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Abstract
We study the dynamics and statistical mechanical equilibria of a neutral two-dimensional
point vortex gas with Coulomb-like interactions confined in a squared and a rectangular
domain. Using a punctuated Hamiltonian model in which we model the process of vortex–
antivortex annihilation in superfluids by removing vortex dipoles, we show that this leads to
evaporative heating of the system. Consequently, the vortex gas enters the negative tempera-
ture regime and subsequently relaxes to a maximum entropy configuration. We demonstrate
that the large scale flows that emerge in this regime can be explained by using an equilibrium
statistical mechanical mean field theory of point vortices based on a Poisson–Boltzmann
equation. In particular, we observe that the emergent large scale flows in our point vortex
simulations in the squared domain give rise to a spontaneous acquisition of angular momen-
tumwhereas the flows in the rectangular domain prefers a state with zero angular momentum.
In addition to the observed qualitative agreement between the dynamical simulations and the
theory that we demonstrate for the two geometries, we also present an approach that allows
us to accurately compute a coarse-grained vorticity field, and henceforth recover the entropy
from our dynamical runs. This allows us to perform a quantitative comparison between the
dynamical point vortex simulations and the statistical mechanical predictions of the mean
field theory thereby allowing us to clearly assert the validity of the assumptions of the statis-
tical approaches as applied to this system with long-range interactions.

Keywords Point vortex model · Poisson–Boltzmann equation · Negative temperature

1 Introduction

The point vortexmodel is an archetypal model for studyingmany aspects of two-dimensional
vortex dynamics in both classical fluids and superfluids. Historically, the study of point
vortices to model the motion of a fluid dates back to Helmholtz [1] and Kirchhoff [2].
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Subsequent interest in this model was revived by the work of Onsager [3] who attempted to
use it as a means to understand certain aspects of two-dimensional hydrodynamic turbulence.
Both Kirchoff and Onsager recognised that if point vortices are confined to move within a
finite-sized domain, the phase space is also bounded. Onsager went on to show that, if the
phase space is bounded, this provides a sufficient condition for the existence of negative
temperature states for a system consisting of N � 1 point vortices in statistical equilibrium.
Thereafter, Taylor [4] and Edwards and Taylor [5] were able to find the critical energy of
the vortex gas such that above this critical energy the system exhibits negative temperature
states. A particularly interesting attribute of the negative temperature regime is that energy
considerations imply that it must correspond to the presence of vortex clusters within the
system. Such vortex clusters can replicate the motion of large scale coherent vortex structures
in classical fluids. In particular, this can be used to explain how an ordered large scale flow
can emerge from a coarse-grained description of the flow produced by a large ensemble of
vortices.

Joyce andMontgomery [6,7] subsequently extended the work of Onsager by developing a
mean-field theory that can predict the large scale flow patterns which correspond to entropy
maxima at fixed energy. Further important developments along this direction were later
carried out by Pointin and Lundgren [8–10]. The validity of the theory was subsequently
tested against direct numerical simulations of classical fluids [11–14]. However, the use of
point vortices to model a continuum vorticity field of a classical fluid was a contentious issue.
In fact, Dürr and Pulvirenti, andMarchioro and Pulvirenti [15,16] showed that any smooth 2D
Euler solution of the classical fluid equations could be approximated to any desirable accuracy
by themotion of point vortices for a finite time. However, for statistical equilibrium of N � 1
point vortices, this result is not sufficient. Subsequently, Robert et al. [17–19] pointed out
that an ideal classical fluid has additional constants of motion, the so-called Casimirs, that
correspond to integrals of moments of the vorticity field. These works, therefore, proceeded
to derive alternative mean-field theories that are argued to be more relevant for classical
fluids. The differences between these approaches has been further discussed and elaborated
on in the work of Kiessling and Wang [20], and Chavanis [21]. A comprehensive review of
the key developments that have been made in the statistical mechanical description of point
vortices can also be found in [22].

Despite these potential shortcomings in using point vortices in modelling classical fluids,
in this work we are predominantly interested in using the point vortex description as a
simplified model for studying the motion of quantised vortices in superfluids. Indeed, given
the rapid experimental advances that have taken place within the field of ultracold atomic
condensates in recent years, there has been increasing interest in understanding the role of
quantised vortices on the nonequilibrium relaxation and the properties of quantum turbulence
in these systems [23–27]. Unlike classical fluids, in these systems, singular distributions of
vorticity coinciding with point vortices are not merely mathematical idealisations of the flow,
but rather accurately represent the vorticity field of a superfluid. Moreover, the point vortex
model turns out to be an excellent description for the motion of superfluid vortices in the
case when they are well separated (relative to their healing length) [28,29].

In viewof the above considerations,wewill resort to the original theory of Joyce andMont-
gomery [6,7], and Pointin and Lundgren [8–10], as a suitablemean-field theory for describing
a large ensemble of well-separated quantised vortices. A peculiar feature of the Coulomb-
like interactions of a point vortex model is that the interaction potential is long-range. This
leads to a number of subtle properties when attempting to define the thermodynamic limit
of a point vortex gas. A standard thermodynamic limit would correspond to taking the area
of the domain Δ → ∞, and the number of vortices and energy N → ∞, E → ∞ such
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that N/Δ and E/Δ tend to a finite limit [30] while keeping the circulation of each vortex
fixed (we note that the circulation is quantized in a superfluid and can not be be allowed to
vary in any limiting procedure). This limit was studied in [31,32]. However, it turns out to
result in only the positive temperature states. To recover the negative temperature regime,
the limit on energy must be modified so that E/(NΔ) must be taken to be finite. Under
such conditions the mean-field theory of Joyce andMontgomery can be recovered. This limit
was carefully analysed in [33–37] in both the canonical and micro-canonical ensembles. We
will refer to this extension of the thermodynamic limit to the negative temperature regime as
the hydrodynamic limit. We note that in the negative temperature regime, the point vortex
gas can admit negative specific heats. Under such conditions, ensemble equivalence can no
longer be assumed. It follows that the micro-canonical ensemble should be used to analyse
the statistical equilibrium properties of the point vortex gas with fixed number of vortices
N and energy E . Moreover, because of the long-range interactions of the point vortices, the
hydrodynamic limit has the peculiar property that the effects of the boundaries do not vanish
as in standard thermodynamic limits. This property manifests itself by having solutions of
the mean-field theory that turn out to be sensitive to the shape of the confining domain as
revealed in [19,38–41].

The long-range nature of the Coulomb interactions of point vortices has also raised ques-
tions concerning the ergodicity of the point vortex gas, an assumption that has often been
argued to be central to the application of any statistical mechanical approach to a given prob-
lem [42,43]. However, the validity of this basic underlying assumption for the point vortex
gas was revisited in the recent work of [44]. Their results indicate that, in practice, the system
can appear ergodic, a fact that is further reinforced in [40,45,46] by the remarkable qualitative
agreement observed between the mean-field theory and the distribution of point vortices seen
in direct numerical simulations based on a point vortex model and a microscopic model of
a superfluid in the form of the Gross–Pitaesvkii equation. It is interesting to note that the
flow patterns observed in some of these works also closely resemble similar flow structures
observed in classical fluids [47,48]. Indeed, in recent years, increasing evidence has accumu-
lated which suggests that a large ensemble of point vortices/quantised vortices can replicate
certain features of classical 2D turbulence including the direct enstrophy cascade [49] and
the inverse energy cascade [50,51]. Moreover, the signature of vortex clustering in the energy
spectrum and its relation to the Kolmogorov spectrum in classical fluids was considered in
[52,53].

These developments motivate a more in-depth analysis of how well direct numerical
simulations agree with mean-field predictions that are derived from a statistical mechanical
framework. Despite the extensive amount of analytical and computational work that has
been performed on the PB equation of point vortices, relatively few attempts have been
made in order to directly compare the statistical mechanical predictions with direct numerical
simulations.Of the fewattempts that have been carried out to date, themajority of these simply
integrate the Hamiltonian system of equations for the vortices from a given initial condition.
However, we recall that since the system is Hamiltonian, the energy of the point vortex
model will also be conserved. Consequently, if the initial conditions correspond to energies
below the threshold for negative temperatures to arise, no vortex clustering will emerge.
In contrast, in superfluids, quantised vortices can annihilate with antivortices upon close
encounters. It was shown in [29], that this mechanism plays an essential role in facilitating the
migration of the gas of vortex excitations from the positive to negative temperature regime.
To our knowledge, these works are the first examples where the realization of negative
temperature states emerges spontaneously through this evaporative heating process induced
by vortex–antivortex annihilation. Therefore, the use of aHamiltonianmodel of point vortices
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punctuated by vortex pair removal turns out to be essential to a complete understanding of
the evolution of vortices in superfluids. Using this punctuated model, in our previous work
[45] we proceeded to present a qualitative comparison with the predictions of the mean field
theory. However, a more thorough quantitative analysis demonstrating a more direct link
between the two predictions was not possible due to the difficulties in evaluating the entropy
from numerical simulations containing of the order of only 100 vortices. Such numbers are
at the threshold of what is currently achievable in experiments.

In this paper, we will present a systematic comparison between the two models for two
specific domains; a squared domain and a rectangular domain with an aspect ratio of 1.5.
In such domains, angular momentum is not conserved as is the case for a circular domain.
Therefore, the system is able to explore a broader part of the phase space and can thus display
a diversity of solutions of the PB equation. These provide more stringent tests for purposes of
comparing the two models. The remainder of the paper is organised as follows. In Sect. 2 we
introduce the point vortexmodel and describe the negative temperature states for a vortex gas.
In Sect. 3, working with a micro-canonical ensemble, we apply a maximum entropy principle
to re-derive the PB equation. In Sect. 4, we investigate the dynamics of point vortices in the
squared and the rectangular domains with aspect ratio Λ = 1.5. This analysis allows us to
qualitatively validate the predictions given by the solutions of the PB equation by showing
that the late time flows that emerge will have either zero or non-zero angular momentum
depending on the geometry of the domain. In Sect. 5 we present several results including,
a reconstruction of the smoothed vorticity fields associated with the distribution of vortices
in point vortex simulations and how they compare with the mean-field theory; a quantitative
analysis of the entropies of the emergent flow configurations observed during the dynamics;
and a quantitative analysis on the associated angular momenta of the computed flows. We
end with a discussion of the implications of vortex annihilations occurring at the boundaries,
a scenario which can occur in a real superfluid.

2 Hamiltonian of Point Vortices and Negative Temperature States

The equations of motion of N point vortices located within some domain at xk = (xk, yk),
k = 1, . . . , N each with circulation γk , are given by

ẋk = 1

γk

∂H
∂ yk

, ẏk = − 1

γk

∂H
∂xk

, (1)

where H is the Hamiltonian. This can also be interpreted as a regularised kinetic energy of
the fluid which corresponds to neglecting the self-interaction energies of the vortices (i.e.
this leads to the condition j �= k appearing in the double sum of Eq. (9)). In this model, the
total energy H and the number of vortices N are conserved during the dynamics.

If H is also invariant with respect to rotations and translations in x and y, there are other
constants of motion that are given by

A = −
N∑

k=1

γk ||xk ||2, Ix =
N∑

k=1

γk yk, Iy = −
N∑

k=1

γk xk . (2)

These express the conservation of the angular impulse, A, and the linear impulse, I = (Ix , Iy),
respectively. The conditions under which these additional invariants arise are dependent upon
the shape of the domain. For example, the linearmomentum is conserved for an unbounded or
periodic domain whereas one component of the momentum will be conserved for a channel.
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On the other hand, the angular momentumwill be conserved for an unbounded region and for
a circular domain. The above expressions for linear and angular impulse can be derived from
the total linear momentum and total angular momentum of a continuum incompressible fluid
of constant density such that ∇ ·u = 0. This reveals that the essential difference between the
impulse and momenta is related to boundary terms. Setting ρ = 1, we have

L =
∫∫

A
(xv − yu)dxdy = −

∫∫

A
ω|x|2dxdy +

∮
|x|2(nxv − nyu)ds , (3)

P =
∫∫

A
udxdy =

∫∫

A
(y,−x)ωdxdy −

∮

∂A
(y,−x)(nxv − nyu)ds . (4)

Here, u = (u, v) is the velocity field, ω is the vorticity field, and (nx , ny) is the outward
pointing normal to the boundary ∂A of the region of integration A. Given that the fluid is
assumed to be incompressible, we can introduce the streamfunction of the flow, ψ , such that
u = (∂yψ,−∂xψ). The magnitude of the angular momentum can then also be written as
L = 2

∫
ψdxdy.

An interesting property of the Hamiltonian system described by Eq. (1) is that the set of
coordinates xk, yk are canonically conjugate variables and hence define the phase space of
the system. This continues to be the case for vortices in a bounded domain. It follows that
for a domain with area Δ, the phase space has a finite volume given by ΔN . Working within
a micro-canonical ensemble, and following Onsager [3], and Pointin and Lundgren [9], the
volume of the phase space Φ that corresponds to states with energies less than E is defined
as

Φ(E) =
∫ E

−∞
W(E ′)dE ′ . (5)

Here, W(E) = dΦ/dE denotes the density of states with energy E . To define this quantity
we identify the microstate of the system by the instantaneous configuration (x1, x2, . . . , xN )

of the N vortices. To make the connection with a statistical mechanical description of the
problem, we let PN (x1, x2, . . . , xN ) denote the probability density for the system of vortices
such that PNdx1dx2 · · · dxN is the probability that x1 is in dx1, x2 is in dx2 and so forth. Then
if we assume that the only conserved quantities associated with the Hamiltonian point vortex
dynamics are the point vortex energy and the number of vortices, the probability distribution
associated with the N vortex system of the micro-canonical ensemble is given by

PN = δ(H(x1, x2, . . . , xN ) − E)

Φ(E)
. (6)

Therefore, Φ(E) plays the role of the normalizing factor. This equation implies that
microstates corresponding to the same energy are equally likely. Moreover, since∫
PNdx1dx2 · · · dxN = 1, we find that

Φ(E) =
∫

δ(H − E)dx1dx2 · · · dxN . (7)

It follows that Φ(E) is positive for all the energies with Φ(−∞) = 0 and Φ(+∞) = ΔN .
Therefore,W(E) must have a maximum at some critical energy E = Ē . On the other hand,
the equilibrium temperature T of a system with thermodynamic entropy S and energy E , is
given by

1

kBT
=

(
∂S

∂E

)

Δ

, S = kB logW(E) , (8)

123



D. Maestrini, H. Salman

where kB is Boltzmann’s constant and the subscript denotes that the partial derivative is
evaluated at constant volume. From these considerations, it follows that a system which has
a value Ē such that W ′(Ē) = 0, admits negative temperatures for energies E > Ē .

Now, for a system of point vortices in an unbounded domain, the Hamiltonian is given by

H = − 1

4π

N∑

j=1

N∑

k=1
j �=k

γ jγk ln |x j − xk | . (9)

Then, if we consider a collection of point vortices consisting of two species corresponding to
vorticeswith positive and negative circulation, negative temperatures correspond to clustering
of like signed vortices. Due to the long-range nature of the interactions between point vortices,
the thermodynamic limit of the vortex gas at negative temperatures retains dependence on the
boundaries [19,38,40,41,54]. The large scale vortex structures that are predicted to form at
these negative temperatures will, therefore, be sensitive to the shape of the domain [9,38,41].
Similar observations have previously been made for classical fluids [12–14,55] and in the
context of magneto-hydrodynamics [56].

In 1976, Joyce andMontgomery derived amean-fieldmodel in the formof a PB equation in
order to predict the resultingflowpatterns that are expected to emerge at negative temperatures
in the context of the guided centre plasma problem. This model was derived under the
hypothesis of statistical equilibrium of the point vortex gas. A thorough exposition of the
resulting PB equation and its classification within the framework of the microcanonical
ensemble is presented in the work of Chavanis [38]. In the next section, we will present the
key arguments leading to the derivation of this mean field theory of the point vortex gas.

3 Mean-Field Theory of a Vortex Gas

We will now assume a bounded region,A, with area Δ containing a total of N point vortices
divided into different species denoted by the subscript, a, each containing Na vortices with
circulation γa . Working within a microcanonical ensemble, we will assume that the energy
of this system E and the total number of each vortex specie, Na , are fixed. This last constraint
is equivalent to fixing the total circulation Naγa of each specie. The statistical equilibrium
for the vortex gas then can be determined by dividing the area of the domain, Δ, into a large
number of cells with size h2 � Δ which can contain an arbitrary large number of point
vortices. The macrostate is defined once the number of point vortices of each specie, a, with
circulation γa in all the cells, denoted by the set

{
Ni,a

}
, have been prescribed. Here, the index,

i , denotes the cell number. The statistical weight corresponding to the macrostate
{
Ni,a

}
is

then given by [57]

W(
{
Ni,a

}
) =

∏

a

{
∏

i

Na !
Ni,a !

(
h2

Δ

)Ni,a
}

, Na =
∑

i

Ni,a . (10)

We can then introduce the coarse-grained vorticity of each specie ωa(x, y) and the total
vorticity ω such that

ωa(x, y) = γana(x, y) , na(x, y) = Ni,a

h2
, ω =

∑

a

ωa . (11)
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By inserting Eqs. (10) and (11) into Eq. (8) and using Stirling’s approximation, it follows
that in the continuum limit h → 0, the differential entropy S becomes a functional of ωa and
is given by [21]

S [ωa] = −kB
∑

a

∫

A

ωa

γa
log

(
ωaΔ

γa Na

)
dxdy . (12)

For a general domain, A, that does not contain any continuous symmetries, we assume that
the only conserved quantities are given by the total energy E and the circulation Γa of each
specie of vortices

E = 1

2

∫

A
ψωdxdy , Γa =

∫

A
ωadxdy . (13)

We note that the coarse-grained vorticity and the coarse-grained streamfunction are related
by ∇2ψa = −ωa so that ψ = ∑

a ψa . Introducing the inverse temperature β and the
chemical potentials μa of each specie of vortices, the vorticity distribution which maximises
the entropy has to satisfy

δS − βδE −
∑

a

μaδΓa = 0 , (14)

where the variations are calculatedwith respect toωa . This leads to theBoltzmanndistribution
for the vorticity fields of each specie which are given by

ωa = Na

Δ
γa Aae

−ρβγaψ , (15)

The terms Aa = Δ
(∫

A e−ρβγaψdxdy
)−1

provide the necessary normalisation conditions
that allow the second of Eq. (13) to be satisfied. Applying Eq. (15), to a neutral vortex gas
composed of two species of vortices with circulation γ± = ±γ , the equation ∇2ψ = −ω

reduces to the Poisson–Boltzmann (PB) [8] equation

∇2Ψ + λ2

2

[
eΨ

α+
− e−Ψ

α−

]
= 0, Ψ = 0 on ∂A , (16)

where ∂A is the boundary of the domain,Ψ = ρβγψ is the non-dimensional streamfunction,
λ2 = −Nγ 2ρβ/Δ, and α± = Δ−1(

∫
e±Ψ dxdy). If α+ = α− the PB equation reduces to

the Sinh–Poisson equation with the trivial boundary condition Ψ = 0. This equation was
considered in some previous works (e.g. [6]). However, the condition α+ = α− will not
be true in general. We note that the PB and Sinh–Poisson equations can have non-trivial
solutions only when the system is in the negative temperature regime so that λ2 is positive.

Using Eq. (15), we can also express the entropy, S, and the energy, E , as

Ŝ = −1

2
log (A+A−) + 8λ2 ÊΔ, Ê = − 1

8λ4Δ2

∫

A
Ψ ∇2Ψ dxdy . (17)

Here, we introduced the non-dimensional entropy per vortex, Ŝ = S/NkB , in units of the
Boltzmann constant, and the non-dimensional energy Ê = E/4N 2γ 2ρ [38,39] which will
be used to classify the solutions Ψ of the PB equation.

Linearising Eq. (16) about the trivial solution Ψ = 0 [38,39] reveals the importance of
two particular solutions of the full PB equation: the first corresponds to a monopole flow
field whilst the second corresponds to a dipolar flow field. Moreover, such an analysis reveals
that there is a qualitative change in the maximum entropy solution of the PB equation as the
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Fig. 1 Normalised entropy as a function of energy ofmean flows predicted by the Poisson–Boltzmann equation
for a square domain (dipole, diagonal dipole and monopole solutions) and for the rectangular domain (dipole
and monopole solutions). The values of the parameter λ̃2 used are indicated at the beginning and at the end of
each branch and each marker corresponds to an increment of λ̃2 = 0.5. The inset shows the streamfunction
contours of mean flows (positive and negative contours correspond to red and blue lines, respectively) (Color
figure online)

aspect ratio approaches Λ ≈ 1.122 resulting in a geometry induced transition between the
two flows [8,38,39]. We will, therefore, be interested in solutions of the PB equation for two
particular geometries: a square with sides Lx = Ly = 2 and a rectangle with aspect ratio
Λ = Lx/Ly = 1.5 with sides Lx = 2

√
Λ and Ly = 2/

√
Λ.

This choice ensures that the areas Δ, and therefore the phase spaces of the two domains
are equal. We have solved the PB equation numerically by adapting the algorithm described
in [58] for the Sinh–Poisson equation. In order to enhance the numerical stability of the
iterative algorithm, the above form of the PB equation was rewritten in the form

∇2Ψ + λ̃2
[√

α−
α+

eΨ

2
−

√
α+
α−

e−Ψ

2

]
= 0, λ̃2 = λ2√

α+α−
. (18)

We note that the algorithm presented in [58] which was later used in [8], and further extended
in [59], converges to non-trivial solutions of the PB equation which, by definition, are local
extrema of the entropy.

This form of the PB equation was solved for different values of the parameter λ̃2 by
using solutions of the linearised form of the equations as initial guesses. The solutions for
Ψ have been classified in terms of their energy Ê and the entropy per unit energy Ŝ/Ê (see
Eqs. (17)). The results are presented in Fig. 1 which shows the energy-entropy analysis for
the dipole (solid blue line), diagonal dipole (solid red line) and monopole (solid green line)
in the squared domain; and for the monopole (dashed green line) and dipole (dashed blue
line) in the rectangular domain.

The inset figures show the corresponding streamline patterns of the flows obtained in the
two geometries. Although all the solutions presented are local extrema of the entropy, the
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state with the maximum entropy for the square appears to be the monopole whereas in the
rectangle the maximum appears to correspond to the dipolar flow. These predictions turn
out to be in full agreement with the findings in [9,38] for the linearised PB equation. We
note that the branch representing the diagonal dipole solution is missing for the rectangular
domain. In fact, by symmetry, the dipoles in the square can be arranged either horizontally
or vertically. Within a linear approximation of the PB equation, a superposition of these two
equally probable configurations gives rise to a diagonal dipole configuration. However, for
a rectangle, this argument no longer holds. In fact, we could not find any diagonal dipole
solutions for the particular values of the aspect ratio Λ = 1.5 we have considered although
they can be found for smaller values of the aspect ratio.

Any solution Ψ corresponds to a flow with an angular momentum with magnitude L =
2

∫
Ψ dxdy [39] which, in the case of the dipole or diagonal dipole, is identically zero by

symmetry. However, L turns out to be finite for themonopole.We, therefore, conclude that the
statistical equilibrium of a neutral system composed of point vortices in a square, is associated
with a flowwith non-zero angular momentum. In contrast, when the vortices are contained in
a rectangular domain with aspect ratio Λ > ΛC = 1.122 [9,38] the configuration associated
with the highest entropy turns out to correspond to a flow with zero angular momentum.

4 Point VortexModel in the Square and the Rectangle

In order to derive the Hamiltonian H, following Campbell et al. [32], we assume that the
N vortices are contained in a rectangular box with sides Lx and Ly which is a 1/4 of a
periodic cell. The remaining 3/4 of the cell contains 3N images which allows us to satisfy
the condition of no flow normal to the solid boundary ∂A. The Hamiltonian of the system is
then given by

H = ρ

4π

N∑

i=1

γ 2
i b(xi ;Λ) + ρ

4π

N−1∑

i=1

N∑

j=i+1

γiγ j h(xi , x j ;Λ) . (19)

h(xi , x j ;Λ) represents the interaction between two vortices aswell as the interaction between
a vortex and the images of another vortex so that

h(xi , x j ;Λ) = f (|xi − x j |, |yi − y j |;Λ) + f (Lx − xi − x j , Ly − yi − y j ;Λ)

− f (Lx − xi − x j , |yi − y j |;Λ) − f (|xi − x j |, Ly − yi − y j ;Λ) , (20)

while b(xi ;Λ) represents the interaction between a single vortex and its own images

b(xi ;Λ) = 1

2
f (2Lx − 2xi , 2Ly − 2yi ;Λ)

− 1

2
f (2Lx − 2xi , 0;Λ) − 1

2
f (0, 2Ly − 2yi ;Λ) . (21)

In the expression given above, the function f (x, y;Λ) is described by [60]

f (x, y;Λ) =
{
2π

Λ

[
y

L y

(
y

L y
− 1

)
+ 1

6

]
− log

+∞∏

k=−∞
ζ

(
x

Lx
,
y

L y
; k,Λ

)}
, (22)

and

ζ(x, y; k,Λ) = 1 − 2 cos (2πx) e− 2π |y+k|
Λ + e− 4π |y+k|

Λ . (23)

123



D. Maestrini, H. Salman

For a system of point vortices, the vorticity field is given by ω(x) = ∑
i γiδ(x − xi ), where

x = (x, y). By referring to Eq. (13), the corresponding streamfunction ψ(x) of the flow can
then be recovered from the Hamiltonian H to obtain

ψ(x) = ρ

2π

N∑

i=1

γi h(x, xi ;Λ) . (24)

The dynamics of N point vortices described by Eqs. (1), (19)–(23) is constrained to a
hypersurface {E = H} in phase space where the energy E is a given constant. Since the
thermodynamic definition of temperature is in terms of the change of entropy with respect to
energy as given by Eq. (8), the temperature of the equilibrium vortex gas is dependent on the
initial energy of the system. Therefore, unless the vortex gas is initialised at sufficiently high
energy (i.e. where clustering is specified in the initial condition), no negative temperature
and emergence of large scale flows is realised. However, vortex–antivortex annihilation in
a superfluid is an important physical mechanism that changes the energy of the vortex gas
as well as the number of vortices. Building on the work of Campbell [32], Simula et al.
[29] and subsequently Salman and Maestrini [45] demonstrated that this process can drive
a vortex gas with initial energies coinciding with the positive temperature regime into neg-
ative temperatures. The reason is that, although the energy of the system can decrease as
vortices annihilate, the energy per vortex remaining in the system increases which can result
in the spontaneous emergence of large scale coherent flows. Given these observations, we
havemodelled the process of vortex–antivortex annihilation by removing a vortex–antivortex
dipole whenever their separation fell below a critical threshold set by the annihilation param-
eter δ. For superfluids, the length scale set by this parameter is related to the healing length
associated with the vortex cores. Therefore, our numerical solution procedure involved for-
ward integrating the equations of motion of our model given by Eqs. (1), (19)–(23) using
the built-in ODE45MATLAB function [61] based on an adaptive 4th-5th order Runge-Kutta
schemewith amaximum time step ofΔτ = 0.005.At each time step, any pair of vorticeswith
opposite circulation whose mutual distance fell below the annihilation parameter δ = 0.01
was removed from the subsequent dynamics.

To establish the most probable vortex equilibrium configuration as a function of energy,
we also numerically computed the statistical weight W(H) by evaluating the energy of a
large number of random neutral configurations of N vortices and constructing the related
histograms. The interaction energy per vortex H/N of the system is evaluated by using Eq.
(19). The probability distributions are then evaluated from the histograms {Wi } by using a
normalised Gaussian kernel [62] such that

W(x) = 1

M

Nb∑

i=1

Wi√
2πσ

exp(−(x − Hi )
2/2σ 2) , (25)

where σ is the kernel width, Nb = 50 is the total number of bins that we used, and Wi is
the number of realizations with energy lying within the interval [E, E + ΔE]. The value
of σ = 0.01 was chosen to provide a kernel width that is sufficiently large with respect
to the spacing of the histogram but sufficiently small in relation to the characteristic length
scale of the distribution. Within such intermediate scales, we found that the results obtained
are essentially independent of the specific value of σ used while allowing us to recover
a continuous and differentiable representation of the discrete distribution that was initially
represented by the histogram {Wi }. For each value of N , a total ofM = 100, 000 samples was
used to construct the histograms. In order to accurately replicate the finite size effects of real
superfluid vortices, a constraint was imposed when generating the samples to avoid vortices
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Fig. 2 Statistical weight for vortices in a squared and b rectangular domains as a function of energy per vortex
computed with different numbers of vortices as indicated in the legend. The minimum intervortex separation
δV = 0.08 and the minimum vortex-boundary separation δB = 0.12 were imposed on the vortex distributions.
The vertical dashed lines correspond to the energy of the initial vortex configurations used for the numerical
simulations that contained N+ = N− = 60 vortices as shown in the insets on the top right of each plot

from lying too close to one another or to the boundaries. A minimum intervortex separation
of δV = 0.08 and a minimum vortex-boundary separation of δB = 0.12 was therefore used.

The results are shown in Fig. 2 for systems composed of different numbers of vortices
N = 10, 20, 40, 80 and 160. Since the energy and the entropy are related through Eq. (8),
this allows us to identify the range of energies for which negative temperature states will
arise for our squared and rectangular domains. Figure 2a, b show the statistical weights in
the square and the rectangle respectively. In comparison to the unconstrained case where
the graphs converge as N is continually increased [32], here the graphs begin to deviate for
very large values of N since the constraints δV and δB introduce a packing factor. However,
the qualitative features of the distributions persist. In particular, the probability distributions
presented in Fig. 2 contain a maximum turning point with a positive slope at lower interaction
energies and a negative slope at higher interaction energies which correspond to positive and
negative temperatures, respectively.

5 Results

5.1 Emergent Flow Structures in Numerical Simulations

The vertical dotted lines in the graphs presented in Fig. 2 represent the energy of the initial
configurationswe used for the dynamical runs in the square and the rectangle. These consisted
of N+ = 60 and N− = 60 vorticeswith circulation γ± = ±1which are shown in the insets of
the figures. The two initial conditions we chose both lie within the positive temperature range.
Figure 3 presents the instantaneous vortex configuration in the squared and the rectangular
domains at different stages in the dynamics. In the square, we have found that, throughout
the dynamics, the system explores the diagonal dipole (Fig. 3a), the dipole (Fig. 3b) and the
monopole (Fig. 3c) configurations. On the other hand, for the rectangle, the system has been
found in the monopole (Fig. 3d) and the dipole (Fig. 3e) configurations. We note that these
states in the square and in the rectangle emerge at later times in the numerical simulations
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N+ = 22, N− = 22

τ = 3.77
(a)

N+ = 22, N− = 22

τ = 3.93
(b)

N+ = 21, N− = 21

τ = 6
(c)

N+ = 20, N− = 20

τ = 5.6
(d)

N+ = 20, N− = 20

τ = 6
(e)

Fig. 3 Instantaneous vortex configurations of vortices (red circles) and antivortices (blue circles) taken at
different times in the square and in the rectangle that depict the characteristic clustering observed in the
simulations. The time τ is in units of tv = Δ/|γ | (Color figure online)

once the process of vortex annihilation has had time to act to drive the system deep into the
negative temperature regime. Considering the relatively small number of vortices that remain
in our simulations at late times, the patternswe observe are in good agreement with the type of
flows predicted by the PB equation. Moreover, we find that the very long-time dynamics give
rise to configurations which are global entropy maxima predicted by the theory. A striking
feature of our results is that the statistical mechanical predictions lead to accurate predictions
even though the number of vortices in our simulations is relatively small.

An improved understanding of the dynamics of point vortices in both geometries is given
by analysing the time variation of the angular momentum L since this measure clearly
distinguishes a symmetric configuration such as a dipole from a monopole. Figure 4a, b
show the variation of the angular momentum in the square and in the rectangle as a function
of time. In Fig. 4a, we observe extended intervals where L deviates from zero which is a
clear signature of the spontaneous emergence of the monopole configuration in the square.
An interesting observation is the sudden flipping of the sign of L which can be attributed to
a sudden flipping to the monopole configuration from one where vortices are located in the
central cluster to one where antivortices occupy the central region of the domain. In contrast,
in Fig. 4b, we observe a tendency for L to persistently oscillate about zero throughout the
duration of the dynamical run. This is a clear signature that the system spends much more
time in a symmetric configuration which coincides with a dipole. We note that the flipping
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Fig. 4 Time variation of the normalised angular momenta (see Eq. (35)) in the square (a) and in the rectangular
geometry (b). The time τ is in units of tv . The red lines in a are the values of the maximum angular momentum
Lmax = IΩ accessible to the system which correspond to solid body rotation and provide bounds on the
values that are expected for the monopole configuration (Color figure online)

of the angular momentum we observed in our numerical simulations for the square is also
consistent with the analysis of the mean-field predictions previously discussed in [38,63].

5.2 Smoothing theVorticity Field with a Heat Kernel

From our simulations of the dynamics of point vortices, we have identified time intervals
throughout which the point vortices can be found in configurations that are consistent with
the predictions of the mean-field theory. Yet this provides only a qualitative comparison
between the theory and numerical simulations. In this section, we will seek to provide a more
quantitative comparison. This is essential since thus far we have implicitly assumed that our
simulations give rise to flow structures that coincide with the same energy interval used to
find solutions of the PB equation. Only if this is indeed true can we make the claim that
the maximum entropy solutions predicted by the theory are consistent with our numerical
observations.

To proceed we will invoke the assumption of ergodicity in order to use a time sequence
of vortex positions within the respective time intervals in order to construct a large ensemble
of vortex positions. This could then be used to reconstruct a coarse-grained vorticity field
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though an appropriate smoothing procedure that thereafter will allow us to perform a direct
comparison between the simulations and the theory. For each of the respective time intervals,
we have generated an ensemble made up of a superposition of all vortex positions corre-
sponding to the diagonal dipole (Fig. 5a), the dipole (Fig. 5b) and the monopole (Fig. 5c)
in the square, and for the monopole (Fig. 6a) and the dipole (Fig. 6b) in the rectangle. Each
ensemble contains about N ∼ 8000 point vortices. To smooth out the vorticity field associ-
ated with this superposition of vortices, we will use a heat kernel for our respective square
and rectangular domains subject to the boundary condition that the vorticity vanishes at the
boundaries. Separating positive and negative vortices, we therefore seek solutions of the
problem defined by

∂ω±

∂τ
= ν∇2ω± , (26)

ω±(x; τ = 0) =
N±∑

i=1

γiδ(x − xi ) , (27)

ω± = 0 on ∂A , (28)

where ν sets the extent of the heat kernel. The positive and negative vorticity fields which
satisfy Eq. (26) and the boundary condition given by Eq. (28) are given by

ω±(x, y; τ) =
+∞∑

n,m=1

C±
n,me

−ντ(n2π2/L2
x+m2π2/L2

y) sin

(
nπx

Lx

)
sin

(
mπ y

L y

)
. (29)

It is important to notice that in Eq. (16), the terms α+ and α− are equal in the case of the
dipole and the diagonal dipole solutions, but they are not equal in the case of the monopole.
As a consequence, along the boundaries where the streamfunction is zero, the value of the
vorticity is zero for the dipole and diagonal dipole but it is given by (λ2/2)(1/α+ − 1/α−)

in the case of the monopole. Therefore, in the case of the monopole, the expression given by
Eq. (29) will approximate everywhere the vorticity distribution over the domain, A, but not
along the boundaries. There, the solutions given by Eq. (29) converge to the correct vorticity
fields but in a weak sense.

We can see that the smoothed vorticity fields ω± will depend on the combination, ντ .
We will, therefore, introduce the single parameter σ = √

2ντ that needs to be specified to
smooth the vorticity field associated with each ensemble. The corresponding streamfunctions
can then be determined from ∇2ψ± = −ω±, and hence, they are given by

ψ±(x, y; t) =
+∞∑

n,m=1

a±
n,m sin

(
nπx

Lx

)
sin

(
mπ y

L y

)
, (30)

with the coefficients

a±
n,m = C±

n,me
−ντ(n2π2/L2

x+m2π2/L2
y)

(
n2π2

L2
x

+ m2π2

L2
y

) . (31)

The coefficients C±
n,m in Eqs. (29) and (31) are determined from the initial condition

given by Eq. (27) which requires knowledge of a representation of Dirac’s delta function in
a rectangular domain. The vortex distribution at τ = 0 in a bounded rectangular domain can
be imposed by using a periodic representation of Dirac’s delta function, the so called Dirac
comb [64] given by
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(a) (b) (c)

Fig. 5 Ensembles for the dipole (a), diagonal dipole (b) andmonopole (c) in the square: the number of vortices
in each ensemble is N = 8580, N = 8360 and N = 8502 respectively. The red and the blue points represent
vortices and antivortices, respectively (Color figure online)

(a) (b)

Fig. 6 Ensembles for the monopole (a) and the dipole (b) in the rectangle: the number of vortices in each
ensemble are N = 8022 and N = 8086 respectively. The red and the blue points represent vortices and
antivortices, respectively (Color figure online)

+∞∑

m1=−∞
δ(x − x0 − 2m1Lx ) = 1

2Lx
+ 1

Lx

+∞∑

n=1

cos

(
nπ(x − x0)

Lx

)
, (32)

where 2Lx is the period along the x-direction. It is straightforward to extend this represen-
tation to two dimensions. Extension to the case of vortices in a domain with no flow through
the boundaries can then be achieved by considering this to be a 1/4 of a cell of a periodic
region with sides 2Lx and 2Ly in direct analogy with the procedure introduced in Sect. 4 to
represent the Hamiltonian of the point vortex model. For simplicity, we will initially consider
the case of a single vortex contained in a rectangular box with sides Lx and Ly and then,
by using the principle of superposition, the result will be extended to an arbitrary number
of point vortices in the domain. Let γ0 be the circulation of the vortex located at (x0, y0).
The initial vorticity distribution in the extended domain [0, 2Lx ] × [0, 2Ly], denoted by ω̃,
is therefore given by

ω̃(x, y; t = 0) = γ0

+∞∑

m1=−∞
m2=−∞

δ(x − x0 + 2m1Lx )δ(y − y0 + 2m2Ly)

+ γ0

+∞∑

m1=−∞
m2=−∞

δ(x − (2Lx − x0) + 2m1Lx )δ(y − (2Ly − y0) + 2m2Ly)
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− γ0

+∞∑

m1=−∞
m2=−∞

δ(x − (2Lx − x0) + 2m1Lx )δ(y − y0 + 2m2Ly)

− γ0

+∞∑

m1=−∞
m2=−∞

δ(x − x0 + 2m1Lx )δ(y − (2Ly − y0) + 2m2Ly) , (33)

where the first term refers to the vortex in the quarter cell, and the other three terms refer to its
three images in the containing periodic cell. It is evident that the above formula is equivalent
to Eq. (20) when the Hamiltonian of a distribution of point vortices in the rectangle was
considered. The coefficients C±

n,m can now be determined by projecting Eq. (29) onto Eq.
(33) and using Eq. (32) to express the respective delta functions. Details of the derivation
can be found in the Appendix and lead to the expression

C±
n,m = 4

Lx L y

N±∑

i=1

γi sin

(
nπxi
Lx

)
sin

(
mπ yi
L y

)
. (34)

For very large values ofσ , the smoothed out positive and negative vorticity fields generated
by Eq. (29) for the configurations presented in Figs. 5 and 6 will overlap and cancel resulting
in an essentially zero vorticity field within the domain. On the other hand, for very small
values of σ , the vorticity fields will resemble more closely the distribution of point vortices.
Since the entropy of the system is strongly sensitive to howwell the vorticity fields of the two
species are mixed together, wewill seek to identify a suitable range of values of the parameter
σ such that the entropy evaluated by using Eq. (12) is independent of the values of σ . This will
occur if we have a sufficiently large number of vortices leading to a clear separation between
length scales associated with the large scale flows and the typical intervortex separation
within the ensembles we constructed for Fig. 5 and 6. In order to find a suitable value for
the parameter σ , ensembles with different number of vortices have been generated and their
entropy per vortex S/N has been evaluated by using Eq. (12).

The results for the dipole in the square are presented in Fig. 7a, b. This shows that, as
the number of vortices in each ensemble increases, the curves tend to converge to a constant
value within an intermediate range of scales. The optimal range of values for σ has been
evaluated by seeking the smallest slope of |S/N | within this intermediate range of values for
σ .

In the case of the dipole in the squared domain, the minimum value of the slope of |S/N |
for N = 8580 corresponds to the values of σ in the interval 0.035 ≤ σ ≤ 0.07. The same
analysis has been performed for the diagonal dipole and the monopole in the square and for
these two configurations the intervals of the parameter σ are given by 0.035 ≤ σ ≤ 0.07
and 0.045 ≤ σ ≤ 0.095, respectively. These intervals have been found by considering
the ensembles with N = 8360 for the diagonal dipole and N = 8502 for the monopole.
For the rectangle, the number of vortices contained in the ensemble and the range of σ

for the monopole and the dipole are given by N = 8022 and 0.035 ≤ σ ≤ 0.105, and
N = 8086 and 0.04 ≤ σ ≤ 0.085, respectively. With these range of values of the parameter
σ , we are able to generate the desired smoothed vorticity fields and the streamfunction of
all the flow configurations presented in Figs. 5 and 6. We note that since all the ensembles
contain a different number of vortices, we have ensured that the total circulation of each
vortex type is held fixed by renormalising the vorticity fields of each ensemble to the initial
number of vortices and antivortices considered for the dynamical runs, corresponding to∫

ω±dxdy = ±60.
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Fig. 7 a The value of the entropy per number of vortices |S/N | as a function of the parameter σ for the
dipole configuration in the square generated from different ensembles (each with different amount of vortices
indicated in the legend) presented on a log-log scale; b a magnification of a in the range of the values of the
parameter 0.035 ≤ σ ≤ 0.07 for which the entropy remains almost constant. c and d show the same analysis
but for the monopole in the square

5.3 SmoothedVorticity Fields

To establish to what extent our procedure for constructing smoothed vorticity fields from the
point vortex distribution agrees with the predictions of the PB equation, in this section we
will compare the two sets of vorticity fields. We begin by analysing scatter plots of ω(ψ) as
in [11] which are constructed from our smoothed fields and we compare these against the
mean-field predictions. These are presented in Fig. 8 for both the monopole flow in the square
and the dipolar flow in the rectangle. The fluctuations observed in the field are indicative of
the unsteady features in the flow that lead to deviations from the exact Poisson–Boltzmann
results that are presented as red lines in the figure. We observe that the largest fluctuations
occur for positive values of the streamfunction in the square. These can be attributed to
the difficulty in resolving the small eddies in the corners of the square with relatively few
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Fig. 8 Scatter plots of ω(ψ) against ψ that are computed from the smoothed vorticity and streamfunction
fields of the point vortex numerical simulations (PV) and the solution of the Poisson–Boltzmann equation
(PB) for a monopole flow in square domain; b for dipole flow in rectangular domain. The solutions presented
for the Poisson–Boltzmann equation correspond to a λ̃2 = 9 for the square; b λ̃2 = 8 for the rectangle

vortices. Nevertheless, overall the fluctuations in both cases are reasonably small relative
to the characteristic variation of ω over the range of values of ψ considered. These results
illustrate that, even for the relatively small number of vortices used in the simulations, the
results approach the predictions of the mean-field vortex theory.

Given the similar features that are observed for flows in the squared and rectangular
domains, we will now focus attention on a more detailed comparison for the flow in the
square. The vorticity profiles evaluated by using Eq. (29) are presented in Figs. 9 and 10
for the dipolar and monopole flows in the square, respectively. These can be compared with
the theoretical vorticity fields obtained from the term proportional to λ2 of Eq. (16). For the
comparisons, the fields obtained from the PV dynamics have been normalised to coincide
with the normalization of the fields recovered from the solutions of the PB equation. We
have also plotted the vorticity profiles along ω(X , Y = 0.5), ω(X , Y = 1), ω(X = 0.5, Y ),
and ω(X = 1, Y ). The profiles presented reproduce the main trends seen in solutions of the
PB equation. However, significant deviations are evident which is consistent with the large
fluctuations we expect to find from our PV dynamics since our initial condition contained
only 120 vortices which subsequently decreases throughout the simulations. It is also clear
from Fig. 9 that for the dipole, both the smoothed vorticity fields of the PV simulations and
the fields obtained from the PB equation, vanish at the boundaries as expected. On the other
hand, since we have used a sine basis expansion in Eq. (29), we observe in Fig. 10 that the
smoothed field for the monopole is also zero even though it is finite for the field recovered
from the solution of the PB equation. As pointed out earlier, the sine basis can in principle
still be used to represent a field that is non-vanishing at the boundary, but the convergence
is weak and is, therefore, to be interpreted in terms of a distribution. Despite this anomalous
behaviour observed at the boundaries, the key features within the bulk are in good agreement.

5.4 Quantitative Analysis of Entropy

Having verified the agreement between the vorticity fields obtained from the PV simulations
and the PB equation, we will now attempt to determine the entropy and energy of the states
corresponding to the point vortex distributions presented in Figs. 5 and 6. This will allow
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Fig. 9 Comparison of the smoothed vorticity field recovered from the point vortex dynamics and mean field
prediction of the Poisson-Boltzmann (PB) equation for the dipole in the squared domain. The solutions
presented for the PB equation correspond to λ̃2 = 10.5. Contour plots of the vorticity fields are shown in a
and d. The dashed lines represent the directions along which the vorticity profiles are evaluated; b, c, e and
f present the theoretical vorticity profiles (red lines) obtained from the solution of the PB equation and the
profiles obtained from the simulations (blue lines) (Color figure online)

us to assert whether the vortex distributions seen in the simulations coincide with an energy
interval that corresponds to the solutions of the PB equation as presented in Fig. 1. This
would then allow us to establish whether a direct comparison can be performed between the
solutions of our numerical simulations and the predictions of the PB equation.

The evaluation of the non-dimensional entropy Ŝ requires knowledge of the inverse tem-
perature β. To computationally evaluate the value of β for a given ensemble, we start by
evaluating the energy of the ensemble Êσ = (8N 2)−1

∫
ψσ ωσ dxdy for all the values of

the parameter σ previously found. We then identify the energy of the ensemble with the
expectation of the energy, 〈Ê〉, that is evaluated with respect to σ . By assuming statistical
equilibrium, the corresponding value of the inverse temperature β can then be recovered from
the parameter λ̃2 using Fig. 1. Using this procedure, we obtained the values λ̃2 = 10.5 for
the dipolar flow, and λ̃2 = (9+ 8.5)/2 for both the diagonal dipole and the monopole in the
squared domain. On the other hand, for the rectangle, we found λ̃2 = 11 for the monopole
and λ̃2 = 8 for the dipole. Consequently, this allowed us to recover the non-dimensional
streamfunction Ψσ , and hence the non-dimensional entropy Ŝσ for all values of the parame-
ter σ . The entropy of an ensemble is then evaluated as the expectation, 〈Ŝσ 〉, that is computed
with respect to the range of σ determined previously.

The results of this analysis for the ensembles in the squared domain have been plotted
together with the solutions of the PB equation and are presented in Fig. 11. These indicate
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Fig. 10 Comparison of the smoothed vorticity field recovered from the point vortex dynamics (PV) and mean
field prediction of the Poisson-Boltzmann (PB) equation for themonopole in the squared domain. The solutions
presented for the PB equation correspond to λ̃2 = 9. Contour plots of the vorticity fields are shown in a and d.
The dashed lines represent the directions along which the vorticity profiles are evaluated; b, c, e and f present
the theoretical vorticity profiles (red lines) and the profiles obtained from the simulations (blue lines) (Color
figure online)

that although the energies, 〈Êσ 〉, of the dipole and the diagonal dipole are different, their
entropies are similar. In contrast, there is a considerable difference between the values of
the entropy for the diagonal dipole and the monopole. These observations suggest that the
ensemble for the dipole and the diagonal dipole do not coincide with true equilibrium states
that are established at later times in the simulation but are quasi-equilibrium states. The
numerical values of the entropy for the dipole, the diagonal dipole and the monopole are
given by 〈Ŝσ 〉dipo = −203.4, 〈Ŝσ 〉diago = −203.7 and 〈Ŝσ 〉mono = −190.8, respectively. The
corresponding values obtained from the solutions of the PB equation are Ŝdipo = −201.9,
Ŝdiago = −200.9 and Ŝmono = −188.1.

Presented in Fig. 12 are analogous results for the rectangular geometry. In this geometry,
the numerical values for the entropy obtained for the monopole and the dipole are given by
〈Ŝσ 〉mono = −196.1 and 〈Ŝσ 〉dipo = −170.8. The corresponding values obtained from the
solutions of the PB equation for the monopole and the dipole are given by Ŝmono = −191.3
and Ŝdipo = −170.3, respectively. This again confirms the good agreement between the PV
simulations and the predictions of the PB equation.
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Fig. 11 a Energy-entropy comparison obtained from the solution of the PB equation and analysis of the PV
simulations in the squared domain. Included are three magnified plots for; b monopole, c diagonal dipole, d
dipole. Each marker represents the energy Êσ and the entropy Ŝσ for different values of the parameter σ . The
vertical dashed lines represent the mean energy 〈Êσ 〉 of the configuration

5.5 Comparison of Angular Momentum

Next, we will compare the values of the angular momenta between the simulations and the
theory. The relation between the streamfunction Ψ and the angular momentum of the flow
L shows that any asymmetric distribution of vortices which corresponds to an asymmetric
streamfunction has a non-zero value of angular momentum L . We define the normalised
angular momentum L̂ as the value of L divided by the maximum value of the angular
momentum accessible to the system; this corresponds to the angular momentum that the
system will have if it would rotate as a solid body [39]. The normalised angular momentum
is therefore given by

L̂ = 2ΔΨ√
ÊlinI

= 4

√
3

λ2Δ

[(
Lx L y

L2
x + L2

y

) (
(Ψ )2

(Ψ 2) − (Ψ )2

)]1/2

, (35)

where (·) denotes spatially integrated quantities. In the above equation, Êlin = (λ2Δ/2)[
(Ψ 2) − (Ψ )2

]
[38] is the non-dimensional linearised energy obtained by linearising the PB
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Fig. 12 a Energy-entropy comparison obtained from the solution of the PB equation and analysis of the PV
simulations in the rectangular domain. Included on the right are threemagnified plots for;b dipole, cmonopole.
Each marker represents the energy Êσ and the entropy Ŝσ for different values of the parameter σ . The vertical
dashed lines represent the mean energy 〈Êσ 〉 of the configuration

equation about Ψ = 0, and I is the moment of inertia of a rectangular body with density
ρ = 1. For a given ensemble in either geometry, the non-dimensional streamfunction is
given by Ψσ = ρβγψσ where ψσ need to be evaluated using Eq. (30). The values of L̂σ

for each configuration can then be evaluated and the value of the angular momentum of a
given ensemble is then associatedwith the expectation 〈L̂σ 〉.With these definitions, we found
that the expectation of the angular momenta obtained from the ensembles in the square and
corresponding to the dipole, diagonal dipole, and the monopole are given by

〈L̂σ 〉dipo = 0.0596, 〈L̂σ 〉diago = 0.0629, 〈L̂σ 〉mono = 0.4324 . (36)

Here, we have used the same values of σ as those identified above. The corresponding non-
dimensional theoretical values for the dipole, and the monopole in the rectangle are given
by

L̂dipo = L̂diago = 0, L̂mono = 0.4509 , (37)

where L̂mono was evaluated as the mean of L for λ̃2 = 8.5 and λ̃2 = 9. The percentage
error between the value predicted from the PB equation and the values of L̂ for the monopole
recovered from the numerical simulations in the squared domain is given by PEmono = 4.3%.
The maximum absolute error for the dipole and the diagonal dipole is 6%.

A similar analysis for the rectangle gives

〈L̂σ 〉mono = 0.3696, 〈L̂σ 〉dipo = 0.0298 , (38)

whilst values obtained from the solutions of the PB equation are given by

L̂mono = 0.3844, L̂dipo = 0 . (39)
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Fig. 13 a Shows the number of vortices (blue curve) and antivortices (green curve) in the square, normalised
with respect to the initial value. The red curve represents the polarisation P(N+, N−) whereas the black
dashed line corresponds to the reference case with zero polarisation. The inset figures show an example of the
vortex positions and the corresponding streamfunction ψ at a late time. Above the configuration, the number
of vortices and antivortices are indicated; b shows the trend of the angular momentum in the square (blue
curve) and in the rectangle (green curve) when the annihilation at the boundaries is included (Color figure
online)

The percentage error in the case of the monopole is equal to PEmono = 3.8% whilst the
absolute error for the dipole is approximately 3%. We can, therefore, conclude that the
values of the angular momentum evaluated from the point vortex dynamics is comparable
with the theoretical values.

5.6 Vortex Annihilation withWall Boundaries

We end our study by explaining the effects of vortex annihilation at the boundaries on the
emergent flow states at late times. We have argued that the annihilation of vortex–antivortex
pairs throughout the vortex dynamics results in the increase of the energy per vortex which
subsequently allows the system to migrate into the negative temperature regime while retain-
ing the neutral value of the circulation. However, in a real physical system such as a BEC,
point vortices can also annihilate at the boundaries as was confirmed by the numerical simu-
lations presented in [45] and the experiments of Kwon et al. [26]. This additional effect can
lead to an asymmetry in the number of vortices resulting in the system becoming polarised
(flowwith non-zero circulation). In order to study how annihilations at the boundaries change
the dynamics of a vortex gas, we have simulated the dynamics in the squared and rectan-
gular domains by introducing an additional annihilation parameter δ/2 = 0.005 such that
any vortex, regardless of its charge, is now removed from the system if its distance from
the boundary becomes less than δ/2. To permit direct comparison with the results presented
previously, we have used the same initial conditions as shown in Fig. 2.

It turns out that this additional mechanism of vortex annihilation at the boundaries dramat-
ically modifies the late-time dynamics of the system. In particular, we have observed that, in
both geometries, the late-time dynamics leads to the emergence of a monopole configuration.

An example of the long time dynamics is presented in the inset of Fig. 13a where the
configuration of point vortices and the corresponding streamfunction ψ for the square are
presented. The annihilation at the boundaries generates an asymmetry in the number of pos-
itive and negative vortices. This asymmetry can be quantified by evaluating the polarization
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P(N+, N−) = (N+ − N−)/(N+ + N−) which is included in Fig. 13a. In Fig. 13b, the
time variation of the angular momentum L for both geometries is presented. These results
clearly indicate that vortex annihilation at the boundaries can promote the emergence of a
polarised monopole state at late times. This asymmetry allows the system to acquire a well
defined value of the angular momentum L . We remark that these results are consistent with
the analysis presented in [38] where it was also demonstrated that, for non-neutral flows, a
monopole can become the most probable state even in a rectangular domain.

6 Conclusions

We have studied the relaxation of a two-dimensional gas of point vortices in a squared and
a rectangular domain as a model of quantised vortices for superfluids when the intervortex
separation is large in relation to the core size (healing length) of the vortex. An important
feature of the model we studied is the pairwise removal of vortex–antivortex pairs to model
the process of vortex annihilation, a process that results in the evaporative heating of the
vortex gas. This mechanism allows the gas to evolve from a positive temperature regime to
a negative temperature regime that results in the spontaneous emergence of large scale flows
at late times.

Our numerical simulations have revealed that the emergent large scale flows are in agree-
ment with the mean-field predictions of the Poisson–Boltzmann (PB) equation that is derived
from equilibrium statistical mechanical arguments. This reveals that throughout the relax-
ation, local maximum entropy states of the PB equation are realized but ultimately give way
to the maximum entropy configuration at late times. In particular, the simulations show that
the flow emerging at late times in the squared domain corresponds to a monopole whereas
a dipolar flow field emerges for the rectangular domain with aspect ratio equal to 1.5. This
provides clear evidence that the relaxation of the vortex gas proceeds in a quasi-equilibrium
manner.

To reinforce our assertions, we have developed a method that allowed us to recover the
coarse-grained vorticity fields from our point vortex simulations thereby allowing us to
evaluate the entropy and energy of the observed flow structures. The approach we developed
rests on the assumption of ergodicity such that ensemble averages can be replaced by time
averages. The question of ergodicity of the point vortex model has been widely studied and
discussed. However, there is increasing evidence following recent works [44,45] that the
statistical mechanical formulation remains applicable for the point-vortex model. Our work
provides further evidence that supports this view. Indeed by replacing ensemble averageswith
time averages, we have been able to carry out a direct comparison between the predictions
of the statistical mechanical approach and our direct numerical simulations of point vortices.
Our analysis has revealed good agreement between the two predictions for a neutral vortex
gas even for a system containing only ∼ 40 vortices at late times.

A key feature of the monopole flow that emerges at late times in the squared domain is
that it corresponds to a flow with non-zero angular momentum spontaneously forming at
late times. An interesting feature of this emergent macroscopic quantity is that the system
can undergo sudden transitions in which the sense of the monopole switches as vortices
reorganise during rapid eventswith a consequent flipping in themeasured angularmomentum.
This behaviour is reminiscent of similar observations recently made in classical fluids and
of spectrally truncated numerical simulations of the Navier–Stokes equations [65–67]. This
phenomenology is an interesting feature to study in its own right as it represents an example of
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extreme rare events arising throughout the late time dynamics in the square. Nevertheless, we
have found that regardless of the sense of rotation, the magnitude of the angular momentum
of these states as determined from our numerical simulations is in excellent agreement with
the theoretical mean field predictions.

We end by remarking that in practice, for a real superfluid, such as a Bose-Einstein
condensate in a box trap, the neutrality of the vortex gas may not be preserved as vortices or
antivortices can annihilate at the boundaries of the domain. Our simulations have revealed
that such a scenario would result in a polarized vortex gas and can thus favour the emergence
of the monopole configuration at very late times.
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Appendix

The coefficientsC±
n,m in Eq. (29) can be determined by multiplying the right hand side of Eq.

(33) by sin
(
n′πx/Lx

)
and sin

(
m′π y/Ly

)
where n′,m′ are non-zero integers, and integrating

the resulting expression over the domain with sides Lx and Ly . In order to do so, it is useful
to consider the following integral

I = γ0

+∞∑

m1=−∞

∫ Lx

0
δ(x − (2Lx − x0) + 2m1Lx ) sin

(
n′πx

Lx

)
dx, n′ �= 0 . (40)

Since Dirac’s delta function is an even function, by performing the change of variable x →
2Lx − x , the integral becomes

I = −γ0

+∞∑

m1=−∞

∫ 2Lx

Lx

δ(x − x0 + 2m1Lx ) sin

(
n′πx

Lx

)
dx . (41)

This shows that the integral over the domain [0, Lx ] × [0, Ly] of the third term of Eq. (33)
multiplied by sin

(
n′πx/Lx

)
and sin

(
m′π y/Ly

)
is equivalent to integrating the first term

of Eq. (33) multiplied by sin
(
n′πx/Lx

)
and sin

(
m′π y/Ly

)
over the interval [Lx , 2Lx ] ×

[0, Ly]. By applying the same property to the other terms, the integral of the vorticity given
by Eq. (33) at the initial time, denoted by Iω̃, can be expressed as

Iω̃ =
∫ 2Lx

0

∫ 2Ly

0
ω̃1(x, y) sin

(
n′πx

Lx

)
sin

(
m′π y

L y

)
dxdy, n′,m′ �= 0 . (42)

where ω̃1(x, y) is the first term in Eq. (33). Inserting the representation of the Dirac’s comb
(32) along both x and y directions, into the above expression, and using the identity

1

Lx

∫ 2Lx

0

+∞∑

n=1

cos

(
nπ(x − x0)

Lx

)
sin

(
n′πx

Lx

)
dx = sin

(
nπx0
Lx

)
, (43)
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we obtain

Iω̃ = γ0 sin

(
n′πx0
Lx

)
sin

(
m′π y0
Ly

)
. (44)

Combining this with the projection of Eq. (29) onto the modes sin
(
n′πx/Lx

)
and

sin
(
m′π y/Ly

)
at the initial time, t = 0, allows us to recover the coefficients C±

n,m . For
N± vortices with circulation γi located at (xi , yi ), i = 1, . . . , N , the coefficients C±

n,m are
given by

C±
n,m = 4

Lx L y

N±∑

i=1

γi sin

(
nπxi
Lx

)
sin

(
mπ yi
L y

)
. (45)
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