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Abstract 

A general theory is developed to identify the influence of local electric fields 

on intermolecular electronic excitation transfer processes.  The analysis, based 

on fundamental electrodynamics, assists the interpretation and quantification 

of static field effects including those originating from polar chromophores, 

strongly polar environments and surface field gradients.  The results have 

significant applications to fluorescence resonance energy transfer (FRET) 

measurements in cell biology. 

 

 

1. Introduction 

 

In the broad field of resonance energy transfer, RET, and its fluorescence measurement, FRET, 

the theory for the fundamental process of energy migration between individual molecules or 

chromophore components is well established [1-3].  Commonly, the distance between the 

energy donor and energy acceptor is sufficiently small for near-field electrodynamics to 

operate.  As such, the efficiency of transfer between any particular pair of chromophores is 

conveniently characterised by a Förster distance, quantitatively signifying the typically 

nanoscale range over which resonance energy transfer to the acceptor dominates over 

spontaneous emission by the donor.  However, the exact calculation of such a parameter is 

computationally demanding [4], and Förster distances are most often considered essentially 

pragmatic measures of transfer efficiency. Moreover, wide-ranging experimental and 

theoretical studies show that these efficiencies can be highly sensitive to the electronic and 

chemical environment of the participating chromophores, and also to the influence of any 

external fields.  The effects of an applied static electric field were indeed first identified more 

than twenty years ago [5]. 

 

FRET measurements now constitute an important tool for the investigation of complex 

biological media, especially for measurements of inter-site displacements and dynamical 

motions – as for example in the mechanisms of protein folding [6], viral genome ejection, and 

trans-membrane ion transport [7].  Numerous sensor applications have also emerged [8].  Given 

this increasingly sophisticated sphere of application, it is timely to closely consider the 

significant involvement of strong local fields that exist within or at the surfaces of key 

structures.  It is known, for example, that such local fields can significantly modify the 

absorption and fluorescence characteristics of key chromophores [9].  They may also 

substantially modify multipole moments [10].  Often, these local fields are associated with 



2 
 

electrical potential gradients, or surface potentials, but they may also originate from locally 

ordered dipoles.  Moreover, the molecules responsible for such dipoles may be either the donor 

or acceptor species, or other species in the surrounding medium.  It is the purpose of this paper 

to develop a theory to comprehensively account for all such systems. 

 

 

2. Foundation theory: two chromophores 

 

The unified theory of energy transfer is the most widely familiar application of quantum 

electrodynamics in chemistry, biophysics and materials science, whose molecular formulation 

has also been extensively applied to inter-particle interactions that range from dispersion forces 

to optical binding.  It is therefore expedient to base this new investigation on the emergent 

precepts, without laborious recourse to the underlying quantum formulation of Maxwell’s 

equations and time-dependent perturbation theory.  Those principles are mentioned here, with 

supporting references [11-16], only as a reminder of the solid foundations upon which the new 

constructs are to be based.   

 

To approach a variety of more intricate systems, we first begin with a straightforward analysis 

of theory for a two-particle system comprising the energy donor and acceptor particles alone.  

In the near-zone approximation that generally applies across the range of measurably 

significant RET, the standard Förster rate equation emerges from a quantum amplitude that can 

be represented by an effective time-ordered diagram shown in Fig. 1(a).  Since the donor-

acceptor coupling is not discernibly different from an instantaneous interaction over the 

distances involved, (the near-zone, where the distance R c E  and E is the transfer energy), 

the diagram simply comprises a region representing an initial state I  of the system below the 

dotted line, and above it another region for the final state F  .  In the former, initial state donor 

D is in an excited electronic state e and the acceptor A is in its ground state labelled g; the 

converse applies for the final state.  In the figure, the dotted line represents an effective coupling 

interaction operator DAW  which delivers the state sequence 
D A D A

e g g e , given by: 
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W μ .μ μ .R μ .R   .  (1) 

Here, each  is a dipole moment operator on the quantum electronic states of either molecule 

, and R is the intermolecular separation vector DA  of magnitude R; in the more succinct first 

expression on the right, there is implied summation over repeated Cartesian indices i and j.  

The matrix element form of quantum amplitude, MFI, is thus secured using (1) as an operator 

for a first-order perturbation, giving  
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where D
μ denotes the transition electric dipole moment for the g e  excited state decay of 

the donor, and A
μ is the corresponding transition dipole for the e g excitation of the donor.  

In the second expression on the right, further compaction of the result is achieved by writing it 



3 
 

in terms of the short-range limit of the standard tensor for retarded dipole-dipole coupling [17-

19].  The expression (2) may then be cast into the Fermi Rule to give the Förster rate by 

standard methods [20]. 

 

The above result clearly entails no involvement of permanent dipoles.  To entertain their 

possible influence we now move up to second order perturbation theory, introducing an 

additional coupling of the same operator form (1). The corresponding matrix element is now 

given by the following expression; 

 

DA DA

FI

II

F II II I
M

E E
 



W W
 , (3) 

 

summing over all possible states II that can fulfil the role of a virtual intermediate between 

the initial and final system states. In equation (3), E denotes the transfer energy and EII is the 

summed energy of the two participant chromophores in state II . This simple modification 

provides for any such effect to be brought into play is to develop the time-ordering into the 

form exhibited in Fig. 1, (b) and (c), introducing a second coupling that specifically entails 

static dipoles.   

 

For each of the chromophores, the energy transfer process involves directly only the ground 

and one specific upper electronic state, and there is a better than usual case for the adopting the 

expedient of a two-level approximation. As such, the state of each entity within the 

intermediate time interval – the region bounded by the upper and lower dotted lines in Fig.s 

1(b) and (c) – in principle allows four possibilities: each chromophore may be either in the 

ground or electronic excited state, g or e.  However, it is important to note that an intermediate 

region where chromophores are either both in their initial states or both in their final states can 

play no part in the calculation, since these would introduce system intermediate states identical 

to one of other of system states, I  and F ; these are explicitly precluded in the perturbation 

theory.  Accordingly, the figure shows only the two allowed state combinations.  Although it 

might then appear that further simplification could be effected by implementing an algorithm 

that specifically applies to the electrodynamics of two-state systems [21, 22], careful analysis 

reveals that, because two (or more) separate optical centers are involved, such an approach 

does not provide a short-cut to the correct result.  Therefore we proceed to resolve equation (3) 

on the basis of interpreting Fig.s 1(b) and (c), thus securing the following result for the two 

state sequences 
D A D A D A

e g g g g e  ;  
D A D A D A

e g e e g e  : 
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Figure 1. (a) First-order, and (b), (c) second-order perturbation representations of energy 

transfer with near-zone coupling, time progressing upwards. The red dot signifies an interaction 

involving a transition dipole interaction ( 
μ  or 

μ ); the green dot signifies a ground state 

dipole and the purple dot an excited state dipole.  
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Much more succinctly, using the earlier forms of expression including implied index 

summation, the same result can be cast as 

 

 

 

    D A D A D A 10, 0, g g u u

FIM V V E    μ μ R R μ μ μ μ  

 

 

 In both forms of expression it is interesting to deduce that the possession of a static dipole 

moment by the donor or the acceptor is not sufficient to contribute a non-zero second-order 

correction; both molecules need to have a static dipole that differs between the ground and 

electronically excited states.  Such effects are common, and they may arise from structural 

differences associated with displacements in the associated potential energy surfaces, or major 

shifts of charge distribution on excitation.  The former effect is often manifest in substantial 

Stokes shifts in the fluorescence spectrum; the latter is commonly exhibited in large 

solvatochromic effects in polar solvents. 

 

, the dependence on static moments can emerge only in terms of the vector difference  

between the ground and excited state values, g and u respectively, i.e. the vector shift in static 

dipole that accompanies the transition.   
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If the two-level approximation is dropped, the result for FIM   naturally acquires a more intricate 

representation, which is most neatly expressible in summed-index tensorial form as; 

 

       

  
       0 D D A 0 A

D A2 2 6
D A0

1 ˆ ˆ ˆ ˆ3 3
16

r ru us s

FI i k j l ij i j kl k l r s
r s
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R

     
 

      

 (5) 

 

where r and s are virtual intermediate states summed over all eigenstates of the molecular 

Hamiltonians for D and A, respectively; ab is a generic transition electric dipole moment for 

the transition a b , Ea is the energy of state a, and the double sum once again excludes the 

case where the sum of the two intermediate state energies given by Er(D) + Es(A) equals E.  

Here, terms that associate either r or s with the respective ground states engender contributions 

that more directly relate to the normal ground state dipoles of the donor and acceptor. 

 

 

3. Foundation theory: surface dipole array 

Based on the simple exploration of the last Section, we can now move on to consider the 

broader implications of local static dipoles.  In general, of course, these need not be associated 

with either the donor or acceptor; other molecules in their vicinity may play a larger role in 

producing significant local fields.  These neighbours may, for example, be chemically the same 

as the individual donor, for  
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Experimental determinations of excited states dipoles are commonly estimates based on a 

theoretical connection to solvatochromic shifts, exhibited in the absorption and fluorescence 

bands of the substance of interest when dissolved in polar solvents [23].  Although vector 

difference features in the excited and ground states feature in work by Suppan [24], it is 

relatively rare that the theory is used to support vector determinations – and clearly if the 

ground and excited state dipoles differ in orientation then the magnitude of  is not simply 

the difference in values e g  .  A good example of securing information on the relative 

orientations as well as values is a recent analysis of Suman et al. [25]. 

  

4. Conclusion 

 

at end say this is mol, now briefly mention plasmonic for artificial support structures. 
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