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Abstract The fate of black carbon (BC), a stable form of thermally altered organic carbon produced
during biomass and fuel combustion, remains an area of uncertainty in the global carbon cycle. The
transfer of photosynthetically derived BC into extremely long-term oceanic storage is of particular
significance and rivers are the key linkage between terrestrial sources and oceanic stores. Significant fluvial
fluxes of dissolved BC to oceans result from the slow release of BC from degrading charcoal stocks; however,
these fluvial fluxes may also include undetermined contributions of aerosol BC, produced by biomass
and fossil fuel combustion, which are deposited in river catchments following atmospheric transport. By
investigation of the Paraíba do Sul River catchment in Southeast Brazil we show that aerosol deposits can be
substantial contributors to fluvial fluxes of BC. We derived spatial distributions of BC stocks within the
catchment associated with soil charcoal and with aerosol from both open biomass burning and fuel
combustion. We then modeled the fluvial concentrations of dissolved BC (DBC) in scenarios with varying
rates of export from each stock. We analyzed the ability of each scenario to reproduce the variability in DBC
concentrations measured in four data sets of river water samples collected between 2010 and 2014 and
found that the best performing scenarios included a 5–18% (135–486 Mg DBC year�1) aerosol contribution.
Our results suggest that aerosol deposits of BC in river catchments have a shorter residence time in
catchments than charcoal BC and, therefore, contribute disproportionately (with respect to stock
magnitude) toward fluvial fluxes of BC.

1. Introduction

The term black carbon (BC) refers to a continuum of organic materials formed by the thermal alteration of
organic carbon (OC) during biomass, fossil fuel, and biofuel combustion that is characterized by a stable
structure depleted in hydrogen and oxygen (Bird & Ascough, 2012). BC accumulates as charcoal at the surface
of burning biomass as oxygen reacts exothermically with carbon (Schmidt & Noack, 2000) and also as aerosol
particles (soot) formed as tars condense in the flame (Preston & Schmidt, 2006). The crucial property of BC
relevant to its global cycling is its condensed aromatic structure, which results in its low reactivity and high
resistance to thermal and chemical oxidation (Schmidt & Noack, 2000). This stability leads to the accumula-
tion of BC in terrestrial and aquatic stores, regularly dated to 103 to 104 years, indicating that a fraction of
the BC continuum is exceptionally slow to degrade (Schmidt & Noack, 2000).

During a fire, the majority of the OC stored in biomass is converted to CO2 and a portion (5–15% of bio-
mass, Santín et al., 2016) is converted to BC. Upon complete recovery of the affected biomass stocks
through resequestration of atmospheric CO2, BC represents an additional terrestrial store of carbon
(Santín et al., 2015). Thus, the production of BC by biomass burning functions as a sink for contemporary
atmospheric CO2 by sequestering carbon to stocks that exhibit slow rates of mineralization (Kuhlbusch,
1998; Santín et al., 2015). Estimates for the modern rate of global charcoal BC production by open bio-
mass burning range widely from 40 to 379 Tg BC yr�1 (Kuhlbusch & Crutzen, 1995; Santín et al., 2016).
Aerosol emission inventories suggest that biomass burning and energy-related (fossil fuels and biofuel)
combustion emit an additional 2–11 Tg BC yr�1 and 4.5–12.6 Tg BC yr�1, respectively (Bond et al.,
2013). Total BC production therefore equates to up to 0.8% of terrestrial net primary production (50–60
PgC yr�1, Ciais et al., 2013).
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For several decades there was consensus that BC resides in soils and sediments for millennia (Crutzen &
Andreae, 1990; Kuhlbusch, 1998; Kuhlbusch & Crutzen, 1995). However, recent field evidence has shown that
the residence time of BC in soils is far shorter than previously thought and probably on a centennial time
scale (Czimczik et al., 2003; Ohlson et al., 2009; Singh et al., 2012). BC is lost from soil and sediments by miner-
alization, recombustion, and by fluvial transport triggered by erosion, dislocation, and dissolution, but the
balance of these loss mechanisms is yet to be resolved. Rivers play a key role in the loss from terrestrial stores
by transporting BC in suspension as particulate BC with eroded sediments (Mitra et al., 2014) or as dissolved
BC (DBC) (Jaffé et al., 2013). BC transported by rivers has the potential to reach oceanic stores where the rate
of oxidation is limited by anoxic conditions. Millennial storage times are typically reported for BC in coastal
and deep ocean sediments, suspended particulate organic matter (POM), and dissolved organic matter
(DOM) (Coppola et al., 2014; Dittmar & Paeng, 2009; Flores-Cervantes et al., 2009; Masiello & Druffel, 1998;
Middelburg, Nieuwenhuize, & Van Breugel, 1999; Ziolkowski & Druffel, 2010).

It has been estimated that, globally, 27 Tg BC yr�1 is discharged by rivers to the oceans as DBC (Jaffé et al.,
2013) and 8 Tg BC yr�1 is exported as particulate BC (Mitra et al., 2014). These fluxes are 10–15% and
4–5% of the total dissolved organic carbon (DOC; 170–250 Tg yr�1) and particulate organic carbon (POC;
150–200 Tg yr�1) transported by rivers, respectively (Hedges et al., 1997; Ludwig et al., 1996; Seitzinger et al.,
2005). Fluvial fluxes of DBC have generally been attributed only to stocks of degrading charcoal BC in drai-
nage catchments (Ding et al., 2013; Dittmar et al., 2012; Hockaday et al., 2007), probably because BC aerosol
production is the smaller term of the global production budget. However, observations of DBC in glacier-fed
rivers with negligible charcoal stocks (Ding et al., 2015) suggest that aerosol deposits can contribute substan-
tially toward fluvial DBC loads and highlight the importance of quantifying this contribution.

We hypothesize that aerosol transport and deposition represents an important pathway for rapid transport
from the terrestrial biosphere to the fluvial system, and hence to the oceans, and that aerosol-derived BC
makes a substantial contribution to BC fluvial fluxes. This hypothesis cannot currently be tested by source
apportionment through direct chemical fingerprinting of fluvial DBC because there is an overlap in the che-
mical signatures of BC from its various sources. Fingerprinting is further hampered by interfering petrogenic
substances and by isotopic fractionation during combustion and diagenesis (Mannino & Harvey, 2004; Mitra
et al., 2014). Therefore, we test our hypothesis by implementing a spatial inverse-modeling approach, using
measured concentrations of DBC in a major tropical river system, to identify the contributions of soil charcoal
and aerosol BC stocks to fluvial load.

2. Study Region

The Paraíba do Sul River drains a catchment of 58,000 km2 in a region of high agricultural intensity, high
population density, and a history of extensive slash-and-burn deforestation of tropical forests. DBC in this
river network has three potential sources: charcoal-rich soils in deforested subcatchments (BCCHAR); depos-
ited aerosol BC from regional biomass burning (BCBBA), and; deposited aerosol BC from regional fossil fuel
and biofuel combustion (BCFFA). BCCHAR was produced by historical slash-and-burn deforestation of the tro-
pical Atlantic Forest of the region, which occurred predominantly between 1850 and 1980 (Figure 1) (Dittmar
et al., 2012). Today, just 12% of the original forest cover remains in forest fragments, the majority of which are
<50 ha in area (Ribeiro et al., 2009). BCBBA is a product of aerosol emission from both land management fires
and natural wildfire regimes. In the fire-adapted Cerrado (savannah) biome that occupies a large portion of
the interior of Brazil, the natural fire regime has been amplified by the expansion of cropland and pasture
(Klink & Machado, 2005; Oliveira & Marquis, 2002; Pivello, 2011). The Atlantic Forest is naturally a less fire-
prone biome, but human ignition of fire for pasture maintenance and crop waste removal is a common pro-
cess in the deforested parts of the region (e.g., Aguiar et al., 2011; Paraiso & Gouveia, 2015). Meanwhile, BCFFA
derives from combustion of fossil fuels and biofuels in the energy, transport, industry, and residential sectors.
Regional BCFFA emissions peak in the densely populated centers of Southeast Brazil, most notably near to the
megacities of São Paulo and Rio de Janeiro (Figure 1).

3. Methods

Our approach is to evaluate the relative contributions of DBC derived from three sources (charcoal in catch-
ment soils; aerosols derived from biomass burning; and aerosols derived from fossil fuel combustion) to the
2926



Figure 1. (top left) Sampling locations (black stars) shown overlaying a hydrological map of the PSR catchment. (top right)
Remaining fragments of tropical Atlantic Forest (dark green) (Fundação SOS Mata Atlântica/Instituto Nacional de Pesquisas
Espaciais, 2013) overlaying the natural domain of the biome (light green) (Instituto Brasileiro de Geografia e Estatística
(IBGE), 2004). (bottom left) Burned areas (yellow) recorded in the MODIS MCD64A1 data set (Giglio et al., 2009) in the study
period (2009–2015), overlaying a potential (i.e., if burned) emission grid for BC aerosol based on fuel consumption esti-
mates (van Leeuwen et al., 2014) and BC aerosol production factors (Akagi et al., 2010) assigned according to land cover
(Friedl et al., 2010; Olson et al., 2001; Ramankutty et al., 2008). (bottom right) Annual emissions of aerosol BC from fossil fuel
and biofuel combustion in 2010 as observed in the ECLIPSE GAINS 4a data set (Klimont et al., 2017) (1 Mg = 1 × 106 g).
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dissolved DBC load of the PSR by analyzing the goodness of fit between downstream variation in measured
DBC (section 3.1) and downstream variation in modeled DBC resulting from mixtures of these sources
(section 3.2). For the modeling of DBC concentration, the catchment is split into hydrological units
(section 3.3), and the stocks of BC associated with each source are mapped to tributary catchments and
their associated drainage routes. Gridded data sets plotting the spatial distribution of charcoal BC stocks
are derived from available land cover and production factor data sets (section 3.4). Aerosol BC stocks are
derived from spatially gridded BC emission data sets in combination with the modeling of aerosol delivery
to the catchment by a sample of over 300,000 air masses in the period 2009–2015 (section 3.5).

We consider over 50,000 different source mixture scenarios; each with varying contributions of DBC from
individual sources to the total DBC load of the river, and; each producing a different pattern of downstream
variation in modeled DBC concentrations. We then review which mixtures of sources are good predictors of
observed DBC concentrations and which of these source mixture scenarios replicate observations poorly.

3.1. Reference Data Sets of Dissolved Black Carbon Concentrations

Our reference data sets for observed DBC concentrationmeasurements (cDBCMEAS) were reported by Dittmar
et al. (2012) and Marques et al. (2017). Their extensive work in the PSR catchment has included the collection
of a repeated set of samples from 21 locations in April 2010 (wet season), January 2013 (wet season), July
2013 (dry season), and January 2014 (wet season) along a 750 km downstream transect of the main stem
of the PSR (Figure 1). An additional time series of surface water samples collected between 1997 and 2008
near the river mouth allowed for the assessment of annual DBC fluxes from the system (Dittmar et al., 2012).
2927



Figure 2. Plots showing (a) the downstream variation in observed DBC con-
centrations measured by Dittmar et al. (2012; wet season 2010) and Marques
et al. (2017; wet season 2013, dry season 2013, and wet season 2014) and
the mean density of BC stocks associated with (b) charcoal and (c) aerosol in
the upstream catchment. (1 Mg = 1 × 103 kg = 1 × 106 g).
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Samples were vacuum-filtered (pore size 0.7 μm) and DOM was isolated
via solid phase extraction (SPE) (Dittmar et al., 2008). DBC concentrations
from the spatial set of water samples formed the reference data for our
modeling exercise, which sought to identify the mixtures of sources that
best reproduce their observations.

For the determination of BC, various analytical methods are available. Each
option utilizes the resistance of BC to oxidation relative to bulk OC but is
sensitive to different ranges of chemical and physical properties within
the black carbon continuum (Hammes et al., 2007). Dittmar et al. (2012)
and Marques et al. (2017) determined dissolved BC using the benzenepo-
lycarboxylic acid (BPCA) method (Brodowski et al., 2005; Dittmar, 2008), on
a Shimadzu 10ADvp HPLC or Waters UPLC equipped with a photodiode
array light absorbance detector. Dittmar et al. (2012) observed that the
average DBC flux from the river system is 2,700 Mg BC yr�1. Regular seaso-
nal cycles of DBC concentration were observed in the system, and these
correlated strongly and positively with river water discharge. Substantial
downstream variation in DBC concentration was identified in each spatial
data set of samples (Figure 2). For detailed methodology we refer the
reader to Dittmar et al. (2012) and Marques et al. (2017).

3.2. Modeling of Fluvial Dissolved Black Carbon Concentrations

To simulate the downstream variation in DBC in the PSR, we treat the DBC
flux in the main channel as the sum of the fluxes from the upstream tribu-
tary catchments. For each source, the DBC flux from a tributary catchment
is assumed to be proportional to the magnitude of the stocks of that
source and the discharge from the catchment:

dDBCi;j ¼ Si;jQjAjf i; kg BC time�1 (1)

Where dDBC is the simulated flux of DBC (kg BC time�1) from tributary
catchment j associated with source i; Si, j is the BC stock density
(kg BC km�2) of source i in tributary catchment j; Qj is the discharge
from tributary j (m3 time�1); Aj is the catchment area (km2); and, fi is a “delivery factor” describing the
proportion of the stock of source i transferred to the fluvial system per unit discharge (m�3).

Tributary catchments were numbered 1 to n downstream, and the simulated concentration of DBC
(kg BC m�3) associated with source i downstream of the nth tributary catchment (cDBCi, n) was calculated
as follows:

cDBCi;n ¼
∑
n

j¼1
Si;jQjAjf i

∑
n

j¼1
Qj

; kg BC m�3 (2)

The value of fi was permitted to differ between sources (as discussed below) in many source mixture scenar-
ios, and therefore, for a single scenario the concentration of DBC (kg BCm�3) downstream of the nth tributary
catchment (cDBCMIX) is calculated as the sum of the concentrations associated with the three individual
sources considered:

cDBCMIX;n ¼ ∑3i¼1cDBCi;n; kg BC m�3 (3)

Values of fi were varied for each source in over 50,000 mixing scenarios. Scenarios were constrained by vary-
ing the delivery factors applied to the stocks associated with each source such that the cumulative fluxes
from all sources in the catchment amounted to the measured annual average flux of 2,700 Mg BC yr�1

(Dittmar et al., 2012). For each scenario, the goodness of fit was determined by regressing cDBCMIX against
cDBCMEAS at the sampling locations from the reference data sets.
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The value of fi was permitted to differ between sources; however, for each scenario the value of fi for an indi-
vidual source was not permitted to vary over the catchment. Thus, changing fi influences only the magnitude
of the DBC flux associated with each source at the catchment scale and not the relative magnitude of fluxes
from subcatchments. We acknowledge that fi may vary from one catchment to another owing to differences
in environmental factors such as geometry, slope, and soil properties (supporting information S1). However,
in the absence of a systematic understanding of the dependence of fi on these factors, we hold it constant
throughout the catchment.

The remainder of this section describes derivation of the variables required to parameterize the
equations above.

3.3. The Hydrological Network of the Catchment and Discharge

The watersheds and channels of 485 tributaries (Figure 1) were delineated using ArcGIS hydrology tools
and a shuttle radar topography mission (SRTM) digital elevation model (DEM) with a resolution of 90 m
(Reuter et al., 2007). The PSR is almost 900 km in length when measured from the confluence of the
Paraibuna and Paraitinga Rivers to its mouth, and its catchment covers an area of 58,000 km2. As
described above, downstream variation in DBC is simulated by sequentially adding DBC fluxes from these
tributary catchments.

Parameterization of equations (1) to (3) also requires tributary catchment discharge data. Although hydrolo-
gical data are available for six stations on the main channel of the PSR, there is no systematic monitoring of
tributary catchments. Nevertheless, analysis of the data from the six discharge gauges that lie along the main
stem of the PSR, maintained by the Agência Nacional de Águas, shows an extremely strong linear relationship
between the area of upstream catchments and the monthly discharge from upstream catchments during the
study period (R2 = 0.84, p < 0.01). Therefore, in the absence of discharge data for individual subcatchments,
we consider the discharge production rate (m3 km�2) to be uniform across the catchment and, therefore,
equation (2) can be simplified to the following form:

cDBCi;n ¼ ∑
n

j¼1
Si;jAj f i; kg BC m�3 (4)

3.4. Stocks of Charcoal BC

The BCCHAR stock for each tributary catchment was defined as the product of deforested area (km2) and a
conversion factor for charcoal production per unit area deforested (Mg km�2). Deforested area was derived
by subtraction of the current Atlantic Forest coverage, mapped by satellite remote sensing, from its natural
extent (Fundação SOS Mata Atlântica/Instituto Nacional de Pesquisas Espaciais, 2013) (Figure 1). In the
absence of a site-specific conversion factor, the average reported value for tropical forests (340 Mg km�2;
Santín et al., 2015) was used in our calculations. Although the conversion factors reported for tropical forests
are variable (120–600 Mg km�2, Barbosa & Fearnside, 1996; Fearnside et al., 1999; Fearnside et al., 2007;
Fearnside, de A. Graça, & Rodrigues, 2001; Fearnside et al., 1993; Graça et al., 1999; Righi et al., 2009), the uni-
form application of one conversion factor to all deforested areas in the catchment determines that this varia-
bility does not influence the relative stocks of BC in tributary catchments or, therefore, the downstream
variation in fluvial concentrations of DBC associated with charcoal (equation (2)). For the reasons explained
in the supporting information provided, we do not expect variation in charcoal BC production factors relating
to differences in quantification methods to influence the spatial variability of charcoal stocks in the catch-
ment (Hammes et al., 2007).

Given the long period since the earliest deforestation, we considered correcting the stock estimates for post-
deforestation losses. However, this was not undertaken because no specific information about the rate of loss
of BC from soils in this region could be found. Dittmar et al. (2012) demonstrated that at least 84% of the ori-
ginal charcoal BC stock can be expected to remain in the catchment if it is assumed that BCCHAR is only lost
from soils in solution and that the DBC exported by the PSR derives only from BCCHAR. As we assume that the
production and degradation of charcoal BC occurs uniformly throughout the catchment, changes to the fac-
tors quantifying either of these terms do not affect the spatial distribution of stocks in the catchment or,
therefore, the downstream variation in cDBCCHAR.
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Figure 3. Monthly batches of modeled trajectories of air masses that reached one endpoint (star) in a sample of months in the 2009 dry season. A map of all 126
endpoints in the PSR catchment (blue points), from which HYSPLIT back trajectories were initialized, is also shown.

Journal of Geophysical Research: Biogeosciences 10.1002/2017JG004126

JONES ET AL.
3.5. Stocks of Aerosol BC Deposits

Stocks of BCBBA and BCFFA deposited in the catchment between 2009 and 2015 were modeled using the
HYSPLIT air mass trajectory model in combination with gridded emissions data sets and an exponential loss
function for deposition. For BCBBA, the MODIS MCD64A1 burned area product (Giglio et al., 2009) was used as
a spatially gridded record of fires in the study period across South America (resolution 500 m). Published car-
bon stock losses (kg dry matter km�2; (van Leeuwen et al., 2014)) and aerosol BC emission factors (g BC kg dry
matter�1; Akagi et al., 2010) were assigned to burned area cells according to land cover type in the MODIS
MCD12Q1 data set (resolution 500 m) enhanced with information on ecoregion (Olson et al., 2001) and agri-
cultural land use (Ramankutty et al., 2008) as described in the supporting information. For BCFFA, the ECLIPSE
GAINS 4a data set for annual emissions from the transport, energy, waste, industrial, and residential sectors
(and excluding emissions from agricultural waste burning; resolution 0.5°) (Amann et al., 2011) was used to
represent emission from fossil fuels and biofuel combustion, and we assumed a constant rate of emission
in each year. For the reasons explained in the supporting information provided, we do not expect variation
in the BC aerosol emission factors relating to differences in quantificationmethods to have a substantial influ-
ence on the spatial variability of aerosol stocks within the catchment (Hammes et al., 2007; Reid et al., 2005;
Watson et al., 2005; Zencak et al., 2007).

Atmospheric back-trajectories of a sample of air masses were modeled using the HYSPLIT atmospheric
trajectory model (Draxler, 1997). HYSPLIT was driven by 3-hourly NCEP GDAS reanalysis data over a 1° glo-
bal grid (National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department
of Commerce, 2009) to simulate 30 day back trajectories for the sample air masses. The model was initi-
alized over a 0.2° × 0.2° grid of 126 endpoints within the catchment at a daily interval. An atmospheric
half-residence time of 118 h was applied to the aerosol BC intercepted by air masses en route to the
catchment, consistent with an atmospheric residence time of 7.12 days as reported on average for global
aerosol models (Textor et al., 2006). In total over 300,000 air mass trajectories were generated and used as
a sample from which total BC deposition to each endpoint was interpolated (Figure 3). Deposition to each
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endpoint was calculated for the period 2009–2015 and an optimized Empirical Bayesian Kriging model
was used to spatially interpolate deposition rates across the catchment area. Full details of our modeling
approach is provided in the supporting information (Akagi et al., 2010; Amann et al., 2011; Boschetti et al.,
2009; Draxler, 1997; National Centers for Environmental Prediction/National Weather Service/NOAA/U.S.
Department of Commerce, 2009; Olson et al., 2001; Ramankutty et al., 2008; Textor et al., 2006; van
Leeuwen et al., 2014).

Our modeling exercise using HYSPLIT produced high-resolution (0.2°) BC deposition grids for each month
in the river catchment. To assess whether the magnitude and spatial pattern of the deposition rates mod-
eled using HYSPLIT were reasonable, we also simulated BCBBA and BCFFA using the UK Met Office
HadGEM2-ES Earth System Model (Collins et al., 2011; Jones et al., 2011) for the same time period
(2009–2015). Although HadGEM2-ES has lower spatial resolution (1.875° × 1.25°) the main advantage is
that it represents the full life cycle of aerosols including not only emission and transport but also mixing
(via turbulence and convection) and deposition (via wet and dry processes). Further details on HadGEM2-
ES and the model setup are provided in the supporting information (Amann et al., 2011; Bellouin et al.,
2011; Collins et al., 2011; Diehl et al., 2012; Granier et al., 2011; Jones et al., 2011; Lamarque et al.,
2010; van der Werf et al., 2010).

4. Results
4.1. Stocks of BC in the Catchment

Using the method described in section 3.4 we calculated that 16.7 Tg of BCCHAR was created in the PSR catch-
ment during the deforestation of the Atlantic Forest. The distribution of these stocks throughout the catch-
ment (Figure 4) is related to the distribution of forest loss. Areas with low BCCHAR correspond to remaining
fragments of forest (Figure 1), which are located predominantly in the mountainous regions away from land
that is suitable for agriculture (Fundação SOS Mata Atlântica/Instituto Nacional de Pesquisas Espaciais, 2013).

Following the HYSPLIT modeling approach described in section 3.5, the average (± standard deviation) rate of
aerosol deposition in the catchment was 1,182 (±704) Mg yr�1 of BCBBA and 1,584 (± 80) Mg yr�1 of BCFFA
during the study period (2009–2015; Table S2). These aerosol inputs equate to 44% and 59% of the total
annual DBC export from the river catchment (2,700 Mg yr�1; Dittmar et al., 2012), respectively, and sum to
approximately the samemagnitude as annual export. The HadGEM2-ES climate model predicted similar rates
of BC aerosol deposition to HYSPLIT with average annual inputs of 962 (±619) Mg yr�1 for BCBBA and 1,295
(±78) Mg yr�1 for BCFFA. Thus, the HYSPLIT model produces deposition intensities for BCBBA and BCFFA that
are within 23% of HadGEM2-ES.

Both models show deposition rates that vary with proximity to key aerosol sources (Figure 1) and with sea-
sonal and interannual variability of emission. For BCBBA, deposition rates generally fall with distance east in
the catchment, reflecting an increase in distance from burned areas to the west of the catchment. BCBBA also
has a pronounced seasonal cycle (Figure 5), peaking each dry season (August-October) but with considerable
interannual variability, as expected from typical variability of fires in South America (Chen et al., 2014). Both
HYSPLIT and HadGEM2-ES show that BCBBA input to the catchment was greatest during the dry seasons of
2010 (850–900 Mg in August or September), but comparatively low in 2009 and 2013 (<100 Mg throughout
the year). For BCFFA, deposition rates increased with proximity to the major cities of São Paulo and Rio de
Janeiro (Figure 1). The monthly inputs of BCFFA to the basin are consistently between 100 and 200 Mg
BCFFA throughout the period and there is no long-term trend in emissions from fuel combustion. Given
the alignment in both spatial and temporal patterns of BC deposition in the HYSPLIT and HadGEM2-ES
models, we conclude that the HYSPLIT modeling approach produces reasonable deposition rates in this
catchment and time period.

4.2. Source Apportionment

The different spatial distributions of BC stocks associated with each source, evident across the PSR catchment
(Figure 4), produce distinctive downstream patterns of DBC concentration associated with each source
(cDBCCHAR, cDBCBBA, and cDBCFFA; Figure 2). The differences in these downstream patterns suggested that
the mixture modeling approach would have discriminatory power and offer the opportunity to evaluate
the relative importance of the three sources. Goodness of fit, as quantified by the coefficient of
2931



Figure 4. Spatial distribution of stocks for BC associated with (top) charcoal, (middle) biomass burning aerosol (BBA), and
(bottom) fossil fuel aerosol (FFA) in tributary catchments of the PSR. Charcoal stocks are reported as those produced by
historical deforestation and are not corrected for uncertain losses since their creation (1 Mg = 1 × 106 g). Aerosol stocks
shown relate to the total amounts deposited in the catchments in the entire period of study (2009–2015).
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determination (R2) resulting from a simple linear regression model, was used as a measure of the quality of
the predictions of measured DBC concentrations (cDBCMEAS) by the modeled concentration (cDBCMIX) in
each source mixture scenario. Four different treatments of the contribution of aerosol stocks to the flux of
DBC from the fluvial system were explored:

Treatment 1: aerosol stocks derived solely from deposition in the year prior to sampling;
Treatment 2: aerosol stocks derived from deposition in the 2 years prior to sampling;
Treatment 3: aerosol stocks derived from deposition in all years prior to sampling; and
Treatment 4: aerosol stocks derived from deposition in the entire modeled period, 2009–2015.

For example, a scenario of 34% charcoal, 33% fossil fuel aerosol, and 33% biomass burning aerosol exists for
every treatment, but in treatment 1 this would include only the deposits of aerosol from the year before sam-
pling, whereas in treatment 4 this would include deposits from the entire modeling period. The different
treatments were used to assess whether recent aerosol deposition (treatments 1 and 2) has a different influ-
ence on the quality of the model than when longer term patterns are also included (treatments 3 and 4),
whichmight indicate that aerosol deposits contribute to the DBC load of the river predominantly within short
time scales following their deposition or over longer periods following a more protracted residence period in
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Figure 5. (top) Average annual deposition of BCBBA and BCFFA in the PSR
catchment (yellow line defines boundary) in the period 2009–2015 as derived
from the HYSPLIT model endpoints (resolution 0.2°; white boxes within catchment
boundary) overlaying HadGEM2-ES model deposition rate outputs for the same
period (resolution 1.85° × 1.25°; background tiles). (bottom) Monthly total
deposition of BCBBA (blue lines) and BCFFA (red lines) in the PSR catchment as
modeled by the HYSPLIT (solid lines) and HadGEM2-ES (dashed lines) models
(1 Mg = 1 × 106 g). Gray shading represents the typical period of the annual dry
season in this region (May-November).
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soils. In each treatment, all three source components contribute to
improvements in the goodness of fit, resulting in clear structural con-
vergence around a zone of optimal fit. Figure 6 shows examples of
how the quality of model predictions varied with the ratio of source
contributions to the total fluvial load. Further outputs are provided
in the supporting information in support of the statements
made below.

We first considered the scenarios in which cDBCMIX was best fit to the
reference data sets. For the treatment 1 scenarios, when 1 year of
aerosol deposition prior to sampling was included in the calculations
of cDBCMIX, the highest R2 values occurred when BCCHAR, BCBBA, and
BCFFA contributions to the total DBC load were 85%, 4%, and 11% in
the 2010 wet season (R2 = 0.481), 85%, 0%, and 15% in the 2013
wet season (R2 = 0.285), 82%, 2%, and 16% in the 2013 dry season
(R2 = 0.601), and 95%, 5%, and 0% in the 2014 wet season
(R2 = 0.364), respectively. The maximum R2 values rose marginally in
the treatment 2 scenarios, when 2 years of aerosol deposition were
included, but there was little change in the optimal source input
ratios. When aerosol inputs from longer time periods were considered
(treatments 3 and 4) in the cDBCMIX calculations, a small reduction in
the maximum R2 value was generally observed, but still there was lit-
tle difference in the optimal source input ratios.

We also assessed how the contribution of BCCHAR to the total DBC
load varied in the scenarios that produced R2 values above the 95th
percentile. When 1 year of aerosol deposition prior to sampling was
included in the calculations of cDBCMIX, we observed BCCHAR contri-
butions of 79–88% (R2 > 0.480), 75–88% (R2 > 0.606), and 88–98%
(R2> 0.356) in 2010 (wet season), 2013 (wet and dry season measure-
ments averaged) and 2014 (wet season), respectively. When 2 years of
aerosol deposition were included the range of BCCHAR contributions
grew to 70–89% (R2 > 0.604) and 71–99% (R2 > 0.349) in 2013 and
2014, respectively (this treatment could not be applied to the 2010
data set). Similarly, when all years of aerosol deposition in the study
period up to the time of sampling were included in treatment 4, BCCHAR contributions expanded further to
67–89% (R2 > 0.579) and 61–99% (R2 > 0.345) in 2013 and 2014, respectively. Finally, when deposition
throughout the period was treated as representative of long-term deposition in the catchment, BCCHAR con-
tributions to the total DBC load of 73–91%, 67–77%, and 64–99% were observed in 2010, 2013, and
2014, respectively.

We finally considered the situation in which BCCHAR was the only source of BC to the PSR. No such single-
source scenario could produce an R2 value above the 5th percentile (lowest 5% of R2 values) in the 2010
or 2013 reference data sets. In contrast, in the 2014 wet season, evidence consistently pointed toward a lower
contribution of aerosol BC than in the other measurement periods and, indeed, the single-source scenario
registered between the 75th and 85th percentiles for all analyses of this reference data set.
5. Discussion
5.1. Context and Key Findings

Many studies have maintained a focus on quantifying the load of BC carried by rivers rather than its sources
and, in the absence of further mechanistic understanding of BC aerosol mobility in catchments, there has
been an assumption that essentially all DBC derives from stocks of charcoal in catchments (Jaffé et al.,
2013). The potential for significant aerosol contributions to land-ocean fluxes of DBC has rarely been consid-
ered, and regardless, there are challenges to source apportionment by chemical fingerprinting. Nevertheless,
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Figure 6. R2 values showing the goodness of fit between DBC concen-
trations modeled for varying source mixture scenarios (cDBCMIX) and
measured DBC concentrations (cDBCMEAS) in 2010 (wet season), 2013
(average cDBCMEAS of dry and wet seasons), and 2014 (wet season).
cDBCMIX includes stocks of aerosol deposits from 2 years prior to sam-
pling, with the exception of 2010 when data for aerosol inputs were only
available for 1 year prior to sampling.
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recent evidence of DBC in glacier-fed arctic rivers, at concentrations around
10% of those draining nearby fire-affected boreal forest, reveal the potential
of aerosols to contribute to fluvial DBC loads (Ding et al., 2015). By using spatial
information about stocks and concentrations of BC in the river system, the cur-
rent study introduces an inverse modeling approach as a useful tool for source
apportionment that circumvents the challenges of chemical fingerprinting.
We hypothesized that aerosol transport and deposition represents an impor-
tant pathway for rapid transport from the terrestrial biosphere to the fluvial
system, and hence to the oceans, and that aerosol-derived BC makes a sub-
stantial contribution to fluvial DBC fluxes. Here we evaluate that hypothesis
using the results presented above.

Across all treatments comparing modeled to measured DBC concentrations,
the optimum fit with observations was achieved when the contribution of
aerosols to the total DBC load of the PSR was 5–18%, and when the 95th per-
centile of scenarios were considered, this range expanded to 1–39%. The evi-
dence pointed toward a lower fractional contribution of aerosol to the river
DBC in 2014 than in the other time periods, and if this year is excluded then
the optimum and 95th percentile scenarios occurred with aerosol contribu-
tions of 15–18% and 9–33%, respectively. In all treatments it was observed
that the inclusion of aerosol as a source improved the model predictions of
cDBCMEAS. Scenarios in which charcoal was the single source could only pro-
duce an R2 value in the top 5% of the distribution for the 2014 reference data
set. Model predictions fit better to the observations when aerosol inputs from
two dry seasons prior to sampling were included, rather than only the dry sea-
son prior. While the optimal R2 values observed in our analysis were not always
especially high, ranging between ~0.3 and ~0.6, the consistent improvement
in fit observed with inclusion of aerosol deposits, and of the proportional con-
tribution of aerosols in the best-performing scenarios, is convincing evidence
of their influence on DBC loads in this system. Further, the proportional contri-
butions of BC aerosol to total DBC load modeled here are of a similar magni-
tude to those implied by the empirical work of Ding et al. (2015) in arctic
rivers, where the fluxes of DBC by rivers with no considerable charcoal stocks
were observed to be around 10% of those from rivers with both charcoal and
aerosol sources.

Our key findings are that the observed spatial variation in the measured DBC
concentrations in the PSR is (1) explained best by scenarios in which aerosols
contributes 5–18% of the total load of DBC; and (2) poorly explained by sce-
narios in which BCCHAR is the only source of fluvial DBC. The PSR catchment
is noted for its particularly large stock of BCCHAR, which persists in the catch-
ment following centuries of slash-and-burn deforestation of tropical Atlantic
Forest (Dittmar et al., 2012). Hence, it is somewhat surprising that aerosols
are linked to such considerable proportions of the DBC exported from this
river catchment. The knowledge gained from this and other recent work is that
fluvial fluxes of DBC cannot be assumed to derive exclusively from BCCHAR without adequate consideration
of the aerosol stocks in drainage catchments. It is likely that an important portion of the 27 Tg DBC yr�1

discharged globally by rivers to the oceans (Jaffé et al., 2013) is explained by aerosol BC deposited relatively
recently in river catchments.

5.2. Sources of Aerosol BC

In contrast to the inherently local nature of BCCHAR contributions to the DBC load of the PSR, sources of aero-
sol BC are distributed throughout the southeast region of Brazil and the patterns of deposition in the catch-
ment reflect variation in proximity to concentrated source regions. With respect to BCFFA, the spatial pattern
of deposition rates is clearly determined by proximity to the two major cities in the region, São Paulo and Rio
2934



Journal of Geophysical Research: Biogeosciences 10.1002/2017JG004126

JONES ET AL.
de Janeiro, whose influences on regional atmospheric concentrations are demonstrated in global model out-
puts and observational studies (Bond et al., 2013; Evangelista et al., 2007). With respect to BCBBA, the decline
in deposition rates with distance east in the catchment indicates a dominant influence of sources to the west
of the catchment. A particularly intensive agricultural system lies to the west of the catchment in São Paulo
state, where cropland and pasture cover 30% and 35% of the area of the state, respectively; far higher than
the national values of 9% and 20% (IBGE, 2009). Moreover, over 50% of the country’s sugarcane cultivation
area is located in São Paulo state, which allows it to produce 20% of global ethanol (Paraiso & Gouveia,
2015). A preharvest burn treatment is applied to 40–50% of the sugarcane-planted area, and this practice
has been linked to elevated concentrations of BC in air and rainwater samples collected downwind of sugar-
cane plantations (Aguiar et al., 2011; Lara et al., 2001, 2005). In our comparisons, we found evidence that both
biomass burning and fossil fuel sources of BC aerosol make contributions to DBC fluxes from catchments,
though the contributions from fossil fuel sources (up to 16% in the optimal scenarios) tended to outweigh
those from biomass burning sources (up to 5%).

5.3. Mobilization and Fate of Aerosol BC

The dynamic processes that might determine the rates of transfer of aerosol BC to fluvial DBC require further
investigation. The evidence provided here links aerosol BC stocks to DBC fluxes from the PSR during the study
period and suggests that a portion of the deposited aerosol was transferred to fluvial DBC over time scales of
years to decades. This requires the efficient mobilization of aerosol BC by runoff and/or throughflow and
implies that a fraction of deposited aerosol BC enters short-term near-surface stores from which it can be
readily remobilized. The best-fit scenarios, in which aerosol deposits contributed 5–18% toward the average
annual DBC flux from the system (2,700 Mg year�1), require the transfer to fluvial DBC of 135–486 Mg of aero-
sol BC per year, which is 5–18% of the average annual aerosol input to the catchment (1,182 Mg BCBBA year

�1

plus 1,584 Mg BCFFA year�1).

Models for DBC concentration performed best against observations when aerosol deposition from just 1 or 2
years prior to sampling were included, suggesting that a fraction of the BC deposited in the catchment is
mobile in the dissolved phase over extremely short time scales. It will be important to ascertain the circum-
stances under which these transfer rates are feasible. While freshly emitted aerosol BC is initially hydrophobic
and thus insoluble, oxidation enhanced by exposure to ozone in the atmosphere leads to the substitution of
highly aromatic compounds at the surface of soot particles with functional groups containing oxygen, hydro-
gen, and nitrogen (Decesari et al., 2002; Fierce et al., 2014). This photodegradation, combined with the coa-
gulation of BC with other hydrophilic aerosol species during its time in the atmosphere, promotes its water
solubility (Maskey et al., 2017; Wozniak et al., 2008), and consequently, around 80% of aerosol BC deposition
occurs with rain droplets (Textor et al., 2006). These pre-conditioning processes could explain why a nontrivial
fraction of the aerosol deposits appear to be mobile within a short period following their deposition.

Predictions of DBC concentration made using aerosol deposition from the entire period of modeling
(2009–2015) gave similar results to those that included only recent deposits (<2 years prior to sampling) with
respect to the optimal source contribution ratios that were identified, though the quality of these models was
marginally lower than when only recent deposits were included. This result reflects the consistency of the
spatial patterns of aerosol deposition across the catchment in the study period and also suggests that the
accumulating stocks of aerosol deposits have a prolonged influence on DBC export from the river system.
Following deposition, aerosol that is not rapidly transferred to riverine DBC may undergo mineralization or
be transported with particulate matter, but the results imply that a fraction is also likely to accrue in soils with
increasing potential to influence DBC fluxes from the river system. A hypothetical aerosol mass balance
model (supporting information) shows that aerosol-derived DBC fluxes of 135 to 486 Mg BC yr�1 can be
achieved by small transfers (0.2–1.9%) from the accumulating stock within 10–15 years (i.e., since 2000) even
if a small fraction (0–2.5%) of BC aerosol is transferred to fluvial DBC within 1 year of deposition. While this
model ignores losses of the deposited aerosol by mineralization and transport in the particulate phase, its
outputs give a strong indication that the required aerosol-derived DBC fluxes are feasible, especially given
that aerosol inputs to the catchment are likely to have accrued throughout decades of land use change
and fossil fuel use driven by economic and population growth in Southeast Brazil. However, the hypothetical
nature of this assessment underscores the importance of conducting experimental work to understand the
fate of deposited aerosol BC.
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6. Conclusion

This case study of the PSR shows that the fluvial DBC exported from river catchments derives from a mixture
of sources that includes a substantial aerosol BC component. The goodness of fit betweenmodeled andmea-
sured concentrations is improved by inclusion of the aerosol sources, and scenarios in which aerosols contrib-
uted 5–18% of the DBC load of the river were the best predictors of the observed concentrations. While large
fluvial fluxes of DBC in river systems are often associated exclusively with stocks of charcoal in catchments,
we establish that this is unlikely to be the case in our study region despite its prominent charcoal stocks. If
our observations are representative of the postdepositional dynamics of aerosol BC more generally, then it
would appear that aerosol BC has the potential to contribute substantially toward the 27 Tg DBC yr�1 that
rivers discharge globally. In the case of biomass burning, this would represent a rapid mechanism for transfer
of terrestrial photosynthetically derived C into highly recalcitrant oceanic stores.

This work represents the first quantitative evidence for an aerosol component in fluvial fluxes of DBC in a tro-
pical river system. The work complements the continuing attempts to use geochemical analyses to trace
aerosol BC from drainage catchments to rivers, and to elucidate the key processes that determine these path-
ways. We suggest that further focus is placed on the fate of aerosol deposited in catchments, chiefly by quan-
tifying its residence time in soils and its loss mechanisms through an ensemble of controlled experimental
work and catchment-scale observation.
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