI(r) = V0(1 − tanh

[
(r2 − a2

I )/4∆l2
]
)/2, where aI sets the characteristic radius of 

the impurity and ∆l  is a smoothing parameter. Finally, let us notice that in absence of impu-
rities and at zero temperature, equation (2) can be linearized about a uniform density state 
|ψ|2 = ρ∞/m, defining the phonon (sound) velocity c =

√
gρ∞/m2  with dispersive effects 

taking place for length scales smaller than the healing length ξ =
√
�2/2gρ∞.

We integrate the system (2) and (3) by using a pseudo-spectral code with Nres uniform 
grid points per direction of a squared domain of size L = 2π. We set kmax = Nres/3 so that 
the truncated system exactly conserves all the invariants (provided that initially PGψ = ψ and 
PGVI = VI) [44], c = ρ∞ = 1, V0 = 10 and ε = 0.006 74. As the healing length changes with 
temperature, we parametrize the solutions of (2) and (3) using its value taken at zero temper
ature. In thermal states, the only relevant dimensionless parameters are L/ξ , aI/ξ , NI, the 
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relative mass M = MI/ρ∞πa2
I  and ξkmax. We set L/ξ = 128. The value of ξkmax controls the 

strength of the nonlinear interactions and it is kept fixed to ξkmax = 2π/3. For this value, most 
of the excitations are phonons when the condensate fraction is large. For instance, it is com-
patible with the one used in [39], that is ξkmax ∼ 2; such value applies to a gas of 87Rb atoms.

We start by presenting a long temporal evolution of a system having 40 impurities of mass 
M = 0.1, radius aI = 4ξ, initially located at random positions (avoiding overlaps) and hav-
ing zero velocity. The density field of the initial condition is displayed in figure 1 (t = 0ξ/c). 
Impurities correspond to dark holes. During the time evolution, the short-range interaction 
among impurities mediated by the fluid let them collapse into small clusters (t = 815ξ/c); 
waves with random phases are generated, populating small length scales and starting the ther-
malization process. This thermal noise induces the clusters to move in a stochastic way, and to 
grow further (t = 1691ξ/c). Eventually, the system reaches thermal equilibrium where only 
one big cluster is observed in a bath of thermalized waves, (t = 10 965ξ/c). A movie of the the 
evolution is available in the supplementary data (stacks.iop.org/JPhysA/52/305501/mmedia).

2.2.  Grand-canonical thermal states

The evolution illustrated in figure 1 is an example of thermalization occurring in the micro-
canonical ensemble, as the thermal state is achieved keeping all the invariants conserved. Such 
dynamical process is numerically costly and does not directly provide access to the conjugate 
thermodynamical variables: temperature and chemical potential (here we only consider zero 
momentum states). To overcome these issues, in [44] a stochastic relaxation was introduced in 
order to efficiently generate thermal states in the grand-canonical ensemble. We make use of 
this approach adapting it to the Hamiltonian (1). The stochastic dynamics is ruled by

�
∂ψ̂k

∂t
= − ∂F

∂ψ̂∗
k

+

√
2�
β
ξ̂k� (4)

∂qi

∂t
= − ∂F

∂qi
+

√
2
β
ξq

i , MI
∂q̇i

∂t
= − ∂F

∂q̇i
+

√
2MI

β
ξq̇

i� (5)

where F = H − µN  is the free energy of the system, µ is the chemical potential controlling 
the number of bosons and β is the inverse temperature; ξ̂k, ξq

i  and ξq̇
i  are independent Gaussian 

white noises of unit variance. It can be shown by using the Fokker–Planck equation associated 
to (4) and (5), that the stationary probability distribution is given by the Gibbs grand-canonical 
distribution P[ψ̂k, qi, q̇i] ∝ e−βF . In the micro-canonical ensemble, P[ψ̂k, qi, q̇i] is also the 
stationary solution of the Liouville equation that describes the evolution of the phase-space 

Figure 1.  Snapshots of the fluid density during the GP temporal evolution of a state 
with 40 impurities (dark holes).
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distribution of the Hamiltonian system (1) [44]. It is evident from (5) that varying the impu-
rity masses modifies only the variance of impurity momenta in the steady state. Namely, the 
configurations of impurities in the steady state and the statistical properties of the thermalized 
system are independent of impurity masses. We define the temperature as T = 1/kNβ, with 
kN = L2/N  and N = πk2

max the total number of Fourier modes. With this definition T is an 
energy per unit of surface such that at low temperatures F ≈ TL2, because of equipartition. 
With these choices, intensive quantities remain constant when increasing the system size. In 
addition, we fix the total density mass ρ̄ = mN/L2 = 1 by dynamically adjusting the chemical 
potential [44]. We use (4) and (5) to study the effect of impurities on the superfluid condensed 
fraction n0 defined as

n0 =
〈
∣∣∫

V′ ψ(x) dx
∣∣2〉T

〈
∫
V′ |ψ(x)|2 dx〉T

,� (6)

where V ′ is the domain excluding the region occupied by the impurities and 〈·〉 stands for 
average over realizations at temperature T4.

2.3.  Clustering of impurities

We first perform a temperature scan without impurities. The condensed fraction is shown in 
figure 2(a) (solid blue line). The transition temperature Tλ is the lowest temperature where the 
condensed fraction can be considered negligible. We estimate it in a consistent way adopt-
ing the following numerical protocol: we take the points around which n2

0(T) is close to zero 
and we perform a linear interpolation of it. Tλ is then determined by finding the point where 
the linear fit vanishes. From now on, we indicate with T0

λ the transition temperature in the 
system without impurities. Then, we perform temperature scans varying the repulsive poten-
tial parameter rmin with a fixed number of impurities NI = 31 having radius aI = 4ξ. The 
results are also shown in figure 2. In figures 2(b) and (c) snapshots of in the steady date are 
displayed respectively in the case of high and low repulsion among impurities. For both cases 
we report three different temperatures. Depending on the strength of the repulsion potential 
two different behaviors of n0 can be observed, as it is clear in figure 2(a). When the repulsion 
among impurities is strong enough (blue markers, rmin � 11ξ), clusters are broken already at 
temperatures lower than T0

λ (see figure 2(b)) and impurities have no appreciable effect on n0. 
On the other hand, for rmin � 10.5ξ (red markers) impurities remain clustered and lead to an 
increase of the n0 at medium-high temperatures (see figure 2(c)).

It has been shown that impurities experience a short-range attractive force, mediated by 
the superfluid density [35, 37]. This interaction is characterized by a potential energy, denoted 
here EI↔I. We compute this energy numerically by measuring the full GP free energy of the 
ground state with two impurities placed at a distance ∆q, without the contribution of the 
repulsion. The constant contribution to EI↔I is eventually set to zero. Impurities are then 
repelled because of Vrep, generating cluster structures as the one observed in figure  1(d). 
However, if thermal fluctuations are large enough, the bound among impurities can be broken. 
In figure 3(a) we compute the interaction energy between two impurities at zero temperature 
EI↔I, as a function of their distance ∆q (dotted black line). As a reference, the figure also 
displays the repulsive potential Vrep with rmin = 2aI (dotted–dashed golden line). The sum of 
both potentials is displayed in the same figure for different values of rmin: for sufficiently small 

4 This definition gives the same result as n0 =
(

|〈ψ〉T |2
N

)(
|〈ψ〉T=0|2

N

)
−1 = |〈ψ〉T |2

|〈ψ〉T=0|2
. For numerical convenience we 

use the latter in our computations.
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values of rmin, a potential well ∆U centered at rmin appears. We thus expect a pair of impurities 
to split in a finite time at the temperature Tcl ∼ ∆U/kN , as in a standard escape problem from 
a potential well [45]. In order to quantify this clustering transition, we measure the average 
square distance between impurities and their center of mass

δ2(T) =
d2(T)− d2(0)

d2(0)
, with d2(T) =

NI∑
j=1

〈|qj − qcm|2〉 and qcm =

NI∑
j

qj

NI
.� (7)

Figure 3(b) displays δ2(T) as a function of T/Tcl for different values of rmin. A transition 
around Tcl is indeed observed, where discrepancies are likely due to oversimplifications made 
in the estimation of Tcl, namely by neglecting the many-body impurity interactions and by 

Figure 2.  (a) Condensed fraction as a function of the temperature for different values 
of rmin. Temperatures are expressed in units of the condensation temperature with 
no impurities T0

λ. (b) Snapshots of the density field in the steady state at different 
temperatures in the case of high repulsion (rmin = 11ξ) among impurities. (c) The same 
of (b) but for low repulsion (rmin = 8ξ). Scans are performed with NI = 31 and aI = 4ξ.

Figure 3.  (a) Impurity-impurity interaction EI↔I as a function of their distance 
∆q/ξ (dotted black line) and repulsive potential (dotted-dashed golden line) for 
rmin = 8ξ. Different markers correspond to total energy EI↔I + Vrep for different 
values of rmin. (b) Relative impurity distance δ2(T) as a function of the normalized 
temperature T/Tcl. Scans are performed with NI = 31 and aI = 4ξ. The ratios Tcl/Tλ 
are 7.41, 2.51, 1.5, 1.02, 0.53, 0.002 for rmin from 8ξ to 12ξ respectively. The markers 
refer to the same legend as in figure 2.

U Giuriato et alJ. Phys. A: Math. Theor. 52 (2019) 305501
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using the interaction potential obtained at T  =  0. For weak repulsion, even if the condensate 
vanishes, impurities still feel the density-mediated attraction.

2.4.  Condensation and BKT transition temperatures in presence of impurity clusters

Studying different values of rmin allowed us to show that an increasing of n0 occurs only when 
the fluid depletion, due to the presence of impurities, is confined to a large connected region 
at all temperatures. Therefore such effect can not be simply explained by the local increase of 
density in regions not occupied by impurities. In the following we consider hard-sphere impu-
rities by fixing rmin = 2aI. In order to quantitatively characterize the change in n0, we study 
how the condensation transition changes when varying the filling fraction

Φ = 1 − |〈ψ〉T=0|2

〈|ψ|2〉T=0
,� (8)

which corresponds to the fraction of the total volume occupied by the impurities. In figure 4(a) 
the condensed fraction is shown for different values of Φ, obtained by varying the number of 
impurities. It is evident that the larger is the number of clustered impurities, the higher results 
the condensation transition temperature. We explicit the dependence of the transition temper
ature on the filling fraction as Tλ(Φ).

The condensation temperature Tλ(Φ) is measured for different values of Φ following 
the same procedure explained in the previous section. In figure  5(a) the relative increase 
∆Tλ = (Tλ(Φ)− T0

λ)/T0
λ is displayed. Remarkably, ∆Tλ scales linearly with Φ growing up 

to 20%. We have checked by varying the number of impurities, their size and the parameter 
rmin for values lower than 2aI, that n0 only depends on Φ and T (data not shown). Despite the 
change on Tλ, the condensed fraction curves collapse as expected to a single one, once plotted 
versus T/Tλ(Φ) (see figure 4(b)).

Finally, we briefly address the role of impurities in the the BKT transition. A detailed study 
will be left for a further work. This phase transition manifests through a change in the behavior 
of the correlation function g1(r) = 〈ψ(0)ψ∗(r)〉 at the BKT transition temperature TBKT. At 

Figure 4.  (a) Condensed fraction as a function of temperature for different values of the 
filling fraction Φ. Temperatures are expressed in units of the condensation temperature 
with no impurities T0

λ. (b) Condensed fraction as a function of the temperature 
normalized with Tλ(Φ). Scans with rp = 4ξ and rmin = 2rp = 8ξ .

U Giuriato et alJ. Phys. A: Math. Theor. 52 (2019) 305501
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T < TBKT, it presents a power-law decay g1(r) ∼ r−α, where α depends linearly on the temper
ature; at high temperatures, it exhibits the standard exponential decay of disordered systems. 
In figure 5(b) we show g1(r) at different temperatures (lower, close and higher than TBKT) 
where these two behaviors are clearly distinguishable. The BKT transition temperature can be 
thus determined by finding where g1(r) abruptly changes its behavior [46]. With no impurities 
and the parameters used in this article, the BKT transition takes place at TBKT = 0.83T0

λ. Note 
that because of the Mermin–Wagner–Hohenberg theorem [7, 8], the condensation critical 
temperature vanishes as 1/ log L in the thermodynamic limit, so in principle for a very large 
system we could have T0

λ < TBKT. We do not address such limit in this article. The presence of 
impurities in the system modifies the decay of g1(r) by shifting TBKT to higher temperatures. 
Figure 5(a) also displays the relative increase ∆TBKT = (TBKT(Φ)− T0

BKT)/T0
BKT of the BKT 

transition temperature for different filling fractions Φ. Although Tλ and TBKT both grow up to 
20% when the Φ is increased, their ratio remains almost constant. Let us remark that there are 
no important effects on TBKT if impurities are not clustered.

The increase of the transition temperatures Tλ and TBKT can be explained by a simple phe-
nomenological argument. Large objects in the system, such as the clustered impurities, mod-
ify the fluid wave-function boundary conditions. In particular, they impose effective Dirichlet 
boundary condition leading to symmetries in Fourier space, decreasing the number of active 
modes. At a given temperature, with less active modes, the energy is smaller and thus a higher 
temperature is necessary to induce a transition. We stress that this result is general and does 
not depend on the choice of the repulsion potential Vrep, as long as it is sufficiently short-range 
to allow the formation of a large-size cluster at all T < Tλ. Our results could apply as well to 
two-component BECs, with the components having different condensation temperatures and 
strong repulsion between them. Finally, the same effect on the condensation curve will occur 
in three dimensions, as it comes from a geometrical effect.

Figure 5.  (a) Relative increments of Tλ and TBKT as a function of the filling fraction Φ. 
The relative increment of the ratio TBKT

Tλ
 is also shown. (b) Spatial correlation function 

g1(r) for three different temperatures (lower, close and higher than TBKT) with and 
without impurities.

U Giuriato et alJ. Phys. A: Math. Theor. 52 (2019) 305501
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3.  Discussion

In this article we studied thermal states of two-dimensional superfluids with active impurities. 
We demonstrated how the phase transitions are affected by the emergence of impurity clus-
ters, opening up the possibility to raise the transition temperatures in experiments by doping 
superfluids with specific types of impurities. Such result rises new questions that would be 
interesting to address in detail. In particular, it is remarkable that the presence of impurities 
does not disorder the system inducing a loss of coherence. Is there a maximum value of the 
critical temperature that can be reached using impurities, or it will continue to increase until 
the impurities occupy the full domain? Could the modification of the condensation curve be 
rephrased as a competition between the full perimeter and the full area of the impurities? 
Moreover, this system presents a rich behaviour that, up our knowledge, has not yet been 
addressed in details. For instance, during the thermalisation dynamics, impurities cluster simi-
larly to a diffusion-limited aggregation process [47]. Also, a complete study of the BKT trans
ition, considering the opposite limit Tλ < TBKT, needs to be investigated and might devise 
new interesting physics.
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