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Abstract         [250 words; limit 250]  49 

The Iceland Greenland Seas Project (IGP) is a coordinated atmosphere-ocean research program 50 

investigating climate processes in the source region of the densest waters of the Atlantic 51 

Meridional Overturning Circulation. During February and March 2018, a field campaign was 52 

executed over the Iceland and southern Greenland Seas that utilized a range of observing 53 

platforms to investigate critical processes in the region – including a research vessel, a research 54 

aircraft, moorings, sea gliders, floats and a meteorological buoy. A remarkable feature of the field 55 

campaign was the highly-coordinated deployment of the observing platforms, whereby the 56 

research vessel and aircraft tracks were planned in concert to allow simultaneous sampling of the 57 

atmosphere, the ocean and their interactions. This joint planning was supported by tailor-made 58 

convection-permitting weather forecasts and novel diagnostics from an ensemble prediction 59 

system. The scientific aims of the IGP are to characterize the atmospheric forcing and the ocean 60 

response of coupled processes; in particular, cold-air outbreaks in the vicinity of the marginal-ice-61 

zone and their triggering of oceanic heat loss, and the role of freshwater in the generation of 62 

dense water masses.  The campaign observed the lifecycle of a long-lasting cold-air outbreak over 63 

the Iceland Sea and the development of a cold-air outbreak over the Greenland Sea. Repeated 64 

profiling revealed the immediate impact on the ocean, while a comprehensive hydrographic 65 

survey provided a rare picture of these subpolar seas in winter. A joint atmosphere-ocean 66 

approach is also being used in the analysis phase, with coupled observational analysis and 67 

coordinated numerical modelling activities underway.   68 
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Capsule  69 

A coordinated atmosphere-ocean research project, centered on a rare wintertime field campaign 70 

to the Iceland and Greenland Seas, seeks to determine the location and causes of dense water 71 

formation by cold-air outbreaks.     72 
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Background and motivation         73 

The subpolar region of the North Atlantic is crucial for the global climate system. It is 74 

where densification and sinking of ocean waters takes place, driven by strong air-sea buoyancy 75 

fluxes, constituting the headwaters of the Atlantic Meridional Overturning Circulation (AMOC; e.g. 76 

Buckley and Marshall 2015). As such, coupled atmosphere-ocean processes, on a variety of spatial 77 

scales, require an integrated approach for their improved understanding and prediction. This 78 

region has ‘enhanced communication’ between the atmosphere and ocean; wintertime 79 

atmospheric forcing strongly dictates ocean properties, thermal structure and circulation. While 80 

during warm, moist mid-latitude air mass intrusions the air-sea fluxes are moderate and can even 81 

lead to ocean warming (e.g. Moore et al. 2012; Pithan et al. 2018); intermittent cold-air outbreaks 82 

(CAOs) result in large surface fluxes of heat and moisture that make the surface waters colder, 83 

saltier and denser. This drives convective overturning that contributes to the lower limb of the 84 

AMOC. These subpolar seas are therefore a ‘mixing pot’ for the water-masses of the North 85 

Atlantic. Previous studies suggest that the dominant contribution to the AMOC and its variability 86 

comes from the subpolar seas to the east of Greenland (Spall and Pickart, 2007; Holte and 87 

Straneo, 2017; Lozier et al. 2019). However, exactly where, when and how the water-mass 88 

transformations occur remain unclear. 89 

The dense water formed in the Nordic Seas (collectively the Norwegian, Greenland, and 90 

Iceland Seas) enters the North Atlantic through gaps in the submarine ridge between Greenland 91 

and Scotland (Østerhus et al. 2019). The largest amount of water flows through Denmark Strait. 92 

Debate about where the Denmark Strait Overflow Water (DSOW) originates from has been 93 

ongoing for decades. Originally the Iceland Sea and/or the Greenland Sea was thought to be the 94 

source of the dense water via open-ocean convection to intermediate depths (e.g. Swift and 95 

Aagaard 1981; Strass et al. 1993). However, subsequently it was argued that the light-to-dense 96 
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transformation takes place in the boundary current system encircling the Nordic Seas. In 97 

particular, the warm, salty water in the northward-flowing Norwegian Atlantic Current is made 98 

colder and fresher, and this dense water then returns southward in the East Greenland Current 99 

ultimately exiting through Denmark Strait (Mauritzen, 1996; see Figure 1). While this ‘rim current’ 100 

overturning loop is now well established, a current carrying dense overflow water towards 101 

Denmark Strait was subsequently discovered along the northern Iceland slope (Jónsson and 102 

Valdimarsson 2004). This has been dubbed the North Icelandic Jet (NIJ), and it provides the 103 

densest third of the DSOW (Harden et al., 2016). However, the process by which the NIJ is formed, 104 

and the source of the dense water it advects, remain unknown. It has been argued that the dense 105 

water is formed in the Iceland Sea or southern Greenland Sea as part of an interior overturning 106 

loop (Våge et al., 2011; Våge et al. 2015), but this remains a hypothesis. In terms of physical 107 

oceanography and meteorology, this region is arguably the least well-studied of the North 108 

Atlantic’s subpolar seas.  109 

The broad-scale climate of the Iceland Sea region is dominated by the climatological 110 

Icelandic Low – the northern centre-of-action of the North Atlantic Oscillation (NAO). When this 111 

climatological low is deep (NAO+), extratropical cyclones bring relatively warm maritime air from 112 

the south and east over the Iceland Sea. When it is shallow (NAO-) other synoptic-scale weather 113 

regimes dominate, e.g. a deep Lofoten Low can bring cold polar air from the north over the 114 

Greenland and Iceland Seas (e.g. Jahnke-Bornemann and Brümmer 2009), while a northeasterly 115 

displaced Icelandic Low can force barrier winds off Eastern Greenland over the Iceland Sea (e.g. 116 

Harden et al. 2011). The interplay between the NAO and other climate modes – such as the East 117 

Atlantic and Scandinavian patterns – has a profound impact on the atmospheric circulation of the 118 

subpolar North Atlantic and the associated forcing of the ocean (e.g. Cassou et al. 2004). 119 

Compared to the rest of the subpolar North Atlantic, the wintertime surface turbulent heat fluxes 120 
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over the Iceland Sea have a local minimum (Moore et al. 2012). This is the result of a balance 121 

between low heat-flux events (warm air from the south), and high heat-flux events (CAOs from the 122 

north). Harden et al. (2015) illustrate this synoptically-driven episodic nature using rare 123 

meteorological buoy observations from the central Iceland Sea. They show that CAOs with surface 124 

turbulent heat fluxes of ~200 W m-2 typically last 2-4 days and occur every 1-2 weeks. It is these 125 

CAOs that are responsible for the majority of the high heat-flux events in the western Nordic Seas, 126 

with the amount of oceanic heat loss governed by air-mass pathways, location, surface conditions 127 

and the meteorological environment (e.g. Papritz and Spengler 2017; Brümmer 1997).  128 

Although the broad-scale atmosphere-ocean coupling is dictated by synoptic-scale 129 

variability, there are a myriad of mesoscale weather features – including orographic jets, ice-edge 130 

jets, Arctic fronts and polar mesoscale cyclones – that are much more challenging to characterize, 131 

simulate and predict (e.g. Vihma et al. 2014). These mesoscale features can have a significant 132 

impact on the ocean; for example, increasing the mixed-layer depth in the subpolar North Atlantic 133 

and the amount of DSOW transported south when accounted for in ocean models (Condron and 134 

Renfrew 2013; Jung et al. 2014). This highlights the requirement of resolving the atmospheric 135 

forcing on both synoptic- and meso-scales. Current numerical weather prediction (NWP) models, 136 

and some high-resolution climate simulations, can potentially provide accurate atmospheric 137 

forcing, but there are a variety of concerns about their quality. For example, air-sea-ice 138 

interactions over sea-ice – particularly over the marginal-ice-zone (MIZ) – are difficult to observe 139 

and are often crudely represented in models. Biases in surface fluxes over the MIZ can be 140 

substantial and extend hundreds of kilometres downstream (e.g. Bourassa et al. 2013). Such 141 

biases are caused by poor representation of surface exchange (for example, unrepresentative drag 142 

coefficients – see Elvidge et al. 2016) or inadequate atmospheric boundary-layer 143 

parameterizations (e.g. Renfrew et al. 2009; Boutle et al. 2014; de Roode et al. 2019). 144 
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Consequently, even though the broad-scale meteorology can be reasonably well simulated, the 145 

associated air-sea interaction can be difficult to capture accurately, particularly during CAOs over 146 

the MIZ.  147 

The Iceland and Greenland Seas are also experiencing profound changes related to 148 

anthropogenic climate change. The dramatic retreat of summer sea ice over the high Arctic is well 149 

known and its causes and impacts are active areas of research. By contrast, relatively little 150 

attention has been paid to the equally dramatic retreat of winter sea ice: a 10% per decade 151 

decline in extent for a region encompassing the Greenland, Iceland and Irminger Seas (Parkinson 152 

and Cavalieri 2008). Moore et al. (2015) show that this wintertime retreat is influencing the 153 

climatological pattern of surface heat fluxes over these seas, leading to a significant negative trend 154 

in heat fluxes over both the central Iceland and Greenland Seas. This in turn implies a change in 155 

the properties and volume of dense water created in these locations. The retreat can also lead to 156 

water mass transformation in areas along the Greenland continental slope that were previously 157 

insulated from the atmosphere underneath sea ice, perhaps even directly into the East Greenland 158 

Current (Våge et al., 2018). It is argued that changes in water-mass modification appear to be one 159 

of the contributing factors to an exceptional slowdown in the overturning of the AMOC in recent 160 

years (Ramstorf et al. 2015; Caesar et al. 2018), although there is no evidence that the dense 161 

water overflowing from the Nordic Seas has weakened (Østerhus et al. 2019). This is broadly 162 

consistent with Sévellec et al. (2017) who argue that changes in surface fluxes in the subpolar 163 

North Atlantic have the greatest impact on the AMOC over decadal timescales, while changes in 164 

the Nordic Seas and Arctic Ocean have the greatest impact over multi-decadal timescales, driven 165 

by a reduced sea-ice pack. Additional processes, such as increased run-off from the glacial melt of 166 

Greenland (Böning et al. 2016) or changes in the characteristics of the Atlantic-water entering the 167 

Nordic Seas region (Glessmer et al. 2014), are also likely to be critical. In short, profound changes 168 
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in the way the atmosphere and ocean interact in this region are underway, yet we do not 169 

understand their consequences largely because we don’t know how the present system works.    170 

 The Iceland Greenland Seas Project (IGP) has been developed in response to some of these 171 

uncertainties in the North Atlantic climate system. It focuses on the atmosphere-ocean coupling, 172 

air-sea-ice interaction, and the resulting impacts on the atmospheric and oceanic characteristics 173 

and circulation. The overarching hypothesis for the IGP is: 174 

Wintertime convection in the northwest Iceland Sea and southwest Greenland Sea, forced 175 

by intermittent cold-air outbreaks, forms the densest component of the AMOC.   176 

The IGP is endorsed by the World Meteorological Organisation’s decade-long Polar 177 

Prediction Project with a focus on the Year of Polar Prediction (YOPP) from 2017-2019 (Jung et al. 178 

2016; see https://www.polarprediction.net). Our project contributes towards the over-arching 179 

YOPP aims by providing observations and insights on processes that are necessary to improve 180 

environmental forecasts from days to seasons, which are presently far less skilful for the polar 181 

regions compared to mid-latitudes. 182 

A novelty of the IGP has been to develop and execute our research entirely within a 183 

coupled atmosphere-ocean framework. This coupled framework has guided: the development of 184 

our scientific hypothesis and objectives; our securing of funding from different international 185 

agencies; our field campaign planning and execution; and our observational analysis and numerical 186 

modelling experiments. At times this has been testing! Wintertime field work in the subpolar seas 187 

brings a host of challenges; and coordinating a research vessel and research aircraft added 188 

another. But our approach has brought many benefits too, including a deeper understanding of 189 

the coupled system. Indeed, it is envisioned that our joint observational data sets will lead to a 190 

number of important steps forward – as we preview in the remainder of this article.   191 

https://www.polarprediction.net/
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The wintertime cruise        192 

In February-March 2018, we carried out a 43-day cruise on the NATO research vessel 193 

Alliance consisting of two legs in the northwest Iceland Sea and southwest Greenland Sea. Our 194 

main objectives were to: (1) document the ventilation of dense water in the region; (2) 195 

characterize the ocean’s and atmosphere’s response to CAOs downwind of the ice edge; (3) 196 

determine the exchange of newly-ventilated dense water between the Greenland and Iceland 197 

Seas; (4) elucidate the dynamics and timescales that link the ventilation process, the circulation 198 

and mixing of the newly-formed water, and the manner in which the dense water feeds the NIJ; 199 

and (5) continuously characterize the structure of the atmospheric boundary layer (ABL). 200 

Our shipboard oceanographic instrumentation included: a conductivity-temperature-depth 201 

(CTD) system attached to a rosette with 12 5-L Niskin bottles for sampling salinity, dissolved 202 

oxygen, nutrients, the transient tracers CFC-12 and SF6, and the stable water isotopologues H2
18O 203 

and HDO. We used expendable CTDs (XCTDs) and bathythermographs (XBTs) in inclement weather 204 

and to increase the spatial resolution. We made velocity measurements using two hull-mounted 205 

acoustic Doppler current profilers (a 150 KHz unit and a 75 KHz unit), and sampled sea surface 206 

conditions continuously via an underway CTD. A summary is given in Table 1. The Alliance’s "Inside 207 

CTD" was deployed - hands free - from a small, heated hanger on the starboard side of the ship; 208 

this was essential due to the sub-freezing air temperatures and high sea state experienced. It 209 

allowed us to carry out CTD casts in sustained 30-35 knot winds. 210 

The Alliance departed Reykjavik, Iceland on 6 February for Leg I of the cruise, which 211 

focused on the northwest Iceland Sea (Fig. 2). This Leg can be characterized as the “section phase” 212 

of the cruise: we carried out six transects with the CTD package, or with XCTDs if the sea state or 213 

timing demanded. Most of the CTD casts reached the bottom, the exception being in the Iceland 214 
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Sea gyre. Three of the sections extended into the East Greenland Current. Leg I operations ended 215 

on 21 February in Ísafjörður, Iceland. 216 

Leg II began on 26 February 2018 and can be characterized as the “survey phase” of the 217 

cruise, with the sampling closely coordinated with the research aircraft. Shortly after leaving port a 218 

CAO developed in the Iceland Sea, and over the next week we worked in concert with the aircraft 219 

to sample the different stages of this event. After a pre-CAO XCTD survey, we began repeat 220 

occupations of two triangles in the northwest Iceland Sea (see Fig. 2b) to document the water 221 

column response to the enhanced surface heat fluxes. One aim was to calculate both ocean and 222 

atmospheric heat budgets in order to better quantify the coupled evolution of this event. We also 223 

began occupying a “timeseries station”, which we visited seven times over the cruise. During the 224 

last phase of Leg II we steamed to the southwest Greenland Sea and occupied sections 7-10, 225 

including an excursion into the central part of the Greenland Sea gyre (Fig. 2a). By this point the 226 

ship had become more comfortable working in the MIZ, and, consequently, we sampled well into 227 

the East Greenland Current on these sections.  During our steam back south, a final CTD transect 228 

(the so-called Látrabjarg Line; section 12 on Fig. 2a) was occupied to capture the structure of the 229 

overflow water passing through Denmark Strait. The cruise ended on 22 March when the Alliance 230 

docked in Reykjavik.  231 

We designed the atmospheric observing programme on the Alliance cruise to focus on the 232 

thermodynamic structure of the ABL – see Table 1 for a summary of instrumentation. During the 233 

43 days at sea we released 100 radiosondes, with all sounding data uploaded to the GTS (Global 234 

Telecommunication System) and so available for operational forecasting. Our strategy was to 235 

release one sounding a day by default and more frequent soundings (up to 3-hourly) during 236 

periods of ‘interesting’ weather or in coordination with research aircraft flights. The radiosonde 237 

observations covered the Iceland and Greenland Seas region, filling a gap in the operational 238 
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observing network (Figure 3). To provide a continuous characterization of the ABL we deployed a 239 

HatPro radiometer (e.g. Tjernström et al. 2019) sitting on a motion-correction platform (following 240 

Achtert et al. 2016) and a Windcube Doppler lidar which has an inbuilt motion-correction 241 

algorithm (e.g. see Kumer et al. 2016). The profiling instruments were configured to focus on the 242 

ABL and record profiles approximately every 10 minutes. The radiometer, its motion-correction 243 

platform and the wind lidar all generally performed well, yielding near-continuous data sets. We 244 

also deployed an MRR2, Metek GmbH vertically-pointing rain radar. All of this instrumentation 245 

was located on the boat deck (one level up from the fantail). In addition, we had standard 246 

meteorological observations ~15 m above sea level on the bow mast. Unfortunately, a new 247 

anemometer that was installed prior to the cruise did not function properly and hence the wind 248 

data are of lower quality for Leg I of the cruise; the anemometer was replaced for Leg II. 249 

Figure 4 shows a time series of wind speed from the Alliance with measurements from the 250 

ship’s bow-mast anemometer, the wind lidar and from radiosonde profiles. The period illustrated, 251 

from 28 February to 2 March 2018, shows the dramatic increase in wind speed associated with the 252 

start of a long-lived CAO. Winds increased from 2 to 20 m s-1 in less than 12 hours. The various 253 

wind speed measurements generally match and show the expected increase of wind speed with 254 

altitude. The exceptions are some 50-m radiosonde measurements, which appear to under-record 255 

just after release (the balloons were sometimes caught in turbulence around the ship), and a 256 

period when the ship’s anemometer was sheltered by the ship’s superstructure. This long-lived 257 

CAO was comprehensively sampled during the campaign and is illustrated throughout this article.   258 

Water vapor isotopes can provide information about the evaporative conditions at the 259 

ocean surface and thus pinpoint the origin of water vapor in air parcels. We sampled the isotope 260 

composition of water vapor continuously during Leg II of the cruise using a Picarro L2140i with a 261 

heated inlet system. In addition, we performed isotope analysis of precipitation samples, of water 262 

column samples from the CTD rosette and on 10 of the research flights. A precipitation sampling 263 
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program along transects near Akureyri, in northern Iceland, further supplemented the IGP water 264 

isotope sampling and will provide unique insight into the water turnover; in particular, the 265 

evaporation sources of a CAO's water cycle (Papritz and Sodemann 2018). The water isotope 266 

measurements provide key information on mass fluxes in the coupled ocean-atmosphere system, 267 

which we will use to validate the water cycle in isotope-enabled weather prediction and climate 268 

models (e.g. following Sodemann et al., 2017). 269 

Science operations on the Alliance were carried out 24 hours a day. Each afternoon at 1245 270 

we held a science briefing to discuss upcoming plans, address any problems, and review the data 271 

being collected to help guide our sampling strategies. In total we occupied 189 CTD stations (152 272 

of them with chemical sampling, 29 with water isotopes), 120 XCTDs, and 144 XBTs. This resulted 273 

in 453 profiles of the ocean mixed layer. We released 100 radiosondes and obtained near-274 

continuous temperature and wind profiles of the atmospheric boundary layer. In short, we 275 

collected a wealth of data during a harsh wintertime period where there is a dearth of historical 276 

measurements.  277 

 Figure 5 illustrates the coupled sampling of the atmosphere and ocean that we managed 278 

from the Alliance, showing cross-sections of the atmosphere and ocean across the East Greenland 279 

continental slope (see Figs. 2b, 3b for location), on the first day of the CAO. It shows a moderately 280 

cold well-mixed ABL, with a near-constant potential temperature () and a height of ~800 m 281 

delineated by the strong vertical  gradient. Winds increase from west to east from about 8 to 14 282 

m s-1 and are from the N to NNW, so approximately perpendicular to the cross-section. The 283 

specific humidity is relatively high within the ABL, with a slight increase to the east where the 284 

relative humidity reaches 100% at the top of the ABL. This is consistent with the shallow 285 

convective clouds seen in satellite images from this day (e.g. Fig. 7). The underlying ocean is 286 

significantly warmer than the ABL, and hence is losing heat and moisture via surface sensible and 287 
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latent heat fluxes. The location of the MIZ is marked in the figure and is evident from the lower 288 

potential temperatures of the air and ocean, and the fresher surface layer of the ocean. The 289 

isopycnals indicate some mixed-layers of near-constant density, but these are relatively shallow 290 

(~100 m) so do not suggest much dense water mass formation at this time.   291 

 292 

The wintertime aircraft campaign          293 

 The main platform for our atmospheric measurement program was the British Antarctic 294 

Survey’s instrumented DH6 Twin Otter research aircraft. This is a relatively small aircraft, with an 295 

operations team of just a few people, making it cost effective and flexible with regard to 296 

operations and airports. It was fitted with an internal fuel tank that gave it an extended range to 297 

nearly 800 nm (or 6 hours). The instrumentation is summarized in Table 1 and described in more 298 

detail in, e.g., King et al. (2008) and Fiedler et al. (2010). We had 70 flight hours for the aircraft 299 

campaign and flew 14 science missions, mostly over the Iceland Sea and the MIZ off southeast 300 

Greenland (see Fig. 6). We were based out of Akureyri Iceland, but also refuelled three times at 301 

Constable Point (Nerlerit Inaat) Greenland, enabling us to fly two missions on those days. 302 

 The primary science objective for the meteorological campaign was to characterize the 303 

structure and development of CAOs – focusing on surface fluxes and the ABL – especially over and 304 

downstream of sea ice. By combining the aircraft and Alliance-based observations, we aimed for a 305 

unique and comprehensive sampling of the marine ABL during CAOs. Two secondary science 306 

objectives were to characterize the ABL structure of orographic flows and to quantify variations in 307 

water vapor isotopes in the lower troposphere. Table 2 provides a summary of the meteorological 308 

field campaign, listing all the research flights as well as key periods of radiosonde releases from 309 

the Alliance; it is color-coded by science objective. The Twin Otter is ideally suited for measuring 310 

the turbulent and thermodynamic structure of the ABL. Missions were planned to focus on 311 
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straight and level legs in the surface layer (typically 20-50 m above the sea surface), or in the ABL 312 

(between 50-1500 m), or via ‘sawtooth’ legs ascending or descending through the depth of the 313 

ABL. 314 

We illustrate a typical mission (flight 294) in Figure 7 showing a map of aircraft altitude 315 

overlaid on a visible satellite image. During this flight we sampled the structure of the ABL via a 316 

sawtooth cross-section of four profiles and two stacks of straight and level legs at three heights 317 

that were immediately upstream and downstream of the Alliance. Figure 8 shows a cross-section 318 

of potential temperature (), relative humidity w.r.t. ice (RHi) and turbulent sensible heat flux 319 

based on the eddy covariance technique (e.g. Petersen and Renfrew 2009). It shows a more 320 

detailed snapshot of the cross-section illustrated in Fig. 5. There is a cold surface layer (< 100 m 321 

deep) overlying the MIZ, embedded within a near-neutral ABL of about 800 m depth. RHi shows an 322 

increase in moisture content to the east, consistent with the development of a shallow cumulus 323 

cloud deck, as apparent from satellite images at the time of the flight (e.g. Fig. 7). Turbulent heat 324 

flux observations are surprisingly close to zero throughout most of the ABL and over the MIZ, only 325 

reaching 10-20 W m-2 in places in the surface-layer leg over the MIZ. They are higher, up to 80 W 326 

m-2, in the surface layer and around cloud level off the ice-edge where there is also a systematic 327 

increase in the wind stress and TKE (not shown). These sorts of observations of the turbulent 328 

structure of CAOs will be of great value in the evaluation of models and bulk flux algorithms.  329 

Overall the aircraft campaign was highly successful. We coordinated research flights in the 330 

vicinity of the ship on three separate days (shaded in Table 2) during the development and 331 

evolution of the long-lived CAO over the Iceland Sea. This enabled the first simultaneous and 332 

coordinated water vapor isotope measurements from aircraft and ship. We have over 500 minutes 333 

of observations from the atmospheric surface layer – over 400 minutes during CAO conditions and 334 

over 200 minutes over sea ice – providing nearly 200 estimates of turbulent surface exchange. In 335 
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addition, the ABL was thoroughly sampled with over 300 minutes of straight and level flying and 336 

10 long (and 13 short) ABL sawtooth cross-sections.   337 

 338 

 Climate conditions during winter 2017-2018      339 

In order to properly interpret our observations, it is important that we place our winter field 340 

campaign period into climatological context. Our region of interest is characterized by wintertime 341 

sea ice that has been retreating since the turn of the 20th century, if not longer (Parkinson and 342 

Cavalieri 2008; Moore et al., 2015). Figure 9 shows the mean sea ice concentration in the region 343 

during January-March 2018, as well as the climatological mean concentration for 1979-2018 (data 344 

from Peng et al. 2013). The loss of sea ice in the region reflects a reduction in the width of the MIZ, 345 

from ~230 km during the 1980s to ~110 km during the 2010s. Also notable is the loss of a tongue of 346 

sea ice known as the Odden Ice Tongue (Germe et al., 2011) that used to extend eastwards over the 347 

Greenland Sea. Included in Figure 9 is a time series of winter-mean open water area for the region. 348 

There is a 40-year trend of increasing open water area (38,000 km2/decade) as well as pronounced 349 

inter-annual variability that reduced dramatically around 2000, associated with the loss of the 350 

Odden Ice Tongue (Rogers & Hung, 2008). As discussed by Moore et al (2015) and Våge et al (2018), 351 

this sea-ice retreat has profound implications for the intensity of ocean convection in the Iceland 352 

and Greenland Seas.  353 

 Atmospheric conditions during the field phase of the experiment were influenced by the 354 

occurrence of a Sudden Stratospheric Warming (SSW) as well as a transition from NAO positive to 355 

NAO negative conditions. A SSW Index (Charlton & Polvani, 2007) indicates the SSW occurred on 8 356 

February 2018 (the transition to negative values); while an NAO Index (Barnston & Livezey, 1987) 357 

indicates a transition on 26 February 2018 (Figure 10). These two events are related (Moore et al. 358 

2018), in that NAO negative conditions typically occur as part of a delayed tropospheric response to 359 
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a SSW (Baldwin and Dunkerton, 2001; Kolstad et al., 2010). A sea-level pressure (SLP) time series – 360 

from ECMWF Interim Reanalysis data (ERA-I; Dee et al. 2011) averaged over the oceanic area of 361 

interest shown in Fig. 9 – illustrates these two drivers (Fig. 10c). In particular, there was anomalously 362 

high SLP (in excess of 2 standard deviations () above the mean) throughout the region in late 363 

February and early March. This was likely the transient response to the SSW that led to high 364 

pressures and cold temperatures over northern Europe (Moore et al., 2018). It was also coincident 365 

with a sharp transition to NAO negative conditions.  366 

The 10m wind speeds over the study region were on average close to the climatological 367 

mean, although there was significant variability (Fig. 10d). In contrast, the ERA-I near-surface air 368 

temperatures were anomalously warm throughout the period of interest, with mean values 1 369 

above the climatological mean (exceeding 2 above the mean during the SSW, Fig. 10e). This period 370 

of extreme warmth was associated with a strong meridional pressure gradient that resulted in above 371 

freezing conditions in north Greenland (Moore et al., 2018). The end of the SSW and the transition 372 

to NAO negative conditions resulted in a dramatic drop in air temperatures around 1 March 2018; 373 

this was the start of the long-lived CAO over the Iceland Sea sampled in detail during the IGP (see 374 

Table 2 and Figs. 4, 5, 7, 8). Forecast charts showing the early stages of this CAO and its likelihood 375 

of occurrence are discussed below. The CAO lasted more than 10 days, but did not bring a 376 

particularly cold air mass over the region – temperatures stayed typically around -5oC, just above 377 

the long-term mean. Associated with the CAO were elevated surface turbulent heat fluxes, peaking 378 

at 200 W m-2 (Fig. 10f). This is in contrast with the below-average heat fluxes of the first half of the 379 

IGP period, which were especially low during the SSW. We note that a second, stronger CAO 380 

occurred over the Greenland Sea towards the end of the IGP period, starting on 16 March (Table 2). 381 

This event, however, is not very clear in Fig. 10 because of the large averaging area.           382 

 383 
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Longer term observations           384 

Gliders 385 

We had planned on carrying out a comprehensive survey of the Iceland and Greenland 386 

Seas using autonomous ocean gliders for the duration of winter 2017-18. The gliders were 387 

upgraded with ice avoidance software to operate more safely in the MIZ (e.g. Curry et al., 2013). 388 

However, a series of sensor failures, pump failures and communication problems limited the glider 389 

measurement program to a few weeks in early January in the Greenland Sea, and to mid-February 390 

to mid-April in the Iceland Sea. The latter glider operated primarily between the ice edge and the 391 

location of the subsurface mooring and meteorological buoy in the Eggvin Offset (Fig. 2), a deep 392 

passage between the West Jan Mayen Ridge and the Kolbeinsey Ridge (see the mooring discussion 393 

below). The transect was the same as that previously occupied by a glider in winter 2015-16 (Våge 394 

et al, 2018). 395 

A comparison between the February 2016 transect, which did not extend very close to the 396 

ice edge, and the IGP glider transects from March and April 2018, which nearly reached the East 397 

Greenland Current, demonstrate that the ocean mixed layer during the 2017-18 winter was 398 

substantially shallower, warmer, and less dense than in winter 2015-16 (Fig. 11). Despite this, the 399 

Atlantic-origin water (density>27.8 kg m-3 and T >0oC) that was being transported toward Denmark 400 

Strait by the East Greenland Current was ventilated by the end of the weaker 2017-18 (IGP) winter 401 

– as evident in the bottom panel of Fig. 11. This implies that transformation of this water mass in 402 

the Iceland Sea is not dependent on severe winter conditions and may occur regularly when the 403 

East Greenland Current is ice free (Våge et al., 2018). 404 

Unfortunately, our attempts during the Alliance cruise to directly quantify the turbulent 405 

mixing rates associated with water mass transformation via glider-based microstructure 406 

measurements were unsuccessful due to glider malfunctions. As such, we will attempt to infer 407 
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transformation rates using indirect mixing rate estimates from the glider data collected; 408 

specifically by using  our fine-scale vertical velocity and density measurements to infer dissipation 409 

via the large-eddy method (Beaird et al, 2012), and using our fine-scale density measurements to 410 

infer dissipation from a strain-based parameterization (e.g. Shaun Johnston and Rudnick 2015).  411 

Moorings 412 

We deployed subsurface ocean moorings at two locations during the IGP from summer 413 

2016 to summer 2018. These deployments relied on a number of additional research cruises or 414 

additional time on monitoring cruises. Firstly, an array of four moorings was deployed across the 415 

NIJ north of Iceland (see Fig. 2a for location). The moorings were placed on the Slétta repeat 416 

hydrographic transect near 16°W that is occupied four times a year by the Icelandic Marine and 417 

Freshwater Research Institute. This represents the first mooring array deployed across the current 418 

to the east of the Kolbeinsey Ridge, where previously there have been only snapshots from 419 

shipboard hydrographic/velocity surveys (Våge et al., 2011; Semper et al. 2019). These continuous, 420 

long-term measurements will shed light on the magnitude and properties of the NIJ only a short 421 

distance downstream of where it is thought to originate. They will also provide a contrast to the 422 

previous moored measurements of the NIJ from the Kögur line to the west of the Kolbeinsey Ridge 423 

(Harden et al. 2016). 424 

Secondly, a single subsurface mooring was deployed in the Eggvin Offset on the northern 425 

end of the Kolbeinsey Ridge (near 70°N, 16°W; see Fig. 2b) – in the northwest part of the Iceland 426 

Sea where the deepest mixed layers were expected to be found (Våge et al., 2015). We chose this 427 

location to be in ice-free waters through winter, but sufficiently close to the ice edge so that it 428 

would be subject to high ocean-atmosphere heat fluxes during intense CAOs. The mooring was 429 

equipped with a combination of point hydrographic instruments and temperature loggers 430 

sampling at high frequency (see Table 1). The vertical resolution was 25 m in the upper 300 m of 431 
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the water column, then every 50 m down to 800 m in order to monitor the wintertime evolution 432 

of the mixed layer. Profiling current meters covered most of the water column above 700 m. 433 

Preliminary analysis indicates that the ocean mixed layer was deeper, colder, and denser in winter 434 

2016-17 relative to the 2017-18 winter (Fig. 12). But even during the weaker IGP winter there 435 

were mixed-layers up to 200 m deep and colder than 0.3oC by the end of the convective season.   436 

Meteorological buoy   437 

During the first part of the Alliance cruise a Seawatch Wavescan meteorological buoy was 438 

deployed adjacent to the subsurface mooring in the Eggvin Offset in the northwest Iceland Sea. 439 

The buoy was configured to record standard meteorological variables, sea surface temperature 440 

(SST) and surface ocean currents every hour (see Table 1). The buoy worked well for 2.5 months, 441 

until it broke loose from its anchor and stopped recording on 6 May 2018. It was recovered soon 442 

after.  443 

 444 

Forecasting and Coordinating Activities        445 

 To inform day-to-day operations and plan research flights, we made use of several bespoke 446 

weather forecasts during the campaign period. The UK Met Office ran a limited area 48 h forecast 447 

using their operational MetUM model for the Iceland Sea region in support of the IGP; while the 448 

Icelandic Met Office (IMO) and their partners at the Danish Meteorological Institute (DMI) gave us 449 

access to a trial HARMONIE-AROME 48-66 h forecast that encompassed the same region. Both 450 

models were convection-permitting – with horizontal grid sizes of 2.2 and 2.5 km, respectively. 451 

The Met Office forecasts were initialized twice daily from their global operational system, while 452 

the DMI-IMO forecasts were run with 3-hourly 3DVAR data assimilation. We had access to a 453 

comprehensive set of charts from both these forecasts and the respective global operational 454 
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forecasts. The Met Office forecasts included specialized diagnostics which were important for 455 

flight planning, such as maps of cloud base height and surface sensible heat flux as well as cross-456 

sections of potential temperature and cloud liquid water. We also converted all the charts into 457 

geo-referenced files (tiff and kmz formats) to allow import into flight-planning tools. Figure 13 458 

shows 36-h forecast charts for 12 UTC 1 March 2018, the same day highlighted in Figs. 4, 5, 7 & 8. 459 

Indeed, a comparison against Fig. 7 illustrates the overall high quality of the forecast cloud field: 460 

the two forecasts are very similar, showing the meridional orientation of the isobars and northerly 461 

winds associated with the early stages of the CAO. In the Iceland Sea, the 10-m winds increase 462 

from around 4 to 12 m s-1 in the MetUM forecast and from around 6 to 14 m s-1 in the HARMONIE-463 

AROME forecast – broadly consistent with the observed winds (Figs. 4, 5). To the south of Iceland 464 

there is a coherent band of precipitation at the leading edge of the CAO that is similar in location 465 

and magnitude in both forecasts. Notably, there are convective snow showers behind this rain 466 

band, to the SE of Iceland, that are not forecast in the global models (not shown).  467 

 To inform medium-term field operations and coordination between the Alliance team and 468 

the aircraft team, we developed a probability-based forecast for our primary meteorological 469 

science target: cold air outbreaks. We used the 50 members of the ECMWF ensemble prediction 470 

system to estimate the likelihood of a CAO up to 10 days ahead, based on a well-established CAO 471 

index (Δθ = θsurface – θ850hPa); see Papritz and Spengler (2017). A positive CAO index indicates an 472 

atmosphere that is colder than the ocean and so is characterized by upward surface sensible heat 473 

fluxes. Figure 14 shows the probability of a CAO 4.5 and 5.5 days ahead, as well as the ensemble-474 

mean CAO strength and the associated surface sensible heat flux (we could also examine 475 

individual ensemble members). Figure 14 indicates a >90% probability of a CAO over the northern 476 

Greenland Sea and ~30% probability of a CAO over the eastern Iceland Sea on 1 March 2018, with 477 

the likelihood of a CAO clearly increasing and extending over the entire Iceland Sea for the next 478 

day. This sort of lead time enabled us to coordinate our observing program; e.g. guiding both the 479 
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ship and aircraft planning to capture the onset and development of this CAO (see Table 2). As the 480 

forecast lead time reduced, the probability of this CAO occurring over the Iceland Sea steadily 481 

increased, giving us further confidence in our planned operations. The forecast was for relatively 482 

mild conditions, with typical surface sensible heat fluxes of around 100 W m-2 (Fig. 14), broadly 483 

consistent with the short-range forecasts available closer to the event.  484 

 Coordination between the Alliance and the aircraft teams – and ship operations in general 485 

– were greatly aided by access to a subset of these forecast charts on the winter cruise. Due to the 486 

limited bandwidth at these latitudes, we transferred a selection of key charts, including m.s.l. 487 

pressure, near-surface winds and ocean wave heights. We supplemented the charts with a short 488 

daily text forecast specifically for the Alliance’s location, as well as a separate text forecast from 489 

DMI. Sea-ice imagery was also vital for operational planning. Three products were emailed daily to 490 

the ship: an ice image from the Sentinel satellite from DMI; a digital ice concentration file from 491 

AMSR2; and a high-resolution Sentinel SAR (Synthetic Aperture Radar) generated by the University 492 

of Toronto (e.g. Figure 15). The latter product included the planned sampling locations of the ship 493 

for the next 24 hours. These three ice products allowed us to visualize conditions in the MIZ, 494 

providing valuable context for maneuvering the ship. As a general rule we would aim to begin each 495 

approach into the MIZ at first light, maximizing the number of daylight hours for station work in 496 

and near the ice. Of particular concern was the impact on ship operations of small-scale ice 497 

features within the MIZ, including eddies and filaments (e.g. Manucharyan and Thompson, 2017); 498 

a striking example is shown in Fig. 15.  499 

We incorporated the forecast charts and sea-ice products into Alliance’s daily operational 500 

briefings on the ship, which was invaluable for planning our science activities. We also exchanged 501 

our planned operations between the Alliance and the aircraft team on a daily basis. When 502 

possible, we shared detailed information for the next day and broader guidance for the following 503 

few days. This allowed more time to prepare flight missions and schedule ship activities; it also 504 
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acted as insurance for when the ship lost communication (a regular occurrence when north of 505 

70oN). The daily update from the Alliance always included a map of the locations of recent CTD 506 

casts as well as predictions of forthcoming ones; while the daily update from the aircraft team 507 

included plans for flying over the next few days. This information exchange was time-consuming 508 

but essential for achieving the high-levels of coordination we desired; for example, coordinating a 509 

repeat ship survey or an intensive period of radiosonde launches (c.f. Table 2). 510 

 511 

Future plans           512 

 The Iceland Greenland Seas Project has obtained an unprecedented set of coordinated, 513 

detailed observations of the ocean and atmosphere during winter in the subpolar seas. Analysis of 514 

this wealth of data is well underway. Our coordinated approach will continue throughout the 515 

analysis and numerical modelling activities (see Sidebar). It is also embedded within broader YOPP 516 

activities; for example, making use of additional forecast products and diagnostics. Over the next 517 

few years we anticipate a number of studies addressing our project hypothesis and objectives, by 518 

examining among other things: the anatomy of a cold-air outbreak; air-sea fluxes over the MIZ; 519 

ABL development over the MIZ; the relationship between CAOs and polar lows; the origin and 520 

characteristics of precipitation over the Nordic Seas; ABL turbulent fluxes downstream of 521 

orography; the heat budget of a coupled ocean-atmosphere column; water mass modification in 522 

the northwest Iceland Sea and southwest Greenland Sea; the impact of small-scale ocean 523 

variability and atmospheric wind and buoyancy forcing on convective overturning; the circulation 524 

of dense water; and the ventilation/formation of the NIJ. We anticipate such a body of work will 525 

lead to a transformation in our understanding of how the coupled ocean-atmosphere-ice system 526 

in the Nordic Seas impacts the lower limb of the AMOC.  527 

 528 
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 719 

SIDEBAR - Numerical modelling plans        720 

 Numerical modelling of the atmosphere, ocean and climate system is being carried out in 721 

parallel to the observational component of the IGP. Here we describe a few activities as 722 

illustrations. 723 

A set of regional climate modelling experiments have been run to investigate the impact of 724 

anomalous distributions of sea ice on the frequency and magnitude of high heat flux events in the 725 

Iceland and Greenland Seas. We have used the MetUM in atmosphere-only mode with a regional 726 

domain (40°E - 5°W, 62°N - 79°N) run at 8 km grid size and nested within a global model. The 727 

global model was initialized daily from ERA-I reanalyses and used to force the regional model at 728 

the lateral boundaries. We have run simulations for 20 years with four different sets of daily-729 

updated sea-ice and SST surface conditions:  730 
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i. A baseline simulation with time varying sea ice and SSTs concomitant with the date of the 731 

simulation.  732 

ii. A maximum ice simulation with annually-repeating sea ice and SSTs from 1987/88 – the 733 

winter with the greatest sea ice extent in the Iceland-Greenland Seas region.  734 

iii. A median ice simulation with annually-repeating sea ice and SSTs from 2003/4 – the winter 735 

with sea ice extent closest to the median value in the region.  736 

iv. A minimum ice simulation with annually-repeating sea ice and SSTs from 2015/16 – the 737 

winter with the smallest sea ice extent in the region.   738 

Through this experimental design we are now examining how changes in sea ice concentration 739 

and extent influence the distribution, frequency and magnitude of high heat flux events. 740 

Interestingly the role of the extreme sea-ice distributions acts differently in the two seas; a result 741 

we are now exploring in more detail.   742 

We are running two classes of ocean models in support of the IGP. The first is a realistic, 743 

regional primitive equation model with a coupled dynamic/thermodynamic sea ice model that 744 

extends from south of Denmark Strait to 79oN, and from Greenland to Norway.  This model is 745 

forced with fluxes of heat, freshwater, and momentum derived from atmospheric reanalysis using 746 

bulk formulae and has open northern and southern boundaries – as in Almansi et al. (2017). We 747 

will run it for different time periods, to cover the different regimes of the North Atlantic 748 

Oscillation, and also for the winter of 2017/2018 to compare with the in-situ IGP observations. We 749 

seek to understand where, when and how the densest waters are formed under different 750 

atmospheric conditions, and how they are subsequently advected from these source regions 751 

across the sills to the south. 752 

Our second class of ocean models is focused on the influence of wind and surface heat loss 753 

on convection in the transition region between the relatively buoyant East Greenland Current and 754 
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the denser waters offshore. Observations indicate that the low salinity water from the shelf is 755 

transported offshore in small, thin patches and eddies, where it can then inhibit deep convection 756 

and water mass transformation. The model will be used to understand what controls the offshore 757 

flux of fresh water, the amount of water mass transformation, and the depth of deep convection. 758 

 759 

760 
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Figure Captions 761 

 762 

Figure 1 Schematic of the major boundary currents of the Nordic Seas. The sub-tropical origin water 763 

entering the Norwegian Sea gradually cools and becomes denser as it circulates around the perimeter of 764 

the basins, exiting as overflow water through the west side of Denmark Strait. The warm water entering 765 

Denmark Strait is believed to be converted into the overflow water flowing southward through the east 766 

side of the strait. The IGP study area is delimited by the black lines. Abbreviations are: NAC = Norwegian 767 

Atlantic Current; EGC = East Greenland Current; NIIC = North Icelandic Irminger Current; NIJ = North 768 

Icelandic Jet. 769 

Figure 2 Locations of the oceanographic observations from the winter 2018 cruise and the mooring 770 

deployments. The left panel shows the hydrographic sections occupied in the Iceland and Greenland Seas; 771 

see the legend for the type of instrument used for each of the lines. The locations of the four moorings 772 

deployed across the North Icelandic Jet north of Iceland are also shown. The grey contours are the isobaths. 773 

See text for acronyms. The right panel focuses on the northwest Iceland Sea and shows the location of 774 

intensive surveys where triangular patterns or lines were repeated several times in coordination with the 775 

research aircraft; see the legend for details. The southern triangle was sampled three times using a 776 

combination of CTDs and XCTDs, while the northern triangle was sampled once. The timeseries CTD station 777 

was occupied seven times during the cruise. The location of the mooring and met buoy deployed in the 778 

northern Iceland Sea are also marked.   779 

Figure 3 Locations of radiosonde profiles from the Alliance cruise and relevant land stations. The Alliance 780 

radiosonde locations are shaded by low-level potential temperature and the cruise track is shown in grey. 781 

Panel (a) shows the locations of soundings 1-22 (4-27 February) and 42-94 (2-18 March); panel (b) provides 782 

a close up of the locations of soundings 23-41 (28 February to 2 March). The average sea-ice fractions are 783 

contoured, based on the Met Office’s Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) 784 

data set.  785 
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Figure 4 Wind speed, from 28 February to 2 March 2018, from on board the Alliance. Measurements are 786 

from the ship’s bow-mast anemometer located approximately 15 m above the sea surface; and from the 787 

Wind Cube lidar and radiosonde profiles at 50, 150 and 300 m altitude (see legend). The bow-mast 788 

anemometer was sheltered by the ship’s superstructure when sailing directly downwind, hence it 789 

underestimated wind speeds from about 14 UTC 28 February to 02 UTC 1 March.     790 

Figure 5 A simultaneous cross-section of the atmosphere and ocean on 1 March 2018. The upper panels 791 

show atmospheric observations from radiosonde releases (soundings 32-36); the lower panels show 792 

oceanographic observations from CTD profiles (casts 81-88). The left panels show potential temperature on 793 

a common scale (shading), overlain by contours of wind speed (top) and potential density (bottom). The 794 

right panels show specific humidity (shading) overlain by relative humidity contours for the atmosphere, 795 

and salinity (shading) overlain by potential density contours for the ocean. The contour intervals are 2 m s-1, 796 

0.02 kg m-3 and 10% for wind speed, potential density and relative humidity respectively. The section is 797 

approximately west to east; its location is marked on Fig. 7.    798 

Figure 6 Location of all science flights during the aircraft campaign. The average sea-ice fraction from the 799 

period is contoured (based on OSTIA data). Flights 293, 294, 295 and 297 were in the vicinity of the 800 

Alliance, while flight 305 passed the meteorological buoy.     801 

Figure 7 (a) Aircraft track from flight 294 with aircraft altitude shaded over a VIIRS visible satellite image 802 

from 13:24 UTC 1 March 2018. The location of the Alliance cross-sections (Fig. 5) is shown in red. Sea-ice 803 

concentration contours at 90% and 10% (dark and light green) from AMSR2 data are also shown. A von 804 

Karman vortex street can be seen traced in the low-level clouds south of Jan Mayen. (b) Sketch of the flight 805 

track for 294 showing stacks of 3 boundary-layer legs (green), a sawtooth leg (red) and transit legs (blue). 806 

The letters indicate way-points between Constable Point (CP) and Akureyri (A). The inset sketch shows the 807 

altitude of the legs flown at each stack.   808 

Figure 8 Cross-sections of (a) potential temperature (K); (b) relative humidity w.r.t. ice (%); and (c) 809 

turbulent sensible heat flux (W m-2) from 1 March 2018 (flight 294). The cross-section shows observations 810 
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from sawtooth B to C and the three straight and level legs between D and E sketched in Fig. 7. Also shown is 811 

sea ice fraction, based on OSTIA data (grey lines; right-hand axis of each figure panel). 812 

Figure 9 Sea ice concentration for January-March: (a) for 2018 and (b) the mean for 1979-2018; contours at 813 

15% and 80% are overlaid. Panel (c) is a time series of open water area for January-March 1979-2018, for 814 

the polygon shown in panels (a) & (b), plus the linear trend (38,000 km2/decade) and the 5-year moving 815 

standard deviation about the linear trend. All data are from the NSIDC Climate Data Record. 816 

Figure 10 Time series from the IGP field campaign period in January-March 2018. (a) a Sudden 817 

Stratospheric Warming Index (m s-1); (b) an NAO Index; (c) sea-level pressure (mb); (d) 10 m wind speed (m 818 

s-1); (e) 2-m air temperature; and (f) the total surface turbulent heat flux (W m-2). The time series in (c)-(f) 819 

are all averaged over the oceanic region bounded by 66oN, 40oW and 78oN, 5oE. Also shown in (c)-(f) are the 820 

campaign-period mean (red line) and the climatological mean, as well as the 1/2 above/below that mean 821 

(blue solid, dashed and dotted lines) for the period 1979-2018.  822 

Figure 11 Ocean cross-sections of potential temperature across the East Greenland continental slope to 823 

Eggvin Offset near 71oN, derived from glider observations. The top panel is from February 2016 (from Våge 824 

et al., 2018); the 2nd and 3rd panels are from March-April 2018. Selected isopycnals (grey contours) and 825 

mixed-layer depths (stars) are overlaid.  826 

Figure 12 Ocean temperature time series from a mooring at the Eggvin Offset (70.6oN, 15.6oW). The 827 

temperature cross-section consists of observations from 22 depths (black triangles) every 2 hours.  828 

Figure 13 Forecast charts for 12 UTC 1 March 2018 (T+36 hours) showing (a) sea-level pressure (black lines), 829 

500-hPa thickness (blue dashed lines), cloud cover (grey shading) and precipitation (shading); (b) 10-m wind 830 

speed and streamlines; (c) sea-level pressure (black lines), 850-hPa temperature (blue dashed lines), 10-m 831 

wind vectors (barbs) and precipitation (shading); (d) 10-m wind speed and wind vectors. The top panels are 832 

from the UK Met Office, the bottom panels are plotted by the Icelandic Met Office, from forecasts by the 833 

Danish Meteorological Institute. 834 
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Figure 14 Cold-air outbreak diagnostics based on 50 ECMWF ensemble prediction system members. Panels 835 

(a) & (d) show the probability of a cold-air outbreak of strength Δθ > 2 K (where Δθ = θSST – θ850hPa); panels 836 

(b) & (e) show the ensemble-mean CAO magnitude, i.e. Δθ; panels (c) & (f) show the ensemble-mean 837 

surface sensible heat flux. All panels have the ensemble-mean sea-level pressure field contoured (gray lines 838 

every 2 hPa) and the 50% sea ice concentration contour (thick black line). Forecasts are for 4.5 days (T+108 839 

h; left) and 5.5 days (T+132 h; right) from 00 UTC 25 February 2018, which are valid at 12 UTC 1 March and 840 

2 March 2018 as indicated.     841 

Figure 15 Sentinel SAR image of the MIZ off east Greenland at 08 UTC 3 March 2018 showing the complex 842 

small-scale variability associated with ocean eddies and fronts that impact the sea ice distribution. Lighter 843 

shading is from a higher reflectivity surface. Annotated in blue and red are the two survey triangles that the 844 

Alliance carried out during 1-6 March 2018.    845 

  846 
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Ocean Observations 
Platform Instruments Variables PI 
R/V 
Alliance 

CTD, XCTD, XBT, 
Vessel-mounted ADCP systems 
Water intake 
Water sampling - geochemical tracers 
and isotopes 
Microstructure glider 
Argo floats 

T, S, p (O2 CTD only) 
u, v, 
SST 
Nutrients, O2, CFCs and SF6 

H218O, HDO 
Turbulence 
T, S, p, u & v (from drift)  

R. Pickart, WHOI 
R. Pickart, WHOI 
R. Pickart, WHOI 
E. Jeansson, NORCE 
H. Sodemann, UiB 
S. Waterman, UBC 
K. Våge, UiB 

Mooring CTD, T recorder, ADCP, RCM T, S, p, u, v K. Våge, UiB 
Seagliders CTD, oxygen T, S, p, O2, u & v (from drift) K. Våge, UiB 
Atmospheric Observations  
Platform Instruments Variables PI 
R/V 
Alliance 

Wavepak Vessel-mounted meteorology 
Väisälä MW41 Radiosonde system*  
HatPro radiometer  
+ Motion correction platform  
Leosphere Windcube lidar 
Metek Micro Rain Radar 
Picarro L2130-i Isotope Spectrometer 
Precipitation sampling 

T, u, v, RH,  
T, p, RH, u, v  
T, RH, LWP 
+ motion 
u, v, w, turbulence 
PPN rate, LWC 
H218O, HDO of water vapour 
H218O, HDO 

I. Renfrew, UEA 
I. Renfrew, UEA 
I. Renfrew, UEA 
I. Brooks, ULeeds 
J. Reuder, UiB 
H. Sodemann, UiB 
H. Sodemann, UiB 
H. Sodemann, UiB 

DH6  
Twin 
Otter 

Aircraft-mounted meteorology 
BAT turbulence probe & LICOR 
DMT Cloud, Aerosol & PPN 
Spectrometer 
Grimm spectrometer 
Picarro L2130-i Isotope Spectrometer 

T, p, Tdew, Tsfc, SW, LW 
u, v, w, T, q, turbulent fluxes 
Aerosol & PPN spectra, 
LWC 
Aerosol spectra 
H218O, HDO of water vapour 

T. Lachlan-Cope, BAS 
and I. Renfrew, UEA 
T. Lachlan-Cope, BAS 
and I. Renfrew, UEA 
H. Sodemann, UiB 

Met. Buoy Seawatch Wavescan Buoy* T, RH, u, v, SST, SW, ocean 
currents 

J. Reuder and E. 
Kolstad, UiB 

 847 
Table 1 A summary of the IGP observing system. Variables measured are: T = temperature; S = salinity; p = 848 

pressure; O2 = oxygen; u, v, w = velocities; SST = sea surface temperature; CFC = chlorofluorocarbons; SF6 = 849 

sulfur hexafluoride; RH = relative humidity; LWP = liquid water path; PPN = precipitation; LWC = liquid 850 

water content; Tdew
 = dewpoint temperature; SW = shortwave radiation; LW = longwave radiation; q = 851 

specific humidity; SST = sea surface temperature. Instruments marked* had data broadcast via satellite and 852 

hence were available for operational forecasting.    853 

 854 
  855 
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Time (UTC) 
and Date 

Flight 
No.  

Flight Comments   Alliance radio-
sonde times 
(UTC) 

Science aims 

28 Feb 2018 
07:48 – 11:51 
 

 
292 
  

 
6 short ABL cross-sections;  
low-level flying hampered by cloud 

00, 03, 06, 09, 12, 
15, 18, 21 

Cold air outbreak onset 
over the Iceland Sea 

1 Mar 2018 
08:13 – 11:45  
13:06 – 18:02 

 
293 
294 

 
2 long ABL cross-sections;   
60 mins (SL) and 60 mins (ABL) 

00, 03, 06, 09, 12, 
15, 18, 21 

Cold air outbreak 
development and 
structure 

2 Mar 2018   00, 06, 09, 12, 15,  Cold air outbreak 
structure 

3 Mar 2018   00, 12  
4 Mar 2018 
10:16 – 15:09 

 
295 

2 short ABL cross-sections; 
20 mins (SL) and 40 mins (ABL)  

00, 06, 09, 12, 15, 
18 

Cold air outbreak 
structure 

5 Mar 2018 
10:30 – 11:20 

 
296 

 
Transit from Reykjavik to Akureyri 

06, 09, 12, 18  

6 Mar 2018 
08:47 – 14:14 

 
297 

1 long/1 short ABL cross-
sections;  
20 mins (SL) and 40 mins (ABL) 

00, 06, 09, 12, 15, 
18 

Cold air outbreak 
structure 

8 Mar 2018 
08:21 – 11:56 
13:27 – 19:01 

 
298 
299 

 
3 long ABL cross-sections;  
135 mins (SL) 

  Surface fluxes over sea 
ice and katabatic flow 
structure 

9 Mar 2018 
09:58 – 14:47 

 
300 

1 long/2 short ABL cross-
sections; 
low-level flying hampered by cloud 

 Boundary-layer structure 
over sea ice 

12 Mar 2018 
12:13- 18:13 
 

 
301 

50 mins (SL) and 85 mins (ABL) 
flying downstream and over a 
mountainous ridge 

00, 12 Orographic flow 
structures: lee-side 
fluxes, waves & wakes 

14 Mar 2018 
data lost 
12:55 – 18:28 

 
302 
303 

 
Most data lost due to file error 
1 long ABL cross-section;  
100 mins (SL)  

00, 12  Surface fluxes over sea 
ice 

16 Mar 2018 
09:55 – 11:45  
 

 
304 

Racetrack patterns at various 
heights in the ABL 

 
 
 
00, 12, 15, 18, 21 

Isotope composition 
survey & instrument 
calibration 
Cold air outbreak onset 
over the Greenland Sea  

17 Mar 2018   00, 03, 06, 09, 12, 
15, 18 

Cold air outbreak 
development 

18 Mar 2018 
09:09 – 14:59  
 

 
305 

2 short ABL cross-sections; 
80 mins (SL) including past the 
meteorological buoy  

00, 06, 09, 12, 15, 
18 

Cold air outbreak 
structure  

19 Mar 2018 
13:01 – 17:29 
 

 
306 

2 long ABL cross-sections; 
20 mins (SL) and 100 mins (ABL) 

00, 12 Orographic flow 
structures: lee-side 
fluxes, waves & wakes 

 856 
Table 2 Campaign summary focusing on the meteorological deployments of the research aircraft and key 857 

periods of radiosonde launches from the Alliance. Flight comments note the number of cross-sections in 858 

the atmospheric boundary layer (ABL) – determined from ‘sawtooths’ between the surface and typically 859 

1500 m; and the amount of time flying in the surface layer (SL) – typically 15-50 m; or in the ABL – typically 860 

50-2000 m. Text is color-coded by science aim: cold air outbreak development and structure (dark blue); 861 

surface fluxes over sea ice (cyan); turbulent structures in orographic flows (purple); and isotope 862 

composition (red). Days when the aircraft and ship tracks coincided are shaded light orange. Flight patterns 863 

are shown in Fig. 6 and radiosonde locations in Fig. 3.  864 


