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 10 

Abstract 11 

Resonance energy transfer (RET), the transport of electronic energy from one atom or molecule to 12 

another, has significant importance to a number of diverse areas of science.  Since the pioneering 13 

experiments on RET by Cario and Franck in 1922, the theoretical understanding of the process has 14 

been continually refined.  This review presents a historical account of the post-Förster outlook on 15 

RET, based on quantum electrodynamics, up to the present-day viewpoint.  It is through this quantum 16 

framework that the short-range, R–6 distance dependence of Förster theory was unified with the 17 

long-range, radiative transfer governed by the inverse-square law.  Crucial to the theoretical 18 

knowledge of RET is the electric dipole-electric dipole coupling tensor; we outline its mathematical 19 

derivation with a view to explaining some key physical concepts of RET.  The higher order 20 

interactions that involve magnetic dipoles and electric quadrupoles are also discussed.  To conclude, 21 

a survey is provided on the latest research, which includes transfer between nanomaterials, 22 

enhancement due to surface plasmons, possibilities outside the usual ultraviolet or visible range and 23 

RET within a cavity. 24 

 25 

1 Introduction and the early years of RET 26 

Resonance energy transfer (RET, also known as fluorescence resonance energy transfer, FRET, or 27 

electronic energy transfer, EET) is an optical process, in which the excess energy of an excited 28 

molecule – usually called the donor – is transferred to an acceptor molecule [1-4]; as depicted 29 
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schematically in Figure 1.  Fundamentally, RET involves two types of elementary particles: electrons 30 

and photons.  In RET, all the electrons (including the dynamically active electrons) are bound to the 31 

nuclei of the molecules, and typically reside in their valence molecular orbitals.  As such, the 32 

individual electrons do not migrate between molecules during the transfer process, since the 33 

molecular orbitals (the wavefunctions) do not overlap, but instead move between individual 34 

electronic states within the molecules. This is fundamentally different to the ultra-short-range Dexter 35 

energy transfer, where electrons do in fact migrate between molecules via covalent chemical bonds 36 

[5].  In RET, on relaxation of the electron to a lower energy electronic state in the donor, the excess 37 

energy is transported to the acceptor in the form of the emitted virtual photon – this transfer is 38 

facilitated by dipole-dipole couplings between the molecules.  In fact, photons play two distinct roles 39 

towards the process: one as the mediator of donor-acceptor transfer, and the other as an external 40 

energy source that promotes donor valence electrons into an electronic excited state, via an 41 

absorption process prior to RET. 42 

 43 

In 1922, the pioneering work of Cario and Franck enabled the earliest observation of RET [6-8].  44 

Their spectroscopy experiment involved the illumination of a mixture of mercury and thallium 45 

vapours at a wavelength absorbed only by the mercury; the fluorescence spectra that results show 46 

frequencies lines that can only be due to thallium.  In 1927, the Nobel laureate J. Perrin provided the 47 

first theoretical explanation [9]: he recognized that energy could be transferred from an excited 48 

molecule to a nearby-unexcited molecule via dipole interactions.  Five years later, his son F. Perrin 49 

developed a more accurate theory of RET [10] based on Kallman and London’s results [11].  50 

Extending the works of both Perrins, Förster developed an improved theoretical treatment of RET 51 

[12-14].  Förster found that energy transfer, through dipole coupling between molecules, mostly 52 

depends on two important quantities: spectral overlap and intermolecular distance.  He discovered the 53 

now famous R–6 distance-dependence law for the rate of resonance energy transfer in the short-range.  54 

Much later, in 1965, this distance dependence predicted by Förster was verified [15].  This led to the 55 

‘spectroscopic ruler’ by Stryer and Haugland [16,17], a useful technique to measure the proximity of 56 

chromophores and conformational change in macromolecules using RET.  The next section, which is 57 

more technical than the rest of the article, details the history of RET based on quantum 58 

electrodynamics (QED); it can be safely skipped by readers more interested in the current 59 

understanding of RET. 60 

 61 
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2 Historical role of quantum electrodynamics in RET 62 

2.1 The success of QED 63 

Quantum electrodynamics is a rigorous and accurate theory – which is completely verifiable by 64 

experiment [18] – that describes the interaction of electromagnetic radiation with matter.  This 65 

quantum field approach differs to other theories in that the whole system is quantised, i.e. both matter 66 

and radiation are treated quantum mechanically.  QED provides additional physical insights 67 

compared to classical and semi-classical electrodynamics, which treats electromagnetic radiation 68 

only as a non-quantised wave.  For example, the wave-particle duality of light is uniquely portrayed 69 

within QED but not semi-classical theories.  However, despite their deficiencies, classical and semi-70 

classical theories can still be useful since, often, they are easier to implement analytically and more 71 

economic computationally.   72 

 73 

The first major QED publication is credited to Dirac who, in 1927, wrote a description of light 74 

emission and absorption that incorporated both quantum theory and special relativity [19]; this 75 

depiction later became known as the relativistic form of QED, which is used in systems that contain 76 

fast moving electrons.  Three years later Dirac completed his classic book ‘The Principles of 77 

Quantum Mechanics’ [20] in which, among other exceptional works, he derived a relativistic 78 

generalisation of the Schrödinger equation.  However, for elementary physical quantities such as the 79 

mass and charge of particles, calculations using this early form of QED produce diverging results.  In 80 

the late 1940s, this problem was resolved (by renormalisation) leading to a complete form of QED 81 

developed independently by Feynman [21-25], Schwinger [26-29] and Tomonaga [30,31] – all three 82 

procedures were unified by Dyson [32]. 83 

 84 

The ability of QED to provide novel predictions is monumental, but its quantitative successes are 85 

even more impressive.  In particular, the theory accurately predicts the electronic g-factor of the free 86 

electron to 12 decimal places. In Bohr magneton units, the most precise measurement of g/2 is 87 

1.00115965218073(28) [33]; QED has a predicted value of 1.00115965218203(27) [34].  In addition, 88 

there are other staggering quantitative successes.  For example, the numerical calculation of Lamb 89 

shift splitting of the 2S1/2 and 2P1/2 energy levels in molecular hydrogen predicts 1,057,838(6) kHz 90 

[35], which is highly accurate compared to the experimental value of 1,057,839(12) kHz [36].  QED 91 

also provides a number of predictions that are unobtainable by semi-classical theory.  These include 92 
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forecasts of spontaneous decay and the Casimir-Polder forces, a deviation from London forces for 93 

long-range intermolecular interactions [37-41]. 94 

 95 

2.2 Non-relativistic QED: a theoretical framework for RET 96 

An individual RET process, which arises after excitation of the donor, involves light emission at one 97 

molecule and light absorption at the other.  Such light-molecule interactions are best described by 98 

QED.  This means that the quantum properties and the retardation effects of the mediating light, 99 

which leads to the concept of a photon, is directly incorporated into the calculations.  Therefore, in 100 

terms of this framework, it is natural to describe RET in terms of photon creation and annihilation 101 

events.  Namely, the creation of a photon at the excited donor and a photon annihilation at the 102 

unexcited acceptor.  Mathematically, these couplings are represented as off-diagonal matrix elements 103 

of the interaction Hamiltonian.  A full quantum description is usually necessary to describe the RET 104 

process over all distances, this is because the electronic energy is not transferred instantaneously as 105 

assumed by the classical and semi-classical descriptions (although retardation effects are sometimes 106 

provided in such frameworks [42]).  The transfer of energy between molecules occurs via the 107 

exchange of a virtual photon, which has increasingly real (transverse) characteristics as the 108 

intermolecular separation grows; this is discussed, in more detail, in Section 3.2. The term virtual 109 

being indicative of the fact that the photon is reabsorbed before its properties, such as wavelength, 110 

take on physical significance.  The dipole of each molecule is also correctly described as a transition 111 

dipole moment, connecting two non-degenerate energy states of the molecule.   112 

 113 

Since RET involves slow moving electrons, bound within the valence states of the molecules, the 114 

non-relativistic variant of QED (as opposed to relativistic or Lorenz gauge QED) is used.  The theory 115 

that underpins the quantum description of RET is the Power-Zienau-Woolley formalism of molecular 116 

(or non-relativistic) QED [43-48], which utilises the Coulomb gauge, , where A
��

 is the 117 

vector potential and the fields of the mediating photons can be naturally deconstructed into 118 

longitudinal and transverse components.  The longitudinal components, with respect to the 119 

displacement vector R
��

, are associated with the scalar potential and have a particular affinity for 120 

coupling molecular transition moments in the near-zone, where the donor-acceptor pair are close 121 

together.  In regions far from the source (i.e. distant from the donor) the wave-vector k
�

 and R
��

 are 122 

essentially collinear and the scalar potential approaches zero.  In this case, the transverse part of the 123 
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field dominates the coupling of the transition dipole moments of individual molecules [49].  This has 124 

important implications for the spatial and temporal dynamics of excitons within molecular aggregates 125 

[50,51]; namely, transition dipole moment pairs that are collinear to each other and collinear to the 126 

displacement vector are coupled by the longitudinal components of the field only.   127 

 128 

The QED model of RET is traceable to the 1966 paper by Avery, which extended the Perrin and 129 

Förster theory of RET by replacing the Coulomb interaction with the relativistic Breit interaction 130 

[52].  Although Avery did not explicitly include the effects of the mediating photon, in terms of the 131 

creation and annihilation field operators, he nevertheless made a direct connection between RET and 132 

spontaneous emission.  Moreover, he determined the R–2 dependence on the transfer rate in the 133 

far-zone.  He concluded that investigating RET from the point-of-view of the ‘direct action’ 134 

formulation of QED, devised by Wheeler and Feynman [53], would be ‘extremely interesting’.  Soon 135 

afterwards, in the same year, the Avery work was enhanced by a more formal and rigorous quantum 136 

theoretical outlook provided by Gomberoff and Power [54]. 137 

 138 

2.3 RET coupling tensor: the quest for its correct form 139 

In the early 1980s there were a number of RET studies by Thirunamachandran, in collaboration with 140 

Power and Craig, which give valuable insights into the physical connections between the near- and 141 

far-zone mechanisms of RET.  In 1983, Power and Thirunamachandran published three seminal 142 

papers on QED theory [55-57].  Here they consider the problem within the Heisenberg formalism, 143 

via the time evolution of operators associated with both electron fields and Maxwell fields.  In the 144 

third paper of the series, they derive an expression for the time dependent evolution of the RET 145 

quantum amplitude as;  146 

 147 

 

( ) ( ) ( )( )

( )
( )

( ) ( )
( )

( )( )

0 0 21

1 e 1 e 1
sin

A D A

p q
fi i j ij i j

ict k k ict k k

A D D A D

c t D A
c

kR dk
R k k k k k k k k

µ µ δ

π

+∞ − −

−∞

= −∇ + ∇ ∇

 − −× + − − − − 


ℏ
 
, (2.1)

 148 

 149 

where  is the transition dipole moment of molecule X along the kth canonical coordinate and R 150 

is the distance between the two molecules.  The transfer occurs from an excited molecule D to 151 

molecule A, initially in its ground state.  Subscripts i and j represent Cartesian components with the 152 

µk X( )
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usual tensor summation convention being employed [58].  The transition dipole moments elements 153 

are ( )0µ p
i D  and ( )0µq

j A ; where molecule D is initially in state p, and the final state of molecule A is 154 

q.  Integration is over all possible wave-vectors (denoted by k) of the mediating photon.  In this work, 155 

the rapidly oscillating terms were dropped, to leave only two terms instead of the usual four; vide 156 

infra, equation (2.6).  The terms kD and kA represent the wave-vectors resonant with a transition of 157 

molecules D and A, respectively.  Power and Thirunamachandran did not explicitly describe how the 158 

singularities in (2.1) were dealt with mathematically, but they show that the final expression 159 

conforms to the correct distance dependencies in the appropriate limits. 160 

 161 

Around the same time, Thirunamachandran and Craig considered resonance coupling between 162 

molecules ‘where one was in an excited state’, within the dipole approximation (the term ‘resonance 163 

energy transfer’ was not used in this work).  They initially published the work as an extended paper 164 

[59], and expanded upon it in their widely known book [45].  They consider two identical molecules 165 

and calculate the interaction of the excited system D with the unexcited system A.  Firstly, they 166 

considered calculations that ignored retardation effects and any time explicit dependencies.  The 167 

calculated electric field at A, produced by the oscillating dipole at D, produces an energy change of; 168 

 169 

( ) ( ) ( ) ( )1 3 0 0
0

ˆ ˆ4 3πε µ µ δ− −∆ = −p q
i j ij i jE R D A R R   .  (2.2) 170 

 171 

The final term is an orientational factor that modulates the magnitude of the energy difference based 172 

on the relative dipole orientations of the molecules.  Through the inclusion of retardation effects, 173 

equation (2.2) becomes; 174 

 175 

 
( ) ( ) ( )

( ) ( )

1 0 0
0

2 1
3 2

4 e

cos cos sinˆ ˆ ˆ ˆ3

p q ik R
i j

ij i j ij i j

E D A

kR kR k kR
k R R R R R

R R R

πε µ µ

δ δ

− ⋅

−

∆ =

  × − − + −  
  

� �

 
.
 

(2.3)
 176 

 177 

Retardation effects give rise to the appearance of a phase factor, e ⋅
� �

ik R , as well as two other distance 178 

dependencies, namely,  and .  179 R−1 R−2
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The authors then calculated the fully retarded matrix element in tensor-form and show that it is the 180 

same as expression (2.3).  The calculation formally involves summing over all photon wave-vectors 181 

connecting the initial and final states.  In practice, this summation involves using a box quantization 182 

technique to transform the problem to an integral in momentum space.  The solution can be found by 183 

contour integration, in a way analogous to that in which Green’s functions solutions are found in 184 

quantum scattering problems [60].  For identical molecules, the final matrix element (or quantum 185 

amplitude) in tensorial form is: 186 

 187 

( ) ( )0 0( , )µ µ=
��

n m
fi i ij jM D V k R A     , 188 

 189 

where; 190 

 191 

 . (2.4) 192 

 193 

In light of the subsequent analysis shown later, it is important to note that the interaction tensor Vij , 194 

derived in this early work, is purely the real part of the full expression.  In deriving equation (2.4), 195 

four different contours could be chosen around the two poles (the singularities), leading to different 196 

results.  The contour they chose ensures a correct outgoing-wave solution, although there is no a 197 

priori  mathematical basis for this choice.   198 

 199 

Further advances were achieved by Andrews and co-workers who proved a direct relationship 200 

between radiationless and radiative RET [61-63].  Although all three regimes of RET – i.e. the R–2, 201 

R–4 and    R–6 dependencies on the rate – were mathematically predicted in the original derivations, 202 

Andrews et al. were the first to comment upon the relevance of the intermediate-zone contribution, 203 

which has a   R–4 dependence.  This term dominates at critical distances; that is, when the distance 204 

separating the molecules is in the order of the reduced wavelength, 2λ π=Ż , of the mediating 205 

photon (i.e. R ~ Ż ).  Inclusion of all three distance-dependencies in one rate equation is known as the 206 

unified theory of RET.  The particulars of which are provided in Section 3.2. 207 
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Initially Andrews and Sherborne in 1987, reconsidered the problem in the Schrödinger 208 

representation, where they derived the electric dipole-electric dipole tensor without the need of 209 

‘outgoing wave’ arguments of scattering theory [59].  Starting from the second-order expression for 210 

the time-dependent probability amplitude for energy transfer, they inserted all intermediate states to 211 

obtain a rather complicated looking expression (not reproduced here).  As detailed in the original 212 

paper, the integral of the expression gives rise to four different Green’s functions, and hence four 213 

choices of contour.  The fact that four terms arise is attributed to the forward and reverse transfer 214 

processes.  They showed that the choice of contour was not unique, with each giving different 215 

expressions for .  Interestingly, they found that these new contours introduced imaginary 216 

terms into , i.e. those not included in the derivations of the earlier work by 217 

Thirunamachandran and Craig.  By choosing the contour that appeared to be the ‘most acceptable’, 218 

they derived the coupling matrix element to be of the form (corrected later by Daniels et al. [63] and 219 

modifying the indexing here for better comparison with the expressions above): 220 

 221 

   , (2.5) 222 

 223 

where, 224 

 225 

  , 226 

  , 227 

 228 

in which σij is the expression given in (2.4).  This derivation eliminates the need for physical 229 

arguments based on quantum scattering theory used in the earlier work.  It, nevertheless, did require 230 

careful consideration of the correct contour with which to apply Cauchy’s residue theorem for 231 

solving the integral.  In later work, Andrews and Juzeliūnas applied an alternative method of contour 232 

integration, whereby they infinitesimally displaced the problematic poles away from the real axis 233 

[64].  The idea being that the imaginary addenda shifted the poles to enable integration around a 234 

closed contour along the real axis.  The approach gave results in agreement with those of Andrews 235 

and Sherborne’s favoured choice of contour.  Thus, this study removes the need to choose a contour; 236 
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however, artificial displacements of the poles, including the choice of direction of displacement on 237 

the complex plane, must be made.  238 

 239 

In 2003, Daniels et al. re-examined the problem and avoided the uncertainties of the contour 240 

integration entirely by solving the Green’s function using judicious substitutions within the integrals.  241 

Namely, when the Green’s function is expressed as a sum of two integrals, so that; 242 

  243 

 ( ) ( ) ( )0 0

sin sin
,

pR pR
G k R dp dp

R k p R k p

∞ ∞

= +
− − −       ,  (2.6) 244 

 245 

substitutions of the form   and  for the first and second integral, respectively, 246 

give an expression in which terms are oscillatory, but convergent.  The authors solved these integrals 247 

by expressing them as series expansions (in the form of special functions) to get a result, analogous 248 

to equation (2.5), in the form: 249 

 250 

 251 

 .      (2.7) 252 

 253 

Here, on comparing with the earlier expressions, the only difference is a choice of sign for the 254 

imaginary term τij.  The authors suggested that the ambiguity of sign for this term signifies that 255 

 describes both incoming and outgoing waves, accommodating thereby both time-ordered 256 

(Feynman) diagrams, as a complete quantum description should.  However, the authors stress that it 257 

is unimportant which sign to ascribe to a particular process (photon absorption or emission), as only 258 

the modulus squared of the matrix element is physically measureable and, hence, using either sign on 259 

τij provides an identical result for all calculations relevant to experiment.  Jenkins et al. wrote a 260 

follow-up paper that analysed the importance of each Feynman diagram, called time-ordered 261 

pathways, to the overall RET rate.  They discovered that both pathways have equal contribution 262 

when the two molecules are close together; however, one pathway begins to dominate as the 263 

molecules are moved further apart [65].   264 
 265 

t = pR− kR s= pR+ kR
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In 2016, Grinter and Jones re-derived expression (2.7) using a spherical wave description of the 266 

mediating photon, via vector spherical harmonics [66].  All previous derivations employed a plane-267 

wave description of the mediating photon.  One advantage of the spherical wave approach is that 268 

multipole contributions are more concretely defined in terms of the angular momentum quantum 269 

numbers l and m.  Furthermore, the work involved the development of an approach complementary 270 

to the plane wave methods, giving additional insight into orientational aspects of RET and forming a 271 

natural setting for the decomposition of fields into transverse and longitudinal components.  In 2018, 272 

a comprehensive review of the spherical wave approach was published [67].  In the plane-wave 273 

method, defined in terms of the position vector r
�

,  the oscillating part of the field is expanded as; 274 

 275 

 
( ) ( )2 3

1 1 1
2 3

e ...
! !

ik r

n n

ik r ik r
e e ik r⋅

 ⋅ ⋅
 = + ⋅ + + +
 
  

� �

� �� �
�� � �

  .      (2.8) 276 

 277 

where the first term relates to the electric dipole, the second to the magnetic dipole and the electric 278 

quadrupole, and so on.  In the spherical wave description, the expansion is written as; 279 

 280 

 ( ) ( ) ( )e 2 1 cosik r l

l l

l

i l j kr P ϑ⋅ = +
� �

  .      (2.9)
 

281 

 282 

where  are Bessel functions and  are Legendre polynomials.  The spherical wave 283 

description consequently attributes radiation emerging from specific pure multipole sources to 284 

specific angular momentum quantum numbers, thereby separating different multipole contributions 285 

that are of the same order.  286 

 287 

Additionally, derivation of the RET matrix element using spherical waves eliminates the need to 288 

perform contour integration and, therefore, select the physically correct solutions.  The arbitrary 289 

choice of sign, which can be seen in the imaginary part (τij) of equation (2.7), does not appear in the 290 

spherical wave analysis.  The R dependence can be expressed in terms of Hankel functions of the first 291 

kind, i.e. hl
1( ) kR( ) = j l kR( ) + inl kR( )  for outgoing waves, while Hankel functions of the second kind, 292 

i.e. hl
2( ) kR( ) = j l kR( ) − inl kR( )  describe incoming waves.  The ambiguous sign in equation (2.7) was 293 

interpreted to mean that both incoming and outgoing waves are required to calculate the quantum 294 

j l kr( ) Pl cosϑ( )
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amplitude of the process (i.e. photon absorption and emission).  In the spherical wave approach, the 295 

incoming and outgoing waves emerge naturally and can be linked directly to one or other of the signs 296 

in the imaginary part of equation (2.7), up to the phase factor exp ±iωt( ) . 297 
 298 

In a separate study, Grinter and Jones also analysed the transfer of angular momentum between 299 

multipoles using a spherical description of the mediating photon [68].  Although it has been known 300 

for some time that coupling between multipoles of different order can be non-zero [69-74], this work 301 

showed that RET between multipoles of different order is formally allowed.  This is because the 302 

isotropy of space is broken during an individual transfer event, even though one may expect the 303 

process to be forbidden on the grounds of the violation of the conservation of angular momentum.  304 

For example, in the case of electric dipole-electric quadruple (E1-E2) transfer, two units of angular 305 

momentum are lost from the electronic state of a quadrupole emitter (the donor), whereas the dipole 306 

acceptor only takes up one quantum of electronic angular momentum.  The above analyses indicate 307 

that treating the mediating photon of an RET process in terms of spherical waves may be valuable in 308 

some applications, particularly in the case of multipolar QED.  A discussion on higher-order 309 

considerations, such as these, is found in Section 3.3 310 

 311 

3 RET based on quantum electrodynamics 312 

3.1 Derivation of the RET coupling tensor 313 

In order to understand any optical process within the framework of QED, a matrix element (or 314 

quantum amplitude) that links the initial and final states is required.  In the case of RET between two 315 

molecules, the initial state is the donor, D, in an excited state and an acceptor, A, in the ground state.  316 

In the final state, the acceptor molecule is in an excited state and the donor molecule is in its ground 317 

state.  Photophysically, this can be simply understood as; 318 

 319 

 D A D A∗ ∗+ → +    , (3.1) 320 

 321 

where, in this type of chemical expression, the asterisk denotes the molecule in an electronically 322 

excited state.  323 

 324 
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The usual starting point for any QED analysis is the illustration of the process by Feynman diagrams 325 

[23], thereby aiding construction of the matrix element by defining all of the intermediate system 326 

states.  Feynman diagrams are graphical descriptions of electronic and photonic processes with a time 327 

frame that moves upwards.  Resonance energy transfer between two molecules, in isolation, involves 328 

two Feynman diagrams – as shown in Figure 2.  Here, examining the left-hand diagram, the initial 329 

system state has the donor in excited state n and the acceptor in the ground state, labelled 0 (the red 330 

section).  Moving up the time axis, a photon is created from the excited donor to provide an 331 

intermediate system state, in which both molecules are in the ground state and a photon is present 332 

(the black section).  Higher up the diagram this photon is annihilated at the donor and, thus, excites it 333 

to state m (the blue section).  The diagram on the right-hand side is legitimate, albeit counter-334 

intuitive.  In this case, the intermediate system state represents both molecules simultaneously in their 335 

excited states in the presence of the mediating photon – meaning that conservation of energy is 336 

clearly violated.  However, this is fully justifiable within the constraints of the energy-time 337 

uncertainty principles. 338 

 339 

These diagrams (which represent the two pathways of RET) involve two light-molecule interactions: 340 

one at the donor and the other at the acceptor.  This is indicative of second-order perturbation theory, 341 

which we examine below, as the minimal level of theory necessary to describe RET.  The total 342 

Hamiltonian for RET between neutral molecules, in multipolar form, is written as; 343 

 344 

 .  (3.2) 345 

 346 

Here, the first two terms correspond to the molecular Hamiltonians of the donor and acceptor347 

, which are usually the non-relativistic Born-Oppenheimer molecular 348 

Hamiltonian.  The third term is the radiation Hamiltonian, , not seen in semi-classical theory; 349 

this is typically defined in terms of the electric and magnetic field operators and/or the auxiliary field 350 

operator, ( ),
��

a R t  [45,75].  Although these three Hamiltonians are important for describing the light-351 

matter system in its entirety, they play no explicit role in the derivation of the matrix element for 352 

RET.  The key parts of the Hamiltonian for RET are the interaction terms .  These 353 

two terms represent the interaction between each molecule and the electromagnetic field; they are 354 

perturbative in nature because the light-molecule interactions of RET is weak compared to the large 355 

H = Hmol D( ) + Hmol A( ) + H rad + H int D( ) + H int A( )

Hmol X( );  X = D,  A

H rad

H int X( );  X = D,  A
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Columbic energies of the molecules.  The eigenstates of the interaction Hamiltonian are constructed 356 

with the tensor product of molecule and radiation states.  Of particular note is that no interaction term 357 

between the donor and acceptor exists in equation (3.2), unlike in semi-classical formalisms.  The 358 

QED description of RET is, therefore, a genuinely full quantum theory, whereby the transfer of 359 

energy between an excited donor to an unexcited acceptor is via the electromagnetic field; direct 360 

Coulombic interactions between the two molecules do not arise in this multipolar form of the 361 

Hamiltonian [55]. 362 

 363 

Using the electric dipole approximation, in which only the transition electric dipole (E1) of each 364 

molecule are considered, the interaction Hamiltonian is written as; 365 

 366 

 
( ) ( ) ( ) ( )1 1

int 0 0ε µ ε µ− ⊥ − ⊥= − ⋅ − ⋅
�� ��� �� �

D AH D d R A d R     , (3.3) 367 

 368 

where ( )Xµ
��

 is the dipole operator of molecule X at position XR
��

 (it is usually presumed that the donor 369 

is positioned at the origin); ε0 is the permittivity of free space.  The displacement electric field 370 

operator, ( )Xd R⊥
���

, can be written in terms of a mode expansion; 371 
 372 

 ( ) ( ) ( ) ( ) ( ){ }
1

2
( ) ( ) ( ) †( )0

,

e e
2

λ λ λ λ

λ

ε⊥ ⋅ ∗ − ⋅ = − 
 


�� ��� �

�

��� ℏ � � � � � �X Xip R ip R
X

p

cp
d R i e p a p e p a p

V
  . (3.4) 373 

 374 

Here, c is the speed of light in a vacuum, ( )( )e pλ� �
 defines the polarisation of the mediating photon 375 

(the asterisk denoting its complex conjugate), ( )( )a pλ �
 and ( )†( )a pλ �

 are the annihilation and creation 376 

operators, respectively, for a photon of wave-vector p
�

 and polarisation . In the pre-exponential 377 

factor,  represents the volume used in the box quantisation procedure that enables fields to be 378 

defined in terms of operators, as required by QED.  The second-order perturbative term, which is the 379 

leading term in the matrix element for RET, is explicitly written (in terms of Dirac brackets) as; 380 
 381 

 
1 2

int 1 1 int int 2 2 int= +
− −fi

i I i I

f H I I H i f H I I H i
M

E E E E
  . (3.5) 382 

 383 

λ
V



Jones and Bradshaw  RET: Theory to Applications 

 
14 

This is a provisional file, not the final typeset article 

From Figure 2, we easily identify the key system states (which is a combination of the two molecular 384 

states and the radiation state).  These are the initial state ( )0, ;0 ,n
D Ai E E p λ= �

 (donor excited, 385 

acceptor unexcited and no photon), the final state ( )0 , ;0 ,m
D Af E E p λ= �

 (donor unexcited, acceptor 386 

excited and no photon) and the two possible intermediate states, ( )0 0
1 , ;1 ,D AI E E p λ= �

 (donor and 387 

acceptor unexcited and one photon) and ( )2 , ;1 ,n m
D AI E E p λ= �

 
(donor and acceptor excited and one 388 

photon).  The radiation states, often referred to as number or Fock states, have eigenvalues that are 389 

occupation numbers of the quantized electromagnetic field, i.e. the number of photons in the system.  390 

The creation and annihilation operators act on the relevant radiation states via 391 
†( )( ) 0( , ) 11( , )λ λ λ=� � �

a p p p  and ( )( ) 1( , ) 10( , )λ λ λ=� � �
a p p p .  The commutator involving these two 392 

operators is given by the relationship ( ) ( )1( ) †( ) 3 3( ), ( ) 8λ λ
λλπ δ δ

−′
′′ ′  = − 

� � � �
a p a p V p p , where ( )δ ′−� �p p  393 

is a Dirac delta function and λλδ ′  is a Kronecker delta [76]. 394 

 395 

Equipped with these state expressions, the interaction Hamiltonian of equation (3.3) and the energies 396 

of each state in Table 1 (note that the initial and final states have the same energy, since conservation 397 

of energy has to be restored after a miniscule amount of time), an expression for the RET matrix 398 

element can be found.  For illustrative purposes, we explicitly calculate just one of the Dirac 399 

brackets, namely ; which is the initial bracket, since it is convention to move from right to 400 

left in these equations.  Explicitly, it is written as; 401 

 402 

( ) ( ) ( ) ( ) ( ) ( )0 0 1 1 0
1 int 0 0, ;1 , , ;0 ,λ ε µ ε µ λ− ⊥ − ⊥= − ⋅ − ⋅

�� ���� � � �n
D AD A D AI H i E E p D d R A d R E E p  . (3.6) 403 

 404 

This represents the creation of a photon when the excited donor relaxes (the acceptor is unchanged, 405 

as denoted by the superscript on either EA) and, hence, dipole operators acting on the acceptor 406 

molecular state and the annihilation operator (within d⊥) on the radiation state are zero due to 407 

orthonormality.  Therefore, equation (3.6) is simplified to; 408 

 409 

( ) ( ) ( ) ( )1 0
1 int 0 1 , 0 ,ε µ λ λ− ⊥= −

���� � �n
DD DI H i E D E p d R p   .  (3.7) 410 

 411 

The solution of which, on insertion of equation (3.4), is expressed concisely as; 412 

 413 

I1 H int i
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( ) ( )( )

1

2
00

1 int
,

e
2

λ

λ

ε µ
∗ − ⋅ =  

 


���

�

ℏ � Dn ip R
i i

p

cp
I H i i e p D

V
      , (3.8) 414 

 415 

with the i th component of the transition dipole moment written as; 416 

 417 

 
( ) ( )0 0n n

i D i DD E D Eµ µ=      . (3.9) 418 

 419 

Following a similar procedure for the other three Dirac brackets, and finding the energy 420 

denominators for each term of (3.5), the full expression for the RET process is given as;  421 

 422 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0

, 0 0 0

e e

2

ip R ip R
n m n m

fi i j i j j i
p n n

cp
M e p e p D A D A

V E cp E cp
λ λ

λ
µ µ µ µ

ε

⋅ − ⋅
∗     = +   − − −    


� �� �

�

ℏ � �

ℏ ℏ
  . 423 

(3.10) 424 

 425 

In order to determine a final result for the RET matrix element, we use the cosine rule to rewrite the 426 

summation over of polarizations as; 427 

 428 

( ) ( ) ( ) ( ) ˆ ˆλ λ

λ
δ∗ = −

� �
i j ij i je p e p p p  ,    (3.11) 429 

 430 

where δij is the Kronecker delta and a caret denotes a unit vector, and convert the inverse of the 431 

quantization volume to an integral in momentum space;  432 

 433 

( )
3

3

1

2p

d p

V π
→ 

�

�

 .     (3.12) 434 

 435 

The quantum amplitude then becomes an integral of the form; 436 

 437 

 

( ) ( ) ( )

( ) ( ){ } ( )

0 0
2 2

0

3

3

1
ˆ ˆ

2

e e e +e ,
2

µ µ δ
ε

π
⋅ − ⋅ ⋅ − ⋅

= −
−

× − +


� � � �� � � �

�

n m
fi i j ij i j

ip R ip R ip R ip R

p
M D A p p

k p

d p
k p

         
 (3.13)

 438 
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where ħck is the energy transferred from D to A.  As outlined in the subsequent section, this integral 439 

has been solved analytically using various vector calculus techniques.  Omitting the long and 440 

intricate derivation based on special functions [63], the matrix element for RET – including the 441 

retarded electric dipole-electric dipole (E1-E1) coupling tensor, denoted as Vij – is obtained as;  442 

 443 

  ( ) ( )0 0( , )µ µ=
��

n m
fi i ij jM D V k R A   , (3.14) 444 

  ( ) ( ) ( ) ( ){ }2

3
0

e ˆ ˆ ˆ ˆ( , ) 1 3
4

ikR

ij ij i j ij i jV k R ikR R R kR R R
R

δ δ
πε

= − − − −
��

  . (3.15) 445 

 446 

A more in-depth analysis of the derivation of the E1-E1 coupling tensor, Vij, and the transfer rate of 447 

RET (an outline of which follows) – without providing all of the intricate specifics – is delivered by 448 

Salam in his recent review [77]. 449 

 450 

3.2 Physical interpretation of the RET coupling tensor 451 

The physical observable derived from the Vij tensor, via the matrix element, is the transfer rate of 452 

RET, symbolised by Γ.  This rate is demined from the Fermi rule [78]: 
2

2π ρΓ = ℏ fi fM , where ρf 453 

is the density of acceptor final states.  Assuming a system of two freely tumbling molecules, meaning 454 

that a rotational average is applied [79], the following is found; 455 
 456 

  ( ) ( ) ( )2 21
~ A ,

9
µ µΓ � �

D A k R   . (3.16) 457 

 458 

where the E1-E1 transfer function, ( )A ,k R , is defined by [62]; 459 

 460 

  ( )
( )

( ) ( ){ }2 4

23
0

2
A , ( , ) ( , ) 3

4πε
∗= = + +

�� ��

ij ijk R V k R V k R kR kR
R

  . (3.17) 461 

 462 

In contrast to Förster coupling, the QED form of the electronic coupling has a complicated distance 463 

dependence, which underscores the unification of the radiationless and radiative transfer 464 

mechanisms.  Whereas the semi-classical Förster theory predicts only an R–6 dependence [80], the 465 
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QED rate expression of (3.17) contains three distance dependencies: R–2, R–4 and R–6.  This signifies 466 

three distinct regimes that dominate in the long-, intermediate- and short-range, respectively. 467 

 468 

The different regimes of RET are most readily understood in terms of the mediating photon [49].  As 469 

outlined in Section 2.2, the photon is said to have real characteristics – i.e. it has a large transverse 470 

component w.r.t. 
�
R  – when the separation of the donor and acceptor exceeds its reduced wavelength 471 

(i.e. ≫ŻR ).  Meaning that, since the mediating photon is always transverse w.r.t. its wave-vector 472 

p
�

, the photons (emitted in all directions by D) that are annihilated at A in the long-range are the ones 473 

where p
�

 is essentially co-linear with 
�
R .  Conversely, if R is significantly less than the reduced 474 

wavelength the photon is fully virtual, meaning that retardation effects are not present.  That is, it 475 

does not have well defined physical characteristics, such as momentum.  This arises because, due to 476 

the uncertainty principle, the position of the mediating photon is ‘smeared out’ in the short-range so 477 

that p
�

 may no longer be co-linear with 
�
R  – therefore, there is a longitudinal component to the 478 

photon w.r.t. 
�
R .  The two limiting cases of RET are, hence, often referred to as radiationless (virtual 479 

photon) and radiative (real) transfer – in the past, until the unified theory, they were usually 480 

considered to be two completely separate and distinct mechanisms.  Since all three terms of equation 481 

(3.17) are non-zero in RET (or, at least, the short-range term always exists), it is justifiable to say that 482 

all photons are virtual in nature [49,81].  This means that a notional ‘real’ photon – which is 483 

transverse w.r.t both p
�

 and 
�
R  – does not exist, because these two vectors are never exactly collinear 484 

due to the uncertainty principle. 485 
 486 

To summarise, long-range (or far-zone) energy transfer has an inverse-square, R–2, dependence on the 487 

rate, and short-range (or near-zone or Förster) transfer has the well-known R–6 dependence.  That 488 

leaves the intermediate zone, which was not previously identified until Andrews’s work [62], where 489 

the distance separating the molecules is of the same order as the reduced wavelength of the mediating 490 

photon; this region has an R–4 dependence.  Our expressions have assumed dynamic coupling 491 

between the transition dipole moments of the donor and acceptor, for cases of static dipole couplings 492 

(in which k = 0) only the first term of equation (3.17) applies. 493 

 494 

 495 

   496 



Jones and Bradshaw  RET: Theory to Applications 

 
18 

This is a provisional file, not the final typeset article 

3.3 Higher order RET 497 

Often the electric dipole approximation is employed for studies on RET, which means that only E1-498 

E1 coupling is considered.  However, the coupling of the electric dipole of a molecule with the 499 

magnetic dipole (M1) or electric quadrupole (E2) of the other can be important [82], for example, in 500 

chirality-sensitive RET [77,83-86].  E1-M1 and E1-E2 couplings are, in general, of similar 501 

magnitude but are roughly 150 times smaller than E1-E1 interactions; other multipoles are even 502 

smaller and almost never utilised in RET analyses.   503 

 504 
The derivation of the matrix element for E1-M1 coupling, with use of special functions, is provided 505 

elsewhere [63].  The final result is given by; 506 

  507 
 508 

  ( ) ( ) ( ) ( ) ( )
0 0

E1-M1 0 0 ,
n m
j jm n

fi i i ij

m A m D
M D A U k R

c c
µ µ
  = + 
  

�
  , (3.18) 509 

 510 

which features the transition magnetic dipole, mj, and the E1-M1 tensor, ( ),ijU k R
�

, with the latter 511 

explicitly expressed as; 512 

 513 

  ( ) ( )2 2
3

0

ˆe
,

4

ikR
k

ij ijk

R
U k R ikR k R

R
ε

πε

−

= − +
�

  , (3.19) 514 

 515 

where εijk is the Levi-Civita symbol.  Following a rotational average [79], the rate of RET based on 516 

this type of coupling is; 517 

 518 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2 2 2 2

2

B ,
2Re .

9
µ µ µ µ∗ ∗′Γ + − ⋅ ⋅� � � � � � � �

∼
k R

D m A A m D D m D A m A
c

 (3.20) 519 

 520 

where the E1-M1 transfer function, ( )B ,k R , is written as; 521 

 522 

  ( ) ( ) ( ) ( )
( )2 2 4 4

23
0

2
B , , ,

4πε
∗= = +

� �

ij ijk R U k R U k R k R k R
R

  . (3.21) 523 

 524 
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Comparing equations (3.17) with (3.21), i.e. the A and B functions, it is clear that the first term (the  525 

R–6 dependent term) is missing in E1-M1 coupling.  Physically, this means that the photons that 526 

mediate E1-M1 interactions have real characteristics, i.e. they are never fully virtual.  However, in 527 

contrast to a commonly held view, E1-M1 coupling is not exclusively related to radiative energy 528 

transfer since a short-range R–4 term also exists.  The lack of the R–6 term also tells us that static 529 

electric and magnetic dipoles (in which k = 0) do not interact, since all the other terms involve k.  530 

 531 

The matrix element for E1-E2 interactions is determined as [69,71]; 532 

 533 

  ( ) ( ) ( ) ( ){ } ( )
E1-E2 ( , )µ µ ±= −

�

fi i jk jk i i jkM D Q A Q D A V k R  , (3.22) 534 

 535 

where the E1-E2 tensor, ( ) ( , )i jkV k R±
�

, is expressed by; 536 

 537 

  
( ) ( ){ ( )

( ) ( )

i
2 2

4
0

2 2 3 3

e ˆ ˆ ˆ ˆ ˆ ˆ( , ) 3 3i 5
4

1 ˆ ˆ ˆ ˆ ˆi .
2

kR

ij k jk i ki j i j ki jk

ij k ik j i j k

V k R kR k R R R R R R R
R

k R k R R R R R R

δ δ δ
πε

δ δ

= − + + + + −

 + − + −  
 

�

 

(3.23)

 538 

 539 

This expression is the -jk index symmetry form of the tensor, which is justified since it contracts with 540 

the index-symmetric electric quadrupole, jkQ .  After a rotational average, the corresponding rate is 541 

obtained as; 542 

 543 

  
( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2 2C ,

15 λµ λµ λµ λµµ µ∗ ∗′′Γ +� �
∼

k R
D Q A Q A A Q D Q D   , (3.24) 544 

 545 

where ( )C ,k R  is found as; 546 

 547 

  ( ) ( ) ( ) ( )
{ }2 2 4 4 6 6

24
0

1
C , ( , ) ( , ) 90 18 3

4πε
∗= = + + +

� �

i jk i jkk R V k R V k R k R k R k R
R

  . (3.25) 548 

 549 
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Examining this expression, we see that E1-E2 coupling has four terms with the distance 550 

dependencies R–2, R–4, R–6 and R–8 (rather than the three of E1-E1 interactions).  The new 551 

radiationless (R–8) term dominates in the near-zone, as predicted by Dexter [5], while the usual 552 

inverse-square distance dependence of radiative transfer dictates the far-zone.  The presence of these 553 

terms (and the distinctive middle terms) in a single expression again signifies that they are the two 554 

extremes of a unified theory.  Since the first term does not depend on k, we determine that static 555 

electric dipole and quadrupoles can interact. 556 

 557 

3.4 Effects of a bridging molecule 558 

Recent theoretical work, based on QED in the electric dipole approximation, is an analysis on the 559 

effects of a third molecule, M, on RET [87-91].  In this sub-section, we touch upon the case where M 560 

bridges the energy transfer between D and A – a Feynman diagram of which is provided in Figure 3.  561 

This is the DMA configuration; the other cases (DAM and MDA), in which the molecules are 562 

interchanged, have also been investigated.  The matrix element for DMA, delivered from fourth-order 563 

perturbation theory, is given by; 564 

 565 

     ( ) ( ) ( )0 00 0( , ) ( , )DMA n m
DM MAfi i ij jk kl lM D V k R M V k R Aµ α µ=
�� ��

  , (3.26) 566 

 567 

where ( )00α jk M  is the polarisability tensor that arises because two light-molecule interactions occur 568 

at the third molecule (which begins and ends in its ground state, as denoted by the superscript 00) and 569 

two couplings tensors are used since two energy transfer steps occur.  Using the Fermi rule, the 570 

leading term in the physically observable rate (that includes the third body) is the quantum 571 

interference, i.e. the cross-term, that involves multiplication of equations (3.14) and (3.26) so that 572 

[88]; 573 

 574 

     ( ) ( ) ( ) ( ) ( )0 00 0 0 0( , ) ( , ) ( , )DMA DA n m n m
DM MAfi fi i ij jk kl l p pq qM M D V k R M V k R A D V k R Aµ α µ µ µ∗ ∗=
�� �� ��

  . (3.27) 575 

 576 

This is the rate that dominates if energy transfer between D and A is forbidden, for example, due to 577 

symmetry selection rules or when the dipole moments of D and A are both orthogonal with each 578 

other and their displacement vector, R
��

.  In this scenario, the mediator M facilitates the RET that 579 
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would not occur otherwise [89].  A recent review by Salam provides a more comprehensive analysis 580 

on the role of a third body in RET [77]. 581 

 582 

4 Recent RET research 583 

4.1 Nanomaterials for energy transfer  584 

While the generic term ‘molecule’ has been used throughout this manuscript, other materials can be 585 

used in RET such as atoms, chromophores, particles and, more recently, carbon nanotubes [92-96] 586 

and quantum dots (QDs).  In 1996, first observation of energy transfer between the latter was 587 

achieved with cadmium selenide (CdSe) QDs [97] and similar compounds followed; for example, 588 

cadmium telluride (CdTe) [98] and lead sulfide (PbS) [99] QDs.  In experiments, quantum dots are 589 

attractive because they can be much brighter, and contain greater photostability, than typical organic 590 

chromophores [100,101].  Hence, QDs have become important in bio-inspired RET-based 591 

applications [102,103], such as nanosensors [104-111] and photodynamic therapy [112,113].  In 592 

terms of theory, it has been determined that RET between quantum dots and nanotubes can be 593 

modelled using dipole-dipole couplings [90,114-119].  For more on the experiments and theory of 594 

RET in nanomaterials, Liu and Qiu provide an excellent review on recent advances [120].   595 

 596 

While quantum dots are suggested as artificial antennas in synthetic light-harvesting materials 597 

[111,121], research on such systems usually involve multi-chromophore macromolecules.  One type 598 

of which are known as dendrimers; from its periphery to core, these branch-like structures comprise 599 

decreasing number of chromophores [122-130].  They work on the principle that photons are 600 

absorbed at the periphery and the excitation energy is funnelled to a central reaction centre via 601 

multiple RET steps; an example of this is shown in Figure 4.  A significant amount of theory has 602 

been published on this multi-chromophore transfer mechanism [131-140].  Towards the centre of the 603 

dendrimer, where the number of chromophores is decreased, there is a possibility that two excited 604 

donors will be in the vicinity of an acceptor.  In this case, another RET mechanism, known as energy 605 

pooling [141-143], becomes possible.  This process is illustrated in Figure 5 and can be written, in 606 

terms of photophysics, as; 607 

 608 

D D A D D A∗ ∗ ∗∗+ + → + +   ,      609 

 610 
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where the double asterisk denotes that the acceptor is doubly excited, i.e. the acceptor is promoted to 611 

an excited state that requires the excitation energies of the sum of the two donors.  This contrasts to 612 

the process known as energy transfer up-conversion [144,145], which has the same initial condition 613 

but excitation is transferred from one donor to the other – so that one of the donors is doubly excited 614 

– and the third molecule is not involved.  The matrix element for energy pooling has an analogous 615 

form to equation (3.26); the only difference is that the superscript m0 on A (which is now a donor) 616 

becomes 0n and the superscript 00 on M (now the acceptor) becomes s0, where s signifies a doubly 617 

excited molecule.  In recent years, Lusk and co-workers have demonstrated energy pooling 618 

experimentally [146] and discovered, among other advances, that the efficiency of energy pooling 619 

can be improved within a cavity [147-149].  Lately, moreover, they have studied the time-inverse 620 

mechanism of energy pooling, known as quantum cutting, which involves the excitation on A 621 

transferring to both D molecules [150]. 622 

 623 

Another double-excitation mechanism is two-photon RET [151,152], which involves the absorption 624 

of two photons at the donor and the transfer of the resulting excitation to the acceptor.  The matrix 625 

element of this process is identical to equation (3.14), except the superscript on D is 0s rather than 626 

0n.  Since the incident light in two-photon RET is lower in energy compared to RET, photo-627 

destruction of living tissue can be circumvented.  Therefore, biological applications of this process 628 

have arisen, including photodynamic therapy [153-160] and bioimaging [155,160-163]. 629 

 630 

4.2 Plasmon-based RET 631 

The quest for control of light-energy at the nanoscale has led to some very interesting studies, from 632 

both an experimental and a theoretical point-of-view, that often involve RET coupling between 633 

molecules near a surface plasmon [164-194] – the latter, basically, acting as a bridging material for 634 

the energy transfer.  Plasmons are the collective excitations of conduction electrons by light, which 635 

generally reside in a confined metallic structure.  By coupling plasmonic materials to RET 636 

chromophores, a substantial amount of energy transfer can occur over significantly larger separations 637 

than the RET between conventional materials – up to distances approaching the optical wavelength. 638 

The effects of a surrounding nanophotonic environment, such as a surface plasmon, on RET is an 639 

ongoing debate [189,195]. 640 
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In 2011, Pustovit and Shahbazyan developed a classical theory of plasmon-assisted RET that 641 

involves an isotropic complex polarizability [196].  Their model, which maintains an energy balance 642 

between transfer, dissipation and radiation, analyses the geometry of a plasmon-RET system – with a 643 

focus on distance and orientational effects – by providing numerical results.  This mechanism shows 644 

that plasmon-assisted RET will dominate the usual non-radiative (Förster) transfer, even in the near-645 

zone.  While a comparable study predicts, over hundreds of nanometres, an enhanced rate by a factor 646 

of 106 [197].  These forecast improvements now have experimental verification.  For example, 647 

Wenger and co-workers demonstrate enhanced transfer between donor-acceptor pairs confined to a 648 

gold ‘nanoapparatus’; they endorse a six-fold increase in the rate of RET over 13 nm [198]. 649 

In the years that followed, other innovative studies on plasmon RET have arisen.  An experimental 650 

study by Zhao et al. showed that the efficiency of RET can be controlled by the plasmonic 651 

wavelength [199].  Remarkably, they discovered that RET can be turned off and on by tuning the 652 

plasmon spectrum with the donor emission and acceptor absorption peaks, respectively.  Related 653 

theory develops the concept of a ‘generalised spectral overlap’, whereby the rate of plasmon RET is 654 

not just dependent on the overlap integral of the donor emission and acceptor absorption spectra (as 655 

follows from Förster theory), but includes a plasmonic contribution from an electromagnetic 656 

coupling factor [200,201].  Other experimental work, which is analogous to the effects of a bridging 657 

molecule that is discussed earlier [89], use plasmonic nanoantennas to enable E1-E1 RET that is 658 

otherwise forbidden by geometry [202]. 659 

Bershike et al. explain, by comparing model and experimental data, enhanced coupling between a 660 

nanoscale metal and a light emitting dipole [203].  They employ a complex dielectric function that 661 

indicates an R–4 distance dependence (ranging from 0.945 to 8.25 nm) between the fluorescent 662 

molecule and the gold nanoparticle surface.  Similar to this study, Bradley and co-workers provide an 663 

investigation, which employs a Green’s tensor analysis of Mie theory, that again show plasmon RET 664 

can display an R–4 dependence [204].  These results are consistent with numerical predictions, based 665 

on QED, that intermediate-zone RET dominates at these separation distances [51].  666 

 667 

4.3 Energy transfer at non-optical frequencies  668 

Resonance energy transfer usually occurs in the ultraviolet or visible range of the electromagnetic 669 

spectrum, which is comparable to the energy required for electronic transitions in molecules etc.  670 
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Recently, however, energy transfer involving either a much lower or higher frequency range has 671 

gained traction.  An outline on which now follows.    672 

At the lower end, in the infrared range, transfer of vibrational energy can arise between excited 673 

(donor) and unexcited (acceptor) oscillating bonds on adjacent molecules.  Applications include the 674 

observation of local orientational order in liquids [205] and, analogous to the spectroscopic ruler in 675 

RET, a measure of intermolecular distances at the sub-nanoscale in the condensed phase [206,207].  676 

This type of transfer is especially prevalent between water molecules, due to the strong dipole-dipole 677 

interactions between the O–H stretch vibrations [208-210].  It has been determined that, with some 678 

modifications, that Förster theory can be valid at these light frequencies [211].  Energy transfer at 679 

even lower frequencies, namely in the microwave range, is the subject of a very recent paper by 680 

Wenger and co-workers [212].  In this work, the energy transfer is enhanced by positioning the donor 681 

and acceptor pair within a cavity. 682 

At the higher end is interatomic and intermolecular Coulombic decay (collectively ICD), a process 683 

that involves the x-ray range of the spectrum.  First predicted in 1997 [213], and experimentally 684 

verified six years later [214], ICD is a process in which photoionization of one atom or molecule can 685 

lead to remote photoionization of another atom or molecule via the exchange of a high energy 686 

photon.  In terms of fundamental theory, ICD is now understood to be equivalent to Förster transfer 687 

(although ICD involves much more complex prior and posterior processes) – since the mechanism is 688 

driven by dipole-dipole coupling with the characteristic R–6 distance dependence.  Nevertheless, there 689 

is a major fundamental difference between RET and ICD.  Namely, as explained previously, the 690 

former typically involves only valence electrons whereas ICD is initiated by an intra-atomic (or intra-691 

molecular) decay process; a high-energy transition, in which a donor valence electron relaxes to the 692 

core shell resulting in promotion of an acceptor valence electron to the continuum, i.e. acceptor 693 

ionization.  This means that an ionization cross-section will feature instead of the absorption cross-694 

section of Förster transfer.   695 

A prototypical example is the photo-ionization of a neon dimer (Ne2) via 2S-electron emission from 696 

one of its atoms.  This results in the relaxation of a valence 2P-electron into the formed vacancy and, 697 

consequently, a high-energy photon is released.  Following absorption of this light by the 698 

neighbouring atom, a 2P-electron is ejected from it [215,216].  The interaction of the two newly 699 

charged ions causes a Coulomb explosion, i.e. the fragmentation of the dimer.  For clarity, the whole 700 

mechanism is illustrated in Figure 6.  ICD is typically ultra-short-range, in which (just like Dexter 701 
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transfer) wavefunction overlap occurs; hence, terms relating to electron correlation and exchange will 702 

contribute.  Moreover, since ICD involves electron relaxation from a valence shell to the core shell in 703 

the donor, account of the Auger effect is required.  This competing mechanism occurs because the 704 

energy generated from this relaxation could be transferred to another electron within the donor (and, 705 

thus, ejecting it), so energy in the form of a photon would not reach the acceptor.  Therefore, for an 706 

accurate theoretical description of ICD, a detailed interpretation of the Auger effect along with 707 

electron correlation and exchange is required.  This is achieved by considering direct and exchange 708 

Coulomb integrals for the decay rate.  An overview of this is provided by Jahnke in his recent review 709 

[217]. 710 

Since the pioneering studies on diatomic systems, there have been a number of experimental and 711 

theoretical investigations into ICD that involve different materials, including clusters of atoms and 712 

molecules [218], quantum dots [219,220] and quantum wells [221].  Although ICD has considerable 713 

theoretical interest, there is evidence of its practical importance to biological chemistry; in particular, 714 

in the understanding of a DNA repair mechanism provided by the enzymes known as photolyases 715 

[222,223].  The theoretical developments of ICD often mirror those already established in RET – 716 

such as the effects of retardation, dielectric environments, a third body and virtual photons [224,225].  717 

Clearly, more research in this exciting emerging field is required, with much still to learn in terms of 718 

its fundamental theory and applications.  719 

  720 

4.4 RET in cavities 721 

It can be challenging to elucidate fundamental processes experimentally, particularly because RET 722 

often occurs in natural biological systems and ‘energy materials’ in the condensed phase.  723 

Necessarily involving a level of phenomenological modelling, their simulation can be tremendously 724 

complicated.  Associated research, especially in connection to the field of biology, has been covered 725 

in a numerous recent reviews [226-246].  Cavity quantum electrodynamics (cQED) works on the 726 

principle that electronic species are restricted to small volumes (usually bounded by mirrors in one or 727 

more dimensions) so that the electromagnetic field is tuned to specific quantised modes and the 728 

quantum nature of the light becomes more apparent compared to the free field.  In terms of 729 

mathematical formulation, the arbitrary quantisation volume, V, of equation (3.10) is simply replaced 730 

by the dimensions of the cavity.  Early applications of cQED revealed an understanding of the 731 

fundamental light-matter interactions in atoms, quantum dots and similar materials [247-252].   732 
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More recently cQED has been applied to chemical substances, such as organic dyes, and connected 733 

to phenomena such as RET [253].  The main advantage of studying these cavity-based schemes is 734 

that experimentalists are able to control the electromagnetic radiation at the quantum level, while 735 

simultaneously reducing interference with the surroundings to a significant extent.  This allows for 736 

the explicit study of polariton modes (sometimes called hybrid states in this context), which is 737 

typically difficult in the condensed phase because of the rapid decoherence that derives from system 738 

coupling with a continuum of environmental modes.  For example, in 2012, Ebbesen and co-workers 739 

experimentally showed that the photophysical properties of light-induced chemical reactions can be 740 

influenced by cavity fields, which can modify the chemical reaction landscape [254].  In another 741 

study, the same research group cleverly showed how to alter the reaction rates of chemical reactions 742 

by coupling molecular vibrations to infrared cavity modes [255].  743 

Since experiments with negligible amount of decoherence are now conceivable, there is increasing 744 

interest in the effects of polariton modes on energy transfer within a cavity.  In 2015, for instance, a 745 

couple of theoretical studies indicated that ‘exciton conductance’ could be considerably enhanced, by 746 

orders of magnitude, when organic materials are coupled to cavity modes [256,257].  Experimental 747 

verification of this amplified energy transfer soon followed [258-260].  Attempts to better understand 748 

polariton-assisted RET are increasingly prevalent.  In 2018, Du et al. developed a ‘polariton-assisted 749 

remote energy transfer’ model to explain how enhanced RET is mediated by vibrational relaxation in 750 

an optical microcavity [261].  While earlier this year, Schäfer et al. proposed that energy transfer 751 

could be drastically affected by a modification of the vacuum fluctuations in the cavity.  In this 752 

research, they make a connection to Förster and Dexter transfer, and account for the often-753 

disregarded Coulomb and self-polarisation interactions.  Interestingly, they predict that photonic 754 

degrees of freedom give rise to electron-electron correlations over large distances in the cavity [262].  755 

What we do know for sure is that cavity RET is a representative example of the strong coupling 756 

regime; an excellent recent review on such strong light-matter interactions is provided by Börjesson 757 

and co-workers [263].  758 

 759 

5 Discussion 760 

Today it is nearly 100 years since the discovery of RET and, remarkably, the 71 year-old Förster 761 

theory that describes this transfer is still widely utilised.  This model has provided us with the famous 762 

R–6 distance dependence on the rate between donor and acceptor molecules.  Following these earlier 763 
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times, from the 1960s until the late 1980s, significant theoretical developments based on fundamental 764 

quantum electrodynamics has been applied to two-centre RET.  This has culminated into the unified 765 

theory of RET, which links the short-range (near-zone) process of Förster with a long-range (far-766 

zone), R–2 dependent transfer consistent with Coulomb’s Law.  It also predicts a R–4 dependence in 767 

the intermediate region, where the distance between the molecules approximately equals the reduced 768 

wavelength of the mediating virtual photon.  The latter could be said to have increasingly real 769 

characteristics in this range.  Although not detailed in this review, further work in the 1990s predicted 770 

that optically active molecules in the condensed phase could also have a R–3 and a R–5 distance 771 

dependence, which become significant when the imaginary part of the refractive index is especially 772 

large [264,265].  Soon afterwards, a QED description for the rate of RET in the presence of 773 

dispersing and absorbing material bodies of arbitrary shapes was provided [266].  In the 21st century, 774 

among other advances, quantum theory has helped us understand the role of mediators in energy 775 

transfer (i.e. 3- and 4-body RET) and the rederivations of the RET coupling tensor has provided new 776 

physical insights. 777 

In the last ten years, research into RET has moved into many exciting directions – too numerous to 778 

cover in detail in a single review.  For example, the enhancement and control of long-range, super-779 

Coulombic RET in hyperbolic metamaterials is shown [267,268] and the influence of epsilon-and-780 

mu-near-zero waveguide super-coupling on RET is considered [269].  Moreover, many research 781 

groups continue to unravel the nature of energy transfer within biological photosynthesis, with a 782 

special focus on the understanding of the roles that molecular vibrations may play in facilitating the 783 

process. There are also enormous efforts to develop ‘energy materials’ that may enable new 784 

technologies, which include those focused on solar energy harvesting.  Materials based on surface 785 

plasmons have shown great promise, especially in its connection to the huge enhancements of RET 786 

efficiency.  Research groups are also working on RET in both the non-optical regions of the 787 

electromagnetic spectrum and within optical cavities.  In all of these exciting areas of research, new 788 

experiments and theory need continued development.  The theory of QED, while the most precise 789 

theory we know for light-matter interactions, assumes non-dissipative closed systems and that the 790 

electrons are localised to the molecules.  Consequently, in its current formulation, microscopic QED 791 

is not directly applicable to the investigation of surface plasmons (delocalised excitons) or the 792 

process of decoherence, which occurs because the system is open to the environment.  While semi-793 

classical theories can address these questions in a limited way, the continued development of 794 

macroscopic QED [270] is desirable for accurate portrayals of such processes. 795 
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Table 1. All the system states and their associated energies for RET.  The energies of the donor 1521 

and acceptor are represented by superscript of DE  and AE , respectively.  Due to conservation 1522 

of energy arguments, =n mE E . 1523 

System state Dirac bracket Energy 

i  ( )0, ;0 ,n

D AE E p λ�  0+n

D AE E  

1I  ( )0 0, ;1 ,D AE E p λ�  0 0

D AE E cp+ + ℏ  

2I  
( ), ;1 ,n m

D AE E p λ�

 
n m

D AE E cp+ + ℏ  

f  
( )0 , ;0 ,m

D AE E p λ�

 
0 + m

D AE E  

 1524 

Figure 1. Representation of energy transfer, the excited donor (on the left-hand side) transfers 1525 

energy, represented by the red arrow, to the acceptor (on the right). 1526 

Figure 2. Two time-orderings for RET between a donor (D) and an acceptor (A).  The vertical 1527 

lines denote the two molecules, wavy lines are the photons, n and m represents the excited state 1528 

of D and A, respectively, and 0 is their ground state; time, t, increases up the graph.  Red, black 1529 

and blue lines represent the initial, intermediate and final system state.  1530 

Figure 3. One of 24 possible time-orderings for RET mediated by a third molecule, M, acting 1531 

as a bridge between donor D and acceptor A.  Energy is transferred from D to A, and M begins 1532 

and ends in its ground state. 1533 

Figure 4. Two-step RET in a second-generation phenylacetylene dendrimer.  This schematic 1534 

depicts initial electronic excitation at a peripheral phenyl group, which acts as a donor of 1535 

energy to a neighbouring inner-ring chromophore; this acceptor then becomes a donor of 1536 

energy to the phenaline core.  Original image appeared in reference [137].  1537 
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Figure 5. Representation of energy pooling, the two excited donors (on the left- and right-hand 1538 

side) transfer energy, represented by the red arrows, to the acceptor (in the centre). 1539 

Figure 6. (a) Photoionization of a neon dimer, via ejection of an inner shell electron from an 1540 

atom (green arrow), due to incident x-ray radiation (orange wavy line).  (b) Interatomic 1541 

Coulombic decay: an outer electron relaxes into the vacancy (blue arrow) and, consequently, 1542 

photo-ionization of the other atom occurs due to energy transfer between the atoms (red arrow). 1543 

(c) The newly charged atoms (plus signs) repel each other (yellow arrows), which results in 1544 

destruction of the neon dimer. 1545 
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