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Abstract

Resonance energy transfer (RET), the transporteatrenic energy from one atom or molecule to
another, has significant importance to a numbedieérse areas of science. Since the pioneering
experiments on RET by Cario and Franck in 1922 thieeretical understanding of the process has
been continually refined. This review presentssiohical account of the post-Forster outlook on
RET, based on quantum electrodynamics, up to tesept-day viewpoint. It is through this quantum
framework that the short-rang&?® distance dependence of Forster theory was unifighd the
long-range, radiative transfer governed by the nessquare law. Crucial to the theoretical
knowledge of RET is the electric dipole-electripale coupling tensor; we outline its mathematical
derivation with a view to explaining some key plogdi concepts of RET. The higher order
interactions that involve magnetic dipoles and telecjuadrupoles are also discussed. To conclude,
a survey is provided on the latest research, whidtudes transfer between nanomaterials,
enhancement due to surface plasmons, possibititissde the usual ultraviolet or visible range and
RET within a cavity.

1 Introduction and the early years of RET

Resonance energy transfer (RET, also known aseffgence resonance energy transfer, FRET, or
electronic energy transfer, EET) is an optical pes; in which the excess energy of an excited

molecule — usually called the donor — is transfért@ an acceptor molecule [1-4]; as depicted
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schematically in Figure 1. Fundamentally, RET imres two types of elementary particles: electrons
and photons. In RET, all the electrons (including dynamically active electrons) are bound to the
nuclei of the molecules, and typically reside irithvalence molecular orbitals. As such, the
individual electrons do not migrate between molesutluring the transfer process, since the
molecular orbitals (the wavefunctions) do not oaprl but instead move between individual
electronic states within the molecules. This isdamentally different to the ultra-short-range Dexte
energy transfer, where electrons do in fact migbatisveen molecules via covalent chemical bonds
[5]. In RET, on relaxation of the electron to avér energy electronic state in the donor, the exces
energy is transported to the acceptor in the fofnthe emittedvirtual photon — this transfer is
facilitated by dipole-dipole couplings between thelecules. In fact, photons play two distinct sole
towards the process: one as the mediator of docwapdor transfer, and the other as an external
energy source that promotes donor valence electiotos an electronic excited state, via an

absorption process prior to RET.

In 1922, the pioneering work of Cario and Franckleéed theearliestobservation of RET [6-8].
Their spectroscopy experiment involved the illuniio) of a mixture of mercury and thallium
vapours at a wavelength absorbed only by the mgree fluorescence spectra that results show
frequencies lines that can only be due to thallium1927, the Nobel laureate J. Perrin provided th
first theoretical explanation [9]: he recognizedttlenergy could be transferred from an excited
molecule to a nearby-unexcited molecule via dipoteractions. Five years later, his son F. Perrin
developed a more accurate theory of RET [10] basmedKallman and London’s results [11].
Extending the works of both Perrins, Forster dgwetban improved theoretical treatment of RET
[12-14]. Forster found that energy transfer, through dipmdepling between molecules, mostly
depends on two important quantities: spectral apeaind intermolecular distance. He discovered the
now famousR® distance-dependence law for the rate of resonemeryy transfer in the short-range.
Much later, in 1965, this distance dependence ptedliby Forster was verified [15]. This led to the
‘spectroscopic ruler’ by Stryer and Haugland [16, B7useful technique to measure the proximity of
chromophores and conformational change in macrarutde using RET. The next section, which is
more technical than the rest of the article, detdlie history of RET based on quantum
electrodynamics (QED); it can be safely skipped rfegders more interested in the current
understanding of RET.
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2 Historical role of quantum electrodynamics in RET

2.1 The success of QED

Quantum electrodynamics is a rigorous and accutsery — which is completely verifiable by
experiment [18] — that describes the interactionelgctromagnetic radiation with matter. This
guantum field approach differs to other theoriethet the whole system is quantised, i.e. bothenatt
and radiation are treated quantum mechanically. QHDvides additional physical insights
compared to classical and semi-classical electraaycs, which treats electromagnetic radiation
only as a non-quantised wave. For example, theewpavticle duality of light is uniquely portrayed
within QED but not semi-classical theories. Howewespite their deficiencies, classical and semi-
classical theories can still be useful since, ofteay are easier to implement analytically andemor

economic computationally.

The first major QED publication is credited to Qravho, in 1927, wrote a description of light
emission and absorption that incorporated both wmmartheory and special relativity [19]; this
depiction later became known as the relativistionf@f QED, which is used in systems that contain
fast moving electrons. Three years later Dirac mleted his classic book ‘The Principles of
Quantum Mechanics’ [20] in which, among other exioemal works, he derived a relativistic
generalisation of the Schrodinger equation. Howefee elementary physical quantities such as the
mass and charge of particles, calculations usiisgetlirly form of QED produce diverging results. In
the late 1940s, this problem was resolved (by maabsation) leading to a complete form of QED
developed independently by Feynman [21-25], Schernfjg6-29] and Tomonaga [30,31] — all three

procedures were unified by Dyson [32].

The ability of QED to provide novel predictions ionumental, but its quantitative successes are
even more impressive. In particular, the theowgueately predicts the electrorgefactor of the free
electron to 12 decimal places. In Bohr magnetorisuthe most precise measurementgt is
1.00115965218073(28) [33]; QED has a predictedevaful.00115965218203(27) [34]. In addition,
there are other staggering quantitative succesBes.example, the numerical calculation of Lamb
shift splitting of the 2, and 2, energy levels in molecular hydrogen predicts 1,853(6) kHz
[35], which is highly accurate compared to the expental value of 1,057,839(12) kHz [36]. QED

also provides a number of predictions that are taio@ble by semi-classical theory. These include



93
94
95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

117
118
119
120
121
122
123

Jones and Bradshaw RET: Theory to Applications

forecasts of spontaneous decay and the CasimieP&ddces, a deviation from London forces for

long-range intermolecular interactions [37-41].

2.2 Non-relativistic QED: a theoretical framework for RET

An individual RET process, which arises after eatooin of the donor, involves light emission at one
molecule and light absorption at the other. Sughtimolecule interactions are best described by
QED. This means that the quantum properties aadr¢tardation effects of the mediating light,
which leads to the concept of a photon, is directborporated into the calculations. Therefore, in
terms of this framework, it is natural to descrRET in terms of photon creation and annihilation
events. Namely, the creation of a photon at thateck donor and a photon annihilation at the
unexcited acceptor. Mathematically, these coupliang represented as off-diagonal matrix elements
of the interaction Hamiltonian. A full quantum degption is usually necessary to describe the RET
process oveall distances, this is because the electronic energgtitransferred instantaneously as
assumed by the classical and semi-classical déiscrgp(although retardation effects are sometimes
provided in such frameworks [42]). The transferesfergy between molecules occurs via the
exchange of avirtual photon, which has increasingly real (transversedracteristics as the
intermolecular separation grows; this is discussednore detail, in Section 3.2. The term virtual
being indicative of the fact that the photon isbsabed before its properties, such as wavelength,
take on physical significance. The dipole of eaulecule is also correctly described asaamsition

dipole moment, connecting two non-degenerate erseggs of the molecule.

Since RET involves slow moving electrons, boundhimitthe valence states of the molecules, the
non-relativistic variant of QED (as opposed totiglatic or Lorenz gaug®ED) is used. The theory
that underpins the quantum description of RET ésRbwer-Zienau-Woolley formalism of molecular
(or non-relativistic) QED [43-48], which utilisefie Coulomb gaugeV-A=0, where A is the
vector potential and the fields of the mediatingotpins can be naturally deconstructed into
longitudinal and transverse components. The lodgial components, with respect to the
displacement vectoR, are associated with the scalar potential and kaparticular affinity for

coupling molecular transition moments in the nearez where the donor-acceptor pair are close

together. In regions far from the source (i.etafis from the donor) the wave-vectkrand R are

essentially collinear and the scalar potential appines zero. In this case, the transverse paneof
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field dominates the coupling of the transition dgpmmoments of individual molecules [49]. This has
important implications for the spatial and tempahahamics of excitons within molecular aggregates
[50,51]; namely, transition dipole moment pairstthee collinear to each othand collinear to the

displacement vector are coupled by the longitudioahponents of the field only.

The QED model of RET is traceable to the 1966 pdyyeAvery, which extended the Perrin and
Forster theory of RET by replacing the Coulomb rat&on with the relativistic Breit interaction
[52]. Although Avery did not explicitly include ¢heffects of the mediating photon, in terms of the
creation and annihilation field operators, he nthedess made a direct connection between RET and
spontaneous emission. Moreover, he determinedRthelependence on the transfer rate in the
far-zone. He concluded that investigating RET fréme point-of-view of the ‘direct action’
formulation of QED, devised by Wheeler and Feyniiz), would be ‘extremely interesting’. Soon
afterwards, in the same year, the Avery work wadsganed by a more formal and rigorous quantum

theoretical outlook provided by Gomberoff and Poyadr.

2.3  RET coupling tensor: the quest for its correcform

In the early 1980s there were a number of RET study Thirunamachandran, in collaboration with
Power and Craig, which give valuable insights itite physical connections between the near- and
far-zone mechanisms of RET. In 1983, Power anduhlimachandran published three seminal
papers on QED theory [55-57]. Here they consiterproblem within the Heisenberg formalism,
via the time evolution of operators associated wibth electron fields and Maxwell fields. In the
third paper of the series, they derive an expresfio the time dependent evolution of the RET

guantum amplitude as;

ey (t) = 47 (D) (A)(-0° +0 1)

ict(ka=kp) _ ict(ka=K) _
¢ ! € Ll (2.1)

1% .
=) R ) 1) e Wk B)

where ,uk(x) is the transition dipole moment of moleckilelong thek" canonical coordinate aril
is the distance between the two molecules. Thastea occurs from an excited molecubeto

moleculeA, initially in its ground state. Subscrigtandj represent Cartesian components with the

5
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usual tensor summation convention being employ&}l [T he transition dipole moments elements
are 4°° (D) and u°(A) ; where molecul® is initially in statep, and the final state of molecueis

g- Integration is over all possible wave-vectorsn@ted by) of the mediating photon. In this work,
the rapidly oscillating terms were dropped, to Eawnly two terms instead of the usual foude
infra, equation (2.6). The ternks andka represent the wave-vectors resonant with a transaf
moleculesD andA, respectively. Power and Thirunamachandran dicerplicitly describe how the
singularities in (2.1) were dealt with mathematigabut they show that the final expression

conforms to the correct distance dependenciesiapipropriate limits.

Around the same time, Thirunamachandran and Craitgsidered resonance coupling between
molecules ‘where one was in an excited state’, iwithe dipole approximation (the term ‘resonance
energy transfer’ was not used in this work). Theally published the work as an extended paper
[59], and expanded upon it in their widely knowrokd45]. They consider two identical molecules
and calculate the interaction of the excited sysimwith the unexcited systerA. Firstly, they

considered calculations that ignored retardatideces and any time explicit dependencies. The

calculated electric field &, produced by the oscillating dipole@t produces an energy change of;

AE = (472,) " Ru™ (D) 4°( A(g -3RR) . (2.2)

J

The final term is an orientational factor that miades the magnitude of the energy difference based
on the relative dipole orientations of the molesuleThrough the inclusion of retardation effects,

equation (2.2) becomes;

AE = (47E0)_1 Iuiop ( D) /JJ-qO(A) eiREP
> 1 COSkR aA coskR ksink A n
x{k R T(au -R Ij?)—( s (5ij -3R R)} . (2.3)

Retardation effects give rise to the appearance mfiase factore“®, as well as two other distance

dependencies, namelg™"  aii’
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The authors then calculated the fully retardeatrix elemenin tensor-form and show that it is the
same as expression (2.3). The calculation formailglves summing over all photon wave-vectors
connecting the initial and final states. In preetithis summation involves using a box quantizatio
technique to transform the problem to an integrahbmentum space. The solution can be found by
contour integration, in a way analogous to thatvich Green’s functions solutions are found in
guantum scattering problems [60]. For identicallenoles, the final matrix element (or quantum

amplitude) in tensorial form is:

where;

V..(k,R) = : [(517 - 3ﬁiﬁj)(coskR+ kRsinkR)—(Sl.j —kikj)(szz coskR)] . (2.4)

In light of the subsequent analysis shown lateis itmportant to note that the interaction tenggr
derived in this early work, is purely the real paftthe full expression. In deriving equation (2.4
four different contours could be chosen aroundtivee poles (the singularities), leading to different
results. The contour they chose ensures a cootggbing-wave solution, although there is @o

priori mathematical basis for this choice.

Further advances were achieved by Andrews and cken® who proved a direct relationship
betweerradiationlessandradiative RET [61-63]. Although all three regimes of RET.e- theR™?,
R*and R°®dependencies on the rate — were mathematicallyigheeldin the original derivations,
Andrews et alwere the first to comment upon the relevance ofittermediate-zoneontribution,
which has a R dependence. This term dominates at critical dégts; that is, when the distance

separating the molecules is in the order of thaiced wavelengthix =2/2, of the mediating

photon (i.,eR~ %). Inclusion of all three distance-dependenciesnia rate equation is known as the

unified theoryof RET. The particulars of which are providediection 3.2.
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Initially Andrews and Sherborne in 1987, reconsderthe problem in the Schrodinger

representation, where they derived the electrioldielectric dipole tensor without the need of
‘outgoing wave’ arguments of scattering theory [S$tarting from the second-order expression for
the time-dependent probability amplitude for enetrgysfer, they inserted all intermediate states to
obtain a rather complicated looking expression (eproduced here). As detailed in the original
paper, the integral of the expression gives riséotw different Green’s functions, and hence four
choices of contour. The fact that four terms aigsattributed to the forward and reverse transfer

processes. They showed that the choice of cont@s not unique, with each giving different

expressions forViJ(k’R) Interestingly, they found tha¢se new contours introduced imaginary
terms into Vif(k’R), i.e. those not included in the derivations of tearlier work by

Thirunamachandran and Craig. By choosing the cortttat appeared to be the ‘most acceptable’,
they derived the coupling matrix element to behaf form (corrected later by Daniels et al. [6B[

modifying the indexing here for better comparisathwhe expressions above):

V,(k.R)=0,(k.R)+it,;(k.R) (2.5)
where,
o,(k.R)= ﬁom[(sﬁ = 3R R, )(cos kR -+ kRsin k)~ (8, ~ RR,)K*R* coskR | |
7,(k.R)= 4ﬂ;)R3 [(8,-3RR,)(sin kR~ kRcoskR) - (8, - RR, )R> sinkR |

in which g is the expression given in (2.4). This derivatieiminates the need for physical

arguments based on quantum scattering theory ustx iearlier work. It, nevertheless, did require
careful consideration of the correct contour withiah to apply Cauchy’s residue theorem for
solving the integral. In later work, Andrews angdliinasapplied an alternative method of contour
integration, whereby they infinitesimally displac#te problematic poles away from the real axis
[64]. The idea being that the imaginary addendéieshthe poles to enable integration around a
closed contour along the real axis. The approaste gesults in agreement with those of Andrews

and Sherborne’s favoured choice of contour. Tthis,study removes the need to choose a contour;
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however, artificial displacements of the poles|uding the choice of direction of displacement on

the complex plane, must be made.

In 2003, Daniels et al. re-examined the problem awmdided the uncertainties of the contour
integration entirely by solving the Green'’s funatiaosing judicious substitutions within the integral

Namely, when the Green’s function is expressedsasraof two integrals, so that;

_ ¢ sinpR © sinpR
G(k,R)= dp+|————d , 2.6
(1K) !R(k—r)) ’ !)R(—k-r)) ! @0

substitutions of the formt = pR—kR ansl= pR+kR for the first as&tond integral, respectively,
give an expression in which terms are oscillatboyt, convergent. The authors solved these integrals
by expressing them as series expansions (in time ébrspecial functions) to get a result, analogous

to equation (2.5), in the form:

O'U(k,f?)z

T;(k,l_é)

yys {(cos kR + kR sin kR)[5U. - 31%1.1%].]— k*R* cos kR[SU ~R AJ.]}
0

- [#(sin kR~ kReoskR)[ 8, ~ 3R R [+ R*sinkr[5,~RR ]} . (2.7)
0

Here, on comparing with the earlier expressions, dhly difference is a choice of sign for the
imaginary termz;. The authors suggested that the ambiguity of $ngrthis term signifies that
Vlf(k,f?) describes both incoming and outgoing waves, accusating thereby both time-ordered
(Feynman) diagrams, as a complete quantum deseriphiould. However, the authors stress that it
is unimportant which sign to ascribe to a particylieocess (photon absorption or emission), as only
the modulus squared of the matrix element is plajlgicneasureable and, hence, using either sign on
rj provides an identical result for all calculatiordevant to experiment. Jenkins et al. wrote a
follow-up paper that analysed the importance ofhe&eynman diagram, called time-ordered
pathways, to the overall RET rate. They discovdtet both pathways have equal contribution
when the two molecules are close together; howewee, pathway begins to dominate as the

molecules are moved further apart [65].
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In 2016, Grinter and Jones re-derived expression) (@sing a spherical wave description of the
mediating photon, via vector spherical harmonidj.[6All previous derivations employed a plane-
wave description of the mediating photon. One athge of the spherical wave approach is that
multipole contributions are more concretely definederms of the angular momentum quantum
numbers andm. Furthermore, the work involved the developmednam approach complementary
to the plane wave methods, giving additional insigto orientational aspects of RET and forming a
natural setting for the decomposition of fieldoittansverse and longitudinal components. In 2018,
a comprehensive review of the spherical wave appragas published [67]. In the plane-wave

method, defined in terms of the position vedigr the oscillating part of the field is expanded as

(ik [E)Z . (ik [ﬁ)3

5 olkd — 3 i
e,e"’ =e, |1+iklf+ o 3

+o.| . (2.8)

where the first term relates to the electric dipthe second to the magnetic dipaled the electric

guadrupole, and so on. In the spherical wave gegnr, the expansion is written as;

" =i (21+1)j, (kr) P, (cos) . (2.9)

where j (kr) are Bessel functions amicos9)  are Legendre poliais. The spherical wave
description consequently attributes radiation emgrgrom specific pure multipole sources to
specific angular momentum quantum numbers, theseiparating different multipole contributions

that are of the same order.

Additionally, derivation of the RET matrix elemensing spherical waves eliminates the need to
perform contour integration and, therefore, setbet physically correct solutions. The arbitrary
choice of sign, which can be seen in the imagimpany (7;) of equation (2.7), does not appear in the
spherical wave analysis. TRadependence can be expressed in terms of Hanketldoa of the first
kind, i.e. h (kR) = j, (kR) +in, (kR) for outgoing waves, while Hankel functions of geeond kind,
i.e. N?(kR) = j, (kR)-in, (kR) describe incoming waves. The ambiguous sign iraton (2.7) was
interpreted to mean that both incoming and outgaeuages are required to calculate the quantum

. . . . . 10
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amplitude of the process (i.e. photon absorptiah emission). In the spherical wave approach, the
incoming and outgoing waves emerge naturally amdbealinked directly to one or other of the signs

in the imaginary part of equation (2.7), up to pirase factoexp(iiat).

In a separate study, Grinter and Jones also amblyse transfer of angular momentum between
multipoles using a spherical description of the malg photon [68]. Although it has been known
for some time that coupling between multipoles iffedent order can be non-zero [69-74], this work
showed that RET between multipoles of differenteors formally allowed. This is because the
isotropy of space is broken during an individuansfer event, even though one may expect the
process to be forbidden on the grounds of the wrarleof the conservation of angular momentum.
For example, in the case of electric dipole-eleajuadruple (E1-E2) transfer, two units of angular
momentum are lost from the electronic state of adqupole emitter (the donor), whereas the dipole
acceptor only takes up one quantum of electrongukan momentum. The above analyses indicate
that treating the mediating photon of an RET predgederms of spherical waves may be valuable in
some applications, particularly in the case of palar QED. A discussion on higher-order
considerations, such as these, is found in Se8t®n

3 RET based on quantum electrodynamics

3.1 Derivation of the RET coupling tensor

In order to understand any optical process witliae framework of QED, a matrix element (or
guantum amplitude) that links the initial and fiséhtes is required. In the case of RET between tw
molecules, the initial state is the donbr,in an excited state and an accepforin the ground state.
In the final state, the acceptor molecule is ireacited state and the donor molecule is in its igdou
state. Photophysically, this can be simply undedtas;

D"+A - D+A" (3.1)

where, in this type of chemical expression, therast denotes the molecule in an electronically
excited state.

11



Jones and Bradshaw RET: Theory to Applications

325 The usual starting point for any QED analysis ssitlustration of the process by Feynman diagrams
326 [23], thereby aiding construction of the matrixretnt by defining all of the intermediate system
327 states. Feynman diagrams are graphical descrgptibalectronic and photonic processes with a time
328 frame that moves upwards. Resonance energy tramsfieeen two molecules, in isolation, involves
329 two Feynman diagrams — as shown in Figure 2. Hetamining the left-hand diagram, the initial
330 system state has the donor in excited stadad the acceptor in the ground state, labelletthé red
331 section). Moving up the time axis, a photon isated from the excited donor to provide an
332 intermediate system state, in which both molecakesin the ground state and a photon is present
333 (the black section). Higher up the diagram thistph is annihilated at the donor and, thus, exdites
334 to statem (the blue section). The diagram on the right-hark is legitimate, albeit counter-
335 intuitive. In this case, the intermediate systéatesrepresentsoth molecules simultaneously in their
336 excited states in the presence of the mediatingophe meaning that conservation of energy is
337 clearly violated. However, this is fully justifisb within the constraints of the energy-time
338 uncertainty principles.

339

340 These diagrams (which represent the two pathwaf&EdT) involve two light-molecule interactions:
341 one at the donor and the other at the acceptois i3 mdicative okecond-order perturbation theqry
342 which we examine below, as the minimal level ofotlyenecessary to describe RET. The total
343 Hamiltonian for RET between neutral molecules, itipolar form, is written as;

344

345 H = H i (D) o (A)+ Hi - H (D) + Hia(A) ©2)
346

347 Here, the first two terms correspond to the molecuiamiltonians of the donor and acceptor

348  H,,(X); X=D, A, which are usually the non-relativistic Born-Oppeimer molecular

349 Hamiltonian. The third term is the radiation Hawmian, H not seen in semi-classical theory;

rad ?

350 this is typically defined in terms of the electard magnetic field operators and/or the auxiligidf
351 operator,a(ﬁ, t) [45,75]. Although these three Hamiltonians argontant for describing the light-
352 matter system in its entirety, they play no explrale in the derivation of the matrix element for
353 RET. The key parts of the Hamiltonian for RET #re interaction termsi, (X); X=D, A . These

354 two terms represent the interaction between eadeaule and the electromagnetic field; they are

355 perturbative in nature because the light-molecaderactions of RET is weak compared to the large

. . . . . 12
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Columbic energies of the molecules. The eigenstate¢he interaction Hamiltonian are constructed
with the tensor product of molecule and radiatitates. Of particular note is thab interaction term
between the donor and acceptor existeequation (3.2), unlike in semi-classical forrmals. The
QED description of RET is, therefore, a genuinelyl fiuantum theory, whereby the transfer of
energy between an excited donor to an unexcitedpaoc is via the electromagnetic field; direct
Coulombic interactions between the two moleculesndb arise in this multipolar form of the

Hamiltonian [55].

Using the electric dipole approximation, in whichlythe transition electric dipole (E1) of each

molecule are considered, the interaction Hamiltomsavritten as;

H,, =-&'2(D)d" (Ro) - &2 ( ALK (R) (3.3)

whereﬁ(x) is the dipole operator of moleculeat positionRy (it is usually presumed that the donor
is positioned at the origin)g is the permittivity of free space. The displacamelectric field

operator,d" (ﬁx), can be written in terms of a mode expansion;

NI

[0 (9 & (Peo™ -8 (h ¥ (pe™™) . (3.4)

a*(Re)= 13 %)

Here, c is the speed of light in a vacuur&'” (p) defines the polarisation of the mediating photon
(the asterisk denoting its complex conjugat)) (p) anda'™ (p) are the annihilation and creation

operators, respectively, for a photon of wave-veqioand polarisationd . In the pre-exponential
factor, V represents the volume used in the box tigaion procedure that enables fields to be
defined in terms of operators, as required by QHBRe second-order perturbative term, which is the

leading term in the matrix element for RET, is éiflly written (in terms of Dirac brackets) as;

] :<f |Hint||1><|1|H int|i>+<f |H int|I 2><| ZH int' > ] (3.5)
E -, E-E,
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From Figure 2, we easily identify the key systeatest (which is a combination of the two molecular
states and the radiation state). These are trhialils'tate|i>=‘E”,E2;O(b,/l)> (donor excited,
acceptor unexcited and no photon), the final s{tape:‘Eg, En;0( b,A)> (donor unexcited, acceptor
excited and no photon) and the two possible intdiate states||l>=‘E°,E§;1( r),/l)> (donor and

acceptor unexcited and one photon) andi=

Eg. Exi( r),A)> (donor and acceptor excited and one
photon). The radiation states, often referredstmamber or Fock states, have eigenvalues that are
occupation numbers of the quantized electromagfietdt i.e. the number of photons in the system.
The creation and annihilation operators act on thelevant radiation states via
a?(p|o(pA)=11pA) and a”(P)|UpA)=10(pA). The commutator involving these two
operators is given by the relationsHig"” (P), aW’(Td)]=(SI73V)_l53(QD‘ )3y, where 5(p- 1)

is a Dirac delta function and,,. is a Kronecker delta [76].

Equipped with these state expressions, the interaktamiltonian of equation (3.3) and the energies
of each state in Table 1 (note that the initial &ndl states have the same energy, since congamnvat
of energy has to be restored after a miniscule amofitime), an expression for the RET matrix

element can be found. For illustrative purposes, explicitly calculate just one of the Dirac
brackets, namel<y1| H,.|i) ; which is the initial bracketcsiiit is convention to move from right to

left in these equations. Explicitly, it is writtexs,;
(1L [H i) =(ES.ER1(p.A)| - &(D) i (Ro ) - &5 2 ( AL (R)| &, E0(~pl)) . (3.6)

This represents the creation of a photon when xbeesl donor relaxes (the acceptor is unchanged,
as denoted by the superscript on eithgy and, hence, dipole operators acting on the accept
molecular state and the annihilation operator (witti) on the radiation state are zero due to

orthonormality. Therefore, equation (3.6) is siifigdl to;
(L[H i)=& (E3] 2(D)[E5) (1 p.A)| 0 (Ro)[o( D)) (3.7)

The solution of which, on insertion of equatiom{3is expressed concisely as;

. . . . . 14
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1
S\ s hc 2 oy n B
(1, H, i) =i (ij e (p) " (D)eP™ (3.8)
p.A
with thei™ component of theransition dipole moment written as;

1" (D)=(E3|u (D)) (3.9)

Following a similar procedure for the other threeraD brackets, and finding the energy

denominators for each term of (3.5), the full esgren for the RET process is given as;

ipR

 ALTEg=L

=22 6 (3 (B (A T

p.A

(3.10)

In order to determine a final result for the RETtrxaelement, we use the cosine rule to rewrite the

summation over of polarizations as;

>e(De’(B=d-Pp . (3.11)

A

where g; is the Kronecker delta and a caret denotes awvaaitor, and convert the inverse of the

guantization volume to an integral in momentum spac

| d°p . (3.12)

" :Zi%Mon(D)ﬂij(A)jszpz(q -9 7)
x{k(eipm'z _ e—ipu?a)+ p( diR +érp1‘R)} d3p3 (3.13)
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wheref/ick is the energy transferred fronto A. As outlined in the subsequent section, thisgratke
has been solved analytically using various vectcuus techniques. Omitting the long and
intricate derivation based on special functions],[@8e matrix element for RET — including the

retarded electric dipole-electric dipole (E1-Ellplng tensor, denoted & — is obtained as;

My =4 (D)V; (k Ru™( A (3.14)

kR

v, (k,?a)=47EOR3{(1— kR (5, -3RR)-( KR(q - RH - (3.15)

A more in-depth analysis of the derivation of tHe-EEL coupling tensol;;, and the transfer rate of
RET (an outline of which follows) — without providj all of the intricate specifics — is delivered by

Salam in his recent review [77].

3.2 Physical interpretation of the RET coupling tensor

The physical observable derived from tgtensor, via the matrix element, is the transfée it
RET, symbolised by. This rate is demined from the Fermi rule [7B]= 27'[/h‘l\/| ﬁ‘z p; , Wherep
is the density of acceptor final states. Assunairgystem of two freely tumbling molecules, meaning

that a rotational average is applied [79], thedfeihg is found;

1. =
I'~§|/,1(D)|2|,u(A)|2A(k, R . (3.16)
where the E1-E1 transfer functioA,(k, R), is defined by [62];

Ak R) =V (kB Y kﬁR=—3)Z{3+( KR+( K (3.17)

2
(47%,R

In contrast to Forster coupling, the QED form o #lectronic coupling has a complicated distance
dependence, which underscores the unification o thdiationless and radiative transfer

mechanisms. Whereas the semi-classical Forsterythpgedicts only arR™® dependence [80], the

. . . . . 16
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QED rate expression of (3.17) contains three distatependencie®?, R* andR™®. This signifies

three distinct regimes that dominate in the longermediate- and short-range, respectively.

The different regimes of RET are most readily ustterd in terms of the mediating photon [49]. As
outlined in Section 2.2, the photon is said to haa characteristics — i.e. it has a large transverse
component w.r.tR —when the separation of the donor and acceptmess its reduced wavelength
(i.e. R>R). Meaning that, since the mediating photon isaglsvtransverse w.r.t. its wave-vector
p, the photons (emitted in all directions by that are annihilated &t in the long-range are the ones
where p is essentially co-linear witlR. Conversely, ifR is significantly less than the reduced
wavelength the photon is fullyirtual, meaning that retardation effects are not presdimat is, it
does not have well defined physical characterissush as momentum. This arises because, due to
the uncertainty principle, the position of the naguhig photon is ‘smeared out’ in the short-range so
that p may no longer be co-linear witR — therefore, there is a longitudinal componenth®
photon w.r.t.R. The two limiting cases of RET are, hence, of&ferred to as radiationless (virtual
photon) and radiative (real) transfer — in the pasttil the unified theory, they were usually
considered to be two completely separate and distiechanisms. Since all three terms of equation
(3.17) are non-zero in RET (or, at least, the stanmge term always exists), it is justifiable ty Haat

all photons are virtual in nature [49,81]. Thisane that a notional ‘real’ photon — which is
transverse w.r.t botlp and R — does not exist, because these two vectors &g Beactly collinear

due to the uncertainty principle.

To summarise, long-range (or far-zone) energy feartgs an inverse-squaf€?, dependence on the
rate, and short-range (or near-zone or Forstensfea has the well-knowR™® dependence. That
leaves the intermediate zone, which was not prelyoadentified until Andrews’s work [62], where
the distance separating the molecules is of thesader as the reduced wavelength of the mediating
photon; this region has aR™* dependence. Our expressions have assumed dyramiding
between the transition dipole moments of the dama acceptor, for cases of static dipole couplings

(in whichk = 0) only the first term of equation (3.17) applie
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3.3 Higher order RET

Often the electric dipole approximation is employedstudies on RET, which means that only E1-
E1l coupling is considered. However, the couplifighe electric dipole of a molecule with the
magnetic dipole (M1) or electric quadrupole (E2}lo# other can be important [82], for example, in
chirality-sensitive RET [77,83-86]. E1-M1 and E2-Eouplings are, in general, of similar
magnitude but are roughly 150 times smaller tharEElinteractions; other multipoles are even

smaller and almost never utilised in RET analyses.

The derivation of the matrix element for E1-M1 clwg, with use of special functions, is provided

elsewhere [63]. The final result is given by;

no m
M fEil-Mlz{’uionq (D) m, C( A) + nf C( D)MnO(A)}U” (k, ﬁ) ' (3.18)
which features the transition magnetic dipatg, and the E1-M1 tensot), (k, Ifz), with the latter

explicitly expressed as;

_ e—ikR

are,

& %(—ikm KR) (3.19)

where gj is the Levi-Civita symbol. Following a rotationaverage [79], the rate of RET based on

this type of coupling is;

, B(K,R),. ) o ) N
M-~ (902 ){‘,U(D)‘Z‘m( A)‘Z‘F‘:U( A)ﬁ i [)‘Z—ZRd,U( D) Ol [)H,u ( AOvh )ﬂ . (3.20)
where the E1-M1 transfer functioB(k,R), is written as;

2
(47, R’

B(k,R)=U;(k R (k7= (kBR+ kR . (3.21)
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Comparing equations (3.17) with (3.21), i.e. thad B functions, it is clear that the first terrhgt
R dependent term) is missing in E1-M1 coupling. $¥wlly, this means that the photons that
mediate E1-M1 interactions have real charactesstie. they are never fully virtual. However, in
contrast to a commonly held view, E1-M1 couplinghi® exclusively related to radiative energy
transfer since a short-range”* term also exists. The lack of tie® term also tells us that static

electric and magnetic dipoles (in whiklx 0) do not interact, since all the other termslue k.

The matrix element for E1-E2 interactions is detasd as [69,71];
ME=={4 (D)Q (A-Q (D)4 (A} Viy(k B . (3.22)

where the E1-E2 tensov;;, (k, R), is expressed by;

j

ikR

Vi (k, R = 4;0 {(-3+3ikrr & R)(J, R+3, R4, R5RRF
+HKPR =i K R*)(%(au R+3, R)- “iR“jFik%} . (3.23)

This expression is thgk-index symmetry form of the tensor, which is justifsince it contracts with

the index-symmetric electric quadrupol®, . After a rotational average, the correspondirtg s

obtained as;

2
=
L

rr -2 2(O) Qu (A Gy (A+A( Al Q. (D QD] . (3.24)

where C(k, R) is found as;

L _[oo+18k R+ 3k R kR (3.25)

C(k,R) = V) (k B Y (k B= (4775 R4)
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Examining this expression, we see that E1-E2 cogplhas four terms with the distance
dependencieR? R* R°® and R® (rather than the three of E1-E1l interactions). Tieav
radiationless K® term dominates in the near-zone, as predictedéyter [5], while the usual
inverse-square distance dependence of radiatimsfenadictates the far-zone. The presence of these
terms (and the distinctive middle terms) in a sngkpression again signifies that they are the two
extremes of a unified theorySince the first term does not dependlomwe determine that static

electric dipole and quadrupoles can interact.

3.4 Effects of a bridging molecule

Recent theoretical work, based on QED in the etedipole approximation, is an analysis on the
effects of a third molecul®, on RET [87-91]. In this sub-section, we touclomiphe case wheid
bridges the energy transfer betwd2iandA — a Feynman diagram of which is provided in FigBre
This is theDMA configuration; the other caseBAM and MDA), in which the molecules are
interchanged, have also been investigated. Thexheément forDMA, delivered from fourth-order

perturbation theory, is given by;
Mg = 12 D)V (k, Row )a® (M) Vi (k Ru)4™( A (3.26)

where a?kO(M) is the polarisability tensor that arises becauselight-molecule interactions occur

at the third molecule (which begins and ends igiitaind state, as denoted by the superscript @GD) an
two couplings tensors are used since two energysfiea steps occur. Using the Fermi rule, the
leading term in the physically observable rate t(tmcludes the third body) is the quantum
interference, i.e. the cross-term, that involvedtiplication of equations (3.14) and (3.26) so that
[88];

MM = 40 (D)V (K Row ) (M) ¥ (K R)y™( Ag™( D M (K B™( ¥ - (3:27)
This is the rate that dominates if energy tranbgweenD andA is forbidden, for example, due to

symmetry selection rules or when the dipole moment® and A are both orthogonal with each

other and their displacement vectd®, In this scenario, the mediatht facilitates the RET that
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would not occur otherwise [89]. A recent review ®glam provides a more comprehensive analysis
on the role of a third body in RET [77].

4 Recent RET research

4.1 Nanomaterials for energy transfer

While the generic term ‘molecule’ has been usedughout this manuscript, other materials can be
used in RET such as atoms, chromophores, particids more recently, carbon nanotubes [92-96]
and quantum dots (QDs). In 1996, first observatdrenergy transfer between the latter was
achieved with cadmium selenide (CdSe) QDs [97] sindlar compounds followed; for example,
cadmium telluride (CdTe) [98] and lead sulfide (PPE®] QDs. In experiments, quantum dots are
attractive because they can be much brighter, anthim greater photostability, than typical organic
chromophores [100,101]. Hence, QDs have becomeoriammt in bio-inspired RET-based
applications [102,103], such as nanosensors [104-&ftd photodynamic therapy [112,113]. In
terms of theory, it has been determined that REflvéen quantum dots and nanotubes can be
modelled using dipole-dipole couplings [90,114-11%or more on the experiments and theory of

RET in nanomaterials, Liu and Qiu provide an exaslreview on recent advances [120].

While quantum dots are suggested as artificial e in synthetic light-harvesting materials
[111,121], research on such systems usually invaiutti-chromophore macromolecules. One type
of which are known as dendrimers; from its perighercore, these branch-like structures comprise
decreasing number of chromophores [122-130]. Tieyk on the principle that photons are
absorbed at the periphery and the excitation energynnelled to a central reaction centre via
multiple RET steps; an example of this is showrFigure 4. A significant amount of theory has
been published on this multi-chromophore transfectmanism [131-140]. Towards the centre of the
dendrimer, where the number of chromophores isedsed, there is a possibility that two excited
donors will be in the vicinity of an acceptor. this case, another RET mechanism, known as energy
pooling [141-143], becomes possible. This progesBustrated in Figure 5 and can be written, in

terms of photophysics, as;

D"+D"+A - D+D+A"
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where the double asterisk denotes that the acceptimubly excited, i.e. the acceptor is promoted t
an excited state that requires the excitation eegrmgf the sum of the two donors. This contrasts t
the process known as energy transfer up-convef&#wh145], which has the same initial condition
but excitation is transferred from one donor to dkiger — so that one of the donors is doubly e#cite
— and the third molecule is not involved. The matlement for energy pooling has an analogous
form to equation (3.26); the only difference istthi@e superscriptnO on A (which is now a donor)
becomes 0 and the superscript 00 &n (now the acceptor) becoms3, wheres signifies a doubly
excited molecule. In recent years, Lusk and cokers have demonstrated energy pooling
experimentally [146] and discovered, among otheraades, that the efficiency of energy pooling
can be improved within a cavity [147-149]. Latelgoreover, they have studied the time-inverse
mechanism of energy pooling, known as quantum rayttivhich involves the excitation oA

transferring to botid molecules [150].

Another double-excitation mechanism is two-photdfiiTH151,152], which involves the absorption
of two photons at the donor and the transfer ofrésellting excitation to the acceptor. The matrix
element of this process is identical to equatiad4g except the superscript @nis s rather than

On. Since the incident light in two-photon RET iswkr in energy compared to RET, photo-
destruction of living tissue can be circumventetherefore, biological applications of this process

have arisen, including photodynamic therapy [156}Hhd bioimaging [155,160-163].

4.2 Plasmon-based RET

The quest for control of light-energy at the namdsdias led to some very interesting studies, from
both an experimental and a theoretical point-ofwi¢hat often involve RET coupling between
molecules near a surface plasmon [164-194] — titerdasically, acting as a bridging material for
the energy transfer. Plasmons are the collectretations of conduction electrons by light, which
generally reside in a confined metallic structurdy coupling plasmonic materials to RET
chromophores, a substantial amount of energy tamsin occur over significantly larger separations
than the RET between conventional materials — ugidgtances approaching the optical wavelength.
The effects of a surrounding nanophotonic envirammsuch as a surface plasmon, on RET is an
ongoing debate [189,195].
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In 2011, Pustovit and Shahbazyan developed a chdstieory of plasmon-assisted RET that
involves an isotropic complex polarizability [196].heir model, which maintains an energy balance
between transfer, dissipation and radiation, aealyse geometry of a plasmon-RET system — with a
focus on distance and orientational effects — lmyiging numerical results. This mechanism shows
that plasmon-assisted RET will dominate the usoalmadiative (Forster) transfer, even in the near-
zone. While a comparable study predicts, over reaglof nanometres, an enhanced rate by a factor
of 10° [197]. These forecast improvements now have éxgetal verification. For example,
Wenger and co-workers demonstrate enhanced trapsfeeen donor-acceptor pairs confined to a

gold ‘nanoapparatus’; they endorse a six-fold iaseein the rate of RET over 13 nm [198].

In the years that followed, other innovative stgdim plasmon RET have arisen. An experimental
study by Zhao et al. showed that the efficiencyRET can be controlled by the plasmonic
wavelength [199]. Remarkably, they discovered REIT can be turnedff andon by tuning the
plasmon spectrum with the donor emission and aocegisorption peaks, respectively. Related
theory develops the concept of a ‘generalised sgleaverlap’, whereby the rate of plasmon RET is
not just dependent on the overlap integral of theod emission and acceptor absorption spectra (as
follows from Fdrster theory), but includes a plasimgocontribution from an electromagnetic
coupling factor [200,201]. Other experimental wonrkich is analogous to the effects of a bridging
molecule that is discussed earlier [89], use plasmoanoantennas to enable E1-E1 RET that is

otherwise forbidden by geometry [202].

Bershike et al. explain, by comparing model andeexpental data, enhanced coupling between a
nanoscale metal and a light emitting dipole [203hey employ a complex dielectric function that
indicates anR™ distance dependence (ranging from 0.945 to 8.2% Ietween the fluorescent
molecule and the gold nanopatrticle surface. Smadahis study, Bradley and co-workers provide an
investigation, which employs a Green’s tensor asialgf Mie theory, that again show plasmon RET
can display afR™* dependence [204]. These results are consisténtnuimerical predictions, based

on QED, that intermediate-zone RET dominates aetilseparation distances [51].

4.3 Energy transfer at non-optical frequencies

Resonance energy transfer usually occurs in thravidiet or visible range of the electromagnetic

spectrum, which is comparable to the energy reduioe electronic transitions in molecules etc.
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Recently, however, energy transfer involving eithemuch lower or higher frequency range has

gained traction. An outline on which now follows.

At the lower end, in the infrared range, transféwibrational energy can arise between excited
(donor) and unexcited (acceptor) oscillating boadsadjacent molecules. Applications include the
observation of local orientational order in liqui@95] and, analogous to the spectroscopic ruler in
RET, a measure of intermolecular distances at whenanoscale in the condensed phase [206,207].
This type of transfer is especially prevalent betwevater molecules, due to the strong dipole-dipole
interactions between the O—H stretch vibration8{200]. It has been determined that, with some
modifications, that Forster theory can be validhese light frequencies [211]. Energy transfer at
even lower frequencies, namely in the microwavegeans the subject of a very recent paper by
Wenger and co-workers [212]. In this work, therggdransfer is enhanced by positioning the donor

and acceptor pair within a cavity.

At the higher end is interatomic and intermolecaulombic decay (collectively ICD), a process
that involves the x-ray range of the spectrum. stHoredicted in 1997 [213], and experimentally
verified six years later [214], ICD is a processvnich photoionization of one atom or molecule can
lead to remote photoionization of another atom aletule via the exchange of a high energy
photon. In terms of fundamental theory, ICD is namderstood to be equivalent to Forster transfer
(although ICD involves much more complex prior gagterior processes) — since the mechanism is
driven by dipole-dipole coupling with the charaigtic R° distance dependence. Nevertheless, there
is a major fundamental difference between RET &i0.| Namely, as explained previously, the
former typically involves only valence electronsesas ICD is initiated by an intra-atomic (or intra
molecular) decay process; a high-energy transitiomhich a donor valence electron relaxes to the
core shell resulting in promotion of an acceptolenee electron to the continuum, i.e. acceptor
ionization. This means that an ionization crossise will feature instead of the absorption cross-

section of Forster transfer.

A prototypical example is the photo-ionization ofi@on dimer (Ng via 2S-electron emission from
one of its atoms. This results in the relaxatiba walence 2P-electron into the formed vacancy and
consequently, a high-energy photon is released.llowiag absorption of this light by the
neighbouring atom, a 2P-electron is ejected frof215,216]. The interaction of the two newly
charged ions causes a Coulomb explosion, i.e.rdwgrientation of the dimer. For clarity, the whole

mechanism is illustrated in Figure 6. ICD is tylig ultra-short-range, in which (just like Dexter
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transfer) wavefunction overlap occurs; hence, taeteting to electron correlation and exchange will
contribute. Moreover, since ICD involves electretaxation from a valence shell to the core shell i
the donor, account of the Auger effect is requirdthis competing mechanism occurs because the
energy generated from this relaxation could besteared to another electron within the donor (and,
thus, ejecting it), so energy in the form of a pmotvould not reach the acceptor. Therefore, for an
accurate theoretical description of ICD, a detaile@rpretation of the Auger effect along with
electron correlation and exchange is required.s T$hiachieved by considering direct and exchange
Coulomb integrals for the decay rate. An overvahis is provided by Jahnke in his recent review
[217].

Since the pioneering studies on diatomic systehexethave been a number of experimental and
theoretical investigations into ICD that involvdfdrent materials, including clusters of atoms and
molecules [218], quantum dots [219,220] and quantweits [221]. Although ICD has considerable
theoretical interest, there is evidence of its pcatimportance to biological chemistry; in padtiar,

in the understanding of a DNA repair mechanism jpley by the enzymes known as photolyases
[222,223]. The theoretical developments of ICDeofimirror those already established in RET —
such as the effects of retardation, dielectric mmrnents, a third body and virtual photons [224]225
Clearly, more research in this exciting emergimddfis required, with much still to learn in terofs

its fundamental theory and applications.

4.4 RET in cavities

It can be challenging to elucidate fundamental @sses experimentally, particularly because RET
often occurs in natural biological systems and rgpematerials’ in the condensed phase.
Necessarily involving a level of phenomenologicaldalling, their simulation can be tremendously
complicated. Associated research, especially meotion to the field of biology, has been covered
in a numerous recent reviews [226-246]. Cavityrguan electrodynamics (cQED) works on the
principle that electronic species are restrictegnall volumes (usually bounded by mirrors in one o
more dimensions) so that the electromagnetic fieltlned to specific quantised modes and the
guantum nature of the light becomes more apparenipared to the free field. In terms of
mathematical formulation, the arbitrary quantisatlume,V, of equation (3.10) is simply replaced
by the dimensions of the cavity. Early applicatioof cQED revealed an understanding of the

fundamental light-matter interactions in atoms,uen dots and similar materials [247-252].
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More recently cQED has been applied to chemicastamoes, such as organic dyes, and connected
to phenomena such as RET [253]. The main advardhgaudying these cavity-based schemes is
that experimentalists are able to control the edbachgnetic radiation at the quantum level, while
simultaneously reducing interference with the sumdings to a significant extent. This allows for
the explicit study of polariton modes (sometimefledahybrid states in this context), which is
typically difficult in the condensed phase becaofthe rapid decoherence that derives from system
coupling with a continuum of environmental modé&sr example, in 2012, Ebbesen and co-workers
experimentally showed that the photophysical priogeiof light-induced chemical reactions can be
influenced by cavity fields, which can modify thbeenical reaction landscape [254]. In another
study, the same research group cleverly showedtb@ier the reaction rates of chemical reactions
by coupling molecular vibrations to infrared cauitypdes [255].

Since experiments with negligible amount of decehee are now conceivable, there is increasing
interest in the effects of polariton modes on eyergnsfer within a cavity. In 2015, for instanee,
couple of theoretical studies indicated that ‘extitonductance’ could be considerably enhanced, by
orders of magnitude, when organic materials argleouto cavity modes [256,257]. Experimental
verification of this amplified energy transfer sdotiowed [258-260]. Attempts to better understand
polariton-assisted RET are increasingly prevalént2018, Du et al. developed a ‘polariton-assisted
remote energy transfer’ model to explain how enbBdRET is mediated by vibrational relaxation in
an optical microcavity [261]. While earlier thigar, Schéafer et al. proposed that energy transfer
could be drastically affected by a modificationtbé vacuum fluctuations in the cavity. In this
research, they make a connection to Foérster andeDdransfer, and account for the often-
disregarded Coulomb and self-polarisation inteosmsti Interestingly, they predict that photonic
degrees of freedom give rise to electron-electammetations over large distances in the cavity [262
What we do know for sure is that cavity RET is presentative example of the strong coupling
regime; an excellent recent review on such stragig-imatter interactions is provided by Borjesson
and co-workers [263].

5 Discussion

Today it is nearly 100 years since the discoverREfT and, remarkably, the 71 year-old Forster
theory that describes this transfer is still widelyised. This model has provided us with the dais

R distance dependence on the rate between donacaegtor molecules. Following these earlier
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times, from the 1960s until the late 1980s, sigatiit theoretical developments based on fundamental
guantum electrodynamics has been applied to twoe®ET. This has culminated into the unified
theory of RET, which links the short-range (neamn&oprocess of Forster with a long-range (far-
zone),R? dependent transfer consistent with Coulomb’s Ldtalso predicts & * dependence in
the intermediate region, where the distance betwemolecules approximately equals the reduced
wavelength of the mediating virtual photon. Théea could be said to have increasingly real
characteristics in this range. Although not dethih this review, further work in the 1990s préekt
that optically active molecules in the condensedsghcould also have R® and aR™ distance
dependence, which become significant when the in@agipart of the refractive index is especially
large [264,265]. Soon afterwards, a QED descniptior the rate of RET in the presence of
dispersing and absorbing material bodies of anyitshapes was provided [266]. In the 21st century,
among other advances, quantum theory has helpeshderstand the role of mediators in energy
transfer (i.e. 3- and 4-body RET) and the redeiovat of the RET coupling tensor has provided new
physical insights.

In the last ten years, research into RET has mawedmany exciting directions — too numerous to
cover in detail in a single review. For examplee enhancement and control of long-range, super-
Coulombic RET in hyperbolic metamaterials is shde®7,268] and the influence of epsilon-and-
mu-near-zero waveguide super-coupling on RET issicened [269]. Moreover, many research
groups continue to unravel the nature of energgsfea within biological photosynthesis, with a
special focus on the understanding of the rolesrtidecular vibrations may play in facilitating the
process. There are also enormous efforts to deve@oprgy materials’ that may enable new
technologies, which include those focused on seteargy harvesting. Materials based on surface
plasmons have shown great promise, especiallysindhnection to the huge enhancements of RET
efficiency. Research groups are also working onl RE both the non-optical regions of the
electromagnetic spectrum and within optical casitién all of these exciting areas of research, new
experiments and theory need continued developm&he theory of QED, while the most precise
theory we know for light-matter interactions, asegsnmon-dissipative closed systems and that the
electrons are localised to the molecules. Consglyyén its current formulation, microscopic QED

is not directly applicable to the investigation siirface plasmons (delocalised excitons) or the
process of decoherence, which occurs because shensys open to the environment. While semi-
classical theories can address these questions limited way, the continued development of

macroscopic QED [270] is desirable for accuratdrpgals of such processes.
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Table 1. All the system states and their associated enefgidRET. The energies of the donor
and acceptor are represented by superscrifig,0ofnd E, , respectively. Due to conservation

of energy arguments" = E".

System stat¢ Dirac bracket Energy
iy | B ELo(pA)) B+ E;
IN |ES.EA(PA)) | ES+EC+hcp

|Ep.EN:A(pA))
1) E; + E7+Acp

|ES, Ex;0(pA))
) Eg+E}

Figure 1. Representation of energy transfer, the excited d@mothe left-hand side) transfers
energy, represented by the red arrow, to the aocém the right).

Figure 2. Two time-orderings for RET between a dondj &nd an acceptoA]. The vertical
lines denote the two molecules, wavy lines areptim@onsn andm represents the excited state
of D andA, respectively, and 0 is their ground state; titngcreases up the graph. Red, black

and blue lines represent the initial, intermedsatd final system state.

Figure 3. One of 24 possible time-orderings for RET medidiga third moleculelM, acting
as a bridge between doridrand acceptof. Energy is transferred froBto A, andM begins

and ends in its ground state.

Figure 4. Two-step RET in a second-generation phenylacetytemelrimer. This schematic
depicts initial electronic excitation at a peripddephenyl group, which acts as a donor of
energy to a neighbouring inner-ring chromophores thcceptor then becomes a donor of

energy to the phenaline core. Original image afguken reference [137].
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1538 Figure 5. Representation of energy pooling, the two excitealods (on the left- and right-hand
1539 side) transfer energy, represented by the red arrtmathe acceptor (in the centre).
1540 Figure 6. (a) Photoionization of a neon dimer, via ejectioranfinner shell electron from an
1541 atom (green arrow), due to incident x-ray radiaiorange wavy line). b Interatomic
1542 Coulombic decay: an outer electron relaxes intovtancy (blue arrow) and, consequently,
1543 photo-ionization of the other atom occurs due tergy transfer between the atoms (red arrow).
1544 (c) The newly charged atoms (plus signs) repel e#lotr dyellow arrows), which results in
1545 destruction of the neon dimer.
1546
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