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Abstract

Prostate Cancer (PCa) is a major clinical problem worldwide with considerable variability
in clinical outcome of patients. PCa diagnostics and prognostics currently lack specific and
sensitive clinical biomarkers and treatment is not well individualised. The PCA3 test,
amongst others, highlights the utility of urine in PCa diagnostics and prognostics. Urine
contains cells and extracellular vesicles (EV) that originate in the prostate. There are many
areas of the PCa clinical process that could be aided with an expression based urine test,
including diagnosis, prognosis and response to therapy.

NanoString data (167 transcripts) from 485 EV RNA samples were collected from PCa
patients and used to build models that would aid in PCa diagnosis and prognosis i.e. i) PCa
(low- (L), intermediate-(I), and high-risk(H)) vs CB (Clinically Benign/No evidence for
cancer), ii) high-risk PCa vs CB, and iii) trend in expression across CB>L>I>H. These
models were validated in 235 samples, with AUCs of i) 0.851 ii) 0.897 and iii) 0.709,
respectively.

The potential of using urine EVs to predict patient response to treatments was also
investigated. In a pilot data set a signature of seven transcripts was identified that could
optimally predict progression of patients on hormone therapy (p =2.3x10;
HR = 0.04288). Models were also built using NanoString data from 92 cell RNA samples.
Intercomparing expression data from matched cell and EV fractions of urine showed that
transcripts significantly higher in the EV samples were associated with the prostate, PCa
and cancer in general, supporting them as a viable source of biomarkers in the clinical
management of PCa.

In conclusion my analyses have demonstrated the utility of examining urine RNA for the
diagnosis and prognosis of PCa. My studies have formed the basis of the production of a

Prostate Urine Risk test that is currently under development at UEA.
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Introduction

1.1 The Research Gap

Prostate cancer (PCa) is the second most common male cancer worldwide and the most
common in the UK'. The current available biomarkers for PCa lack specificity and/or
sensitivity to detect the disease and are unable to distinguish indolent from aggressive
disease or predict treatment response. PCa is generally slow-growing, the vast majority
requiring no therapeutic intervention at all whilst some of these cancers progress to fatal
disease. There is no genetic stratification for treatment unlike many other cancer types,
PCa is instead treated with a risk-adjusted patient specific method® that aims to improve

the control of the cancer whilst reducing risk of complications from treatment. Biopsies
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are commonly performed at diagnosis, but can miss the cancerous area of the prostate
and thus lead to a misdiagnosis of “no cancer”. There are limitations to biomarkers
capable of predicting positive subsequent biopsy results. There is an urgent clinical
need for biomarkers to determine which patients have PCa, which patients have disease

that will progress rapidly, and individualise treatment to optimise response.

1.2 Biomarkers

Biomarkers have become widely used in clinical and basic research. The National
Institute of Health defines biomarkers as “characteristics that are objectively measured
and evaluated as indicators of normal biological processes, pathogenic processes, or
pharmacological responses to therapeutic intervention™. Whilst the WHO (World
Health Organisation) have a much broader definition that also includes measurable
effects of exposure to chemicals or nutrients that allow for risk assessment®. Clinically
they are used for diagnosis (identification of disease), prognosis (predicting the likely
course/outcome of the disease), treatment response stratification and monitoring
treatment response in patients. Examples range from blood pressure to more complex

genetic screens of tissues, blood, urine and other samples”.

1.2.1 Biomarkers in Cancer

Within the field of cancer management, biomarkers are used for risk assessment,
diagnostics, prognostics, treatment stratification and monitoring the effects of
treatments. Tumour biomarkers are any measurable molecule that is either produced by
the tumour itself or through the host’s response to the tumour that indicates the presence
of cancerous processes. Tumour biomarkers can be proteins, glycoproteins, antigens,
hormones, receptors, metabolites, and genetic markers; including DNA and RNAs and
their epigenetic changes®.

Examples of biomarkers in risk assessment include hereditary germ line mutations that

increase a person’s risk of developing a certain type of cancer, for example, presence of
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germ line BRCAI or BRCA2 mutations increases the crude life time rate (number of
incidences within a population during a specific time period, not considering subgroups
within the population) risk of breast cancer in women from 12.5% to 65% and 45%,
respectively. Likewise in ovarian cancer, crude rate risk increases from 0.02% to 39%
and 11%, respectively’. BRCA mutation screens are offered to people with known
family history of these cancers and positive results can lead to optional preventive
measures (e.g. a mastectomy). Other risk assessment biomarkers include p53 but it’s
mutant occurrence in such a range of cancers (50% of all cancers) makes it unusable for
screening and diagnosis purposes. As, it could be detected but you would not know
where the cancer was or if both alleles were mutated. Also, p53 mutation levels differ
between cancer types also, for example, only 3-20% of PCas have a p53 mutation
detected at diagnosis®.

An example of a biomarker in use in cancer diagnostics is prostate specific antigen
(PSA). Serum PSA is currently the first test for PCa diagnosis in the clinic, as elevated
levels can suggest the presence of malignancy. PSA, however, does not have great
specificity as discussed later: Section 1.4.1

Tissue inhibitors of metalloproteinase (7/MPs) are examples of prognostic biomarkers
in cancer. TIMPs are glycoproteins able to promote proliferation and block apoptosis by
inhibiting matrix metalloproteinases (MMPs). Increased levels of TIMPs have been
shown to correlate with poorer survival in many cancers including multiple myeloma,
melanoma, breast, lung, colorectal, gastric and head & neck cancers’.

Examples of biomarkers in treatment stratification include Human Epidermal Growth
Factor Receptor 2 (HER?2) and Estrogen Receptor a (ERa) in breast cancer. HER2 and
ERo receptors may be over-expressed in the breast cancer cells and a simple molecular
test (Immunohistochemistry (IHC)) can determine this. This allows treatments to be
applied to target the expression profiles of different biomarkers. Herceptin is a drug that

specifically targets HER2, whereas Tamoxifen is an FRa antagonist.
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A biomarker for treatment stratification does not necessarily have to be the drug target.
The monoclonal antibody therapies Cetuximab and Panitumumab, which target EGFR
in colorectal cancers, can only be administered to a cohort of patients who have wild-
type KRAS. KRAS is a signal mediator (extracellular ligand binding and intracellular
transduction) between EGFR and the nucleus'’. KRAS mutants provide a resistance to
these monoclonal antibody therapies. KRAS mutations can also occur in response to
these treatments and has been shown to be (non-invasively) detectable as early as 10
months prior to radiographic detection of disease progression, allowing administration
of MEK inhibitors to delay or reverse the resistance''.

For treatment resistance monitoring in lung cancer patients, a second £GFR mutation,
Thr790Met, which can be acquired as a result of treatment or can be pre-existing,
provides resistance to EGFR tyrosine kinase inhibitors and has been associated with a
shorter progression-free survival. Therefore could be used to eliminate people out of the

EGEFR tyrosine kinase inhibitor treatment cohort'’.

1.2.2 Problems with the use of current and new biomarkers in clinical

diagnostics

There is a striking discrepancy between the efforts made to discover cancer biomarkers
and the number of biomarkers that actually make it into clinical practice®. Major
investments have been made to identify and validate novel cancer biomarkers. Using
the search terms novel biomarker cancer and new biomarker cancer, a literature search
yields 5,358 hits in 2016 alone. Over the past 5 years (2012-2016), 29,775 papers were
published using the same search criteria.

However, very few major diagnostic biomarkers have been put into clinical use in the
last 25 years'?. Clinical programs have promised to revolutionize the diagnosis of
cancer and the management of its patients. Considerable improvements to how tumours

are characterized at a molecular level have shifted treatments towards the use of
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targeted therapies'>. New PCa tests that have been developed recently include
OncotypeDx'* (section 1.6.3.1), Decipher'> (section 1.6.4.1) and Prolaris'® (section
1.6.3.2). However, there is a gap in the number of patients having these tests in clinic to
help determine which therapies are suitable for them, and the number of patients that
could benefit from these tests. In 2014, the NHS provided 39,298 molecular diagnostic
tests for lung, colorectal and melanoma patients in England. Yet the demand was
59,294, leaving 15,929 patients without testing. If this demand was met, it is estimated
that 3,552 patients would have been eligible for targeted therapies'’.

Effective cancer biomarkers need to produce a reliable, reproducible clinically useful
assay that is cost effective®. The process between biomarker identification to a clinical
assay used in practice is lengthy, expensive and convoluted; many researchers working
on identifying biomarkers are unaware of clinical practice®. Even if a useful tumour
biomarker is discovered in the lab there still must be commercialisation incentives in
place to develop the assays. Before widespread clinical use the biomarker must be
tested in many large datasets and trials carried out by pharmaceutical companies in
partnership with academics and also optimised to increase predictive power. Therefore,
it can be complicated to determine at which point patenting for the biomarker should be
awarded. Regulatory authorities also play a crucial role in validation and quantification

of biomarker assays to justify the test to health care providers'’.
1.2.3 Biomarkers pave the way for stratified treatment of cancers

The current goal of biomarker research is personalized medicine. It aims to provide
targeted therapy for individual patients, given their specific clinical, genetic and
environmental state. Cancer treatment success is often limited by the heterogeneity
among patients; giving patients with genetically different cancers the same treatments
can often lead to failure of response with toxic side effects'®.

Stratified medicine is considered the first step towards personalized medicine. It works

by grouping patients via tumour mutations for targeted therapy, using omics
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technologies. It has shown good results within breast cancer patients', amongst other
cancers. Breast cancer patients are often stratified between HER2+ and HER2-, ER+
and ER-, PR+ and PR- and triple-negative groups. HER2+ and ER+ breast cancers can
receive Herceptin and Tamoxifen, respectively: Biological therapies, which are targeted
towards those specific receptors.

There is a subset of breast cancers known as triple negative breast cancer (TNBC),
where the cancerous cells are HER2-, ER- and progesterone receptor negative (PR-).
These cancers have proven to be difficult to treat in the past especially when in their
late stages, but promising results have been seen using targeted treatments such as
EGFR inhibitors and VEGF inhibitors that have been previously used for other cancers
of different tissues?**!%,

In order for stratified medicine to be effective, biomarker assays that can be routinely
applied are needed to accurately stratify patients into treatment cohorts. These assays

need to be easily performed with minimal risk to the patient and include immediate or

rapid return of the results to ensure early initiation of treatment®.

1.3 Biomarkers in Prostate Cancer

1.3.1 Prostate Cancer

PCa is the second most common male cancer worldwide** and the most commonly
diagnosed cancer in the UK®. In 2010 it accounted for 25% of all cancers diagnosed in
men, with 40,975 cases. In 2012 an estimated 307,000 men died from PCa worldwide**
whilst in the UK 10,721 males died of PCa in 2010; PCa is the second most common
cause of cancer death in males. Detected incidence increased by 22% in the last decade
and is the fifth fastest increasing cancer in males. Mortality rate, however, has fallen by
11% over the same period; 81.4% of PCa patients survived for five or more years in

the UK during 2005 — 2009. Both, the increased incidence rate and the decreased
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mortality rate are associated with the use of the PSA test (section 1.4.1). Changes to
classification of PCa deaths and improvements in treatment are also likely to have
affected mortality rates. 90% of PCas are acinar adenocarcinomas that originate in the
gland cells of the prostate?”. In approximately 75-85% of PCas?, the cancer originates in
the peripheral zone rather than the transitional zone (Figure 0.1). The other 10% of
PCas fall into different types: signet ring carcinoma, ductal adenocarcinoma,
transitional cell (urothelial cancer), squamous cell cancer, carcinoid of the prostate,

small cell cancer and sarcoma/sarcomatoid cancer’®. These will not be considered in the

rest of this thesis.

Central zone

Figure 0.1 The different zones of the Prostate. 75-85% PCas originate in the peripheral zone,
whereas, ~25% originate in the transitional zone. Adapted from Akin O., et al 20062

13.2 Factors influencing PCa risk of incidence and progression

There are many factors influencing PCa risk including age, race and family history. PCa
is primarily found in older men and risk of developing PCa increases with age. Between

2009 and 2011 36% of UK diagnosed cases of PCa were in men aged above 75, whilst
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only 1% were in those younger than 50%. Men aged over 70 also had a statistically
significant association with higher clinical stage and Gleason score”.

African Americans have a 60% higher risk of developing PCa and mortality is
approximately double that of white Americans®', and a more aggressive form of the
disease can be seen in African Americans®*. In comparison, native Asian men show a
much lower frequency of developing PCa; African American men show a 60-fold
higher risk than those in Shanghai, China®', although the incidence in Asian populations
is increasing®®. This extraordinary variation of occurrence across the world is boiled
down to genetic and environmental factors, which is thought to largely include a
Western diet. American-Japanese men have higher incidence rates of PCa than their
counterparts in Japan, and this is independent of if they migrated early or late in life,
suggesting that life style can accelerate progression of PCa®'. Asian-American cohorts
still hold a lower rate of incidence than white American men’*.

Evidence of familial risk of PCa has been seen from epidemiological studies, which
suggest a two- to three-fold risk increase when there has been a first degree relative
diagnosed. Familial clustering patterns have been seen in segregation studies that show
high penetrance genetic mutations (including those at the putative susceptibility loci)*'.
PCa aggregates with other familial cancer types (like breast and ovarian). The genes
that infer increased susceptibility to these cancers have also shown to increase
susceptibility to PCa, e.g. BRCAI, BRCA2, CHEK?2 and BRIPI'. Leongamornlert et al.,
discovered frequent germline mutations in DNA repair genes that were associated with
familial PCa as well as a more aggressive phenotype; the cancers were more likely to
have nodule involvement, metastasis and be stage 4'.

Genome wide association studies (GWAS) identified 76 susceptibility loci associated
with PCa risk largely within the European population®>. These occur commonly but
with low penetrance and act multiplicatively to substantially increase risk. GWAS are
where genetic variants across whole genomes of different individuals are examined to

identify if any variants are associated with specific traits. Investigation of >10 million
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SNPs in a more diverse ancestry population (European, African, Japanese and Latino)
in ~43,000 PCa cases and ~43,000 controls revealed 23 novel susceptibility loci®.
Combining these 23 novel variants with already known variants, we can now explain
33% of the familial risk of PCa in populations of European ancestry. The per allele
effects of the 23 variants ranged from 1.06-1.14 and were consistent with log-additive
effects of the 23 variants, 15 were exclusive to the European ancestry population, 7
were multi-ethnic, 17 were associated with earlier onset (<55 years compared to >55

years) and 1 was associated with disease severity”’.

1.3.3 Current clinical practice for the diagnosis of PCa

The current clinical process uses a risk-adjusted patient specific method® that aims to
improve control of the cancer whilst reducing risk of complications from treatment. The
initial step is for a PSA blood test (section 1.4.1.2) to be performed at a GP after a
patient has shown symptoms or has other factors increasing their risk such as family
history and/or ethnicity. A PSA test is an antibody-based test that measures the
concentration of the prostate specific antigen (PSA) in the peripheral blood. A digital
rectal examination (DRE) is then performed by a clinician, during which they feel the
prostate for any abnormalities. DRE tests have about a 59% overall accuracy’?. PSA
testing is a better predictor of PCa than DRE. In a multicentre trial (r = 6) with a total
of 6,630 men, 1,167 underwent TRUS biopsies due to PSA>4ng/ml or suspicious DRE
result. PSA detected 82% of tumours, whilst DRE only detected 55%, PSA was
significantly superior at detecting PCa (p =0.001, PPV for PSA: 32% and PPV for
DRE: 21%)*®. However, a DRE is useful because it can often detect cancers missed by
the other tests; especially those with normal PSA levels*’. It can also be used to
investigate other abnormal prostatic conditions such as BPH.

If the PSA test (section 1.4.1.2) result is above normal but below 100ng/ml, then a
transrectal ultrasound-guided (TRUS) biopsy of the prostate is performed. Using an

ultrasound probe, sound waves are reflected off of tissues and organs providing a black
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and white image of the prostate. The probe and biopsy needle gain access to the prostate
via the rectum. At the histopathology department, the collected material is examined for
cancerous cells and given a Gleason score. In the case of a PSA of greater than
100ng/ml no TRUS is performed, an advanced diagnosis of metastasis is made usually
alongside an MRI and/or Bone scan.

The Gleason scoring system (Figure 0.2) is a histopathology score for staging PCa
based on how differentiated the cellular structure is in the prostate. This helps evaluate
the patient’s prognosis, the higher the score the worse the prognosis. It is obtained by
combining the scores of the two most common non-normal patterns of histopathology
found in the biopsy. The patterns are scored as such: Grade 1 and grade 2 patterns
means the tissue is mostly normal; glands are small, well formed and compactly packed,
grade 2 has more intracellular space between. Pattern of grade 3 shows recognisable
gland units and darker cells that have began to decrease in size and invade surrounding
tissue, the invasion is the most defining feature. Grade 3 is the most common identified,
followed by grade 4. A grade 4 pattern has few recognisable gland units with many
cells invading surrounding tissue, this can be achieved in many ways resulting in this
being the most difficult grade to identify. The fifth grade has no recognisable glands
with many cells within the surrounding tissue, there are sheets of cells that lack any
nuclear arrangement and a complete loss of gland architecture is observed. In common
practice no lower than a 343 is seen (giving an overall Gleason grade of 6) and this
offers a good prognosis. A Gleason score of 4+3 offers a worse prognosis than that of a

3+4%,
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PROSTATIC ADENOCARCINOMA
(Histologic Grades)

D.F.Gleason, M.D.

Figure 0.2 The Gleason grading standard drawing. Shows the histopathological pattern of prostate
cancers, starting at normal looking prostate cells with normal cellular architecture to fully
differentiated PCa cells with no formal cellular architecture. Adopted from Humphrey, P et al.,
200439.

Following a negative TRUS biopsy result, if the PSA maintains a high value, a template
biopsy can be performed. This differs from the TRUS biopsy as it uses a template or
grid over the perineum, which the biopsy needle is entered through to the prostate.
However, an ultrasound probe is still used to help guide the needle to the prostate tissue.
Generally, more cores are obtained during a template biopsy.

PSA testing lacks specificity and so many men undergo unnecessary TRUS biopsies.
TRUS biopsies have risks including serious infection, bleeding, urine retention as well

as extra medical costs*’. Therefore, it is important to identify molecular biomarkers for
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PCa detection that are specific and reliable from a non-invasive source such as blood or

urine (section 1.5).
134 Current process for the clinical treatment of PCa

There are many treatment regimes open to patients with PCa. However, there is a lack
of specific and accurate biomarker to stratify patients between the different treatments.
For many clinical pathways in PCa there is variability in how long the treatment lasts or
whether there is any response at all. For example, resistance to hormone therapies
(section 1.3.4.2.1) are inevitable but patients will remain responsive for different
lengths of time; from no initial response at all to anywhere between 6 months and 10
years. Another example is how long a patient will last on active surveillance (section 0)
before requiring treatment. No biomarkers currently exist that are able to detect which
patients will have long term response and which patients response will be short lived
and therefore, could benefit from receiving a different/ more aggressive treatment more
rapidly. This would offer each patient a more effective treatment first time around.

There are many factors taken into consideration when deciding which treatment is best
for a specific PCa patient including general health, age, Gleason score, TNM stage,
PSA and whether it is metastatic or not. However, there are not any molecular tests

currently available.

1.3.4.1 Localised Prostate Cancer

Localised PCa is stratified by their risk of metastasis using the NICE risk categories
(Table 0.1) which incorporates PSA level, Gleason score and clinical staging in order to
decide treatment style for each patient. Each level of risk is offered a different course of

therapy.
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Table 0.1: PCa risk stratification table. Proposed risk categorization from NICE

Guidelines 175*

‘ Level of Risk Gleason Score Clinical Stage
Low risk <10 ng/ml and <6 and  TI1-T2a
Intermediate 10-20 ng/ml  or 7 or T2b
risk
High Risk! >20ng/ml or 8-10 or >T2c
High-risk localised PCa is also included in the definition of locally advanced PCa.

1.34.1.1 Surgery as a treatment for PCa

Radical Prostatectomy (removal of the whole prostate gland) is a treatment considered
for men with T1 or T2 PCa (localised to the prostate gland without spread). Side effects
can include urinary incontinence, impotence and loss of fertility. Transurethral resection
of the prostate (TURP) is considered for men with benign prostate growth (BPH) and
for advanced cancer to alleviate symptoms; the inner area of the prostate (that

surrounding the urethra) is removed.

1.3.4.1.2 Radiotherapy

Radiation therapy is the provided course of treatment for low-grade, localised PCas
(with similar cure rates as those who receive radical prostatectomy). It can also be
provided alongside hormone therapy for cancers that have spread out of the gland to
nearby tissues, for recurring tumours (post-surgery), and also to advanced patients to
reduce tumour size (offering some relief from symptoms). Side effects can include

urinary incontinence, impotence cystitis and radiation proctitis.
1.3.4.1.3 Biochemical Recurrence

Men treated with either radiotherapy or radical prostatectomy (RP) can develop
biochemical recurrence (BCR), which is characterised by a state of elevating PSA level
post treatment and indicates growing tumour or metastases*’. Within 10 years, of those
patients treated with radiotherapy ~30-50% and ~20-40% of patients post RP will

develop BCR™. Increase in PSA does not necessarily mean imminent death or threat
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and can often be treated with hormone therapy. There has been much research in
treatment options for these patients, which includes when to administer hormone
treatment as well as non-hormonal alternatives including targeted agents and
immunotherapies* due to the morbidities associated with hormone treatment.

UHRF1 expression in tissue samples has been identified as a potential biomarker for
predicting BCR post RP. UHRF1 expression negatively correlates with mean months of
BCR-free survival (p < 0.001). However, UHRF1 expression was less significant than
pre-operation PSA levels and Gleason score™. Other studies have identified biomarkers
that are linked to BCR; Prx6 (an oxidative stress marker) expression is associated with
shortened biochemical recurrence free survival and overall survival in 240 post RP
patients (p = 0.02 and p = 0.033, respectively)*’. PTEN deletion has been associated
with an increased risk of BCR (p < 0.01, HR: 3.58)*. Metallotheionein-2A (MT-2A),
E-cadherin, and cyclin-E were investigated for BCR association by microarray
immunostaining. Positive MT-2A and cyclin E expression along with negative E-
cadherin expression showed a decrease in biochemical recurrence-free survival (p =
0.009 (HR =2.15, 95% CI=1.14 - 3.08), p = 0.037 (HR = 1.45, 95% CI = 1.02 — 1.92),
and p = 0.047 (HR = 1.31, 95% CI = 1.03 — 2.21), respectively)*’. In a multivariate
analysis all three were deemed to independently predict BCRY. Still, the promise of
these biomarkers have not been translated into use in the clinic.

Other clinical features such as tumour volume and percentage tumour volume have also
been reported to predict BCR post RP in a meta-analysis of multicentre data (p = 0.03,
HR: 1.04 and p = 0.02, HR: 1.01, respectively)*®.

Active Surveillance, Watchful Waiting and PSA monitoring

To attempt to reduce the number of over-treated patients, programs like active
surveillance, watchful waiting and PSA monitoring have been implemented.

A high proportion of PCa are localised and non-aggressive and are unlikely to cause
any problems in the patient at all, whereas others progress into more problematic

cancers that require more aggressive treatments. Active surveillance is offered to

38



CHAPTER 1: INTRODUCTION

patients with low-risk localised PCa whom are suitable for radical prostatectomy or

radiotherapy as treatment*

. They monitor the patients looking for indications that their
less aggressive cancers are becoming more aggressive problematic cancers. Active
surveillance is a close monitoring of the patients and usually involves frequent tests,
such as PSA blood tests, DREs, ultrasounds and biopsies.

Watchful waiting is offered to asymptomatic PCa patients for whom there is no curative
treatment options or intent. Watchful waiting however is implemented with more
aggressive cancers, where treatment would cause problems due to the patients’ age or
general health. These patients are monitored for disease progression (a rapidly rising
PSA or bone pain). Compared to active surveillance, less frequent tests and more
reliance on patient symptoms for indication of change are implemented in watchful
waiting.

PSA monitoring exists to identify patients who have continual raised PSA in the “grey
zone” (PSA between 4 and 10ng/ml) rather than just an intermittently raised PSA on
one test. Patients can receive multiple PSA tests to monitor them prior to biopsy. This
can help to eliminate the number of unnecessary biopsies if there is a continual

PSA>4ng/ml then it is more likely to be due to PCa and thus these patients require

biopsies.

1.34.2 Metastatic Prostate Cancer
Metastatic PCa is detected in 21% of men at their time of diagnosis®. It is usually
identified by a PSA>100ng/m1* and/or a positive bone scan. Those with metastasis are

primarily prescribed hormone therapy agents that block androgen signaling™.
1.3.4.2.1 Hormone Therapy

Androgens are male hormones, which include testosterone and dihydrotestosterone
(DHT), and aid in the signalling for prostate cell growth. Androgen deprivation therapy

(ADT) lowers levels of these androgens and/or prevents them from reaching the
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prostate cells, resulting in shrinking and slower growth of the cancer. ADT is not a cure
but can prolong life.

Luteinizing hormone-releasing hormone (LHRH) analogs and antagonists reduce levels
of testosterone released from the testicles by blocking the feedback loop to the
hypothalamus. Anti-androgens bind androgen receptors, preventing cell growth
signalling, though these are usually added to LHRH treatments when patients begin to
become resistant. However, it is a controversial question of when anti-androgens should
be added to LHRH treatment to gain full androgen blockage, it is thought in some cases
initial hormone therapy should include both LHRH treatments and anti-androgens’".
Patients receiving ADT develop resistance leading to castration resistant PCa (CRPC),
with a median survival of 1-2 years®®. It is likely that the high level of heterogeneity
within the prostate tumour contributes to this resistance’>. CRPC develops when cells
become hypersensitive to the residual levels of testosterone that are left during chemical
castration. Castration does not remove all testosterone; the maintenance of intratumoral
androgens is due (at least partly) to the intratumoral or intracrine biosynthesis of steroid
hormones (adrenal androgens) or potentially de novo steroidogenesis, from cholesterol
or progesterone precursors within the tumour™. Hypersensitivity to these residual levels
of testosterone are believed to be due to androgen receptor (AR)- mutations that alter
ligand binding, alterations in AR co-regulators or AR over-expression (considered to be
the main driver of CRPC progression)**. AR over-expression has also shown to convert
anti-androgen treatments (like bicalutamide, flutamide and enzalutamide) from AR
antagonists to AR agonists>>~°.

Abiraterone was the first drug in clinical practice to target the production of androgens
by the tumour. It irreversibly and selectively inhibits CYP17A activity. CYP17A is a
critical enzyme; it facilitates the hydroxylase and lyase activity required in the
production of adrenal androgens, DHEA and androstenedione (AED), from
cholesterol®. Although, abiraterone has had impressive responses in clinical trials, not

all men respond and resistance occurs (seen by a rising PSA), the mechanisms for
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which are currently unknown. Abiraterones place in the treatment of PCa is so far

undetermined and many clinical trials are in place to investigate this.
1.3.4.2.2 Castrate Resistant Prostate Cancer (CRPC)

Once PCa becomes castrate resistant, there are other treatment options available such
chemotherapy and vaccine therapy.

Chemotherapies are usually given to PCa patients who have metastasis but are not, or
no longer responding to hormone therapies. It is generally not given to patients with
early PCa, although studies are currently investigating its use following surgery. The
first chemotherapy agent of choice for PCa is Docetaxel (administered alongside the
steroid prednisone) and if this doesn’t work or stops working, Cabazitaxel is often a
second drug choice®’. Chemotherapy is used again with the focus on increasing life
expectancy and/or quality of life for PCa patients (by slowing the growth of the cancer)

but is considered unlikely to result in a cure to the disease.

1.4 Known PCa Biomarkers

Biomarkers in PCa fall into different categories: Biomarkers to predict the presence of
PCa (screening and diagnosis), biomarkers to stratify patients (into those requiring
active surveillance and those requiring more radical treatments), biomarkers for
identifying those whom can be treated with biological targeted therapies and
predisposition biomarkers for those who are more likely to develop PCa in their

lifetime.
14.1 Prostate Specific Antigen (PSA)

PSA, a kallikrein like serine protease (coded for by the gene KLK3), is a molecular
biomarker currently and routinely used for the diagnosis of PCa, as well as roles in
prognosis and treatment response. In normal prostate glands, PSA is highly
compartmentalized and found at levels 1 million times fold higher within the prostate

compared to that in blood serum. However, in prostatic disease it is thought that this
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compartmentalization is disrupted resulting in increased levels of escaped circulating
PSA™.

PSA is prostate specific but not cancer specific; elevated serum PSA can be the result of
benign prostatic hyperplasia (BPH), chronic inflammation, and infection. Normal and
diseased prostatic epithelial cells produce PSA, therefore, weakening its specificity as a
cancer biomarker.

Research into men with a PSA less than 4ng/ml has shown that there are many men
with low PSA (0.6-1ng.ml) that have PCa (10.1%) and even high-grade (Gleason 7+)
PCa (10%)*. Evidence suggested there was no PSA threshold for which a man can be
assured he has no risk of PCa, but men with <0.5ng/ml PSA do have a decreased risk of
developing PCa. Risk of PCa in men with PSA <0.5ng/ml was 6.6%, this increased to
26.9% in men with PSA 3.1-4ng/ml*’. PSA level effect on the risk of PCa was
significant, p<0.001 (odds ratio 1.66 per unit increase in PSA, 95% CI 1.50 — 1.85).
PSA levels are affected by both age and race; when deciding on a reference range for
diagnosis and deciding which men will undergo TRUS biopsies, it is important to
consider these factors. A study on 77,700 men showed that not only does the PSA level
rise but also that the range increases with increased age (ages 40-49; mean PSA: 0.83,
SD: 0.79, ages 50-59; mean PSA: 1.23, SD: 1.33, ages 60-69; mean PSA: 1.83, SD:
1.94, and ages 70-79; mean PSA: 2.31, SD: 2.35). The differences between the age
groups and their variances were significant, p < 0.0001 and p = 0.0001, respectively®’.
Significant differences in PSA levels were observed between different races also;
pairwise differences were seen between white and black people, white and Latino
people, black and Asian people, and Asian and Latino people (p <0.0001). Black people

have the highest mean PSA values in each age cohort®.

14.1.1 PSA - Screening
Due to the lack of specificity that PSA holds, using it for screening purposes has led to

over diagnosis and over-treatment as well as downgrading and down staging at
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diagnosis and fewer PCa related deaths®'. A cohort of men diagnosed with PCa, have a
form of the cancer that grows so slowly that it is unlikely to pose a threat to the patient.
Treating of these cancers is known as over-treatment. PSA’s lack of specificity for PCa
means it is not recommended for a screening biomarker due to the over-detection and
overtreatment costs it would lead to®'.

The National Cancer Institute estimate that screening 1,000 men between 55 and 69
every 1-4 years would result in 100-120 men getting a false positive diagnosis (Figure
0.3). False positive diagnoses lead to anxiety and stress for the patient and his family, as
well as extra medical costs in further diagnostic procedures. Procedures include TRUS
biopsies, which also add further risk to patients; serious infections are not uncommon.
Of the 1,000 men screened, and the 110 patients to receive a true positive result, it is
estimated that only 1 man would be saved due to screening, compared to the 4-5 men

that would die without screening®?.

14.1.2 PSA - Diagnosis

Similarly to its use in screening, PSA makes a weak diagnostic biomarker due to its
lack of specificity to cancer. However, it is the current first diagnostic test for PCa. The
sensitivity and predictive value of PSA as a biomarker for PCa decreases greatly for
patients in the “grey zone”. PSA levels in the approximate range 2-10ng/ml is known as
the “grey zone” as it is difficult to distinguish which elevations are due to cancer and
which are associated to other factors including age and BMI, or due to conditions such
as benign prostatic hyperplasia (BPH). Investigations into the PSA grey zone generally
use cutoffs between 2/4 to 10ng/ml to define it. For every 5 patients, whose PSA level
resides between 2.5-10ng/ml, 4 will have a negative biopsy result, and the predictive
value of PSA in the grey zone drops from >90% to <25%%.

As an individual variable, PSA is a much better PCa predictor than a digital rectal
examination (DRE) or transrectal ultrasound®', but its modest diagnostic accuracy has

led to other PSA forms being investigated.
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1.4.1.3 Free PSA and Pro-PSA

To improve abilities in distinguishing BPH from PCa in patients who fall in the “grey
zone”, investigations into the percent free PSA (or ratio of free to complex PSA) and its
most significant cut-off for biopsy, and different isoforms of pro-PSA were performed.
Antibodies were developed that could distinguish between and measure the amounts of
tPSA and fPSA, a higher ratio of fPSA:tPSA correlates with a lower risk of PCa. This
comparison allowed a small yet significant improvement in the ability of PSA to
distinguish PCa from BPH (and other benign diseases that raise PSA levels)*.

A study of 773 men with PSA levels between 4-10ng/ml with confirmed histological
diagnosis (379 with PCa and 394 with BPH) resulted with a suggested 25% free PSA
cut-off. The 25% free PSA cut-off was able to detect 95% of patients with PCa and was
also able to avoid 20% of unnecessary biopsies®.

PSA is secreted as the inactive enzyme pro-PSA, this can be cleaved at different
locations resulting in the mature/active form of PSA. Some remain uncleaved and pro-
PSA can have many isoforms. The [-2]proPSA consistently correlates with PCa®%; it is
observed in greater abundance if the prostate is neoplastic (25-95% of free PSA
compared to only 6-19% in men without PCa®).

Guazzoni et al., showed that the use of %[-2]pro-PSA alone was better at discriminating
between PCa and BPH (in patients with PSA ranges 2—10ng/ml) compared to that of
total PSA and percentage free PSA, with AUCs of 75.7%, 53%, and 58%,
respectively®’. Using an artificial neural network, Stephan et al., showed that the
combination of %[-2]proPSA, %free-PSA, total PSA and age (but not prostate volume)
offered highest accuracy (AUC 0.85). It was also shown that %[-2]proPSA was better at
discriminating between T2 and T3 tumours as well as Gleason <7 and Gleason >7

CaIlCCI'S68.
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BENEFITS AND HARMS OF PSA SCREENING FOR PROSTATE CANCER

1,000 men ages 55-69 screened every 1-4 years for 10 years with a PSA test

1,000 men screened.

Of these:
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Figure 0.3 The NCI website breaks down the results of PSA screening of 1,000 men between the ages
of 55-69. Taken from the National Cancer Institute 2015%.
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14.1.4 PSA — Treatment

PSA is commonly used within treatment plans available for PCa, it is a good indicator
of progression and drug resistance. PSA levels are routinely and frequently checked in
PCa patients; looking for progression in AS patients (section 0), resistance in HT
patients (section 1.3.4.2.1) and BCR in radiotherapy or post-radical prostatectomy
patients (section 1.3.4.1.3).

PSA is one of the key factors in determining treatment options for patients. A PSA
above 100 is indication of metastasis and so hormone therapy is usually provided. PSA
also is involved in determining treatment of lower grade localised PCa (Table 0.1).
Investigations into [-2]pro-PSA combined with percentage fPSA identified a correlation
for the need of more radical treatment rather than active surveillance’®. Also, other
proPSA isoforms ([-5] and [-7]pro-PSA) correlate with a need for more radical
treatments in active surveillance patients, when found in the tissue surrounding the

tumour in biopsies.

1.4.1.5 Concluding PSA

PSA is not a specific PCa biomarker, yet it is the first clinical diagnostic test given to
patients and is also a determining factor in treatment options and changes. PSA remains
a very useful biomarker in following patients with PCa to look for resistance to
treatment, further progression and recurrence. Though other biomarkers are unlikely to
replace PSA, they are required to improve the sensitivity and specificity of PSA as a

PCa biomarker.

142 PCA3

PCa gene 3 (PCA3) is a PCa specific long noncoding RNA (lincRNA), also known as
DD3 on chromosome 9q21-22 that is over-expressed in PCa tissue’'. PCA3 is not
expressed in normal prostate tissue and expression is seen at low rates for hyperplastic

prostate tissue, making it the most specific PCa biomarker identified so far. The non-
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coding PCA3 mRNA functions as a polyadenylated RNA transcript, which does not

result in a cytoplasmic protein®.

14.2.1 PCA3 - Diagnosis

PCA3 can be found in urine, but only at sufficient levels, after a DRE is perforrned72,
and that comparing the ratio of PCA3 mRNA quantities with KLK3 mRNA (which is
the transcript for PSA) quantities (very slightly over-expressed in prostate cells in urine)
gave high sensitivity and specificity rates, 67% and 83% respectively’””. The comparison
of PCA3 and KLK3 mRNA quantities found in prostate cells in urine is known as the
PCA3 score. An assay was generated to simultaneously detect PCA3 mRNA as well as
KLK3 mRNA in urine: the uPM3™ assay. The assay was tested on 158 patients with
elevated PSA and/or an abnormal DRE, whom provided a sample with a sufficient
amount of prostate cells in the urine. The assay identified PCa in 62 of the 158 patients
(39%), with sensitivity and specificity rates of 82% and 76%, respectively. The positive
and negative predictive values for the assay were 67% and 87%, respectively.
Comparably, PSA had sensitivity and specificity rates of 98% and 5%, with positive
and negative predictive values of 40% and 83%%.

The performance of the uPM3™ assay at different PSA levels (<4ng/ml, 4-10ng/ml and
>10ng/ml) was examined, with outcome sensitivity levels of 73%, 84% and 84%,
respectively, and specificity levels of 61%, 80, and 70%, respectively®. A more stable
re-designed assay was later designed and evaluated in a multicenter assessment: The
assay had between 94%-100% discriminatory rates in samples after a DRE with at least
3 strokes’. This test was then applied to 72 men with known biopsy outcomes, of
which 17 were positive for and 55 were negative for PCa, at two centers. Taking the
PCA3 score as a continuous variable, a ROC analysis was performed and both sites
were able to correctly classify 49/72 (68.1%) of patients, and the AUC were not

significantly different (p = 0.9289), this demonstrates significant accuracy between the
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sites (p = 0.0085)"%, highlighting the PCA3 assay as an accurate, reproducible test for
the diagnosis of PCa.

Another multicentre saw improvement of PCA3 on PSA in the “grey zone” (PSA 3-
15ng/ml); AUC increased from 0.57 to 0.66 and specificity increased from 47% to 66%
for PSA and PCA3, respectively’. A study looking at multi-gene expression profiling
of prostatectomy tissues yielded and AUC for PCA3 of 0.85 individually but increased

with the addition of EZH2, prostein and TRPMS to 0.90".

14.2.2 Repeat Biopsies

The PCA3 test is effective at identifying patients who were likely to have a positive
second biopsy result, after receiving a negative first. A multicentre clinical study of 466
men evaluated the clinical usefulness of the PCA3 assay for the prediction of repeat
biopsy outcome. The study resulted in a suggested PCA3 cutoff of 25, with patients
with a PCA3 score lower than 25 were 4.56 times as likely to have a second negative
result for their repeat biopsy’®. The PCA3 test is FDA approved but generally only used

in private healthcare in the UK.

1.4.2.3 PCA3 Conclusions

Although the PCA3 assay shows significant improvements in specificity and sensitivity
compared to PSA, it is significantly more expensive: A PCA3 test costs between
approximately £300 and £400, (whereas a PSA test costs approximately £7) and this
cost will increase with the use of gene panels. In comparison a TRUS biopsy costs
£312°°, as you can see the PCA3 test can be more expensive than just doing the repeat
biopsy. The literature and improved sensitivity show that the PCA3 test is clearly useful
but where it fits into PCa diagnostics is unclear at this time. The PCA3 test is currently

available privately but not on the public health care system/NHS in the UK.
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143 AMACR

Alpha-methylacyl-CoA racemase (AMACR) is used as an immunohistochemical
(section 1.6.7) diagnostic biomarker for PCa. Needle biopsy specimens are stained for
AMACR during diagnosis of PCa patients’’, as AMACR expression is increased in PCa
but may decrease with progression’®. AMACR expression alone was not informative for
the prediction of metastatic or lethal PCa; age, Gleason score and stage were also
indicative™ and out of 64 prostate adenocarcinomas no significant correlation was seen
between AMACR expression levels and histopathological grade”.

AMACR is an enzyme that regulates the metabolism of branched-chain lipids and drugs
and is often overexpressed in PCa tissues®®!. It is thought that the synthesis of fatty
acids and increased use of branched chain fatty acids plays a role in PCa progression. It
is essential for optimal growth of PCa cells in vitro and offers a potential treatment
target complementary to hormone therapy. AMACR is also frequently seen in tumours

of patients with hereditary links to PCa’.

144 AR

The Androgen receptor (4R) binds androgens leading to the development and survival
of prostate epithelial cells. In PCa it allows survival and growth of the tumour and is a
known contributor to its progression. Whilst PCas show great heterogeneity, it is
obvious that AR plays an important role in the survival of the bulk of prostate tumour
cells®,

Hormone therapies work by blocking androgen-AR signalling, inhibiting growth and
survival of the tumour. AR transcriptional reactivation/rearrangements are fundamental
to the inevitable resistance of PCa to hormone therapies and androgen-independent
activation of the AR pathway. One resistance mechanism is the production of AR
variants that lack the canonical ligand-binding domain®?, allowing the transcription of

AR target genes without the initiating signal of androgen binding. 17 of these AR
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variants have been identified, all containing a common core of the DNA binding
domain and then NH2 terminal domain and lacking the ligand-binding domain. There
are several mechanisms for the production of AR variants including: proteolytic
cleavage, genomic alterations, and altered exon splicing.

Levels of specific AR variants observed in clinical samples are highly variable and not
all variants are equivalent at predicting progression and resistance. As well, clinical
studies using AR variants are limited by the lack of clinically validated assays for the
detection of the individual variants. However, these limitations are currently being

addressed®?, suggesting potential clinical use of AR variants as biomarkers.
145 SPOP

SPOP, otherwise known as E3 ubiquitin ligase adaptor speckle-type poxvirus and zinc
finger (POZ) domain protein, interacts directly with and regulates SRC-3 (p160 steroid
receptor coactivator-3). The p160 SRCs play fundamental roles in the cell proliferations
and AR transcriptional activity as well as resistance to androgen deprivation therapy™.
SPOP binds wild-type AR leading to its degradation; this is promoted by anti-androgens
but antagonized by androgens. Whereas, SPOP mutants and AR alternative splicing
leads to AR stabilization suggesting a key role in acquiring ADT resistance®.

A new molecular subtype of PCa can be defined by mutations in SPOP; SPOP
mutations are found in PCas that lack ETS family rearrangements®**. SPOP missense
mutations within the substrate-binding cleft were identified in 13% PCas and were the
most common mutations in 111 prostate tumours that underwent exosome sequencing®’.
This substrate-binding cleft harbours many residues that can be mutated in PCas (Figure
0.4B). The cleft central F133 is the most common site of mutations (Figure 0.44).
Exome sequencing of 50 lethal heavily pre-treated CRPCs and 11 treatment naive high-
grade localized PCas’, showed that four CRPCs had SPOP oncogene mutations; 2 point
mutations, 1 frame-preserving indel and 1 copy-number call increase®. SPOP mutations

correlate with somatic deletions at chromosome 5q21 and 6q21. CHDI, FOXO3 and
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PRDM]I are found at these chromosomal regions and are also correlated with SPOP
mutated PCas®. As well as TMPRSS2:ERG fusions, SPOP does not appear to be

mutated in cancers with Tp53, PTEN and PIK3CA mutations®’.
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Figure 0.4: SPOP frequency of substitutions and substrate binding cleft¥’. A) the frequency of
substitutions in SPOP across four PCa cohorts from Weill Cornell Medical College (WCMCO),
University of Michigan (UM), Uropath and University of Washington (UW). B) the substrate-binding
cleft of SPOP with the positions of all eight residues that can be possibly mutated. Adopted from
Barbieri, C. E. et al. 2012%

SPOP associations with AR highlight the need for examining SPOP mutation
frequencies in men whom do not initially respond to, or very quickly acquire resistance
to PCa; SPOP mutation detection could potentially be used to stratify patients out of

hormone therapy as a treatment.

14,6 TMPRSS2:ERG

TMPRSS2:ERG is a fusion gene that is formed as a result of structural chromosomal
rearrangements. TMPRSS? is an androgen responsive, prostate specific gene and ERG is
a transcription factor oncogene belonging to the ET7S family, both located on
chromosome 21. ETS family genes are involved in proliferation, differentiation,
angiogenesis, inflammation and apoptosis. The fusion occurs via a translocation of
sequences that can involve deletion of the intervening sequences between TMPRSS2
and ERG”".

ERG has been identified in fusion genes in other cancers; leukaemia and Ewing’s
sarcoma. KRG knockdown inhibits cell growth and invasion and oppositely over-

expression leads to invasion and the induction of PCa like lesions on in vivo models.
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ERG has also been identified to work with mutated members of the PI3K pathways
leading to the progression of PCa in animal models.

TMPRSS2:ERG fusions are seen in ~50% of PCas’’. TMPRSS2 also fuses with other
members of the ETS family (ETVI, ETV4 and ETV5) in PCas but at much lower
frequency (Figure 0.5). Diversity is also observed in the splice variants of
TMPRSS2:ERG (Figure 0.5) not only between PCas but also within an individual PCa.
The most commonly identified TMPRSS2:ERG fusion is TMPRSS exon 1 fused with
ERG exon 4, this is described as T1/E4, the second most commonly found is T1/E5”.

It remains controversial for if TMPRSS2:ERG fusions are implicated in a poor clinical
outcome. A number of studies now suggest it is not the major factor of clinical
outcome, but that in a combination of copy number gain and other genetic aberrations
(like PTEN loss) it can offer prognostic information®. Yet many papers still suggest
that TMPRSS2:ERG fusions are implicated in mediating advanced PCas®. However, it

has also been shown that early cancers and HG-PIN can also harbour TMPRSS2:ERG

fusions.
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Figure 0.5 ETS family partners for TMPRSS?2 fusion and their splice variant diversity. Adopted from
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1.4.6.1 TMPRSS2:ERG as a Therapeutic Target

During the 1990’s, a leukaemia fusion, BCR-Abl (the Philadelphia chromosome)
emerged as a target of treatment (Imatinib) in Philadelphia chromosome positive (Ph+)
myeloid leukaemia’. TMPRSS2:ERG has a prevalence of approximately 50% and is
one of the commonest of all cancer fusion genes in solid tumours, making it a good
potential therapeutic target. However, studies have shown that TMPRRS2:ERG does not
increase cellular proliferation or anchorage-independent growth, but instead induces a
transcriptional program associated with invasion”. Knockdown of ERG transcriptional
programming in ETS-positive cancers lead to an inhibition of invasion in the VCaP cell
line. Direct over expression of ERG in both VCaP and benign prostate cells mediate
cellular invasion through engagement with plasminogen activation pathway
components, potentially showing a downstream target that could be used as a drug
target’®. TMPRSS2:ERG fusions have also been implicated in signalling pathways and
ion channel genes creating further opportunities for therapeutic targeting of these fusion
positive cancers’.

Shao et al., have shown that targeting the most common and clinically significant
alternatively spliced isoforms of the TMPRSS2:ERG fusion using siRNAs delivered by
liposomal nanovectors resulted in the inhibition of tumour growth in vivo’’. The mice
with orthotopic or subcutaneous xenograft tumours (with the target fusions) also
showed no sign of toxicity. Therefore, TMPRSS2:ERG targeting could be a potential

future therapy for PCa.
14.7 Biomarkers for pre-disposition to PCa

Family history has been significantly associated with a higher risk of PCa (p =0.01,
odds ratio, 1.39; 95 percent confidence interval, 1.07 to 1.79;) in a study of 2,950 men,
all with an initial PSA of less than 4ng/ml. Of the 2,950 men, 477 were family history
positive and 2,473 were family history negative. After a seven-year follow up, 449 men

were diagnosed with PCa; 94/477 (19.7%) that were family history positive and
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355/2,473 (14.4%) that were family history negative®®. Family history in a first-degree
relative (brother, father, or son) is said to double a man’s risk of developing PCa, with
increasing risk as the number of affected relatives rises”™.

BRCA2 mutations increase relative risk by 5-23 fold in men above 60 years of age,
however, the frequency of BRCA2 mutations is low and can only account for a small
number of PCa susceptibility cases’’. BRCA2 mutation carriers are in higher risk of
developing PCa than BRCAI mutation carriers and studies into BRCAI mutations
suggest they have limited contribution to PCa risk'®. Breast cancer linkage consortium
studies (BCLC) found that BRCA2 carriers risk was also based largely on age and the
mutation location'®’.

Genome-wide association studies (GWAS) have led to the identification of more than
46 single nucleotide polymorphisms that have low penetrance in PCa®. As discussed by
Goh et al., these include SNPs at loci or close to loci known to be involved in PCa such
as KLK3, AR, and AR transporter genes”. Low penetrance genes were investigated
because evidence has suggested that the risk of developing PCa is likely related to a
combination of loci conferring low to moderate risk of the disease and, not so
commonly, alleles with higher risk such as BRCA2%.

As targeted therapies and screening for PCa becomes more widely used, the use for pre-

disposition biomarkers will become increasingly important'.
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1.5 Urine and Exosomes

The PCA3 test (section 1.4.2), as previously discussed, proves that urine contains PCa
specific biomarkers. The anatomy and location of the prostate make urine a viable
source of prostate biomarkers; urine from the bladder passes through the middle of the
prostate, where secretions from the prostate glands can enter the urine (Figure 0.6).
DRE manipulates a more abundant release from these glands allowing prostate and PCa

specific markers to be detectable in urine (such as PCA3, KLK3 and TMPRSS2:ERG)".
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Figure 0.6 Anatomy of the prostate. Adapted from Drake et al., 2015'°!,

Urine holds an advantage over tissue biopsies in that it potentially allows an overview
of all foci of cancer in one go. More than ~80% of cancerous prostates have more than
one tumour focus'®, and each cancer focus will have a number of variant tumour clones
with divergent genetic and epigenetic changes. Biopsy sampling is incapable of

capturing the diversity of cancer within a prostate.
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Figure 0.7 Tumour cells send signals to distant cells through exosomes. A) Production of exosomes
and how they can be sent to recipient cells. B) The different materials that can be found inside
exosomes. Adopted from Batiz, L.F., 2016!%,

Exosomes are endocytic membrane derived microvesicles 30-120nm in size. They can
be found in many biological fluids including those that are easily attainable like blood
and urine, which also see elevated exosome secretions during malignancy'®. Exosomes
are a key component of biological trafficking across membranes and play a key role in
cell homeostasis. In cancers, aberrant exportation of proteins and RNAs via exosomes
can lead to miss-expression in cells that take up the exosome. Exosomes contain
proteins, lipids and nucleic acids that can be involved in cell-to-cell communication
(Figure 0.7), through their release into surrounding cells. Exosomes derived from
tumour cells have roles involved in tumourigenesis, metastasis, and response to therapy
by transferring mRNA, miRNA and proteins between cancer cells and the tumour
microenvironment'®. Also ligand binding can trigger a signalling cascade in the target
cell. Exosomes have the ability to cross talk/influence key tumour-related pathways
(such as those involved in the hallmarks of cancer'*®) including hypoxia driven EMT,
evading immune responses, angiogenesis and metastasis'”’. The content of exosomes
(miRNA, proteins and mRNA) have been shown to cause changes in a) neighbouring
cells, b) the tumour microenvironment and c) in distant cells. “Exosomal shuttle RNA”
can be transferred via exosomes from the cell of origin to a recipient cell where it can
be translated'®’. Exosomes originating from tumours have been shown to educate non-

transformed cells in host tissues to create a pro-metastatic phenotype pre-metastasis.
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Hoshino et al., showed that treatment of organ-specific cells with lung-tropic model

derived exosomes can redirect metastasis of bone-tropic tumour cells'®

. Specific
exosomal integrins are associated with organ-specific metastasis and so could be useful
in predicting which organs metastasis will occur in. Costa-Silva ef al., showed that
exosomes derived from pancreatic ductal adenocarcinomas was able to create a pre-
metastatic niche in livers of naive mice and also increased the metastatic burden within
the liver'®.

Thus, it could be said that looking for biomarkers in exosomes is like raiding cancers’
letterbox. The molecular composition of exosomes vary with cell and tissue of origin'®’
and can also be altered by pathophysiological changes in the cell of origin, meaning
exosomes have great potential for cancer biomarkers.

Some RNAs are enriched within the exosomes at several 100-fold compared to cells,
and transcripts that may have very low copy numbers in tumour cells could be detected
at much higher relative levels within exosomes''’. Nilsson et al., were able to show that
exosomes in urine contained genetic information that is directly from PCa cells''". Both
PCA3 and TMPRSS2:ERG transcripts were detected in the exosomes. Dijkstra et al.,
showed that the genetic content of exosomes differs from that of the cell sediment''2,
Exosome membranes can resist ribonuclease and DNase digestion of their contents
allowing a better-protected RNA inside in comparison to cell RNA. Exosomal RNA
will be similar on harvest as when it left the cell, in contrast to cellular RNA which will
be altered on loss of cell:cell contact and entry into the non-life sustaining environment

of urine. These points make exosomes a stable, viable, and more promising source of

PCa biomarkers than cells harvested from urine.

1.6 Methods in Biomarker Discovery

Over the past two decades extensive investigations have proven that cancer is a

heterogeneous disease with diverse genomic aberrations''®. These genomic aberrations
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consist of gains, losses and rearrangements of chromosomal fragments, specific gene
mutations and epigenetic alterations including methylation. These can lead to aberrant
transcript expression and incorrect protein production at differing levels between
disease and benign states.

Many cytogenetic and molecular tests have been developed to detect such aberrations.
As technologies advance, more effective, less time consuming and cheaper methods are

available for biomarker discovery and their validation (Table 0.2).

Table 0.2: Cost of different technologies available for biomarker discovery.

Technique Number of Batches  Amplification RNA ~Cost/Sample

example transcripts  of Required usage
Samples

NanoString <800 12 Y 20ng £50/sample
Microarray 30,000 1 Y 20ng £400/sample
Sequencing  All 1 N 100ng*  £1,000/sample
gRTPCR 1+ 1 Y 20ng $35/sample
Targeted 250 1 N Ing* $50/sample
Sequencing

*RNA not amplified and used directly in technology.
1.6.1 Nanostring

The Nanostring nCounter gene expression system was made available in 2008 and is
capable of capturing and counting individual mRNA transcripts. It provides direct count
data for each of the target genes via a two-probe system: A capture probe and a reporter
probe. Both probes are hybridised to the mRNA, the reporter probe hybridising to
sequence adjacent to the capture probe (Figure 0.84). The reporter probes are
specifically labelled with a series of fluorescent ‘beads’ that are unique for each gene.
The capture probe is biotinylated and the mRNA/probe combination is captured by
binding to a streptavidin coated slide. The DNA on the slide is then subjected to a
voltage which stretches out the molecules on the slide (Figure 0.8B). The slide is then
washed to remove excess probes, and the slide is photographed. The bead codes are

114

counted to give the frequency of each mRNA in the sample (Figure 0.8C) .
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In comparison to microarrays (section 1.6.4), NanoString technologies allow
quantification of small amounts of starting materials (100ng), and mRNA levels can be
measured without the need for amplification. By allowing the customer to choose
specific targets, use of NanoString over array can work out cheaper per sample.
Microarrays will provide >34,000 targets and cost ~£400-500, however, if you want a
select cohort of genes (maximum 800 per analysis), NanoString can allow a cheaper
overall experiment. NanoString is also more specific and has a better dynamic range
than microarrays. The reaction is performed in solution and not fixed to a solid surface
allowing the reaction to be driven to completion and so boasts higher sensitivity. The
Nanostring nCounter system also allows a pure digital readout of transcript counts that
claim to have less background noise, and be less ambiguous in downstream analyses
than those that use analog signals, like microarrays''.

A disadvantage is that due to the barcode system it utilises, there is a limited number

of probes (capped at 800 for a custom codeset)''®

. Again, like microarrays unknown
mutations are not identified via Nanostring, and so for the identification of these,

sequencing is still preferred and similarly to microarrays and PCR, the quality of the

data is dependent on the quality of the probe.
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Figure 0.8 NanoString Ncounter system. A) The set up of the two probes (capture and reporter), one
target system. B) The elongation and fixing of probes using a current for imaging. C) Imaging of the
uniquely labelled reporter probes. Adapted from Geiss, G et al., 2008!"5,
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1.6.2 Sequencing

In 1977 Frederick Sanger published Sanger sequencing, a method using the
incorporation of chain-terminating dideoxynucleotides by DNA polymerase, which
cause base-specific termination during DNA synthesis''’. This was a fundamental
breakthrough for science and allowed a monumental accomplishment: the finished
grade human genome sequence in 2001. Since then, sequencing technologies have
advanced and become considerably cheaper: In 2001 it cost $100 million to sequence a
genome and since late 2014 it is ~$1,000. The biggest price drop occurred in 2008
(Figure 0.9) and was a consequence of the introduction of commercialised next-
generation sequencing (NGS) technologies. In 2015 the production of [llumina’s HiSeq

X Ten allowed the first $1,000 sequenced genome''®,

Cost per Genome
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Figure 0.9 Sequencing cost per genome from 2001 to 2015. Sudden drops seen in ~2008 and again in
2015. Adapted from National Human Genome Research Institute (NHI) 2016'"°.

1.6.2.1 Next Generation Sequencing (NGS)
Next generation sequencing began with the discovery of the pyrosequencing method

using luminescent for measuring pyrophosphate synthesis. This was a two-enzyme
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process whereby ATP sulfurylase converts pyrophosphate into ATP. ATP is the
substrate for luciferase, which produces a proportional amount of light to the amount of
pyrophosphate produced as each nucleotide is washed over template DNA that is fixed
to a solid phase. This method is still, similarly to Sanger sequencing, a sequence by
synthesis method. Benefits included using natural dNTPs, and being observed in real
time without the need for electrophoreses. A disadvantage of this was that identification
of more than 4-5 identical nucleotides proved to be difficult. Further improvements in
methodology including using beads for DNA attachment and enzymes for degraded
unused dNTPs (removing the lengthy wash step), led to the first commercial NGS
technology by 454 Life Sciences. This allowed massive parallelisation of sequencing
reactions, meaning the amount of DNA sequenced in one run was significantly
increased'%.

Following the success of 454’s high throughput sequencing machines, a number of new
techniques were developed, including the Solexa method of sequencing, which was
later acquired by Illumina. The Solexa method used bridge amplification, where DNA
molecules were run across complementary oligonucleotides bound to a flowcell. Here,
the original flow-cell binding DNA strands arch over to prime the next round of
polymerisation for neighbouring oligonucleotides to create clusters of clonal
populations by solid phase PCR. This is another example of sequence by synthesis,
although here modified dNTPs with a fluorescent ‘reversible-terminator’ occupies the 3’
hydroxyl position. These fluorophores needs to be cleaved prior to the next

polymerisation step, allowing sequencing in a synchronous manner (
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Figure 1.10).
[llumina created the first Paired end sequencing, improving efficiency and accuracy

121122 509

when aligning to a reference genome by providing positional information
decreased sequencing costs per template'”. Paired-end sequencing enables improved
biological applications, allowing genome-wide identification of gene fusions, insertions,
deletions and translocations and spliced exons because it retains information on the
distance and relationship between two ends of DNA fragments'?"'%,

[llumina’s HiSeq series then used a further improved method to allow longer read
length and depths. Disadvantages include substitution errors (commonly after “G”
incorporation), under-representation of AT-rich and GC-rich regions (due to
amplification bias) and a 2.5% false positive rate for novel single nucleotide variants
(SNVs)'*, Tllumina is the most commonly used sequencing platform: The HiSeq series
is still used commonly for genome sequencing, whilst [llumina’s other machines are
used for other applications. MiSeq is used for experiments that require lower-
throughput and longer read lengths with a faster turn around'?'. NextSeq machines are
desktop sequencing tools with fast turn around time used for transcriptome and targeted
re-sequencing and thus is commonly used for clinical settings.

Although there are many NGS platforms (Roche/454, Illumina, and Pacific Biosciences,
etc.), all use spatially separated, amplified or single DNA molecules, in a flow cell that
are massively parallel sequenced'?’. NGS technologies have provided us with an ability
to produce enormous amounts of data at a relatively cheap cost. The ever-increasing

amounts of DNA sequenced, longer reads and faster turn around times are constantly

improving the sequencing technologies.

62



CHAPTER 1: INTRODUCTION

MY

Adaptor modified DNA strand hybridized to
oligonucleotide anchor

'y
g
g

8
8
8 g £
: § ]
Denature, : }
cleave § §
—p g i
8 8
Cluster generated by Sequencing of forward
bridge amplification strands

g ¢
© poL ) &
\ y G
25 s . G
A ®
Fluor ©
‘© Incorporation cleavage
—_— —_— —
Block
removal

Template
strand

Sequencing by reversible dye terminators

Figure 1.10 Solexa's sequencing methodology using bridge amplification. DNA strands bound by
complimentary oligonucleotides to a flow cell arch over to prime the next round of polymerization.
This creates clusters of clonal populations via PCR. Fluorophores that can be cleaved between steps
show the incorporation of the next ANTP. Adapted from Voelkerdig et al., 2009'26

1.6.2.2 Third Generation Sequencing

The Oxford Nanopore, Pacific Biosciences’ (PacBio) Single Molecule Real Time
(SMRT) and Illumina’s Tru-seq Syntheic Long-Read are the three commercially
available third generation sequencing technologies'?’. Third generation sequencers can
be considered as those that are capable of sequencing single molecules (SMS), which
negates the need for DNA amplification'?!, and can produce much longer reads

(generally between 5,000-15,000 bp)'?®. Pac Bio’s SMRT was the first, released in
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2010, and the reads generally had a raw error rate of 10-15%. However algorithmic
techniques and a 50x long read coverage (for de novo genome assembly) can allow
correction. The main limitation is cost compared to second generation technologies'*.
[llumina’s Tru-seq Synthetic Long-read was released in 2012. Long DNA molecules are
clonally amplified and barcoded prior to sequencing using a short read instrument this
results in synthetically produced long reads from the short read sequences. This
technology boats a high accuracy without the need for correction but the standard
illumina shortcomings are the same; high GC content and tandem repeats remain
troublesome. For de novo genome assembly, cost can be even greater than that of
PacBio’s SMRT because for 30x long read coverage you need 900x — 1500x short read
coverage'?®.

Oxford Nanopore’s MinlON is the newest, released in 2014 and is a handheld device. It
works by measuring the small disruptions to an electric current as DNA molecules flow
through a nanopore. The MinlON has low accuracy and throughput compared to the
other third generation technologies. Accuracy can be improved with correction
algorithms like those used for the PacBio SMRT. A major benefit of the MinlON is its
size, cost, and speed, allowing its use in remote areas and for breakout classification'?,

Further improvements on accuracy can make the MinlON a powerful tool for the future.

1.6.2.3 Exome sequencing

It is estimated that 85% of mutations that cause disease can be found in coding and
functional regions of the genome, and therefore, can be identified through exome
sequencing rather than whole genome sequencing. Sequencing only the exomes
provides a lower cost per genome/exome and whole exome sequencing provides
coverage of more than 95% of the exons'?’. Therefore, exome sequencing can be used
to identify the majority of cancer biomarkers at a much lower cost. Exome sequencing
can also be used to target non-coding elements such as microRNA and lincRNA"°. The

exome can be captured using either solution based or array based technologies. Solution
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based exome capture is most commonly used. Bioitinylated oligonucleotide probes to
target regions in the genome are used to capture fragmented DNA. Streptavidin beads
then bind the probes and untargeted DNA is washed away. PCR is used to amplify the
captured target DNA and this is then sequenced'®'. Solution based capture is most
commonly used even though array based capture was the first to be used, this is likely
due to less input DNA requirements. However, array based capture has proven to be

useful in low GC content regions and SNP detection'®".

1.6.24 RNASeq

RNASeq, first used in 2008, is when next generation sequencing approaches are used to
sequence total cDNA, allowing quantitative expression scores (similar to microarrays).
However, the entire transcriptome can be observed (without prior knowledge
requirements for probe production), including novel transcribed regions and transcript
structures, such as alternatively spliced isoforms, can also be identified'*?. Due to the
desire to determine differential splicing activity, antisense transcription and novel
transcriptional regions in eukaryotes, RNASeq has been key milestone for biological
experiments in these organisms. The resolution and sensitivity that can be achieved and
the range of different changes that can be observed give RNASeq advantages over
microarrays. However, there is a significant extra cost, bioinformatics requirements and
data storage required for RNASeq experiments'*. Due to the role of NGS in RNASeq
experiments, the limitations of NGS technologies are still present (section 1.6.2.1).

RNASeq experiments have allowed a better understanding of transcription initiation
sites, improved detection of alternatively spliced variants, and fusion genes as well as a
better identification of sense and antisense transcripts. All of these things are key to
cancer research'**. Developments in RNASeq methods to allow low-input (cDNA pre-
amplification) and the use of unique molecular identifiers (UMlIs) have allowed single
cell RNA sequencing experiments that can identify transcriptomic variation between

genetically homogenous cells. This is very important in cancer research where cancer
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cells are known to have subpopulations with heterogeneous mutations and

transcriptomes'**.

1.6.2.5 CHiPSeq

ChiPSeq, chromatin immuno precipitation sequencing, is the sequencing of DNA
fragments that co-precipitate with a DNA binding protein. The most common of the
DNA binding proteins investigated with CHiPSeq are transcription factors, chromatin
modifying enzymes or modified histones that interact with the DNA. DNA segments
that are associated with a specific DNA-binding protein can be identified with ChiPSeq
in an unbiased manner, without existing knowledge of precise DNA binding sites'*.

ChiPSeq allows experiments to study gene regulation.

1.6.2.6 Targeted Sequencing

The decreasing cost and improvements to second-generation sequencing technologies
mean sequencing of complex organisms will eventually become routine. Currently,
sequencing large numbers of whole genomes of Eukaryotes routinely is not yet feasible
and thus enrichment for areas of interest can reduce time and cost'’. There are a
number of methods to selectively “capture” genomic regions for sequencing, known as
target-enrichment; each has their own advantages and drawbacks. These include PCR
(Section 2.1.6), molecular inversion probes (MIP), on-array hybrid capture and in-
solution hybrid capture'?’.

PCR has been widely used prior to sequencing in experiments. It boasts high sensitivity,
good specificity, uniformity and robustness. However, there are issues such as cost,
difficulty to multiplex (with the simultaneous use of multiple primers, high levels of
nonspecific amplification are observed due to interaction between primer pairs), and an
upper limit to the generated amplicon size. Also, in practice not all amplification

reactions yield products, which is a key problem when working with clinical samples'’.
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MIP uses the enzyme ligase to circularize single stranded oligonucleotides formed of a
common linker flanked by target-specific sequences. Exonucleases are then used to
digest uncircularised species, leaving only the circularised oligonucleotides to be
amplified via PCR, using primers targeting the linker. DNA polymerase is used to “gap
fill” between target specific MIP sequences. Gap fill and PCR can occur in small
volume, aqueous solution, meaning they are easy to scale to large numbers via a 96-
well plate. Another advantage is that barcodes for identifying purposes can be
incorporated into the primers allowing pooling of multiple samples and input
requirements can be as low as 200ng'*’. Issues include capture uniformity, which have
been improved modestly but remain this technique’s biggest downfall.

Hybrid capture is performed using immobilised specific probes that hybridise the
shotgun fragment library and the un-targeted DNA strands are washed away whilst
those captured are eluted. Arrays can hold 2.1 million probes per array with the ability
to capture 34Mb'*’. Compared to PCR based approaches, array techniques are quicker
and less laborious. Hybrid capture also has its drawbacks including expensive hardware,
high starting material requirements (10-15ug) and limits to a) the number that can be
performed in a day and b) the number of samples in a study (large numbers aren’t
feasible).

In solution capture is similar to array capture, with an excess of probes allowing less
starting material. Again this technique can be used in 96-well plates meaning it is

readily scalable without the need for specialist equipment'®’.

1.6.3 Polymerase Chain Reaction (PCR)

PCR is an important laboratory technique that is capable of amplifying a single DNA
sequence to make thousands/millions of copies. The PCR procedure has multiple
heating and cooling steps:. The reaction mix (DNA, dANTPS, DNA polymerase, buffer)

1s heated to 94-98°C to denature double stranded DNA and then cooled to enable the
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sequence-specific hybridisation of the primers to the single stranded DNA. DNA
polymerase then makes a complementary DNA strand extending from the 3’end of the
hybridised primer. These heating and cooling steps can then be repeated to create more
and more copies of the DNA.

PCR can be used to detect presence/absence of a specific target as well as to quantify
the amount of target present. Presence/absence can be observed via gel electrophoresis,
using a ladder of known sizes to obtain product size. Quantification is generally
performed using fluorescent dyes.

There are multiple uses for PCR, for example real-time PCR can monitor the
amplification of target nucleotide sequences in real time by either using fluorescent
dyes that intercalate between dsDNA in a non-specific manner or by using target
specific probes that are fluorescently labelled. The number of cycles required for the
product to exceed a predetermined fluorescence threshold is measured (as a cycle
threshold- or ct-value) to infer the amount of starting target material. Quantification can
be also be performed post-PCR. Nested PCR uses using two sets of primer pairs in
sequential reactions. It is used to reduce non-specific probe binding, and increase
sensitivity: PCR product from a first PCR is used to seed a subsequent PCR containing
a second set of ‘nested’ primers that hybridise to sequences 3’ to the first round primers
in the amplified product. This improves specificity as it is unlikely that DNA other than
the intended target sequence would hybridise to both primer pairs.

PCR has been used to detect mutations and biomarkers, and to diagnose cancer.
Leading up to the development and cost reduction of NGS (section 1.6.2.1), many
scientists were using PCR-based investigations into cancer biomarker discovery: A
reverse transcription-PCR assay of 761 transcripts was used for the discovery of colon
cancer biomarkers'**. Comparisons with targeted NGS have shown that real-time PCR
and NGS have significant concordance (96.3 to 100%) for detecting EGFR, KRAS and
BRAF mutations in FFPE materials. However, NGS was capable of identifying seven

non-synonymous SNVs and an indel in EGFR that was not detected by the real-time
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PCR method"?’. PCR is also commonly used for target enrichment for targeted

sequencing of genes or specific transcript splice variants (section 1.6.2.6).

1.6.3.1 OncotypeDx

OncotypeDx'* is a multi-gene expression array that uses quantitative reverse
transcription polymerase chain reaction-based assay. It is used clinically to give
prognostic and predictive value in early stage ER+ breast cancers, to predict the benefit

of chemotherapy with adjuvant hormone therapy'*.

1.6.3.2 Prolaris

Prolaris is another quantitative reverse transcription polymerase chain reaction-based
assay. It can be used (alongside patient and tumour information) to predict the
aggressiveness of PCa. It utilises thirty-one cell cycle progression genes and fifteen
housekeeper control genes for PCa tissue'. The expression of the thirty-one cell cycle
progression genes are correlated with PCa proliferation to serve as a risk-stratification
tool: a lower score means lower risk and these men may be prime candidates for AS and
a higher score represents those needing treatment'*. It can also be used to predict ten-
year PCa specific mortality and ten-year PCa BCR'C. Cell cycle progression genes have

also been used in the prognosis of other cancers'®.

1.6.4 Microarrays

Prior to the affordability of sequencing as a method to identify biomarkers microarrays
were frequently used, and are still incredibly valuable due to cost and availability of
standard pipelines for analysis. Microarrays are significantly cheaper than sequencing
and so are still often used today. Microarray technology allows the user to assess DNA
copy number or RNA expression levels in cells or tissues in different disease states.
They are relatively cheap, not considerably time consuming and the array data can be

re-investigated for many different questions. Microarrays have been utilised in gene
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discovery and regulation involved in physiological, developmental and pathological
processes, in diagnosis and drug discovery'*'.

Microarrays are an array of specific DNA sequence ‘probes’. Fluorescently labelled
DNA/cDNA samples are hybridised to the probes, the excess DNA washed off, and the
quantity of each DNA sequence is assessed by the strength of the fluorescent signal that
remains attached to each probe. on the array, However, cross-hybridisation is an issue
in microarray experiments, leading to false positives, and masking of eg down-regulated
transcript signals. Analyses can use either single-channel (one sample hybridised) or
two-channel microarrays (two differentially labelled samples hybridised at the same
time).

Two-channel microarrays have been used to directly compare gene expression between
two different conditions, e.g. cancer cells with normal cells to identify genes that have
expression changes in cancer. The two samples (one cancer and one normal) are
labelled with two different fluorophores (often cy3 (green) and cy5 (far-red)) the two
samples are then mixed and simultaneously applied to the microarray for hybridisation
(Figure 0.11).

Single-channel microarrays provide intensity data for each specific target DNA/cDNA
that hybridises to its matching probe. It provides data on the relative abundance of each
probe sequence in a sample and can be compared to data from multiple samples A
downside to single-channel microarrays is that unless great care is taken in consistency
of sample preparation, microarray hybridisation and washing conditions etc., then error
rates can be higher than those achieved from two-channel microarrays.

Oligonucleotide microarrays, like single channel microarrays use one fluorescent label
for all of the samples (Figure 0.11). They use short genomic ssDNA fragments that
allow sequence coverage of an entire genome, and therefore, can be used for extensive
genetic profiling and mutational analysis by providing absolute yield values for each
specific target gene. They are capable of providing a presence or absence call for each

gene, but two separate arrays are required to allow the comparison of healthy controls to
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cancer patient samples'*>. Affymetrix is the major producer of microarrays: They
provide standard arrays for many species, for example, the human genome U133 array,
which contains 45,000 probe sets for 39,000 transcripts from 33,000 well-substantiated
human genes. Affymetrix also produce of custom arrays for a wide variety of different
uses. A standard affymetrix arrary contains oligonucleotide probes, 25 bases long,
specific to targets are fixed to a glass wafer, in set locations. Each oligo is present in
millions of copies to allow accurate interpretation of expression levels, from measured

intensities of fluorescence given by the tagged hybridised nucleotide sequences.

1.6.4.1 Decipher

Microarrays have been used in cancer biomarker platforms such as Decipher'.
Decipher is a classifier score calculated from a gene expression microarray analysis of
22 coding and non-coding RNA probes', that predicts metastatic PCa progression/high
risk of recurrence and PCa related mortality within 5 years of RP. High-risk of
recurrence is defined by extra-prostatic extension, seminal vesicle invasion, positive
margins or biochemical recurrence. Whilst the 22 specific probes are unknown, the
panel represents known pathways involved in aggressive PCa, including cell
proliferation, cell structure, immune system modulation, cell cycle progression and
androgen signalling'®.

The score ranges from 0-1, with every 0.1 increase representing a 10% increase in
risk of metastatic progression. The score is then more generalised into three categories;
low-risk 0-0.44, intermediate risk 0.45-0.59 and high risk 0.6-1.

Whilst Decipher was originally established as a predictor for metastatic progression
post-RP, there have been further applications since. Decipher has been evaluated for its
ability to ease decision making between adjuvant and salvage radiation therapy (second-
line treatments); Dalela et al., showed that any two or more risk factors from pT3b-T4,
G8-10, lymph node invasion or >0.6 decipher score showed a 4-fold reduction in

metastatic progression at 10 years with adjuvant therapy. A score >0.6 had up to 80%
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reduction in metastatic progression if adjuvant radiation therapy was received'**. The
PRO IMPACT was a multi-institutional study that showed decipher could significantly
decrease decision conflict and patient anxiety. Decisions on adjuvant and salvage
therapy were altered with the addition of a decipher score in 18% and 32% of cases,
respectively'®.

Another key finding was that decipher could also be performed on small amounts of
genetic material like that obtained from biopsy and also including FFPE tissues.
Decipher was tested on the biopsy material of 219 men who then went on to have RP to
validate the findings, this gave HR = 7.3 and HR = 11 when moving from low-risk to
high-risk on multivariate analysis'®. In a second study, decipher was applied to the
biopsy material of 57 men, who proceeded to undergo RP and also had long term follow
up. Here decipher was capable of predicting metastatic progression as an individual
predictor with AUC = 0.72'%. This highlights its potential use in aiding decision
making for primary treatment also, helping to identify those who are safe for active
surveillance and those who should receive treatment more swiftly.

A limitation of decipher in the aid of primary treatment decision making, is that it
relies on biopsies, and so carries the same limitations of a biopsy: PCa is often a
multifocal disease and the lower-grade or lower decipher scoring foci could be picked
up by biopsy, whilst the higher-scoring foci is missed. Leading to a less severe
prediction occurring. Decipher has shown great promise as a second line treatment

informer and clearly has a role here in PCa management.
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Figure 0.11 A schematic for oligonucleotide and two-channel microarrays. Both show RNA isolation
from the cells of interest, followed by reverse transcriptase labeling to create cDNA from RNA and
then hybridisation to array. In two channel arrays, cDNA from the normal cells and the “condition”
cells are combined prior to hybridisation. Adapted from Vermeeren et al., 201142,

Sequencing trumps microarrays with its ability to provide further information about
specific unknown mutations. Mutations can be detected via microarrays; however, the
probes must be designed to hybridise that specific mutation as the target gene, meaning
the mutation must first be known. Cross-hybridisation problems in microarrays also
mean that SNVs will be unable to be detected. Sequencing can also detect novel gene
fusions. However, if you only require count data microarrays hold some advantages in
comparison to sequencing: They are cheaper and the analysis of the data produced is
easier. There are well-known analysis pathways to take, whereas, the best method for
sequencing data analysis is still being investigated. Also, there is a lot of data available
to the public from standardized platforms, which can be utilised for comparison with

your own samples.
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1.6.5 Mass Spectrometry

Mass spectrometry (MS) has shown great promise in proteomics and the identification
of protein biomarkers. Proteomics is the large scale analysis of proteins including their
structure and function; it provides information about the complex end products of a
gene'”’. MS has positioned itself as one of the key technologies for the unbiased
identification of cancer biomarkers'**. Combining MS with liquid chromatography
allows easy profiling of bodily fluids (samples which generally are less invasively
obtained from patients) whilst MALDI-MS (matrix-assisted laser desorption/ionization)
is useful for identifying biomarkers in FFPE tissues'®.

MS works by bombarding molecules with electrons (ionizing) to create charged
molecules and measuring their mass-to-charge ratio, by accelerating them and applying
an electric or magnetic field. Ions of the same mass-to-charge ratio are deflected at
similar amounts and can be detected via an electron multiplier. Results are available as
a “spectra”, which can be correlated to previously known masses to identify atoms or
molecules present in the sample.

Proteomics has an advantage over genomics, as it will be clear if a mutation is making a
big difference to the protein, which can never truly be proven with genomics, just
inferred'*®!'*°, However, MS suffers from insufficient sensitivity when detecting low-
concentration biomarkers in a sample with a high-abundance of proteins, making
depletion of abundant protein fractions and enrichment of biomarkers imperative to
improving MS sensitivities'’. MS also suffers from accuracy and reproducibility
problems caused by software issues, meaning samples need to be run, typically, 10
times, increasing the amount of material required. These issues need to be addressed in
order for Mass Spectrometry to develop as an efficient tool for biomarker discovery.
Also, unlike other biomarker detection technologies, MS is limited to providing
information of presence/absence and levels of the proteins cannot be determined unless

targeted MS is performed. Targeted MS means the experiment must be focused on a
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small subset of protein targets to achieve their quantification, thus reducing the scope of

proteins that can be quantified within the experiment'*'.

1.6.6 Fluorescent In-situ Hybridisation (FISH)

FISH, a cytogenetic technique, can be used to detect chromosomal abnormalities;
changes in chromosomal structure and numbers (including genomic deletion and fusion
genes) can be observed when viewing cells or chromosome preparations upon a slide.
Chromosomal abnormalities are common in many tumours, and Some of these
abnormalities can be used for diagnostic and prognostic purposes'*>. FISH was being
used to identify specific chromosomal regions and loci (chromosomal mapping) by the
late 1980s. It works by labelling DNA with fluorophores, which emit light detectable by
microscopy. FISH probes are capable of hybridising to DNA and RNA of circulating
tumour cells (CTCs) and FFPE tissue sections that are fixed. This allows FISH to be
useful for solid tumours as well as hematological cancers. Probes are designed for
specific target sequences, and usually consist of cloned DNA sequences in the form of
BACs, PACs, fosmids and cosmids, but can also be PCR products. The DNA probes
can be tagged directly with fluorophores, or with biotin or DIG that can be bound post-
hybridisation with streptavidin linked fluorophore or anti-DIG antibodies bound to
fluorophore. Short DNA fragments are added to block repetitive DNA sequences and
then the probes are applied to the cell preparations on a glass slide. Hybridisation
requires approximately 12 hours followed by several wash steps in order to remove
non-bound or partly bound probes. After which a microscope can be used to excite the
dye and record the images for location and quantification of aberrations.

Improvements in fluorescent dyes and advances in microscopy and imaging allowed for
MFISH (multi-fluorochrome assays), particularly SKY (Spectral Karyotyping). This
new method allowed for entire metaphase spreads to be investigated using 24-colours,

which showed the chromosomal origins of structural rearrangements'*,
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FISH is a reliable, simple and specific assay for biomarker detection, and because of
this, even though it is a low throughput method, it remains to be a cornerstone in
genetic labs and even in clinical practice for the diagnosis, treatment stratification and
prognosis of cancers. Whilst high-resolution molecular profiling techniques
(microarrays and sequencing) are advanced in identifying novel chromosomal
abnormalities, FISH remains a reliable validation method for any potential biomarkers

identified"**.

1.6.7 Immunohistochemistry (IHC)

IHC is still commonly used in cancer diagnosis, and can validate biomarkers identified
from other methods. Now that molecular, quantitative, global methods exist for novel
biomarker identification, it is used much less to identify these but more to locate where
in the cell the biomarker is and to validate its presence/absence in cancer tissues'>.

For THC, first tissue needs to be collected, fixed (commonly with paraformaldehyde)
and often embedded in paraffin wax. The tissue is the sliced (4-40um), mounted on
slides and dehydrated with alcohol washes and cleaned with xylene before imaging via
microscope. Blocking buffers are often used to reduce background staining. Positive
and negative controls are required, a tissue known to express and a tissue known not to
express the specific protein. Antibodies specific to the target antigen must be extracted
from animals; the protein of interest is injected into the animal to elicit an
immunological response producing the desired antibody. Therefore, this can make IHC
time-consuming. Monoclonal or polyclonal antibodies can be used, targeting one
epitope or multiple, respectively. Antibodies are often linked (using biotin) to reporter
molecules. Reporter molecules can either be fluorophores or enzymes allowing
fluorescence or chromogenic detection. There are two methods of antibody detection:
Direct and Indirect. The direct method is where the labelled antibody directly binds the
antigen, and the indirect uses an intermediate antibody to bind the antigen to which the

labelled antibody binds.
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In order to compete with the new molecular methods, ITHC will need to be
quantitative’®. THC is specifically useful for the validation of protein biomarkers,

similar to ELISA (section 1.6.8).

1.6.8 Enzyme-linked Immunosorbent Assay (ELISA)

Similarly to IHC (section 1.6.7), ELISA is used for protein detection. ELISA works by
using enzyme linked antibodies to capture antigens, and colour changes from the
enzyme binding its substrate provide detectable signals, which are proportional to the
amount of antibodies bound to the antigens present. IHC and ELISA have their own
advantages; ELISA is fully quantifiable and easily standardised with quality assured
measurements obtained. IHC is at best semi-quantitative but allows insight into tissue
heterogeneity and can be performed on both frozen and paraffin-embedded tissues
(section 1.6.7)"".

There are three main types of ELISA: Indirect, Sandwich and Competitive, all use 96-
well microtitre plates as the immobilising surface, allowing moderately high-throughput
investigations. ELISA is a versatile and robust tool and so ELISA is often used for
validation of biomarkers'™.

ELISA only allows the detection of a single antigen and often requires a large amount
of sample. This along with the narrow dynamic detection range means it not useful in
biomarker discovery. ELISA is costly and its quality is dependent upon antibody
quality, users skill and experience, and shows problems with accuracy and
reproducibility. ELISA’s downfalls mean it is less useful at biomarker validation when

there are multiple proteins, which is often the case.
1.6.9 Methylation Assays

Epigenetic gene regulation, such as methylation and histone modification, is an
important factor in normal development and disease states like cancer'*®. These are

modifications to our gene expression that is not encoded for by the DNA, but inherited
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mitotically'* '®°. Hyper-methylation of promoter regions is commonly seen in cancers
to knock-down the expression tumour suppressor genes'®'. Methylation is the addition
of a methyl or hydroxymethyl group to the C5 position of cytosine, which occurs at or

162

around CG dinucleotide regions (known as CpG islands and shores) *~. Methylation is

known to aid in cell cycle regulation and cellular differentiation processes'®*'*®. The
role of DNA methylation has been well established in many cancers including PCa'®*:
164. 1655 Hyper-methylation of several genes, including GSTP1, is commonly observed
during the transition between intraepithelial neoplasia to carcinoma'®®. Hyper-
methylation detection has shown promise as biomarkers for the diagnosis and prognosis
of cancers.

There are many methods for the identification of methylated sites, which method you
chose can be based on many things, but importantly is the biological question you are
asking: There are different methods available for whole genome methylation profiling,
identifying regions of differential methylation status, or for determining the methylation

status of specific genes of interest'®’

. Other factors to include when choosing a method
are the amount and quality of the sample, the sensitivity and specificity requirements
for the experiment, robustness and simplicity of method, and its bioinformatics analysis,

as well as the availability of specialist equipment and overall experiment cost'®’.

1.6.10 Supervised and Unsupervised Analyses

Due to the developments in genomic technology more and more biological data is being
developed that needs to be analysed; to identify patterns and trends and understand what
the data means to the biological question. The application of statistics on such data can
be called statistical learning or machine learning, and can roughly be separated into two
categories: supervised and unsupervised analyses'®. These can be referred to as
classification and clustering, respectively'®’.

For supervised learning, or “classification” of observation x, an observation with

multivariate p dimensions (also called features) and associated with class c¢. The
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purpose is to “learn” a mathematical function that when evaluated with the input x
provides a prediction of its class c. In general practice data is subset into training and
test datasets. The training set is used to “set” the mathematical function to correctly
predict the class for each observation provided. This function, with the parameters set
from the training data is then applied to the test data to observe its ability to correctly
classify the data without bias'®. Examples of supervised machine learning are
generalized linear models (glm) (section 2.6.1), probit regression (polr) for ordered
multivariate models, random forest (section 2.6.3). These methods can be accompanied
by a shrinkage method to reduce over fitting and thus improve predictability; examples
of such methods are Lasso (section 2.6.2) and Step (section 2.6.4).

Unsupervised analysis, or “clustering” can also be referred to as class discovery. A key
difference between unsupervised analysis and supervised analysis is a lack of training
set for the former and thus no cross-validation. A second important difference is that
clustering algorithms are set using optimality criterion and there is a lack of guarantee
that the global optimal solution is found, and therefore a heuristic approach is often
taken. A choice of a) features to be used, b) similarity metric, and c¢) algorithm needs to

be made for many methods'®’

. Unsupervised learning can be further partitioned into
hierarchical clustering (section 2.5.2), (which can then be subdivided into
agglomerative and divisive) and partitioning. Hierarchical will cluster data into a tree
like feature and then to achieve a desired number of clusters one can cut the dendogram
at a desired height. However, partitioning generally requires the user to specify the
number of clusters prior to clustering'®®. Examples of partitioning are k-means

clustering (section 2.5.3), principal component analysis (section 2.5.1), and latent

process decomposition (section 2.5.5).

79



CHAPTER 1: INTRODUCTION

1.7 Summary and Aim

1.7.1 Summary

Whilst the introduction of the PSA test has decreased mortality from PCa, the increased
incidence rate that can also be attributed to it comes with problems of over-diagnosis
and over-treatment. Highlighting the need for additional biomarkers for the diagnosis of
PCa. A need for biomarkers for hormone therapy response prediction, BCR prediction,
further treatment stratification, and prognosis were also highlighted.

The heterogeneity of PCa means that there have been a lot of potential biomarkers
discovered, but also that they are not always consistent in the tumours. Meaning a
limited number are capable of being used for the diagnosis and prognosis of PCa.
However, combinations of biomarkers in a panel could be of great clinical use. The
utility of urine in PCa biomarkers is well established via the PCA3 test (section 1.4.2)
and the role of exosomes in cancer development and metastasis (section 1.5) has
highlighted a resource to be investigated.

The development of NGS technologies and the continuous advancements in sequencing
technologies are making it possible to investigate a large number of genes across a large
number of samples, at continuously decreasing costs. Sequencing is an important
technology for the discovery of novel biomarkers, as it is capable of identifying
expression changes and mutations at high-throughput. The reducing costs of sequencing
are closing the gap between data production costs and data processing costs, it is said
that there may come a time when processing the data will become more costly.
Bioinformatic analysis of the data is still under on-going development to identify the
optimal pathways for analysis. Currently, cheaper methods for high-throughput
expression analysis (microarrays and Nanostring) still hold a firm place within
biomarker discovery. Whilst, mass Spectrometry for proteomic biomarker discovery

holds massive potential, however there are issues still to overcome.
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Older techniques of biomarker discovery hold great sensitivity but are at considerably
low-throughput, making them very good for validation and clinical detection after a few
potential biomarkers are selected from higher-throughput methods. These include: FISH
for gains/losses, rearrangements and chromosomal instability investigations, IHC and
ELISA for the validation of particularly proteins and to see where in the cell these
biomarkers are gained to or are lost from and PCR-based methods for confirming
mutations in the biomarkers.

Knuutila et al., compared NGS, aCGH, FISH, PCR and IHC methods for specific
biomarker analysis of FFPE tumour tissues. Their conclusions suggest that NGS has the
potential to replace all other methods tested for the analysis of tumour biomarkers,
especially as the reducing costs and required sample material decreases to that near of
FISH or PCR. NGS allows the investigation of mutations, gene fusions and copy
number changes in one single analysis'”’. However, NGS has not currently reached the

position where it is commonly used in clinical practice.
1.7.2 Aims & Objectives

PCa diagnostics and prognostics currently lack specific and sensitive clinical
biomarkers and treatment is not well individualised. The PCA3 test highlights the utility
of urine in PCa diagnostics and prognostics. The aim of our work is to interrogate PCa
patient’s urine samples, mostly the exosomal fraction to identify novel biomarkers or
sets of biomarkers to aid in PCa management. My objectives are as follows:

O1: To determine whether RNA expression from urine extracellular vesicles in prostate
cancer patients are a viable target for the development of biomarkers through the use of
Nanostring technology.

02: To determine an optimal combination of probes to predict cancer presence and
aggression in prostate cancer patients.

03: To determine whether an optimal combination of probes can predict response to

hormone therapy treatment.
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04: To evaluate the differences between urine fractions (extracellular vesicles and cell
sediment) and determine whether cell sediment can be used to predict cancer presence
and aggression in prostate cancer patients.

Below are described more detailed aims for each chapter.

3.1.1.1 Chapter 3: NanoString Data Analysis 1: The Pilot Study

This chapter encompasses the analysis of the pilot study of samples sent to
NanoString to investigate exosomal RNA expression level changes of 57 target
sequences. The RNA was extracted from the EV fraction of urinary samples collected at
the NNUH as part of the Movember study. The aims were to primarily determine if the
transcript content of urinary exosomes contained any PCa derived transcripts and if
transcript level could be utilised for risk stratification. Also, it was important to
investigate if NanoString was a suitable method for obtaining expression data from

these cDNA-amplified samples and to determine suitable methods for analysis.

3.1.1.2 Chapter 4: NanoString 2 Analysis: The Movember GAPI1 Project

A second analysis for the Movember study. RNA was extracted from the EV fraction of
urinary samples that were collected from multiple centres (NNUH, Norwich, St James’
Hospital, Dublin, Royal Marsden Hospital, London, and Emory Healthcare, Atlanta).
864 samples were sent to NanoString for the quantification of 167 transcripts. The aims
were to primarily identify optimal models capable of predicting PCa and to risk-stratify
PCa without the need for biopsy. Models were built to answer four important clinical
questions: 1) determine which samples were from PCa and which were from samples
with no evidence of Ca 2) determine which samples were from high-risk PCa only and
which were from samples with no evidence of cancer 3) determine if there was a trend
in expression that corresponds to a trend in risk category (CB>L>I>H) and 4) determine
if there was a trend in expression that corresponds to a trend in patient type

(CB>Ca>Metastatic cancer).
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3.1.1.3 Chapter 5: Response to treatment

Many cancers have benefitted from treatment stratification due to expression of certain
genes, however not yet PCa. With hormone therapy (HT) it is known that patients will
inevitably progress to castration resistant prostate cancer (CRPC). How long each
patient will last on HT varies widely from months to years. It is our aim to use the
NanoString data of the advanced patients in the pilot study (n = 32) to see if a
significant predictor of early progression in patients on HT can be built and whether this
predictor improves on current clinical information collected (e.g. PSA, Gleason score

and bone scan). The NanoString 2 data can then be used for validation of this predictor.

3.1.14 Chapter 6: Analysis of Cell Fraction and comparison with exosomal

Jraction

The use of RNA extracted from EV fractions and cell sediment fractions were used to
compare the transcriptome profiles from PCa patients and controls (taken from patients
with no evidence of cancer (CB)). The aim was to identify if both fractions contained
similar expression profiles of genes and if either contained higher levels of prostate or
PCa associated transcripts. The fraction with the highest level of these transcripts is
likely to be a better source of material for PCa diagnosis and risk stratification. Data
from microarray of samples collected from NNUH, Norwich and Royal Marsden
Hospital, London was used.

Secondly, I am to use NanoString data from cell sediment fraction derived transcripts
(collected only from NNUH, Norwich) to identify optimal models to answer the four

important clinical questions asked of the EV derived data (Chapter 4).
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Materials and Methods

2.1 Sample Collection and Processing

Overview: Urine samples were collected from patients attending hospital clinics.
Extracellular vesicle (EV) RNA was harvested by urine microfiltration (Section 2.1.2). EV
and cell pellet RNA was extracted (Section 2.1.3), converted to cDNA and amplified as
cDNA (Section 2.1.4), ready for NanoString expression analysis (Section 2.1.5).

Not all the procedures in this section were performed by me but were included in this thesis

as essential information relative to the study.

2.1.1 Sample Collection

Note: The procedures in this section were not performed by me.
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Urine samples were collected in a 30ml Universal tube (Sterilin) from urology clinics at the
Norfolk and Norwich University Hospital (NNUH, Norwich, UK), St. James Hospital
(Dublin, Republic of Ireland) and from primary care and urology clinics of Emory
Healthcare (Atlanta, USA), between 2012 and 2015. Most samples were collected as first
void post-DRE but a few matching pre-DRE samples were collected for comparison (these
were labelled as such). All samples were collected from treatment naive patients. Control
samples were collected at a micro-haematuria clinic at the NNUH, again first void post-
DRE in a 30ml Universal tube. Microvesicular RNA was harvested by ultracentrifugation
(section 2.1.2), extracted (section 2.1.3), converted to cDNA and amplified (section 2.1.4).
RNA from the cell pellet was also processed, using either the Qiagen Allprep DNA/RNA
mini kit cat no: 80204 or RNeasy micro kit cat no: 74004 according to manufacturer’s
instructions).

The lab also had access to urine samples collected as part of the active surveillance
prospective study at the Royal Marsden Hospital NHS Foundation Trust (RMH) between
2009 and 2012. The active surveillance prospective study collected samples, first void post-
DRE, specifically from men with untreated, low-risk prostate cancer. Low-risk PCa defined
as having clinical stage T1/T2a, Gleason 3+3 (or 3+4 of older than 65), PSA<15 and <50%
positive cores. Three of these samples were collected pre-DRE from post-radical
prostatectomy patients for comparison. Microvesicular RNA was harvested as above.

The study was given favourable ethical opinion by the NRES Committee East of England —
Norfolk on 21* August 2014 under the study title “Urine biomarkers for detecting prostate
cancer”. Ethics was approved to Dr Marcelino Yazbek Hanna of NNUH with REC

reference: 12/EE/0058 and IRAS project ID: 96199.

2.1.2 Micro-filtration harvesting of Urine Extracellular Vesicles

Note: The procedures in this section were generally not performed by me (I performed these

procedures on ~20 samples).
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Urine samples were processed within four hours of samples collection. Urine was
centrifuged at 1200g for 5 mins, and then the supernatant was transferred to a 50ml tube and
re-centrifuged at 2000g for 5 mins. Supernatant was decanted and then filtered through a
0.8uM filter (Millipore), transferred to an Amicon Ultra-15 100KDa MWCO microfiltration
unit and spun at 3400g 1/t for 15 mins or until the volume was reduced to below 500puL.
PBS (15ml) was added to the sample followed by further centrifugation until the volume
containing the EVs was reduced to 200uL. Transmission electron microscopy (TEM) was

performed to confirm the presence of EVs.

2.1.3 Qiagen RNA Extraction

Note: This section was generally not performed by me (I performed this step on ~20
samples).

The Qiagen Micro RNA RNeasy kit was used for RNA extraction from EVs and cell pellet
as per the manufacture’s manual. 700pL of buffer RLT was added to the cell pellet or EV
samples. The cell pellet/RLT mix then had an extra step, which was to disrupt the cells
using a QIAshredder spin column for 2 mins at full speed (~12,000 rpm) in a microfuge.
From this point onwards the cell pellet and EVs were treated the same. 70% ethanol was
added and the mixture pipetted into a MinElute spin column and centrifuged in a microfuge
(15 seconds, >10,000rpm). 350uL of buffer RW1 was added to the MinElute spin column
before re-spinning (15 seconds, >10,000rpm). Then 80uL of Qiagen DNase mix [ was
directly applied to the membrane and left to stand at room temperature for 15 mins to
complete DNA digestion. The wash step with RW1 was then repeated followed by the
addition of 500uL of buffer RPE and re-spun (15 seconds, >10,000rpm). 500uL 80%
ethanol was added and then spun (2 mins, >10,000rpm). To dry the membrane the column
was spun for a further 5 mins with an open lid. The column was transferred to a fresh

collection tube, and the RNA was eluted with 14uL of RNase free water and centrifuged (1
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minute, 12,000 rpm) in a microfuge. Nanodrop and Bioanalyzer were used to confirm that

RNA was of a good quality.

2.1.4 Nugen Amplification of RNA as cDNA

Note: I performed the amplification step for 286 samples.

Amplification was performed using the Nugen Ovation picoSL WTA V2 kit as per the
manufacture’s instructions'’". The kit works via the following mechanisms: Firstly, the first
strand of cDNA was generated using a DNA/RNA chimeric primer mix (containing a mix
of random and oligo dT primers such that priming occurs throughout the whole transcript)
and reverse transcriptase (RT). The RT extends the 3’ end of the DNA for each primer
resulting in a cDNA/mRNA hybrid containing a unique RNA tag sequence known as the
SPIA tag at the 5° end of each cDNA strand. The SPIA tag was used for a priming site for
the SPIA process.

Secondly, fragmentation of this cDNA/mRNA complex was required to provide priming
sites for RNA polymerase to synthesise a second cDNA strand. This includes DNA
complementary to the 5° SPIA tag and results in a double stranded cDNA with a DNA/RNA
heteroduplex, which corresponds to the SPIA tag. Finally, strand displacement
amplification occurs that uses a DNA/RNA chimeric primer (SPIA primer), DNA
polymerase and RNase H in an isothermic assay. RNase H removes the RNA part of the
heteroduplex SPIA tag allowing the SPIA primer to bind. DNA polymerase can then
synthesise from the 3° end of the primer displacing the existing forward strand with new
cDNA. Priming with the chimeric SPIA primer then in turn makes a new heteroduplex
SPIA tag, which becomes the new substrate for RNase H and can initiate the next round of
cDNA synthesis. These last few steps were repeated in a highly processive manner allowing
rapid accumulation of pg of amplified cDNA from ng of total RNA.

The actual process was as follows: samples were diluted with RNase free water to ensure all

contain 20ng of total RNA in a PCR tube. The first strand synthesis primers were added
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(2pL) to each sample and they were heated to 65°C for 2 mins. The first strand buffer and
enzyme were pre-mixed, 2.5ul and 0.5uL per sample, respectively. 2.9uL of this mix was
then added to the sample tubes and samples were returned to the thermal cycler for program
2: 4°C for 2 mins, 25°C for 30 mins, 42°C for 15 mins, 70°C for 15 mins and hold at 4°C.
Second strand synthesis required second strand buffer and enzyme to be pre-mixed; 9.7ulL
and 0.3uL per sample, respectively. 9.5uL of this mix was added to each sample, mixed via
pipetting (5x) and returned to the thermal cycler for program 3: 4°C for 1 minute, 25°C for
10 mins, 50°C for 30 mins, 80°C for 20 mins and hold at 4°C. The cDNA must then be
purified using the magnetic beads provided in the NuGEN kit; 32uL of the beads were
added to each sample and mixed via pipetting (10x) and were incubated at room
temperature for 10 mins.

Following this the samples were placed into the 96 well magnet and were incubated at room
temperature for a further 5 mins. Using long thin pipette tips, 45uL of buffer was removed
as the beads (that were attached to the cDNA complexes) were pulled to the tube side via
the magnet. The tubes were then washed with 70% ethanol (200uL) three times and left to
air dry at room temperature (roughly 25 mins but until there was no liquid left in the tubes).
The last step was then the SPIA amplification; where the SPIA buffer, the SPIA primer mix
and the SPIA enzyme were pre-mixed in order; 20uL, 10uL and 10uL per sample,
respectively. 38ul of the SPIA mix was added to each sample and the samples were
returned the thermal cycler for program 4: 4°C for 1 minute, 47°C for 75 mins and 95°C for
5 mins. At a different bench, the PCR tubes were returned to the magnet for 5 mins, and the
liquid that contained the amplified cDNA was collected.

TE was added to a final concentration of 0.2xTE and yields determined via Nanodrop or

Qubit.
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2.1.5 NanoString

The NanoString nCounter gene expression system technology uses 2 probes; a capture and a
reporter probe''>. The probes were designed to have a complementary sequence to the
specific transcripts we wished to study. Each transcript reporter-probe had a distinct string
of fluorescent coloured beads attached'"”. Up to ~800 different bead string combinations are
available, and so up to 800 different transcripts can be detected in one analysis.

The probes were hybridised to the complementary nucleic acid sequences in each
sample, forming a tripartite complex of the 2 probes and target mRNA or cDNA. The
complexes were then pulled down and immobilised onto a capture surface, unbound
sequences were washed away and an electric field was passed across the surface to
stretch out the nucleotide and bead complexes. The bead-complexes were then imaged
and the number and type of each string of coloured beads counted. This provided a
direct measure of RNA or cDNA counts per transcript!5. Twelve samples loaded onto

the NanoString machine at a time (in each cartridge).

2.1.6 PCR (Polymerase Chain Reaction)

Note: I performed PCR detection of TMPRSS2:ERG fusions for 113 samples.

TMPRSS2:ERG fusions were detected by primary PCR and confirmed with a secondary
PCR that used nested primers. A master mix was made using the following components
(volumes provided for a single PCR): 2.5uL 10x PCR buffer, 1uL. 50mM MgSO0,4, 0.5uL
10mM dNTP mixture, 0.5uL Primer 1 (10uM), 0.5uL Primer 2 (10uM), 0.1uL Platinum
Taq (Thermo Fisher) and 19ul. HPLC H;0. Primer 1: CAGGAGGCGGAGGCGGA
(TMPRSS2 exon 1 Forward). Primer 2: GGCGTTGTAGCTGGGGGTGAG (ERG exon 6
Reverse). The master mix was pipetted into a clean 0.25ml tube and 1pL of the
template cDNA was added. PCR conditions were as follows: 94°C for 30 seconds,
followed by 35 cycles of 94°C for 20 seconds to denature and 68°C for 60 seconds to

extend. A second master mix was created using the same reagents but using 0.5uL of
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the nested primer 1 and 0.5uL of the nested primer 2. Nested primer 1:
GGAGCGCCGCCTGGAG (TMPRSS2 exon 1 nest Forward) and nested primer 2:
CCATATTCTTTCACCGCCCACTCC (ERG exon 6 nest Reverse). This master mix was
aliquoted and 0.25uL of the primary PCR was added. PCR conditions were as above but
with a 66°C annealing temperature instead of 68°C. The resulting amplification
products of the primary PCR and the nest PCR were run in adjacent wells on a 2%
agarose gel with a 100bp DNA ladder (New England Biolabs (N3231L)) to determine
product sizes (Table 2.1) and thus infer which of the TMPRSS2:ERG fusions were

present in each sample.

Table 2.1 PCR product sizes for TMPRSS2 _exonl (T1) and ERG ex6 (E6) PCR primers (nests

are 139bp smaller than primaries)

Primary Nest
T1/E4 596 457
TI/ES 379 240
TI/E6 227 88
T2/E2 856 717
TI/E3 -,5 6 465 326
TI/E2, 3,4, -6 661 522
12/E5 450 311
T13/E4 891 752
T4/E5 760 621
T5/E4 1098 959

2.2 Clinical Data Collection

Note: I completed part of the clinical data collection.

Clinical data was collected for NNUH samples from a number of different NHS databases
such as ICE (the NNUH database), Somerset (the NNUH cancer database) and also from
the patient’s forms completed for the study within the clinic. Information from the patient’s
forms were manually typed into an Excel sheet and uploaded to a pseudo-anonymised
online database for the Movember project. A clinical NHS colleague and I updated and

checked over clinical information for the majority of the samples, this included information
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such as age, initial PSA reading, Gleason score and further biopsy information, scan
conclusions, prostate volume, family history, health altering habits, general health and
current medications as well as subsequent information (ensuing PSA readings for example).
Clinical data for samples from other centres were provided by them and uploaded into the

Movember database.

2.3 NanoString Pre-processing

2.3.1 Normalisation

The NanoString output data file provides the nCount data for 6 spiked non-human positive
control probes and 8 non-human negative control probes for each of the samples being
analysed. The six positive control probes matched to spiked-in RNAs and was used to
calculate a normalisation factor (NF): the average nCount for each samples’ positive
controls were calculated and this number was divided by the sum of all samples’ averages.
Each nCount value was then multiplied by the sample-specific NF. This results in a shift of
all samples so that the means of the positive controls was identical across samples.
Background correction and background subtraction using the negative controls was found to

be inappropriate for this data.

2.1.1 Normalisation by KLK2 and KLK3

Normalisation using KLK3 and KLK2, separately, was conducted as follows. For KLK?2, a
ratio was determined (Equation 2.1) and then applied to the data, this data was referred to as

KLK?2 ratio data.

Equation 2.1 KLK2 ratio normalisation, similar to the normalisation of PCA3 by KLLK3 in the PCAS3 test

<(_)> 1000

(fKLKZ)
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Additionally, for KLK2 and KLK3 an adjustment normalisation was conducted using the
median and IQR (Equation 2.2). For this data, any samples observing low KLK2 or KLK3
levels, respectively were removed from the data set prior to adjustment. The threshold for
“low” expression was determined using a density plot and the Brent method to find the
minima of the curve. For KLK?2, and KLK3 the same nineteen samples were identified and
removed for low expression. As well as removing low Kallikrein expression samples, six
CB samples that had high TMRPSS2:ERG expression were also identified and removed.
Samples with high TMPRSS2:ERG expression were again identified through density plots

and the Brent method.

Equation 2.2 Kallikrein adjustment of data using median and IQR. Where i is the sample and j is the
transcript.

d
<Xij _me Lan( )

IQR( ]) )*IQR(KLK) + median(KLK)

2.3.2 Normalisation by housekeeping genes

Five previously identified housekeeping transcripts were included in the NanoStringl pilot
study: ALASI, B2M, HPRT, GAPDH, and TBP. RPLP2 was added in NanoString2. Tukey
tests (section 2.4.7) were used to identify transcripts that were not significantly different
between any clinical category (p < 0.05). ANOVA (section 2.4.6), variance and IQR
(section 2.4.8), and Pearson’s correlation (section 2.4.3) were also utilised, to identify novel
transcripts to use for housekeeping purposes. In NanoString2 EV data, RPLP2 and GAPDH
were selected to normalise the data, whereas for the NanoString? cell data, RPLP2 and
TWWASTI were selected.

For each sample, the mean of the two transcripts was calculated, as well as the mean of
those means across samples. Each sample was then multiplied by a normalisation factor

(ratio of the mean of means with the individual sample mean).
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2.3.2 NanoStringNorm and NanoString QC Pro

The quality of the normalisation was evaluated using the R packages NanoStringNorm'™

and NanoString QC Pro'”.

2.3.2.1 NanoStringNorm

NanoStringNorm'™ investigates the normalisation of the data as well as identification of
samples and transcripts that were outliers. The first test performed by NanoStringNorm was
to plot the mean verses the standard deviation (SD) with a Loess curve of best fit. Positive
controls and potential housekeeping probes should have high means and low SD, whilst
negative controls should have low means and low SD. Batch effects and potential
confounding were also tested for using sample summary features, including mean, SD,
proportion of missing (0 counts) or positive/negative control counts. These features were
plotted independently by NanoStringNorm, where the location of the point relative to the
horizontal line shows how different it was from the others and the size of the (green) dot
was proportional to the level of its significance. Orange dots were not significant. Potential
influencing outliers were identified by looking into the normalisation factors: if the
normalisation parameters extended beyond 100% difference from the mean, it was flagged

as a potential outlier.

2.3.2.2 NanoString QC Pro

NanoStringQCPro'” (an R library) was conducted to check the quality control of the
NanoString data, specifically looking at the control probe metrics and count probe metrics
(similar to NanoStringNorm) but additionally looks at other metrics. The field of view
(FOV) was a discrete area of each lane being imaged by the ncounter® digital analyser.
Within the FOVs, bubbles and insufficient oiling can make unsuccessful imaging attempts.
A low ratio between successful and unsuccessful attempts can be indicative of low imaging
performance. NanoStringQCPro highlights any samples with less than 80% successful

imaging attempts. If the binding density was too high in a sample, there can be overlapping
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of the barcodes, which leads to errors in correctly imaging the number of probes. According
to NanoString a binding density of less than 0.5 and higher than 2.25 can lead to these
errors. NanoStringQCPro flags samples that have binding densities outside of the
recommended thresholds.

Positive controls were spiked into each NanoString experiment, they should show linearity
with positive control A having highest values, down to positive control F with the lowest.
Control range and Interquartile range (IQR) were also examined. The counts were also
examined; any samples with unusually low counts were flagged using cutoffByMMAD to
identify the threshold. This was based on the median of the data and the upper and lower
thresholds were counted using median (x) — d * mad (x) and median (x) + d * mad (x),

respectively (where d was a scalar).

233 Log and Square-root Transformation

Sometimes, to obtain a more normal distribution of the data, it can be useful to transform
the data. Many inferential statistical tests assume that the data was of normal distribution
and violating these assumptions can cause an increase in both type 1 and type 2 errors. For
regression-based models, the relationship between input and output variables should be
approximately linear (so the input variables have a normal distribution and the output has
constant variance, thus the variance of output variables was independent of input variables).
Two transformations that have been used in this project were log transforming the data and
square root transformation. Square root transformation has been shown to be appropriate for
transforming count data'”. However, square-root transformation of data has its drawbacks;
if your data contains both values greater than 1 and values between 0 and 1, these two types

of values will be treated differently.

234 ComBat

Batch effects occur in many high-throughput experiments, they can be caused due to

laboratory conditions, reagent lots and personnel differences. ComBat was determined to be
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the best performing of six methods for removing batch effects in microarray data'’®. The
ComBat function is an empirical Bayes method, where location and scale model

adjustments are made as follows:

YViig = g+ XBg + Vig + igé€ijg
Where a is the overall gene expression, X is a design matrix for sample conditions, S is
the vector of regression coefficients corresponding to X, &;j4is the error terms (which are
assumed to follow a normal distribution) with expected value of 0 and variance 0';. The y;g4
and §;, represent the additive and multiplicative batch effects of batch i for gene g.
The adjusted data is then given by:
Vig— & —X B:c; — Vg

Vijg = 5 +ag + XB,
g

Where @, E;, Yig and 6;4 are estimators for the parameters g, By, Vg and §;4 based on the

above model. The ComBat function of the sva R package was used with R version 3.2.1.

2.4 Basic Statistical Tests

Basic statistical functions used and described below were part of the R stats package and

were used with default settings, under R version 3.2.1.

24.1 Mann-Whitney U test (Wilcoxon Rank Sum test)

The Mann-Whitney U test was a non-parametric log-rank test capable of identifying
differential expression of genes between two different states, for example, cancer vs. non-
cancer. The test works by assigning a rank to each individual value from 1 to n (where n
was the number of samples) and 1 was assigned to the smallest value. It then compares the
sum of the ranks in the first group (R;) to the expected sum of the ranks given the sample
size of group 1 and then the sum of the ranks in the second group (R,) was compared to the

expected sum of the ranks given the sample size of group 2 (these values were considered
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Ui and Uy, respectively, see Equation 2.3). The smallest of these numbers was then used to

calculate the significance.

Equation 2.3 Mann-Whitney U test

ni(ny +1)

Ui =R, —
1 1 )
One advantage was that more accurate results than a 7-test were obtained when used on data

with a non-normal distribution'””.
242 Spearman’s Correlation

Spearman’s rank correlation coefficient was a non-parametric test of statistical dependence
between two sets of data, most commonly two variables. It measures the relationship
between these variables providing a value between -1 and 1, where 1 or -1 means complete
dependence, whilst 0 means that no dependence was observed. Spearman’s correlation uses
the rank of the variables rather than exact values (as used in Pearson’s correlation). The
covariance of these ranks was divided by the standard deviation of the ranks also (Equation
2.4). Here, d; was the difference in ranks for variables x and y, 13 was the notation for the
coefficient for a sample statistic and n was the number of samples. Spearman’s correlation
was preferred over Pearson’s correlation typically when one of the variables was ordinal

and the other was continuous or if the relationship was non-linear'’®.

Equation 2.4 Spearman's Correlation

n 2
i=1 di

s= -7 n(n2—1)

24.3 Pearson’s Correlation

Pearson’s product moment correlation coefficient was calculated in a very similar method
to that of Spearman’s correlation in that the covariance of the two variables was divided by
the standard deviation of those variables. The key difference was that the exact values were
used instead of their ranks (Equation 2.5). Here the correlation coefficient was noted by r

and x; and y; were the ith individuals of x and y variables. Pearson’s correlation was
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typically used when both variables were continuous, normally distributed (as extreme

values can bias the strength of a relationship), and the tested relationship was linear'”,

Equation 2.5 Pearson's Correlation

.= i1 - )i — y)
VIZE (= DR, 0 — 7)2
244 Pearson’s Chi-Squared

This statistical procedure was typically used to identify if the frequency distribution of
events was independent from the labels assigned to the event. It can be used to suggest if
two groups of variables were related or not, for example in clustering, to see if the clusters
were significantly related to the clinical category, a frequency distribution table can be
produced. To calculate what frequencies were likely to occur from chance, the number of
observations (0;;) was divided by the number of cells in the table, this gives what was
known as the theoretical frequency (E;;). This can then be used to calculate the test statistic

(Equation 2.6) and with n-1 degrees of freedom, the p-value can also be determined'”.

Equation 2.6 Pearson's Chi Square test

0y — E;j)?

X2 =
E;

j

245 Welch t-test

The Welch #-test was a parametric test to measure how the means and variance of two
groups differ in normally distributed data, where the variances of the two populations were
assumed to be non-equal. The mean of the data points in-group A and B, along with the
squared sums (3 x)? and also the sum of the squares Y,(x?) were used to calculate a ¢ value
(Equation 2.7). This provides a t value, which was comparable to values designated using
different degrees of freedom (dependent on the number of samples in your two groups of
data). Combining the ¢t-value with the relevant degrees of freedom (sum of the variables in

each group minus 2) yields a p-value.
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Equation 2.7 The Welch #-test, comparing the mean and standard deviation between two sets of data to
conclude if they were significantly different from each other

B Xy— Xp
<ZAZ_%)+(ZBZ_%) 1 1
ny +ng — 2 '[a-}_ﬂ

24.6 ANOVA - Analysis of Variance

Analysis of Variance (ANOVA) was a procedure used to analyse the differences among
group means. In this work, it has a similar function to the #-test but allows the analysis of
more than two subgroups. Firstly, the mean sum of squares within each group, MSSy

(Equation 2.8) and the mean sum of squares between the groups, MSSg (Equation 2.9), was

MSSg
MSS,,

calculated. The ratio of these then provides the test statistic, F (F = ) Combining the

F statistic with the degrees of freedom allows a p-value of significance to be determined.
There were two degrees of freedom to calculate in ANOVA, dfs = k-1 and dfy, = n-k, where

n was the total number of samples and & was the total number of groups.

Equation 2.8 Mean sum of squares within each group of data, where n was the total number of samples, k&
was the total number of groups, g was the value and G was all of the values across all groups.

ZgEG(x—fg)2
n—=k

MSS,, =

Equation 2.9 Mean sum of squares between each group of data, where n was the total number of samples,
k was the total number of groups, g was the value and G was all of the values across all groups and n, was
the number in each group.

Y9 €Gny(Xy— X5)?

MSSB: k—n

24.7 Tukey test

The Tukey test allows us to make multiple mean comparisons within the data with just a
one step procedure (Equation 2.10). It was essentially a ¢-test that takes into consideration
multiple testing. By assigning known groups to the data one can infer if these groups have
significantly different means from all other groups within the data. Pairwise comparisons of
all the possible groups’ means were made and the difference was compared to the standard

C1Tor.
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Equation 2.10 The Tukey test, where Y s was the greater of the two means, Yy, was the smaller of the two
means and SE was the standard error of the sum of the means.

Va— Y

qS = SE

24.8 Kruskal-Wallis

The Kruskal-Wallis test is a one-way ANOVA on ranks, it is essentially an extension to the
Mann Whitney U test. Similarly to Mann Whitney U, the Kruskal Wallis test uses ranks,
and therefore, is a non-parametric test useful for non-normally distributed data.
Additionally, similarly to ANOVA, the Kruskal-Wallis test can allow testing of >2

categories of data.

g on@G -7
H=(N-1)<5 l-ln;( ) -
i=1Zj=1(rij - T)

2

where n; is the number of observations in group i, g is the number of groups, r; is the rank
of observation j from group i, N is the total number of observations across all groups, 7; is
the average rank of all observations in group i and 7 is the average of all the r;;.

A p-value can then be approximated from H from the table of X? distributions and the
degrees of freedom (g-1). The function kruskal.test from the stats R package was used in R

version 3.2.1.

249 Variance and IQR

Variance of a dataset can be measured as the sum of the squared distance of the data points
from their mean. The IQR of the data was the lower quartile (the data point at 25%)
subtracted from the upper quartile (the data point at 75%). The IQR was useful when data

was not normally distributed.
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2410 Log rank Test

The log rank test is used to compare the survival experience of two different experimental
statuses. It tests for the null hypothesis that there is no difference for the populations for the
probability of an event at any time period, unlike survival curves, where a comparison at
arbitrary time points are given.

For each time the number of events in each group are calculated and compared to the
number expected if the null hypothesis were to be true. For each group the test statistic is
calculated using (O-E)*/E, where O is the number of observed events and E is the number of
expected events. The comparison is completed using a X” test (Section 2.4.4) and from the
X2 distribution tables, a p-value can be provided allowing acceptance or rejection of the null
hypothesis'®.

The log rank test has advantages such that the whole follow up period is utilised, and no
information about the shape of the survival curve of distribution of survival times is
required.

The log rank test was completed using the survdiff function of the survival R package®.

2.4.11 Shapiro-Wilk

The Shapiro-Wilk test was used to determine if a sample came from a normally distributed
population. The null hypothesis was that the data was from a normally distributed
population and so was rejected if the p-value was less than the chosen alpha value (typically
0.05). Equation 2.11 was utilised to determine the W statistic, where x(;) was the ith
smallest number in the sample (the ith order statistic) and a; were the constants derived
from the covariance matrix of the order statistics'®'. The algorithm used in R also has the
ability to calculate a p-value from W'®2 This was used with standard settings, under R

version 3.2.1 for all Shapiro-Wilk testing.

Equation 2.11 The Shapiro-Wilk test, where x(;) was the ith smallest number in the sample (the ith order
statistic) and a; were the constants derived from the covariance matrix of the order statistics
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_ ey aix@y)?

v Di=1(x; — X)?

2.4.12 Brent

The Brent method is an algorithm that combines three root-finding algorithms. It is as
quick and more reliable than most other bisection methods. It is an iterative method that
moves inwards from two points known to be on a quadratic curve until the root that
provides the optimal bisection is discovered. The function optim from the stats package in R

was used, with the argument method=Brent, for the optimal bisection of density plots.

2.4.13 Benjamini — Hochberg Multiple Testing Correction

In order to limit false discovery rates when completing multiple tests, multiple testing
correction is completed. This particularly is useful for removing false positive hits, but has
the trade-off of creating false negatives. The Benjamini-Hochberg method is a widely used
procedure when completing multiple statistical tests, like testing each gene or probe
between two groups. The correction starts by assigning a rank 1 to N, where 1 is assigned to
the smallest p-value. Each p-value is then given a Benjamini-Hochberg critical value, using
the formula (i/m)Q, where i is the assigned rank, m is the total number of tests and Q is the
false discovery rate (chosen by the user). A comparison between the p-value and it’s critical
value is then made by finding the largest p-value that is smaller than its critical value. Any
p-value above this is then considered significant by the Benjamini-Hochberg method, and a
new p-value is assigned.

The function p.adjust from the R package stats was used the Benjamini-Hochberg method

passed as an argument.

2.4.14 Receiver Operator Characteristics (ROC)

ROC curves were a graphical plot to show the diagnostic ability of a classifier system as its
discrimination threshold was varied. There was a trade-off between true predicted positives

(sensitivity) and true predicted negatives (specificity) in the outcomes as this threshold was
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varied. ROC aims to identify the best threshold to give the best balance between the
specificity and sensitivity. Each ROC also gives an AUC (area under the curve), which was
a value between 0 and 1. Where 1 was a perfect model with all positives classed as positive
and all negatives classed as negatives, and 0 shows there was no predictive value of the
model at all. Generally, an AUC above 0.8 was valued as good. Two packages were used to
produce ROC curves. For the HT chapter, ROC was performed using ROC, also part of the
ROC bioconductor package'®. Alternatively, to analyse the performance of the models built
in the NanoString2 chapter the ROC function of the epi package'®* was used, this calculated

the sensitivity and specificity as well as the AUC.

2.5 Clustering

25.1 Principal Component Analysis (PCA)

PCA allows the visualisation of the maximum variability of a data set in two-dimensions.
For a simple explanation, imagine there were ten samples and five genes and a graph was
drawn with five axes, with each of the ten samples placed at the point that represents their
value along each axis. Then identify a line that goes through as many of the samples as
possible with the highest variation, that imaginary line was the first principal component.
The second principal component was the line with the second highest variation and so on.
Therefore, the majority of the variation of the data was found in the first two principal
components and a 2D plot of these was enough to identify the biggest differences in
samples.

This unsupervised mathematical procedure aiming to reduce dimensions of data works
using a coordination transformation from the original data space to “eigenspace” using
eigenvectors and eigenvalues of a matrix'®. The first step was to calculate a covariance
matrix of the data, with the aim to reduce redundancy and maximise variance. From the

covariance matrix, which was used to measure how much the dimensions vary from the
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mean, the eigenvalues and eigenvectors can be determined. The covariance of two variables
tells was a measure of how they vary together (Equation 2.12). Once the eigenvectors and
the eigenvalues have been determined the eigenvalues can be sorted in descending size

order.

Equation 2.12 PCA covariance equation

cov(X,Y) = z (x; — f)}\g’y)i — )

2.5.2 Hierarchical Clustering

In this work, the commonly used UPGMA (“unweighted pair-group method using
arithmetic averages”) method of hierarchical clustering was used. The highest similarity (or
smallest distance) was used to identify the next two clusters to be merged. The distance of
each sample to members of a cluster were computed with equal weights and the similarity
or distance matrix was produced. This was updated and reduced at each computation, as
samples/clusters were combined, allowing clustering to proceed by agglomeration as the

similarity criterion was relaxed'®.

2.5.2.1 Pvclust

Pvclust'®

was a bootstrapping method that calculates the p-value for each cluster in a
hierarchical clustering dendogram object through the application for bootstrap resampling;

clusters with significant AU p-values were shown with a red box.

253 k-means Clustering

k-means clustering aims to separate points into k-clusters so that the within clusters sum of

squares was minimalized by seeking local optima so that moving of a point from one cluster

to another will not reduce the sum of squares (Equation 2.13)"**:

Equation 2.13 Optimal local within cluster sum of squares. x?) was the data point and c; was the

centroid, where i was a data point in cluster j. kK was the number of clusters and n; was the number of
samples in cluster j.
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k 2
AWK

Initially, centroids were arbitrarily picked each point was assigned to the closest centroid in
Euclidean distance. Then the centroid was adjusted to the new cluster mean, the samples
were reassigned to the closest centroid and this was repeated until convergence was
reached. Convergence was when no observations can change the clusters when added and
centroids were subsequently redefined'®. The advantages of k-means clustering include
speed and simplicity, whilst disadvantages include differing results per run due to the
random starting centroid points and an unknown input value for &' In this project, the
optimal number of clusters was determined using the Bioconductor function NbClust'”',

which uses 30 metrics including the Silhouette, Dunn and Davies-Bouldin Indices (section

2.5.4),

254 Silhouette, Dunn and Davies-Bouldin Indices

Three of these main techniques used for comparing how well data was clustering were the
Silhouette, Dunn and Davies-Bouldin Indices.

The silhouette index compares the mean distance of a point to the others in it’s cluster and
then other clusters. It provides an index value between -1 and 1, where 1 was an indication
that the point belongs to the correct cluster and -1 means it does not.

The Dunn index was the minimum distance of points between two different clusters
divided by the maximum distance of points within a cluster for each cluster. Here, a larger
value was representative of good clustering.

The Davies-Bouldin index takes the mean distance of the points within a cluster from their
Barycentre and then divides this by the distance between the Barycentres and so a smaller

value was an indication of good clustering.
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2.5.5 Latent Process Decomposition

Latent Process Decomposition (LPD)'* is a hierarchical Bayesian (probabilistic) model that

was designed for the clustering of microarray data and thus can also be used with other
forms of count data. It estimates the most probable/optimal number of clusters, and
determines the probability of a sample belonging to each cluster, rather than membership of
a cluster being assigned. This was important as samples were often heterogeneous made up
of cells from different clones of cancer. Also different biological processes often work
together to influence expression levels.

LPD makes the assumption that a sample’s expression was determined by a series of
processes. Each process has an associated expression profile which was determined by the
algorithm. A sample’s expression profile was then de-convoluted in to these process
expression profiles. For example, Gene A has expression of n genes similar to the
expression of the genes that make up the signature of process 1, and expression of m genes
was similar to the expression of genes that make up the signature of process 2. n genes were
of a higher similarity to process 1 than m genes were to process 2 and so max likelihood
was higher for process 1; Gene A has 0.78 for process 1 but still 0.22 for process 2, etc.. So
it has some similarity through some genes to process 2 but has more similarity through
more genes to process 1.

The first step of LPD was to estimate the most probable number of clusters or “processes”
using the maximum likelihood solution and a uniform prior. A uniform prior was a
probability assumption with limited knowledge. E.g. a ball under 3 cups A, B, C has
probability prior of p(A) = p(B) = p(C) = 1/3, where changing the order of the probabilities
of the cups makes no change to the prediction. In the final model, a prior was defined to
avoid over fitting by penalizing over complex. The parameter (sigma) in this prior was
estimated next through cross-validation.

After these parameters were defined, the final solution was obtained by iteratively updating

various parameter values of the Dirichlet distribution (a collection of multivariate,
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continuous probability distributions that was a more generalized version of beta
distributions) modelling expression. Process mean values were initialized to the mean
expression across the data set for each gene, whilst variances were set to the variance of

their respective genes'*”.

2.6 Model Optimisation

Predictive models were a supervised learning method, which has been applied to both the
NanoStringl and NanoSting?2 data. For the NanoString2 data, it was divided into training,
and test sets for a more robust and accurate model evaluation. A number of different models

and modelling techniques were applied.

2.6.1 GLM: Generalised Linear Model

There are two important aspects of GLM'”: General and Linear. Linear because the
underlying equation was that of a straight line: Y = o + BiXi. In this example Y was the
predicted or response variable, whilst X was a single predictor or explanatory variable. Po
was the y-intercept and was constant, whilst B; was the slope or weight of variable X;.
General because the equation was able to handle multiple explanatory (X) variables e.g. Y =
Bo + BiXi + PB2Xs. Any control variables may be included and if so, should precede the
explanatory variable of interest within the equation, in general practice.

The explanatory variables may be numerical and continuous or binomial/factorial with
levels. The GLM generalised linear regression by allowing the linear model to be related to
the response variable via a link function allowing the modelling of binary response
variables through logistic regression and ordinal variables through proportional odds
models.

GLM was performed as an initial step in identifying probes that were significant for
predicting clinical category (CB vs. Ca, CB vs HR-Ca, CB-L-I-H trend and CB-Ca-
Advanced Ca trend) within all of the data (NanoStringl) and within the training data

(NanoString2). Significant probe lists were then shrunk and selected using techniques such
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as Lasso, Step and Random Forest (section 2.6.2, section 2.6.4, section 2.6.3, respectively)
and then these condensed lists were then used to build a final model. These models were
then tested upon the test data (NanoString2). The R function glm from the stats package
was used for logistic regression models and the polr function from the MASS package for

proportional odds models. These were used with the R version 3.2.1.

2.6.2 Lasso

Least absolute shrinkage and selection operator (LASSO) was a regression method that was
capable of performing selection and regularisation in order to improve both interpretability
and prediction accuracy of statistical models, respectively. A constraint was applied to
which the sum of the absolute value of the regression coefficients must be less than. This
forces some of the coefficients to be set to zero, allowing these covariates to be disregarded
from the optimal statistical model. Thus allowing both subset selection and shrinking large
regression coefficients so as to reduce over fitting'”*. Over fitting of models can be
problematic because these models tend to have poor predictability and can be over
responsive to minor fluctuations within the test data set. Lasso can be easily applied to a
variety of statistical models including generalised linear models and proportional hazard

models, amongst others.

2.6.3 Random Forest

Random forest'”> (RF) was an ensemble method that was a combination of tree predictors
(weak learners) such that each tree was built using a sample set constructed by random
selection replacement (bootstrapping). Once built the result of the model was the
combination of the results of all trees (votes for binary outcomes and mean for continuous
outcomes). The random forest function (from the random forest package) was used for

classification and for regression models.
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Each decision tree was built by taking the bootstrap data and repeatedly separating it at
nodes. At each node a small subset of, m, variables were chosen at random, and the
combination that optimises the split, according to some objective function, was found. At

the next node another m variables were chosen and the same method was performed. m was

generally set atﬁ or g, where p was the number of variables. As the number of trees

increases, the generalisation error of the forest converges.

The importance of variables in the model were assessed in two ways. Internal out-of-bag
(OOB) estimates were used to judge the quality of the model. OOB was the average error
calculated for each variable from the trees that do not contain that specific variable in their
respective bootstrap sample. The error was calculated using the misclassification rate of the
subjects. These estimates were produced using a single run of a forest with 1,000 trees and
no test set. Variables with large mean decrease in accuracy or OOB were more important
for classification of the data. Additionally, a Gini coefficient was also used to assess
importance. This was a measure of how each variable contributes to the homogeneity of the
nodes and leaves in the RF. Each time a variable was used to split a node, the Gini
Coefficient for the child nodes were calculated and compared to the original nodes
coefficient. The coefficient can be between 0 (homogenous) and 1 (heterogeneous). These
changes in Gini were summed and normalised for each variable. Again, variables that were
more important have a higher mean decrease in Gini.

Random forest was applicable to regression. Mean squares error was usually used to
determine error rate when using random forest with regression. MSE was the mean (divided
by n (number of data points)) of the squares of the errors'®.

Random forest (from the random forest package) was used for classification and for

regression.
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2.64 Step for feature selection

StepAIC was a function of the MASS package in R'’. It was an automated model selection
technique that takes a model and inserts or removes each variable and assess the model
quality using the AIC — Akaike Information Criteria (Equation 2.14). The model with a
smallest AIC was selected as the optimal and then this model was fused in the next step,
this was repeated until no further improvements in AIC were observed. StepAIC can be run
forwards (where you begin with all variables and remove them), backwards (where you
begin with a small number of variables and add them) or both (where variables were added

or removed as required)'*.

Equation 2.14 shows how to calculate AIC. Where the model with the lowest AIC was deemed optimal.
Where k was the number of parameters and L was the maximum value of the likelihood function for the
model.

AIC = 2k - 2log (L)
2.7 Pathway Analysis

271 DAVID

DAVID was the Database for Annotation, Visualization and Integrated Discovery, it was a
gene functional classification tool. It was a web-based tool whereby you submit a list of
transcripts of interest and DAVID classifies the list into functional related gene groups,
ranks the importance of the discovered gene groups (dgg) and summarises the major

199

biology of the dgg ™. DAVID was used to identify if there were any interesting biological

functions of the transcripts identified as significant.

2.8 Survival Analysis Tools

Survival analysis was the analysis of data where the response variable was the time to an
event, for example to death or as in our case time to failure. Individuals that fail after the

end of the study at some point in the future were known to be censored. Survival analysis
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tools were used to identify if there were transcripts capable of predicting relapse to hormone
therapy (HT) prior to a two-year period. The non-failures were said to be censored as after

the last follow up date you don’t know if they have failed or not*®,

2.8.1 Kaplan Meier (KM) Curves

The KM survival distribution was a discrete stepped survivorship curve, which gains
information as each event (failure) occurs. There were two variables at any time point on
the KM (Equation 2.15); those that have failed, d(t;) and those at risk of failing, r(¢;) and

this produces a step at each failure.

Equation 2.15 The KM function.

S = nr(ti) —d(t)

r(t;
bt (t:)

Censored points were denoted by a + on KM plots. Kaplan Meier plots were created using
the survfit() function, specifying type=(“kaplan-meier”) from the survival package*”' and
ggsurv() of GGally package’™, on R version 3.2.1. Dichotomised high/low expression

levels were determined for each probe using k-means clustering and &=2 (section 2.5.3).

2.8.2 Cox Proportional Hazard

Cox Proportional hazard model was the most commonly used regression model for survival
data. It assumes the hazard was of the form A(t; Z;) = A,(t)r;(t), where Z;(t) was the set
of explanatory variables for individual i at time t. The risk score for individual i was r;(t) =
eP Zi(®)  where B was a vector of parameters from the linear predictor A4 (t), which was an
unspecified baseline hazard function that will cancel in due course. It guarantees that A was
positive for any regression model. Hazard was the instantaneous risk of failure, or
instantaneous rate of change in the log number of survivors per unit time. Coxph was part of

the survival package®®".
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NanoString Data Analysis 1: The Pilot Study

3.1 Summary

The Movember GAP1 global PCa biomarker initiative has multiple collaborators
working on the identification of urinary biomarkers for the risk-stratification of PCa.
Our laboratory is specifically interested in the RNA expression changes in PCa that are
detectable within urinary cell sediments and extracellular vesicles (EVs). The EV RNA
expression pilot study described here had the following aims:

1. Identify if PCa specific transcripts can be detected in urinary EVs

2. Assess whether transcript levels within urinary EVs were able to i) identify PCa per
se, ii) distinguish aggressive from indolent PCa

111



CHAPTER 3: NANOSTRING DATA ANALYSIS 1: THE PILOT STUDY

3. Identify if the NanoString system could be applied to Nugen Ovation amplified
cDNA (Nanostring probes are strand specific and designed to be applied to mRNA).

4. Identify suitable methods for the analysis of the NanoString data

In the pilot study, expression levels of 57 transcripts were measured in 194 samples
using NanoString technology (section 1.6.1). The NanoString technology was able to
detect PCa specific markers (section 1.4.6), such as TMPRSS2:ERG which was detected
in 58% of all PCa samples and in 19% of samples from men with no clinical evidence
of PCa (CB). This result, confirmed by RTPCR demonstrated that i) NanoString
technology was capable of capturing cDNA amplified by the Nugen Ovation kit; ii) EV
mRNA contains PCa-specific transcripts, and iii) the methodology was sensitive enough
to identify PCa in men with undiagnosed cancer or HGPIN.

Latent Process Decomposition unsupervised analysis (section 2.5.5), clustered the EV
expression data into four groups: LPD groups 1 and 4 were saturated with high-risk and
advanced cancers, whilst LPD groups 2 and 3 showed clinical diversity. The majority of
the intermediate-risk samples resided within LPD group 2 and most of the CB were in
LPD group 3 (section 3.5.5).

Supervised statistical approaches (Mann Whitney U test) determined nine probes
significantly differently expressed between PCa (advanced, high-, intermediate- and
low-risk) and non-PCa samples (Table 3.19), eleven probes significantly different
between high-risk PCa and non-PCa samples (Table 3.20) and six probes between
advanced PCa and non-PCa samples (Table 3.21).

Supervised modelling of the data (using generalised linear models (glm) and Lasso for
shrinkage (section 2.6.2)) identified three models that distinguished; i) PCa vs. non-PCa
with an AUC of 0.937, ii) aggressive PCa vs. non-aggressive PCa with an AUC of
0.852 and iii) advanced PCa vs. benign with an AUC of 0.983.

Twenty-three transcripts were significantly differentially expressed between PCa and

non-PCa (Table 3.42), however, only seven were consistently differentially expressed
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between the various data-analytic methods used (DLXI, ERG3’, TMPRSS2:ERG,
HOXC4, ERG5’, PCA3 and HPN). Four transcripts were consistently differentially
expressed between aggressive PCa and non-aggressive PCa in various tests (Table 3.43)
and two transcripts between advanced and non-PCa (Table 3.44).

These findings highlight that the transcript data collected from urinary EVs in PCa

patients comes, at least in part, from the prostate and holds clinically relevant structure.

3.2 Introduction

3.2.1 The Research Gap

Risk stratification is currently based on PSA, Gleason score and T stage. MRI is being
phased in, but has been shown to have only 41% specificity in a recent study of low risk
patients®®. Patient clinical pathways would benefit from additional information on their
PCa diagnostic and prognostic status. We propose that urine EV mRNA data could
provide useful clinical information that could help tailor patients to treatment pathways
based on their genetic composition and potentially improve uncertainty over which
treatment pathway each patient should be assigned to. The PCA3 test has shown to
provide minor improvements to risk stratification but importantly shows the utility of

urine in PCa diagnostics and prognostics.
3.22 The Pilot Study Aims

The pilot study used NanoString technology to investigate the RNA expression level
changes of 57 target transcript sequences within EVs extracted from urinary samples
collected at the NNUH as part of the Movember study. The aims of this pilot study
were:

a) To identify if the transcript content of urinary EVs contained PCa derived material

b) To identify if transcript levels within urinary EVs are linked to PCa risk stratification
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c¢) To identify if NanoString is a suitable method for obtaining transcript level data from
our cDNA samples

d) To identify appropriate methods for analysing NanoString data.

3.2.3 The Probe Targets

The 57 target transcript sequences were selected for the following reasons: i) prostate
specific transcripts, ii) transcripts overexpressed in advanced PCa tissue (literature
search), iii) suspected housekeeping genes, iv) tissue-specific controls for kidney,

bladder and blood.
3.24 Risk classification of prostate cancer patients

Patients were placed into clinical risk categories based on D’ Amico and NICE criteria:
Prostate Cancer Diagnosis and Treatment 2014 guidelines”. In addition the
intermediate risk patients were subdivided on Gleason (G3+4 Vs. G4+3), as progression
rates between these two groups are very different (Table 3.1). The median age and PSA
at diagnosis for each clinical category have been recorded (Table 3.2). For some

computational analyses, specific risk groups were combined (Table 3.3).

Table 3.1 Classification and Frequency of the sample types based on NICE criteria®. The
quantity of samples for each clinical group can be seen as well as the clinical description of

the group in terms of Gleason score, PSA level and T stage.

‘ Classification: NICE Groupings

Sample Class Description Number of
Samples

Advanced (A) Metastatic , PSA>100, and G>8 17

High-risk (H) G7 PSA>20 50

Upper G4+3 PSA<20 19

Intermediate-risk

(%)

Intermediate-risk G3+4 PSA<20 and IL= G6 PSA>10 53

@

Low-risk (L) Low G6 PSA<I10 10

Abnormal (S) High PSA no Bx 4

CB<I* No evidence of Ca and PSA<I 18

CBn* No evidence of Ca and PSA normal to age 22
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M 19 5 Removed for technical failure 1

Total 194

*CBN and CB<1 were combined to CB (as there was no significant difference between
their expression levels p > 0.05: Two sample #-test) and Ul and I were combined to I (as
there was no significant difference between their expression levels p > 0.05: Two
sample #-test).

Table 3.2 Median age and PSA at diagnosis for each clinical category, of samples that are used in
subsequent analysis.

Sample Class Number of Median Age Median PSA at Dx
Samples

Advanced (A) 17 78 110

High-risk (H) 50 73 27

Upper 19 74 9.55

Intermediate-risk

(un

Intermediate-risk 53 67.5 8.35

(U]

Low-risk (L) 10 68 5.95

CBN and CB<1 40 68 1.1

Table 3.3 Sample numbers used in i) ‘Cancer’, ii) ‘Aggression’ and iii) ‘Extreme’

computational analyses.

Number of Samples

Cancerous (A, H, I and L) and No Evidence of Cancerous =149/ CB =40

Cancer (CB)

Aggressive (A, H) and Non-Aggressive (I, L) Aggressive = 67/ Non-Aggressive = 82
Extremes (A Vs. CB) A=17/CB=40

3.3 Data Pre-processing and Technical Variation

33.1 Normalisation and Background correction

The NanoString analyses provided data for 57 test probes, and 14 non-human system
control probes (6 positive-control probes and 8 negative-control probes) in 194 Nugen
Ovation amplified cDNA samples. The 6 positive control probes detected spiked-in
control sequences that were used to assess the overall NanoString assay transcript
detection efficiency for each sample, and generated a normalisation factor (NF) in the
following way: The average nCount for each samples’ positive controls was calculated

and this number was divided by the sum of all samples averages. Each nCount value
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was then multiplied by the sample-specific NF. Background correction was not applied
and background subtraction was found not to be appropriate for this data (data not

shown).
3.3.2 NanoStringNorm — Quality of Data and its Normalisation

The quality of the normalisation was evaluated using the NanoStringNorm R package
(section 2.3.2.1). Other than a few flagged samples (M_14 7, M 19 5, M 36 7, (Table
3.4)), and a few flagged probes (KLK4, GAPDH and FOLH1, (Table 3.5)), the data was
of overall good quality. The three probes were flagged due to high mean and/or
standard deviation or for FOLHI not following the Loess curve of best fit. For GAPDH,
we predicted similar housekeeping properties as in cell RNA, however that is not what
has been observed (section 3.3.5). For KLK4, it suggests high expression in the samples
with a wide range of signals (considering we have samples across different clinical
categories this is expected). For FOLH1, the Loess curve of best fit is a non-parametric
regression derived curve that is similar to a line of best fit through all of the data. To not
follow it simply suggests that this probe is expressed rather differently to the other
probes in these samples (again could be due to the range of clinical categories used).

Some cartridges (each cartridge is loaded with twelve samples and then run on the
NanoString machine) showed significantly different means and standard deviations in
comparison to others in the raw data. The flagged outliers were considered with caution

and reviewed further in subsequent analyses

Table 3.4 Three samples were flagged by NanoStringNorm.

‘ Samples  Issues
M 14 7  Low sample mean

M 19 5  Low sample mean

M 36 7  Low sample mean
Normalisation factor flagged as influential outlier
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Table 3.5 Three probes were flagged by NanoStringNorm.

Probes Issues

KLK4 High mean and SD
GAPDH  High mean and SD
FOLH]I Doesn’t follow Loess curve of best fit

3.3.3 Experimental and Technical Investigation

3.3.3.1 NanoString Scanners and Cartridges

NanoStringNorm showed significant differences between the mean and standard
deviation of the normalised data between cartridges; indicating there might be batch
effects on the scanner and cartridge-dependent variables. Scanner and cartridge-
dependent variations were therefore examined using Principal component analyses
(PCA) (section 2.5.1). PCA did not detect any clustering based on technical artefacts
(Figure 3.1A), and there was no significant association between mean expression per
sample and either cartridge (Kruskal-Wallis rank sum test: p =0.17, x=21.21), or

Scanner (Kruskal-Wallis rank sum test: p = 0.71, x=0.14).

3.3.3.2 RNA Extraction and Amplification

At the beginning of the urine-collection study, protocol optimisation for RNA yield
from RNA extractions was conducted (by Marcel Yazbek-Hanna and Rachel Hurst,
section 2.1.3), which led to samples from multiple variant protocols being included in
the pilot study set. PCA (section 2.5.1) was applied and no clustering was observed due
to RNA extraction protocol (Figure 3.1B). There was no significant association between
the median expression for each sample and the RNA extraction protocol used (Kruskal-

Wallis rank sum test: p = 0.16, 2= 6.5).
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PCA plot by NanoString Cartridge and Scanner ID PCA plot by NanoString Protocol
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Figure 3.1 To ensure there were no batch issues PCA plots were produced of NanoString loading
batches and RNA extraction protocol. A) PCA did not identify any clustering associated with
NanoString cartridge or scanner used. Along with the Kruskal-Wallis rank sum results also
(Cartridge: p = 0.17, Scanner p = 0.71), it was deemed there was no batch effect produced by
NanoString loading. B) PCA does not identify any clustering associated with RNA extraction
protocol used and the Kruskal-Wallis rank sum test was also insignificant (p = 0.16). Thus it was
deemed that using no filter, a 45um filter, and a 45um filter with a 30-minute wait along side the
Qiagen micro RNA RNeasy kit using manufactures’ protocols made no difference.

Due to the limited amounts of EV RNA harvestable from urine, 15-20ng RNA from
each sample was amplified using a Nugen Ovation WTA2 cDNA amplification kit.
The amount of cDNA obtained after amplification (in pg) was investigated for
clustering affects using PCA (section 2.5.1) and correlation (section 2.4.3). cDNA
yields were split into groups; group 1 = 1-2pg, group 2 = 2-3ug, group 3 = 3-4ug, group
4 =4-5ug, and group 5: >5ug. Mild clustering affects were observed; samples with
lower Ovation output had a lot more spread than higher amounts of output (Figure
3.2A) but no significant correlation was found between cDNA yield and median log,
expression per sample (p = 0.09, »=0.12, Pearson’s correlation, Figure 3.2B). The
distribution of clinical categories within each Amplification yield group was not

statistically significant; (y = 26.2, p > 0.05, x? test (section 2.4.4), Figure 3.2C).
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A PCA by cDNA Output Group B Amplfication output (ug) Vs. mean log2(expression)
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Figur
e 3.2 A) Amplification cDNA yield shows mild clustering (¢cDNA yields were grouped: group 1 =1-
2ng, group 2 = 2-3png, group 3 = 3-4pug, group 4 = 4-5pg, and >Spug in group 5). B) Amplification
c¢DNA vyield shows no influence on sample mean expression C) Amplification cDNA yield shows
dependence on clinical category.

334 Transforming data to a normal distribution and the Shapiro-Wilk

test

log> and square root transformation (section 2.3.3) was applied to attempt to get the
dataset closer to a normal distribution (Figure 3.3). Neither the log;-transformed, nor
the square root transformed, nor the non-transformed data are normally distribution
according to the Shapiro-Wilk test (section 2.4.11, Table 3.7, Table 3.8). However, for
the majority of the samples (the first 70 and last 70), the W statistic is higher for the
log>-transformed data, indicating that the data is closer to a normal distribution than for

the other transformations (Table 3.6).
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A B C

Density plot for untransformed data Density plot for log2 data Density plot for square root data
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Figure 3.3 Density plots showing the distribution of a) the non-transformed data. B) the log2
transformed data. C) the square root transformed data.

The Shapiro-Wilk test was also applied to ten randomly selected probes in each of the
datasets (un-transformed, log, transformed and square root transformed) to see how the
distribution of some individual probes varied; the majority were not normally
distributed. The NanoStringNorm flagged probes (KLK4, GAPDH and FOLHI) had
similar results to the other probes. These results led to the use of non-parametric tests
wherever possible during analysis. A log, transformation was applied so that probe data

was closer to a normal distribution, as is standard practice for NanoString data®**,
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Table 3.6 Shapiro-Wilk test results on the first 70 and last 70 samples (all probes) for the non-transformed, log: transformed and square root

transformed datasets.

Un-transformed

Log: transformation Square root transformation

w p-value Normally w p-value Normally w p-value Normally
Distributed Distributed Distributed
The first 70 samples (1-70) | 0.5143  2.2x10°"° No 0.9479  2.2x10°'° No 0.7937  2.2x107'° No
The last 70 samples (124- 0.525 2.2x10™"° No 0.9496  2.2x10°'° No 0.8105  2.2x10°"° No
194)

Table 3.7 Shapiro-Wilk test results for 10 randomly selected probes for the non-transformed, log: transformed and square root transformed datasets.

Log> transformation

Un-transformed

Square root transformation

w p-value Normally w p-value Normally w p-value Normally
Distributed Distributed Distributed
Probe 24 0.7704 3.886x10"°  No 0.6369 2.2x10™"° No 0.9421 4.929x10"  No
Probe 2 0.8414 2.847x10"°  No 0.5119 2.2x10™"° No 0.942 4.883x10"  No
Probe 22 0.7613 2.2x10™"° No 0.8579 1.762x10"2  No 0.9548 7.663x10"°  No
Probe 17 0.9394 2.906x10"  No 0.7784 7.562x107"°  No 0.9952 0.7955 Yes
Probe 47 0.9888 0.1301 Yes 0.6097 2.2x107"° No 0.9694 0.000306 No
Probe 34 0.8222 4.011x10"*  No 0.7533 2.2x107"° No 0.9652 9.965x10"”  No
Probe 13 0.6355 2.2x107"° No 0.9869 0.0708 Yes 0.8741 1.227x10""  No
Probe 43 0.1609 2.2x107"° No 0.885 4.967x10""  No 0.4477 2.2x10™"° No
Probe 29 0.9918 0.3421 Yes 0.5435 2.2x107"° No 0.9626 5.107x10”°  No
Probe 26 0.9817 0.01245 No 0.5934 2.2x10™"° No 0.9573 1.362x10"”  No

Table 3.8 Shapiro-Wilk test results for the three probes identified by NanoStringNorm as having potential quality issues in the three datasets: non-

transformed, log: transformed and square root transformed.

Un-transformed

Log> transformation

Square root transformation
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w p-value Normally w p-value Normally w p-value Normally
Distributed Distributed Distributed
KLK4 0.9918 0.3421 Yes 0.5435 2.2x10™"° No 0.9626 5.107x10”°  No
GAPDH 0.9713 0.0005136 No 0.4575 2.2x107"° No 0.9635 6.352x10"  No
FOLHI 0.9394 2.906x10"  No 0.7784 7.562x10"°  No 0.9952 0.7955 Yes
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3.3.5 Housekeeping Probes

Five probes (4LASI, B2M, GAPDH, HPRT and TBP) were added to the NanoString
project to identify housekeeping transcripts (transcripts that remain relatively consistent
between samples of different clinical category). Housekeeping transcripts are added so
that comparisons between the samples within an expression analysis may be performed
accurately. The five transcripts are known housekeeping transcripts in cell mRNA, but
there is very little known about EV RNA housekeeping transcripts at present.

There is very little correlation between the six clinical categories (Adv, H, I, L, S, CB)
within each housekeeper expression profile (Tukey-ANOVA test, Table 3.1, Figure
3.4); the S clinical group (those with a high PSA but no Bx, n =4) has the most
significant differences compared to the other clinical categories; for ALASI
comparisons with all other clinical groups and the S group were significant. For HPRT
two comparisons were significant, one between CB and S and the other between CB
and Adv. For TBP only one comparison was significant, (between the S group and
advanced group). However, there were only four samples in the S group and so the
results of the significance test for this group were treated cautiously. Ignoring
significant comparisons that included the S group, left only one significant comparison

(for the HPRT probe between CB and Adv).
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Figure 3.4 Tukey test comparisons of clinical category for housekeeping probes. When the bar does
not cross the mid-point of the x-axis then the comparison is significant. The Tukey test takes each of
the five probes (4LAS1, B2M, GAPDH, HPRT, and TBP) and detects significant expression
differences between the six clinical categories. The significant comparisons with S (high PSA/negative
Bx samples) is treated cautiously as there were only #n = 4 samples within this group. This leaves only
one group comparison (CB with Advanced samples in HPRT) that showed any significant difference.
A good housekeeping probe would be expected to not differ between clinical categories.
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Figure 3.5 Correlation plots between the housekeeper transcripts: ALAS1, B2M, GAPDH, HPRT,
and TBP.

Pearson’s correlation coefficients (R) between housekeeping probes was below 0.5 in
9/10 comparisons (0.53 being the highest correlation), which suggests they are not well
correlated (Table 3.9, Figure 3.5). This makes the choice of which housekeeping probes
to normalise the data with difficult. So, for this reason it was decided to go ahead

without using housekeeper style normalisation for these data.

125



CHAPTER 3: NANOSTRING DATA ANALYSIS 1: THE PILOT STUDY

Table 3.9 Housekeeper probe Pearson's correlation results, looking for correlating

housekeeping probes.

EE 11451 | B2M GAPDH HPRT TBP

ALAST | - 0.19 0.43 0.44 0.53
@ =0.008) | (p=7.8x10"") | (p=18x10"") | (p=1.6x10")

B2M - 0.44 0.29 0.28
(@ =25x10") | (p=5.2x10") | (p="7.7x10")

GAPDH - 0.4 0.49
(p=11x10") | (p=7.8x10")

HPRT - 0.32
(p =4.8x10")

TBP -

An alternative to using housekeeping transcripts could be to use a similar method to the
PCA3 test, which uses KLK3 (PSA) to enhance the expression of other probes in the
data. KLK3 adjusted data was produced but the resulted data showed much weaker,
plateaued, signal strength and therefore, was not used for any subsequent analysis (data

not shown).
3.3.6 Removal of Outliers

M 19 5 was identified via PCA (Figure 3.6) and NanoStringNorm (Table 3.4) as being
an outlier that may hinder further analyses. Further investigation into this sample
highlighted that 44 out of 57 probes for sample M_19 5 failed; in the (positive control
normalised, log, transformed) data all 44 probes had a value of “-0.07400058”,
indicating that they were undetectable. The other samples of this cartridge and scanner
appear to have worked. Therefore, this sample alone will be removed for all subsequent

analyses.
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Figure 3.6 PCA plot of all log2 normalised data identifies an outlier samples M_19 5.

3.3.7 Correlating Gene Probes

Pearson’s correlation (section 2.4.3) between data from all of the probes identifies four
clusters of probes that showed strong inter-correlation (Figure 3.7, Table 3.10). Cluster
1: probes for ERG 3’ and TMPRSS2:ERG; Cluster 2: the two probes for the bacteria
U.urealYticum; Cluster 3: two M.genitalium probes, HOXC6 and ERG 5’ and Cluster 4:
SLC1241, SPINKI and UPK2.

The data for probes in Clusters 1 and 2 were biologically expected to correlate, as were
Cluster 3’s two bacterial probes (M.genitalium RplA and RplB: Pearson’s correlation: p
=1.23x10%, R = 0.31). However, Cluster 3’s other correlations were not expected and
were even more pronounced i) M.genialium RplB and HOXC6 (Pearson’s correlation: p
< 2.26x10°'%, R=0.88) ii) M.genitalium RplB and ERG 5’ (Pearson’s correlation: p <
2.26x10™'%, R =0.83) and iii) between HOXC6 and ERG 5’ (Pearson’s correlation:
p <2.26x10"%, R = 0.73) (Figure 3.8). Also in Cluster 3, the two M.genitalium probes

would be expected to have similar signal strength, which is not the case (Figure 3.8).

127



CHAPTER 3: NANOSTRING DATA ANALYSIS 1: THE PILOT STUDY

M.genitalium RplA had signal range ~-1 to 4, whilst Rp/B had a signal range of 0-12
with most samples above 6. M.genitalium RplB signal strength was actually more

similar to HOXC6 (~5-16) and ERG3’ (~2-12).
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Figure 3.7 Heatmap showing correlation between all NanoString probe data. The colours reflect the

s NESEL-CrZygONTC<OY O cso0gem Dxze--oElC o o<
ey s E R S8 0e IS8 PR R8¢ es080EbopEERES328
ErZ285%59£09%00f593 T ine 55 LLEBENEIEETESEITEELEASE K S
EoF 2 fE3g T @Rag Y EUEL B8 ICLFR8 /2 552 T3°0348 ¢
a2” §35° © ZeeRgEaT = TOSS5%f 3 Tgog
oy & £382%2 gss £ § 3

eg < Fsuwg WEE $ P

o e | 3 8o = S

< g E 22 = s F

= = = ]

> 3

R value of the correlation, where 1 is perfect correlation (represented by yellow) and 0 is
uncorrelated (represented by red), with orange in between.

129

cLu
Timp4
MMP26
SERPINBS

SERPINBS
MMP26
Timp4
cLu
AR_truncation_exon
CDKN3
M.hYorhinis_rplA
AURKA
FOXM1
DLX1
MKi67
TERT
TBP
ALAS1
SULT1A1
ANPEP
HPN
HOXC4
M.hYorhinis_rpoB
AMACR
M.genitalium_rplA
M.genitalium_rplB
ERG_5prime
HOXC6
TDRD
IMPDH2
PCA3
NAALADL2
TMPRSS2_ERG
ERG_8prime
U.urealYticum_dnak
U.urealYticum_rpiB
PPAP2A
STEAP4
STEAP2
ARexonsd_8
KLK4
KLK2
GOLM1
PSGR
FOLH1
BRAF
oGT
PECI
HPRT
AGR2
GAPDH
CAMKK2
KLK3_exons2_3
KLK3_exons1_2
UPK2
SPINK1
SLC12A1
PTPRC

B2M
CDC20
MDK



CHAPTER 3: NANOSTRING DATA ANALYSIS 1: THE PILOT STUDY

Table 3.10 Four Clusters of probes that correlate with each other (Pearson's correlation).

TMPRSS2:ERG  p<22x107", R=0.74
U.urealYticum dnaK
U.urealYticum p<22x107"%, R =0.56
RplB
M.genitalium HOXC6 ERG 5’
RplB
M.genitalium p=123x10", p=4.08x10", p=3.65x10",
RplA R=031 R=1036 R=10.38
M. genitalium p<226x10"%, p<226x107,
RplB R=10.88 R=10.83
HOXC6 p <2.26x107",
R=0.73
SLCI12A41 UPK2
SPINK1 p<226x107"%,  p<226x107",
R=0.64 R=0.78
SLCI1241 p <2.26x107",
R=0.62

Needleman-Wunsch alignment of the capture and reporter probes for HOXC6, ERG 5°,
M.genitalium RplA and M.genitalium RplB gave low percentage alignments and scores
with each other. These scores were similar to alignments with three randomly selected
NanoString probes (which were selected for a control comparison) that showed no
expression correlation; ALASI, KLK2 and KLK3. BLAT analysis detected some
homology between M.genitalium RplA reporter probe sequence and non-coding
sequences on human ChrX, whilst M.genitalium RplB capture probe hits non-coding
sequence on Chrl0. Both HOXC6 and ERG 5’ capture and reporter probes only had
sequence homologies with their own encoding gene sequences and nowhere else in the
genome. These analyses suggest that cross-hybridisation is not likely to be the cause of

their correlation.
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Figure 3.8 Correlation plots between data for probes: M.genitalium RplA, M.genitalium RplB,
HOXC6 and ERG 5'.

In Cluster 4, one transcript (Spink1) is known to be associated with PCa while the other
two are tissue specific controls; UPK?2 is a bladder specific marker and SLC7241 is a
kidney specific marker. It is understandable to see some correlation between the non-
prostate tissue specific markers, as the proportion of these would result from the
proportion of cells that are not from the prostate. The correlation between UPK2 and
SLC12A1 data, whilst significant is not strong enough to suggest that they are cross
hybridising (p <2.26x10'°, R = 0.62) (Figure 3.9). UPK2 and SPINKI correlate
strongly (p <2.26x10'%, R = 0.78), whereas SLCI12A41 correlation with SPINKI is
weaker (p < 2.26x10'%, R=0.64) (Figure 3.9). All three probes have similar signal
strength also, ranging ~0 to ~15 (Figure 3.9). Needleman-Wunsch alignment of the
capture and reporter probes for SPINK1, SLC12A1 and UPKZ gave low percentage
alignments and scores with each other. These scores were similar to those of three
randomly selected NanoString control probes that showed no expression
correlation; ALAS1, KLK2 and KLK3. Furthermore, BLAT analysis detected no other
sites of homology in the human genome for SPINK1 probe sequences, whilst both
UPK2 and SLC12A1 reporter probes had one partial match each: CTNNA3 (Chr 10)
and FLRTZ (Chr 14), respectively. The capture probes for UPK2 and SLC12A1 also
had no alternative sites of homology in the human genome. This suggests that the

probes are not cross-hybridising to each others target probes.
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It is possible that some of these probes in the two clusters are cross-hybridising (and
then it is of course possible that at least one is a true representation for that probe) or
that there is a clinical reasoning for their correlation. For this reason, I have included all
of these probes in the subsequent analyses but any identification of their significance in

clinical comparisons or clustering should be taken with caution.

Correlation between SPINK1 and SLC12A1 Probes Correlation between SPINK1 and UPK2 Probes Correlation between SLC12A1 and UPK2 Probes

SLC12A1

5 1s 5 10 s 0 5 10
SPINK1 SLC12A1

10
SPINK1

Figure 3.9 Correlation plots for a second group of probes that correlate: SPINK1, SLC1241 and
UPK2. All correlate with p < 2.26x107'¢ and R < 0.6.

3.4 Identification of Prostate and Cancer Specific Transcripts and

DRE relevance

34.1 Kallikrein identification

NanoString median signals for the KLK2, KLK3 exons 1-2, KLK3 exons 2-3 and KLK4
probes were at significantly higher levels than those for the control tissue probes for
blood, kidney and bladder (PTPRC, SLCI2A1 and UPK2 respectively) (Mann Whitney

U test: p <2.2x107'® in each case, Table 3.11, Figure 3.10).
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Table 3.11 Median expression values for kallikreins (prostate specific transcripts) and

other tissue markers.

Tissue Log2 Median expression
KLK?2 Prostate 13.49
KLK3 exons 1-2 Prostate 14.35
KLK3 exons 2-3 Prostate 14.02
KLK4 Prostate 15.59
PTPRC Blood 4.08
SLCI2A41 Kidney 7.24
UPK?2 Bladder 8.15

The kallikreins are prostate specific transcripts®®; identification of KLK2, KLK3 and
KLKA4 at higher levels in the blood, kidney and bladder specific markers along with the
RNA yield of post radical prostatectomy samples (section 3.4.4) suggest that a good
proportion of the material captured is in fact from the prostate. Additionally, both the
KLK3 probes (exons 1-2 and exons 2-3) have a strong correlation (p<2.2x107'°,

R =0.89, Figure 3.10B).

Correlation between the KLK3 Probes

Expression values of PCa probes and tissue specific controls

774

Kik2 KLK3 exons 1-2  KLK3 exons 2-3 Kika PTPRC_blood  SLC12A1_kidney ~ UPK2_bladder
Probe

3

Log2(Expression)

@

Figure 3.10 A) Kallikreins are observed at higher expression levels than the blood, kidney and
bladder specific markers in the NanoString data. B) Correlation between the two KLLK3 probes is
strong.

342 TMPRSS2:ERG Identification

TMPRSS2:ERG fusions, and alleviated ERG 3’ and ERG 5’ expression are found in

PCa, and this is observed in the Nanostring data where a significant difference is
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observed between cancer vs CB (Mann Whitney U; TMPRSS2:ERG: p < 2.2x107¢: W =
6179, ERG 3’: p <2.2x10™%; W= 6105, and ERG 5’: p < 2.2x10™'%; W = 6253; Error! R
eference source not found.). The density plots for TMPRSSZ:ERG and ERG3’ have two
peaks which would be compatible with an on/off pattern of a gene fusion (Error! R
eference source not found.). Approximately 50% of the samples from men with cancer
have detectable TMPRSS2:ERG fusions which is in agreement with the literature
(section 1.4.6). The ERGS’ probe, which is not part of the TMPRSS2:ERG fusion
transcript, does not follow this pattern. The ERG 5’ probe was also identified as having
potential cross hybridisation (section 3.3.7).

When dicotomised (using the optimal threshold 4.93 identified by the Brent method),
TMPRSS2:ERG expression had a significant association with clinical category (chi-

square test, X* =37.82, p = 4.1x10™7).
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Figure 3.11 A) Density plot for TMPRSS2: ERG expression coloured by clinical category. Generally,
two peaks are seen suggesting an on/off pattern of expression. B) Density plot for ERG 3' expression
coloured by clinical category. Again, two bumps are generally seen suggesting an on/off pattern. C)
Density plot for ERG 5' expression coloured by clinical category. No observable on/off pattern can be
seen. D) Box plot showing spread of TMPRSS2:ERG expression across clinical categories. Higher
expression is observed in cancer than benign. E and F] Box plots showing expression of ERG 3’ and
ERGS’ respectively across clinical categories. Median expression is Higher in cancer than benign.
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TMPRSS2:ERG fusions were identified by NanoString and nested RT-PCR (section
2.1.5 and section 2.1.6) (Figure 3.12). PCR was capable of identifying not only T1/E4
fusion transcripts but also fusions involving other TMPRSS2 and ERG exons (section
1.4.6), including T1/E5, T1/E6 and T2/E2 amongst others. TMPRSS2:ERG PCR data
were divided into four groups: i) T1/E4 fusions (“T1/E4”), ii) those with T1/E4 plus
other fusion types (“T1/E4 plus”), iii) those with only non-T1/E4 products (“other”) and
iv) those where no fusions were identified (“negative”).

The minimum curve threshold was calculated from NanoString expression density
plots. A cut off of 6.78 for the TMPRSS2:ERG probe, showed 97% correlation for the
PCR negatives (95/98 are classed as negative in both), 79% accuracy for T1/E4 only
fusions (41/52 are classed as positive), 88% accuracy for T1/E4 plus other fusions
(21/24 are classed as positive), and 42% accuracy for other fusions (8/19 are classed as
positive). The NanoString TMPRSS2:ERG probe had been designed to specifically pick
up the T1/E4 fusion, and so the poor accuracy for detecting other fusions was expected.
Using the optimal threshold identified by the Brent method for the TMPRSS2:ERG
probe (4.93), the on/off pattern compared with the PCR results, showed an improved
and significant association (chi-square test x* = 131.6, p < 2.2x107'),

The ERG3’ NanoString signal correlates well to the TMPRSS2:ERG PCR positive
samples for both T1/E4 fusion and non-T1/E4 PCR products. However there are a
proportion of the PCR negative samples that also have high FRG3’ NanoString signals;
this would appear to indicate that ERG3’ has been overexpressed via an alternate

mechanism (section 1.4.6).
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Figure 3.12 Detection of TMPRSS2:ERG by NanoString probes for TMPRSS2: ERG (upper) and
ERG3’ (lower) versus PCR detection of TMPRSS2: ERG transcripts. T1/E4 indicates a TMPRSS2
ex1/ERGex4 fusion transcript, ‘Other’ indicates a different fusion transcript, ‘Plus’ indicates a
mixture of T1/E4 and other transcripts. The dotted lines are the optimal thresholds (4.93 for
TMPRSS2:ERG and 7.28 for ERG3’) calculated using the Brent method, similarly the solid line is the
min curve of a density plot (6.78 and 4.58 for TMPRSS2: ERG and ERG3’ respectively) containing all
of the TMPRSS2:ERG and ERG data.
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These results suggest that a) NanoString is a sensitive and flexible method for detecting
transcripts and b) that a proportion of the genetic material identified is coming from

prostate cancer or HG-PIN.
343 PCA3 Test

The PCA3 test (section 1.4.2) is the ratio of PCA3 expression with KLK3 expression in
whole urine, and is approved clinically to predict whether a second biopsy will be
cancer positive after an initial negative biopsy. The PCA3 score calculated from the
NanoString data shows a significantly increased expression in PCa compared with non-
PCa samples (Mann-Whitney U test: p < 2.2x10™'°, Figure 3.13), but was no evidence
for a significantly difference between different clinical categories of PCa (p < 0.05;

Kruskal-Wallis rank sum).

The PCAB test across clinical category

— |

400+

The PCA3 test

200

i
Clinical category

Figure 3.13 Nanostring PCA3 score calculation (PCA3 divided by KLK3 multiplied by 1000 as per the
usual PCA3 score (section 1.4.2). The PCA3 score is significantly increased in PCa samples compared
to those with no clinical evidence of PCa (CB). However, there is no significant difference between
the intra-clinical categories of PCa. The uPM3™ assay has shown to be able to detect PCa from non-
PCa samples. The NanoString probes have shown to follow this same pattern.

344 RNA yield, clinical group and DRE

Digital rectal examination (DRE, section 1.3.3) has proven to increase the efficacy of
the PCA3 test (section 1.4.2). It is hypothesised that digital compression on the prostate

encourages secreted biomarkers in the gland to flow towards the urethra. Four patient
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pairs for pre- and post-DRE urine samples were added to NanoString to see how the
transcript levels varied within patients (Figure 3.15). First-void urine post-DRE had
higher median RNA yields than non-DRE samples (Figure 3.14). RNA yield is
significantly higher in post-DRE collection of localised PCa samples compared to pre-
DRE samples (p = 0.04, Mann Whitney U test) and prostatectomy samples (p = 0.01,
Mann Whitney U test). As seen previously there were also increased numbers of
prostate derived transcripts (section 3.4.1) and PCa derived transcripts (section 3.4.2) on
post-DRE samples. Overall, the post-DRE samples had 0.178 log, fold increased
expression of all transcripts compared to the pre-DRE collected samples (p = 1.854x10°
1, paired Man Whitney U test). The median of the sample pairs individually varied with
the pre- or post-DRE, however, the post-DRE sample always showed a lower IQR
(Figure 3.15).

The urine taken from three patients who had previously undergone radical
prostatectomy (post-RP) had very low amounts of RNA collected (0.8-2ng) from their
urine samples. This suggests that the majority of the EV RNA is likely to have
originated in the prostate (Figure 3.14).

The median RNA yields for advanced PCa patients are not significantly lower than for
localised-PCa patients (p < 0.05, Mann Whitney U test, Figure 3.14). The RNA yields
for benign samples are observably (Figure 3.14) and significantly lower compared to

localised PCa patient samples (p = 0.02, Mann Whitney U test).

139



CHAPTER 3: NANOSTRING DATA ANALYSIS 1: THE PILOT STUDY

Amount of RNA harvested from different clinical groups of prostate cancer,

00 Pre-DRE samples and Post-RP samples

200

Amount RNA (ng)

1004

1 1 1 |
A H

| ' i
L CBN Pre_DRE Post_RP
Sample Category

Figure 3.14 Most of the transcripts detected are from the prostate; DRE boosts transcript level
detection and post radical prostatectomy patients offer very low signals in their samples. Samples
n =389. The advanced (A), high-risk (H), intermediate risk (I), low-risk (L) and no evidence of
clinical PCa (CB) samples were taken post-DRE. Pre-DRE and post-RP urine samples have been
taken without DRE.
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Figure 3.15 The NanoString probe expression distribution of four patient paired samples (pre- and
post-DRE).
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3.5 Clustering

3.5.1 Principal Component Analysis (PCA) and k-means Clustering

PCA (section 2.5.1) can be utilised to visualise groups in the data; colouring data by
clinical category can allow clusters of biological interest to be identified (Figure
3.16A). PCA analysis identified two outlying clusters, A and B, (Figure 3.16). Cluster
A had 17 samples consisting mostly of advanced and higher risk samples (6 advanced, 9
high-risk, 1 intermediate risk and 1 abnormal sample). In contrast Cluster B consisted of
6 samples of varying clinical groups (1 advanced, 1 high risk, 2 intermediate risk, 1

abnormal and 1 CB).

Figure 3.16 PCA plots coloured by A) clinical category and B) k-means to identify cluster cut-offs.

A PCA by Clinical Category B PCA plot of log2 data coloured by k-means (k=5)

N

5 5

Clinical Category 0

k-means group
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..
s wn =

6 10
PC1 - 28% PC1 - 28%

Cluster A shown by red circle. Cluster B shown by orange circle.

3.5.2 Hierarchical Clustering

Hierarchical clustering was performed with an agglomerative approach (section 2.5.2).
This showed that samples in Clusters A and B belonged to separate trees to the majority
of other samples (Figure 3.17A). Fifteen of the samples belonging to Cluster A form a
separate tree, whilst 5 of the 6 samples belonging to Cluster B also form a separate tree

with 2 other samples. There was one significant cluster identified by Pvclust (section

141



CHAPTER 3: NANOSTRING DATA ANALYSIS 1: THE PILOT STUDY

2.5.2.1), which contains the bulk of the samples, but does not include the majority of

Cluster A or Cluster B samples (Figure 3.17B).

142



CHAPTER 3: NANOSTRING DATA ANALYSIS 1: THE PILOT STUDY

353 Cluster A

Cluster A (identified by PCA and k-means clustering (Section 3.5.1) and supported by
hierarchical clustering (Section 3.5.2) is predominantly made up by advanced and high-
risk samples (6/17 and 9/17, respectively). It has significant over-representation of
advanced and high-risk samples (Table 3.12) and there are twenty-three significant
differentially expressed transcripts between cluster A and all other samples (Table
3.13). Analysis of the differential expressed transcript list with DAVID (section 2.7.1)
identified PCa as an over represented KEGG pathway. This was due to the significantly
lowered expression of AR and KLK3 in Cluster A, however the over-representation was
not significant at a 95% confidence level (p = 8.5x10%). Ten Gene Ontology (GO)
biological processes were associated with the Cluster A defining transcripts (Table
3.14). As expected due to probe selection for involvement in PCa these biological
processes were associated with cancer. However, different GO biological processes
were identified using all of the transcripts applied to NanoString (Table 3.15). Thus
suggesting there is a difference in biological processes involved specifically within
cluster A.

RNA amount (ng) extracted is significantly lower in Cluster A compared to all other
samples (not including Cluster B), (Table 3.12). Cluster A also has a significantly lower
amplification yield, as well as a lower median probe value (Table 3.12). The cartridge
number is also significant between members of Cluster A (Table 3.12). However,
Scanner ID is not significant (Table 3.12).

Further investigation into the cartridges involved, showed there was no significant
differences between the median probe values of these cartridges compared to others, or
between the Cluster A samples and non-Cluster A samples on these cartridges (Table
3.12). This suggests that the cartridge is not a factor to why Cluster A may be
presenting itself. However, RNA extraction amount, amplification yield and median

probe value all seem important in the clustering. Especially as 21/23 significant
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differentially expressed transcripts between Cluster A and all other samples (Table
3.13) have lower expression in Cluster A.

Lower RNA yields are observed in a fraction of advanced patients’ samples, This is
hypothesised to be due to a reduction in tumour microvesicles being harvested in the
urine due to: a) efficiency of DRE: the surface of a normal prostate can be depressed by
lem, however prostates containing advanced/higher grade tumours are commonly firm
and not depressible. Samples from patients with advanced tumours are therefore more
akin to non-DRE samples. b) Advanced tumours can also have fused glands, poorly
formed lumen, and blind-ended lumen that no longer drain into the urethra®® ", The
position of the advanced tumour within the prostate may also block access of tumour
biomarkers from less advanced PCa foci from entering the urine. Thus, the percentage
of the tumour that is advanced and its positioning within the prostate can affect the

amount of RNA extracted, and the amounts of PCa associated transcripts identified.
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Table 3.12 Testing for Cluster A association to clinical and technical variables.

Test and metric - value

Chi square: x = 20.29 p=6.67x10"

Variable
Clinical Category

Amount RNA extracted (ng) Mann-Whitney Utest: R= p=4.9x10"
2443
Amplification yield (ug) Mann-Whitney U test: R= p =3.1x10"°
2410
Median probe value Mann-Whitney U test: p=002
R =1904
Cartridge Chi-square test: ¥ =31.9  p=10.01
Scanner ID Chi-square test: ¥ =0.03 p=10.9
Median probe value of Mann-Whitney U test: p=1
Cluster A samples on R=16

cartridge 13 (n = 4)

compared to other samples

on cartridge 13 (n =8)

Median probe value of Mann-Whitney U test: p=03
samples on cartridge 13 (n R =1237

= 12) compared to samples

on all other cartridges (n =

168)
Median probe value of Mann-Whitney U test: p=01
Cluster A samples on R=4

cartridge 15 (n = 3)

compared to other samples

on cartridge 15 (n =9)

Median probe value of Mann-Whitney U test: p=08
samples on cartridge 15 (n R =1074

= 12) compared to samples

on all other cartridges (n =
168)

It should also be remembered that the vast majority of the NanoString probes were
selected due to overexpression in tumour tissue. Thus, it is significant that the
expression patterns for Cluster A are more than a general loss of tumour biomarkers as
my analyses mark them as a group distinct from the other prostate samples. The only
two probes not showing a significant up-regulation in the Cluster A samples are the
kidney and bladder controls (Table 3.13).

It is hypothesised that the factors identified as technical issues (RNA amount extracted,
amplification yield and median probe value) associated with Cluster A are due to these
biological reasons and thus it is important to keep Cluster A’s samples within future

analyses.
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Table 3.13 Transcripts significantly associated (p < 0.05) with Cluster A via Mann-Whitney

U test after using Hochberg multiple testing correction.

Transcript p-value Adjusted p-value Log?2 Fold Change
DLXI 6.6x10" 2.3x10" -1.504
Timp4 1.2x10" 4.7x10" -1.292
AR exon 9 2.3x10" 3.2x10" -1.263
MMP26 7.4x107" 3.2x10" -1,126
CLU 6.4x10°" 2.6x10"% -1.017
UPK?2 5.1x107"° 2.8x10" 0.798
SLCI2A1 2.5x10"” L.4x10"7 0.736
PSGR 2.6x10" 1.3x107" -0.555
CDC20 3x10" 1.1x10™" -0.543
SPINK 1 1.5x10"" 8.3x10" -0.497
GOLM]1 L.4x10"° 6x10" -0.485
PCA3 1.8x10" 6.9x10°" -0.456
SERPINBS 3x10" 1.1x10" -0.287
KLK3 exons 2-3 4.2x10™"° 2.4x10" -0.251
KLK3 exons -2 4.9x10" 2.4x10" -0.235
FOLHI 6x10°" 2.9x10" -0.214
B2M 1.1x10" 4.2x0" -0.207
AR exons 4-8 7.9x10" 3.6x10" -0.186
STEAP? 1.2x10" 6.2x10°" -0.183
KLK2 1.2x10" 6.2x10"" -0.174
KLK4 6.1x10°"” 3.2x10" -0.132
STEAP4 8.5x10" 3.6x10" -0.129
PPAP2A 3.5x10"7 1.7x10"° -0.128
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Table 3.14 Gene Ontology (GO) over-represented biological processes in Cluster A’s

significantly associated transcript list via DAVID.

Term Count  Transcripts p-value  Adjusted p -
(%) value
Proteolysis 7(3.9) FOLHI, KLK2, KLK3, 8.9x10™  2.5x10™
KLK4, CLU, MMP26,
CDC20
Iron ion transport 2 (1.1) STEAP4, STEAP2 3.4x10"% 1
Androgen receptor 2 (1.1) AR, PPAP2A 4.2x10"%  9.9x10™"
signalling pathway
Response to 4(2.2) AR, TIMP4, STEAP2, B2M  5.0x10"  9.8x10™"
organic substance
Steroid hormone 2(1.1) AR, PPAP24 6.6x10"  9.9x10"
receptor signalling
pathway
Response to 3(17) AR, TIMP4, STEAP2 6.9x10"  9.8x10"
hormone stimulus
Transition metal 2(1.1) STEAP4, STEAP? 8.1x10"  9.8x10™
ion transport
Response to 3(L.7) AR, TIMP4, STEAP2 8.1x10"  9.7x10™"
endogenous
stimulus
Intracellular 2(1.1) AR, PPAP2A 8.5x10"  9.6x10™
receptor-mediated
signalling pathway
Response to 2(1.1) TIMP4, B2M 9.7x10"  9.6x107"

molecule of
bacterial origin

Table 3.15 Gene Ontology (GO) over-represented biological processes in all of the transcripts used on
NanoString via DAVID.

Term Count  Transcripts p-value  Adjusted p -

(%) value
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Proteolysis 7(0.1) ANPEP, HPN, KLK2, 9.6x10"  3.5x10™
KLK3, KLK4, MMP26,
TMPRSS?2

Iron ion transport 3 (0)  STEAP2, STEAP4, B2M 2.2x107”  3.9x10"

Negative 4(0.1) BRAF,DLXI, MDK, TERT 3.5x10"  4.1x10™

regulation of

neuron

apoptotic

process

Ferric iron 2(0)  STEAP2, STEAP4 1.2x10"  7.3x10™"

import into cell

Cell cycle 4(0.1) AURKA, CDC20, CDKN3,  1.4x10"  7.1x10"
FOXM]I

Copper ion 2(0)  STEAP2, STEAP4 Léx10"  7x10™

import

Positive 4(0.1) BRAF, AR, AGR2, HPN 2.3x10"  7.7x107"

regulation of
gene expression

Positive 2(0)  PTPRC, TERT 2.8x10"  7.9x10"
regulation of

stem cell

proliferation

Positive 5(0.1) TBP, AR, CAMKK?2, 3.Ix10"  7.9x10™"
regulation of FOXM1, MDK

transcription,

DNA-templated

Response to 2(0)  B2M, TERT 5.7x10"  9.2x10™
cadmium ion

Negative 2(0)  BRAF, TERT 6.3x10"  9.3x10™"

regulation of
endothelial cell
apoptotic
process

Embryonic 2(0)  DLXI, HOXC6 6.7x10"  9.2x10™"
skeletal system
development

Protein 4 (0.1) BRAF, ERG, AURKA, 8.9x10"  9.6x10"

phosphorylation CAMKK?2

Cell 4(0.1) ERG, ANPEP, AGR2, MDK 9.Ix10"  9.5x10™"
differentiation

Response to 2(0)  BRAF, Timp4 9.7x10"  9.5x10""

peptide
hormone
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Figure 3.17 Hierarchical clustering provides further evidence for Cluster A and B identification. A) Samples belonging to Cluster A and B are shown in red and yellow
boxes, respectively. B) Clusters with significant AU p-values are encapsulated within a red box. Both Cluster A and B are not included within this main.
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354 Cluster B

Cluster B (identified by PCA and k-means clustering section 3.5.1 and supported by
hierarchical clustering section 3.5.2) contains six samples and are not associated with
clinical factors (Chi square: > = 9.7, p =0.08), suggesting that Cluster B could be
associated with technical artefacts: The amount of RNA extracted was lower in Cluster
B (Mann-Whitney U test: R = 811, p = 0.008); the total amount of cDNA from
amplification was also lower (Mann-Whitney U test: R = 808, p = 0.01) and thus was
the median probe value (Mann-Whitney U test: R = 14196, p < 2.2x10°'). Cartridge
and Scanner ID were both not significantly associated with Cluster B (Chi square: y* =
0.67, p=10.88, and y* = 2.67, p = 0.1, respectively). It is therefore, unlikely that there is

biological reasoning to this cluster.

3.5.5 Latent Process Decomposition (LPD)

LPD (section 2.5.5) was performed on 187 of the samples (with M_19 5, LNCAP, and
the five samples in cluster B removed) and 51 of the transcripts (with FOXM1I and the
six bacterial genes removed) to identify the optimal number of groups and an assign a
probability of membership for each group for each sample.

The modelling and estimation stage suggested that there were four clusters, with a
sigma parameter of -1. LPD analysis was performed 100 times with these parameters
and samples were associated with a probability to each group (Table 3.16, Figure
3.18A, Figure 3.18B). LPD 1 consisted mainly of high-risk samples (X = 16.5, p =
0.01), whilst LPD 4 consisted mostly of advanced and high-risk samples (X = 29.44, p =
5x10™). Both LPD 2 and 3 contain a mixed representation of clinical category. LPD
group 2 consists mostly of the intermediate risk samples (X = 29.44, p = 5x10™), it

holds 66% of the intermediate and low-risk samples. LPD group 3 holds 57% of the
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benign samples though they are not significantly represented within the group (X =
11.82, p=0.07).

Clinical category is significantly associated with LPD process, (X = 65.47, p =
2.83x10%, Table 3.16). PSA level is significantly associated with LPD process, with
higher values in LPD groups 1 and 4 (ANOVA, p = 7.53x10™, Figure 3.18C), as well
as Gleason score (X = 85.38 and p = 9.98 x10'); a higher Gleason score appears to be
associated with LPD process 4, whilst processes 2 and 3 have much lower (Figure
3.18D). Age is also significantly associated with LPD process (ANOVA, p = 0.002),
with a higher age present in LPD process 4 (Figure 3.18E).

Alternative analysis was performed using NbClust (section 2.5.3), which identified
three clusters as the optimal number of clusters in the data, and A-means with PCA
(section 2.5.3) was used to identify which samples belonged to which cluster (Figure
3.18E). These clusters showed high overlap with the four clusters identified by LPD

(Figure 3.18F), providing further evidence that this clustering is reliable.

Table 3.16 Composition of sample type in each LPD cluster (Cluster B samples and

bacterial probes removed). Chi-square test: p = 2.8x10%, X = 65.47.

Total Number of Number of Number of Number of  Number of
Samples aggressive lower-risk Abnormal CB samples
samples (A cancer samples (S)
and H risk) samples (L
and I risk)
LPDI 8 6 1 0 1
LPD?2 79 20 53 0 6
LPD3 55 14 18 2 21
LPD4 17 13 1 1 2
LPDNA 26 12 7 0 7
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Figure 3.18 A) LPD group bar charts B,C,D,E) Clinical distribution, PSA, Gleason score and age
without LPD group, respectively. F,G) PCA plots for ~-means and LPD clustering comparison.
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Table 3.17 Transcripts significantly different between each LPD group members and those that are not. These are the transcripts that define each LPD

cluster.

LPD Process 1 LPD Process 2 LPD Process 3 LPD Process 4

Gene D- Fold Gene p-value Fold Gene p-value Fold Gene p-value Fold

value Change Change Change Change

HOXCo 0.000 0.29 KLK3 PSA exons 9.71E- 0.08 TMPRSS2  4.40E- -1.19 KLK2? 4.60E- -0.31
3 23 14 ERG 07 09

AMACR 0.001 0.27 KLK3 PSA exons 5.49E- 0.11 TDRD 9.02E- -0.83 KLK3 PSA exon 4.65E- -0.25
12 11 07 s2 3 09

ERG 5pri 0.002  0.44 STEAP2 7.09E-  0.06 ERG 5pri 9.30E- -0.28 KLK4 8.32E- -0.14
me 11 me 07 09

NAALADL 0.005 0.12 CAMKK?2 6.02E- 0.15 HOXC6 2.37E- -0.15 STEAP2 1.I13E- -0.19
2 09 05 08

TDRD 0.012 0.86 MMP26 4.07E- 0.69 AMACR 2.59E- -0.14 PPAP2A 4.37E- -0.15
08 05 08

PECI 0.012 0.12 KLK4 2.28E- 0.05 ERG 3pri  8.38E- -1.28 FOLHI PSMA 9.65E- -0.21
07 me 05 07

FOLHI P 0.016 0.14 GAPDH 2.94E- 0.03 HOXC4 7.48E-  -0.70 ARexons4 8 1.55E- -0.19
SMA 07 04 06

IMPDH2  0.018 0.10 FOLHI PSMA 3.17E- 0.09 CAMKK?2 2.28E- -0.09 STEAP4 2.82E- -0.20
07 03 06

DLXI 0.020 0.91 OR5242 PSGR 2.03E- 0.13 DLX1 5.33E- -1.21 OR5242 PSGR  2.97E- -0.48
06 03 06

ARexons4_8 3.70E- 0.07 GAPDH 5.33E- -0.03 KLK3 PSA exon 4.03E- -0.24
06 03 sl 2 06

KLK2 6.96E- 0.07 CDKN3 0.007 -0.42 MMP26 3.23E- -1.22
06 05

CDC20 1.05E- 0.50 PECI 0.009 -0.04 PCA3 4.85E- -0.57
05 05

TBP 3.98E- 0.08 MMP26 0.010 -0.46 AR truncation e 5.61E- -1.38
05 xon 05

CLU 5.89E- 0.42 TERT 0.010 -0.17 UPK2 1.62E- 0.75
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SERPINBS Maspi 7.52E- 0.18 HPN 0.042 -0.08 SLCI241 2.10E- 0.67

n 05 04

DLX1 1.89E- 1.24 HPRT 3.25E- -0.16
04 04

TERT 2.09E- 0.25 Timp4 5.49E- -1.56
04 04

TMPRSS2 ERG  4.27E- 1.11 CDC20 1.20E- -0.85
04 03

PCA3 6.23E- 0.16 B2M 0.009 -0.09
04

MDK 0.003 0.05 AGR2 0.021 -0.48

B2M 0.003 0.08 NAALADL?2 0.048 -0.10

Timp4 0.006 0.21

oGT 0.011 0.04

SPINK1 0.012 -0.11

AURKA 0.036 0.15
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3.6 Significantly varying genes

Expression distribution of each transcript was fairly even between clinical categories for most
probes (Figure 3.19), with only 16 of the 57 probes found to be significantly different between the
clinical categories (Kruskal-Wallis rank sum test, adjusted p < 0.05, Table 3.18).

Mann Whitney U tests (section 2.4.1) were applied to three separate data comparisons; 1) cancer
vs. non-cancer, ii) aggressive cancer (Advanced and high risk) vs. Non-aggressive cancer (I, L)
and iii) the two extremes (Advanced vs. CB), (Table 3.3, pagel15). Nine probes were significantly
differentially expressed (p < 0.05, Mann-Whitney U test) between cancer and non-cancer samples
after multiple testing correction via the Hochberg method (Table 3.19). All of these transcripts
were up-regulated in the cancer (Figure 3.20) and included many well established PCa-associated

transcripts such as ERG, TMPRSS2:ERG and PCA3.

Table 3.18 Kruskal-Wallis identified 16 probes that significantly differ across clinical category.

Probe p-valu djusted p-valu X

SPINK 3.9x10" 2.2x10" 47.79
SLCI1241 2.5x10% 1.4 x10" 43.78
KLK3 exons 2-3 1.8x10" 9.9x10" 34.60
KLK3 exons 1-2 2.3x10" 1.3x10" 34.04
TMPRSS2:ERG 1.7x10% 8.8 x10" 29.69
UPK?2 1.7x10% 8.8 x10" 29.70
ERG 3’ 2.2x10"% 0.001 29.09
STEAP? 2.9x10"% 0.001 28.52
DLXI 3.Ix10" 0.002 28.35
KLK4 3.6x10"% 0.002 28.00
HPN 8.5x10" 0.004 26.12
ERG 5’ Ix10" 0.005 25.73
PSGR 1.3x10" 0.01 25.08
PCA3 3.6x10" 0.02 22.84
KLK?2 4.I1x10" 0.02 22.56
CAMKK? 6.5x10" 0.03 21.49
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Table 3.19 Transcripts differentially expressed between cancer (A, H, I, L) and non-cancer samples

(Mann Whitney U test).

Transcript p - value Adjusted p - value Log?2 Fold Change
DLXI 3.2x10" 0.0002 1.33
ERG 3’ 4.25 x10"” 0.002 1.25
TMPRSS2:ERG 1.19 x10™" 0.006 0.93
HOXC4 2.6 x10™" 0.013 0.635
ERG S’ 1.73 x10" 0.001 0.281
HOXC6 4.97 x10"” 0.002 0.242
PCA3 2.02 x10" 0.01 0.225
M.genitalium RplB 4.48x10™" 0.022 0.144
HPN 9.02x10™ 0.0005 0.127

Eleven transcripts were significantly differentially expressed between aggressive and non-
aggressive cancers (p < 0.05, Mann-Whitney U test, Table 3.20). Three of these transcripts were
up regulated in the aggressive cancer; SLC1241, UPK2 and SPINKI (Figure 3.21). SLCI2A41 and
UPK?2 are tissue specific controls for kidney and bladder, respectively. Advanced tumours often
become more solidified and firm which might cause the release of cells and EVs from these
prostates to be inhibited. This would cause a relative increase in detection of transcripts from other
sources such as the kidney and bladder. Note that SLC1241, UPK2 and SPINKI were heavily
correlated across all of the samples (section 3.3.7) and so this result should be taken with some
caution. Eight transcripts were down-regulated in the aggressive cancers, again I hypothesise that
this is due to a decreased level of cells and EVs emerging from the prostate and it’s cancer via

DRE, as these transcripts are mostly either prostate or cancer specific.
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Figure 3.20 Boxplots showing the expression levels in significantly differentially expressed genes between cancer
and non-cancer samples found by Mann Whitney U test.

Six transcripts were significantly differentially expressed between Advanced and CB (p < 0.05,

Mann-Whitney U test, after multiple testing correction, Table 3.21). SLC12A41 and SPINK] are up-

regulated as has been previously discussed. The other four transcripts were down-regulated in the

advanced samples, and again these include prostate specific transcripts such as KLK4 and cancer

related transcripts such as PPAP2A and STEAP2 (Figure 3.22).
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Table 3.20 Transcripts differentially expressed between aggressive cancer and non-aggressive samples

(Mann Whitney U test).
Transcript p - value Adjusted p - value Log?2 Fold Change
SLCI1241 2.86x10™" 1.6x10" 0.59
UPK?2 2.29x10"7 1.26x10" 0.52
SPINK 3.94x10"° 2.25x10% 0.29
SERPINBS 2.78x10™" 1.36X10" -0.13
CAMKK?2 4.44x10" 2.13x10™" -0.13
PSGR 9.55x10°" 4.77x10" -0.11
KLK3 exons 1-2 6.18x10°" 3.34x10"% -0.1
KLK3 exons 2-3 9.15x10" 4.85x10"% -0.07
KLK?2 4.77x10" 2.24x10™" -0.05
STEAP2 3.38x10" 1.76x10" -0.05
KLK4 8.02x10°" 4.09x10" -0.04
CAMKK2 KLK2 KLK3exons1_2 KLK3exons2_3
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Figure 3.21 Boxplots showing differential expression between aggressive cancer and not aggressive PCa samples
for those deemed significant by Mann Whitney U test.
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evidence of cancer) samples (Mann Whitney U test).

p - value Adjusted p - value Log?2 Fold Change
SLCI241 6.24x10% 3.49x10" 0.68
SPINK1 1.08x10°" 6. 14x10°% 0.35
HPRT 1.29x10" 7. 1x10°% -0.17
KLK4 1.53x10" 8.29x10" -0.12
STEAP?2 6.52x10" 3.39x10" -0.09
PPAP24 5.6x10" 2.97x10™" -0.07
HPRT KLK4 PPAP2A
151 — == + $
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5 o
5
a Extreme Category
(0]
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Figure 3.22 Boxplots showing differential expression between advanced cancer and non-cancer samples for those
deemed significant via Mann Whitney U testing.

3.7 Low-risk, intermediate-risk and high-risk trend

Five probes showed significant increasing or decreasing expression trend with increasing
D’Amico risk category (Spearman’s correlation, p < 0.05 after multiple testing correction, Table
3.22). Three of these probes were identified to be highly correlated in general (SPINKI, UPK?2 and
SLCI2A1: section 3.3.7). The other two probes are from the same transcript (KLK3). The decrease
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in KLK3 with increasing cancer risk has been reported in previous prostate tissue studies (section

1.4.1) and urine.

Table 3.22 Spearman's correlation results comparing expression with ordered clinical categories:

Low-, Intermediate- and High-risk.

p —value Adjusted p - value R
SPINK1 1.27x10°" 7.24x10°" 0.41
UPK2 2.74x10"° 1.53x10" 0.36
SLCI2A1 1.08x10" 5.96x10" 0.33
KLK3 exons 2-3 1.12x10" 6.04x10°" -0.33
KLK3 exons -2 1.14x10" 6.04x10°" -0.33

3.8 Clinical Prediction models

To test the ability of NanoString data derived from urine EVs to predict the presence of cancer
and/or it’s aggressiveness various models were produced to distinguish between a) PCa and benign
samples, b) aggressive PCa and non-aggressive PCa and c¢) advanced and benign samples (Table
3.3). All samples were used in the training set due to the pilot nature of this work. The modelling
techniques applied here are logistic regression models using step wise variable selection (section
2.6.4), Lasso logistic regression models for shrinkage and variable selection (section 2.6.2), and

random forest (section 2.6.3).

3.8.1 Logistic regression models using step wise variable selection

The optimal output cancer vs. non-cancer model contained 33 transcripts and had an AIC score of 68
(Table 3.23), the optimal aggressive cancer vs. non-aggressive cancer model contained 37 transcripts

and had an AIC score of 76 (

Table 3.25), and the optimal model for distinguishing Advanced cancer from CB contained 9
transcripts and had an AIC score of 18 (Table 3.27). In each model the sample category was
predicted with 100% sensitivity, 100% specificity, and 100% PPV (Table 3.24, Table 3.26, Table

3.28). This may mean the models are over-fitting the data and caution should be taken.
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Table 3.23 Transcripts in the Step derived model for comparing cancer to non-cancer.

Transcript p - value Coefficient
CDKN3 0.97 374.2
FOLHI 0.97 -838.3
FOXM1 0.97 138.8
HPN 0.97 743.9
IMPDH?2 0.97 691.2
KLK3 exons 2-3 0.97 1844
M.genitalium RplB 0.97 -491.5
NAALADL?2 0.97 -549.9
AURKA 0.98 -236.7
BRAF 0.98 562.1
KLK2 0.98 -1534.6
M. hyorhinis RplA 0.98 -1415.5
PSGR 0.98 364.4
SULTIAI 0.98 686
TMPRSS2:ERG 0.98 283.5
ANPEP 0.99 876.6
AR truncation exon 0.99 -232.3
AR exons 4-8 0.99 -462.4
B2M 0.99 1219.1
CAMKK? 0.99 -432.1
DLXI 0.99 220.4
ERG 3’ 0.99 240.6
ERG S5’ 0.99 985.7
KLK4 0.99 -1187.3
MDK 0.99 -1265.6
MMP26 0.99 -730
OGT 0.99 -1185.7
PCA3 0.99 399.8
SERPINBS 0.99 -234.1
TBP 0.99 497
U.urealyticum dnakK 0.99 -919.6
U.urealyticum RplB 0.99 837.9
UPK?2 0.99 -132.5

Table 3.24 Category predictions using the cancer vs. non-cancer step model.

Actual Category

Disease Present No evidence of disease
Positive 148 0
Negative 0 40
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Table 3.25 Transcripts in the Step derived model for comparing aggressive cancers (A, H) to non-

aggressive cancers (I, L).

Transcript p - value Coefficient
AGR2 0.98 -233.03
AMACR 0.98 -1066.97
AURKA 0.98 -395.93
BRAF 0.98 -1106.78
ERG S’ 0.98 164.37
FOXMI 0.98 149.23
HPRT 0.98 317.38
IMPDH?2 0.98 913.69
KLK3 exons 1-2 0.98 -607.92
M.genitalium RplA 0.98 -369.55
M. hyorinis RplA 0.98 1236.48
MKi67 0.98 -200.18
NAALADL?2 0.98 204.06
PSGR 0.98 -826.31
PCA3 0.98 190.98
PPAP2A 0.98 546.96
SERPINBS 0.98 -357.41
SPINK1 0.98 708.99
STEAP4 0.98 585.87
SULTIAI 0.98 144.98
TMPRSS2:ERG 0.98 -109.31
Timp4 0.98 -304.36
U.urealyticum dnakK 0.98 390.71
U.urealyticum RplB 0.98 -456.65
AR exons 4-8 0.99 148.66
CDC20 0.99 -180.92
DLX] 0.99 47.8
FOLHI 0.99 492.55
GAPDH 0.99 -366.81
GOLM1 0.99 499.32
M. hyorinis rpoB 0.99 218.58
PTPRC 0.99 -126.41
TBP 0.99 -224.34
TDRD 0.99 -160.03
TERT 0.99 156.96
UPK?2 0.99 74.34
AGR2 0.98 -233.03
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Table 3.26 Category Predictions when using the aggressive cancer model derived from Step.

Aggressive Disease Present Aggressive undetectable
Positive 68 0
Negative 0 80

Table 3.27 Transcripts in the extreme model (A Vs. CB) derived from Step.

Transcript p - value Coefficient
ALASI 0.995 -600.84
KLK4 0.995 -465.6
KLK3 exons 2-3 0.995 330.63
BRAF 0.995 422.54

M. genitalium RplB 0.995 302.06
HPN 0.995 236.54
Timp4 0.995 -158.99
AR truncation exon 0.995 31.34
ALASI 0.995 -600.84

Table 3.28 Category predictions using the extreme model derived from Step.

Test Actual Category

Advanced Cancer Present CB
Positive 17 0
Negative 0 40

3.8.2 Lasso logistic regression models

The cancer vs. non-cancer model had 16 transcripts (Table 3.29), an AUC of 0.937 and 99.32%
sensitivity, 52.5% specificity and 88.55% PPV (Table 3.30). The aggressive cancer (A) vs. non-
aggressive cancer model had four transcripts (Table 3.29), an AUC of 0.852, and 61.76%
sensitivity, 86.25% specificity and 79.25% PPV (Table 3.31). The extreme Lasso model (A Vs.
CB samples) had 12 transcripts (Table 3.29), an AUC of 0.983 and 82.35% sensitivity, 100%

specificity and 100% PPV (Table 3.32).
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Table 3.29 Lasso coefficients for three models A) cancer Vs. Non-cancer B) Aggressive cancer Vs.

Non-aggressive cancer C) extreme model (A Vs. CB)

‘ Cancer Model Aggressive Model Extreme Model
Gene name Coefficient Gene name  Coefficient  Gene name Coefficient
ALASI -0.042  KLK3 exons 1-2 -0.268 AURKA 0.035
AR exons4-8 -0.278  SERPINBS -0.087 DLXI 0.043
CLU 0.037  SLCI2A1 0.069 ERGYS’ 0.235
DLX] 0.164  SPINKI 0.278 HOXC4 0.003
ERG 3’ 0.082 HPN 0.188
ERG S’ 0.169 HPRT -0.554
HOXC4 0.111 PPAP2A -0.223
HPN 0.283 SLCI2A41 0.104
IMPDH?2 -0.131 SPINK1 0.321
KLK2 -0.046 STEAP2 -0.297
KLK3 exons 1-2  0.05 STEAP4 -0.113
M. hyorhinis rpoB  0.399 SULTIAI 0.118
MMP26 -0.085
NAALADL?2 -0.003
PCA3 0.101
PPAP24 -0.62
SULTIAI 0.057
TMPRSS2:ERG 0.037
Timp4 -0.033

Table 3.30 Category predictions using the Lasso cancer Vs. non-cancer model

‘ Test Actual Category
Disease Present Disease Absent
Positive 147 19
Negative 1 21

Table 3.31 Category predictions using the Lasso aggressive cancer Vs. non-aggressive cancer model

‘ Test Actual Category
Aggressive Disease Present  Aggressive Disease Absent
Positive 42 11
Negative 26 69
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Table 3.32 Category prediction for the Lasso extreme model (A Vs. CB)

Actual Category
Advanced Cancer Present CB

Positive 14 0
Negative 3 40

3.8.3 Random Forest

The cancer vs. non-cancer model had an OOB error estimate of 18.52%, with 87.25% sensitivity, 60%
specificity and 89.04% PPV (Table 3.33, the ranked transcript importance provided in Table 3.34).
The aggressive vs. non-aggressive cancer model had an OOB error estimate of 22.82%, with 71.64%
sensitivity, 81.71% specificity and 76.19% PPV (Table 3.35, Table 3.36). The extremes model had an

OOB error estimate of 15.79%, with 70.59% sensitivity, 90% specificity and 75% PPV (

Table 3.37, Table 3.38).

Table 3.33 Confusion matrix for random forest modelling samples on cancer vs. non-cancer. OOB

error estimate of 18.52%.

Cancer Cancer Class Sum
not predicted  error
predicted
CB 24 16 0.4 40
Cancer 19 130 0.13 149
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Table 3.34 Gini values for the random forest model to categorise the samples into cancer and non-

cancer.

Transcript

Gin Rank Transcript Gin Rank Transcript Gin Rank
I I I

DLX1 22 1 CLU 20 UPK2 0.4 3
7 0.61 6 9
ERG 3’ 20 2 SPINKI1 21 GAPDH 0.4 4
8 0.61 5 0
TMPRSS2:ERG 2.0 3 B2M 22 Timp4 0.4 4
6 0.60 4 1
HOXCo 1.8 4 FOXMI 23 KLK3 exons2-3 04 4
6 0.58 4 2
HPN 1.8 5 AR exons 4-8 24 SERPINBS 0.4 4
3 0.58 4 3
PCA3 1.2 6 CAMKK?2 25 CDC20 0.4 4
1 0.56 2 4
PPAP24 1.1 7 SULTIAI 26 PECI 0.4 4
6 0.56 2 5
ERG 5’ 1.1 8 M.genitalium 27 AR truncation 0.4 4
4 RplA 0.54 exon 1 6
HOXC4 1.1 9 STEAP2 28 U.urealYticum 0.4 4
2 0.54 RplB 1 7
M. hYorhinirpoB 1.0 10 MKi67 29 GOLM1 0.4 4
4 0.54 1 8
ALASI 0.8 11 MMP26 30 AURKA 0.4 4
5 0.53 0 9
PTPRC 0.7 12 KLK2 31 ANPEP 0.4 5
7 0.52 0 0
M. genitalium 0.7 13 AGR2 32 MDK 0.3 5
RplB 7 0.50 9 1
SLCI1241 0.7 14 AMACR 33 U.urealYticum 0.3 5
5 0.49 dnakK 8 2
HPRT 0.7 15 FOLHI 34 CDKN3 0.3 5
5 0.49 7 3
KLK3 exons 1-2 0.7 16 TBP 35 BRAF 0.3 5
1 0.48 6 4
NAALADL?2 0.6 17 TERT 36 KLK4 0.3 5
7 0.48 6 5
TDRD 0.6 18 IMPDH? 37 PSGR 0.3 5
3 0.47 3 6
STEAP4 0.6 19 M.hYorhinis 38 OGT 0.3 5
1 RplA 0.46 0 7

Table 3.35 Confusion matrix for random forest modelling samples on aggressive cancer vs. non-

aggressive cancer. OOB error estimation of 22.82%.

Aggressive Cancer  Aggressive Class error Sum

Cancer predicted

15

not predicted

67

Non-aggressive 0.18 82

cancer
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| Aggressive Cancer 19 48 0.28 67 |

Table 3.36 Gini values for the random forest model to categorise the samples into aggressive cancer

and non-aggressive cancer.

Transcript Gini  Rank Transcript Gini  Rank  Transcript Gini  Rank

score score score
52 1 20 0.7 3
SPINK 1 1 ERG 3’ 1.00 HOXC6 2 9
4.0 2 21 0.7 4
KLK3 exons 1-2 7 MDK 0.99 TERT 2 0
36 3 22 0.7 4
KLK3 exons 2-3 3 CAMKK? 0.97 NAALADL?2 1 1
35 4 23 0.6 4
UPK?2 5 CLU 0.95 ERG 5’ 9 2
34 5 24 0.6 4
SLCI12A41 8 GAPDH 0.93 AR exons 4-8 8 3
1.8 6 25 M.genitalium 0.6 4
SERPINBS 9 AGR?2 0.87 RplA 6 4
1.8 7 TMPRSS2:ER 26 0.6 4
SULTIAI 8 G 0.86 PCA3 3 5
1.8 8 27 0.6 4
KLK4 6 CDKN3 0.86 DLX1 2 6
L5 9 28 0.6 4
BRAF 7 B2M 0.85 TBP 2 7
1.4 10 29 0.6 4
PSGR 9 TDRD 0.83 PECI 2 8
1.3 11 30 0.5 4
HPN 9 ALAS1 0.82 MMP26 9 9
U.urealYticum 1.2 12 AR truncation 31 M.hYorhinis 0.5 5
dnakK 8 exon 0.82 rpoB 9 0
1.2 13 32 0.5 5
Timp4 5 IMPDH? 0.81 oGT 9 1
1.2 14 33 0.5 5
STEAP?2 4 GOLM1 0.79 HOXC4 8 2
U.urealYticum 1.0 15 34 0.5 5
RplB 9 FOLH1 0.79 AMACR 7 3
1.0 16 35 0.5 5
M.hYorhinis RplA 8 FOXM1 0.79 ANPEP 6 4
1.0 17 36 0.5 5
KLK?2 8 MKi67 0.77 HPRT 4 5
1.0 18 M.genitalium 37 0.5 5
PPAP2A4 7 RplB 0.73 PTPRC 2 6
1.0 19 38 0.5 5
CDC20 1 AURKA 0.73 STEAP4 0 7
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Table 3.37 Confusion matrix for random forest modelling the samples belonging to the extreme

clinical categories (A vs. CB). OOB error estimate of 15.79%.

CB Advanced Class Sum
predicted predicted error
CB 36 4 0.1 40
Advanced 5 12 0.29 17
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Table 3.38 Gini values for the random forest model to categorise the extreme samples (A vs. CB).

Gini  Rank Rank Rank

score

Gini

score

Gini

score

Transcript

Transcript Transcript

SPINKI 71 sres L0020 poxcs 7 9
KLK3 exons 1-2 4; ’ 2 MDK 0.99 21 TERT g ’ z
KLK3 exons 2-3 ; ’ 3 CAMKK? 0.97 22 NAALADL?2 g ’ ;I
UPK? ; ’ 4 CLU 0.95 23 ERG 5°¢ z ’ ;
SLCI1241 ; ! 3 GAPDH 0.93 24 AR exons 4-8 g ’ ;
SERPINBS ; ’ 6 AGR2 0.87 25 ]I‘Qﬁ?’jnimlium z ’ j
SULTIAI ; ’ 7 gMPRSSZ:ER 0.86 26 PCA3 g ’ ;
KLK4 é ’ 8 CDKN3 0.86 27 DLX] g ’ Z
BRAF 17 ’ ? B2M 0.85 28 TBP g ’ 4;
PSGR ; ! 10 TDRD 0.83 29 PECI g ’ ;
HPN ; ’ 1 ALAS1 0.82 30 MMP26 z ’ ;
6({2 Z};al Yticum ;.2 12 zlxlf) ;runcatton 0.82 31 %.012 Yorhinis z 5 .;
Timp4 .15.2 13 IMPDH? 0.81 32 oGT 3.5 j
STEAP2 i M cou 0.7 33 poxcy il
g;l‘;ealth”m ; ’ 15 FOLHI 0.79 34 AMACR g ’ ;
M.hYorhinis RplA {8.0 16 FOXM1 0.79 35 ANPEP 25 2
KLK2 {8.0 17 MKi67 0.77. 36 HPRT 3.5 :Z
PPAP2A 17 ’ 18 ]I‘;ﬁl‘;n faltum 0.73 37 PTPRC g ’ Z
CDC20 5.0 9 AURKA 0.73 38 STEAP4 3.5 ;

3.84 Random Forest applied to all clinical categories

A random forest model was also constructed to classify the samples into their five main types of
category (advanced, high-, intermediate-, low-risk and clinically benign), but the results were poor
(OOB error estimate of 45.5%, Table 3.39, Table 3.40). The OOB was only modestly improved

when the data was adjusted to have equal numbers of samples per category in each tree (53.44%,
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Table 3.41). This poor performance could be down to the low number of samples per category

using the current methods.
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Table 3.39 Confusion matrix for random forest on all 5 clinical categories. OOB error estimate of

45.5%.

Sum

A 1 12 4 0 0 0.94 17
H 1 20 21 0 8 0.6 50
/ 1 8 58 0 5 0.19 72
L 0 0 6 0 4 1 10
CB 1 6 9 0 24 0.4 40

Table 3.40 Sensitivity, Specificity and PPV for each category after categorising samples into five

clinical categories using random forest.

True A True Not A Sensitivity: 25%
QOutcome A 1 16 Specificity: 91.35%
Outcome Not A 3 169 PPV: 5.88%
High Risk (H)

True H True Not H Sensitivity: 40%
QOutcome H 20 26 Specificity: 81.29%
QOutcome Not H 30 113 PPV: 43.48%

Intermediate Risk (I)

Truel True Not 1 Sensitivity: 80.56%
Qutcome | 58 40 Specificity: 65.81%
Qutcome Not 1 14 77 PPV: 59.18%

Low Risk (L)

True L True Not L Sensitivity: 0%
Qutcome L 0 0 Specificity: 100%
Qutcome Not L 10 179 PPV: *%

Clinically Benign (CB)

True CBEN True Not CBN Sensitivity: 60%
Qutcome CBN 24 17 Specificity: 88.59%
Outcome Not CBN 16 132 PPV: 58.54%

Table 3.41 Confusion matrix for random forest on all 5 categories with random sampling to equalise

categorical sample sizes. OOB error estimate of 53.44%.

Sum

A 10 4 2 0 1 0.41 17
H 14 7 15 5 9 0.86 50
/ 3 8 46 4 11 0.36 72
L 1 0 4 1 4 0.9 10
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| cB 2 5 3 6 24 0.4 40 |

3.8.5 Comparing the Models

The OOB error was found to be lowest for modelling the extremes (CB v Aggressive PCa), this
was expected as they are the samples that should be least alike in their expression and so should be
the easiest categories to separate. The model does give good sensitivity and specificity; however,
this error is still fairly high at 15.79%, meaning there could still be improvements. Similarly, the
Lasso model (high AUC) and Step model for the extremes comparison both had high sensitivity
and specificity, though the step models are likely to be over fitted. From the top fifteen most
important transcripts via random forest, five were in common (four uniquely) with the Lasso
selected transcripts and five were in common (four uniquely) with the Step selected transcripts.
The only transcript common to all three models was HPN, which interestingly only appeared to
have mid level importance in each model.

The OOB error for comparing cancer vs. non-cancer was also fairly high, even though it was the
second lowest (18.52%). This model showed high sensitivity but was not so specific to identifying
cancer in the samples. The Lasso model had a good AUC (0.937) and also showed high sensitivity
but not so good specificity to detecting cancer, unlike the Step model, which showed high
sensitivity and specificity. However, Step is the least robust of the methods for modelling data.
From the top fifteen most important transcripts via random forest, ten were common in the Lasso
selected transcripts and seven were common with the Step selected transcripts. There were six
transcripts common to all three models: DLXI, ERG 3°, TMPRSS2:ERG, HPN, PCA3 and ERG 5’,
all of which are transcripts known to be involved or associated to PCa.

The OOB error for comparing aggressive cancers to non-aggressive cancers was higher at 22.82%,
though this model had good sensitivity and specificity ratios for the random forest model, 72% and
82%, respectively. From the top fifteen most important transcripts selected via random forest, all
four Lasso identified transcripts were in common and ten Step selected transcripts were common.
Three of the fours Lasso identified transcripts were common to all models: SPINKI, KLK3 exons

1-2 and SERPINBS.
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This highlights that there is structure in the data that could likely be further improved with data

from more samples and more probes.

3.9 Transcripts that show high-importance

Seven transcripts were identified by three different methods (Table 3.19, Table 3.29, Table 3.34)
to be differentially expressed between cancer and non-cancer samples: DLXI, ERG 3’,
TMPRSS2:ERG, HOXC4, ERG 5°, PCA3 and HPN (Table 3.40). These transcripts all have
published associations with PCa. Interestingly, ERG 5°, HOXC6 and M.genitalium RplB were
significant in the Mann Whitney U test and had been ranked highly by random forest, but were not
present in the Lasso model. This is likely due to the inter-correlation of their NanoString signals,
as Lasso penalises correlating variables and keeps those it deems to hold the most information
(section 3.3.7).

Table 3.42 Transcripts identified to distinguish between PCa and non-cancer using Mann Whitney U

and Lasso. Random Forest rank is also shown.

Transcript Mann Whitney U Random Forest rank
DLXI Y Y 1
ERG 3’ Y Y 2
TMPRSS2:ERG Y Y 3
HOXC4 Y Y 9
ERG S’ Y Y 8
HOXC6 Y N 4
PCA3 Y Y 6
M.genitalium RplB Y N 13
HPN Y Y 5
PPAP2A N Y 7
M.hYorhini rpoB N Y 10
ALASI N Y 11
KLK3 exons 1-2 N Y 16
NAALADL?2 N Y 17
CLU N Y 20
SULTAI N Y 26
MMP26 N Y 30
KLK?2 N Y 31
IMPDH? N Y 37
Timp4 N Y 41
PTPRC N N 12
SLCI241 N N 14
HPRT N N 15
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Four transcripts identified by three different methods (Table 3.20, Table 3.31, Table 3.39) were
differentially expressed between aggressive cancer and non-aggressive cancer samples: SLCI2A41,
SPINK1, SERPINBS and KLK3 exons 1-2.

Table 3.43 Transcripts repeatedly shown to be differentially expressed between aggressive PCa and

non-aggressive PCa.

Transcript

SLCI2A1 Y Y 5
UPK?2 Y N 4
SPINK 1 Y Y 1
SERPINBS Y Y 6
CAMKK?2 Y N 22
PSGR Y N 10
KLK3 exons 1-2 Y Y 2
KLK3 exons 2-3 Y N 3
KLK?2 Y N 17
STEAP?2 Y N 14
KLK4 Y N 8
SULTIAI N N 7
BRAF N N 9

Two of these transcripts were also identified by three different methods (Table 3.21, Table 3.32,
Table 3.38) to be differentially expressed between advanced cancer and clinically benign cancer
samples: SLC1241 and SPINK]. 1t is perplexing that less transcripts are selected for this extreme

comparison, but this may be due to a lack of material coming from the solid advanced cancers.

Table 3.44 Transcripts commonly found to be differentially expressed by the Mann Whitney U test,

GLM and Lasso and Random Forest between advanced and benign samples.

Transcript

SLCI24 Y Y

SPINK1 Y Y 1
HPRT Y Y 35
KLK4 Y N 8
STEAP2 Y N 14
PPAP2A Y N 18
DLXI N Y 46
ERG S’ N Y 42
HOXC4 N Y 52
HPN N Y 11
STEAP4 N Y 57
SULTIAI N Y 7
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3.10 Conclusions

Detection of prostate-specific (KLK2 and KLK3) and PCa-specific (TMPRSS2:ERG) transcripts
demonstrates that these are present in urine EVs harvested and analysed by our methods. RNA
yields post-radical prostatectomy suggests that the vast majority of the urinary RNA originates in
the prostate. The identification of differential transcripts between non-aggressive and aggressive
cancers demonstrates NanoString’s potential ability to distinguish these clinical categories using
transcripts from urinary EVs.

It is vital to emphasise that the clinical categories in this study are based on current, and not
perfect clinical tests. Hence the current need for novel biomarkers to distinguish accurately
between them. Particularly true of CB samples, where it is expected that ~20% of the men that
show no clinical evidence of cancer will in fact have PCa. Therefore, it is notable that 12% of CB
samples were found to have a TMPRSS2:ERG fusion in this study. As TMPRSS2:ERG is expected
to be in ~50% of PCa, this would suggest clinically undetected PCa in 24% of our CB samples. In
LPD, 21 of the 37 CB samples are clustered together, leaving 16 spread amongst the other groups,
five (14%) of which are associated to a group where overall TMPRSS2:ERG is significantly up-
regulated. Seven of the CB samples are left un-grouped, showing no distinct underlying signature.
The detection of TMPRSS2:ERG by NanoString and confirmation of this find by RTPCR
demonstrated the sensitivity of our methods for detection of PCa.

Some Nanostring probes performed much better than others in models throughout the analyses
(section 3.9). However, transcripts were identified that were differentially expressed in samples
from different clinical categories (PCa present, increasing PCa aggressiveness etc). Due to the
nature of the probe set, most of these were known PCa markers, but some were not. The latter
demonstrating that it can be difficult to predict what type of transcripts should be targeted in our
analyses. As a result of probe selection for advanced PCa associated transcripts, it was expected

that we observe unusual distribution and medians for our data.
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Housekeeping probes were selected, as they are known to be useful when investigating PCa tissue;
their use in urine and urinary EVs has not been studied in detail. Therefore, it may be of interest to
investigate further options for urinary microvesicle house keeping transcripts, as the probes
selected did not show great correlation.

The analyses have revealed that there is structure in the data, as demonstrated for example, by the
detection of differentially expressed transcripts, LPD groups and linear model analysis. Lasso
logistic regression predictive models were able to categorise cancer from non-cancer samples and
aggressive from non-aggressive cancer samples fairly robustly (AUCs of 0.94 and 0.85,
respectively). However, sensitivity and specificity, even on the training set could be improved. For
this it could be suggested that we are not using the optimal starting probes and thus more probes
should be included to identify the clearest signature available. Another complication is the
complexity of cancer within individual prostates, with multifocal tumours being detectable in the
majority of cancerous prostates, each with the potential to have a different path and rate of
progression. The Mann Whitney U test and random forest results were similar to each other and
that of the Lasso models, suggesting that these results are accurate, but also highlighting that the
methods were suitable for analysing the NanoString data. The LPD showed some clinical
separation of the samples, though again a better selection of probes could provide further
discrimination between the lower and intermediate samples with the benign samples. The
inclusion of known PCa transcripts in our differential expression and predictive model for cancer
results and the inclusion of known prognostic PCa transcripts in our differential expression and
predictive model for aggressive cancer results provide evidence of accuracy.

These analyses form the ground work for expansion of the urine biomarker study to include a
larger number of probes, and samples which should provide much improved power to dissect the
complexities of this disease within individual prostates. The probes that provided no information
were determined. These probes were reviewed to unveil if they should be replaced or removed in

the larger study (for example the PCA3 probe didn’t work very well and was redesigned for the
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large study). FOXM1I showed no clinical association and was not identified in any clustering or

prediction models and so was removed from subsequent studies.
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Response to Hormone Therapy

4.1 Summary

Stratification of treatment by gene expression levels has shown benefits in many
cancers, such as breast cancer’® and lung cancer’®?!° but it is yet to be utilised
successfully in prostate cancer (PCa) treatment. Areas where stratification could benefit
PCa patients include: deciding between treatment vs. active surveillance, identifying
which radical prostatectomy (RP) and radiotherapy patients will succumb to
biochemical recurrence (BCR), and which hormone therapy (HT) patients would
benefit from additional treatment (i.e. those patients that are predicted to progress early

to castration resistant prostate cancer (CRPC)). In this chapter we focus on men in our
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cohort treated by hormone therapy and examine whether expression profiles of urinary
microvesicles can be used to predict time to CRPC. Unfortunately, the cohort does not
have a long enough follow up at this time to examine time to BCR after RP or
radiotherapy.

In the normalised NanoString 1 dataset, a signature of seven transcripts was identified
that could optimally predict progression of patients on hormone therapy (section
1.3.4.2.1) (cox-regression model; p = 2.3x10%; HR = 0.04288). The transcripts in the
predictor are AGR2, DLXI1, KLK2, NAALADL2, AR exons 4-8, PPAP2A and AMACR.
This model was an independent predictor of progression when established clinical
variables initial PSA, age, Gleason score and initial bone scan result were taken into
account (cox-regression model; p = 0.003; HR = 0.03).

When the data was adjusted to KLK2 levels, similar to KLK3 adjustment used in the
PCA3 test, an optimal model of three transcripts (CAMKK?2, PSGR and UPK) was
identified (cox-regression model; p = 0.007, HR = 1.0028). This model was not a
significant predictor independent of established clinical factors (cox-regression model;
p =0.14; HR = 1.009).

Both of these models were applied to the second NanoString dataset but were not

validated.

4.2 Introduction

42.1 The Research Gap

Hormone Therapy (HT) is the primary treatment of men with advanced prostate cancer,
that is those diagnosed with a PSA > 100 or with evidence of metastatic spread
(generally via bone scan). Response to the treatment is highly variable with some men
failing to respond at all, whereas others take years to progress. All men will eventually
progress to CRPC (section 1.3.4.2.2). Identification of men that are likely to relapse

early could lead to more aggressive first line treatment being used, such as full

180



CHAPTER 4: RESPONSE TO HORMONE THERAPY

androgen blockage (section 1.3.4.2.1), combination with chemotherapy, or novel
strategies such as combination with Aberiterone. Currently, there is no clinically
available test to stratify advanced patients into those who will do well on HT and those

that will quickly require further or alternative treatments.
422 Aim

I am to use the NanoString 1 data set (Chapter 3) from advanced patients (rn = 32), to
see if a significant predictor of early progression in patients on HT can be built and
whether this predictor improves on current clinical information collected (e.g. PSA,
Gleason score and bone scan). I will also attempt to validate these signatures in a

second independent cohort (using the second NanoString data).

423 Summary of the HT patient cohort

The breakdown of the clinical data for the 32 patients on HT can be seen in Table 4.1.
Many of the advanced patients are diagnosed as being advanced by a PSA > 100 and no
biopsy is performed in these circumstances. Other patients with lower PSAs are
determined to be advanced, by either a biopsy or a positive bone scan.

Table 4.1 Clinical summary of the hormone therapy cohort (n=32).

Clinical Variable Number of patients

Gleason Score
10 0
9 8
8 4
7 (4+3) 4
No Biopsy: Advanced 16
Bone Scan
Positive 18
Negative 13
Unknown 1
PSA Median 98.7 (range: 9.6 — 2508)
Age Median 78 (range: 55 - 98)
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4.3 Hormone Therapy Predictor constructed using Nanostring 1 data

4.3.1 Differentially expressed genes based on initial response, 12 month

relapse and 24 month relapse

Five transcripts were significantly up regulated in those that had an initial response to
HT (n = 28) compared to those that did not (n =4) (p < 0.05; not adjusted for multiple
testing; Mann-Whitney U test; Table 4.2). Three of these five transcripts, were capable
of distinguishing patients that relapsed within 12 months (n = 6) (Table 4.2; p < 0.05;
not adjusted for multiple testing): STEAP4, AMACR, BRAF. By 24 months, 14 patients
were still responding to HT and 18 had progressed. Four different transcripts were
significantly up regulated in patients still responding to treatment (Table 4.2; p < 0.05;
not adjusted for multiple testing). These results need to be treated with caution due to
the low numbers and the lack of significance after multiple testing correction.

Table 4.2 Mann-Whitney U test results for comparing samples that respond to HT and

those that don't at different time points.

1l Respon:
Transcript p -value Adjusted p - value  Log2 Fold change
AGR2 0.047 1 -0.57
STEAP4 0.024 1 -0.26
HPRT 0.029 1 -0.21
AMACR 0.034 1 -0.14
BRAF 0.04 1 -0.13
Transcript p -value Adjusted p - value  Log2 Fold change
STEAP4 0.019 0.98 -0.18
AMACR 0.01 0.57 -0.14
BRAF 0.033 0.98 -0.08
Transcript p -value Adjusted p - value  Log2 Fold change
DLXI 0.045 1 -1.28
AR (truncation) exon 9 0.025 1 -1.16
AR exons 4-8 0.018 1 -0.09
TBP 0.034 1 -0.08
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4.3.2 Survival analyses of time to progression after HT

Using the Mann-Whitney U test as described above lacks statistical power as time to
progression is not taken into account, therefore I applied Cox's proportional hazards
model and other survival analysis tools (section 2.8). Twelve probes were significant
predictors of progression individually (Table 4.3; Cox regression model; p < 0.05;
multiple testing correction not applied). There were no significant probes after multiple
testing correction.

Expression for each gene was divided into two groups, low expression and high
expression, using k-means to determine the threshold (section 2.5.3). Using these
grouped data, ten transcripts were identified as having significant different times to
progression (p < 0.05; log-rank test; Table 4.4), of which only one was significant after

multiple testing correction: NAALADL?.

Table 4.3 Cox results for relapse to hormone therapy

Transcript p - value Adjusted p - value ~ Hazard ratio
KLK2 0.011 0.62 0.74
AMACR 0.011 0.62 0.68
DLX] 0.011 0.62 0.87
PPAP24 0.014 0.76 0.51
STEAP4 0.017 0.88 0.63
PCA3 0.034 1.00 0.87
CDC20 0.037 1.00 0.81
KLK4 0.039 1.00 0.63
TDRD 0.042 1.00 0.86
STEAP2 0.043 1.00 0.66
NAALADL?2 0.045 1.00 0.79
Timp4 0.049 1.00 0.86

Table 4.4 Significant probes using log rank test applied to data separated by k-means.

Transcript p - value Adjusted p - value ‘ Coefficient
NAALADL?2 0.0004 0.03 12.36
PPAP24 0.005 0.27 7.97
KLK2 0.006 0.31 7.66
STEAP4 0.007 0.4 7.19

DLX] 0.01 0.56 6.55
AGR2 0.01 0.64 6.28

PCA3 0.02 0.93 5.57
IMPDH?2 0.03 0.98 4.68
STEAP2 0.03 0.98 4.63
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| FOLHI 0.04 0.98 4.09

Twenty transcripts have been identified as candidate predictors of progression after HT
(Table 4.3 and Table 4.4). For the majority of probes a clear difference in time to

progression is seen (Figure 4.1).
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Figure 4.1 Kaplan Meier plots for each of the candidate probes (section 4.3.1). Expression for each
probe is grouped into high and low expression using K-means clustering.
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4.3.3 Determining the optimal predictor of progression after HT

The optimal model to detect time to progression after HT is likely to be formed from a
combination of the expression from multiple probes. There are various methods for
identifying the best combination of probes (variable selection) and here I will
investigate three i.e. LASSO (section 2.6.2), stepwise regression (section 2.6.4) and
random forest (section 2.6.3). Different starting sets of probes will be used based on

results from the previous section.

4.3.3.1 Model built using differentially expressed transcripts based on initial

response, 12 month relapse and 24 month relapse
Gene selection and three proposed optimal models were produced based on the nine
transcripts identified as differentially expressed at initial response, 12 month relapse or
24 month relapse (Table 4.2): a Cox general linear model with shrinkage and variable
selection using LASSO (section 2.6.2) (Table 4.5), Stepwise regression on a Cox model
(Table 4.6), and a Random Forest model (section 2.6.3) (Table 4.7). The five transcripts
selected by LASSO and step are identical, showing reliability in these results. Four out
of these five transcripts most important in the random forest model are also similar
(DLX1, AR exons 4-8, AMACR and AGR2 have high importance), though STEAP4
appears to have increased importance and BRAF has lost importance in the Random

Forest model.

Table 4.5 The probes included the in the glm after LASSO shrinkage and variable
selection, (of the Mann-Whitney U selected probes) with the corresponding beta

coefficients

Beta Coefficient

BRAF 0.27
DLXI -0.14
AGR2 -0.19
AR exons 4-8 -0.26
AMACR -0.38
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Table 4.6 The probes included in the cox model after step variable selection (of the Mann-
Whitney U selected probes) with the hazard values and p-values. The overall performance

of the model to predict progression on HT is p = 0.00024.

DLX] 0.83 0.008

AMACR 0.56 0.013
AGR2 0.76 0.038
AR exons 4-8 0.72 0.047
BRAF 1.67 0.054

Table 4.7 The importance of each probe in the random forest predictor for HT relapse (of

the Mann-Whitney U selected probes).

Transcript Importance Relative Importance
DLXI 0.042 1

AR exons 4-8 0.015 0.35

STEAP4 0.013 0.32

AMACR 0.011 0.27

AGR2 0.009 0.21

HPRT 0.003 0.08

BRAF -0.001 -0.01

TBP -0.003 -0.08

AR exon 9 -0.006 -0.13

Using the selected gene sets determined above, a single score was derived for each gene
set and a Cox regression model was constructed (Table 4.8). The top four important
transcripts of the random forest model performed best (HR=0.0573; p = 3.29x10%) but
all of the models were highly significant (p < 1.0x10®) in discriminating samples from

patient’s that progressed on HT and those that did not.
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Table 4.8 Overall performance of the models (created from the probes originally identified

by Mann-Whitney U) tested by cox.

Model p-value HR (95%

confidence
intervals)

LASSO genes — (DLX1, AGR2, BRAF, AR exon 9 /AMACR) 7.5x10™  0.106 (0.01761 -

0.6394)
Step genes — (DLX1, AGR2, BRAF, AR exons 4-8 /AMACR) 5.3Ix10%  0.0786 (0.01299
-0.4752)
LASSO and Step genes (DLX1, AGR2, BRAF, AR exons 4-8,  6.79x10°"  0.0983 (0.01738
AR exon 9 /AMACR) -0.5567)
Random Forest top 5 genes (DLX1, AGR2, AR exon 4-8, 3.29x10% 0.0573
STEAP4 /AMACR) 0.008039 -
0.4079)

4.3.3.2 Model built using Cox selected transcripts

Using the twelve transcripts identified using the Cox regression model on individual
probes (Table 4.3), variable selection was performed. LASSO identified seven
transcripts (Table 4.9), stepwise regression identified six transcripts (Table 4.10), and
Random Forest identified the relative importance (Table 4.11). The transcripts selected
by LASSO and stepwise regression have three common transcripts (KLK2, CDC20 and

STEAP?2) but the importance of these probes was not high in the random forest model.

Table 4.9 The probes included the in the glm after LASSO shrinkage and variable

selection, (of the cox selected probes) with the corresponding beta coefficients

Transcript Beta Coefficient
KLK2 -0.009
CDC20 -0.012
PPAP24 -0.025
STEAP4 -0.032
DLXI -0.059
NAALADL?2 -0.072
STEAP2 -0.076
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Table 4.10 The probes included in the cox model after step variable selection (of the cox

selected probes) with the hazard values and p-values. The overall performance of the

model to predict progression on HT is p = 0.00323.

STEAP2 0.446 0.057
PCA3 1.395 0.065
KLK4 1.863 0.094
CDC20 0.799 0.097

Table 4.11 The importance of each probe in the random forest predictor for HT relapse (of

the cox selected probes).

Transcript Importance Relative Importance
NAALADL? 0.0215 1
AMACR 0.0199 0.928
DLXI 0.0178 0.829
STEAP4 0.0067 0.313
PPAP2A 0.0051 0.239
STEAP2 0.001 0.046
TDRD 0.001 0.046
Timp4 0.0008 0.039
PCA3 0.0002 0.008
CDC20 -0.0013 -0062
KLK?2 -0.0033 -0.154
KLK4 -0.0049 -0.226

The combined score Cox regressions (Table 4.12) showed that the top four important
transcripts selected by the random forest model performed best (HR =0.103;
p = 7.97x10) but all were statistically significant in predicting patient’s that progressed

on HT.
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Table 4.12 Overall performance of the models (created from the probes originally

identified by cox) tested by cox.

Model p-value HR (95% confidence
intervals)

LASSO genes — (KLK2, DLX1, NAALADL?, 7.8x10%  0.00038

PPAP2A, STEAP2, STEAP4, CDC20) (1.168x10" -
0.1239)

Step genes — (KLK2, STEAP2, PCA3, STEAP4, 0.01 0.048 (0.004 -

CDC20 /AMACR) 0.641)

LASSO and Step genes (DLX1, NAALADL?, 1.22x10  0.001

STEAP4, KLK?2, STEAP2, PPAP2A, CDC20), 03 (5.4x10°% - 0.192)

PCA3, KLK4 /AMACR)

Common to LASSO and Step genes (KLK2, CDC20, 8.22x10r 0.026 (0.001 -
STEAP2) 03 0.536)

Random Forest top 4 genes (NAALADL?2, DLX1, 7.97x100 0.103 (0.021 -
STEAP4 /AMACR) 05 0.504)

4.3.3.3 Model built from Log-rank selected transcripts

Variable selection was performed using the ten significant probes identified by the Log
rank test (expression divided into two groups using k-means) (Table 4.4). LASSO identified
seven transcripts (Table 4.13), stepwise regression identified five transcripts (

Table 4.14), and Random forest identified the relative importance of each of the ten
transcripts (Table 4.15). The transcripts selected by LASSO and step have four in

common (KLK2, AGR2, DLXI and STEAP4). These four transcripts are also the most

important in the random forest model.

Table 4.13 The probes included the in the glm after LASSO shrinkage and variable

selection, (of the log-rank selected probes) with the corresponding beta coefficients

Transcript Beta Coefficient
KLK2 -0.003

AGR2 -0.02

PPAP24 -0.03

STEAP4 -0.03

DLXI -0.06
NAALADL?2 -0.07

STEAP2 -0.08
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Table 4.14 The probes included in the cox model after step variable selection (of the log-
rank selected probes) with the hazard values and p-values. The overall performance of the

model to predict progression on HT is p = 0.0012.

‘ Transcript HR p-value
DLXI 0.78 0.001
NAALADL? 0.66 0.01
FOLHI 1.44 0.03
AGR2 0.75 0.04
STEAP4 0.69 0.08

Table 4.15 The importance of each probe in the random forest predictor for HT relapse (of

the log-rank selected probes).

Importance Relative Importance
NAALADL? 0.0258 1
DLXI 0.0181 0.701
AGR2 0.0151 0.583
STEAP4 0.0138 0.536
PPAP2A 0.0088 0.34
KLK?2 0.0064 0.246
STEAP2 0.0031 0.119
FOLHI -0.0039 -0.153
PCA3 0.0052 -0.202
IMPDH? -0.096 -0.373

In the combined score Cox regressions (Table 4.12) showed that the LASSO selected
transcripts performed marginally better (HR=0.01; p=4.7x10") but all were

statistically significant in predicting patient’s that progressed on HT.
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Table 4.16 Overall performance of the models (created from the probes originally

identified by log rank) tested by cox.

Model p-value HR (95%
confidence
intervals)

LASSO — (KLK, DLX1, NAALADL?2, PPAP2A, 4.7x10-04 0.01

STEAP2, STEAP4, AGR2) (0.0004 - 0.2654)

Step — (DLX1, NAALADL?2, STEAP4, AGR?2, 7x10-04 0.0212

FOLHI) (0.0013 - 0.3362)

LASSO and Step (KLK2, DLX1, NAALADL?, 6x10-04 0.0072

PPAP2A, STEAP2, STEAP4, AGR2, FOLHI) (0.0002- 0.2865)

Common to LASSO, Step and Random Forest (KLK2, 7x10-04 0.0275

AGR2, DLX1, STEAP4) (0.0023 - 0.326)

4.3.3.4 Model built using combining probe selection lists to produce final

model
Combining the candidate probe lists identified using the different gene selection model
may produce a better predictor of HT progression. Using each combination of candidate
probe lists (Table 4.2, Table 4.3, & Table 4.4), LASSO was applied for variable
selection (as it is clear and is designed to avoid over-fitting) and a linear combination
score with Cox regression model was produced (Table 4.17). Initiating the variable
selection with a combination of the candidate probes identified as differentially
expressed at initial response, 12 month relapse or 24 month relapse (Mann Whitney U)
and by the log rank test produced the best model (p =1.3x10""; HR = 0.0091). This
model includes AGR2, AR exons 4-8, DLXI, KLK2, NAALADL2, PPAP2A and
AMACR. 1t has an AUC of 0.783 (Figure 4.1). This is the best performing model
constructed using the Nanostring 1 data. The Kaplan Meier plot for the seven-

transcripts combined was also produced (Figure 4.2).
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Table 4.17 Comparing the Cox regression models of various linear combination scores
producing from combining gene selection lists. Mann-Whitney U = candidate probes
identified as differentially expressed at initial response, 12 month relapse or 24 month
relapse; cox = candidate probes identified by step applied to cox regression models; Log

rank = candidate probes identified by the log rank test on expression dichotomised into low

and high expression.

Combination Method for Resulting probes (cox) p-
variable in model value
selection
Mann-Whitney U~ LASSO AGR?2, 1.3x10" 0.0091
and cox AR exons 4-8, 0.0004 -
DLX1, KLK2, 0.214)
NAALADL?2,
TDRD/AMACR
Mann-Whitney U LASSO AGR2, 2.3x10" 0.04288
and Log rank AR exons 4-8, (0.005 -
DLX]1, KLK2, 0.345)
NAALADL?2,
PPAP2A/AMACR
Cox and Log LASSO DLX1 0.01 0.871 (0.781
rank -0.972)

Kaplan Meier for 7 transcript signature predicting
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Figure 4.2 Kaplan Meier showing the seven-transcript signature (4R exons 4-8 * AGR2 * DLXI *

KLK2 * NAALADL?2 * PPAP2A4 | AMACR) separated into low and high expression using k-means.
The significance was measured using the cox model (Table 4.17), p = 2.3x105,
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The seven-transcript signature was a better predictor of HT relapse than other clinical
variables (including bone scan outcome, Gleason score, initial PSA value and age)
when treated individually (Table 4.18). LPD group (identified from chapter 3, section
3.5.5) was also tested. The seven-transcript score was a statistically significant
independent predictor of HT progression when combined with covariate clinical

variables (p = 0.003; HR = 0.03; Table 4.19).

Table 4.18 Univariate cox models showing the significance of clinical variables, LPD group

and the seven-transcript signature on predicting HT relapse.

UNIVARIATE MODELS

Model p-value HR (95% CI)
Age 0.84 1.006 (0.949 - 1.067)
PSA 0.05 1.001 (1 -1.002)
Gleason Scores 0.27
Gleason 7
Gleason 8 0.26 0.252 (0.022 - 2.844)
Gleason 9 0.91 1.101 (0.22 - 5.54)

Gleason Category
Gleason 7+8

Gleason 9+NA 0.15 2.291(0.666-7.883)
Bone Scan 0.19

Negative

Positive 0.2 1.854 (0.719 - 4.785)
LPD group 0.09

LPDI

LPD?2 0.78 1.413 (0.128 - 15.59)

LPD3 0.24 3.716 (0.414 - 33.36)

LPD4 0.07 7.043 (0.844 - 58.77)

LPD NA 0.12 3.589 (0.637 - 49.04)

DLX1 * AGR2 * KLK2 * NAALADL2 * 2.3x107"  0.04288 (0.005 - 0.345)
AR exons 4-8 * PPAP2A / AMACR
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Table 4.19 Multivariate cox model for predicting early relapse on HT.

MULTIVARIATE MODEL with the seven transcript signature,

p-value = 7.7x10°"
Variable p-value HR (95% CI)

DLX] * AGR2 * KLK2 * NAALADL?2 * 0.003 0.03 (0.003 - 0.313)
AR exons 4-8 * PPAP2A / AMACR

Age 0.996 1(0.949 - 1.054)
PSA 0.176 1(0.997—1.001)
Gleason Category

Gleason 7 + 8

Gleason 9 + NA 0.167 2.61(0.67—10.143)
Bone Scan

Negative

Positive 0.276 1.85(0.612 — 5.59)

434 Validation of the seven-transcript signature using NanoString 2 data

The second set of NanoString data had 43 patients on HT (chapter 5), of which 27
samples were unique to NanoString 2 (Table 4.20).

Table 4.20 Clinical breakdown of the 27 HT patients unique to NanoString 2.

Clinical Variable Number of patients
Gleason Score

10 1

9 13

8 3

7 (4+3) 0
No Biopsy: Advanced 10
Bone Scan

Positive 10

Negative 14

Unknown 3
PSA Median 63 (7.6 - 9604)
Age Median 77 (61 - 93)

The seven-transcript signature was not detected as a significant predictor of progression
in Nanostring 2 (Cox-regression model; p =0.612, HR = 0.640 (95% CI: 0.1118 -
3.669). This is confirmed by looking at Kaplan Meier plots of the combined signature

(Figure 4.3) and the individual probes (Figure 4.4).
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Kaplan Meier for seven-transcript signature predicting
response to Hormone Therapy
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Figure 4.3 Kaplan Meier plot showing the seven transcript signature on NanoString 2 data. The
signature was separated using k-means.
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Figure 4.4 Individual Kaplan Meier plots for the seven transcripts involved in the signature

To remove any potenital batch effect, ComBat was used to normalise the second
NanoString data to the pilot study data. Similar results were obtained (p = 0.62, HR =

0.68 (95% CI: 0.15 — 3.18)). Overall Nanostring 1 and 2 are similar.
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4.4 Identifying novel progression related transcripts in the

NanoString 2 data

NanoString 2 data contained expression levels from 110 more probes than NanoString 1
data. Therefore, I identified novel progression related transcripts in the NanoString 2
data. Expression of eleven transcripts were identified as significant predictors of
progression using Cox regression models (p < 0.05), but none were significant after
multiple testing correction (Table 4.21). Grouping expression into high and low using
using k-means (section 2.5.3), found MSMB to be significant even after multiple testing
correction (p = 0.22x10%, adjusted p= 1.54x10). Ten other transcripts were
significant using this method prior to multiple testing correction (p < 0.05; Table 4.22).
Log rank test was also performed using the median as a separation cut off for high and
low-expression, ten transcripts were observed to be significant prior to multiple testing

correction (p < 0.05; Table 4.23).

Table 4.21 Cox regression modelling identified ten probes that were predictors of

progression after HT. None were significant after multiple testing correction.

p-value Adjusted p-value Coefficient

MSMB 0.0037 0.59 0.7

MIR4435 1HG 0.009 0.98 1.28
BTG 0.017 0.98 1.34
PCSK6 0.021 0.98 0.48
MCTPI 0.028 0.98 1.18
IGFBP3 0.032 0.98 1.2

PCA3 0.036 0.98 0.82
SEC6141 0.039 0.98 1.19
CLIC2 0.04 0.98 1.65
STOM 0.048 0.98 1.15
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Table 4.22 Log-rank test identified probes that could significantly predict progression on

HT. K-means was used to separate into high- and low-expression of each probe.

p-value Adjusted p-value
MSMB 9.22x10"” 1.54x10™" 33
BTG 0.001 0.2 10.4
CLIC2 0.003 0.5 8.6
MKi67 0.006 0.9 7.7
IGFBP3 0.02 0.99 5.8
PCSK6 0.02 0.99 5.7
APOCI 0.02 0.99 5.5
COL10A41 0.02 0.99 5.4
KLK4 0.02 0.99 5.2
MICI 0.03 0.99 4.6
SSPO 0.04 0.99 4

Table 4.23 Log-rank test identified probes that could significantly predict progression on

HT. Median was used to separate into high- and low-expression of each probe.

p-value Adjusted p-value

CLIC2 0.005 0.87 7.8
PCA3 0.008 0.99 7.1
PPAP24 0.008 0.99 7

SEC61A1 0.012 0.99 6.3
IGFBP3 0.015 0.99 5.9
HISTIH2BG 0.016 0.99 5.8
TBP 0.02 0.99 5.4
PCSK6 0.022 0.99 5.3
BTG2 0.031 0.99 4.6
STOM 0.033 0.99 4.6

There were common transcripts identified in all three different methods: BTG2, CLIC?2,
IGFBP3, and PCSK6. Variable selection using LASSO and stepwise regression
identified an optimal model of BTG2, CLIC2 and PCSK6 (Table 4.24). These three
transcripts were also identified as having the greatest importance in a Random Forest

model (Table 4.24).
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Table 4.24 Optimising models using the four probes common to log-rank and cox tests. The

cox model had an overall p-value: p = 0.0013.

Lasso Beta ~ Cox p-value Cox HR Random Forest — Relative
value importance

BTG2 0.1 0.2 1.17 1

CLIC2 0.43 0.02 1.88 0.49

PCSK6 -0.7 0.003 0.35 0.21

IGFBP3 - - - -0.24

4.5 Hormone Therapyv Predictor using KZK2 ratio data on Nanostring

1

For NanoString 2 data I found that refactoring the data using KLK2 ratio improved the
ability to distinguish clinical subtypes (section 5.7.5). Therefore, here I will develop an
optimal predictor of progression after HT in the Nanostring 1 data after refactoring
using KLK?2. Differential expression was assessed using the Mann-Whitney U test at
three time points: initial non-responders, relapse within 6 months, within 12 months and
within 24 months (Table 4.25). Cox regression models (section 2.8.2) identified nine
transcripts who’s expression were significantly predictors of progression (Table 4.26;
p <0.05; multiple testing correction not applied). Log-rank test on expression levels
classified as high or low (threshold determined using A-means, found AURKA to be a
significant predictor of progression prior to multiple testing correction only (p = 0.034,
Benjamin-Hochberg adjusted p = 0.99). Log-rank test when using median for separation
into high and low expression, found four transcripts to be differentially expressed
between those that relapsed and those that continue to respond to HT (Table 4.27; p <

0.05; no multiple testing correction applied; Figure 4.7).
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Table 4.25 Mann-Whitney U test identifies probes differentially expressed between those
that have relapsed and those that are still responding to HT at different time periods
(initial response relapse, within 6 month relapse, with 12 month relapse and within 24

month relapse.

Initial Response and After 6 months:

p-value Adjusted p-value Log2(fold change)
KLK3 exons 2-3 0.016 0.92 -0.05
PSGR 0.029 1 -0.09
B2M 0.034 1 -0.06
AURKA 0.047 1 -0.11

After 12 months:

p-value Adjusted p-value Log2(fold change)
PSGR 0.008 0.47 0.08
FOLHI 0.022 0.98 0.04
KLK3 exons 2-3 0.028 0.98 0.04
B2M 0.038 0.98 0.06

After 24 months:

Table 4.26 Cox identified probes that are differentially expressed in NanoString 1 data

normalised by KILK?2 ratio.

p-value Adjusted p-value Coefficient

CAMKK? 0.015 0.86 2.22
UPK?2 0.027 0.98 1.49
KLK3 exons 2-3 0.031 0.98 3.15
PECI 0.031 0.98 2.27
HPN 0.031 0.98 2.48
KLK4 0.034 0.98 3.6

GAPDH 0.036 0.98 2.4

ALASI 0.038 0.98 2.15
KLK3 exons 1-2 0.048 0.98 2.39

Table 4.27 Log rank (using median for separating high and low expression) identified

probes that differ between response to HT.

STEAP4 0.007 0.32 7.7

PECI 0.009 0.49 6.8
SERPINBS 0.013 0.72 6.1
TBP 0.037 0.99 4.4
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PECI was identified in all comparisons; Mann-Whitney U, Cox and Log-rank (using
median for separation). Variable selection on all fourteen transcripts that were identified
as candidate predictors (Table 4.25, Table 4.26, Table 4.27) were performed. Lasso
identified three transcripts: CAMKK2, DLXI and UPK2 (Table 4.28); stepwise
regression identified six transcripts of which only UPK2 was common to Lasso (Table
4.29); and using Random Forest three of the top five important genes were found in
either the Lasso or Stepwise regression results (Table 4.30).

Table 4.28 Lasso selects three transcripts for HT progression prediction in KLK2 adjusted

data.

Beta coefficient

CAMKK? 0.232
DLXI -0.028
UPK?2 0.099
Cox model: p —value = 0.2, HR = 0.999, 95% CI = 0.998 - 1

Table 4.29 Stepwise regression selects six probes for early HT relapse prediction in KLK2

adjusted data.

‘ Transcript p-value HR
B2M 0.096 2.713
FOLHI 0.042 0.246
GAPDH 0.122 0.102
HPN 0.083 3.504
PSGR 0.027 2.773
UPK2 0.039 1.955
Cox model: p —value = 0.039, HR = 86.54, 95% CI = 2.435 - 3076
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Table 4.30 Random forest shows the importance of each transcript in distinguishing early

HT relapse in KLK? adjusted data.

Transcript Importance Relative Importance
PSGR 0.035 1.00
PECI 0.035 0.99
HPN 0.007 0.20
KLK3 exons 1-2 0.006 0.18
CAMKK? 0.006 0.16
ALASI 0.006 0.16
FOLHI 0.005 0.13
DLXI 0.003 0.09
AURKA 0.0002 0.01
KLK3 exons 2-3 -0.0002 -0.01
UPK2 -0.0007 -0.02
GAPDH -0.001 -0.03
B2M -0.006 -0.02
KLK4 -0.007 -0.19

Kaplan Meier plots (section 2.8.1) were produced using a k-means determined threshold
between high and low expression (Figure 4.5). Applying variable selection on this
dichotomised data, Lasso identifies CAMKK?2, PSGR and UPK2 (Table 4.31); stepwise
regression selects AURKA, CAMKK?2, KLK3 exons 1-2 and UPK?2 (Table 4.32); whilst
random forest suggests that PSGR is of most importance, followed by UPK2 and
CAMKK? (the same three transcripts selected via Lasso) (Table 4.33). CAMKK?2, PSGR
and UPK2, which were selected by Lasso and also the three most important transcripts
according to Random forest, produce a significant cox model (p = 0.007, HR = 1.0028,

95% CI=1.001 - 1.005).
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Figure 4.5 Kaplan Meier plots (expression separated via k-means) for the fourteen transcripts
identified via Mann Whitney U, Cox and log-rank tests for early HT relapse.
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Figure 4.6 Kaplan Meier plots (expression separated via median) for the fourteen transcripts
identified via Mann Whitney U, Cox and log-rank tests for early HT relapse.
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Table 4.31 Lasso (with glm) selects three transcripts from the five shown to be differential
from Kaplan Meier plots using k-means for separation. An overall Cox model using these

three probes proves to be significant (p = 0.007).

Transcript

CAMKK? 0.31

PSGR 0.06
UPK2 0.18
Cox model: p —value = 0.007, HR = 1.0028, 95% CI = 1.001 - 1.005

Table 4.32 Step (with Cox) selects four transcripts from the five shown to be differential
from Kaplan Meier plots using k-means for separation. An overall Cox model using these

four probes is not significant (p = 0.07).

‘ Transcript p-value HR
AURKA 0.13 1.25
CAMKK? 0.04 3.51
KLK3 exons 1-2 0.14 0.13
UPK?2 0.06 2.10
Cox model: p —value = 0.07, HR = 1, 95% CI = -1

Table 4.33 Random forest shows the importance of each of the five transcripts identified

via Kaplan Meier plots using k-means for separation. The top three important transcripts

are identical to the Lasso output.

Importance Relative Importance
PSGR 0.098 1
UPK2 0.018 0.179
CAMKK? 0.014 0.137
AURKA 0.003 0.031
KLK3 exons 1-2 -0.002 -0.017

Lasso has consistently selected CAMKK?2 and UPK?2 along with one other transcript
(DLX1 when all that showed significance were used, PSGR when only those that
appeared to be significant in k-means separated Kaplan Meier plots). This consistency
of selecting CAMKK2 and UPK2 when the input variables are altered shows
reproducibility. Though the model including DLXI! was not significant, the model
including PSGR was the most significant model identified (»p = 0.0023, HR = 1.0028,
95% CI = 1.001 - 1.005). CAMKK?2 was always identified as important by Random

forest. Step (with Cox) and Random Forest was not very consistent in creating models
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with similar variables. Therefore, the most consistent and significant cox regression
model identified contained CAMKK?2, PSGR and UPK2 (p = 0.007, HR = 1.0028, 95%

CI=1.001 - 1.005).

4.5.1 Validation of the final model on KLK2 ratio NanoString 2 data

The second set of NanoString data also refactorised using the KLK?2 ratio method was
used to test the CAMKK2, PSGR and UPK2 Cox regression mode identified in
NanoString 1 data. The model did not reach statistical significance as a predictor of
progression (p = 0.4, HR = 1.000774 (95% CI: 0.999 — 1.003). Looking at the Kaplan
Meier plots of the transcripts individually (Figure 4.7), CAMKK?2, PSGR and UPK2
showed better survival with low expression in the pilot study, yet in the second set of

data, both CAMKK?2 and PSGR now show better survival with higher expression.
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Figure 4.7 Kaplan Meier plots for the three transcripts in the model for KLK2 adjusted hormone
therapy data: CAMKK?2, PSGR and UPK2.

4.6 Conclusion

Stratified medicine enables the optimal treatment for cancer patients to be selected and
improve overall survival. There have been successes in breast’® and lung cancer®**2'°,
for example. However, no such robust testing and stratification exists for men with PCa

and the route of treatment is not always clear. In particular, it is hard to predict the
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response to treatments such as radiotherapy, hormone therapy and prostatectomy and
determine whether active surveillance is a better option than treatment. These issues are
key research areas for the clinical management of PCa patients.

In this chapter, I investigated if expression profiles of urinary microvesicles could be
used to estimate how long a patient responded to HT. I successfully built a number of
different models based on the normalisation method and dataset used. To produce a
non-invasive test for the identification of those who will relapse early on HT, and thus
could benefit from additional treatment, would be ground breaking for PCa patients.
Depending on how the NanoString data was normalised, we saw correlation between
two signatures and HT relapse.

Under the Nanostring 1 dataset with standard normalisation (via NanoString’s positive
probes, section 2.3.1), the optimal predictor of progression in HT patients included the
expression of probes AGR2, DLX1, KLK2, NAALADL?2, AR exons 4-8, PPAP2A and
AMACR (Cox-regression model, p = 2.3x10™°, HR = 0.043). This seven-probe signature
was also a significant independent predictor of progression improving on other clinical
factors, initial PSA, Gleason score, initial bone scan results and age (Table 4.18, Table
4.19).

After KLK2 adjustment of the NanoString 1 data (section 2.1.1), we selected model
including CAMKK?2, PSGR and UPK2 that could significantly separate those that
progressed to CPRC and those that continued to respond to HT. This model was
significant alone (p = 0.0023, HR = 1.0028, 95% CI = 1.001 - 1.005), which was again
more significant than other clinical factors including initial PSA, Gleason score, initial
bone scan results and age (Table 4.18).

Unfortunately, both of these models were not validated in the NanoString 2 dataset.
There are many possible reasons why the models were not validated but one factor is
that there are a relatively small number of patients in this cohort and with a relatively
short feedback. This means that the models are very sensitive to outliers in the data.

There are also differences between the Nanostring datasets: different centres ran the
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experiment, there were different probesets, newer samples could have been collected
slightly differently, and the cohorts could be somewhat different. It appears the data is
very sensitive with no candidate probes being common before and after factorisation.
This is common to many expression-based biomarker studies. There is a lack of
robustness with proposed tests very rarely being validated in different cohorts*''. It
should also be remembered that this is a targeted based assay, the optimal probes to
distinguish treatment outcome may not be included.

In probes that were unique to the second NanoString data set, the optimal model for
determining time to progress for HT patients contained B7G2, CLIC2 and PCSK6.

In this chapter I have shown the utility of urine derived microvesicle expression profiles
for the prediction of outcome after treatment. This is a proof of concept that would
require a much larger series with longer feedback to find the best combination of

transcripts and become a usable test.
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NanoString Data
Analysis 2

5.1 Summary

The Movember GAP1 Urine Biomarker Consortium had multiple collaborators working
on the identification of urinary biomarkers for the risk-stratification of PCa. Our
laboratory is specifically interested in the RNA expression changes in PCa that are
detectable within urinary cell sediments and extracellular vesicles (EVs) from samples
collected at multiple centres. The aims of my study were to see if I could identify robust
models of expression profiles using data obtained from NanoString that could answer
important clinical questions in PCa management: can I detect PCa from non-PCa

samples and can I risk stratify PCa, both without the need for biopsy. I therefore,
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investigated different methods for normalisation of this urinary EV derived data with
the aim to build optimal models from the expression of 167 markers for risk
stratification and detection of cancer.

I identified robust models for the detection of PCa from non-PCa samples
(AUC = 0.851) and of high-risk PCa from non-PCa samples (AUC = 0.897). Models to
predict risk stratification between samples with no evidence of cancer (CB) and cancer
in order of severity (CB->L->I->H) were also produced (AUC = 0.709). My models
used many of the already published transcripts used in whole urine assays but also

included novel transcripts that may be present in EV fractions.

5.2 Introduction

NanoString expression analysis of 167 gene-probes was applied to cell and extracellular
vesicle (EV) fractions of urine from prostate cancer patients to form the NanoString 2
data set. In this chapter, quality control and technical trouble shooting (section 2.3) is
applied to the whole data set, before performing exploratory analysis using just the EV

samples. Investigation of the cell fraction samples can be found in chapter 6.

5.2.1 The Research Gap

Risk stratification is currently based on PSA, Gleason score and T stage but has the
potential to be improved by using a novel biomarker panel. This could help tailor
patients to treatment pathways and determine, at diagnosis, the aggressiveness of
disease. The PCA3 test is an established biomarker that is capable of predicting PCa on
a second biopsy. Therefore, showing the utility of the use of urine in PCa diagnostics
and prognostics, and has shown some minor improvements to risk stratification. In
chapter 3, I performed a pilot project exploring the use of NanoString applied to genetic
material obtained from urinary EVs and showed that it was capable of capturing

clinically relevant expression profiles.
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522 Aims

In this chapter I used NanoString technology to investigate the RNA expression level
changes of 167 target sequences within EVs extracted from urinary samples collected at
multiple centres world-wide as part of the Movember study. The aims of this study are:

1. To identify better processing techniques for the EV NanoString data

2. To determine whether EV expression profiles are robust across
variable sample cohorts collected from different centres.

3. To identify optimal models built from the expression of 167 markers

for risk stratification and detection of cancer.
5.2.3 The Probe Targets

A panel of experts selected the 167 sequence targets used as probes. The probes were
primarily selected from publications that highlighting genes overexpressed in prostate
tumour tissue. 28 gene probes were selected from Next Generation Sequencing data of
20 urine EV RNA samples from the NNUH. Additionally, some prostate tissue specific
controls and controls for kidney, bladder and blood were also included. See

Supplementary Table 1 for further details.

5.24 Classification of prostate cancer patient samples

NanoString data from 864 samples was obtained, 95 samples were from the cell
fraction. 756 samples remained after quality control (Section 5.3.2). Samples were
divided in to a training set and a test set based on a 2:1 ratio while maintaining the
proportions of each PCa risk category (Table 5.1) and sample collection centre (Table
5.2). The median age and PSA at diagnosis have been recorded for each clinical

category within the training and tests, respectively (Table 5.2.3).
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Table 5.1 Classification and Frequency of the sample types based on NICE criteria®’. The
quantity of samples for each clinical group are provided as well as the clinical description

of the group in terms of Gleason score, PSA level and T stage.

Classification: NICE Groupings

Sample Class Description Number  Number of Number of
of Training Test
Samples  Samples Samples
Advanced Advanced and Hhh 31 21 10
(G8-10 PSA>100) and
Hh (G8-10 PSA<100)
High-risk HL= G7 PSA>20 107 72 35
Intermediate-risk I= G3+4 PSA<20 and 214 142 72
IL=G6 PSA>10
Low-risk L= Low G6 PSA<I0 156 104 52
Abnormal High PSA no Bx, 137 92 45
Prostatitis, Raised PSA
negative Bx, HGPIN
CB CB — no evidence of 111 73 38
cancer
Total 756 504 252

Table 5.2 Sample collection-site breakdown of the EV samples from NanoString2.

Training Set Test Set Number of Samples
Dublin 16 8 27
ICR 84 41 130
UEA 323 163 496
USA 62 23 103
Total 756

Table 5.3 Median age and PSA of each clinical category within the training and test datasets.

Training Set Test Set

Median age = Median PSA Medianage = Median PSA
Advanced 78 273.5 82 285.75
High-risk 69 22.35 73.5 23.7
Intermediate- 69 9.2 67 8.45
risk
Low-risk 64.5 6.1 64 5.5
Abnormal 67 8.19 66 7.7
CB 63 1.4 64.5 1.235
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5.3 Data Preprocessing and Technical Variation

5.3.1 Normalisation and Background correction

There were six positive-control non-human ERCC probes included in the NanoString
series and these were used to normalise the data for all samples as per the NanoString
manual. As for the pilot data set, a large proportion (33%) of data points were less than
zero after negative control correction. Therefore negative control correction was not
used in this analysis. As shown in NanoString 1 (section 3.3.4) Log, transformation
(section 2.3.3) was used to obtain a more normal distribution in the data (Figure 5.1).
The Log, data did not follow a normal distribution using the Shapiro-Wilk test (Table

5.4), this suggests we should use non-parametric methods for analysis.
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Density plot of Positive Control Normalised Data Density plot of Log2 Transformed Data
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Figure 5.1 A) Positive control normalised data. B) Positive control normalised and Log, transformed
data. The data shows a more normal distribution after Log, transformation.
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Table 5.4 Shapiro-Wilk tests show that Log: data is not normally distributed.

Log> transformed
w p-value Normally
Distribute

The first set of randomly selected 29 samples, all probes 0.96 <22x10 No

The second set of randomly selected 29 samples, all 0.97 <22x100 No
probes
The third set of randomly selected 29 samples, all probes | 0.98 <2.2x100 No

The fourth set of randomly selected 29 samples, all 0.97 <22xI10 No
probes
The fifth set of randomly selected 29 samples, all probes | 0.98 <2.2x100 No

The sixth set of randomly selected 29 samples, all probes | 0.97 <2.2x100 No

The first set of randomly selected probes, all samples 0.99 <22x10 No
16

The second set of randomly selected probes, all samples 0.99 2.205x10" No
15

The third set of randomly selected probes, all samples 0.94 <22x10 No
16

The fourth set of randomly selected probes, all samples 0.96 <22x10 No
16

The fifth set of randomly selected probes, all samples 0.94 <22xI10 No
16
The sixth set of randomly selected probes, all samples 0.94 <22x10 No

16

5.3.2 Quality of Normalisation

The quality of the data, and its normalisation and transformation, was assessed using
NanoStringNorm (section 2.3.2.1) and NanoStringQCPro (section 2.3.2.2). Overall the
quality was good but a few samples and a few probes need to be treated with caution.
The samples identified by the IQR/median plot were removed (A210, A216, A517,
C147 1, M 97 5, M 138 7, M_149 7) along with some CBN samples, which were

identified through NGS analysis (not shown as this was not performed by me).

5.3.2.1 NanoStringNorm

The negative controls had both low means and standard deviations and the positive

controls showed low standard deviation, as expected. The majority of the probes
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clustered around the loess curve of best fit (96 %) but a few probes were highlighted
due to high means and standard deviation: KLK4, RPS10, RPLP2, M5MB, and RPSI1.
Whilst 4R exons 4-8 and /TPRI were highlighted due to low mean and standard
deviation.

If a sample has many missing values this could be caused by a technical failure or as a
result of too little input material. There were a few samples that seemed to have missing
values in the normalised data (A216, A210, A196, M 138 7, M_140 6, M 147 3,
M 92 5, M 97 5 and C147 1). These were watched carefully throughout further
analyses.

Each NanoString cartridge holds twelve samples. NanoStringNorm uses a #-test to
identify cartridges that have a significantly different means, standard deviation and
levels of positive controls in comparison to the other cartridges. Cartridges 22, 23, 58,
59, 60, 61, 62, 63 and 64 had higher means and standard deviation, whilst cartridges 15,
29, 36, 37, 43 and 65 through 72 had lower detection levels of positive controls.
Looking into the normalisation factors using NanoStringNorm, a number of samples
had normalisation parameters that extended beyond 100% difference from the mean and

could be influential outliers: (Supplementary Table 2).

5.3.2.2 NanoStringQCPro

NanoStringQCPro provided information on the binding density, field of view (FOV)
and the positive controls used for initial normalisation. NanoString is only capable of
reading un-overlapped barcodes when digitally scanning the image produced. Twenty-
eight samples were identified as having overlapping barcodes typically caused by
excess RNA input (Supplementary Table 2). No samples were identified as having less
than 80% FOV, meaning there were no technical issues due to loading of cartridges
(e.g. bubbles, or insufficient oiling).

The slope in the positive control data shows how well an increase in input is reflected

by an increase in counts, measured using a linear model (log(counts) ~ log(input)).
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Three samples were highlighted as outliers from the model: M_122 2, M 127 6 and
M 131 4. Two of these samples also showed high IQR of positive controls: M_127 6
and M_131 4. NanoString recommends a positive scaling factor between 0.3 and 3. A
scaling factor above this range indicates low performance of that lane during the
NanoString counting protocol. Six samples’ lanes were flagged as such (M_95 1,
M 97 6,M 140 6, M 144 1,M 75 3 and M 147 3) and thus were considered with

caution.
5.3.3 Experimental and Technical Investigations

5.3.3.1 Sample and Centre Investigations

Comparing the median with the IQR can unveil samples with low medians and/or IQRs
(both of which can be problematic). Some samples were identified as such: A210,
A216, A517,C147 1, M 97 5, M 138 7, M 149 7 (Figure 5.2), These samples were
removed from the analysis. PCA identified a clear clustering of the cell sediment
derived samples compared to EV derived samples from multiple centres (Figure 5.3),
further highlighting their need to be analysed separately (Chapter 6). PCA on EV
derived samples showed some clustering based on location of origin (Figure 5.4). There
is evidence of significant differences in overall expression between some origin centres
(Mann Whitney U tests; p < 0.05; Table 5.5). However, the average Log, expression

appears to be fairly uniform across the centres (Figure 5.5).
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Figure 5.2 Median Vs. IQR of samples on the second NanoString study. Six samples were identified
with low medians and/or IQRs, which could be problematic to further analyses.

5.3.3.2 NanoString Cartridges

NanoStringNorm showed significant differences between the mean and standard
deviation of the normalised data between some cartridges; indicating there might be
batch effects. Cartridge dependent variations were therefore examined using boxplots
(Figure 5.6) and there was significant association between mean expression per sample
and cartridge (Kruskal-Wallis rank sum test: p <2.2x10"%, xy=329.25). As samples
from the same collection centres were loaded consecutively, there was no surprise that
there was a significant association between centre and cartridge also (Chi-square test; p-
value < 2.2x10'%, x=2036.5). As location was also significantly associated with
median expression of samples, it was not a leap to believe this issue with cartridge

discrepancies was due to location.
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Figure 5.3 DNA extracted from EVs was collected from four different centres (Dublin, ICR, UEA,
and the USA). DNA extracted from the cell pellet was only collected at UEA (UEA_Cell). PCA plot
clearly identifies cell sediment derived samples as a separate cluster from EV derived samples.
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Figure 5.4 PCA plot of only EV derived DNA shows evidence of collection-centre of origin based

clustering.

Table 5.5 Expression values from different collection-centres of origin compared by Mann

Whitney U tests show that all centres are significantly different.

USA ICR DUBLIN
UEA <2.2x107¢ <2.2x107'¢ 2.311x10"
USA - <2.2x107¢ <2.2x107¢
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Figure 5.5 Average Log, expression across centres shows similar expression levels.
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Figure 5.6 Boxplots showing average expression across cartridge and position on cartridge are
similar and are showing no batch effects.
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PCA plot — cDNA Yield
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Figure 5.7 PCA plot of EV derived samples, showing a lack of clustering by cDNA yield.

5.3.3.3 RNA Amplification to cDNA

As 100 ng of RNA or cDNA is required for NanoString analysis, and the amounts of
EV RNA harvestable from urine were limiting in a large proportion of samples, 15-
20ng RNA from each sample was amplified using a Nugen Ovation WTA2 cDNA
amplification kit. The amount of cDNA obtained after amplification (in pg) was
investigated for clustering affects using PCA (Figure 5.7). cDNA yields were split into
groups; <1 ug, 1-1.9ug, 2-2.9ug, 3-3.9ug, 4-4.9ug, 5-5.9ug, 6-6.9ug, 7-7.9ug and >8ug.
Mild clustering affects were observed, and a significant correlation was found between
cDNA vyield and median log, expression per sample (p < 2.2x107'°, » = 0.44, Pearson’s
correlation). The distribution of clinical categories within each amplification yield

group was not statistically significant; (y = 125.3, p > 0.05, y2 test (section 2.4.4)).
53.4 ComBat — Removing collection-centre based significance

Batch effects caused by location of sample origin (centre) were accounted for by using
the ComBat function of the sva package. PCA was then used to visualise clustering in
the post-ComBat data (Figure 5.9). There was no significant difference between median

Log, expression across location (Kruskal-Wallis rank sum test: p = 0.6488, x = 1.647).
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Figure 5.8 Boxplots show the log2 expression across each sample, coloured by location before and
after the application of ComBat.

PCA plot coloured by Location

Locational Groups
e DUBLIN
e ICR
e UEA
USA

PC2 - 4.3%

PC1 -39.2%

Figure 5.9 PCA plots of post-ComBat data, shows no clustering by location of origin.

5.3.5 Correlating Gene Probes

Pearson’s correlation was used to identify correlating probes (Figure 5.10). There were
a number of probes that correlated with R > 0.8. The correlations were: CACNA1D with
GABARAPL2 (R = 0.965). ERG3’ exons 4-5 with TMPRSS2:ERG (R = 0.843).

GABARAPL2 with CACNAID, MED4 and RPSII (R=0.965, R = 0.805, and R =
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0.804, respectively). RPLP2 with RPSI1 and TWISTI (R=0.859 and R = 0.814,
respectively). RPS10 with RPSI11 (R =0.857). RPS11 with GABARAPL2, RPLP2 and
RPSI0 (R=0.804, R=0.859, and R=0.857, respectively). TWIST! with RPLP2
(R=0.814). Whilst KLK3 exons 1-2 and KLK3 exons 2-3 correlated with each other
(R=0.839 and R = 0.839, respectively).

These data correlations were encouraging as many of them fitted with published
expression data, for example, expression of TMPRSS2:ERG and ERG3’, and the two

KLK3 probes. RPLI11 is known to be co-expressed with RPL10.

Correlation Heatmap for post-ComBat Normalised EV Data
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Figure 5.10 Heatmap showing correlation between NanoString Probes in post-ComBat data. R-values
between 0 (darker) and 1 (lighter). Correlations with R > 0.8 have been highlighted.
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5.3.6 Comparison of NanoString2 with NanoString1

Comparing the forty-nine common probes across the one hundred and
thirty one common samples between NanoString1 and NanoString2 yielded
three probes with a Pearson’s correlation R<0.6: Timp4 (R = 0.14),
TMPRSS2:ERG (R = 0.18), and TERT (R = 0.38). Twenty-one of the probes
showed high correlation, with R>0.9 (

Table 5.6).

Table 5.6 Pearson's Correlation between the 49 common probes and 131 common samples

between NanoStringl and NanoString2.

Probe Probe
HOXC6 0.98 CLU 0.92 HPN 0.83
KLK3 exons 2-
ERG3’exons 6-7  0.97 3 0.92 GAPDH 0.83
KLK3 exons 1-
SPINK 0.97 2 0.92 HOXC4 0.82
SULTIAI 0.97 CAMKK?2 0.91 AURKA 0.82
KLK2 0.96 STEAP4 0.90 BRAF 0.81
AR exons 4-8 0.96 ANPEP 0.90 PCA3 0.80
KLK4 0.95 AGR2 0.90 PPAP2A 0.78
AR exon 9 0.95 B2M 0.89 IMPDH? 0.78
UPK?2 0.95 PECI 0.89 OGT 0.77
FOLHI 0.95 PTPRC 0.89 CDC20 0.71
ALASI 0.94 DLXI 0.89 MKi67 0.67
AMACR 0.94 MDK 0.89 ERGS5’ 0.63
TDRD 0.93  MMP26 0.87 TERT 0.37
SLCI12A41 0.93 NAALADL? 0.87 TMPRSS2:ERG 0.18
SERPINBS 0.93 TBP 0.86 Timp4 0.14
GOLM1 0.93 CDKN3 0.85
STEAP2 0.93 HPRT 0.83

54 Identification of Prostate and Cancer Specific Transcripts and

DRE relevance

54.1 Kallikrein identification

NanoString median signals for the KLK2, KLK3 exons 1-2, KLK3 exons 2-3 and KLK4
probes were again at significantly higher levels than those for the control tissue probes
for blood, kidney and bladder (PTPRC, SLCI2A41 and UPK2 respectively) (Mann
Whitney U test: p < 2.2x107'° in each case, Figure 5.11). This was seen previously in

NanoString1 (section 3.4.1) and shows that some of the material collected did originate
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from the prostate. Once again, similar expression levels and a correlation, is observed

between the two KLK3 probes (Pearson’s correlation: R = 0.84, p < 2.2x107'),

Expression Values of PCa probes and Tissue Specific Controls Correlation between the two KLK3 probes

16+

Log2(expr
KLK3 exons 2-3 log2(expression)

KLK2 KLK3.PSA exons1# K3 PSA.exons2.3 KLK4 PTPRC SLC12A1 UPK2 8
Probe KLK3 exons 1-2 log2(expression)

Figure 5.11 KLK2, KLK3 and KLLK4 expression is higher than the tissue specific controls for blood,
kidney and bladder. The two KLK3 probes are highly correlated (Pearson’s correlation: R = 0.84, p
<2.2x10').

54.2 TMPRSS2:ERG Identification

Similar results can be seen in regards to the TMPRSS2:ERG fusion gene, the ERG3’
probes and ERG5’, as in NanoStringl (section 3.4.2). TMPRSS2:ERG fusions, ERG 3’
and ERG 5’ expression are linked to PCa, and are therefore expected to be seen more
prevalently in samples obtained from men with known PCa compared to those with no
clinical evidence of PCa (CBN samples) (Mann Whitney U test between respective
probe’s expression values and local cancer (low-, intermediate- and high-risk
cancer)/CBN groupings. (TMPRSS2:ERG: p <2.2x10"'®, ERG 3’ exons 4-5: p < 2.2x10°
6. ERG 3’ exons 6-7: p<2.2x10"°; and ERG 5’: p=1.572x10™). The density plots
for TMPRSS2:ERG and the ERG3’ probes (Figure 5.12) have two peaks which would be
compatible with an on/off pattern for that probe suggesting that approximately 50% of
the samples from men with cancer have detectable TMPRSS2:ERG fusions (which is in
agreement with the literature available (section 1.4.6) and the results from NanoStringl,

(section 3.4.2)).
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A larger proportion of the CBN and raised PSA negative Bx (S) samples do not have
high expression of TMPRSS2:ERG, compared to the cancer samples. The cancer
samples across all clinical categories and abnormal (including HG:PIN, prostatitis and
atypia samples) have fewer samples with lower TMPRSS2:ERG expression. The CBN
samples also show lower numbers with high TMPRSS2:ERG expression, however there
are a few (as expected).

The ERGS’ probe, which is not part of the TMPRSS2:ERG fusion transcript, is not
significantly different between clinical risk categories. This is also seen in NanoStringl
(section 3.4.2). These results suggest that the second set of NanoString data is detecting
transcripts accurately and that a proportion of the genetic material identified is coming

from PCa or HG-PIN, again.
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Density plot for TMPRSS2:ERG expression
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Figure 5.12 Density plots and Boxplots showing the expression changes of TMPRSS2:ERG, two ERG

3' probes, and ERG 5' across clinical categories.

543 PCA3 Test

As in the NanoStringl (section 3.4.3) data, the PCA3 test was significantly different

between PCa (Advanced, high-risk, intermediate-risk and low-risk) samples and CBN
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samples (Kruskal-Wallis rank sum test: p = 6.2x10%, 2= 33.76 and Mann Whitney U
test: p < 2.2x107'®, Figure 5.13). There are some significant differences across clinical

categories also (p < 0.05; Mann-Whitney U test; Table 5.7).

PCA3 Test on Post-ComBat NanoString2 Data
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Figure 5.13 PCA3 Test on post-ComBat NanoString2 data (PCA3 transcript expression/average
KLK3 transcript expression * 1000)
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Table 5.7 Mann Whitney U test of PCA3 Test scores between the different clinical

categories.
p-value Advanc Intermedia  Low-  High Abnorma
ed te-Risk Risk  PSA /
negative
Advanced 0.657  0.756 0.255 0.003 0.095 0.021
(Up in (Up
A) inA)
High-Risk  0.657 0.126 0.004 3.14x100 5.5x10™ 1.3x1
wp (Up in 0
inH) (Upin H) (Up
H) in H)
Intermediat  0.756 0.126 0.024 2.7x10"%  0.001 1.2x1
e-Risk (Up (Upinl) (Upinl) O 08
inl) (Up
inl)
Low-Risk 0.255 0.004 0.024 3.4x10"  0.101 1.0x1
(Upin (Upinl) (Upinl) 0
H) (Up
inlL)
High PSA  0.003 3.14x1 2.7x10" 3.4x1 0.029 0.408
negative (Upin 0" (Upinl) 0 (Up in
Bx A) (Up in (Up Abnorm
H) in L) al)
Abnormal  0.095 5.5x100 0.001 0.101 0.029 0.189
(Up in “wWp (UpinI (Up in
A) in H) Abnorm
al)
CBN 0.021 13x100 1.2x10™" 1.0x1  0.408 0.189
(Upin "(@Up (Upinl [/t
A) in H)
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5.5 Clustering

5.5.1 Principal Component Analysis

PCA (section 2.5.1) shows no significant clustering by clinical category (Kruskal-

Wallis rank sum test: p = 0.2064, xy = 8.5).

PCA plot coloured by Clinical Category
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Figure 5.14 PCA plot of post-ComBat data, shows no clustering by clinical category.

5.5.2 Latent Process Decomposition (LPD)

LPD (section 2.5.5) was applied to the dataset for three hundred and forty-six of the
training samples. There were predicted to be five clusters in the data, with a sigma
parameter of -1. LPD analysis was then performed 100 times using these parameters. A
significant association was found between LPD group and clinical risk group (Chi-
square: p = 7.46x10"* y = 115, Figure 5.15) but not the sample origin (Chi-square: p =
0.095, x = 18.7, Figure 5.17, Table 5.8, Figure 5.18). This suggests that this data set is
picking up on underlying processes in the NanoString2 data that effects clinical

risk. Figure 5.16 shows the clinical breakdown of each LPD group. There appeared to
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be an over-representation of CBN samples in LPD 1 but this was not significant (Chi-
square test CBN vs. low-, intermediate- and high-risk cancer: p-value = 0.09, X*> = 2.8).
LPD2 had an over representation of localised cancer (low-risk and intermediate-risk)
Chi-square test: p-value = 0.037, X* = 4.3. Whilst LPD3 showed a significant over-
representation of more progressed cancer (high-risk/advanced cancer) Chi-square test:
p-value = 1.671x10™7, X* = 31.2. There was no significant over-representation of cancer
(advanced, high-, intermediate- and low-risk) or CBN samples in either LPD4 or LPDS5.
All cancer vs. CBN, more progressed cancer vs. localised cancer vs. CBN were both

tested.
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Figure 5.15 LPD of post-ComBat data separated into five processes and coloured by clinical
category.
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Figure 5.16 Clinical breakdown of each LPD group. Chi-square test: p-value = 7.46x104, X2 =115
(ignoring samples from unknown LPD group).
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Figure 5.17 LPD of post-ComBat data separated into five processes and coloured by location of
origin.
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Table 5.8 Location of origin breakdown of LPD groups.

‘ LPDI LPD2 LPD3 LPD4 LPD5
DUBLIN 0 0 1 3 3
ICR 3 2 2 25 41
UEA 21 20 35 123 114
US4 0 1 7 18 17
Total 24 23 45 169 175

There were 167, 166, 131, 61, & 153 transcripts that were significantly differentially

expressed in LPD processes 1-5 respectively vs. the rest (p < 0.05 after multiple testing

correction, Mann-Whitney U test: section 2.4.1). Looking at the top 10 most significant

associated transcripts shows a decrease in expression in LPD groups 1, 3 and 4 and an

increase in expression in LPD groups 2 and 5 (Table 5.9).

Locational composition of each LPD group
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Figure 5.18 Location of origin breakdown of each LPD group. Chi-square test: p-value
18.7 (ignoring unknown LPD group samples).

=0.095, X2 =
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Table 5.9 Top ten significantly associated transcripts involved in the separation of samples into LPD groups. The p-value shown is adjusted using

Benjamin Hochberg multiple testing correction.

LPD Group  LPDI p-value Log>(FC) LPD2 p-value Log>(FC) LPD3 p-value Log>(FC)
# Sig Genes 167 166 131
Top 10: CAMKK?2 4.80X10" -1.17 IFT57 9.50X10™" 0.18 KLK2 1.97X10" -0.20
CACNAID 1.10X10°5 -0.49 OGT 1.26X10°" 0.27 DPP4 2.20X10" -0.23
GABARAPL 1.10X10°" -0.32 GABARAPL 1.31X10°"7 0.17 CASKIN1 1.29x10" -0.21
2 2
RPS11 3.13x10"% -0.13 DPP4 1.56xX10" 0.19 MSMB 1.34x10"  -0.08
RPL23AP53 3.74X10°" -1.35 IMPDH? 1.65X10" 0.26 CACNAID  1.55X10°" -0.20
PPAP2A4 3.94Xx10"5 -0.33 HPRT 1.68X10°" 0.30 GABARAPL 1.71X10°" -0.14
2
CTA.21149. 4.44X10°5 -2.43 EIF2D 1.69X10°" 0.25 TERT 2.02xX10°" -0.24
5/MIATNB
STEAP2 5.07X108 -0.60 MXI1 2.05X10°" 0.22 ZNF577 2.69X10°"°  -0.26
IFT57 8.73X10°8 -0.33 PECI 2.09X10°" 0.25 SSPO 3.12x10" -0.20
MICI 8.77X10°"8 -1.20 RPI11.97012 2.10X10°5 0.28 CAMK2N2  3.32X10°" -0.52
.7
LPD LPD4 p-value Logx(FC) LPD5 p-value Logy(FC)
Group
# Sig 61 153
Genes
Top 10: VPS134  3.38X100 -0.11 GABARA 2.26X100 0.07
06 PL 2 22
TERF2IP 3.79X100 -0.05 CACNAI 2.71X100 0.09
06 D 21
ABCBY9  1.47X100 -0.21 STEAP2 3.26XI100 0.09
05 17
MARCH 1.64X100 -0.08 KLK2 4.09X10 0.07
5 05 17
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5.6 Further processing techniques

After positive control normalisation and log; transformation, four further processing
techniques were used. These included adjusting the data to focus on the prostate derived
proportion by: using KLK3 as per the PCA3 test (section 2.1.1), using KLK?2 in a similar
way, and using a KLK?2 ratio (section 2.1.1). In addition, RPLP2 and GAPDH were
identified as novel housekeeper genes and used to normalise to the amount of material.
RPLP2 and GAPDH did not have any significant association with clinical category (p <
0.05; Tukey test (section 2.4.7)) and had a strong correlation (» = 2.2x10°'®, Pearson’s
correlation, section 2.4.3). Each of these methods were used to create a data set and
subsequently to build clinical prediction models (Table 5.10). The KLK2 and KLK3
adjusted data also included the removal of CBN with high TMPRSS2:ERG. As CBN
samples were from patients with no clinical evidence of cancer rather than strictly
benign, it was expected that there would be some cancer present in some of the
samples. Removal of high TMPRSS2:ERG CBN samples, was a step towards correcting
for this.

Samples with low KLK2 and KLK3 values were also removed. These are prostate-
expression specific control transcripts. Eliminating these data, removed samples where

the majority of the RNA was not originating from the prostate.

Table 5.10 The different normalisations of the data that the predictive models were built

using (separately).

‘ Data Description
KLK?2 ratio The ratio of KLK2 was used to normalise the data
KLK?2 adjusted Low KLK2 removed and high TMPRSS2:ERG
removed.
Median and IQR used to adjust data
KLK3 adjusted Low KLK3 removed and high TMPRSS2:ERG
removed.
Median and IQR used to adjust data
Housekeeper normalised — KLK? ratio data, further normalised via GAPDH and
GAPDH and RPLP2 RPLP2
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5.7 Clinical Prediction models

The data were stratified into test and training sets in the ratio 1:2 (Table 5.1) weighted
according to sample origin and clinical risk category. Models were built to predict four
different response variables i.e. clinical questions (Table 5.11) using each of the four
different processed datasets (Section 5.6) using the training samples.

For models predicting a binary variable, logistic regression (section 2.6.1) and Mann
Whitney U (section 2.4.1) tests were used to identify transcripts that individually could
predict the two groups (p < 0.05). For models predicting an ordinal variable, univariate
proportional odds models (polr) were used to identify significant transcripts (p <
0.05). Multiple testing correction using Benjamin Hochberg was applied.

For each clinical question, final models were built using LASSO using three input
criteria:

1. All 167 probes

2. Probes that were identified as significant in univariate analyses (p < 0.05; no multiple
testing correction)

3. Probes that were identified as significant in univariate analyses when multiple testing
correction was applied (Benjamin Hochberg corrected p < 0.05)

Models were then applied to the test datasets, where the specificity, sensitivity and PPV

of each model was determined (Table 5.13, Table 5.15, Table 5.17, Table 5.21).
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Table 5.11 Clinical predictive models built using the training set and tested using the test

N Model type
CB vs. Cancer Clinically benign Binary

samples Vs low-,

intermediate-, and high-

risk cancer samples

grouped together

CB vs. High risk cancer Clinically benign Vs. Binary
high-risk cancer
(extreme ends of no
evidence of cancer and
and those with higher

grade)
CB, low-, intermediate-, and  Each sample category is  Ordinal
high-risk trend a separate group and

ordered
CB, cancer, metastatic Clinically benign Ordinal
cancer trend samples, with low-,

intermediate-, and high-
risk cancer samples
grouped together, and
metastatic cancer
samples in groups
ordered by severity

5.71 Models predicting presence of cancer CB and cancer (L, I, H)

samples

Expression of 80, 63, 49, 55 probes had a significant association with whether a sample
had no evidence for cancer (CB) or not (L, I, H) in the four processed datasets (KLK2
ratio, KLK2 adjusted, KLK3 adjusted, HK normalised, respectively) (Supplementary
Table 4). The top probe was ERG3’ exons 4-5 (p = 1.54x10™, logoFC = 1.58), PCA3 (p
= 4.5x10"", logoFC= 0.19), PCA3 (p = 1.61x10, logoFC = 0.14), and ERG3’ exons 4-
5 (p =4.5x10", log,FC = 0.699), respectively.

Multivariate models were built to predict whether a patient had cancer (L, I, H samples)
or had no evidence for cancer (CB) (Table 5.12, Table 5.13). The ROC curves and
probes involved in each model can be found in the supplementary figures

(Supplementary Figure 2, Supplementary Figure 3, Supplementary Figure 4,
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Supplementary Table 5, Supplementary Table 6, Supplementary Table 7 and
Supplementary Table 8, respectively).

In this comparison there were large differences in the number of samples in each of the
two categories, with CB having approximately only a quarter of the sample size of
cancer. Therefore, random sampling was used to select a similar number of cancer
samples to CB samples, and the model predictive process was run iteratively 1,000
times. The model with the mean AUC was selected to be applied to the test dataset.
Again, the AUC, Sensitivity, Specificity and PPV and the selected probes were
recorded for each model on the training set (Table 5.14) and the test set (Table 5.15)
and the curves and probes involved in each model can be observed in the supplementary
figures (Supplementary Figure 5, Supplementary Figure 6, Supplementary Figure 7,
Supplementary Figure 8, Supplementary Table 9, Supplementary Table 10,
Supplementary Table 11, and Supplementary Table 12, respectively).

The models were generally good predictors of whether cancer was present or not
(median AUC = 0.8045, IQR = 0.06). In general, AUC in the test data was better in the
KLK? ratio and the GAPDH and RPLP2 normalised data (all had AUC > 0.8) compared
to the KLK2 and KLK3 adjusted data (mostly AUC > 0.7). There was not much
difference observed between those with the randomly selected cancer samples (median
AUC =0.847, IQR =0.11), and those with all of the cancer samples (median AUC =
0.846, IQR = 0.098).

The accuracy measures remained very high in the test sets (median AUC = 0.915, IQR
= 0.05, but were slightly lower than the training data set (median AUC = 0.8045, IQR =
0.06), showing the models in general were robust and useful.

The model with the best AUC in the training data, was when using all of the probes
from the RPLP2 and GAPDH normalised data (Training AUC = 0.925, Test AUC =
0.851) in detail as an example. 18 transcripts were selected by Lasso and went into
these models; TMPRSS2:ERG, ERG3’ exons 4-5, APOCI, ISX, SLCI241, HOXCS,

MCTPI, TDRD, PDLIM5, CD10, GABARAPL2, PTN, AR exon 9, PPPIRI2B, CP,
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MXI1, and KLK4. The training model had 85% sensitivity, 73% specificity and 94%

PPV (Figure 5.19).
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Table 5.12 Training model outcomes comparing CB with Cancer samples for the four different normalisations of data. Three input probe sets were used:

all probes, those significant via GLM testing and those significant post - multiple testing correction.

KLK?2 ratio KLK?2 Adjusted KLK3 Adjusted GAPDH and RPLP?2
normalised
All Significa Adjusted All Significa Adjusted All Significa Adjusted All Significa Adjusted
probes nt Significa probes nt Significa probes nt Significa probes nt Significa
probes nt probes nt probes nt probes nt
Probes Probes Probes Probes
AUC 0.949 0.886 0.891 0.91 0.929 0.849 0.966 0.935 0.824 0.925 0.902 0.859
Sensitivi  89% 77% 71% 95% 93% 72% 95% 89% 68% 88% 81% 75%
1y
Specific  89% 87% 92% 71% 81% 87% 89% 89% 86% 85% 87% 90%
ity
PPV 97% 96% 97% 92% 94% 95% 97% 96% 94% 97% 97% 98%
Thresho 0.68998 0.771395 0.813742 0.64891 0.654594 0.778892 0.67517 0.723022 0.768347 0.77351 0.823558 0.831731
Ild 04 7 6 55 3 7 93 6 14 7 4
Number 21 4 8 26 31 6 50 29 4 18 10 6
of
Probes
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Table 5.13 Test model outcomes comparing CB with Cancer samples for the four different normalisations of data. Three input probe sets were used: all

probes, those significant via GLM testing and those significant post - multiple testing correction.

KLK?2 ratio KLK?2 Adjusted KLK3 Adjusted GAPDH and RPLP?2
normalised
All Significa Adjusted All Significa Adjusted All Significa Adjusted All Significa Adjusted
probes nt Significa probes nt Significa probes nt Significa probes nt Significa
probes nt probes nt probes nt probes nt
Probes Probes Probes Probes
AUC 0.846 0.819 0.816 0.772 0.776 0.775 0.745 0.762 0.718 0.851 0.838 0.816
Sensitivi  89% 89% 68% 59% 69% 62% 72% 74% 68% 85% 83% 60%
1y
Specific  67% 63% 83% 91% 82% 82% 77% 77% 68% 73% 73% 93%
ity
PPV 91% 90% 92% 96% 93% 92% 91% 90% 87% 94% 93% 97%
Thresho 0.63388 0.632465 0.832557 0.79834 0.787580 0.817720 0.76251 0.712675 0.768974 0.74827 0.759985 0.878513
Ild 98 5 8 29 3 5 93 5 4 62 1 9
Number 21 4 8 26 31 6 50 29 4 18 10 6
of
Probes
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Table 5.14 Training model outcomes comparing CB with randomly selected Cancer samples for the four different normalisations of data. Three input

probe sets were used: all probes, those significant via GLM testing and those significant post - multiple testing correction.

KLK?2 ratio KLK?2 Adjusted KLK3 Adjusted GAPDH and RPLP2 normalised
All Significa Adjusted All Significa Adjusted All Significa Adjusted All Significa Adjusted
probes  nt Significa probes nt Significa probes nt Significa probes nt Significa
probes nt probes nt probes nt probes nt
Probes Probes Probes Probes
AUC 0.957  0.916 0.876 0.991 0.924 0.893 0.915 0.943 0.851 0.936 0.915 0.87
Sensitivi  87% 94% 73% 98% 94% 83% 86% 94% 81% 87% 85% 75%
1y
Specifici  94% 71% 87% 94% 79% 90% 87% 83% 79% 90% 85% 86%
1y
PPV 92% 92% 84% 92% 82% 88% 86% 84% 94% 88% 89% 85%
Thresho 0.4473  0.362903 0.487065 0.40367 0.404678 0.462369 0.44877 0.379279 0.403381 0.43971 0.469126 0.517129
Id 12 8 7 53 8 8 93 4 59 3 9
Number 17 9 5 35 19 6 16 20 4 8 7 5
of
Probes
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Table 5.15 Test model outcomes comparing CB with randomly selected Cancer samples for the four different normalisations of data. Three input probe

sets were used: all probes, those significant via GLM testing and those significant post - multiple testing correction.

KLK?2 ratio KLK2 Adjusted KLK3 Adjusted GAPDH and RPLP?2
normalised
All Significa Adjusted All Significa Adjusted All Significa Adjusted All Significa Adjusted
probes nt Significa probes nt Significa probes nt Significa probes nt Significa
probes nt probes nt probes nt probes nt
Probes Probes Probes Probes
AUC 0.843 0.803 0.813 0.806 0.751 0.768 0.72 0.713 0.695 0.821 0.828 0.808
Sensitivi  78.00%  71% 69% 67% 57% 64% 85% 67% 74% 65% 82% 63%
1y
Specifici  80.00%  80% 83% 91% 88% 88% 56% 71% 59% 90% 70% 87%
1y
PPV 92.00%  92% 93% 96% 92% 93% 85% 87% 85% 96% 93% 96
Thresho 0.41796  0.459550 0.523588 0.47894 0.591645 0.585591 0.39739 0.490522 0.372621 0.5083 0.401851 0.594466
Ild 43 9 2 35 5 2 65 4 4 84 3 3
Number 17 9 5 35 19 6 16 20 4 8 7 5
of
Probes
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Figure 5.19 ROC curve of top performing model for the prediction of CB vs. Cancer (Low-,
Intermediate- and High-risk).

5.72 Models to distinguish the extreme categories i.e. CB and high-risk

cancer samples

Expression of 98, 43, 39, 39 probes had a significant association with whether a sample
was high-risk (H) or there was no evidence for cancer (CBN) in the four processed
datasets (KLK?2 ratio, KLK2 adjusted, KLK3 adjusted, HK normalised, respectively)
(Supplementary Table 13). The top probe was ERG3’ exons 4-5 (p = 6.995x10™, logFC
= 1.87), HPN (p = 3.767x10, logFC = 0.24), HPN (p = 1.317x10™, logFC = 0.19),
and ERG3’ exons 4-5 (p = 1.42x10, 1ogFC = 0.79), respectively.

Binomial models were built to predict whether a patient was at high risk of cancer (H)
or had no evidence for cancer (CB) (Table 5.16, Table 5.17, see Supplementary Table
14, Supplementary Table 15, Supplementary Table 16 and Supplementary Table 17).
The models were decent predictors (test model median AUC = 0.957, IQR = 0.036,
training model median AUC = 0.831, IQR = 0.07). In general, the metrics of the models
didn’t seem to differ much between the different normalisations (slightly lower AUCs
in the KLK3 adjusted data), or the input probe subset. Models with AUC of up to 0.9
were seen in the training sets, and models with AUC of up to 0.8 were seen when

applying the models to the test data. Sensitivities in the 90%s and PPVs in the 80%s
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were observed on the test data, suggesting these models were capable to distinguishing
well between the CB and high-risk cancer samples.

The model built using the adjusted significant probe lists from the GAPDH and RPLP2
normalised data gave a high AUC of 0.897 in the training data (AUC = 0.924 in the test
data). This model had high sensitivity (91%), 80% specificity and 83% PPV (ROC -
Figure 5.20). The transcripts used to build this model were PCA3, APOCI, HPN,

ERG3’ exons 4-5 and TMPRSS2:ERG.

e
- Ireta=0.423_ ,_'
o _ “Sens: 90.6%
o Spec: 80.0%
PV+: 11.1%
2 ©o | PV-: 17.1%
= o
2
o ¥
w o
Variable est. (s.e)
[V (Intercept) -3.138 (0.841)
o Prediction2_3respTest 5.780 (1.328)
Model: HK clin.test. CBCa$category_at_initial_urine_collection ~ Prediction2_3respTest
- Area under the curve: 0.897
o
| | | !
0.0 0.2 04 0.6 0.8 1.0
1-Specificity

Figure 5.20 ROC curve of the training set for the GAPDH and RPLP2 normalised model built using
the 5 significant probes post multiple testing correction.
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Table 5.16 Training model outcomes comparing CB with high-risk Cancer samples for the four different normalisations of data. Three input probe sets

were used: all probes, those significant via GLM testing and those significant post - multiple testing correction.

KLK?2 ratio KLK?2 Adjusted KLK3 Adjusted GAPDH and RPLP?2
normalised
All Significa Adjusted All Significa Adjusted All Significa Adjusted All Significa Adjusted
probes nt Significa probes nt Significa probes nt Significa probes nt Significa
probes nt probes nt probes nt probes nt
Probes Probes Probes Probes
AUC 0.991 0.97 0.94 0.952 0.955 0.866 0.962 0.959 0.85 0.976 0.992 0.924
Sensitivi  100% 84% 86% 86% 86% 71% 91% 84% 74% 94% 97% 96%
1y
Specific  92% 98% 90% 94% 94% 91% 90% 97% 90% 92% 96% 77%
ity
PPV 93% 97% 92% 92% 94% 89% 91% 95% 90% 94% 97% 84%
Thresho 0.40659 0.578702 0.541775 0.50800 0.503871 0.554859 0.44880 0.538367 0.532871 0.47027 0.509973 0.403401
Ild 25 3 8 49 01 6 14 2 4
Number 26 16 9 19 17 5 21 19 3 13 21 5
of
Probes
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Table 5.17 Test model outcomes comparing CB with high —risk Cancer samples for the four different normalisations of data. Three input probe sets were

used: all probes, those significant via GLM testing and those significant post - multiple testing correction.

KLK?2 ratio KLK?2 Adjusted KLK3 Adjusted GAPDH and RPLP?2
normalised
All Significa Adjusted All Significa Adjusted All Significa Adjusted All Significa Adjusted
probes nt Significa probes nt Significa probes nt Significa probes nt Significa
probes nt probes nt probes nt probes nt
Probes Probes Probes Probes
AUC 0.851 0.859 0.832 0.822 0.829 0.738 0.789 0.796 0.738 0.897 0.883 0.897
Sensitivi  88% 97% 94% 91% 91% 91% 97% 97% 91% 88% 84% 91%
1y
Specific  77% 63% 60% 65% 77% 59% 65% 65% 59% 83% 83% 80%
ity
PPV 80% 73% 70% 71% 76% 71% 70% 72% 67% 82% 84% 83%
Thresho 0.38343  0.264001 0.229727 0.35623 0.458083 0.402334 0.33008 0.286475 0.402334 0.52862 0.435489 0.488914
Id 88 1 1 61 8 6 49 5 6 75 3 3
Number 26 16 9 19 17 5 21 19 3 13 21 5
of
Probes
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5.7.3 Models to predict risk categories using trends in expression

Expression of 114, 45, 50, 53 probes had a significant association with increasing risk
category (CB->L->I->H) in the four processed datasets (KLK2 ratio, KLK2 adjusted,
KLK3 adjusted, HK normalised, respectively) (Supplementary Table 18). The top probe
was ERG3’ exons 4-5 (p = 1.86x10™), PCA3 (p = 1.45x10™%), PCA3 (p = 1.52x10"7),

and ERG3’ exons 4-5 (p = 1.44x10®) respectively (Figure 5.21).

Significant probe for PCA3 - Top Significar
B ond moc i KLKS e dave OBl i rendmodel m Kk adjusted data

ERGIoxa 5 PCAa
Probe Probe

PCA3 - Top Significant probe for G 3' exons 4-5 - Top Significant probe for
CB-L-I-H trend model in KLK3 adjusted data CBoL i hond modo H normeiosd dota
125

Figure 5.21 Top Significant Probe for CB, low-risk, intermediate-risk and high-risk cancer trend in
all four data normalisations.

Multivariate proportional odds models were built to predict CB samples, the low-,
intermediate- and high-risk cancer samples (section 2.6.1) (Table 5.18, Table 5.19). The
probes involved in each model can be observed (Supplementary Table 19,
Supplementary Table 20, Supplementary Table 21, and Supplementary Table 22).

The metrics of the models for the KLK?2 ratio and KLK?2 adjusted data were very similar
(median = 0.67015, IQR = 0.06 and median AUC 0.6689, IQR = 0.08). Slightly lower
AUCs were observed in the KLK3 adjusted data (median AUC = 0.669, IQR = 0.1), and
slightly higher AUCs were observed in the GAPDH and RPLP2 normalised data
(median AUC = 0.73385, IQR = 0.05). The average model metrics for the test data were

poorer than with previous clinical questions (median AUC = 0.65005, IQR = 0.05). The
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sensitivity of all of the models were fairly low (median= 29%, IQR=0.45), whilst
specificity fairly high (median= 91% IQR=0.23). This suggested that separating
between the different risk categories of cancer can be difficult.

The model built using the GAPDH and RPLP2 normalised data and only the probes still
significant post multiple testing correction has the highest AUC = 0.7088. The probes
used to build this model were APOCI, DPP4, ERG 3’ exons 4-5, ERG 3’ exons 6-7,
GABARAPL2, HOXC6, HPN, ITGBLI, KLK4, MYOF, PCA3, TDRD, and
TMPRSS2:ERG (Figure 5.22). The Sensitivities of this model ranged from 9%-79% and

the specificities ranged from 46%-95%.

Probes in best CB-L-I-H trend model

Ciinical Groups
N

TEEE

Probe intensity

APOCH DOPP4 ERG3prime.cxd 5 ERG3prime.cx6 7  GABARAPL2 HOXCB TMPRSS2.ERG.fusion

Figure 5.22 Boxplot showing the expression level of each transcript featured in the CB-L-I-H model
built using the multiple tested correction significant probes from the GAPDH and RPLP2 normalised
data. This model showed the best test data AUC (0.7008).
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Table 5.18 Training model outcomes comparing CB, low-, intermediate- and high- risk cancer samples for the four different normalisations of data.

Three input probe sets were used: all probes, those significant via GLM testing and those significant post - multiple testing correction

KLK?2 ratio KLK?2 Adjusted KLK3 Adjusted GAPDH and RPLP2 normalised
All Significant Adjusted All Significant Adjusted All Significant Adjusted All Significant Adjusted
probes probes Significant probes probes Significant probes probes Significant probes probes Significant
Probes Probes Probes Probes
Accuracy  0.5112  0.4581 0.4413 0.5412 0.522 0.4643 0.6749 0.576 0.5124 0.5 0.4944 0.5112
AUC 0.7663 0.6757 0.6196 0.7802  0.7469 0.6856 0.8146 0.7606 0.6929 0.7587 0.7728 0.7608
Sensitivity:
CB 52% 38% 27% 45% 48% 36% 84% 74% 60% 50% 56% 54%
L 19% 8% 4% 26% 24% 12% 0% 0% 0% 15% 19% 25%
1 84% 88% 94% 84% 81% 83% 89% 80% 75% 84% 74% 76%
H 25% 10% 7% 37% 32% 25% 59% 41% 36% 25% 34% 31%
Specificity:
CB 97% 96% 96% 97% 96% 94% 95% 91% 85% 97% 95% 96%
L 87% 91% 96% 87% 89% 92% 100% 100% 100% 86% 84% 83%
1 42% 26% 18% 47% 45% 36% 59% 53% 48% 40% 47% 50%
H 98% 98% 100% 97% 97% 96% 96% 92% 93% 98% 97% 97%
PPV:
CB 73% 65% 54% 74% 68% 54% 81% 69% 53% 74% 67% 68%
L 32% 23% 25% 44% 42% 32% NA NA NA 27% 28% 34%
1 49% 44% 44% 51% 49% 46% 58% 52% 48% 49% 48% 51%
H 78% 58% 83% 72% 72% 58% 82% 63% 63% 78% 73% 69%
Number of 36 13 5 12 37 14 78 39 12 37 34 13
Probes
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Table 5.19 Test model outcomes comparing CB, low-, intermediate- and high- risk cancer samples for the four different normalisations of data. Three

input probe sets were used: all probes, those significant via GLM testing and those significant post - multiple testing correction.

KLK?2 ratio KLK?2 Adjusted KLK3 Adjusted GAPDH and RPLP2 normalised
All Significant Adjusted All Significant Adjusted All Significant Adjusted All Significant Adjusted
probes probes Significant probes probes Significant probes probes Significant probes probes Significant
Probes Probes Probes Probes
Accuracy  0.4611 0.45 0.4278 0.4444 0.4222 0.3944 0.3944 0.222 0.4056 0.4716 0.4659 0.4773
AUC 0.6894 0.6646 0.6115 0.6479 0.6522 0.6273 0.6372  0.4993 0.6468 0.6791 0.709 0.7088
Sensitivity:
CB 37% 37% 33% 30% 43% 27% 47% 90% 53% 35% 35% 42%
L 28% 15% 9% 28% 15% 7% 0% 0% 0% 28% 35% 28%
1 79% 85% 88% 75% 76% 78% 68% 18% 72% 82% 76% 79%
H 6% 6% 0% 13% 31% 13% 25% 0% 16% 6% 6% 9%
Specificity:
CB 97% 94% 95% 97% 91% 89% 85% 15% 81% 96% 94% 93%
L 84% 90% 93% 86% 90% 92% 100% 100% 100% 85% 83% 86%
1 42% 33% 23% 39% 39% 31% 42% 90% 40% 39% 46% 46%
H 95% 97% 97% 93% 93% 95% 84% 99% 91% 97% 95% 95%
PPV:
CB 69% 55% 59% 64% 50% 33% 38% 18% 36% 60% 50% 50%
L 37% 35% 31% 41% 33% 21% NA NA NA 41% 42% 42%
1 48% 46% 43% 45% 45% 43% 44% 54% 44% 48% 50% 50%
H 22% 29% 0% 29% 8% 33% 26% 0% 28% 29% 22% 30%
Number of 36 13 5 12 37 14 78 39 12 37 34 13
Probes
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5.74 Models to predict patient type using trends in expression

Expression of 152, 57, 56, 45 probes had a significant association with increasing
severity of disease type i.e. no evidence for cancer (CB), organ confined cancer (L, I, &
H) and metastatic disease (A) in the four processed datasets (KLK2 ratio, KLK2
adjusted, KLK3 adjusted, HK normalised respectively) (Supplementary Table 23). The
top probe was HOXC6 (p = 5.19x10™'%), UPK2 (p = 2.91x10%), UPK2 (p = 2.4x10™®),

and HOXC6 (p = 3.39x10™) respectively.

HOXC6 — Top significant Probe for CB-Cancer-Metastatic cancer in UPK2 - Top significant probe for CB-Cancer-Metastatic cancer in
a KLK2 adjusted data

KLK2 ratio dat:

HHHHH

UPK2 - Top significant probe for CB-Cancer-Metastatic cancer in
KLK3 adjusted data

Figure 5.23 Top Significant Probe for CB, Cancer, Metastatic trend in all four data normalisations.

Multivariate proportional odds models were built to predict clinical categories
(section 2.6.1), no evidence for cancer (CB), organ confined cancer (L, I, & H) and
metastatic disease (Table 5.20, Table 5.21). The probes involved in each model can be
observed (Supplementary Table 24, Supplementary Table 25, Supplementary Table 26
and Supplementary Table 27).

Low AUCs were observed across all inputs and data sets (median AUC = 0.57365, IQR
= 0.08). The GAPDH and RPLP2 normalised data showed slightly higher AUCs
(median AUC = 0.6388, IQR = 0.997). The sensitivity of the sample categories in all of

the models were fairly low (median = 18%, IQR = 87%). Whilst the specificity is fairly
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high but not uniformly across the models (median = 98%, IQR = 75%). Inclusion of the
advanced samples could be a reason for this poor model quality. Advanced tumours
tend to be firm to the touch and it is thought that upon compression tend to release
fewer cells into the urine (section 1.3.4.2). This is further supported by the lower levels
of prostate specific transcripts observed in advanced samples (section 3.4) and UPK2
(the bladder specific marker) is one of the most significant differential probes
comparing these samples.

Again, the model with the best AUC (0.6469) is from the GAPDH and RPLP2 (HK)
normalised data. The model was built using the significant probes (MARCHS5, AMACR,
APOCI, CACNAID, CP, DLXI, ERG 3’ exons 4-5, ERG 3’ exons 6-7, GABARAPL?2,
GCNT1, GJBI, HOXC6, IFT57, ITGBLI, KLK2, KLK4, MCTP1, Met, MIR4435 1HG,
MSMB, PALM3, PCA3, PTN, SLCI12A41, SSTRI, STOM, SULF2, TDRD, TMCCI,
TMEM45B, ZNF577). The model’s sensitivity ranged from 17% - 93% and it’s

specificity ranged from 26%- 98%.
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Probes in best CB-Cancer—Metastatic trend model
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Figure 5.24 Boxplot showing the expression level of each transcript featured in the CB-Cancer-Metastatic cancer model built using the significant probes from the
GAPDH and RPLP2 normalised data. This model showed the best test data AUC (0.6469).
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Table 5.20 Training model outcomes comparing CB, Cancer (low-, intermediate- and high- risk) and metastatic (A) cancer samples for the four different

normalisations of data. Three input probe sets were used: all probes, those significant via GLM testing and those significant post - multiple testing

correction
KLK?2 ratio KLK?2 Adjusted KLK3 Adjusted GAPDH and RPLP2 normalised
All Significant Adjusted All Significant Adjusted All Significant Adjusted All Significant Adjusted
probes probes Significant probes probes Significant probes probes Significant probes probes Significant
Probes Probes Probes Probes
Accuracy  0.8136 0.811 0.811 0.8114 0.8372 0.7855 0.781 0.8072 0.7353 0.8819 0.8504 0.8005
AUC 0.5554 0.5495 0.5495 0.5878 0.6566 0.5201 0.6267 0.7126 0.5913 0.7375 0.6685 0.541
Sensitivity:
CB 4% 2% 2% 5% 24% 2% 23% 35% 6% 44% 37% 4%
Cancer 100% 100% 100% 100%  99% 99% 100% 98% 98% 100%  98% 98%
Metastatic  13% 13% 13% 22% 26% 4% 17% 35% 22% 35% 17% 9%
Specificity:
CB 100% 100% 100% 100% 100% 100% 100%  99% 100% 100%  99% 99%
Cancer 7% 5% 5% 10% 25% 2% 21% 35% 11% 41% 31% 5%
Metastatic  100%  100% 100% 100% 100% 99% 100%  99% 99% 100%  99% 100%
PPV:
CB 100% 100% 100% 100% 93% 100% 100% 92% 80% 96% 86% 33%
Cancer 81% 81% 81% 81% 83% 79% 77% 80% 74% 87% 85% 81%
Metastatic  75% 75% 75% 100%  86% 20% 100%  80% 56% 100%  67% 67%
Number of 11 7 8 39 39 11 35 39 9 69 31 9
Probes
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Table 5.21 Test model outcomes comparing CB, Cancer (low-, intermediate- and high- risk) and metastatic (A) cancer samples for the four different

normalisations of data. Three input probe sets were used: all probes, those significant via GLM testing and those significant post - multiple testing

correction
KLK?2 ratio KLK?2 Adjusted KLK3 Adjusted GAPDH and RPLP2 normalised
All Significant Adjusted All Significant Adjusted All Significant Adjusted All Significant Adjusted
probes probes Significant probes probes Significant probes probes Significant probes probes Significant
Probes Probes Probes Probes
Accuracy ~ 0.7865 0.7812 0.7812 0.7917 0.776 0.776 0.8021 0.3542 0.7656 0.7819 0.7926 0.7819
AUC 0.5111 0.5 0.5333 0.5595 0.5799 0.5657 0.5911 0.5778 0.5695 0.6307 0.6469 0.5
Sensitivity:
CB 3% 0% 0% 10% 17% 0% 20% 90% 13% 27% 31% 0%
Cancer 100% 100% 100% 99% 95% 99% 98% 28% 95% 91% 93% 98%
Metastatic 0% 0% 0% 8% 8% 17% 8% 19% 8% 25% 17% 0%
Specificity:
CB 100% 100% 100% 100% 99% 100% 99% 28% 96% 93% 96% 98%
Cancer 24% 0% 0% 10% 14% 2% 17% 83% 12% 29% 26% 0%
Metastatic  100%  100% 100% 99% 97% 99% 99% 100% 99% 98% 98% 100%
PPV:
CB 100% 100% 100% 100% 71% NA 86% 19% 40% 39% 53% 0%
Cancer 79% 78% 78% 80% 80% 78% 81% 85% 79% 84% 83% 79%
Metastatic  NA NA NA 33% 17% 3% 33% NA 33% 50% 33% NA
Number of 11 7 8 39 39 11 35 39 9 69 31 9
Probes
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5.7.5 Conclusions

Use of the housekeeping probes GAPDH and RPLP2 provided normalised data that
produced good prediction models (this data provided the best AUC for prediction
models for all four clinical questions (Table 5.11)). Data was otherwise treated similarly
to NanoStringl (chapter 3). Identification of GAPDH and RPLP2 as housekeepers to
normalise urinary EV RNA derived NanoString data increased the robustness of my
prediction models.

All models were built using a training set that included samples from all four centres,
and particularly the binomial tests were robust (high AUCs). The models therefore, can
predict cancer from samples with no evidence of cancer (CB) regardless of sample
origin.

Optimal models built from the expression of 167 markers for risk stratification and
detection of cancer were found using the GAPDH and RPLP2 normalised data,
however, input lists varied from all probes, significant probes (identified by polr) and
adjusted significant probes (Benjamin Hochberg multiple testing correction).

The Prostate Cancer Prevention Trial risk calculator (PCPTrc) and the Prostate Cancer
Prevention Trial high-grade risk calculator (PCPThg) are logistic regression models,
which incorporate PSA level, PSA velocity, DRE result, previous biopsy results, age at
biopsy, race and family history of PCa®'>. These models have been combined with
urinary (whole cell) TMPRSS2:ERG and urine PCA3 levels to improve model AUC:
PCPTrc alone had an AUC of 0.639, whilst inclusion of urinary TMPRSS2:ERG and
PCA3 improved the AUC to 0.762. Urinary TMPRSS2:ERG and PCA3 also improved
the predictive power of serum PSA (AUC =0.651 increased to AUC = 0.772)*".
Similarly, PCA3, which is used in the PCA3 test, which was the first commercialy
available urinary test for PCa, is capable of predicting cancer from non-cancer samples
(AUC = 0.98)*"*. The models achieved similar AUCs, when predicting cancer (L, I and

H) from samples with no evidence of cancer (CB): AUC = 0.851 for the best model and
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median AUC = 0.8045. I found that in EV harvested material the FRG3’ exons 4-5 and
PCA3 data were the most highly differentiating between cancer and samples with no
evidence of cancer. The probes used in the top model were TMPRSS2:ERG, ERG3’
exons 4-5, APOCI, ISX, SLCI241, HOXC6, MCTPI, TDRD, PDLIM5, CDI0,
GABARAPL2, PTN, AR exon 9, PPPIR12B, CP, MXI1, and KLK4.

The high-grade predictor also benefitted from the addition of urinary TMPRSS2:ERG
and PCA3 data (AUC = 0.707 increased to AUC = 0.779)*"*. A second high-grade
predictor was produced by Van Neste et al., which used whole urine mRNA levels of
HOXC4, HOXC6, TDRDI, DLXI and PCA3 (with KLK3 as a reference) alongside
clinical factors (including PSA density, previous biopsies, PSA, age and family
history?"®. This model reached an overall AUC of 0.9 in their validation set. The high-
risk (H) Vs. no evidence of cancer (CB) models also achieved high AUCs (top AUC =
0.897, median AUC = 0.831). The model also used PCA3 and TMPRSS2:ERG levels,
along with APOCI, HPN and ERG3’ exons 4-5 (from EV harvested RNA). The top
most significant probes when comparing high-risk cancer with samples with no
evidence of cancer was HPN and ERG 3’ exons 4-5.

The ExoDx Prostate IntelliScore urine exosome assay uses ERG and PCA3 data
normalised using SPDEF combined with clinical factors (including PSA level, age,
race and family history) to predict between Gleason 6 and Gleason 7 PCa with AUC =
0.73*'. The models to predict between different risk categories (CB->L->I->H) had
similar AUCs (median = 0.67015, highest AUC = 0.709). The model was built using
APOCI, DPP4, ERG 3’ exons 4-5, ERG 3’ exons 6-7, GABARAPL2, HOXC6, HPN,
ITGBLI, KLK4, MYOF, PCA3, TDRD, and TMPRSS2:ERG. It is not surprising that
PCA3 and ERG3’ exons 4-5 were also the most highly significant in all four data
normalisations.

I have shown that EV derived material from multiple centres can be quantified by
NanoString to produce models that can predict cancer presence and aggression without

biopsy. However, much greater numbers and model refinements (such as RF etc.)
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would be needed to strengthen the models into a test that could be used in the clinic. A

multivariate regression with the combination of RNA signatures and clinical factors

should also be investigated.
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Expression Profile of the Cell Sediment Urine
Fraction

6.1 Summary

In this chapter, I compared the transcriptome profiles of two urine fractions from
prostate cancer patients and controls, and examined whether the transcriptomes from
cell sediment were better than EV transcriptomes for PCa diagnosis. I found that the
cell sediments have a very different transcriptome profile to the EV fractions, which is
similar to what was found in renal cancer?'’. Transcripts found by microarray analysis
to be significantly more abundant in the EV fraction compared to the cell sediment were
more commonly expressed in prostatic tissue and also had more known associations
with prostate cancer. This suggested that the majority of RNA within the extracellular
vesicle fraction comes from prostatic tissue, both normal and cancerous. These analyses
support the hypothesis that EVs are a better fraction to study for biomarkers in prostate

cancer.
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Analysis of cell sediment NanoString data to identify transcripts that could be used
diagnostically to identify D’ Amico clinically categories show common transcripts being
selected by both Lasso and Random forest analyses when 1) different input subsets of
transcripts were used, and ii) when data was normalised with different control genes.
Different probes for ERG 3’ sequences were identified in cell (ERG probe targeting
exons 6-7) and EV models (ERG probe targeting exons 4-5). HOXC6 and TDRD were
found in both cell and EV models. Interestingly, PCA3 and TMPRSS2:ERG were found
in EV models and not cell models. This supports other work that the majority of PCa

RNA content in whole urine is originating from EVs and not whole cells.

6.2 Introduction

NanoString technology was applied to cell and extracellular vesicle (EV) fractions of
urine from prostate cancer patients to form the NanoString 2 data set. Urine samples
were divided into two fractions by centrifugation: i) cell sediment and ii) supernatant
containing extracellular vesicles (section 2.1.2). In this chapter, analysis of the cell
fraction will be completed. The investigation of the EV fraction can be found in

Chapter 5.

6.2.1 The Research Gap

Since the production of the PCA3 test’®, urine has been investigated for PCa
biomarkers. Whole urine and cell sediment are commonly used and many models have
been developed or built upon to include urinary expression of transcripts as
biomarkers®'>2!*, However, little work has been done on the EV fraction. The EV
fraction has been identified to be a useful source of biomarkers in renal cancer’'’ and
PCa associated transcripts have been quantified from PCa urine EVs***. No

comparisons between transcript expression levels in EV fractions and cell fractions
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have been published. It is therefore, unknown which may be the better source of PCa

biomarkers.

6.2.2 The Aims

In the first part of this chapter, I will examine the NanoString data for differences in the
expression profiles of the cell sediment between different clinical categories and try to
construct models to predict clinical categories: These comparisons include comparing 1)
CB (no evidence of cancer) samples with D’Amico cancer risk groups: Low,
Intermediate and High, and ii) CB vs high-risk cancer samples. Two trends will be
investigated, CB, Low-, Intermediate-, High-risk cancers, ordered as such and CB,
cancer and metastatic samples; ordered as such. In each comparison I have used two
methods of analysis (logistic regression analysis and Mann Whitney U test), and will
compare and contrast the selected gene transcripts from each. These investigations have
already been presented for the extracellular vesicle fraction (chapter 5).

In the second part of this chapter, I will compare and contrast the matched EV and cell
sediment fraction data from microarray and NanoString analyses. Other studies have
observed that the transcriptomes of urinary extracellular vesicles and whole urine are
different in renal cancer-. I will identify transcripts that are significantly differentially
expressed between the cell sediment and EVs in both NanoString data and microarray

data.

6.2.3 The Data

The cell and EV fractions were analysed in 95 samples from a range of clinical
categories (Table 6.1) based on the D’Amico classification using 167 NanoString
probes. Three of these samples were taken pre-DRE, and as shown previously, these
samples are not fully comparable with those obtained post-DRE and were not used in

this chapter. These data were normalised with the spiked in positive controls as per the
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NanoString manual (section 2.3.1) and log, transformed (section 2.3.3) to produce the
baseline normalised data. Investigations into use of housekeeper transcripts were
completed and data was normalised (section 2.3.2) using RPLP2 and TWISTI. These

probes showed no association to clinical categories (p > 0.05 ANOVA-Tukey test) and

were heavily correlated (p < 2.2x10716, r = 0.83). Then similarly to the EV fraction
KLK? ratio normalisation (section 2.1.1) was also performed. PCA plots (not shown)
were used to visualise the RPLP2 and TWISTI normalised (“HK normalised data”) and
the KLK?2 ratio data. There were two outlier samples; M_86 1 (an Intermediate — risk
sample) and M_147 1 (a CB sample), which were removed from the HK normalised
data. M_147 1 was also removed from the KLK?2 ratio normalised data, as forty-six of
the one hundred and sixty-seven values for M 147 1 were zero. The values for
M_88 5 looked normal in the KLK?2 ratio data. Four clinical questions (Table 6.2) were
investigated in the data and prediction models were produced accordingly. Due to
limited numbers of samples, the data was not divided into test and training data.

Table 6.1 Clinical breakdown of cell sediment fraction samples subjected to NanoString
(within the second NanoString set). Twelve samples were CB (no evidence of cancer).
Thirty raised PSA samples were negative for PCa on biopsy, but other abnormalities were
found such as, HGPIN, prostatitis and atypia. Forty-six had localised cancer on TRUS
biopsy of which four were D’Amico graded as Low risk, twenty-eight Intermediate risk
and fourteen High-risk. Four samples had shown signs of metastasis.

Abnormal L

Number of 12 30 4 28 14 4 92
Samples

Percentage  13% 33% 4% 30% 15% 4% 100%
Median 65 66 63.5 71 67.5 82 68
Age

Median 0.9 7.9 6.4 7.8 16.8 377 8.1
PSA

Table 6.2 Clinical predictive models built using the cell dataset.
N Model type
CB vs. Cancer Clinically benign Binary
samples Vs low-,
intermediate-, and high-
risk cancer samples
grouped together

CB vs. High risk cancer Clinically benign Vs. Binary
high-risk cancer
(extreme ends of no
evidence of cancer and
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those with higher grade)

CB, low-, intermediate-, and  Each sample category is  Ordinal

high-risk trend a separate group and

ordered
CB, cancer, metastatic Clinically benign Ordinal
cancer trend samples, with low-,

intermediate-, and high-
risk cancer samples
grouped together, and
metastatic cancer
samples in groups
ordered by severity

6.3 Models predicting presence of cancer CB and cancer (L, I, H

samples using cell sediment data

6.3.1.1 Differentially expressed transcripts

Expression of 85, 28, and 24 transcripts had a significant association (via logistic
regression section 2.6.1) with whether a sample had no evidence for cancer (CB) or not
(L, I, H) in the three processed datasets (the baseline data, KLK2 ratio, and HK
normalised, respectively) (Supplementary Table 31). Only MCTPI remained significant
post multiple testing correction (adjusted p =0.04) in the baseline data and none
remained significant in the KLK2 ratio and HK normalised data. The top significant
probe in these datasets was ERG 3’ exons 6-7 (p=0.001) and NAALADL?2 (p =
3.33x10%), respectively.

Expression of 94, 33, and 56 transcripts had a significant association (via Mann
Whitney U (MWU) testing, section 2.4.1) with whether a sample had no evidence for
cancer (CB) or not (L, I, H) in the three processed datasets (the baseline data, KLK2
ratio, and HK normalised, respectively) (Supplementary Table 32). The top significant
probes identified by MWU were SULF2 (p = 9.18x10), PCA3 (p =3.72x10%) and
SPINKI (p = 3.72x10™), respectively.

Between the two tests 79, 20 and 26 transcripts were common between the two methods

suggesting a good level of robustness. The top ten transcripts with the biggest log2 fold
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change for the baseline data, KLK?2 ratio, and HK normalised data are shown (Table 6.3,

Table 6.4, Table 6.5, respectively).

268



CHAPTER 6: EXPRESSION PROFILE OF THE CELL SEDIMENT URINE
FRACTION

Table 6.3 Toi ten transcriits with biiiest IOEZ fold chanie in the baseline normalised data.

Transcript p-value Adjusted p- p-value  Adjusted p- Log:(FC)
value value

HOXC6 0.0002 0.024 0.0014 0.2049 1.64

fRG3 CXONS 0= 3 410" 4.74x10°°  0.0008  0.128 1.38

TMPRSS2:ERG 4.52x10"°  0.0069 0.0013 0.1979 1.31

SLC43A41 0.0003 0.0406 0.0019 0.2745 1.17

CLIC2 2.66x10"  0.0042 0.001 0.1645 1.05

B4GALNT4 3.38x10°  0.0053 0.0012 0.1807 1.04

CADPS 1.37x10°  0.0022 0.0004 0.0682 1.04

CKAP2L 0.0116 1 0.0033 0.4318 1.01

HPN 7.04x10°  0.0103 0.0006 0.1041 0.97

LASS1 0.0002 0.022 0.0011 0.1703 0.97

Table 6.4 Toi ten transcriits with biiiest loiZ fold chanie in the KLK?2 ratio data.

Transcript p-value Adjusted p- p-value Adjusted p- Log:(FC)
value value

HOXC6 6.80x10"  0.01 0.004 0.63 0.21

fR G3"exons 6= 5 sox10%  0.01 0.001 0.24 0.18

TDRD 0.0004 0.06 0.004 0.72 0.18

SLC43A41 0.002 0.32 0.17

CADPS 0.004 0.67 0.01 1 0.16

ERGS’ 0.01 0.99 0.15

B4GALNT4 0.01 0.87 0.14

SLCI2A41 0.003 0.54 0.03 1 0.13

TMCC2 0.05 0.99 0.05 1 0.13

TMPRSS2:ERG  0.001 0.17 0.01 1 0.13

Table 6.5 TOE ten transcri%ts with biiiest 1052 fold change in the HK normalised data.

Transcript p-value Adjusted p-  p-value Adjusted p-  Log:(FC)

value value

HOXC6 0.0002 0.0374 0.0019 0.3087 15

ERG3’ exons 6-7 0.0006 0.1045 0.0228 0.9861 1.1

TMPRSS2:ERG 0.0036 0.5527 0.0069 0.9861 1.1

CP 0.0146 0.9924 0.0109 0.9861 -1

TDRD 0.001 0.153 0.0105 0.9861 0.9

NAALADL?2 3.33x10" 0.0056 0.0012 0.2012 -0.8

SLC43A41 0.0005 0.0895 0.0168 0.9861 0.8

ST6GALNACI 0.0008 0.1311 0.0238 0.9861 -0.8

SPINK1 7.80x10™"” 0.0129 -0.7

UPK?2 0.0007 0.1128 0.0026 0.4313 -0.7
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6.3.1.2 Models and gene selection

A number of different transcript subsets were input to Lasso for probe shrinkage and
selection, these included i) all of the transcripts (n = 167). Transcripts identified as
having significantly different expression between cancer and CB using ii) Mann
Whitney U (r =94, n = 33 and n = 56) and iii) logistic regression (n = 85, n = 28 and n
= 24), separately, and iv) transcripts common to both those identified by Mann Whitney
U and logistic regression (=79, n = 20 and n = 26) for each of the three
normalisations (the baseline data, KLK?2 ratio, and HK normalised), respectively. The
AUC, sensitivity and specificity of each model on the same data was collected (Table
6.6) and transcript lists (Table 6.7, Table 6.8, Table 6.9) and boxplots of the Lasso
selected probes were produced (Supplementary Figure 13, Supplementary Figure 14

and Supplementary Figure 15).
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Table 6.6 AUC, Sensitivity and Specificity of models to predict CB vs. Cancer (L, I, H) in different data normalisations of cell NanoString data.

HK normalised KLK?2 ratio Baseline

All MWU gim Both  All MWU gim Both  All MWU gim Both

Transcripts Transcripts Transcripts
AUC 0.989 0.998 0.998 0.998 0.996 0.998 0.993 0.995 0.998 1 1 1
Sensitivity  100% 98% 98% 98%  98% 98% 94%  96%  98% 100% 100% 100%
Specificity  92% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Number of 8% 8* 8* 8* 9 7 7% 7% 13 17 14%%*  J4*%*
Probes

*, ** and *** selected probes are identical in model.
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Table 6.7 Beta values of individual transcripts within models suggested by Lasso using
different input transcripts for the baseline normalised data.

ACTRS5 0.572 0.206 0.226

APOCI 0.045 0.022 0.054 0.052

ARHGEF25 -0.176 0.396

CADPS 0.273 0.481 0.399

CAMKK?2 0.055

ERG 3’ exons  0.082 0.203 0.135 0.137

6-7

EN2 0.32 0.146 0.164

HISTIH2BG _ 0.006 0.015 0.013

HOXC6 0.096 0.138 0.114 0.116

IGFBP3 -0.148

LASS1 0.115 0.314 0.26 0.263

MCTPI 0.159

MMP25 0.042 0.3470 0.219 0.224

MMP26 -0.124 -0.137

NAALADL?2 -0.515 -0.356 -0.371
PCA3 0.019 0.084 0.076 0.078

RIOK3 0.095 0.0290 0.012 0.003

SPINK1 -0.05 -0.0220 -0.056 -0.058
SLCI241 0.1020

TDRD 0.1260 0.041 0.044

Table 6.8 Beta values of individual transcripts within models suggested by Lasso using
different input transcripts for the KLK2 ratio data.

Transcript Beta — All Beta - MWU  Beta - glm Beta - Both
transcripts

CADPS 0.075 0.1795 0.1052 0.1691

CKAP2L 0.1992 0.2766 0.1894 0.2467

EN2 0.0828

ERG 3’ exons  0.7197 0.7699 0.7411 0.8396

6-7

HOXC6 0.3855 0.6533 0.3772 0.5718

MFSD2A4 0.0104

NAALADL?2 -1.456 -2.084 -1.3254 -1.994

SFRP4 0.1328 0.228

SIM?2 long 0.0251 0.2771

TDRD 0.157 0.3875 0.1587 0.258
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Table 6.9 Beta values of individual transcripts within models suggested by Lasso using
different input transcripts for the HK normalised data.

Transcript Beta — All Beta - MWU  Beta - glm Beta - Both
transcripts
CADPS 0.1096 0.1433 0.1971 0.2285
CLIC2 0.1062 0.1143 0.1241 0.128
ERG 3’ exons  0.0716 0.0819 0.0967 0.1051
6-7
HOXC6 0.1962 0.2044 0.2182 0.2272
NAALADL?2 -0.287 -0.315 -0.353 -0.3719
SIM2 long 0.0411 0.0536 0.0602 0.0575
TDRD 0.0502 0.064 0.088 0.1031
UPK?2 -0.081 -0.073 -0.061 -0.055

Random forest was also applied to 1) all transcripts, ii) significant transcripts identified

by MWU and iii) significant transcripts identified by glm for the three different

normalisations (the baseline data, KLK2 ratio, and HK normalised), respectively

(Supplementary Table 34, Supplementary Table 35 and Supplementary Table 36). The

random forest model with the least error (Table 6.11) was built using the glm identified

significant probes from the KLLK2 ratio data (the mean square of residuals = 0.088).

ERG 3’ exon 6-7 was in the top 5 transcripts in 8/9 random forests, whilst APOCI was

in the top 5 transcripts

in 6/9 random forests.

HOXC6, CADPS, RIOKS3,

TMPRSS2:ERG, SLC12A1 and SPINK1 occur in 3/9 random forests (Table 6.10).

Table 6.10 Frequency of transcripts in top 5 for random forests.
Frequency in top 5

Transcript

random forest important
transcripts

Data

APOCI 6 Baseline, KLK2 and HK
CADPS 3 HK

CCDC88B 2 HK

ERG 3'exons 6-7 8 Baseline, KLK2 and HK
NEATI 2 Baseline

RIOK3 3 Baseline
TMPRSS2:ERG 3 Baseline

SLCI241 3 KLK?2

SPINK 1 3 Baseline + HK

HOXCo 4 KLK2 + HK

PCA3 2 KLK2
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Table 6.11 Mean square of residuals for random forest models for predicting CB vs. cancer
(L, I and H) samples using different input probes across three different normalisations.

Baseline

Input: All glm MWU All glm MWU All glm MwWU

Mean 0.11 0.11 0.138 0.115 0.08 0.104 0.106 0.099 0.103
square 4 8 8

of

residual

s

6.3.2 CB vs High risk cancer patients

6.3.2.1 Differentially expressed transcripts

The 12 samples with no evidence of cancer (CB) were compared to the 14 high-risk
cancer samples (H) using glm and MWU tests. 51, 12, and 20 transcripts had a
significant association (via logistic regression, section 2.6.1) with whether a sample had
no evidence for cancer (CB) or was high-risk cancer (H) in the three processed datasets
(the baseline data, KLK2 ratio, and HK normalised, respectively, Table 6.12, Table
6.13, Table 6.14, Supplementary Table 37). None remained significant post multiple
testing correction in the baseline, KLK2 ratio or the HK normalised data. The top
significant probe in these datasets was NEATI (p=0.004), ERG 3’ exons 6-7
(p = 0.008), and HOXC6 (p = 0.005), respectively.

Expression of 65, 25, and 35 transcripts had a significant association (via Mann
Whitney U (MWU) testing, section 2.4.1) with whether a sample had no evidence for
cancer (CB) or if the samples were high-risk cancer (H) in the three processed datasets
(the baseline data, KLK2 ratio, and HK normalised, respectively, Table 6.12, Table
6.13, Table 6.14, Supplementary Table 38). Post multiple testing correction, the
expression of 10 (ERG 3’ exons 6-7, B4GALNT4, RIOK3, CADPS, MCTPI1, HOXCG,
NEATI, CLIC2, APOC] and SIM?2 long), 1 (HOXC6) and 0, remained significant. The
top significant probes identified by MWU were ERG 3’ exons 6-7 (p = 6.21x10™),

HOXC6 (p = 4.28x10™ and adjusted p = 0.007) and HOXC6 (p = 0.0005), respectively.
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Table 6.12 Top 10 transcripts with biggest log: fold change between CB and HR-cancer in

the baseline data.

| glm MwU
Transcript p - value adjustedp p-value adjustedp Log:(FC)
- value - value

HOXC6 0.0002 0.0299 0.004 0.6711 2
ERG3’ exons 6-7  6.2I1x10"  0.001 0.0371 0.9942 1.6
TDRD 0.0011 0.1558 0.0333 0.9942 1.5
TMPRSS2:ERG 0.0004 0.0668 0.0386 0.9942 1.3
B4GALNT4 2.88x10°  0.0048 0.0409 0.9942 1.2
SLC43A41 0.002 0.2897 0.0117 0.9942 1.2
CADPS 6.70x10"  0.011 0.02 0.9942 1.1
CLIC2 0.0002 0.0386 0.0087 0.9942 1
HPN 0.0008 0.1258 0.0092 0.9942 0.9
LASS1 0.0011 0.1558 0.0103 0.9942 0.9

Table 6.13 Top 10 transcripts with biggest log: fold change between CB and HR-cancer in

the KLK?2 ratio data.

| glm MwU
Transcript p-value adjustedp p-value adjustedp Log:(FC)
- value - value
TMPRSS2:ERG 0.004 0.68 0.028 1.000 0.25
ERG 3’ exons 6-7 0.000 0.07 0.008 1.000 0.25
HOXC6 4.28E-05 0.01 0.25
TDRD 0.001 0.09 0.017 1.000 0.24
SLC43A41 0.002 0.27 0.022 1.000 0.21
CADPS 0.007 1 0.18
B4GALNT4 0.002 0.33 0.035 1.000 0.17
ERG S5’ 0.027 1 0.16
SLCI1241 0.013 1 0.15
ERG 3’ exons 4-5 0.046 1 0.050 1.000 0.14

Table 6.14 Top 10 transcripts with biggest log: fold change between CB and HR-cancer in
the HK normalised data.

| glm MwU
Transcript p-value adjustedp p-value adjustedp Log:(FC)
- value - value

HOXC6 0.0005 0.0882 0.0059 0.9765 1.6
ERG3’ exons 6-7 0.0013 0.2186 0.0266 0.9765 1.4
TDRD 0.0031 0.4948 0.0272 0.9765 1.1
TMPRSS2:ERG 0.0094 1 0.033 0.9765 1.1
ST6GALNACI 0.0037 0.5969 0.0168 0.9765 -1
SLC43A41 0.0013 0.2186 0.0197 0.9765 0.9
B4GALNT4 0.0202 1 0.8
HPN 0.0077 1 0.0314 0.9765 0.8
CADPS 0.0145 1 0.0326 0.9765 0.7
CCDC88B 0.031 1 0.0482 0.9765 0.7
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6.3.2.2 Models and gene selection

A number of different transcript subsets were input to Lasso for probe shrinkage and
selection, these included i) all of the transcripts (# = 167). Transcripts identified as
having significantly different expression between cancer and CB using ii) Mann
Whitney U (n = 65, n =25 and n = 35) and iii) logistic regression (n =51, n =12, and n
= 20), separately, and iv) transcripts common to both those identified by Mann Whitney
U and logistic regression (=49, n = 12 and n = 20) for each of the three
normalisations (the baseline data, KLK?2 ratio, and HK normalised), respectively. The
AUC, sensitivity and specificity of each model on the same training data was collected
(Table 6.15) and transcript lists (Table 6.16, Table 6.17, Table 6.18) and boxplots of the
Lasso selected probes were produced (section 2.6.1, Supplementary Figure 16,

Supplementary Figure 17 and Supplementary Figure 18).
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Table 6.15 AUC, Sensitivity and Specificity of models to predict CB vs. high-risk cancer (H) in different data normalisations of cell NanoString data.

HK normalised KLK2 ratio Baseline
All MWU gim Both  All MWU gim Both  All MWU gim Both
Transcripts Transcripts Transcripts
AUC 1 1 1 1 0.952 0.905 0.958 0.905 1 1 1 1
Sensitivity  100% 100% 100% 100% 93% 86% 93% 86% 100% 100% 100% 100%
Specificity  100% 100% 100% 100% 92% 83% 92% 83% 100% 100% 100% 100%
Number of
Probes 6* 6* 7 6* 2%* Q¥FE Q% 2%%% 9 9 10 4

*, ** and *** have identical probes selected for the model.
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Table 6.16 Beta values of individual transcripts within HR cancer and CB models
suggested by Lasso using different input transcripts for the baseline normalised data.

Transcript Beta — All Beta - MWU  Beta - glm Beta - both
Transcripts

AATF 0.094 0.696 0.982

CADPS 0.773 1.255 1.798 0.337

CAMKK? 0.055

CCDC88B 0.037

CDKN3 -0.101

CKAP2L 0.042 0.358

ERG 3’ exons

6.7 0.135 0.219 0.193 0.096

HOXC6 0.197 0.218 0.168 0.115

IGFBP3 -0.051 -0.288

LASSI 0.187 0.186 0.623

MCTPI 0.003 0.029

MMP25 0.092 0.197

NAALADL?2 -0.121

SIM?2 long 0.337

TDRD 0.084

Table 6.17 Beta values of individual transcripts within HR cancer and CB models
suggested by Lasso using different input transcripts for the KLK?2 ratio data.

Transcript Beta — All Beta - MWU  Beta - glm Beta - both
Transcripts

ERG 3’ exons 0.3394 0.5927 0.391 0.391

6-7

HOXC6 0.0287 0.1029

SIM?2 long 0.0349 0.0349

Table 6.18 Beta values of individual transcripts within HR cancer and CB models
suggested by Lasso using different input transcripts for the HK normalised data.

Transcript Beta — All Beta - MWU  Beta — glm Beta - both
transcripts

CADPS 0.3134 0.8661 0.4861 1.2907

ERG 3’ exons  0.0636 0.0684 0.0784 0.0329

6-7

GJBI -0.0503 -0.009 -0.0518

HOXC6 0.1835 0.2967 0.2332 0.3504

NAALADL?2 -0.1273 -0.3281 -0.1872 -0.4819

SIM?2 long 0.1225 0.3251

SPINK1 -0.0754 -0.0949 -0.0812 -0.1063

Random forest was also applied to 1) all transcripts, ii) significant transcripts identified
by MWU and iii) significant transcripts identified by glm for the three different
normalisations (the baseline data, KLK2 ratio, and HK normalised), respectively

(Supplementary Table 40, Supplementary Table 41 and Supplementary Table 42).
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Using the glm identified significant probes in the HK normalised data gives the models
with the smallest error (mean square of residuals: 0.117), although all models are very
similar (Table 6.20).

HOXC6 was in the top 5 transcripts in 8/9 random forests, whilst CADPS was in the top
5 transcripts in 7/9 random forests. ERG3’ exons 6-7 and SPINKI occur in 4/9, and
ST6GALNACI and TDRD occur in 3/9 random forests (Table 6.19).

Table 6.19 Frequency of transcripts in top S for random forests (CB vs high-risk cancer
models).

Transcript Frequency in top 5 Data

random forest important
transcripts

CADPS 7 Baseline + KLK2 + HK
CCDC88B 2 Baseline

ERG3’ exons 6-7 4 Baseline + KLK2 + HK
HOXC6 8 Baseline + KLK2 + HK
SIM?2 long 2 KLK2

SLC43A41 2 KLK2

SPINK 1 4 Baseline + HK
ST6GALNACI 3 HK

TDRD 3 KLK2

VAX2 2 HK

Table 6.20 Mean Square of residuals error for each random forest model produced using
different input probes in three different normalisations.

Baseline

Input:  All  glm MwWU All glm MwWU All glm MwWU

Mean 0.18 0.117 0.138 0.149 0.18 0.14 0.146 0.138 0.145
square

of

residua

Is

6.3.3 Trend CBN-L-I-H

6.3.3.1 Significant transcripts
Trend (increase or decrease) in expression across the 12 CB samples, 4 low-risk, 28
intermediate risk and 14 high-risk samples was investigated. Two methods of ordered

multinomial regression were used: i) proportional odds logistic regression (polr) and ii)
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logistic regression setting clinical group to an ordered integer. Using polr there were 70,
20 and 15 transcripts that significantly modelled the trend in the three processed
datasets (the baseline data, KLK2 ratio, and HK normalised, respectively), (p < 0.05,
Supplementary Table 43). Of these only 7 (B4GALNT4, HOXC6, ERG3’ exons 6-7,
APOCI, TMPRSS2:ERG, NEATI, and MCTP1), 2 (HOXC6 and ERG 3’ exons 6-7) and
1 (HOXC6) remained significant post multiple testing correction. The top significant
probes identified by polr were APOCI, HOXC6 and ERG 3’ exons 6-7 jointly (p =
0.0001), HOXC6 (p = 1.36x10™°) and HOXC6 (p = 4.54 x10°°), respectively.

Using logistic regression there were 87, 36 and 19 transcripts that modelled trend with
statistical significance in the three processed datasets (the baseline data, KLK2 ratio,
and HK normalised, respectively), (p < 0.05, Supplementary Table 44). Of these 19, 4
(HOXC6, ERG3’ exons 6-7, TMPRSS2:ERG and TDRD), and 1 (HOXC6) remained
significant post multiple testing correction, respectively. The top significant probes
identified by polr were APOCI (p = 2.90x10, adjusted p-value = 0.0005), ERG 3’
exons 6-7 and HOXCG jointly (p =0.0002) and HOXC6 (p = 6.37x10°%), respectively
(Table 6.21, Table 6.22, Table 6.23).

Polr identifies fewer transcripts than glm but all but one transcript identified by polr
were also identified by logistic regression in each case, showing robustness in their
identification. Similar probes were identified as most significant by the two methods

also.
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Table 6.21 Top 15 significant transcripts identified by polr to have trend across CB-L -1 -
H clinical categories in the baseline normalised cell data.

Transcript glm p -value glm adjusted p-  polr p-value polr adjusted p-
APOCI 2.90x10: 0.0005 0.0001 0.0246
ERG3’ exons 6-7 5.87x10 0.001 0.0001 0.0191
HOXC6 1.85x10- 0.003 0.0001 0.0191
TMPRSS2:ERG 6.00x10-s 0.0095 0.0002 0.0385
MCTPI 4.10x10% 0.0007 0.0003 0.0481
NEATI 0.0002 0.0265 0.0003 0.047
RIOK3 6.64x10% 0.0011 0.0003 0.0515
ISX 3.91x10= 0.0063 0.0004 0.066
HPN 6.51x10% 0.0102 0.0007 0.1079
GCNTI 0.0002 0.025 0.0008 0.1318
SULF2 2.23x10- 0.0036 0.0008 0.1288
CAMKK? 5.44x10+ 0.0087 0.0012 0.1813
MMP25 0.0002 0.0277 0.0014 0.2178
CADPS 0.0001 0.019 0.0017 0.261
LASSI 0.0002 0.0331 0.0019 0.2854

Table 6.22 Top 15 significant transcripts identified by polr to have trend across CB-L -1 -
H clinical categories in the KLK?2 ratio cell data.

Transcript glm p -value glm adjusted p-  polr p-value polr adjusted p-
ERG3’ exons 6-7 2.18 x10-05 0.0036 0.0002 0.0283
HOXC6 1.36x10-05 0.0023 0.0002 0.0406
TMPRSS2:ERG 6.86 x10-05 0.0112 0.0007 0.1136
TDRD 0.0002 0.0263 0.0011 0.1757
SIM2 long 0.0031 0.5021 0.0056 0.9028
HPN 0.0027 0.4419 0.0081 0.994
GCNT1 0.0066 0.998 0.0104 0.994
CADPS 0.0052 0.8154 0.0112 0.994
TMEM86A 0.0079 0.998 0.0184 0.994
CKAP2L 0.0046 0.731 0.0187 0.994
LASS1 0.005 0.7872 0.0209 0.994
ERG3’ exons 4-5 0.0275 0.998 0.0243 0.994
FOLH1 0.0124 0.998 0.0348 0.994
ISX 0.0022 0.3607 0.0367 0.994
ANKRD34B 0.0112 0.998 0.0374 0.994

Table 6.23 Top 15 significant transcripts identified by polr to have trend across CB-L -1 -
H clinical categories in the HK normalised cell data.

Transcript glm p -value glm adjusted p-  polr p-value polr adjusted p-
HOXC6 4.54 x10-6 0.0008 6.37x10-05 0.0106
TDRD 0.0012 0.2024 0.0034 0.564
SIM2 long 0.0032 0.5147 0.0043 0.7056
SLC43A1 0.0011 0.1895 0.006 0.978
UPK2 0.0028 0.4609 0.0077 0.9994
ERG 3’ exons 6-7 0.0043 0.6877 0.0098 0.9994
NAALADL2 0.0018 0.2913 0.0098 0.9994
TMPRSS2:ERG fusion 0.004 0.6414 0.0127 0.9994
ST6GALNACI 0.0049 0.7755 0.0179 0.9994
FOLH1 0.0174 0.9941 0.0191 0.9994
MEX3A 0.0243 0.9941 0.0337 0.9994
TMEM86A 0.0107 0.9941 0.0337 0.9994
SERPINB5 0.0162 0.9941 0.0425 0.9994
PALM3 0.027 0.9941 0.0461 0.9994
EN2 0.0463 0.9994
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6.3.3.2 Models and gene selection

A number of different transcript subsets were input to Lasso for probe shrinkage and
selection, these included i) all of the transcripts (# = 167). Transcripts identified as
having significant decrease or increase in expression across CB->L->I->H clinical
categories using ii) polr (n = 70, n = 20 and n = 15), and iii) logistic regression (n = 87,
n =36, and n = 19), separately, for each of the three normalisations (the baseline data,
KLK?2 ratio, and HK normalised), respectively (Supplementary Table 45). In addition,
the transcripts common to both those identified by polr and glm for the HK normalised
data only was also submitted to Lasso (n = 14), these were the only significant
transcript lists where polr did not contain all of the glm identified probes. APOCI was
the only probe selected by Lasso in all three transcript inputs for the baseline
normalised data. HOXC6 was the only probe selected by Lasso in the KLK?2 ratio data.
HOXC6, NAALADL?2 and UPK2 were common probes selected by Lasso in the HK
normalised data.

The AUC, sensitivity and specificity of each model on the same training data was
collected (Table 6.27) and transcript lists (Table 6.24, Table 6.25, Table 6.26) and
boxplots of the Lasso selected probes were produced (Supplementary Figure 19,

Supplementary Figure 20 and Supplementary Figure 21).
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Table 6.24 Optimal multinomial models for predicting clinical category (CB, low-risk,
intermediate-risk, and high-risk cancer) with different subsets of input transcripts (from
preliminary ordered glm and polr tests) in the baseline normalised cell data.

Transcript All transcripts glm (n=2387) - polr (n=70) -
(n = 167) - Beta Beta Beta

AATF 0.1 0.115 0.109

APOCI 0.056

B4GALNT4 0.004 0.121

CADPS 0.068 0.105

CAMKK? 0.062

CCDC88B 0.036

EN2 0.024

ERG 3’ exons 6-7  0.154 0.139 0.144

HOXC6 0.16 0.121

KLK3 exons 2-3 -0.022

LASSI 0.034 0.017

MCTPI 0.037 0.095

MMP25 0.007 0.088

NAALADL?2 -0.104 -0.034

RIOK3 0.016 0.095

SPINK1 -0.1

SULF2 0.088 0.046

VAXI -0.131

Cpl 1.198 0.702 1.283

Cp2 2.018 1.786 2.132

Cp3 -0.414 -0.368 -0.436

Table 6.25 Optimal multinomial models for predicting clinical category (CB, low-risk,
intermediate-risk, and high-risk cancer) with different subsets of input transcripts (from
preliminary ordered glm and polr tests) in KLK?2 ratio cell data
Transcript All transcripts glm (n = 36) - polr (n=20) -
(n = 94) - Beta Beta Beta

CADPS 0.027 0.075 0.026
CKAP2L 0.074

ERG3’ exons 4-5 -0.121

ERG3’ exons 6-7  0.809 0.784 0.591
HOXC4 -0.134

HOXC6 0.264 0.475 0.34
ITGBL1 -0.118

NAALADL? -0.479

PALM3 -0.017

RIOK3 -0.487

TDRD 0.031

TMPRSS2:ERG 0.008 0.12 0.131
Cpl 0.998 1.094 0.837
Cp2 1.938 2.065 1.937
Cp3 -0.401 -0.427 -0.400
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Table 6.26 Optimal multinomial models for predicting clinical category (CB, low-risk,
intermediate-risk, and high-risk cancer) with different subsets of input transcripts (from
Im and polr tests) in HK normalised cell data.

preliminary ordered

Transcript All transcripts  glm (n=19) - polr (n=15)- glm and polr
(m=167) - Beta Beta (n = 14) - Beta
Beta

CADPS 0.035

CLIC2 0.043

ERG 3’ exons  0.088 0.19 0.179 0.211

6-7

GJBI -0.057 -0.233

HOXC6 0.151 0.266 0.205 0.234

NAALADL?2 -0.094 -0.183 -0.235 -0.285

PALM3 -0.028 -0.045 -0.074

SLC4341 0.015 0.033 0.058

TDRD 0.045

TMEMS6A4 0.023

UPK?2 -0.014 -0.003

Cpl 0.65 1.622 1.276 1.563

Cp2 1.76 2.321 2.089 2.26

Cp3 -0.361 -0.466 -0.425 -0.456
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Table 6.27 AUC, Sensitivity and Specificity of models to predict trend across clinical categories: CB > L- > I- > H-risk cancer in different data normalisations of cell
NanoString data.

Data type: Baseline

Model Input: Al Glm Polr All Glm Polr All Glm Polr glm +
transcripts transcripts transcripts polr
Accuracy 0.7069 0.6552  0.6897 0.7069 0.6379 0.6207 0.6552 0.6897 0.6897 0.6897
AUC 0.7604 0.7242  0.7669 0.7504 0.7252  0.702  0.6944 0.7609 0.7609 0.7609
Sensitivity: 83% 67% 92% 75% 67% 58% 67% 83% 83% 83%
CB
L 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
/ 96% 93% 93% 96% 89% 89% 100% 93% 93% 93%
H 29% 26% 21% 36% 29% 29% 14% 29% 29% 29%
Specificity: 100% 100%  100%  98% 100%  98% 100% 100% 100%  100%
CB
L 100% 100%  100%  100% 100%  100%  100% 100%  100%  100%
/ 47% 40% 47% 47% 40% 37% 33% 47% 47% 47%
H 98% 95% 95% 100% 93% 95% 100% 95% 95% 95%
PPV: CB 100% 100%  100%  90% 100%  88% 100% 100%  100%  100%
L NA NA NA NA NA NA NA NA NA NA
/ 63% 59% 62% 63% 58% 57% 58% 62% 62% 62%
H 80% 67% 60% 100% 57% 67% 100% 67% 67% 67%
Number of 13 7 11 8 8 4 5 9 6 6
Probes
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Random forest was also applied to 1) all transcripts, ii) significant transcripts identified
by polr and iii) significant transcripts identified by glm for the three different
normalisations (the baseline data, KLK2 ratio, and HK normalised), respectively
(Supplementary Table 46, Supplementary Table 47 and Supplementary Table 48).
Using all probes in the baseline normalised data gives the models with the smallest
error (OOB error: 27.6%, Table 6.28). ERG3’ exons 6-7 was present in 8/9 random
forest models, whilst TMPRSS2:ERG and HOXC6 were present in 6/9 RF models

(Table 6.29).

Table 6.28 OOB error rates for random forest models built to predict trend over clinical
categories: CB> L >1>H
Baseline

Input:  All glm polr  All glm polr Al glm polr Glm
+
polr

OOB 27.6 o o 46.6  48.3 51.7 448 431 414  44.8

error % 30% 30% % % % % % % %

Table 6.29 Frequency of transcripts in top 5 for random forests (CB > L > 1 >H trend
models).
Transcript Frequency in top 5 Data

random forest important
transcripts

ERG3’ exons 6-7 8 Baseline, KLK2 and HK
TMPRSS2:ERG 6 Baseline, KLK2 and HK
HOXCo6 6 KLK?2 and HK

PCA3 3 KLK?2 and HK

PALM3 3 HK

RIOK3 2 Baseline

NEATI 2 Baseline

CADPS 2 Baseline

APOC] 2 Baseline

FOLHI 2 KLK2

NAALADL?2 2 HK

UPK?2 2 HK
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6.4 Summary of Predictive Models

In the KLK?2 ratio data half of the models had better AUCs on the training set from the
cell data and half from the EV data (Table 6.30). However, in the HK data, the AUCs
were higher in the cell data. I am limited in the number of samples for the cell fraction
and so the models have not been applied to a test data set, this means that the models

could be over fitting the data.

Table 6.30 Comparison of AUCs from models using cell and EV data.

Cell EV
KLK2 ratio data
CB vs Cancer (L, I, H) 0.996 0.949
All transcripts
CB vs Cancer (L, I, H) 0.998 0.886
Significant transcripts
CB vs HR Cancer (H) 0.952 0.991
All transcripts
CB vs HR Cancer (H) 0.958 0.97
Significant transcripts
CB>L>I>H 0.7504 0.7663
All transcripts
CB>L>I>H 0.702 0.6757
Significant transcripts
HK normalised data
CB vs Cancer (L, I, H) 0.989 0.925
All transcripts
CB vs Cancer (L, I, H) 0.998 0.902
Significant transcripts
CB vs HR Cancer (H) 1 0.976
All transcripts
CB vs HR Cancer (H) 1 0.992
Significant transcripts
CB>L>I>H 0.7609 0.7587
All transcripts
CB>L>I>H 0.7609 0.7728

Significant transcripts
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Table 6.31 Transcripts identified by all selection models for the different clinical category

Normalisation

tests across the different normalisations on the cell NanoString
Clinically Benign vs.

Clinically Benign vs.

Trend Clinically Benign,

Cancer High risk cancer low-risk, intermediate-
risk and high-risk
Baseline ACTRS5 AATF AATF
APOC1 CADPS APOC1
ARHGEF25 CAMKK?2 B4GALNT4
CADPS CCDC88B CADPS
CAMKK?2 CDKN3 CAMKK?2
ERG3’ exon 6-7 CKAP2L CCDC88B
EN2 ERG3’ exon 6-7 EN2
HISTIH2BG HOXC6 ERG3’ exon 6-7
HOXC6 ITGFBP3 HOXC6
IGFBP3 LASS1 KLK3 exons 2-3
LASSI MCTP1 LASSI
MCTP1 MMP25 MCTP1
MMP25 NAALADL?2 MMP25
MMP26 SIM?2 long NAALADL?2
NAALADL? TDRD RIOK3
PCA3 SPINK1
RIOK3 SULF?2
SPINK1 VAX1
SLCI241
TDRD
KLK2 ratio CADPS ERG3’ exons 6-7 CADPS
CKAP2L HOXC6 CKAP2L
EN2 SIM?2 long ERG3’ exons 4-5
ERG3’ exons 6-7 ERG3’ exons 6-7
HOXC6 HOXC4
MFSD2A HOXC6
NAALADL?2 ITGBLI
SFRP4 NAALADL?2
SIM?2 long PALM3
TDRD RIOK3
TDRD
TMPRSS2:ERG
RPLP2 and CADPS CADPS CADPS
TWISTI CLIC2 ERG3’ exon 6-7 CLIC2
normalised ERG3’ exons 6-7 GJB1 ERG3’ exons 6-7
HOXC6 HOXC6 GJBI
NAALADL? NAALADL?2 HOXC6
SIM?2 long SIM?2 long NAALADL?2
TDRD SPINK1 PALM3
UPK2 SLC43A41
TDRD
TMEMS86A
UPK?2
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Table 6.32 Transcripts selected for models in EV data.

Normalisation Clinically Clinically Trend Clinically Benign, low-risk,
Benign vs. Benign vs. High  intermediate-risk and high-risk
Cancer risk cancer

KLK2 ratio AMACR ACTRS5 AMACR
APOC1 ALAS1 ANKRD34B
AR exon 9 AMACR APOC1
cp ANKRD34B AR exon 9
DLX1 APOC1 AR exons 4-8
ERG3’ exon 4-5 AR exon 9 BTG2
GJBI AR exons 4-8 CD10
HOXC6 AURKA cp
IGFBP3 BTG2 DLX1
ISX CD10 DPpP4
KLK4 CKAP2L ERG 3’ exons 4-5
MXI11 cp ERG 3’ exons 6-7
NEATI DLX1 GABARAPL?2
PCA3 DPP4 HISTIHIE
PPPIRI2B ERG 3’ exons HOXC6
RNF157 4-5 HPN
ST6GALNAC HOXC6 IGFBP3
SULTIAI HPN ISX
TDRD IGFBP3 ITGBLI1
TMEM47 ISX KLK4
TMPRSS2:ERG KLK4 MED4

MAK MEMO1
MED4 MXI1
MMP25 MYOF
NEATI1 NEATI1
PCA3 PCA3
PDLIM5 PPPIRI2B
PPFIA2 PSGR
PSTPIPI PSTPIPI
PTPRC SLCI2A41
RPL18A SRSF3
SRSF3 SULTIAI
STEAP4 TDRD
TMEM47 Timp4
TMPRSS2:ERG TMEMA47
TMPRSS2:ERG
ZNF577

RPLP2 and APOC1 AMACR ACTSR

GAPDH AR exon 9 ANKRD34B AMH

normalised CD10 APOC1 ANKRD34B
cp AR exon 9 APOC1
ERG3’ exons 4- AR exon 4-8 AR exon 9
5 CD10 AR exon 4-8
GABARAPL?2 DLX1 CD10
HOXC6 DpPpP4 cp
HPN ERG3’ exons 4- DPP4
ISX 5 ERG3’ exons 4-5
KLK4 GABARAPL? ERG3’ exons 6-7
MCTPI1 HOXC6 FDPS
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PCA3 HPN GABARAPL?
PDLIM5 KLK4 GCNTI
PPPIRI2B MYOF GJBI
PTN NEATI HISTIHIE
SLCI2A41 PCA3 HISTIH2BF
SULTIAI PDLIM5 HOXC6
TDRD SLCI2A41 HPN
TMPRSS2:ERG SRSF3 IGFBP3
STOM ISX
SULTIAI ITGBLI1
TMPRSS2:ERG KLK4
MED4
MEMO1
MIATNB
MSMB
MXI1
MYOF
NEATI1
PCA3
PPPIRI2B
RPS10
SLCI1241
SPINK1
SRSF3
SULTIAI
TDRD
Timp4
TMPRSS2:ERG
TRPM4
UPK2
ZNF577

Comparing the transcripts selected for models in the cell KLK?2 ratio data (Table 6.31)
and the EV KLK2 ratio data (Table 6.32), only 5 transcripts were selected for both sets
of models (CKAP2L, HOXC6, TDRD, ITGBLI and TMPRSS2:ERG). The same
comparison for the HK normalised data yielded a different 5 transcripts in common
(ERG 3’ exons 6-7, HOXC6, TDRD, GJBI and UPK?2). This shows that different probes
are selected as important for predictive models between the different fractions of urine

(cell vs EV).
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6.5 Comparison of the urine expression profiles of Extracellular

vesicle and Cell fractions in Prostate Cancer

6.5.1 Microarray comparison of the global expression profile of

Extracellular vesicle and Cell fractions.

I examined Affymetrix microarray expression data from the cell sediment and EV
fraction of urine collected from prostate cancer patients from either the NNUH or the
Royal Marsden Hospital NHS foundation trust (z = 3). Genes that were significantly
differentially expressed between the two fractions were determined by Dr. Daniel
Brewer using the Limma package and the method proposed by Mootha et al., 2003, to
give a value for variance of expression and if it significantly differs between
fractions?'?. 98 genes were found to be up-regulated in the extracellular vesicles and

116 up-regulated in the cell sediment fraction.
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Table 6.33 A list of the top 20 microarray detected transcripts out of 98 that were found to be significantly more abundant in extracellular vesicles

compared with sediment from the same urine.

p-value

Tissue Expression

Known Cancer Associations

TMSB15A4 5.19 0.048 Prostate Prostate’”’, Other*???>?%
2 PRKG?2 5.02 0.035 Prostate, Other N
3 TCEA3 4.87 0.048 Other N
4 PRAC 4.85 0.035 Prostate, Other Prostate®™, Other™
5 KLK4 4.82 0.041 Prostate Prostate’**?’
6 FOLH]I, 4.59 0.048 Prostate, Other Prostate®

FOLHIB
7 EPHX?2 4.58 0.041 Expressed in all Prostate®™”, Other?"?3"%%
8 GMPR 4.57 0.042 Expressed in all (higher expression in Prostate, Prostate®’

Other)

9 RANBP3L 4.5 0.046 Prostate, Kidney, Other Multiplem’235
10 MPPED?2 4.39 0.047 Prostate, Other Other”*
11 CKB 4.17 0.035 Expressed in all (highest expression in Prostate) Prostate”’, Other™®
12 MLPH 4.09 0.045 Prostate, Other Prostate®™’
13 NFIA 4.06 0.048 Expressed in all Prostate®’, Other’”!
14 GLYATLI 4.00 0.049 Prostate, Kidney, Other Other*”?
15 NFIB 3.98 0.048 Mixed Prostate’”, Other**
16 CcCDCs88C 3.98 0.043 Expressed in all Other’”
17 HOXB13 3.97 0.042 Prostate Prostate®”®, Other’*
18 PARTI 3.95 0.035 Prostate* Prostate’”’
19 AZGP1 3.85 0.043 Prostate, Other Prostate®®®, Other*” >’
20 TCEAL?2 3.73 0.048 Tissue Enhanced (glands, reproductive including Other”’

prostate and cerebral cortex)
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I researched the top twenty up-regulated transcripts in the two fractions to examine the link
between the genes, prostate tissue and cancer (Table 6.33, Table 6.34). Information about
normal tissue expression was usually acquired from ‘protein atlas’*** but when this was not

»253 Known cancer associations were

available, data was instead acquired from ‘Genecards
determined using a literature search using the gene ID and the words ‘cancer’ or ‘prostate
cancer’. 80% of the top 20 genes up-regulated in extracellular vesicles were associated with
prostate tissue, compared with 25% from the cell fraction. 65% of the top 20 genes up-
regulated in extracellular vesicles were linked with prostate cancer and 65% cancer
generally. The equivalent figures for the cell fraction were 30% and 65%. This is a strong

indication that the extracellular vesicles contain RNA from prostate cancer cells and it is a

better source of biomarkers than the cell fraction.
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Table 6.34 A list of the top 20 microarray detected gene-transcripts out of 116 that were found to be
significantly more abundant in the cell sediment compared with extracellular vesicles from the same
urine.

Rank  Gene Log:(FC) p-value  Tissue Expression Known
Cancer
Associations

1 SCARNAY 7.86 0.035 None

2 SNORDS58A, 7.77 0.043 None

SNORDS58B

3 ALOX5AP  7.16 0.042 Other Prostate™,
Other™

4 LYZ 7.12 0.035 Other Other™

5 FCERIG 7.00 0.035 Prostate, Other Other®’

6 FCGR2A4 6.76 0.048 Prostate, Other None

7 CYBB 6.72 0.045 Other Prostate™,
Other™

8 TNFRSFIB 6.71 0.045 Other Other™®

9 SCARNAY 6.45 0.044 None

10 SRGN 6.43 0.045 Other Other®®!

11 IL8 6.12 0.035 Other Prostate’®’

12 EVI2B 6.03 0.043 Other Other’®

13 TREM]1 5.97 0.044 Other Other*®

14  MIR21 5.67 0.049 Not found Prostate®®,
Other?%% 2%

15 SCARNA7 5.66 0.043 Not found None

16 HNRNPK 5.62 0.050 Prostate, Other Prostate®®,
Other’®

17 GNS 5.58 0.035 Prostate, Other None

18 CBX3 5.32 0.045 Prostate, Other Other’”" 27!

19 CTSS 5.32 0.045 Other Prostate’”,
Other?’> %

20 EROIL 5.23 0.041 Other Other’”

6.5.2 NanoString comparison of the global expression profile of Extracellular

vesicle and Cell fractions.

6.5.2.1 Visualisation of expression differences between fractions

NanoString data (167 probes) from both extracellular vesicle and cell fractions were
available for 92 patients. In this section NanoString internal positive control normalised
data was used. A PCA plot (section 2.5.1) was produced to visualise the variance of the cell
sediment expression against extracellular vesicles expression (Figure 6.1). The expression
profiles for the fractions cluster together, indicating that fraction has a bigger influence on

the expression profile than the patient.
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PCA plot of Matching Cell and Microvesicle Data

Fraction
e Cell
Microvesicle

PC2

-20

~10 0 10 20
PC1

Figure 6.1 PCA plot of the expression levels for samples taken from the cell sediment and the
extracellular vesicle fraction of urine.

6.5.2.2 Differentially expressed transcripts

Expression of 142/167 transcripts were significantly different between extracellular vesicle
and cell fractions (adjusted p < 0.05, paired Mann Whitney U test). 100 were up-regulated
in the extracellular vesicle fractions and 42 in the cell sediment fractions (Table 6.35, Table
6.36). HOXC6 is a known PCa biomarker that can be identified in patient urine?’s, it is
therefore very interesting that it is found in abundance in EVs over whole urine. PTPRC is a

positive regulator of T-cell coactivation and is found in immune cells*’”.
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Table 6.35 NanoString top twenty transcripts that were up-regulated in extracellular vesicle fractions
compared to cell sediment fractions.

\ Transcript p-value Adjusted p-value Log Fold change
HOXCé6 1.12x10-10 1.07x10-08 0.81
SERPINB5 9.78x10-14 1.23x10-11 0.79
OR5242 3.57x10-13 4.22x10-11 0.77
PTN 1.17x10-15 1.73x10-13 0.76
SChLAP1 8.67x10-10 7.89x10-08 0.67
P712P 6.29x10-15 8.69x10-13 0.67
PPFIA2 2.07x10-12 2.32x10-10 0.65
SIM2 long 1.68x10-11 1.74x10-09 0.65
ERG3’ exons 4-5 2.31x10-05 0.0013 0.64
SMIM1 1.69x10-13 2.09x10-11 0.62
TMEM47 0.001 0.0434 0.61
CLU 2.99x10-06 0.0002 0.61
Timp4 6.74x10-11 6.67x10-09 0.61
ARHGEF25 6.56x10-10 6.10x10-08 0.58
RNF157 3.58x10-07 2.47x10-05 0.58
PCA3 7.66x10-14 9.73x10-12 0.58
NKAIN1 1.07x10-13 1.34x10-11 0.57
DNAHS5 5.02x10-09 4.22x10-07 0.57
KLK2 8.19x10-16 1.24x10-13 0.55
SYNM 4.87x10-08 3.55x10-06 0.54
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Table 6.36 NanoString top twenty transcripts that were up-regulated in cell sediment fractions compared
to extracellular vesicle fractions.

\ Transcript p-value Adjusted p-value Log Fold change
PTPRC 1.77x10-16 2.94x10-14 -1.97
STOM 2.93x10-16 4.66x10-14 -1.73
SULF2 2.48x10-16 4.07x10-14 -1.69
MFSD2A 3.24x10-16 5.12x10-14 -1.66
NLRP3 6.72x10-16 1.03x10-13 -1.64
PSTPIP1 3.96x10-16 6.17x10-14 -1.44
MMP25 2.17x10-16 3.58x10-14 -1.43
CLIC2 1.52x10-15 2.20x10-13 -1.35
CCDC88B 2.93x10-16 4.66x10-14 -1.27
TMEM86A 9.51x10-15 1.27x10-12 -1.19
MKi67 3.85x10-09 3.27x10-07 -1.18
MAK 1.39x10-14 1.85x10-12 -1.15
MCTP1 2.83x10-16 4.59x10-14 -1.09
APOC1 6.72x10-16 1.03x10-13 -1.07
cP 4.49x10-11 4.54x10-09 -0.99
MIR146A 1.74x10-15 2.47x10-13 -0.96
NEAT1 1.77x10-16 2.94x10-14 -0.88
Met 9.62x10-12 1.01x10-09 -0.88
MIC1 4.15x10-13 4.85 x10-11 -0.67
COL10A1 2.09x10-11 2.15x10-09 -0.59

6.6 Discussion

I found that the AUCs of the cell sediment models were marginally higher in the baseline
normalised data for CB vs cancer models, CB vs high-risk cancer models and CB > L > 1>
H trend models (Table 6.30). However, these AUCs need to be taken with caution as the
models have not been tested in a validation dataset and so overfitting may be occurring.
There was a low number of samples used to build the cell predictive models and they all
came from the same centre, so it is possible that the cell models are not as robust as one
would desire. Comparing the transcripts identified via glm and those identified by Mann
Whitney U, there were a large percentage of transcripts in common, suggesting a level of
robustness when using these methods.

For the cell sediment, the transcripts identified as significantly different between the “No
Evidence for Cancer” samples and the cancer samples differed depending on the
normalisation (Supplementary Table 49). However, CADPS and ERG3’ exons 6-7, HOXC6,

NAALADL?2 and TDRD are present in all analyses. This shows a robustness of these
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transcripts and indicates a level of importance when using cell sediment from urine
samples. All are up-regulated in the cancer samples, with the exception of NAALADL?.
ERG3’ exons 6-7, HOXC6 and SIM2 long were the only probes that consistently
distinguished high-risk cancer from CB samples. All three probes were up-regulated in the
high-risk cancer samples. Looking at the trend across clinically benign, low-risk,
intermediate-risk and high-risk cancer, CADPS, ERG3’ exons 6-7, HOXC6 and NAALADL?2
probes were again the common transcripts across all of the different normalisations. CADPS
increases as risk increases, with lowest expression in CB and highest in high-risk cancer.
ERG 3’ exons 6-7 and HOXC6 increase in low risk cancer but then have a decreased
expression in intermediate and high-risk cancer with lowest expression found in CB.
NAALADL? expression decreases in trend with advancement of cancer.

CADRPS is a cytosolic and peripheral membrane protein required for vesicle docking and
priming steps that precede vesicle exocytosis®’®. Down-regulation of CADPS has been
associated with poor outcome in pancreatic ductal adenocarcinoma®’”® and a genome wide
molecular characterisation of central nervous system primitive neuroectodermal tumour and
pineoblastoma found that the CADPS locus (3p14.2) was lost in 27.6% of cases and was
also associated with poor prognosis®*’. Searching for “CADPS prostate cancer” yields no
results during a literature search. ERG 3’ is a proto-oncogene known to be associated with
PCa, it is also involved in the TMPRSS2:ERG fusion but has been shown to be increased in
PCa via alternate mechanisms to the fusion also®®'. The TMPRSS2:ERG fusion is identified
in ~50% of PCa samples but has not been identified as a key biomarker for PCa prediction
in cell data in this study. HOXC6 is known to be associated with PCa, there is a urine based
test that utilises the identification of HOXC6 mRNA called the SelectMDx*". Therefore,
our findings support other work showing its association with prostate cancer and its
identification in PCa patient urine. NAALADL? is known to be overexpressed in PCa tissue
compared to benign tissue using IHC. Expression of NA4LADL?2 has been shown to impact
on a number of pro-oncogenic pathways such as cell migration, invasion and colony-

forming potential. Leading to the belief that NAALADL? is a useful biomarker for diagnosis
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and prognosis®™2. In PCa cell urine, a lower expression has been associated with PCa, here.
TDRD is a cancer/testis (CT) antigen that has previously been associated with liver
cancer’® and breast cancer’ but not PCa. SIM2 long has been found to be over-expressed

in PCa tissue when compared with CB tissue™

and it’s up regulation has also been
associated with biochemical recurrence post-radical prostatectomy®*®. However, it has not
previously been identified as a PCa urine biomarker.

In the EV models, ERG 3’ exon 4-5 was more highly selected as a biomarker over ERG
3> 6-7 like in the cell models. HOXC6, TDRD also appear in all of the EV models.
However, TMPRSS2:ERG, PCA3 also appear in EV models and not cell models. It has
previously been observed that most of the RNA content in whole urine is actually coming
from EVs and not from cells — this is shown by a comparison of the RNA yields from cells
and EVs from the same urine samples (data not shown). Further to this, NanoString analysis
was only performed on 95 cell RNA fractions out of the 756 Samples because amounts of
cell RNA were on the whole so limiting that expression analysis was not deemed viable.
Consistently higher EV RNA yields explains how TMPRSS2:ERG and PCA3 are highly
detectable in whole urine and EV fractions of urine. CADPS is not selected in EV models,
which makes sense as CADPS is an EV making gene. However, many more transcripts are
commonly selected such as APOCI, KLK4 and HPN. Showing EVs are a good source of
urinary biomarkers for PCa.

Comparing the expression of transcripts in the cell fraction to the EV fraction via
microarray has shown that a high proportion of prostate, and PCa associated transcripts are
more abundant in the EV fraction. It also showed that PTPRC, which is a blood immune
associated transcript is more abundant in the cell fraction. This us to believe that many of
the cells in the cell fraction of the PCa patient urine are actually immune cells and not
prostate/PCa cells, which is in support of other literature®'.

Our findings support previous research that the genetic content of cell sediment and that
of extracellular vesicles differs. Expression levels of many transcripts that were both

expressed in the prostate tissue and known to be prostate cancer associated were found in
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increased levels in the extracellular vesicle compared to the cell sediment. This highlights

that the extracellular vesicle fraction is indeed of great interest to investigate further for PCa

biomarkers.
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Discussion

6.7 Summary

Prostate Cancer (PCa) is a major clinical problem worldwide with considerable variability
in clinical outcome of patients. PCa diagnostics and prognostics currently lack specific and
sensitive clinical biomarkers and treatment is not well individualised. The PCA3 test,
amongst others, highlights the utility of urine in PCa diagnostics and prognostics®'*. The
extracellular vesicle (EV) fraction contains exosomes and is obtainable from urine.
Exosome levels are known to be increased during malignancy and those produced by
tumours contain nucleic material from malignant cells'®. EVs from tumour cells have roles
involved in tumourigenesis, metastasis, and response to therapy by triggering signalling
cascades and transferring mRNA, miRNA and proteins between cancer cells and the tumour

microenvironment'®

. Our aim was to interrogate PCa patient’s urine samples, mostly the
EV fraction to identify novel biomarkers or sets of biomarkers to aid in PCa management.
This study was completed as part of the Movember GAP1 global PCa biomarker initiative,

which involved multiple collaborators and samples collected from four different centres

worldwide, for the identification of urinary biomarkers for the risk-stratification of PCa.

7.1.1. Chapter 3: NanoString Data Analysis 1: The Pilot Study
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In a pilot study, NanoString technology was able to detect PCa specific markers in 196
samples, such as TMPRSS2:ERG, which was detected in 58% of all PCa samples and in
19% of samples from men with no clinical evidence of PCa (CB). Latent Process
Decomposition unsupervised analysis clustered the EV expression data into four groups,
which was associated with clinical risk categories (p < 0.05). Transcripts were identified
that were differentially expressed and models were built that could distinguish between PCa
and samples that showed no evidence of PCa (CB) with an AUC of 0.937, high-risk PCa
and samples showing no evidence of PCa (CB) with an AUC of 0.852 and metastatic PCa
(A) and samples showing no evidence of PCa (CB) with an AUC of 0.983. These findings
highlight that the transcript data collected from urinary EVs in PCa patients comes, at least

in part, from the prostate and holds clinically relevant structure.

6.8 Chapter 4: NanoString2 Analysis: The Movember GAP1 Project

Following on from the pilot study, further samples (» = 756) obtained from four centres
worldwide were sent to NanoString for the quantification of 167 transcripts. The aims were
to primarily identify optimal models capable of predicting PCa and to risk-stratify PCa
without the need for biopsy. Models were built to answer four important clinical questions:
1) Determine which samples were from PCa and which were from samples with no
evidence of Ca (AUC = 0.851).

2) Determine which samples were from high-risk PCa only and which were from
samples with no evidence of cancer, (AUC = 0.897).

3) Determine if there was a trend in expression that corresponds to a trend in risk
category (CB>L>I>H), (AUC = 0.709).

4) Determine if there was a trend in expression that corresponds to a trend in patient

type (CB>Ca>Metastatic cancer), (AUC = 0.6469).
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The data was stratified into training and test sets in the ratio 2:1, models were built with the
training set and validated using the test set. I used four different normalisations of the data,
which included using KLK?2 ratio, KLK2 adjusting, KLK3 adjusting, and GAPDH & RPLP?
normalisation. Models built using the GAPDH & RPLP2 normalised data generally had
higher AUCs. These models are improvements on existing tests and have the potentially to

be developed in to clinical tests.

6.8.1 Chapter 5: Response to treatment

Many cancers have benefitted from treatment stratification due to expression of certain
genes, however with the exception of the DESNT poor prognosis expression group, this has
not yet been done for PCa. With hormone therapy (HT) it is known that patients will
inevitably progress to castration resistant prostate cancer (CRPC). How long each patient
will last on HT varies widely from months to years. Samples from the advanced patients in
the NanoString pilot study (n = 32) were used to identify a significant predictor of early
progression in patients on HT: A signature of seven transcripts was identified that could
optimally predict progression of patients on hormone therapy (cox-regression model; p =
2.3x10+=; HR = 0.04288). The transcripts in the predictor were AGR2, DLXI, KLK2,
NAALADL?2, AR exons 4-8, PPAP2A and AMACR. This model was an independent
predictor of progression when established clinical variables initial PSA, age, Gleason score
and initial bone scan result were taken into account (cox-regression model; p = 0.003; HR =
0.03). When the data was adjusted to KLK?2 levels, similar to KLK3 adjustment used in the
PCA3 test, an optimal model of three transcripts (CAMKK?2, PSGR and UPK) was identified
(cox-regression model; p = 0.007, HR = 1.0028). This model does not remain significant
predictor when adding clinical factors (cox-regression model; p = 0.14; HR= 1.009).
However when both of these models were applied to the second NanoString dataset but they
were not validated. Despite this, | have shown the potential of using urine extracellular

vesicles from prostate cancer patients with NanoString measurements of expression to
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predict patient response to treatments. A larger cohort with longer follow up would be

required to further develop these models in to something usable in the clinic.

6.8.2 Chapter 6: Analysis of Cell Fraction and comparison with EV fraction

The transcriptome profiles of cell sediment and EV fractions were compared from PCa
patients and controls (taken from patients with no evidence of cancer (CB)). Data from
microarray of samples collected from NNUH, Norwich and Royal Marsden Hospital,
London was used for this comparison. 98 genes were found to be significantly (p < 0.05)
up-regulated in the extracellular vesicles and 116 up-regulated in the cell sediment fraction.
92 samples from the NanoString 2 experiment were also EV and cell sediment matched and
were also used to compare transcriptome profiles. 100 genes were found to be significantly
(p <0.05) up-regulated in the extracellular vesicles and 42 genes were up-regulated in the
cell sediment fractions. The top twenty of each set of these genes were investigated for
known prostate expression and PCa association. The EV fraction contained higher levels of
prostate expressed and PCa associated transcripts. This is a strong indication that the EVs
contain RNA from prostate cancer cells and it is a better source of biomarkers than the cell
fraction.

The NanoString data from cell sediment was used to produce models able to
predict PCa (low, intermediate and high-risk) from CB samples, high-risk PCa
from CB samples and trend in expression across clinical category. These
models had similar AUCs in the training set to the EV fractions but we were
unable to validate them at this stage. The power of these cell fraction models is

also reduced due to a much lower sample size.
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6.9 Discussion

There is an urgent clinical need for biomarkers to determine which patients have
PCa, which patients have disease that will progress rapidly, and to individualise
treatment to optimise response. Lung cancer and breast cancer are already
benefitting from individualised treatment based on expression levels!®!4. For PCa,
stratification models have been produced that include a number of clinical factors,
these include D’ Amico, and nomograms or points systems such as CAPRA?Y, the

Prostate Health Index=, the European Randomised Study of Screening for Prostate Cancer

(ERSPC) Risk Calculator=, the Prostate Cancer Prevention Trial Risk Calculator (PCPT-
RC)=. However, apart from D’ Amico, none of these risk calculators are in general
use in the clinic, and effectiveness varies with the cohort?*’. The production of the
PCA3 test’!* has led to an increase in studies investigating urine as a source of PCa
biomarkers for clinical tests that may prevent unnecessary biopsies. Further research
has merged clnical data with urine expressin information such as MiPS?!3, which
built on the PCA3 urine test to include other urine expression data
(TMPRSS2:ERG) and PSA. There is also a model for predicting high-grade PCa
using HOXC6 and DLX1 urinary expression levels along with clinical factors such

")216 which can be used

as prostate volume?!>, the ExoDx Prostate (IntelliScore "EPI
in conjunction with clinical data, and the PCRT-RC which is designed to
incorporate future biomarker information as it becomes available. TMPRSS2:ERG
fusions are only found in ~50% of PCa tumours and PCA3 is not expressed in all

PCa tumours also. A panel of more transcripts may improve the diagnostic and

prognostic abilities of these tests.

EVs have been investigated as a source of urinary biomarkers in renal cancer

studies and it was found that the RNA profile was better preserved in urinary
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microvesicles compared with whole cells?17. [t has been suggested that this is
because the EV membrane may protect RNA from degradation in urine?17.

Identification of PCa biomarkers in EVs was subsequently observed?18 .

Biomarker discovery in urine of prostate cancer patients has so far focused on just a
few gene targets. In this study we have taken a more holistic, but not transcriptome
wide approach increasing the number of probes significantly. I have shown that
NanoString is a viable technology to measure 100s of probes in urine efficiently and
a viable solution for biomarker discovery and potential implementation in the clinic.
I have produced potentially important combinations of biomarkers to predict
prostate cancer, aggressive prostate cancer, and response to hormone therapy
treatment. These gave AUCs up to 0.897, which is an improvement on published
tests in the literature. The translational appeal of NanoString analysis can be seen in
the ProSigna PAMS0 test for aggressive breast cancer?®!, which uses NanoString

technology and is commercially available.

In our study I have shown that the transcriptome profile of whole cells and EVs differs and
that EVs are a potential better source of PCa biomarkers as they contain more prostate
derived transcripts as well as more PCa associated and cancer associated transcripts. This
indicates that using EVs in biomarker discovery in urine will improve results, but it is likely
that whole urine could be used in a final test. Biologically it is likely that EVs can find their
way into the urine more easily than the bulky cell counterparts. We also observed that the
whole urine includes many white blood cells. Recent research has shown that WBC can be
utilised as prognostic markers in BCa showing capability for predicting distant metastasis
preoperatively over a 65-month timeline. Increased platelet indices and decreased
neutrophil numbers were associated with a poorer prognosis®*.

I have identified urinary EV models from NanoString data capable of predicting PCa, and

PCa risk categories with AUCs similar to previously published urine models. Which include
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both known PCa associated transcripts from whole urine and novel transcripts that may be
EV specific. The AUCs of cell models and EV models are very similar and thus it may be

that a combinatory model could be better to predict PCa and its prognosis.

The need for cancer specific biomarkers for assessing response to hormonal treatments in
metastatic PCa has been acknowledged®”, yet very little work appears to have been
completed in this area. I identified two signatures capable of distinguishing early relapse to
HT in two different data normalisations. However these signatures were not validated in a
second dataset.

A urine test would aid clinicians and patients for the management of PCa in a few areas.
Firstly, there is a decision of whether a biopsy needs to be undertaken. Usually, this is based
on serum PSA level and DRE findings. A urine test could help limit the amount of
unnecessary biopsies conducted. Secondly, it is known that biopsies generally under grade
the PCa, and higher Gleason scores are identified on whole prostates from radical
prostatectomies. Therefore, a urine test may help to identify which patients can safely go on
to active surveillance.

A third area where a urine test could aid in the clinic is alongside MRIs. MRIs have shown
great potential in the diagnosis of PCa but does suffer from a high false positive rate
(~50%)***. Introduction of a urine test alongside MRI could help to reduce the false positive

rate especially for PIRADS <4* (Figure 0.1).
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completed.

Patient appears at GP with symptoms and PSA test is

v

v

diagnosed and patient
goes straight to HT

is given.

\V4
PSA > 100 ng/ml: A raised PSA leads to A normal PSA: repeat
metastatic PCa is MRI and a PIRAD score PSA in a few months if

symptoms persist.

v

v

PI-RAD score of 1 and
2: Active Surveillance.

PI-RAD score of 3 or 4,
where severity of
disease is unclear:
urine test to aid
further in treatment
decisions (e.g. active
surveillance vs. RT or
RP).

PI-RAD score of 5:
Treatment (RP or RT)
is required.

Figure 0.1 A flow diagram showing where the urine test would be best utilised in current diagnostic procedures.

6.10 Future Work

Further work needs to be performed on the models produced for determining between PCa

and CB samples, high-risk PCa and CB samples as well as risk category (CB>L>I>H) and

patient type (CB> cancer > metastatic cancer) trends. In particular, an immediate next step

should be that they are incorporated with clinical factors to identify if they outperform

clinical factors alone, as well as if they have a better prediction when including the clinical

factors (including but not limited to prostate volume, age, family history, previous biopsy

results and serum PSA). The next major step would be to validate these models in an

independent large-scale trial such as PROMIS or PROTECT. If this was successful, then the
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models would be evaluated in a large multi-centre prospective study. This is necessary to

obtain FDA approval and translation in to a test used in the clinic.

Additional work to optimise the methodology used to collect urine, to
standardise it, (simplify and make it more robust). Currently, samples have to
be processed within 2 hours of collection, the introduction of urine
preservatives could also streamline procedures. The models would need to be
tested to see if they worked in whole urine and without DRE, which would
make the collection and processing methodology a lot simpler. Comparing
alternative methods for the quantification of transcripts from urinary EVs may
also help to improve the reliability and clinical use of the models.

Further work needs to be completed to identify a robust and validated signature for
the prediction of early relapse to CRPC. This is a vital area that needs improvement
for the clinical management of PCa. A larger cohort with longer follow up is
required. I would also like to look at the data from patients on active surveillance in
the NanoString 2 data set. There is considerable potential to develop a predictor of
time to treatment in these patients. Another response to treatment that should be
investigated is biochemical recurrence (BCR) after radical prostatectomy or
radiation therapy. Unfortunately, our follow up was not long enough to have
sufficient numbers of patients that suffered from BCR to be able to perform any of
these experiments at this time. I would also like to examine whether models that
were developed for the prediction of aggressiveness could be applied to predict
response to treatment. For example, could the optimal model for predicting risk
category also be used to predict time to treatment for patients on active surveillance.
In this whole project I have been reliant on the 167 gene probes used in the

NanoString assay. It is not clear whether these are the optimal probes to use,
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although it is apparent that they are at least sufficient for some clinical questions. I
would like to perform a similar scale project but using a global transcriptome
approach using microarrays, or for an exon splice variant analysis then RNAseq
would be ideal, though highly analysis intensive. This would allow us to identify the
very best probes to use in a clinical test to answer the important clinical questions in
prostate cancer.

Due to my work in this thesis re-funding has been awarded for the development of a
clinically implementable Prostate Urine Risk test. This has resulted in two further

PhD posts one for lab work and one for bioinformatics.

6.11 Conclusions

O1: To determine whether RNA expression from urine extracellular vesicles in prostate
cancer patients are a viable target for the development of biomarkers through the use of
NanoString technology.

I have shown that urine extracellular vesicles from prostate cancer patients contain
information from tumours and are a viable area to investigate for non-invasive biomarkers. I
have shown that NanoString technology is sensitive and specific enough to use as a semi-

high throughput approach for discovery and potentially for clinical use.

02: To determine an optimal combination of probes to predict cancer presence and
aggression in prostate cancer patients.

I have determined a number of models that work extremely well in predicting both cancer
presence and the aggressiveness of disease. These have the potential, with further work, to
have an impact in the clinic. Models to accurately stratify patients’ disease into D’Amico

risk groupings were less satisfactory and may require alternative probes or other techniques.
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0O3: To determine whether an optimal combination of probes can predict response to
hormone therapy treatment.

I have shown that there may be some information in urine extracellular vesicles to predict
patient response to treatments. I have developed some potential tests, but for confidence in

these a much bigger data set with longer follow up would be required.

O4: To evaluate the differences between urine fractions (extracellular vesicles and cell
sediment) and determine whether cell sediment can be used to predict cancer presence and
aggression in prostate cancer patients.

I have shown that there are considerable differences between the extracellular vesicles
fraction and the cell sediment fraction of urine collected from prostate cancer patients.
There is a strong indication that the EVs contain more RNA from prostate cancer cells and
it is a better source of biomarkers than the cell fraction. Despite this, I was able to produce
some models that were reasonable good at detecting the presence and aggressiveness of

prostate cancer.

In this thesis, I have shown that by interrogating the EV faction of PCa patient’s urine
samples using NanoString technology that novel biomarkers or sets of biomarkers can be

identified to aid in PCa management in a non-invasive test.
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Supplementary Table 1 Probe list for NanoString2 (n = 167).

Transcript ~ Accession Capture Probe Reporter Probe Biomarker Type Source

AATF NM 012138.3:1175  TCATCATCTTCACTAGAAATCTCCTCA CTCTTTGCAGGGACCCTTCTTCGTTGCT  ftest Cooper
CTTCCCGCATTGGGCTTIGTCCC GCTTCTTCTCTTCTACCAGC NGS

ABCBY NM_001243013.1:48 GGGCCCCAGCGCACTGTTCTTGGCCAC ACGAAGAGGCACACGAGGGTGATGACC test Cooper

8 ACCAATGGTGG AGCCACGAGGCCCGCAGCCGCCG NGS

ACTRS5 NM_024855.3:1840  CAAGGCATGGCGTGCAGGGCAGTCTC GGCAGGTACATCTAGCACAATCACAGT  test Cooper
TCTGGAGGG CCTGTCACACTGCCAACGTGGCC NGS

AGR?2 NM_006408.2:1365 TGCCTCATCAACACGTCACCACCCTIT TGCCACAGCCTTTCACGTTTCCTAAACC ftest Mills
GCTCTTCTTCCAATTAGTCACAT CTAGTAACCTCTGATCTCCATC

ALASI NM_000688.4:1615 AGTGTTCCAGAAATGATGTCCATTTTIT GAGAACTCGTGCTGGCGATGTACCCTC  housekeeper Cooper
GGCATGACTCCATCCCGATCCCC CAACACAACCAAAGGCTTTGCCA

AMACR NM_014324.4:2145 TGGAATCTACCCCTTCCTCACATGCCT CAACATCCATTCTCTACTCCCTCTACTC  PCa positive control Cooper
TTAGGAAGTTGAGTCCAGGGAAG TGATGGCACCCGGATTAGATTG

AMH NM_000479.3:1626  TTGGCCTGGTAGGTCTCGGGGATGAG CGGACTGAGGCCAGCCGCACACGCCCT ftest Sanda
TACGGAGCG GGCAATTG

ANKRD34 NM_001004441.2:14 TTTATAGGATAGTTCTTCCTCTGGTGT ATGCTTTGGTGCCTAGTGATGAACCGC  ftest Sanda

B 60 AATATCCTGGAGCTCCTCTTGCA TTGGAAAGTGCCAGCCCATTGGT

ANPEP NM_001150.1:2670  GTAATGCTGATGATGGTAGAGGTGGC  AGTTGCTCTGGACAAAGTCCCAGACCA  ftest Mills
GTCCTGCTTCCGGATTAAGIC GACCTTGCCCAATGACGITGTIG

APOCI NM_001645.3:32 CGGAGGGGCACTCTGAATCCTTGCTG  CAGAACCACCACCAGGACCGGGAGCGA test Sanda
GAGGGCTTGGTITGGGAGGTC CAGGAAGAGCCTCATGGCGAGGC

ARexon9 NM_000044.2:3401  GACTTGTGCATGCGGTACTCATTGAAA CAAACTCTTGAGAGAGGTGCCTCATTC  test Cooper
ACCAGATCAGGGGCGAAGTAGAG GGACACACTGGCTGTACATCCGG

ARexons4- ENST00000514029.1 TTTGAAGAGAGGGGTTGGCTGGCTTCT CAGTAAGGCTAGATGTAAGAGGGAAAG ftest Cooper

8 23171 TCTCCTGGAGAAGCAGAAATCTG TCGGACTGTAGICTCTCAGTGTG

ARHGEF2 NM _001111270.2:11 CAGCGCTTGGGCACAAAGCACATGAC  CTCAAATCCCCGCAATCTCCCCAGCGT  ftest Cooper

5 02 CTCCACAGCTTG CATCATATCGTTG

AURKA NM_003600.2:405 AAGGAAATTGCTGAGTCACGAGAACAC ACACAAGACCCGCTGAGCCTGGCCACT  test Cooper
GTTTTGGACCTCCAACTGGAGCT ATTTACAGGTAATGGATTCTGAC

B2M NM_004048.2:25 CACGGAGCGAGACATCTCGGCCCGAA CAGGCCAGAAAGAGAGAGTAGCGCGA  housekeeper Cooper
TGCTGTCAGCTT GCACAGCTAAGGC

B4GALNT NM _178537.4:492 TCCCTCGCCGGGTGGATGAAACCAAAA CAGAACTCCGAGTTGTCGTCTGAGGCC __ test Sanda
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4

ATACGGAGTCCATAGTTCTTCCA

ACAGAAAACTGGACGICTCCG

BRAF NM_004333.3:565 AGTGCTTTCTTTAGACTGTCTCGGACT CCTGAATTCTGTAAACAGCACAGCACT  test Cooper
GTAACTCCACACCTTGCAGGTAC CTGGGATTAGACCTCTCATCATC

BTG?2 NM_006763.2:1700  CAAGGAATACATGCAAGGCTGACTAGC ACAAGAATACCAAGTAGTCTTGCAGAA  ftest Sanda
CAGCCATCATCCCAAGGAGAG CATGGGGCACTCTCCCATTCAGC

CACNAID NM_000720.3:6044  GTACTTCTGGGCTTTACTTGAATCTAG GITGCTGGAGGGGTGGCCCACGACCG  test Sanda
GCCGGCAACTGCCATGATCTGTT GGTCGAGTGACTCGGTGA

CADPS NM_183394.2:1870 TTGAGGCTTATCCATTCGGACAGCAAG TTCCAGACATTCTTACCGATGGCCCATA ftest Sanda
TTTGATTTTGAGATCTTGGICGG AATACCCAGAATGCTTCATGTT

CAMK2N2 NM_033259.2:908 AAATACAAATGTGCTGAGGAAGTCCCT GGGAGGGCAGGAACCATGAGCAGAGC  test Sanda
TAGAAAGAGGCTGAGGCTGGGGT CAGTAAACAAAGAGTCGGATATAA

CAMKK2  NM_006549.3:1710 GGTGGATGATCTTCTGGTAGTGTAAGT CTTGATGTGCCCATCTTCTCCGACCAG  test Cooper
ACTCGATGCCTTTGATCAGATCC GAGGTTGGAAGGTTTGATGTCAC

CASKINI ~ NM_020764.3:1664 ACCTTGTAGTACTGGGCCAGGCCGATC AGGTGATGTCGGTGATGAAATCAATGT  test Sanda
ATGGACAG TCTCGTAGCCATTGTCCACCAAC

CCDC88B  NM_032251.5:400 TCCACCGCTTCTTCTGAGAGAGGGTCA TGACGCTCCCAACAGTAGCCGAAGAAC  test Cooper
AATCCCAATGTICTG GCCTTCCAGCTGC - NGS

CDCI0 TAGGGCTGGAACAAGGACTCTTTTCTC CCAAAGGAATATTGCAAATACCCAAGG  test Whitak

NM_000902.2:5059  TGGACAGCTTGCACCTACAATCC TCACCCTGTCAGGAGTGGCAGAA er

CDC20 NM_001255.2:430 CCTCTACATCAAAACCGTTCAGGTTCA ACCCTCTGGCGCATTTTGTGGTTTTCCA test Mills
AAGCCCAGGCTTTCTGATGTTCC CTGAGCCGAAGGATCTTGGCTIT

CDC37L1 NM_017913.2:1146 ~ TCATCTTCTTTATGTACCACCGAGTTTA GGCCTCAGCAGTCTTAACCAAATTATA  test Sanda
AGCTGCAGAGAGCTGTACTGAT CAGTGTCCATCATTTTGGGTTCA

CDKN3 NM_005192.3:510 AGACAAGATCTCCCAAGTCCTCCATAG CTCTGGTGATATTGTGTCAGACAGGTA  test Mills
CAGTGTATTAAGGITTTTCGGTA TAGTAGGAGACAAGCAGCTACA

CKAP2L NM_152515.3:1120 TGAGGTATACAAACTTGGCTGGACTTC AATTAGGCCTCTGGCTTATGGCTTTTGA test Cooper
TGATCTTGCTTGATGITTGGATG CTTTTGCAGTACACATGATGTC

CLIC2 NM_001289.4:50 CCAGTCTCTTCTCTCAAGAGGTGTGAC TGCTTTAAGAAGACCGTCTAGCTTGTA  test Cooper
GCAGAAAATTCTAGATGCTTAAG GTGGACTGAGTCAGACCTGGAG

CLU NM_203339.1:2460  GCCTGTGGTCCAGGGAAAGGTATGAA AGCGTAGGGTACTGCAGCCCAGCTATG  ftest Cooper
GATCATATAAACCGGCGGTGGACA GTTCAGACTAAAAGCCGAGAAAC

COL1041  NM_000493.3:135 CCTGTGGGCATTTGGTATCGTTCAGCG TGTAGGGAATGAAGAACTGTGTCTTGG  test Sanda
TAAAACACTCCATGAACCAAGIT TGTTGGGTAGTGGGCCTTTTATG

COL942 NM _001852.3:795 CGATAGCGCCCACCATGCCTTTATATC CCTAGGACCTTCCTCACCCGGTGGCCC  test Sanda
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CATGAGGGCCCGICTCTCCCTTG AGTGGCAC
cpP NM_000096.3:1110 CTTGCCCGTGAAAGAAAGCTGCGTGCA AGCAGGAAAGAGGTTGATTGTGTCAAT  ftest Cooper
CATCAACTTCATTACCCATACCA ACGGTAGITCTTGTTAGTCAGTG - NGS
CTA- CTA_211495.1:407 CTGGAGGTATCCAAGAGTCTGCCGAG  GAAGAGCCCAAACCTGCCTGGCTTCAA  ftest Cooper
21149.5/M GGACTTCAAGTATTCAGGAAGGGG AACAGGTGGTGAGCTCCCCATTG - NGS
IATNB
DLX1 NM_001038493.1:13 CAGCCTCAGGCGAAGTCCATTTCTCAA CGTTTGAACAGTGCGTTCCTTGCGCCC  ftest Schalke
35 TAAATAAAACCCCCTCCCTCCAA AGCAGAACCCTGAATTGGCAAA n
DNAHS5 NM_001369.2:12374 GGCGGAACGCATCATGTACAAGCTCA CTGAAGGAGTGTAATGGGAAACTGCTT  ftest Sanda
GTTTCTATGATTATGTCCATCAGC ATGAGCCTCGGTGGTCATCCAGA
DPP4 NM_001935.3:2700 AAATCCACTCCAACATCGACCAGGGCT CTGCTAGCTATTCCATGGTCTTCATCAG ftest
TTGGAGATCTGAGCTGACTGCTG TATACCACATTGCCTGG
EIF2D NM_006893.2:1600  GCTCTTGTCCGGGAAGGGTCACTTGAT TTGTGCTAGGGTGATGTCAATTGGACA  ftest Sanda
AGGCAGGCTGTAATTTTTCCAAA GATTCTCCCTTTCTTCACAATGG
EN2 NM_001427.3:2576 ~AAGGTAGCCACATGTTTCAGAACTGTG CTTTCTTCCTTCTTCTAGATCCTGGAGG  ftest Pandha
GACTCAAACACGCCTGGTGTGTG ATTCTGAGTTCTTTTGAAAGAC
ERG3'ex NM_001243428.1:17 CCATCTTTTTTCTCTGTGAGTCATTTGT CCATCTACCAGCTGTTCAGAACCTGAC  test Cooper
4-5 7 CTTGCTTTTGGTCAACACGGCT GGCTTTAGTTGCCCTTGGTICTG
ERG3'ex  NM_004449.4:477 TGAGCCATTCACCTGGCTAGGGTTACA CCACCATCTTCCCGCCTTTGGCCACACT  ftest Cooper
6-7 TTCCATTTTGATGGTGACCCTGG GCATTCATCAGGAGAGTTCCT
ERGS' NM_182918.3:697 ACATCATCTGAAGTCAAATGTGGAAGA CTGTGTTTCTAGCATGCATTAACCGTG  PCa positive control Cooper
GGAGTCTCTCTGAGGTAGTGGAG GAGAGTTTTGTAAGGCTTTATCA
FDPS NM_001135822.1:40 CATCCTGTTTCCTTGGCTCCACCAGCT CCAGCCCACAGTCCAGGCCCGCTGGAG test Sanda
4 CCCGGAATGCTACTAC ACTATCAG
FOLHI NM_004476.1:695 TGAAAGGTGGTACAATATCCGAAACAT GTTAACATACACTAGATCGCCCTCTGG  ftest Mills
TTTCATATCCTGGAGGAGGTGGT CATTCCTTGAGGAGAGAAAGCAC
GABARAP NM_007285.6:340 GGGACTGTCTTATCCACAAACAGGAAG CTTCATCTTTTTCCTTCTCGTAAAGCTG  test Clark
L2 ATCGCCTTTTCAGAAGGAAGCTG TCCCATAGTTAGGCTGGACTGT
GAPDH NM_002046.3:972 AAGTGGTCGTTGAGGGCAATGCCAGC  CCCTGTTGCTGTAGCCAAATTCGTTGTC housekeeper Cooper
CCCAGCGTCAAAG ATACCAGGAAATGAGCTTGACA
GCNT1 NM_001097633.1:39 TTTCAAACAATAATCAGGGATTTCCTT GTATTTGGTGGGATAAGAAAAAAGTCT  Test Sanda
4 TGTGAAGGGCAGTCTTCTATGCT CCTTCGCAGCAACGTCCTCAGCA
GJBI NM_000166.5:190 TGAAGATGAAGATGACCGAGAGCCAT  TTTCTCATCACCCCACACACTCTCTGCA  ftest Sanda

ACTCGGCCAATGGCAGTAGAATGC

GCCACCACCAGCACCATGATTIC
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GOLM1 NM_016548.3:508 GGATGAGCCTCTCACCTGTGGTGATGT TAATTCCTCTGCAGGGTCTTTAACTGGT test Cooper
TATTCACCAAAACCGC CTTGCAGCACTC

HISTIHIC NM_005319.3:401 CTTGGCTGCCCCAACTGGCTTCTTAGG TTCGGAGTTGCGCCGCCAGCCGCCTTC  test Sanda
TTTGGTTCCGCCCGCCTTTTTAA TITGGGCTT

HISTIHIE NM_005321.2:172 GCGCTCCTTGGAGGCGGCAACAGCTIT CTGCCAGCGCTTTCTTGAGAGCGGCCA  test Sanda
AGTAATGAGCTCGG AAGATACGCCGCT

HISTIH2B NM_003522.3:313 CTTGGTGACGGCCTTGGTGCCCTCTGA AGCCTTTGGGATTGGGTATGAAGACGT  test Cooper

F CACGGCGTG TAGAATTACTTAGAGCTGGTGTA - NGS

HISTIH2B NM_003518.3:318 TATACTTGGTGACAGCCTTGGTACCTT AAGAGCCTTTGAGTTTTAAAGCACCTA  ftest Sanda

G CGGACACTGCGTGCTTGG AGCACACATTTACTTGGAGCTTG

HIST3H24 NM_033445.2:114 CGGAGCAACCGGTGCACGCGGCCCAC CGCCGGCGCCCACGCGCTCCGAATAGT  test Sanda
GGGGAACTG TGCCCTTG

HMBS NM_000190.3:1020 GCTGGGCAGGGACATGGATGGTAGCC AGTGATGCCTACCAACTGTGGGTCATC  ftest Clark
TGCATGGTC CTCAGGGCCATCTTCAT

HOXC4 NM_014620.4:1058  TGAATTTTTTTCATCCATGGGTAGACT CGCTTGGGTTCCCCTCCGTTATAATTG  ftest Schalke
ATGGGTTGCTTGCTGGCGGCG GGGTTCACCGTGCTAACG n

HOXC6 NM_153693.3:570 GGTCGAGAAATGCCTCACTGGATCATA GAATAAAAGGGAGTCGAGTAGATCCGG test Schalke
GGCGGTGGAATTGAGGGCGACGT TTCTGGGCAACGGCCGCTCCATA n

HPN NM_182983.1:1870  CCGAGAGATGCTGTCCTCACACACAAA CCAACTCACAATGCCACACAGCCGCCA  ftest Cooper
GGGACCACCGCTG ACGTGGCGT

HPRT NM_000194.1:240 TGAGCACACAGAGGGCTACAATGTGAT CAGTGCTTTGATGTAATCCAGCAGGTC  housekeeper Cooper
GGCCTCCCATCTCCTTCATCACA AGCAAAGAATTTATAGCCCCCCT

IFT57 NM_018010.2:790 AATCGTGACTTTCAGTTGCGGTAGTAC TGCTGGTGCATTTGGTCAACATGGATT  test Sanda
ACGTTCCACTTCTAGGCTCCAIT CTCCAATCCTTATTGTICAGTCCT

IGFBP3 NM_000598.4:1255 CGGGCGCATGAAGTICTGGGTGCTGTIG TGGTCGGCCGCTTCGACCAACATGTGG  ftest Sanda
CTCGAGTCTCTGAATATTTTGATA TGAGCATTCCA

IMPDH?2 NM_000884.2:545 TCTTTGAGAAAATCAATGTCCCTGGAG TCCCTCTTTGTCATTATCTCTTCCAAGA  test Mills
GAGATGATGCCCACCAAGCGGCT AACAGTCATGTTCCICC

ISX NM_001008494.1:31 ATCTGGCATTTTTAAGATGGCAAAGCA TGCTAGAGACCTGGTGTTGATATCCAC  ftest Sanda

40 CTTTTGCATCCTGTGGGCTIGITG ATTCATAGGCTCTGAGTG

ITGBLI NM_004791.2:1317 AGACCACACCATCGAGGTCTTCACAGC TCCTCTCTCACAAACACAGCGACCACA  ftest Sanda
GGCGATCATCACACTCACAAGTC GGAACATGTGCCGTGGCCTCCAC

ITPRI NM_001099952.1:67 GACAATCTCTATCTGCGCCGTGTGCIT CATATGCTGGGCACGGGAAAGACTATC  ftest Sanda

75

GGCATAAAACTCCAGGGC

TGTTCCATTGTTCGGTCTAATCT
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KLK? NM_005551.3:1820 CTTGGACACTAAGGATCAGGTGAGCTT GTCAATTATTCAAGTACTCCATACTCGT test Cooper
CCTCAGTTGGAATTACTTTGTAC CCTACAGACCCCCAGTAAAAAC
KLK3/PSA NM_001030048.1:16 TGAGGAAGACAACCGGGACCCACATG AATCCGAGACAGGATGAGGGGTGCAGC Prostate control Doll
(exonsl-2 GTGACACAGCTCTCCGGGTG ACCAATCCACGTCACGGACAGGG
KLK3/PSA NM_001648.2:209 ATCACGCTTTTGTTCCTGATGCAGTGG CCTGTGTCTTCAGGATGAAACAGGCTG  Prostate control Cooper
(exons2-3 GCAGCTGTG TGCCGACCCAGCAAG
KLK4 NM_004917.3:410 CCCAGCCAGAAACGAGGCAAGAGTTC CAGCACGGTAGGCATTCTGCCGTTCGC  test Cooper
CCCGCGGTAG CAGCAGAC
LASS1 GCATCTCGCACCTCCCGTTCCAAAAAA CTGCCTGGCTACAGCCCCGGATGTGTIT  test Sanda
NM _198207.2:1918  CGTCACGGAGCTCTGAG AAATGTCT
LBH NM_030915.3:2340  GAGAGTATGGATGAACCACTCTCTGCA ACAGGAATTGAAAAGGCAAGACCCCCG  ftest Sanda
GCCAAAACAGAACGAAGCGGGGA TCCACAAGGGGAGGCGAGGGAAT
MAK NM_005906.3:1395  TATCTCCAGACTTGAAGATAGTCTGAC CTTCTTGGAATGGGAGGCTCCGAAATC  ftest Sanda
CCCAACGCCTCCTACCACTTTTA ATAGTCCTCCAACTCTTCCCAGC
MAPKSIP NM_012324.2:1885 CTCTCGCTCCTCGCCGTTGACCAGACA CCGCGGGATGAACCTGAACACAGCCCG test Sanda
2 GGAGAAAAGGCCAAAGGACTCG GTGAGTICTG
MARCH5  NM_017824.4:2136  TGTGCTGAAACTAGACTGTCAACTCTG AAACAAAGAGCTCAAGGCCTCACCTTG  test Sanda
TAAGAGCTTGGACCAAGICTGTIC GTTTATTCACTGCTGGTTTTCTA
MCM7 NM_182776.1:1325  TGTGTTCTCTCCTTCTACCAGCACCGT CAAGAAAATACCAGTGACGCTGACGTG  ftest Perry
GATACTACGAGGGATATT GTCTCCAGGCTGGGCAATCCT
MCTPI NM_024717.4:1005  AACTCCAATTGTGTCAGATCCAGAAAG GATAATGAGGATCTTTCAGAGTAAGGG  test Cooper
GCTGAGCCCATAAAGTCATCCTG TCACATCTGTIGGGCCTGITT - NGS
MDK NM_001012334.1:71 CGAGCAGACAGAAGGCACTGGTGGGT GGGGCTGGGGAGTGAGAGGGACAAGG  test Cooper
1 CACATCTCGGGC CAGGGCATGATTGATTAAAGCTAA
MEDA4 NM_001270629.1:32 TCTTGCTTTTTCTATTGACTTGAGTTTC CTGATCCTATGTGCATACTTAATTATIT  ftest Sanda
4 TCCTTCGCTTGGTAAACAGCTG CTTCAGAGGAGATAGCACCTIT
MEMOI NM_001137602.1:11 GAATGTGCAGGTGGCATCCCTGAGGA  TATCGTGGTAAAGGCTAGGCTGGGACC  ftest Sanda
92 TTCAGAGCT CCGGACAGAGTATGA
Met NM_001127500.1:19 AAATTTATTATTCCTCCGAAATCCAAA GTCAAGGTGCAGCTCTCATTTCCAAGG  ftest Cooper
25 GTCCCAGCCACATATGGTCAGCC AGAACTCTAGTTTTCTTTAAATC
MEX34 NM_001093725.1:20 GATCTATGCAACTTCTGATAGGACTCC CCTTTCAGCCACAGAAACGATTGACAT  ftest Sanda
90 AACTCCCTTACACTGCTGGAAAC GCTTCTCTCCCCAACCCCTAGAA
MFSD24 NM_032793.4:592 AAGAGGCAATAGAAAAGCAGGTACCA  ACATGGTGAGAGCCGAGTAGGGAACAT test Cooper
ATAGGTICTGGCCGTGTGGGAAGTC GGAAACACGTGACCATTGTITCA - NGS
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MGATSB  NM_144677.2:3392  GGTTGGAACAAGCAGGAGAGAGAAAC CAGGTCATGCCAGGATGGGTTTTGGGA test Sanda
AATTCAACCAGGGTCTGGGTGGTC GAAGCCCAGAGTGAAAAG
MICI CCTGGTTAGCAGGTCCTCGTAGCGTTIT GTGTTCGAATCTTCCCAGCTCTGGTTG  test Whitak
NM_004864.2:180 CCGCAACTC GCCCGCAG er
MIR1464/ ENST00000517927.1 CGGTTGAGATTTCACCAAGGTTCTGGT TITCTGGATTTTCTCCATCAGTCTAGGAC test Cooper
DQ658414  :1642 TCTGGAATGAGTCACTGGCTAAG TGAAGACACCGATCTCTGGTGT - NGS
MIR4435-  ENST00000409569b. AAAGCAGCGACCATCCAGTCATTTATT CAGGCACGGGCTCAGGCACCGCTTGTC test Cooper
IHG/IOCS5 1:45 TCCCTCCATTCCCAATGATGTAC TGGAATGTCAATTTGAAACTTAA - NGS
41471
MKi67 NM_002417.2:4020  CTGATGGCATTAGATTCCTGCACGCTA GICTTTCTCTTCACCTACTGATGGTTTA test Cooper
AGAGTTCTCCCTCTACATCTG GGCGTGTGCATGGCTTTGCCTG
MMPI1 NM_005940.3:702 TCAGTGGGTAGCGAAAGGTGTAGAAG ATATAGGTGTTGAACGCCCCTGCAGTC  ftest Sanda
GCGGACATCAGGGCCTITGG ATCTGGGCTGAGAC
MMP25 NM_022468.4:2955  CATTTAGATCCTAAAACTGTGGGGAGT CCCAGTGATTCTGATGTGGGATAGTICT  ftest Cooper
GGGGACAGGGTGAACGAGGTGCC AGAAGAATAGTTCCAGAGGCAAT - NGS
MMP26 NM_021801.3:515 CAGGATTTCCAGAATTTGGTAAAAAGG TCCAGTGTCTGAAGCTGACCAGTGTTC  test Cooper
CATGGCCTAAGATACCACCTGGC ATTCTTGTCAAAATGGACAACTC
MNXI NM_005515.3:1680 TTTCTTGAAGAGCAGGTGAGGCGCCCT TTAAAAGAACCAGAGTTCAAGTTTCAG  ftest Sanda
TGCTTAAAAGGGAAGCGCCCAGG CCCCCTGGGTCTCCCICTCGCTG
MSMB NM_002443.2:295 TTTTTGGGTCCTTCTTCTCCACCACGA  GTGCCTACTAGAAGCACATTAGATTAT  ftest Whitak
TATACTTGCAGICCTICCTICTTG CCATTCACTGACAGAACAGGICT er
MXI1 NM_001008541.1:61 GAAGTGAATGAAAGTTTGACACTGGCA TGGCCCAGTGAATATTTTGCCCTGCAC  ftest Sanda
5 CTGGAGTAACCCTCGTCACTCCC TGTTATGTCATGCTGGGTTCTAT
MYOF NM_013451.3:5805 ATGATCGTGTGACGCAAGTCAAGTTCT TGAGGTCCGGAATCATGTCCAATCTGC  test Cooper
AGGAAACCCAAGTAGTCATCCAG ATTTCTCTGGTGATTTTGCAGGA - NGS
NAALADL NM_207015.2:250 ATTCTCAGCACCGTCTAGCTGGAATTG TGAATGGAATCAAGATTGAGGTCTATA  test Mills
2 GTCAAAACCAGACTCCTCTAGIT GTCTCTGAATGCCCTAGGTTICTG
NEATI NR 028272.1:1850 TTTCTCACACACAGATTTAGGAATGAC TTCTCCTAGTAATCTGCAATGCAATCAC ftest Sanda
CAACTTGTACCCTCCCAGCGTTT AATGCCCAAACTAGACCTGCCA
NKAINI NM_024522.2:1620  CACTGTGTTCAAGGCCCACTTCCACCA GAACTCAGAGAGCAGACACTGGGTTIT  ftest Sanda
AAAATCTAGCTGTGTGGCCTCAA ACAGTCAGAAACTGCAGAAAGTA
NLRP3 NM_001079821.2:41 CTGGCATATCACAGTGGGATTCGAAAC CTCGAAAGGTACTCCAGTAAACCCATC  ftest Cooper
5 ACGTGCATTATCTGAACCCCACT CACTCCTCTTCAATGCTGICTIC - NGS
OGT NM 181672.1:1080  CTTTGAGAGCATTGGCTAGGTTGCAGT ACGGAGAGCTGTATTATAACAATCTTCT _test Cooper
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AAGCATCAGGGAAATGTGGTTGT

GCTTCAGCAACACTGCCCTICT

PSGR NM_030774.2:360 GAGCGTGCAGGCTGCGTTCCGTCCTTA GGATAAGGCCAGGTCAATGGCTGCAAG test Doll
CGATGAAGACCACGATGCAGTTT CATGCAGAGAAAGAGGTACATCG
PALM3 NM_001145028.1:23 AGCTGGGACTGGAGTGTGAACAAACT GCTGGGCACCTGTGGAAGCACTTTGCA  test Cooper
4 GICITCCAGGTICCG ACAGITGC - NGS
PCA43 NR _015342.1:362 TAAGGAACACATCAATTCATTTTCTAA  TCCCGTTCAAATAAATATCCACAACAG  test Cooper
TGTCCTTCCCTCACAAGCGGGAC GATCTGTTTTCCTGCCCATCCTT
PCSK6 NM_138320.1:1112 ACATCGCCGTCCAGCATGCGGATGCCT CGATGTAGTTGGGTCTGATGCCCAGCG  test Sanda
CCTATTTTGGCATTGTACGCTAT ACTTTGCCTCGACCACATCTGIG
PDLIM5 NR_046186.1:120 CTCAAAGTCCAATGACAGAAAATGAAA GGCCAACCAGTGACACACTGTAGTTGC  test Sanda
TATGCTCGGGTCCGGCGCGGCGC TCATGGTTCTAATGG
PECI GAAAACTTCAGTAACAAGTCCTTGAGC CAAATGCCTTCAGCCTGGTCCAGACTT  test Mills
NM _006117.2:940 ACATGCCTCTCCCGCTGTTAACT CTTTCTGAAAAGTGCTATCAGG
PPAP24 GTGATTGCTCGGATAGTGATTCCCAGT TTAGAAAACAGGCCAGCTTCACCTGGG  test Mills
NM _176895.1:1215  TGTTGGTGTTTCATGCAGAGTTG CACCCTGCTGCCITTCAAGGCTG
PPFIA2 NM_003625.2:3670  CACTTTCATCCAGTCGCCTTTCAGTTC AGGAGGAAACTGCCTTCTCCAGGTTGA  ftest Sanda
CCAGGGCCAAGAGGTTATTIGTAT TCCACGTCTGAAGTTICTTGTICAT
PPPIRI2  NM_001167857.1:13 TGCTCTGTGATACTACTCTTGCTTTCA CTAGCAGAAGAGGCAGAGAAGGTATTT  ftest Cooper
B 05 GAGTTGGAATGATTGACAAAGGC TGAGCTGGTGCTGGTATC - NGS
PSTPIP1 XM _006720737.1:35 TCAAAGGAGGCCCTCAGGGAGTTGAT AGCTGCCCACATTCTCCATTTGCTGCTT test Cooper
2 CTCCGICTG CAAGGAG - NGS
PTN NM_002825.5:418 TTTCTTCCCTGCTTCAGCAGTATCCAC  CCATTCTCCACAGTCAGACTTCTTCACT  ftest Sanda
AGCTGCCAGTATGAAAATGAATG TTTTTTTCTGGTTTCTC
PTPRC NM_080923.2:154 CAAGAGTTTAAGCCACAAATACATGGT CTTTGCCCTGTCACAAATACTTCTGTGT Blood control Cooper
CATATCTGGAAGTCAGCCGTGTC CCAGAAAGGCAAAGCCAAATGC
PVTI NR _003367.2:0 AAAATACTTGAACGAAGCTCCATGCAG AGCGTTATTCCCCAGACCACTGAAGAT  test Sanda
CTGACAGGCACAGCCATCTTGAG CACTGTAAATCCATCAGGCTCAG
RABI7 NR _033308.1:1310 ACAGCACTTTCCTGGGAGCCATGTGAC GGAACAGGCACAGGCATCGGGGAATCA test Sanda
GCCAGATCTTCCTCTGGCAGTIC GATGGTATCAGTGGGGATAGGGC
RIOK3 NM_003831.3:1920 CTGGAAAAACTGCGAGACATTCCTGCA ACAGCATTGAAGAGTTCTCGTTCACTA  ftest Clark
GTCCCGGAACAAGAACTCCAGGC AGGGCTTCCTTGACTCCTCCTIT
RNF157 NM_052916.2:618 ACTAGAGGGTAAACTTCTCGGTCTAAA CATGGCAATGGCCAAAATACTCGTICTC  test Sanda
TCAAAGCCAAGCTCCTCTTCGGC CTTCATCCACCACGGCATGTACC
RPII- ENST00000561140.1 TTGCCAGTCGCTGGTTTTCATCCAGAG CAGCAATATATCCTGTTCATCTTCTTCA  test Cooper
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97012.7 2110 CACGAAGCTCGTGGTCTGAATAC TCATGAAGGTCAGCTTTCTTCT - NGS

RPLISA NM_000980.3:177 GAGATACAAAGTACCAGAAGCGGGAC  CTGCCCACAGTAGACAATCTCCCCTGA  test Cooper
TTGGCGACGACATGATTAGGCGCA AGACTTCTTCATCTTCTTTAACT - NGS

RPL234P5 NR _003572.2:3226 AAATCCGAAAGGATCTCATCCCATTAG CATTTATGGCTGTCAACCCGCCAGTTCT test Sanda

3 GACCCTTGTICICCTITICTGITG CAGGAGTTTGTATAAAAGCCT

RPLP2 NM_001004.3:186 CTGATAACCTTGTTGAGCCGGTCGTCG TGCCAATACCCTGGGCAATGACGTCTIT  housekeeper Whitak
TCCGCCTCGATAC CAATGTTTTTTCCATTCAGCTCA er

RPSIO NM_001014.3:219 GAAATGTCTCCAGGCAAACTGTTCCTT TGAAGGTAATCACGGAGATACTGGATA  test Cooper
CACGTAGCCTCGGGACTTGAGAG CCCTCATTGGTAAGGTACCAGTA - NGS

RPSII NM_001015.3:105 CAGCAGGACCCTCTTCTTGTITTITGAAA AGACCGATGTTCTTGTAGTACCGCGGG  test Cooper
GATGGTCGGCTGCTTTTGGTAGG AGCTTCTCCTTGCCAGTTTCTCC - NGS

SACMIL NM_014016.3:685 AGAAAGTTCTCTTAGAAGATGACCATT ATAAAGCCATGTAACACTGGAAGGGCA  test Sanda
CCATACAAACCGCTGATCTGCCC AACCGATGAACCTCTGGCTGTGC

SChLAPI  NR_104320.1:359 CCAGGTACATGGTGAAAGTGCCTTATA ACCTTGTGTCCCCAGCATCTAGATTGCT test Sanda
CAGGTTGAATAAAAATCACTGCC GAAAAAGATGTAGATGTTGCTT

SEC61A41 CTCTAAGCCCAACCAGAAGAGTCAGCT GAGCTGATGACCCAAGTGGACTAAACA  test 2

NM _013336.3:2245  AGAAGAGCCAATAGGTGCACAGA CGGAGCTAGCAGAAACAGGCAGA

SERPINB5S NM_002639.4:90 CGGGCCTGGAGTCACAGTTATCCTGGA GAACAGATCAACGGCAAAAGCCGAATT  test Cooper
AAATGCGTGGAAAAGGAACAGGC TGCTAGTTGCAGGGCATCCATTG

SFRP4 NM_003014.2:1060 CAGCCTCTCTTCCCACTGTATGGATCT CCCGGCTGTTTTCTTCTTGTCCTGAACT ftest Sanda
TTTACTAAGCTGATCTCTCCATT GTTCTCCGCTGTTCCTG

SIM2.long  NM_005069.3:2099  TTAATGTAGGTCGTGCGCATTTGCCGG ATCCGCAAGTCGGCGGCGGGGTCCAAT test Sanda
GCTCGGTGGCGCCGCAGCC TCAAACAGCTGTCTCTGCATAAA

SIM2.short NM_009586.3:2220  CTGCCACCCACCGCCATGGCTGCTTCG GAAGCAGAAAGAGGGCAAGTTTGCCCA test Sanda
GCTCCCGG AAGCGTGAGGGTITCTGTCTCCAT

SIRTI NM_012238.4:1595 GGTGTGGGTGGCAACTCTGACAAATAA CTGGTGGTGAAGITCTTTCTGGTGAAC  ftest Sanda
GCCAATTCTTTITTIGIGTTCGTGG TTGAGTCTTCTGAAACATGAAGA

SLCI24]1  NM_000338.2:3380  CCATATACAACAAATCCGATATGGATC TCTAACTAGTAAGACAGGTGGGAGGIT Kidney control Cooper,
CCITICTTGCCACGGGAAGGCTC CTTTGTGAGGATTTCCAACCAAG Mills

SLC4341  NM_003627.5:925 TTGACTTCCTCAGGGGCAGGAAAGGCT CTTGTGGTCCAGGGCCAGCCCACTCAG  ftest Sanda
TCGATGGGCCAGTTGAGGGTGCA CTTGATCTTCTTCGTGTAA

SLC441 S NM_000342.3:2770 ~ CATCATCAGCATCCAGACACTGAAGCT CACTTCGTCGTATTCATCCCGACCTTCC test Clark
CCACGTTCCTGAAGATGAGCGG TCCTCATCAAAGGTTGCCTITGG

SMAPI, ex NM 021940.3:1075  GAGTACTTTGCTGTTGAATGGTTCCTG TGGTGCTTGTGAGGTAAATGGTATATT  test Cooper
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7-8 TGCCATACAGAGATAAGATGGAG TGTGGGTCCCATAAATACACCAG
SMIM1 ENST00000444870.1 TTCATGGCGATGCCCAGCTTGCCCGTG GGTAGCCCAGGATGAAGATGATCCAGA  test Cooper
2353 CACAGCCTCTGGGAGAT AGAGGGCCACGCCGCCCAGCcACC - NGS
SNCA NM_007308.2:568 ACTGGGAGCAAAGATATTTCTTAGGCT GGAACTGAGCACTTGTACAGGATGGAA  test Clark
TCAGGTTCGTAGTCTITGATACCC CATCTGTCAGCAGATCTCAAGAA
SNORA20  NR_002960.1:2 CGTATAACTGCTCGTATCACTGTGAGA ATGGITACTTCATCTCAATTTACAGTGG test Sanda
CTACAAGCAGCAAATAAATGGGA CCCAATGTTATTTTATCCCATG
SPINK1 NM_003122.2:65 AAGTTCTGCGTCCAGAGGTCAGTTGAA CAACAGGGCCAAGGCACTGAGAAGAAA test Cooper
AACTGCACCGCACTTACCACGTC GATGCCTGITACCTTCATGGCTG
SPON?2 NM_012445.1:1680  CATTTATTCACTTCTCAAGTGGCCCCC AACGCAGAGAGATCCATAACATGGAAA  ftest Whitak
GCTTGGATGCGCCCTCG CACTGACGCTTCCGAAACCGCCC er
SRSF3 NM_003017.4:2640  TAAAGTAACTGCCAACTGGGACTGTAT CCATGTTCTAAAGTTTCTAAGAGTCTTG ftest Sanda
GTCACCTAAGTCAGGATAACTCC AGGTTATGCTAGGGCTCCTGGT
SSPO NM_198455.2:7270  CCACAAGGCAGGGAGAGAAGGGAGCC ATGGTAGGCATCATGAAGGGCACAGTG ftest Sanda
ACATAAGTAGATTCCTGGCG CTCGCTGC
SSTRI NM_001049.2:2575 TCCGACCCCGCAATCTTATAAAAACTC GGTCTTTGAAAACGCGCAGTAGGAGGG ftest Sanda
CTCATTCGGCTTGTICTCAGCTC TGATTCCTATTACGCGCCCACAC
ST6GALN  ENST00000592042.1 TTTTTCCTCAAAATCCCACCGAGGCTC TTCACAGAGTCAGGGCAAGTCGTCTGA  test Cooper
ACI 21036 AGATTTGAAGTTGGCGGCCTTCA AGGCCTCCTATTTCGAAGCTGTA - NGS
STEAP? NM_152999.2:845 ATATATAAACCTGCCGGCTGGCATCCT CTGGCGGGCAAGTTCAATAACCTGTTG  test Mills
TAGGTCCTAACTGAAGTGCCCAA TCGCGCTTGAATATTGTTGCTGC
STEAP4 NM_024636.2:3555 ATCAAAGATAAGTTGAAGGAGCGTGTG CCATGACTCTACTCAATGTCGTCCAACT ftest Mills
TTCTGTGTACCTTTGCAACCAGT TTTTGTATCCTTGCTTGGGTIT
STOM NM_004099.5:120 GAGTCGGGGAGCCGCTGGGCTTCGGA CCAAAATCCATCCGCAAGGTCCAAGGC  test Clark
GICCCGTGT CCTTACTGGGGCTGTCCTTGAAG
SULF2 NM _001161841.1:12 ATGAGGTCTGTGAGGTAATCCTTGGAG GTACATCTTCTTGGACGTGCGGAAGAA  test Cooper
06 TAGTCGGAGC GCTCACGCTGTCATTGGTG - NGS
SULTIAI  NM_177534.2:1393  CCCTCAATTCATATTTTATTCTTGAGCC TCAGCCTCCAAATTGCTGGGATTACAG  test Mills
GCTTGGTCAGGTITTGATTCGCA ACATGACCTACCGTCCCGGG
SYNM NM_015286.4:2460 AATGTGACATCGCTTTCTCCATAACCT TCGTGTTCTCCTGAGGCTGCTTGGTICC  ftest Sanda
TCCTCCTCCTTAACCAACCCCCA TTCGATGCTGATTAACTGAG
TBP NM_001172085.1:58 GCACGAAGTGCAATGGTCTTTAGGTCA TCCTCATGATTACCGCAGCAAACCGCT  housekeeper Cooper
7 AGTTTACAACCAAGATTCACTGT TGGGATTATATTCGGCGITTICGG
TDRD NM 198795.1:2615  TGTTTCTAGACTGTATATCTGCTAACT  CCCAGCAACACACATCTGGAATCTTIGT  test Schalke
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GGCACCGTATTCCCTGAAAGGGA

TATGGCTTCTTCAGACCAATGIT

n

TERF2IP  NM 018975.3:1100 GCCTGTGTAACTGTTGATAGATCCAAG ACGCTAAGAAGGCGGAAGTAGCCTCCA test Clark
TTAAACTTCTCCATTAACTGCCG GCTCACCACTATTTTTTAGGAAG
TERT NM_198253.1:2570  CGCAAGACCCCAAAGAGTTTGCGACG  TCTGGAGGCTGTTCACCTGCAAATCCA  ftest Cooper
CATGTTCCTCCCAGCCTTGAAGCC GAAACAGGCTGTGACACTTCAGC
TFDPI NM _007111.4:551 TTCCTCTGCACCTTCTCGCAGACCTTC TGAACTCCGCAACCAGCTCGTCTGCCA  test Clark
ATGGAGAAATGCCGTAGGCCCTT CTTCGTTGTAGGAAGTGGTCCCT
Timp4 NM_003256.2:1000 TCTGCAGGGAAGGAGAACTGGCTTGA  GGCACTTCTTATTAGCTGGCAGCAAGA  ftest Cooper
TCTTCAGGACTCTTGAAGGGATGT GGTCAGGTGGTAATGGCCAAAGC
™CC2 NM_014858.3:1312 ACGTTGCTGCCGTCGGCCAGCAGCAG CCCCGATGCCTTCGGCCTCCTCAGCCA  ftest Clark
AGCAGTGTCGGTG GGAGGTAC
TMEM45B NM_138788.3:469 GCATACAGCAGGAGTGAGTGGATGTG GGTCCCGGAAGATCACCTCTAGGGAGA  test Sanda
CTGGTCCAGCGGAGGCCGG TACTAACACACCCTCCGAACAGA
TMEM47  NM_031442.3:1215 AGCAAATAACCAACAGCCAATGTAGTC CCCATTAGATGCTGAAGGGCAGTTCAT test Cooper
ATTGGGTAGGATAAGCAGGCGGT TTTTCAAGGGCTCACTCA - NGS
TMEMS864 NM_153347.1:2320 AATGAATCAGCCAATCTAATCCCATTG GCTCCTGGAGCAGAGTGATGTATTATT  test Cooper
CTCCCAGCTGTTCAACTAAGCCC CTGCCAGGGCTTTACAACTAATG — NGS
TMPRSS2:  Fusion_0120.1:0 CTGCCGCGCTCCAGGCGGCGCTCCCC TAGGCACACTCAAACAACGACTGGTCC  PCa positive control Schalke
ERG GCCCCcTCcGC TCACTCACAACTGATAAGGCTTC n,
fusion Cooper
TRPM4 NM_001195227.1:28 CTTCCAGTAGAGATCGCTGTTGCCCTG GCCAGCGCGGGCCGAGAGTGGAATTCC ftest Sanda
00 TACTTTGCCGAATGTGTAACTGA CGGATGAGGCGGTAACGCTGCGC
TWISTI NM_000474.3:393 CTCGGCGGCTGCTGCCGGTCTGGCTCT TGCTGCTGCGCCGCTTGCGTCCCCCGC  test Sanda
TCCTCGCTG GCITGCCG
UPK2 NM_006760.3:332 ACGAGGTTTGTCACCTGGTATGCACTG TCCCCTTCTTCACTAGGTAGGAAATGTA Bladder control Cooper
AGCCGAGTGACTG GAATTTGGTTCCTGGC
VAX2 NM _012476.2:871 TCACAGGGTGGGAGTCTTAAGTGTTAG ACAGGAGACTGGGAAGGTGCTGTGCTC test Sanda
CTTTCTTGCAG GGGACTCAGTG
VPS134 NM_033305.2:8260 TAAAGGGCTTTGGTGCTGAATCCATGG ACGTGATATCTGGGAATGTCCTGCAGA  Test 2
TGACCGACTTTGGAGGTTTAACA TCTCATGACAATACTGACATCTG
ZNF577 TCTCTCTTCTGTCTATTCTGGGCCTTCC GCCTTGCCCATTTCGTTCAACTCTTAGG Test Sanda

NM _032679.2:268

CAGAAGTGGIGGTICAG

GGCTAGCAACTCTAGTATGTTC
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Supplementary Table 2 Samples flagged by quality checks on Nanostring2 data set

Samples flagged by Quality Checks

Samples detected by M 83 7 M 26 6 pclds
NanoStringNorm where M 84 2 M 27 1 pcl008_0
normalization parameters M 84 5 M 31 1 pc017
extended beyond 100% from M 84 6 M 31 3 a293
the mean M 85 1 M 73 1 a3lé
M 85 2 M 76 6 a303
M 86 1 M 77 1 al316
M 86 2 M 77 2 al319
M 86 3 M 78 3 al329
M 133 7 M 785 al38a
M 142 7 M 78 6 Cli3 1
M 120 5 M 78 7 C118 4
M 122 2 M 78 9 Cl10_1
M 127 6 M 79 2 Cli2 4
M 129 3 M 79 4 C107 2
M 131 4 M 81 1 Cll1 1
M 75 3 M 81 2 C109 4
M 42 7 M 81 4 C107_1
M 80 3 M 815 C118_3
M 737 M 68 8 C106_8
M 129 5 M 925 Cl16 5
M 131 8 M 54 7 Cli6 2
M 132 2 M 58 5
M 132 5 M 67 5
Samples detected by M 91-6 pcl3s
NanoStringQCPro which M 97-3 pel37
were foui?d to have M 97-4 pel39
overlapping barcodes —
M 142-7 pclds
M _120-5 pcl46
M 122-2 pcl008
M 127-6 pcl013
M 129-3 pcl029
M 131-4 pcl043
pcl05-5 pcll8
pcl30-2 pcll9
pcl40-20 pcl2l
pcl40-5 al316
pcl40-2 al331
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Supplementary Table 3 Differentially expressed probes for each LPD group determined in the Nanostring2 data set. A) LPD groups 1-3. B) LPD groups

4-5.
A
LPD Group 1 LPD Group 2 LPD Group 3

Adjusted p-value  Log2(FC) Adjusted p-value Adjusted p-value Log2(FC)
CAMKK2 4.80X10-14 -1.17 IFT57 9.50X10-14 0.18 KLK2 1.97X10-12 -0.20
CACNA1D 1.10X10-13 -0.49 OGT 1.26X10-13 0.27 DPP4 2.20X10-12 -0.23
GABARAPL2 1.10X10-13 -0.32 GABARAPL2 1.31X10-13 0.17 CASKIN1 1.29X10-10 -0.21
RPS11 3.13X10-13 -0.13 DPP4 1.56X10-13 0.19 MSMB 1.34X10-10 -0.08
RPL23AP53 3.74X10-13 -1.35 IMPDH2 1.65X10-13 0.26 CACNA1D 1.55X10-10 -0.20
PPAP2A 3.94X10-13 -0.33 HPRT 1.68X10-13 0.30 GABARAPL2 1.71X10-10 -0.14
CTA.211A9.5.MIATN 4.44X10-13 -2.43 EIF2D 1.69X10-13 0.25 TERT 2.02X10-10 -0.24
B
STEAP2 5.07X10-13 -0.60 MXI1 2.05X10-13 0.22 ZNF577 2.69X10-10 -0.26
IFT57 8.73X10-13 -0.33 PECI 2.09X10-13 0.25 SSPO 3.12X10-10 -0.20
Mic1 8.77X10-13 -1.20 RP11.97012.7 2.10X10-13 0.28 CAMK2N2 3.32X10-10 -0.52
CASKIN1 1.05X10-12 -0.41 CACNA1D 2.14X10-13 0.22  IFT57 5.68X10-10 -0.15
HMBS 1.25X10-12 -0.84 FDPS 3.25X10-13 0.19 FOLH1 5.86X10-10 -0.32
MED4 1.25X10-12 -0.83 MYOF 4.00X10-13 0.26 MNX1 6.38X10-10 -0.22
RPLP2 1.32X10-12 -0.16 BRAF 4.31X10-13 0.30 MXi1 1.56X10-09 -0.16
HIST1H1C 1.72X10-12 -0.31 ALAS1 4.49X10-13 0.21 RP11.244H18.1.P71 3.02X10-09 -0.28

2P

PCSK6 1.97X10-12 -0.47 MARCH5 4.73X10-13 0.24 STEAP2 4.33X10-09 -0.24
MMP11 1.98X10-12 -0.66 KLK2 4.87X10-13 0.20 TWIST1 4.66X10-09 -0.21
Timp4 2.11X10-12 -1.43 RIOK3 6.19X10-13 0.35 RPLP2 8.02X10-09 -0.08
SIM2.short 2.17X10-12 -0.76 ZNF577 6.44X10-13 0.27 HPRT 8.93X10-09 -0.19
SLC43A1 2.17X10-12 -2.98 HIST1HiC 6.62X10-13 0.17 MED4 9.74X10-09 -0.21
SSTR1 2.28X10-12 -0.45 MED4 6.69X10-13 0.29 RPS11 2.70X10-08 -0.05
SYNM 2.48X10-12 -1.69 TWIST1 6.69X10-13 0.32 PCSK6 3.33X10-08 -0.27
RPS10 2.52X10-12 -0.18 TFDP1 8.58X10-13 0.28 MMP26 4.93X10-08 -0.90
MEX3A 2.59X10-12 -1.06 STEAP2 9.68X10-13 0.27 PSGR 7.51X10-08 -0.33
HIST1H2BG 2.78X10-12 -1.35 GAPDH 1.04X10-12 0.18 NKAIN1 1.44X10-07 -0.31
VAX2 3.63X10-12 -0.55 LBH 1.23X10-12 0.46 ARexons4.8 1.46X10-07 -0.19
HOXC4 3.91X10-12 -1.20 SSPO 1.33X10-12 0.38 SSTR1 1.75X10-07 -0.18
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RPL18A
PALM3

FDPS
TWIST1

EN2

MXI1
STEAP4

ISX

KLK3 exons 2-3
TMEMS86A
KLK4

MNX1

AMH

AR exons 4-8

SMIM1

RIOK3
BRAF
SChLAP1
DLX1

PVT1
IMPDH2
MGAT5B
CcD10
HPRT
ITGBL1
EIF2D
DPP4
TFDP1
TERF2IP
ZNF577
ARHGEF25
SIM2.long
RP11.97012.7
SRSF3
SFRP4

4.06X10-12
4.82X10-12
5.40X10-12
5.54X10-12
7.01X10-12
1.01X10-11
1.11X10-11
1.17X10-11
1.26X10-11
1.36X10-11
1.49X10-11
1.54X10-11
1.82X10-11
2.58X10-11

2.64X10-11

3.77X10-11
3.82X10-11
4.04X10-11
4.75X10-11
4.81X10-11
4.92X10-11
5.09X10-11
5.79X10-11
6.13X10-11
6.13X10-11
7.83X10-11
8.53X10-11
9.69X10-11
1.01X10-10
1.22X10-10
1.39X10-10
1.42X10-10
1.48X10-10
1.51X10-10
1.55X10-10

-0.33
-0.82
-0.35
-0.51
-0.56
-0.36
-0.64
-1.67
-0.69
-1.51
-0.36
-0.43
-0.59
-0.67

-1.17

-0.83
-0.46
-1.22
-1.94
-0.68
-0.59
-0.68
-0.54
-0.66
-0.86
-0.46
-0.44
-0.88
-0.31
-0.84
-1.39
-1.29
-0.97
-1.16
-0.89

TERF2IP
HIST1H2BF
MEMO1
NAALADL2
RPL18A
CASKIN1
ITPR1
RPLP2
HMBS
PPAP2A
SLC4A1.S
MMP11
SIM2.short
Ar exons 4-8

RP11.244H18.1.P7
12pP

MNX1
HIST1H2BG
STEAP4
AMH
SMAP1 exons 7-8
FOLH1
RPS10
GCNT1
BTG2
CCDC88B
CDC37L1
TMCC2
DNAH5
NLRP3
RPS11
PDLIM5
SSTR1
SRSF3
ABCB9
PPP1R12B

1.33X10-12
1.50X10-12
1.67X10-12
1.67X10-12
1.67X10-12
1.86X10-12
1.86X10-12
2.27X10-12
2.34X10-12
2.34X10-12
2.46X10-12
2.71X10-12
2.81X10-12
2.85X10-12

3.07X10-12

3.52X10-12
3.66X10-12
3.67X10-12
4.12X10-12
4.43X10-12
5.02X10-12
5.90X10-12
7.08X10-12
7.11X10-12
7.11X10-12
8.55X10-12
8.55X10-12
9.37X10-12
9.81X10-12
1.05X10-11
1.13X10-11
1.72X10-11
2.05X10-11
2.15X10-11
2.45X10-11

0.18
0.22
0.28
0.30
0.15
0.33
0.28
0.10
0.34
0.18
0.79
0.44
0.45
0.27

0.25

0.42
0.25
0.33
0.41
0.36
0.27
0.13
0.39
0.31
0.78
0.39
0.65
0.67
0.80
0.08
0.24
0.42
0.51
0.77
0.33

EN2

PPAP2A

CDC20
MGAT5B
TFDP1
SLC4A1.5

KLK3 exons 2-3
EIF2D

KLK4
ARHGEF25
COL9A2
HIST1H2BF
SNCA
MIR146A.DQ65841
4

COL10A1

CADPS
VAX2
HIST1IH1C
PTN
PSTPIP1
MARCH5
SIM2.short
AMH
MMP11
RPS10
STEAP4
IMPDH2
SPINK1
ISX

ACTR5
MMP25
CAMKK2
MYOF
NAALADL2
TERF2IP

1.76X10-07
1.97X10-07
2.70X10-07
3.52X10-07
3.65X10-07
7.77X10-07
7.99X10-07
8.19X10-07
1.21X10-06
1.36X10-06
1.47X10-06
2.43X10-06
4.94X10-06
5.41X10-06

5.98X10-06

6.01X10-06
6.99X10-06
7.08X10-06
7.92X10-06
8.67X10-06
9.65X10-06
9.74X10-06
1.07X10-05
1.57X10-05
1.62X10-05
1.62X10-05
1.67X10-05
2.08X10-05
3.99X10-05
4.01X10-05
5.23X10-05
5.77X10-05
6.98X10-05
7.35X10-05
8.59X10-05

-0.31
-0.17
-0.34
-0.25
-0.19
-0.63
-0.25
-0.19
-0.14
-0.60
-0.79
-0.21
-0.28
-0.26

-0.30

-0.59
-0.21
-0.11
-0.39
-0.57
-0.13
-0.26
-0.21
-0.20
-0.07
-0.13
-0.16

0.29
-0.55
-0.45
-0.58
-0.39
-0.15
-0.22
-0.09
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PTN
COL10A1
GOLM1
PECI
SSPO
MSMB
SNCA

TBP
PPP1R12B

ANKRD34B
TMPRSS2:ERG
SACM1L
CADPS

KLK2

COL9A2
TMEMA47
MARCH5
PPFIA2

LASS1

PDLIM5
FOLH1
SNORA20
GCNT1

cLic2

GAPDH
HOXC6
RP11.244H18.1.P712
P

SMAP1 exons 7-8
TMEMA45B
MDK

TERT

CDC20
MMP26

AGR2
OR52A2.PSGR

1.58X10-10
1.95X10-10
1.95X10-10
2.39X10-10
2.47X10-10
2.62X10-10
2.88X10-10
2.91X10-10
3.16X10-10

4.26X10-10
4.88X10-10
5.03X10-10
5.12X10-10
5.12X10-10
5.17X10-10
5.25X10-10
5.48X10-10
5.70X10-10
6.33X10-10
8.66X10-10
8.98X10-10
8.98X10-10
9.05X10-10
9.17X10-10
9.19X10-10
1.14X10-09
1.14X10-09

1.44X10-09
1.51X10-09
1.56X10-09
2.17X10-09
2.41X10-09
2.47X10-09
2.87X10-09
2.97X10-09

-0.71
-0.59
-2.39
-0.38
-0.38
-0.15
-0.88
-2.06
-0.95

-1.57
-1.95
-0.62
-1.63
-0.46
-1.60
-2.48
-0.58
-1.30
-0.69
-0.44
-0.62
-2.62
-1.97
-1.42
-0.23
-1.38
-0.52

-1.35
-0.53
-1.02
-0.36
-0.75
-1.45
-1.52
-1.37

B2M
MDK
MGAT5B
CcD10
KLK4
VPS13A
HISTIH1E
SEC61A1
TERT

PSGR
SMIM1
COL9A2
AMACR
CKAP2L
PSTPIP1
PTN
VAX2
MMP25
SACM1L
cLic2
GOLM1
PCSK6
cDC20
KLK3 exons 2-3
ACTR5
SNCA
HPN

MEX3A
RPL23AP53
TMEMA458B
CAMKK2
SYNM
SIRT1
MFSD2A
COL10A1

2.51X10-11
3.09X10-11
3.56X10-11
4.43X10-11
4.53X10-11
6.07X10-11
6.14X10-11
6.14X10-11
6.15X10-11

8.66X10-11
9.84X10-11
1.20X10-10
1.23X10-10
1.41X10-10
1.52X10-10
1.52X10-10
1.52X10-10
1.67X10-10
1.91X10-10
1.93X10-10
1.99X10-10
2.05X10-10
2.19X10-10
2.19X10-10
3.15X10-10
3.25X10-10
3.31X10-10

3.33X10-10
4.01X10-10
4.21X10-10
4.60X10-10
4.93X10-10
5.07X10-10
5.26X10-10
6.30X10-10

0.27
0.27
0.33
0.25
0.16
0.37
0.32
0.61
0.31

0.29
0.26
0.91
0.32
0.82
0.78
0.36
0.43
0.78
0.35
0.83
0.43
0.38
0.73
0.19
0.38
0.23
0.38

0.68
0.53
0.44
0.33
0.54
0.54
0.78
0.44

cD10
SChLAP1
MEMO1
GCNT1

KLK3 exons 1-2
MAPKS8IP2
DNAH5
ST6GALNAC1
CTA.211A9.5.MIAT
NB

SLC43A1
NLRP3
SRSF3
ANKRD34B
FDPS
SIM2.long
UPK2
PDLIM5
ERG5

OGT

PVT1
TMEMA47
RPL18A
PCA3
SNORA20
LBH
HIST1H2BG
MEX3A

PECI
Timp4
TMEMB86A
CKAP2L
RNF157
RIOK3
AGR2
CCDC88B

8.75X10-05
9.41X10-05
0.000124295
0.000127837
0.000138743
0.00014341
0.00014901
0.000152737
0.000157375

0.00017283
0.000178965
0.000264469
0.000277869

0.00030588
0.000332184
0.000344195
0.000389202
0.000408807
0.000408807
0.000436352
0.000458492
0.000499086

0.00052407
0.000536406
0.000583164
0.000703794
0.000862201

0.000862201
0.000976934
0.001450492
0.001943582
0.002251894
0.002581105
0.002794445
0.003237426

-0.15
-0.49
-0.15
-0.35
-0.22
-0.57
-0.39
-1.26
-0.65

-0.98
-0.46
-0.36
-0.61
-0.11
-0.43

0.53
-0.12
-0.47
-0.13
-0.33
-1.08
-0.07
-0.19
-1.10
-0.34
-0.15
-0.30

-0.12
-0.68
-0.56
-0.42
-0.52
-0.15
-0.32
-0.54
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MYOF
SLC4A1.S

KLK3 exons 1-2
AATF

NLRP3
SPON2
ACTR5
HPN

MAK
B4GALNT4
CDKN3
GJB1
TRPM4
ITPR1
CKAP2L
NAALADL2
AMACR
HIST3H2A

MIR146A.DQ658414
SEC61A1

ERG3 exons 4-5
MCM7

HIST1H2BF

SIRT1

ERG3 exons 6-7
CDC37L1
ARexon9
HISTIH1E
STOM
SERPINB5

LBH

T™MCC2
MMP25

ERG5

3.29X10-09
3.42X10-09
3.66X10-09
3.68X10-09

3.68X10-09
3.93X10-09
4.55X10-09
5.48X10-09
5.71X10-09
5.82X10-09
5.82X10-09
5.82X10-09
5.82X10-09
5.88X10-09
6.54X10-09
9.10X10-09
9.36X10-09
1.00X10-08

1.04X10-08
1.15X10-08
1.50X10-08
1.50X10-08
1.69X10-08
1.85X10-08

1.93X10-08
2.09X10-08
2.38X10-08
2.50X10-08
2.86X10-08
3.66X10-08
3.98X10-08
4.17X10-08
4.69X10-08
5.45X10-08

-0.36
-2.05
-0.93
-1.94

-1.21
-0.79
-0.87
-0.99
-2.15
-1.13
-0.94
-1.53
-1.59
-0.64
-0.97
-0.81
-1.31
-1.05

-0.74
-1.99
-1.34
-1.48
-0.53
-1.41

-1.96
-0.71
-1.50
-0.58
-2.23
-1.39
-1.22
-1.84
-1.22
-1.67

MCM7
SIM2.long
NKAIN1
MIR146A.DQ6584
14

KLK3 exons 1-2
EN2

GJB1
TMEMS86A
ANKRD34B
TBP

AGR2

MMP26

PVT1

ANPEP

Timp4

RAB17

AATF
CTA.211A9.5.MIAT
NB

SERPINB5
NEAT1
B4GALNT4
CADPS
SChLAP1

MIC1

PALM3
HIST3H2A
ARHGEF25
MSMB

ISX

TRPMA4

CcLu

HOXC6
RNF157
ST6GALNAC1

6.67X10-10
6.92X10-10
7.55X10-10
8.31X10-10

9.53X10-10
1.00X10-09
1.00X10-09
1.11X10-09
1.13X10-09
1.34X10-09
1.39X10-09
1.39X10-09
1.83X10-09
1.91X10-09
2.60X10-09
2.66X10-09
2.69X10-09
2.91X10-09

3.68X10-09
3.68X10-09
4.93X10-09
7.75X10-09
8.52X10-09
8.65X10-09

8.65X10-09
9.40X10-09
1.09X10-08
1.31X10-08
2.15X10-08
2.75X10-08
2.93X10-08
2.93X10-08
2.93X10-08
2.93X10-08

0.47
0.50
0.25
0.44

0.21
0.34
0.26
1.06
0.91
0.42
0.45
1.02
0.45
0.38
0.40
0.45
0.46
0.36

0.47
0.41
0.87
1.22
0.63
0.58

0.46
0.28
0.73
0.06
0.95
0.54
0.84
0.32
0.51
0.65

GAPDH

SMAP1 exons 7-8
SACM1L

LASS1

MCcm7
GOLM1
Mic1
SFRP4
SMIM1
MAK
IGFBP3
SYNM
T™MCC2
DLX1
SERPINB5
TRPMA4
RP11.97012.7
CLU

SLC12A1
MDK
CDKN3
BRAF
HMBS
MIR4435.1HG.I0C5
41471
RPL23AP53
AATF
B4GALNT4
HIST3H2A
MKi67
B2M

AR exon 9
cLic2
SPON2
ABCB9

0.003237426
0.003237426
0.003611413
0.003758809

0.003892978
0.004104272
0.004950076
0.005187855
0.005244137
0.005275769
0.005353681
0.005479266
0.006177628
0.006513656
0.007855423
0.009529009
0.010060703
0.010087038

0.010326711
0.010838865
0.011131753
0.011920795
0.011920795
0.013229338

0.013779284
0.023593676
0.023593676
0.023593676
0.023593676
0.024443101
0.027370444
0.029401344
0.029401344
0.047180253

-0.07
-0.26
-0.15
-0.32

-0.36
-0.29
-0.36
-0.43
-0.16
-0.75

0.36
-0.45
-0.31
-0.51
-0.32
-0.41
-0.14
-0.45

0.41
-0.16
-0.39
-0.11
-0.22

0.15

-0.23
-0.23
-0.28
-0.22
-0.61
-0.10
-0.57
-0.28
-0.10
-0.18
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CAMK2N2
VPS13A
MFSD2A
ST6GALNAC1
AURKA
CLU
MEMO1
PCA3
ALAS1
CCDC88B
OGT
SULF2
Met

TDRD
B2M
RNF157
RAB17
SULT1A1
MAPKS8IP2

DNAH5
MCTP1
MKi67
BTG2
NKAIN1
cP
ANPEP
PSTPIP1
NEAT1
ABCB9
APOC1
SLC12A1
MIR4435.1HG.I0C54
1471
UPK2
PTPRC
IGFBP3

7.63X10-08
8.47X10-08
8.52X10-08
9.99X10-08
1.35X10-07
2.46X10-07
3.02X10-07
3.02X10-07
3.42X10-07
3.75X10-07
3.75X10-07
3.75X10-07
3.77X10-07
4.18X10-07
9.21X10-07
9.31X10-07
9.77X10-07
2.23X10-06
3.59X10-06

3.84X10-06
4.54X10-06
5.94X10-06
6.71X10-06
6.71X10-06
6.85X10-06
7.42X10-06
7.42X10-06
2.28X10-05
0.000117259
0.000171548
0.000171548
0.000399737

0.001159053
0.001376488
0.009734383

NA

-0.79
-0.88
-1.44
-2.46
-2.28
-0.87
-0.58
-0.31
-0.26
-1.09
-0.38
-1.39

-1.95
-0.38
-1.40
-0.67
-1.48
-0.96

-1.08
-1.97
-3.13
-1.07
-1.27
-1.89
-1.24
-0.98
-1.31
-0.68
-1.63
-1.10
-1.01

-1.38
-1.44
-1.56

AR exon 9
HOXC4
ERG5
SLC43A1
MAPKS8IP2
PCA3
CAMK2N2
MKi67

cpP

ITGBL1
SNORA20
PPFIA2
TDRD
STOM
CDKN3
SULF2
AURKA
SFRP4

MIR4435.1HG.I0C

541471

LASS1

SLC12A1
SPON2
TMEMA47

ERG3 exons 4-5
ERG3 exons 6-7
MAK

DLX1

SULT1A1
MCTP1

Met

PTPRC
TMPRSS2:ERG

APOC1
SPINK1
IGFBP3

3.18X10-08
4.42X10-08
5.96X10-08
7.19X10-08
9.88X10-08
9.92X10-08
1.00X10-07
1.33X10-07
2.10X10-07
2.10X10-07
2.84X10-07
2.90X10-07
3.25X10-07
3.73X10-07
4.26X10-07
6.30X10-07
6.74X10-07
6.74X10-07
2.25X10-06

2.34X10-06
1.18X10-05
1.18X10-05
1.26X10-05
2.02X10-05
2.02X10-05
2.57X10-05
2.70X10-05
6.39X10-05
6.98X10-05
9.24X10-05
9.24X10-05
9.24X10-05

0.001191952
0.004238366
0.005829551

1.02
0.63
0.79
0.70
0.93
0.25
0.43
1.01
0.75
0.45
0.56
0.60
1.05
0.94
0.68
0.66
0.49
0.73
0.26

0.64
0.56
0.18
0.75
0.73
0.92
1.04
1.20
0.23
0.48
0.91
0.90
1.19

0.41
0.17
0.41
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SPINK1 0.039101303 -0.22
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B
LPD Group 4 LPD Group 5

Adjusted p- Log2(FC) Adjusted p-value Log2(F

value Q)
VPS13A 3.38X10-06 -0.11 GABARAPL2 2.26X10-22 0.07
TERF2IP 3.79X10-06 -0.05 CACNA1D 2.71X10-21 0.09
ABCB9 1.47X10-05 -0.21 STEAP2 3.26X10-17 0.09
X05.Mar 1.64X10-05 -0.08 KLK2 4.09X10-17 0.07
MMP25 1.89X10-05 -0.25 MED4 2.31X10-16 0.09
TMEM45B 1.92X10-05 -0.14 CASKIN1 1.66X10-15 0.13
RPLP2 1.93X10-05 -0.03 DPP4 7.40X10-15 0.07
PECI 2.41X10-05 -0.06 IFT57 8.66X10-15 0.07
CASKIN1 2.64X10-05 -0.10 RPS11 8.75X10-14 0.03
MEMO1 3.23X10-05 -0.08 MARCH5 9.67X10-14 0.09
AMACR 4.96X10-05 -0.10 MMP25 1.56X10-13 0.33
SLC4A1.S 5.73X10-05 -0.24 STEAP4 2.42X10-13 0.09
GABARAPL2 6.12X10-05 -0.04 TWIST1 2.71X10-13 0.12
TWIST1 6.76X10-05 -0.08 MMP26 4.57X10-13 0.47
FDPS 8.19X10-05 -0.04 SYNM 5.46X10-13 0.31
CACNA1D 0.00010192 -0.06 TERF2IP 6.23X10-13 0.05
cP 0.000320555 -0.30 FDPS 6.52X10-13 0.05
RPS11 0.000453771 -0.02 PCSK6 8.32X10-13 0.13
TMEMS86A 0.000537454 -0.27 SSTR1 1.15X10-12 0.12
PPP1R12B 0.00056124 -0.08 MNX1 1.79X10-12 0.15
TDRD 0.000623636 -0.71 HPRT 2.47X10-12 0.10
TMCC2 0.001057497 -0.18 FOLH1 2.60X10-12 0.11
BTG2 0.001079391 -0.07 CcDC20 2.84X10-12 0.21
BRAF 0.001466681 -0.07 SLC4A1.S 3.09X10-12 0.32
ITPR1 0.00149178 -0.07 COL10A1 9.32X10-12 0.20
MFSD2A 0.001912749 -0.24 TDRD 1.16X10-11 0.89
EN2 0.001944902 -0.10 TERT 1.77X10-11 0.14
SLC12A1 0.001954045 -0.20 EN2 3.39X10-11 0.14
CDC37L1 0.002355197 -0.09 ZNF577 4.49X10-11 0.08
PSTPIP1 0.002736615 -0.18 SSPO 4.81X10-11 0.12
COL10A1 0.002804912 -0.14 VAX2 5.56X10-11 0.16
ITGBL1 0.00290803 -0.16 MGAT5B 8.97X10-11 0.13
ALAS1 0.003470784 -0.04 RPL23AP53 1.42X10-10 0.29
DPP4 0.003974 -0.04 CAMK2N2 1.56X10-10 0.26
CCD(C88B 0.004126726 -0.22 ERG5 2.20X10-10 0.36
SPINK1 0.004287134 -0.15 MXi1 2.44X10-10 0.06
HOXC4 0.004817751 -0.20 HIST1H2BG 3.78X10-10 0.11
IGFBP3 0.006132992 -0.25 PPAP2A 4.44X10-10 0.06
UPK2 0.006309542 -0.30 TMEMS86A 6.42X10-10 0.36
RP11.97012.7 0.00684069 -0.05 MEMO1 9.10X10-10 0.09
GJB1 0.007619494 -0.09 RP11.244H18.1. 9.28X10-10 0.09

P712P

SSTR1 0.007727274 -0.08 ARHGEF25 1.20X10-09 0.39
EIF2D 0.008645702 -0.06 RPLP2 1.25X10-09 0.03
MED4 0.009155071 -0.05 SFRP4 1.34X10-09 0.34
OGT 0.010622928 -0.06 HIST1H1C 1.50X10-09 0.05
MIR4435.1HG.I0  0.011952383 -0.13 COL9A2 1.82X10-09 0.38
C541471
AMH 0.012837851 -0.08 PECI 1.82X10-09 0.06
MGAT5B 0.012837851 -0.09 BRAF 2.21X10-09 0.09
RIOK3 0.013178355 -0.07 CAMKK2 3.30X10-09 0.16
MXi1 0.01326158 -0.05 SIM2.short 3.59X10-09 0.15
PPAP2A 0.01326158 -0.04 SChLAP1 3.59X10-09 0.36
STEAP4 0.01326158 -0.06 RIOK3 3.88X10-09 0.11
PTPRC 0.017081934 -0.45 AMH 4.07X10-09 0.13
VAX2 0.017081934 -0.09 LBH 4.60X10-09 0.20
SSPO 0.021717641 -0.06 SACM1L 4.74X10-09 0.11
SACM1L 0.022028919 -0.08 PDLIM5 8.54X10-09 0.08
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SULF2 0.02375717 -0.22 ERG3 exons 4-5  9.30X10-09 0.51

CKAP2L 0.029163389 -0.14 GCNT1 1.20X10-08 0.15

HIST1H2BG 0.041078353 -0.07 MMP11 1.90X10-08 0.12

ANKRD34B 2.35X10-08 0.27

OGT 2.54X10-08 0.07

TFDP1 3.91X10-08 0.07

B4GALNT4 5.18X10-08 0.31

MSMB 7.42X10-08 0.03

CKAP2L 1.23X10-07 0.24

MAK 1.67X10-07 0.72

ITPR1 3.32X10-07 0.09

AMACR 5.11X10-07 0.12

PVT1 5.11X10-07 0.16

AR exons 4-8 6.96X10-07 0.07

TMEMA47 7.96X10-07 0.42

IMPDH2 8.35X10-07 0.05

AR exon 9 9.27X10-07 0.58

HIST1H2BF 1.56X10-06 0.07

CLIC2 1.66X10-06 0.34

KLK4 2.14X10-06 0.06

GJB1 2.50X10-06 0.10

DNAH5 2.53X10-06 0.28

PTN 6.39X10-06 0.11

NKAIN1 8.02X10-06 0.10

SRSF3 1.31X10-05 0.14

BP 1.64X10-05 0.10

CCDC88B 1.99X10-05 0.29

ACTR5 2.28X10-05 0.13

VPS13A 2.47X10-05 0.08

MAPK8IP2 2.99X10-05 0.29

CTA.211A9.5.MI  4.66X10-05 0.17
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ATNB

RPL18A 5.11X10-05 0.04

MiC1 8.46X10-05 0.19

MFSD2A 0.000117774 0.28

CLU 0.000315682 0.32

SMIM1 0.000387115 0.09

CDKN3 0.000442848 0.19

SIRT1 0.000556554 0.13

AATF 0.00110258 0.09

ST6GALNAC1 0.002493816 0.35

KLK3 exons 2-3  0.004011089 0.04

SERPINB5 0.00406767 0.13

SULF2 0.005040354 0.13

KLK3 exons 1-2 0.010197511 0.05

PSGR 0.010197511 0.07

STOM 0.015699677 0.24

PTPRC 0.019655708 0.35

NEAT1 0.030247935 0.09

SPON2 0.043657569 0.04

RAB17 0.050443121 0.10

SPINK1 0.08344823 -0.09

HISTIHI1E 0.221627267 0.03

SULT1A1 0.298725188 0.03
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6.12 Binomial Testing between CB and Ca

Supplementary Table 4 Glm binomial tests — significant probes between CB and Ca (L I H)

‘ KLK?2 Ratio data

KLK?2 adjusted data

Transcript p-value Logy(FC) Adjusted p-value Transcript p-value Log:(FC) Adjusted p-
value
ERG3 exons 4-5  1.54x10-09 1.582 2.55x10-07 PCA3 4.49 x10-07 0.192 7.46 x10-05
TMPRSS2:ERG  8.73x10-09 NA 1.44x10-06 HPN 4.82 x10-06 0.180 0.001
PCA3 1.10x10-08 0.321 1.81x10-06 SIM2.short 6.21 x10-05 0.124 0.010
ERG3’ exons 6-7  2.44x10-08 2.808 3.97x10-06 AMACR 6.40 x10-05 0.124 0.010
ERG3’ exons 4-
HOXC6 8.04x10-07 0.295 0.0001 5 0.0001 0.103 0.018
TDRD 2.14x10-06 3.683 0.0003 SMIM1 0.0003 0.142 0.048
ERG3’ exons 6-
DLXI 2.76x10-05 4.219 0.004 7 0.0003 0.101 0.056
ERGS 0.0002 NA 0.025 HOXC6 0.0004 0.130 0.058
ISX 0.0002 2.227 0.028 GJB1 0.0004 0.129 0.061
HOXC4 0.0002 0.900 0.031 TMPRSS2:ERG  0.0004 0.098 0.061
TRPM4 0.0002 0.652 0.032 CAMKK?2 0.001 0.098 0.079
PPFIA2 0.0002 0.613 0.032 GAPDH 0.001 0.119 0.116
HPN 0.0003 0.270 0.046 MMPI11 0.001 0.083 0.132
GJBI 0.0003 0.234 0.050 TRPM4 0.001 0.103 0.143
APOCI 0.001 1.001 0.093 AMH 0.001 0.112 0.164
AMACR 0.001 0.261 0.099 SIM2.long 0.001 0.121 0.216
DNAHS 0.001 0.485 0.105 RAB17 0.002 0.164 0.286
MCTPI 0.001 1.025 0.116 IMPDH?2 0.002 0.101 0.291
SIM2.long 0.001 0.132 0.121 DNAH)S 0.002 0.086 0.330
ANKRD34B 0.001 5.060 0.219 TDRD 0.003 0.061 0.390
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SLC1241 0.002 0.759 0.280 RIOK3 0.003 0.065 0.445
MEX34 0.002 0.782 0.286 RPI11.97012.7 0.004 0.104 0.578
PVTI 0.002 0.361 0.328 ISX 0.004 0.075 0.596
CDKN3 0.002 0.275 0.331 TWISTI 0.005 0.055 0.656
RP11.97012.7 0.002 0.045 0.345 CLU 0.005 0.042 0.690
SSTRI 0.003 0.249 0.411 DLX1 0.007 0.067 0.974
NAALADL?2 0.003 0.077 0.417 ANKRD34B 0.007 0.082 0.994
CAMKK? 0.003 0.141 0.429 RNF157 0.007 0.067 0.994
SMIM1 0.003 0.143 0.434 KLK4 0.008 -0.058 0.994
RABI7 0.004 0.207 0.542 ERGS 0.009 0.089 0.994
NEATI 0.004 0.116 0.554 MYOF 0.009 -0.091 0.994
RIOK3 0.004 0.081 0.576 EN2 0.010 0.069 0.994
SIM?2.short 0.005 0.375 0.625 SULTIAI 0.012 0.090 0.994
ST6GALNACI 0.005 0.389 0.648 CASKINI 0.013 0.056 0.994
GOLM1I 0.005 0.193 0.662 PVTI 0.013 0.121 0.994
RPL234P353 0.005 0.348 0.696 APOCI1 0.016 0.095 0.994
SULTIAI 0.005 0.123 0.700 RPS11 0.016 -0.026 0.994
MICI 0.006 0.395 0.781 MNX1 0.016 0.051 0.994
IMPDH2 0.006 0.074 0.831 GABARAPL2 0.016 -0.078 0.994
RNF157 0.007 0.439 0.885 SLCI241 0.018 0.080 0.994
SYNM 0.008 0.250 0.946 PSGR 0.018 0.067 0.994
COL942 0.008 -2.292 0.967 ITGBLI 0.022 0.068 0.994
AMH 0.008 0.246 0.981 SSPO 0.022 0.077 0.994
CLU 0.008 0.406 0.981 MIC1 0.024 0.094 0.994
MMP11 0.009 0.295 0.992 HMBS 0.024 0.067 0.994
MKi67 0.010 -1.896 0.992 1GFBP3 0.024 -0.016 0.994
MMP26 0.010 0.438 0.992 RPLP2 0.025 -0.069 0.994
SULF2 0.010 1.538 0.992 MFSD2A4 0.026 0.078 0.994
MCM7 0.010 0.290 0.992 SYNM 0.026 0.066 0.994
MIRI1464.DQ65  0.010 0.324 0.992 NEATI 0.027 0.061 0.994

351




9: APPENDICES

8414

EN2 0.011 0.239 0.992 CD10 0.027 -0.046 0.994

TMCC2 0.011 4.237 0.992 CDKN3 0.028 0.045 0.994

ITGBLI 0.011 0.388 0.992 SSTRI 0.029 0.061 0.994

PECI 0.014 0.018 0.992 TMCC2 0.031 0.020 0.994
MIR146A4.DQ65

MMP25 0.015 0.889 0.992 8414 0.031 0.076 0.994

LASSI 0.015 0.199 0.992 ST6GALNACI  0.032 0.030 0.994

CASKINI 0.016 0.107 0.992 MMP26 0.033 0.047 0.994

PALM3 0.016 0.123 0.992 HISTIHIE 0.034 0.071 0.994

HPRT 0.017 0.060 0.992 TBP 0.036 0.063 0.994

TMEMA45B 0.018 0.272 0.992 MKi67 0.038 0.070 0.994

TMEMS6A 0.018 0.898 0.992 STOM 0.041 0.054 0.994

MIR4435.1HG.1

0C541471 0.019 0.102 0.992 CADPS 0.048 0.032 0.994

SChLAP]I 0.019 0.452 0.992 PTN 0.049 -0.048 0.994

STOM 0.021 NA 0.992

SFRP4 0.022 0.456 0.992

FOLH] 0.024 0.077 0.992

MNXI 0.025 0.127 0.992

TWISTI 0.026 0.103 0.992

CLIC2 0.027 NA 0.992

VAX2 0.034 0.170 0.992

PCSK6 0.036 0.210 0.992

ACTRS 0.036 0.153 0.992

CAMK2N2 0.042 0.163 0.992

ABCB9 0.042 NA 0.992

EIF2D 0.042 0.054 0.992

HMBS 0.043 0.107 0.992

B4GALNT4 0.046 NA 0.992
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Met 0.046 1.819 0.992
HIST3H2A4 0.047 0.065 0.992
COL10A41 0.048 0.191 0.992
‘ KLK3 Adjusted data HK normalised data
Transcript p-value Logy(FC) Adjusted p- Transcript p-value Logy(FC) Adjusted p-
value value
PCA3 1.61x10-06 0.14 0.0003 ERG3’ exons 4-5 4.58x10-09 0.699 7.64x10-07
HPN 3.27x10-05 0.13 0.01 PCA3 1.40x10-08 0.191 2.32x10-06
SIM2.short 0.0002 0.091 0.029 TMPRSS2:ERG 4.02x10-08 1.006 6.63x10-06
ERG3’ exons 4-5 0.0002 0.080 0.031 ERG3’ exons 6-7 4.79x10-07 1.130 7.86x10-05
HOXC6 0.001 0.113 0.084 HOXC6 3.71x10-06 0.178 0.001
ERG3’ exons 6-7 0.001 0.062 0.117 TDRD 2.70x10-05 0.848 0.004
AMACR 0.001 0.086 0.118 HPN 0.0002 0.123 0.028
TMPRSS2:ERG 0.001 0.062 0.119 HOXC4 0.0003 0.200 0.046
SMIM1 0.001 0.124 0.217 DLX1 0.0004 0.424 0.057
KLK4 0.001 -0.099 0.219 APOC1 0.0004 0.390 0.057
GJBI 0.002 0.103 0.324 ERGS’ 0.001 0.175 0.157
TRPM4 0.004 0.079 0.572 GJB1 0.001 0.129 0.182
IMPDH?2 0.004 0.102 0.627 MCTPI1 0.001 0.333 0.183
MYOF 0.005 -0.098 0.732 ISX 0.002 0.190 0.247
RABI7 0.005 0.106 0.738 SSTRI 0.002 0.035 0.252
SIM2.long 0.005 0.105 0.754 PPFIA2 0.002 0.312 0.255
AMH 0.005 0.075 0.787 TRPM4 0.002 0.294 0.326
PTN 0.007 -0.071 0.998 RABI17 0.002 0.111 0.366
CAMKK? 0.008 0.052 0.998 SIM2.long 0.003 0.079 0.432
ISX 0.008 0.062 0.998 SLCI2A41 0.004 0.233 0.560
DLX] 0.009 0.042 0.998 SIM2.short 0.004 0.064 0.566
MMPI11 0.009 0.070 0.998 AMACR 0.004 0.139 0.591
TDRD 0.010 0.042 0.998 MMPI11 0.005 0.066 0.665
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ERGS 0.012 0.055 0.998 ANKRD34B 0.005 0.099 0.724
GAPDH 0.012 0.078 0.998 DNAHS 0.006 0.266 0.795
SULTIAI 0.013 0.063 0.998 AMH 0.007 0.046 0.994
IGFBP3 0.014 -0.033 0.998 RPI11 97012.7 0.008 0.050 0.994
RIOK3 0.015 0.063 0.998 MEX34 0.009 0.184 0.994
TWISTI 0.016 0.032 0.998 PVTI 0.011 0.079 0.994
RP11.97012.7 0.016 0.066 0.998 SMIM1 0.011 0.082 0.994
ANKRD34B 0.016 0.069 0.998 EN2 0.011 0.059 0.994
DNAHS5 0.017 0.052 0.998 CASKINI 0.013 0.035 0.994
CD10 0.017 -0.040 0.998 KLK4 0.014 -0.031 0.994
MARCHS 0.018 -0.077 0.998 ITGBLI 0.015 0.092 0.994
GABARAPL?2 0.019 -0.073 0.998 NEATI 0.015 0.112 0.994
APOCI 0.019 0.051 0.998 SULTIAI 0.017 0.068 0.994
SLC1241 0.022 0.049 0.998 CDKN3 0.019 0.080 0.994
SSTRI 0.022 0.025 0.998 RIOK3 0.022 0.023 0.994
CLU 0.025 0.033 0.998 MIR146A 0.023 0.079 0.994
ITGBLI 0.025 0.063 0.998 TMEMA45B 0.023 0.038 0.994
EN2 0.026 0.049 0.998 NAALADL?2 0.025 0.061 0.994
RPSI11 0.026 -0.083 0.998 TWISTI 0.029 0.003 0.994
RNF157 0.026 0.043 0.998 RPL23AP53 0.030 0.181 0.994
MNX1 0.026 0.018 0.998 PALM3 0.033 0.061 0.994
PVTI 0.035 0.054 0.998 SULF2 0.035 0.055 0.994
MICI 0.043 0.057 0.998 COLIA2 0.035 0.140 0.994
CASKINI 0.044 0.038 0.998 RNF157 0.035 0.180 0.994
MIRI1464.DQ658414  0.044 0.072 0.998 CLU 0.037 0.078 0.994
STOM 0.046 0.019 0.998 MIR4435 1HG 0.039 0.086 0.994

MMP25 0.040 0.030 0.994

MICI 0.040 0.102 0.994

RPS11 0.040 -0.007 0.994

IMPDH?2 0.041 0.055 0.994
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MKi67

0.042

0.371

0.994

T™CC2

0.043

0.029

0.994
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Supplementary Figure 1 KLK2 Ratio Data ROC curves for test data using models detecting between
CB and Ca (L I H) for models using the following inputs A) all probes, B) significant probes, C)
adjusted significant probes.

Supplementary Table 5 Lasso output for models detecting between CB and Ca (L I H)

using KLLK?2 ratio data.

‘ All Transcripts Significant Transcripts Multiple testing corrected
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‘ Transcripts

Transcript Beta Transcript Beta Transcript Beta
ERG3’ exons 4- ERG3’ exons 4-

5 0.28 5 0.21 ERG3’ exons 4-5 0.25
TMPRSS2:ERG ~ 0.22 TMPRSS2:ERG  0.20 TMPRSS2:ERG  0.24
PCA3 0.20 PCA3 0.17 PCA3 0.20
HOXC6 0.08 HOXC6 0.07 HOXC6 0.08
ISX 0.08 ISX 0.03
APOCI 0.06 GJB1 0.02
GJBI 0.06 DLX1 0.01
AMACR 0.05 TDRD 0.01
NEATI 0.03

DLX] 0.02

TDRD 0.02

TMEM47 0.01

SULTIAI 0.01

RNF157 0.01

ST6GALNACI 0.00

IGFBP3 -0.01

ARexon9 -0.06

PPPIRI2B -0.08

CP -0.11

MX11 -0.16

KLK4 -0.24

357



9: APPENDICES

Sensitivity

Sensitivity

Sensitivity

1.0

00 02 04 06 08

1.0

00 02 04 06 08

1.0

00 02 04 06 08

_|eta =0.840

Sens: 59.3%
Spec: 91.2%
PV+: 58.7%
PV-: 4.5% Variable est. (s.e.)
(Intercept) -4.148 (1.130)
Prediction2_1respTest 7.277 (1.584)

Model: KLK2.Test.CBCaScategory_at_initial_urine_collection ~ Prediction2_1respTest
Area under the curve: 0.772

1 T T T T J
0.0 0.2 0.4 0.6 0.8 1.0

1-Specificity

Ireta=0821_ e

Sens: 68.5%

Spec: 82.4%

PV+: 54 8% -
PV-:75%

Variable est. (s.e.)
(Intercept) -1.891 (0.667)
Prediction2_1respTest 4.337 (0.849)

Model: KLK2.Test.CBCaScategory_at_initial_urine_collection ~ Prediction2_1respTest
Area under the curve: 0.776

1 T T T T J
0.0 0.2 0.4 0.6 0.8 1.0

1-Specificity

Ireta=0.833_

Sens: 62.0%
Spec: 85.3%
PV+: 58.6%

PV-169%
Variable est. (s.e.)

(Intercept) -2.192 (0.751)
Prediction2_3respTest 4.648 (1.048)

Model: KLK2.Test.CBCaScategory_at_initial_urine_collection ~ Prediction2_3respTest
Area under the curve: 0.775

| T T T T I
0.0 0.2 0.4 0.6 0.8 1.0

1-Specificity

Supplementary Figure 2 KLK2 Adjusted Data ROC curves for test data using models detecting
between CB and Ca (L I H) for models using the following inputs A) all probes, B) significant probes,
C) adjusted significant probes.
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Supplementary Table 6 Lasso output for models detecting between CB and Ca (L I H)

using KLK?2 adjusted data.

All Transcript Significant Transcripts Multiple Testing
correction Transcripts
Transcript Beta Transcript Beta Transcript Beta
PCA3 2.89 PCA3 2.85 PCA3 4.59
AMACR 1.73 AMACR 2.68 SIM2.short  2.88
ERG3’ exons ERG3’
SIM?2.short 1.07 4-5 1.77 exons 4-5 2.50
SMIM1 0.89 SMIM1 1.43 AMACR 2.44
AMH 0.89 RPI11.97012.7 1.38 HPN 2.02
ERG3’ exons
4-5 0.70 SIM2.short 1.25 SMIM1 1.89
CLU 0.49 CAMKK?2 1.03
HPN 0.46 AMH 0.93
CAMKK? 0.39 CLU 0.90
GAPDH 0.29 RNF157 0.68
RP11.97012.7 0.24 DNAHS 0.63
DNAHS5 0.20 RIOK3 0.52
RNF157 0.18 NEATI 0.43
APOCI 0.17 APOCI 0.42
ERG3’ exons
6-7 0.17 DLX1 0.38
RIOK3 0.05 TBP 0.33
MMP25 0.02 MMPI11 0.23
CP -0.01 SYNM 0.23
CDI0 -0.03 CADPS 0.18
AR exon 9 -0.08 SLCI2A1 0.15
PTN -0.42 MICI 0.11
IGFBP3 -0.45 HPN 0.10
MYOF -0.68 STOM 0.08
GABARAPL2 ~ -0.75 MKi67 0.05
KLK4 -1.09 RPS11 -0.13
MARCHS -1.11 CDI10 -0.98
IGFBP3 -1.17
PTN -1.25
MYOF -1.66
KLK4 -1.87
GABARAPL2 -2.90
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Supplementary Figure 3 KLK3 Adjusted Data ROC curves for test data using models detecting
between CB and Ca (L I H) for models using the following inputs A) all probes, B) significant probes,
C) adjusted significant probes.
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Supplementary Table 7 Lasso output for models detecting between CB and Ca (L I H)

using KLLK3 adjusted data

All Transcript Significant Transcripts Multiple Testing
correction Transcripts

Transcript Beta Transcript Beta Transcript Beta

PCA3 2.94 PCA3 2.88 PCA3 4.40

ERG3’ exons 4-5 1.74 AMACR 2.30 SIM2.short 2.87

ERG3’ exons

AMACR 1.57 4-5 2.01 HPN 2.15
ERG3’ exons

SIM2.short 1.55 SMIM1 1.25 4-5 1.97

SMIM1 1.24 SIM2.short 1.19

AMH 1.23 AMH 0.82

APOCI 0.63 CLU 0.71

NEATI 0.60 RIOK3 0.70

MMP25 0.59 CAMKK?2 0.69

TBP 0.55 APOCI 0.64

SERPINBS 0.52 HPN 0.62

HPN 0.47 RNF157 0.52

CLU 0.34 DLX1 0.36

DLXI 0.31 MMPI11 0.30

RNF157 0.30 SLCI2A1 0.22

CAMKK? 0.29 SULTIAI 0.22

PPAP2A 0.26 ISX 0.09

MMPI1 0.25 DNAHS 0.09

SLCI241 0.19 EN2 0.07

STOM 0.17 STOM 0.06

CADPS 0.15 ANKRD34B  0.02

RIOK3 0.15 CDI10 -0.47

EN2 0.13 RPS11 -0.53

ISX 0.13 IGFBP3 -1.08

COLI10A41 0.12 KLK4 -1.17

ST6GALNACI 0.12 MYOF -1.46

MNX1 0.11 PTN -1.57

DNAHS5 0.11 GABARAPL2 -2.02

SULTIAI 0.08 MARCHS5 -2.04

HOXC6 0.07

GJB1 0.04

ERGS 0.03

RP11.244H18.1.P712P -0.14

SPON2 -0.16

CLIC2 -0.20

PPPIRI2B -0.21

CDI0 -0.23

CP -0.27

AR exon 9 -0.30

MXI1 -0.32

CDC20 -0.39

CKAP2L -0.43
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Timp4 -0.45
RPSI11 -0.61
IGFBP3 -0.90
MYOF -1.18
PTN -1.29
KLK4 -1.36
MARCHS -1.51
GABARAPL?2 -1.54
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Supplementary Figure 4 HK normalised data ROC curves for test data using models detecting
between CB and Ca (L I H) for models using the following inputs A) all probes, B) significant probes,
C) adjusted significant probes.
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Supplementary Table 8 Lasso output for models detecting between CB and Ca (L I H)

using HK normalised data.

All Transcript Significant Transcripts Multiple Testing correction
Transcripts
Transcript Beta Transcript Beta Transcript Beta
PCA3 0.29 PCA3 0.35 PCA3 0.29
TMPRSS2:ERG 0.18 ERG3’ exons 4- TMPRSS2:ERG
5 0.19 0.23
ERG3’ exons 4-5 0.17 ERG3’ exons 4-
TMPRSS2:ERG (.18 5 0.19
APOCI 0.11 APOC1 0.13 HPN 0.04
ISX 0.04 SLCI12A41 0.05 HOXC6 0.03
SLC1241 0.04 ISX 0.04
HOXC6 0.04 MCTPI1 0.03
MCTPI 0.03 HOXC6 0.02
TDRD 0.00 SULTIAI 0.00
PDLIMS -0.01 KLK4 -0.41
CDI10 -0.02
GABARAPL?2 -0.02
PTN -0.02
AR exon 9 -0.04
PPPIRI2B -0.04
CP -0.08
MXI1 -0.15
KLK4 -0.20
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6.13 Binomial Testing between CB and Ca (Random Sampling)
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Supplementary Figure 5 KLLK2 ratio data ROC curves for test data using models (random sampling)
detecting between CB and Ca (L I H) for models using the following inputs A) all probes, B)
significant probes, C) adjusted significant probes.
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Supplementary Table 9 Lasso output for models (random sampling detecting between CB

and Ca (L I H) using KLK?2 ratio data.

All Transcripts Significant Transcripts Multiple testing corrected
Transcripts

Transcript Beta  Transcript Beta  Transcript Beta

ERG3 exons 4-5 0.51  PCA3 0.21  ERG3’ exons 4-5 0.25

PCA3 0.14 ERG3’exons 4-5 0.20  PCA3 0.24

TMPRSS2:ERG  0.14  TMPRSS2:ERG  0.15  TMPRSS2:ERG 0.17

SLC1241 0.06 AMACR 0.08 HOXC6 0.02

ERGS 0.05 GJBI 0.06 GJBI 0.01

GJBI 0.04 NEATI 0.03

HOXC6 0.04  TDRD 0.03

TDRD 0.01 DLXI 0.02

LASSI 0.00  TRPM4 0.01

HISTIH2BF -0.01

cP -0.02

CKAP2L -0.03

DPP4 -0.04

PTN -0.07

ZNF577 -0.08

MYOF -0.10

GABARAPL?2 -0.31
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Supplementary Figure 6 KLK2 Adjusted Data ROC curves for test data using models (random
sampling) detecting between CB and Ca (L I H) for models using the following inputs A) all probes,
B) significant probes, C) adjusted significant probes.
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Supplementary Table 10 Lasso output for models (random sampling) detecting between

CB and Ca (L I H) using KLLK2 adjusted data.

All Transcript Significant Transcripts Multiple Testing
correction
Transcripts

Transcript Beta Transcript Beta Transcript  Beta

SIM2.short 4.95 AMACR 2.32 SMIM1 6.89

SMIM1 2.78 SMIM1 2.20 PCA3 6.59

ERG3’ exons 6-7  1.95 MMPI11 1.69 SIM2.short  3.42

AMH 1.76 SIM2.short 1.54 AMACR 2.95

HPN 1.26 TMPRSS2:ERG 1.33 HPN 1.88
ERG3’

PCA3 1.20 HPN 1.31 exons 4-5 1.18

NEATI 1.06 ISX 0.93

PCSK6 1.02 CLU 0.89

DNAHS5 0.68 DLX1 0.46

TMPRSS2:ERG 0.66 APOCI1 0.36

SEC61A41 0.53 GJBI 0.30

HISTIH2BF 0.47 CASKINI 0.22

CADPS 0.46 MIR146A.D0Q658414 0.15

APOCI 0.45 HOXC6 0.08

TBP 0.37 PTN -0.38

ERGS 0.34 I1GFBP3 -0.44

CAMKK? 0.32 GABARAPL?2 -0.69

CAMK2N2 0.22 MYOF -1.43

TMCC2 0.19 KLK4 -1.86

SERPINBS 0.12

EN2 0.12

ERG3’ exons 4-5  0.03

SChLAPI 0.00

PTN -0.01

PPPIRI2B -0.15

SIRTI -0.30

PTPRC -0.36

IGFBP3 -0.46

CDI0 -0.61

SNCA -0.68

MEMO! -0.75

RPLP2 -1.46

MYOF -1.88

SACMIL -2.85

KLK4 -4.13
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Supplementary Figure 7 KLK3 Adjusted Data ROC curves for test data using models (random
sampling) detecting between CB and Ca (L I H) for models using the following inputs A) all probes,
B) significant probes, C) adjusted significant probes.
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Supplementary Table 11 Lasso output for models (random sampling) detecting between

CB and Ca (L I H) using KILK3 adjusted data.

All Transcripts

Significant Transcripts

Multiple testing corrected

Transcripts

Transcript Beta  Transcript Beta  Transcript Beta
PCA3 1.57  SMIM1 2.26 HPN 3.49
SMIM1 1.27  SIM2.short 1.84  SIM2.short 3.49
SIM2.short 1.21 SULTIAI 1.48  PCA3 3.33
HPN 0.76 ERG3’ exons 4-5 1.42 ERG3’ exons 4-5 2.55
ERG3’ exons 4-5 0.57  GAPDH 1.37
GAPDH 0.43  PCA3 1.34
AMH 0.41  AMACR 0.85
HOXC6 0.29 HPN 0.69
CLU 0.16  MMP25 0.64
ISX 0.15  ERG3’exons 6-7 0.52
MMP25 0.09 CLU 0.48
APOCI 0.05 GJBI1 0.45
TMPRSS2:ERG  0.04  ANKRD34B 0.27
MYOF -0.08 STOM 0.20
GABARAPL?2 -0.36  RABI17 0.06
KLK4 -0.45 IGFBP3 -0.33
RPS11 -0.48
PTN -0.78
MYOF -1.08
GABARAPL?2 -2.60
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Supplementary Figure 8 GAPDH and RPLP2 Normalised Data ROC curves for test data using
models (random sampling) detecting between CB and Ca (L I H) for models using the following
inputs A) all probes, B) significant probes, C) adjusted significant probes.
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Supplementary Table 12 Lasso output for models (random sampling) detecting between

CB and Ca (L I H) using HK normalised data.

All Transcripts

Significant Transcripts

Multiple testing corrected

Transcripts

Transcript Beta  Transcript Beta  Transcript Beta
PCA3 0.33 PCA3 0.63 PCA3 0.39
ERG3’ exons 4-5 0.30 TMPRSS2:ERG 0.27 ERG3’exons 4-5  0.22
TMPRSS2:ERG 0.24  SMIM1 0.18 TMPRSS2:ERG 0.17
TDRD 0.04 TDRD 0.02 HOXC6 0.12
CLU 0.01 HOXC6 0.02  TDRD 0.06
MMP25 0.00 ERGS5’ 0.01

ALASI -0.01 KLK4 -0.21

PDLIMS -0.09
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6.14 Binomial Testing between CB and High-risk Ca

Supplementary Table 13 Glm test significant probes between CB and High-risk Ca

\ KLK2 ratio data

KLK2 adjusted data

Transcript p-value Log:(FC) Adjusted p- Transcript p-value Log:(FC) Adjusted p-
value value
ERG3’ exons 4-5 7.00E-07 1.868 0.0001 HPN 3.77x10-06 0.241 0.001
ERG3’ exons 6-7 7.15E-07 2.966 0.0001 PCA3 4.78x10-06 0.222 0.001
PCA3 9.17E-07 0.376 0.0002 GJB1 0.0001 0.159 0.018
APOC1 7.71E-06 1.472 0.001 AMACR 0.0001 0.130 0.021
HPN 8.27E-06 0.352 0.001 KLK4 0.0003 -0.127 0.044
TMPRSS2:ERG 9.85E-06 NA 0.002 ERG3’ exons 4-5 0.0004 0.109 0.063
HOXC6 2.14E-05 0.301 0.003 ERG3’ exons 6-7 0.001 0.112 0.098
TDRD 2.54E-05 3.689 0.004 TMPRSS2:ERG 0.001 0.114 0.208
DLX1 4.09E-05 4.487 0.006 HOXC6 0.001 0.129 0.221
AMACR 7.47E-05 0.341 0.012 RAB17 0.002 0.227 0.272
GJB1 9.73E-05 0.320 0.015 APOC1 0.002 0.209 0.372
ANKRD34B 0.0002 5.892 0.025 DLX1 0.002 0.074 0.372
TRPM4 0.0002 0.730 0.029 SPINK1 0.003 0.163 0.445
MCTP1 0.0003 1.149 0.041 MYOF 0.003 -0.155 0.463
PPFIA2 0.0003 0.807 0.041 SULT1A1 0.003 0.126 0.509
ITGBL1 0.0003 0.799 0.042 DPP4 0.004 -0.105 0.552
HOXC4 0.0004 0.938 0.063 ITGBL1 0.004 0.087 0.611
SLC12A1 0.0004 1.022 0.064 AR exons 4-8 0.004 -0.121 0.637
ISX 0.001 2.371 0.077 TRPM4 0.004 0.080 0.640
RAB17 0.001 0.303 0.097 CD10 0.005 -0.092 0.771
VPS13A 0.001 0.110 0.118 GABARAPL2 0.006 -0.137 0.863
NEAT1 0.001 0.186 0.131 RP11.244H18.1.P712P 0.006 -0.100 0.890
STOM 0.001 NA 0.134 TDRD 0.007 0.064 0.983
PVT1 0.001 0.383 0.208 UPK2 0.007 0.108 0.996
SSTR1 0.001 0.369 0.209 SLC12A1 0.007 0.148 0.999
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Met 0.002 2.490 0.266 MIR4435.1HG.10C541471 0.008 0.087 0.999
SIM2.short 0.002 0.507 0.274 GAPDH 0.011 0.111 0.999
CDKN3 0.002 0.380 0.275 RP11.97012.7 0.011 0.116 0.999
ERG5 0.002 NA 0.276 STOM 0.011 0.116 0.999
SPINK1 0.002 0.265 0.294 SMIM1 0.012 0.111 0.999
SULT1A1 0.002 0.225 0.323 ANKRD34B 0.012 0.134 0.999
TMEMA45B 0.002 0.410 0.325 NEAT1 0.012 0.094 0.999
UPK2 0.002 0.676 0.334 SIM2.short 0.019 0.077 0.999
AMH 0.003 0.404 0.348 MCTP1 0.024 0.094 0.999
MIR146A.DQ658414 0.003 0.549 0.352 MED4 0.029 -0.054 0.999
SULF2 0.003 2.000 0.352 DNAH5 0.029 0.048 0.999
RP11.97012.7 0.003 0.086 0.355 ISX 0.029 0.081 0.999
MMP11 0.003 0.451 0.382 PPFIA2 0.031 0.072 0.999
TMCC2 0.003 4.761 0.436 Met 0.035 0.098 0.999
PALM3 0.004 0.269 0.474 SNCA 0.038 -0.053 0.999
MIR4435.1HG.I0C541471  0.005 0.199 0.605 VPS13A 0.041 0.040 0.999
MIC1 0.005 0.445 0.642 PTN 0.044 -0.082 0.999
LASS1 0.005 0.473 0.665 PVT1 0.049 0.113 0.999
RIOK3 0.005 0.104 0.676
MEX3A 0.006 0.801 0.694
RPL23AP53 0.006 0.417 0.758
CASKIN1 0.007 0.178 0.872
TWIST1 0.008 0.192 0.893
IMPDH2 0.008 0.099 0.894
SIM2.long 0.009 0.133 0.966
PECI 0.009 0.063 0.966
GAPDH 0.009 0.067 0.966
DNAH5 0.009 0.409 0.966
EN2 0.009 0.358 0.966
MKi67 0.010 -1.667 0.966
NAALADL2 0.010 0.081 0.966
SMIM1 0.010 0.137 0.966
MMP26 0.011 0.411 0.966
MNX1 0.011 0.241 0.966
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MMP25 0.012 0.932 0.966
HISTIH1C 0.012 0.055 0.966
SChLAP1 0.013 0.525 0.966
MGAT5B 0.013 0.258 0.966
PCSK6 0.014 0.219 0.966
CLIC2 0.014 NA 0.966
MCM7 0.015 0.273 0.966
MFSD2A 0.016 -2.398 0.966
TERT 0.017 0.153 0.966
HPRT 0.017 0.073 0.966
SSPO 0.017 0.221 0.966
HIST3HZ2A 0.020 0.091 0.966
ITPR1 0.022 0.069 0.966
B4GALNT4 0.022 NA 0.966
SLC4A1.S 0.022 NA 0.966
RPLP2 0.023 0.053 0.966
SACM1L 0.025 0.058 0.966
SYNM 0.025 0.214 0.966
VAX2 0.026 0.270 0.966
TMEME86A 0.026 0.795 0.966
RPS11 0.027 0.035 0.966
ABCB9 0.028 NA 0.966
CLU 0.030 0.248 0.966
CCDC88B 0.030 -5.601 0.966
HIST1H2BG 0.032 0.124 0.966
FOLH1 0.032 0.063 0.966
COL9A2 0.034 -2.208 0.966
BRAF 0.035 0.072 0.966
RPL18A 0.035 0.045 0.966
CAMKK2 0.036 0.085 0.966
AURKA 0.036 0.428 0.966
ARHGEF25 0.036 0.278 0.966
ALAS1 0.037 0.021 0.966
SFRP4 0.039 0.502 0.966
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TERF2IP 0.041 0.031 0.966
PTPRC 0.046 NA 0.966
COL10A1 0.047 0.274 0.966
ACTR5 0.049 0.194 0.966
PSTPIP1 0.050 NA 0.966
\ KLK3 adjusted data GAPDH and RPLP2 Normalised data
Transcript p-value Log:(FC) Adjusted p- Transcript p-value Log:(FC) Adjusted p-
value value
HPN 1.32E-05 0.190 0.002 ERG3’ exons 4-5 1.43E-06 0.793 0.000
PCA3 1.45E-05 0.184 0.002 PCA3 6.29E-06 0.196 0.001
KLK4 0.0002 -0.159 0.034 TMPRSS2:ERG 1.05E-05 0.953 0.002
ERG3’ exons 4-5 0.0004 0.125 0.066 ERG3’ exons 6-7 1.40E-05 1.265 0.002
GJB1 0.0005 0.142 0.075 APOC1 2.12E-05 0.505 0.003
AMACR 0.001 0.121 0.105 HPN 8.13E-05 0.149 0.013
ERG3’ exons 6-7 0.001 0.088 0.106 KLK4 0.0005 -0.069 0.074
MYOF 0.001 -0.128 0.126 HOXC6 0.001 0.170 0.125
TMPRSS2:ERG 0.001 0.084 0.156 TDRD 0.002 0.800 0.245
ARexons4.8 0.001 -0.072 0.163 SLC12A1 0.002 0.371 0.273
HOXC6 0.002 0.120 0.273 DLX1 0.002 0.391 0.279
RP11.244H18.1.P712P 0.002 -0.096 0.300 ITGBL1 0.002 0.144 0.383
DPP4 0.002 -0.107 0.329 MYOF 0.005 -0.055 0.758
APOC1 0.002 0.162 0.347 DPP4 0.005 -0.039 0.762
DLX1 0.003 0.057 0.525 SPINK1 0.005 0.126 0.808
SULT1A1 0.004 0.110 0.532 GABARAPL2 0.005 -0.050 0.821
SPINK1 0.004 0.131 0.565 RAB17 0.005 0.125 0.826
ITGBL1 0.005 0.108 0.676 CD10 0.006 -0.074 0.967
RAB17 0.005 0.142 0.676 HOXC4 0.008 0.160 0.995
CD10 0.006 -0.095 0.856 AR exons 4-8 0.008 -0.059 0.995
KLK2 0.007 -0.080 0.952 NEAT1 0.010 0.126 0.995
GABARAPL2 0.007 -0.143 0.974 UPK2 0.010 0.306 0.995
SLC12A1 0.007 0.092 0.985 PPFIA2 0.011 0.325 0.995
UPK2 0.008 0.098 0.998 GJB1 0.012 0.127 0.995
STOM 0.012 0.089 0.998 SRSF3 0.014 -0.178 0.995
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PTN 0.014 -0.104 0.998 MCTP1 0.014 0.370 0.995
MIR4435.1HG.I0C541471 0.014 0.122 0.998 Met 0.016 0.924 0.995
MED4 0.015 -0.061 0.998 KLK2 0.016 -0.043 0.995
TDRD 0.016 0.040 0.998 AMACR 0.016 0.140 0.995
SNCA 0.020 -0.058 0.998 ANKRD34B 0.018 0.083 0.995
TRPM4 0.022 0.053 0.998 STOM 0.023 0.180 0.995
NEAT1 0.027 0.059 0.998 AR.ex9 0.024 -0.448 0.995
MARCH5 0.030 -0.077 0.998 MXI1 0.025 -0.043 0.995
ANKRD34B 0.032 0.082 0.998 P712P 0.026 -0.054 0.995
MEMO1 0.032 -0.085 0.998 STEAP2 0.028 -0.032 0.995
SMIM1 0.035 0.103 0.998 SULT1A1 0.029 0.078 0.995
SIM2.short 0.039 0.028 0.998 PDLIM5 0.030 -0.042 0.995
RP11.97012.7 0.040 0.063 0.998 PTN 0.031 -0.101 0.995
SRSF3 0.040 -0.094 0.998 TRPM4 0.032 0.219 0.995
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Supplementary Figure 9 KLLK2 Ratio Data ROC curves for test data using models detecting between
CB and high risk Ca for models using the following inputs A) all probes, B) significant probes, C)

adjusted significant probes.
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Supplementary Table 14 Lasso output for models detecting between CB and high risk Ca

using KLK2 ratio data.

All Transcripts Significant Transcripts Multiple testing corrected
Transcripts

Transcript Beta  Transcript Beta  Transcript Beta

ERG3’ exons 4-5 0.55 ERG3’ exons 4-5 0.49 ERG3’exons 4-5 0.44

PCA3 0.22 APOCI 0.23 PCA3 0.20

ANKRD34B 0.17 PCA3 0.19 APOCI 0.19

APOCI 0.16 AMACR 0.15 AMACR 0.16

AMACR 0.14 HOXC6 0.10 TMPRSS2:ERG  0.14

HOXC6 0.09 TMPRSS2:ERG 0.10 HOXC6 0.12

TMPRSS2:ERG 0.08 ANKRD34B 0.07 ANKRD34B 0.05

TMEM47 0.07 HPN 0.06 DLX1 0.03

MMP25 0.05 NEATI 0.04 PPFIA2 -0.01

DLX] 0.03 DLX1 0.03

NEATI 0.03 AURKA -0.02

ISX 0.01 PTPRC -0.03

MAK 0.00 ALASI -0.05

MED4 -0.02 PSTPIPI -0.06

CP -0.02  ACTRS -0.14

CKAP2L -0.02 RPL18A -0.22

IGFBP3 -0.02

AR exon 9 -0.03

SRSF3 -0.04

PDLIMS -0.07

BTG2 -0.07

STEAP4 -0.08

CDI10 -0.14

AR exons 4-8 -0.17

KLK4 -0.27

DPP4 -0.29

379



9: APPENDICES

A o
- Ireta=0.269_
« ] Sens: 90.6%
o Spec: 64.7%
PV+: 12.0%
2 © | PV-: 29.3%
=z ©
F—
e
S T
()] o
Variable est. (s.e.)
o (Intercept) -3.308 (0.868)
o | Prediction3_1respTest 6.483 (1.643)
Model: KLK2.Test.CBCaScategory_at_initial_urine_collection ~ Prediction3_1respTest
S ] Area under the curve: 0.822
e T T | T T |
0.0 0.2 04 0.6 0.8 1.0
1-Specificity
B - Ireta=0.409___— -
o _| Sens: 90.6% '
© Spec: 76.5%
PV+:10.3%
2 © | PV-: 21.6%
=z ©
=
2
<
$ o
Variable est. (s.e.)
o (Intercept) -3.006 (0.778)
o | Prediction3_2respTest 5.762 (1.401)
Model: KLK2.Test.CBCaScategory_at_initial_urine_collection ~ Prediction3_2respTest
S Area under the curve: 0.828
e P
| | | | | |
0.0 0.2 04 0.6 0.8 1.0
1-Specificity
C
A Ireta=0.354_ _— |
« ] Sens: 90.6%
e Spec: 58.8%
PV+: 13.0%
2 © | PV-:326%
z o
2
o ¥ -
w o
Variable est. (s.e.)
o (Intercept) -1.990 (0.664)
o | Prediction3_3respTest 3.453 (1.073)
Model: KLK2.Test.CBCaScategory_at_initial_urine_collection ~ Prediction3_3respTest
e ] = Area under the curve: 0.738
e T T | T T |
0.0 0.2 04 0.6 0.8 1.0
1-Specificity

Supplementary Figure 10 KLK2 Adjusted Data ROC curves for test data using models detecting
between CB and high risk Ca for models using the following inputs A) all probes, B) significant
probes, C) adjusted significant probes.
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Supplementary Table 15 Lasso output for models detecting between CB and high risk Ca

using KLK?2 adjusted data.

All Transcripts Significant Transcripts Multiple testing
corrected Transcripts

Transcript Beta  Transcript Beta  Transcript Beta

PCA3 3.08 PCA3 3.34 PCA3 5.34

HPN 2.79 HPN 2.40 HPN 5.02

AMACR 1.09  AMACR 1.93  GJBI 2.32

ERG3’ exons 6-7 0.83  SIM2.short 1.45  AMACR 1.85

SIM2.short 0.72 DNAHS5 1.03  KLK4 -2.59

RABI7 0.37 ERG3’ exons 6-7 0.94

APOCI 0.34 RABI17 0.50

MMP25 0.34 ANKRD34B 0.45

ANKRD34B 0.27 APOCI 0.44

DLXI 0.25 DLXI 0.43

CLU 0.23 SLCI241 0.38

DNAHS5 0.16 STOM 0.16

SLCI241 0.14 ERG3’ exons 4-5 0.09

ERG3’ exons 4-5 0.03 KLK4 -0.46

STOM 0.03  MYOF -0.71

MYOF -0.29 DPP4 -1.37

KLK4 -0.40 CD10 -2.13

DPP4 -0.98

CDI0 -1.43
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Supplementary Figure 11 KLK3 Adjusted Data ROC curves for test data using models detecting
between CB and high risk Ca for models using the following inputs A) all probes, B) significant

probes, C) adjusted significant probes.
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Supplementary Table 16 Lasso output for models detecting between CB and high risk Ca

using KLLK3 adjusted data.

All Transcripts Significant Transcripts Multiple testing
corrected
Transcripts

Transcript Beta  Transcript Beta  Transcript Beta

PCA3 2.56 PCA3 2.96 HPN 5.06

HPN 2.37 HPN 2.13  PCA3 4.95

ERG3’ exons 4-5 0.77  SIM2.short 1.46 KLK4 -3.20

SIM2.short 0.64 ERG3’ exons 4-5 1.17

APOCI 0.44 AMACR 1.10

MMP25 0.41 APOCI1 0.64

AMACR 0.30 ANKRD34B 0.57

ANKRD34B 0.29 SLCi241 0.43

SLCI1241 0.18 SULTIAI 0.41

ERG3’ exons 6-7 0.17 DLXI 0.30

DLX] 0.13 RABI17 0.27

RABI7 0.11 STOM 0.17

SULTIAI 0.07 ERG3’ exons 6-7 0.16

STOM 0.06 PTN -0.14

PTN -0.01 RPI11.244H18.1.P712P -0.37

KLK4 -0.18 MARCHS5 -0.72

MARCHS -0.23 MYOF -1.00

RP11.244H18.1.P712P -0.39 DPP4 -1.25

MYOF -0.65 CDI10 -1.68

DPP4 -0.82

CDI10 -1.17
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Supplementary Figure 12 HK Normalised Data ROC curves for test data using models detecting
between CB and high risk Ca for models using the following inputs A) all probes, B) significant
probes, C) adjusted significant probes.
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Supplementary Table 17 Lasso output for models detecting between CB and high risk Ca

using HK normalised data.

All Transcripts Significant Transcripts Multiple testing corrected
Transcripts

Transcript Beta  Transcript Beta  Transcript Beta
ERG3’ exons 4-5 0.35 ERG3’ exons 4-5 0.67 PCA3 0.50
PCA3 0.27 ANKRD34B 0.34 APOCI 0.39
APOCI 0.1 PCA3 0.33 HPN 0.37
HPN 0.13 APOCI 0.24 ERG3’ exons 4-5 0.23
SLCI1241 0.03 AMACR 0.19 TMPRSS2:ERG  0.20
TMPRSS2:ERG 0.02 HPN 0.12
ANKRD34B 0.02 SULTIAI 0.08
HOXC6 0.01 NEATI 0.08
AR exons 4-8 -0.05  TMPRSS2:ERG 0.07
GABARAPL?2 -0.06 DLXI 0.04
CDI10 -0.14 HOXC6 0.03
KLK4 -0.15 STOM 0.02
DPP4 -0.18 SLCI241 0.01

AR exon 9 -0.03

MYOF -0.06

SRSF3 -0.07

AR exons 4-8 -0.20

CD10 -0.26

GABARAPL?2 -0.28

DPP4 -0.36

PDLIM5 -0.56
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6.15 Multinomial CBLIH Trend

Supplementary Table 18 Glm test significant probes for CB, L, I, H trend

\ KLK2 ratio data KLK2 adjusted data

Transcript p-value Adjusted p-value Transcript p-value Adjusted p-value
ERG3’ exons 4-5 1.86x10-13 3.09x10-11 PCA3 1.45x10-08 2.41x10-06
PCA3 8.90x10-13 1.47x10-10 ERG3’ exons 4-5 1.18x10-07 1.94x10-05
TMPRSS2:ERG 1.88x10-11 3.09x10-09 ERG3’ exons 6-7 3.73x10-07 6.11x10-05
ERG3’ exons 6-7 6.66x10-10 1.09x10-07 SPINK1 1.03x10-06 0.0002
HOXC6 7.88x10-09 1.28x10-06 HOXC6 3.85x10-06 0.0006
HPN 4.19x10-08 6.75x10-06 HPN 7.34x10-06 0.0012
APOC1 6.38x10-08 1.02x10-05 TMPRSS2:ERG 7.35x10-06 0.0012
TDRD 1.63x10-07 2.59x10-05 KLK4 3.65x10-05 0.0058
ANKRD34B 1.47x10-06 0.0002 SLC12A1 4.71x10-05 0.0074
ITGBL1 3.19x10-06 0.001 UPK2 8.47x10-05 0.0133
SLC12A1 5.82x10-06 0.001 TDRD 0.0002 0.0242
DLX1 7.26x10-06 0.001 ITGBL1 0.0002 0.0281
RAB17 9.26x10-06 0.001 RP11.244H18.1.P712P 0.0002 0.0320
HOXC4 1.07x10-05 0.002 GABARAPL2 0.0002 0.0363
GJB1 1.49x10-05 0.002 GJB1 0.0002 0.0366
PPFIA2 1.84x10-05 0.003 AMACR 0.0005 0.0695
SPINK1 2.62x10-05 0.004 MYOF 0.0005 0.0775
AMACR 3.58x10-05 0.005 APOC1 0.0005 0.0816
AMH 4.60x10-05 0.007 MED4 0.0010 0.1423
TRPM4 5.74x10-05 0.008 SULT1A1 0.0011 0.1624
NEAT1 6.14x10-05 0.009 RAB17 0.0020 0.2865
SIM2.short 6.84x10-05 0.010 ANKRD34B 0.0025 0.3583
SSTR1 7.31x10-05 0.011 SNCA 0.0035 0.4989
UPK2 7.83x10-05 0.011 MMP26 0.0047 0.6782
SULT1A1 8.22x10-05 0.012 PTN 0.0055 0.7804
MEX3A 9.10x10-05 0.013 DLX1 0.0055 0.7804
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MIR146A.DQ658414 0.0001 0.015 IFT57 0.0058 0.8138
TMEMA45B 0.0001 0.015 SIM2.short 0.0061 0.8487
ISX 0.0001 0.017 DPP4 0.0073 0.9916
MIC1 0.0001 0.019 STOM 0.0080 0.9916
TWIST1 0.0002 0.021 GAPDH 0.0105 0.9916
Met 0.0002 0.021 VPS13A 0.0135 0.9916
MMP11 0.0002 0.023 MIR146A.DQ658414 0.0168 0.9916
CDKN3 0.0002 0.023 PPAP2A 0.0182 0.9916
RP11.97012.7 0.0002 0.023 ZNF577 0.0185 0.9916
STOM 0.0003 0.035 SMIM1 0.0233 0.9916
PALM3 0.0003 0.043 PPFIA2 0.0249 0.9916
LASS1 0.0003 0.043 Met 0.0251 0.9916
SSPO 0.0003 0.044 MIC1 0.0268 0.9916
MMP26 0.000 0.049 EIF2D 0.0316 0.9916
VPS13A 0.000 0.049 CD10 0.0336 0.9916
PECI 0.000 0.050 STEAP2 0.0432 0.9916
PCSK6 0.000 0.054 MIR4435.1HG.10C541471 0.0437 0.9916
GAPDH 0.000 0.056 ITPR1 0.0445 0.9916
PVT1 0.000 0.056 MXI1 0.0487 0.9916
TERT 0.000 0.060
CASKIN1 0.001 0.061
TMCC2 0.001 0.064
RPLP2 0.001 0.080
MNX1 0.001 0.102
SIM2.long 0.001 0.106
RPS11 0.001 0.106
SULF2 0.001 0.130
HISTIH1C 0.001 0.133
EN2 0.001 0.133
DNAH5 0.001 0.166
MMP25 0.002 0.198
MFSD2A 0.002 0.212
MIR4435.1HG.10C541471 0.002 0.226
SMIM1 0.002 0.239
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MGAT5B 0.003 0.266
RIOK3 0.003 0.267
MCTP1 0.003 0.315
RPS10 0.003 0.329
VAX2 0.003 0.337
TMEME86A 0.003 0.340
ERG5 0.004 0.358
IMPDH2 0.004 0.368
COL10A1 0.004 0.400
ABCB9 0.004 0.424
B4GALNT4 0.005 0.471
MKi67 0.005 0.472
CLIC2 0.006 0.526
SChLAP1 0.007 0.671
CCDC88B 0.009 0.807
PTPRC 0.009 0.809
CAMKK2 0.009 0.838
NAALADL2 0.009 0.844
HIST3HZ2A 0.010 0.873
HPRT 0.010 0.897
TERF2IP 0.011 0.949
ITPR1 0.014 0.994
SLC4A1.S 0.014 0.994
COL9A2 0.014 0.994
MCM7 0.015 0.994
CKAP2L 0.017 0.994
RPL18A 0.017 0.994
BRAF 0.017 0.994
MAPK8IP2 0.017 0.994
SFRP4 0.018 0.994
FDPS 0.018 0.994
SACM1L 0.019 0.994
MSMB 0.020 0.994
HMBS 0.020 0.994
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SPON2 0.021 0.994

ANPEP 0.021 0.994

CACNA1D 0.022 0.994

SYNM 0.023 0.994

ALAS1 0.026 0.994

RNF157 0.027 0.994

HISTIHIE 0.027 0.994

ARHGEF25 0.028 0.994

RPL23AP53 0.028 0.994

AURKA 0.031 0.994

PSTPIP1 0.032 0.994

FOLH1 0.032 0.994

GOLM1 0.033 0.994

EIF2D 0.035 0.994

IFT57 0.039 0.994

SLC43A1 0.039 0.994

CDC20 0.039 0.994

CAMK2N2 0.047 0.994

GABARAPL2 0.049 0.994

CDC37L1 0.050 0.994

KLK3 adjusted data GAPDH and RPLPZ normalised data

Transcript p-value Adjusted p-value Transcript p-value Adjusted p-value
PCA3 1.52x10-07 2.52x10-05 ERG3’ exons 4-5 1.44x10-08 2.41x10-06
SPINK1 5.80x10-06 0.001 TMPRSS2:ERG 1.18x10-07 1.96x10-05
ERG3’ exons 4-5 6.32x10-06 0.001 PCA3 2.06x10-07 3.39x10-05
ERG3’ exons 6-7 7.48x10-06 0.001 ERG3’ exons 6-7 2.28x10-06 0.0004
KLK4 8.86x10-06 0.001 APOC1 9.64x10-06 0.002
SLC12A1 4.36x10-05 0.007 HOXC6 1.34x10-05 0.002
HOXC6 4.72x10-05 0.008 HPN 2.01x10-05 0.003
UPK2 5.48x10-05 0.009 DPP4 9.43x10-05 0.015

HPN 7.32x10-05 0.012 GABARAPL2 0.0001 0.017
TMPRSS2:ERG 0.0001 0.017 ITGBL1 0.0001 0.017
SULT1A1 0.0002 0.036 MYOF 0.0001 0.018
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APOC1 0.0004 0.056 KLK2 0.0004 0.065
GJB1 0.0004 0.064 SLC12A1 0.0004 0.069
MYOF 0.0005 0.074 TDRD 0.0004 0.069
CD10 0.001 0.081 SRSF3 0.001 0.088
ITGBL1 0.001 0.138 SPINK1 0.001 0.097
RP11.244H18.1.P712P 0.001 0.138 P712P 0.001 0.098
DLX1 0.001 0.174 KLK4 0.001 0.110
RAB17 0.001 0.179 RAB17 0.001 0.156
GABARAPL2 0.001 0.189 AR exons 4-8 0.001 0.191
STOM 0.001 0.215 IFT57 0.001 0.191
TDRD 0.002 0.266 CD10 0.002 0.276
PTN 0.002 0.293 PTN 0.003 0.375
AMACR 0.002 0.327 DLX1 0.003 0.418
MED4 0.003 0.378 ANKRD34B 0.003 0.419
SNCA 0.004 0.622 ZNF577 0.003 0.434
NEAT1 0.005 0.743 UPK2 0.003 0.443
ANKRD34B 0.005 0.743 MXI1 0.004 0.606
MIR4435.1HG.I0C541471 0.006 0.783 HOXC4 0.006 0.767
KLK2 0.007 0.928 SNCA 0.006 0.769
Met 0.012 0.980 STEAP2 0.006 0.800
AURKA 0.014 0.980 MEMO1 0.006 0.834
SIM2.short 0.014 0.980 CACNA1D 0.006 0.834
MIC1 0.019 0.980 STEAP4 0.007 0.954
PPFIA2 0.020 0.980 PPAP2A 0.008 0.997
MEMO1 0.021 0.980 Met 0.011 0.997
ZNF577 0.023 0.980 MED4 0.011 0.997
CACNA1D 0.025 0.980 MIATNB 0.011 0.997
AR exon 9 0.026 0.980 GJB1 0.013 0.997
PDLIM5 0.027 0.980 AR exon 9 0.014 0.997
RP11.97012.7 0.033 0.980 SULT1A1 0.018 0.997
IFT57 0.033 0.980 PPFIA2 0.018 0.997
MMP26 0.033 0.980 FDPS 0.019 0.997
MARCH5 0.034 0.980 MARCH5 0.019 0.997
RPS10 0.036 0.980 MSMB 0.020 0.997
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AR exons 4-8 0.036 0.980 KLK3 exons 2-3 0.024 0.997
ITPR1 0.039 0.980 SNORA20 0.026 0.997
SMIM1 0.043 0.980 NEAT1 0.027 0.997
SNORA20 0.044 0.980 RPS10 0.028 0.997
VPS13A 0.046 0.980 SERPINB5 0.035 0.997
TRPM4 0.038 0.997
NLRP3 0.040 0.997
HISTIH2BF 0.049 0.997
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Supplementary Table 19 Lasso output for models detecting CB, L, I, H trend using KLLK2

ratio data.

All Transcripts Significant Transcripts Multiple testing
corrected Transcripts

Transcript Beta Transcript Beta Transcript Beta

PCA3 0.21 PCA3 0.18 PCA3 0.14

ERG3’ exons 4- ERG3’ exons 4- ERG3’ exons 4-

5 0.11 5 0.12 5 0.11

APOCI 0.11 APOCI 0.08 APOCI 0.05

ANKRD34B 0.07 TMPRSS2:ERG  0.04 TMPRSS2:ERG  0.04

NEATI 0.05 SLCI2A1 0.03 HOXC6 0.01

HOXC6 0.05 HOXC6 0.02 cpl 2.05

HPN 0.05 NEATI 0.02 cp2 1.26

TMPRSS2:ERG  0.04 HPN 0.01 cp3 0.36

ITGBLI 0.03 ANKRD34B 0.01

SLCI241 0.03 DLX1 0.00

SULTIAI 0.03 PSTPIPI 0.00

ISX 0.03 HISTIHIE -0.05

DLXI 0.02 GABARAPL?2 -0.16

ERG3’ exons 6-

7 0.01 cpl 2.19

TMEM47 0.01 cp2 1.32

TDRD 0.01 cp3 -0.38

AMACR 0.01

HISTIHIE -0.01

IGFBP3 -0.01

PSGR -0.01

BTG2 -0.01

MED4 -0.02

AR exons 4-8 -0.02

PPPIRI2B -0.02

AR exon 9 -0.02

Timp4 -0.03

DPP4 -0.03

CP -0.04

MYOF -0.04

GCNTI -0.04

MEMO! -0.05

SRSF3 -0.06

ZNF577 -0.06

CDI0 -0.06

MXI1 -0.10

KLK4 -0.14

cpl 2.45

cp2 1.43

cp3 -0.43
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Supplementary Table 20 Lasso output for models detecting CB, L, I, H trend using KLLK2

adjusted data.

All Transcripts Significant Transcripts Multiple testing corrected
Transcripts
Transcript Bet  Transcript Bet  Transcript Beta
a a

AMACR 0.14 AMACR 0.46 ERG3’ exons 4-5 0.75
ERG3 exons 4-5 0.74 ANKRD34B 0.33 GABARAPL2 1.05
GJBI 0.60 APOCI 0.53 GJBI1 0.63
HOXC6 0.36 CDI10 1.04 HOXC6 0.38
HPN 0.74 DLXI 0.13 HPN 0.70
ITGBL1 0.12 DPP4 0.14 ITGBLI 0.18
KLK4 1.22  ERG3’ exons 4-5 0.80 KLK4 1.10
PCA3 2.38 GABARAPL2 0.88 PCA3 2.27
SLCI1241 0.25 GAPDH 0.07 RPI11.244H18.1.P712P 1.34
SPINK1 0.44 GJBI 0.08 SLCI2A41 0.26
TMPRSS2:ERG ~ 0.36 HOXC6 0.22 SPINKI 0.38
UPK?2 0.24 IFT57 0.95 TDRD 0.14
cpl 2.06 ITPRI 0.13 TMPRSS2:ERG 0.38
cp2 1.35 KLK4 0.60 UPK2 0.19
cp3 0.42 MED4 0.85 cpl 2.21

Met 0.11 cp2 1.41

MIC1 0.28 cp3 0.43

MIR146A4.D0658414  0.24

MMP26 0.50

MXI1 1.15

MYOF 1.45

PCA3 2.69

PPAP2A 0.08

PPFIA2 0.65

PTN 0.79

RPI11.244H18.1.P712P (.72

SIM?2.short 1.12

SLCI2A41 0.14

SMIM1 0.40
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0.77

SNCA

SPINK] 0.47
STEAP2 0.82
STOM 0.11
SULTIAI 0.85
TMPRSS2:ERG 0.13
UPK?2 0.25
ZNF577 0.49
cpl 2.47
cp2 1.52
cp3 0.48
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Supplementary Table 21 Lasso output for models detecting CB, L, I, H trend using KLLK3

adjusted data.

All Transcripts

Significant Transcripts

Multiple testing corrected

Transcripts

Transcript Beta Transcript Beta Transcript Beta
ACTRS -0.40 MARCHS5 -0.88 APOCI 0.78
ERG3’
AMH 1.60 AMACR 0.27 exons 4-5 0.56
ERG3’
ANKRD34B 0.20 ANKRD34B 0.21 exons 6-7 0.07
APOCI 0.96 APOCI 0.60 GJB1 0.51
AR exon 9 -0.05 AR exon 9 -0.49  HOXCé6 0.36
AURKA 0.07 AURKA 0.70 HPN 0.52
B2M -0.23 CACNAID 0.42 KLK4 -1.25
BRAF 0.48 CDI10 -0.75 PCA3 2.21
BTG2 -1.11 DLX1 0.27 SLCI2A1 0.19
ERG3’ exons
CASKIN1 -0.01 4-5 0.64 SULTIAI 0.65
TMPRSS2:E
CCDC88B -0.27 GABARAPL2 -1.14 RG 0.25
CDI0 -0.95 GJB1 0.28 UPK?2 0.50
CDC20 -0.44 HOXC6 0.45 cpl 1.14
CKAP2L -0.39 ITGBL1 -0.31 cp2 1.35
CLIC2 -0.52 ITPR1 0.68 cp3 -0.36
CLU 0.11 KLK2 0.42
CP -0.46 KLK4 -0.53
CTA.21149.5.MIATNB -0.41 MED4 -0.86
DLXI 0.33 MEMOI1 -0.90
DNAHS 0.23 MICI 0.40
MIR4435.1H
ERG3’ exons 4-5 0.54 G.l10C541471  -0.35
ERG3’ exons 6-7 0.36 MMP26 0.24
GABARAPL?2 -1.42 MYOF -1.84
GOLM1 -0.02 NEATI 0.80
HIST3H2A -0.34 PCA3 3.73
HOXC4 -0.97 PPFIA2 -0.97
HOXCo6 0.76 PTN -1.10
HPRT 0.81 RAB17 -0.89
RP11.244H18
IGFBP3 -0.87 A1.P712P -0.34
RP11.97012.
IMPDH? 0.03 7 0.48
ITPRI 0.17 SIM2.short 1.35
KLK4 -1.18 SLCI2A1 0.39
LASS1 -0.16 SMIM1 0.47
LBH 0.51 SNCA -0.20
MCM7 0.27 STOM 0.31
MDK 0.01 SULTIAI 1.05
TMPRSS2:E
MED4 -0.38 RG -0.02
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MEMOI -0.97 UPK?2 0.94
MGATS5B -0.24 ZNF577 -0.14
MICI 0.64 cpl 1.77
MIR146A4.DQ658414 0.20 cp2 1.63
MIR4435.1HG.I0C5414

71 0.02 cp3 -0.46
MMPI11 0.61

MMP25 0.83

MNXI 0.42

MX11 -0.18

MYOF -1.42

NAALADL?2 -0.32

NEATI 0.98

PSGR -0.15

PALM3 0.21

PCA3 3.16

PPAP24 0.89

PSTPIP] -0.62

PTN -0.71

PVTI 0.17

RPL23AP53 0.06

RPSI11 -0.02

SACMIL -0.41

SERPINBS 0.28

SIM2.short 0.90

SIRT1 -0.68

SLCI1241 0.23

SMIM1 0.20

SNCA -0.22

SPINK1 0.49

SPON2 -0.43

SRSF3 -0.01

ST6GALNACI 0.25

STOM 0.36

SULTIAI 0.61

SYNM 0.19

TDRD 0.03

Timp4 -0.91

TWISTI 0.65

UPK?2 0.75

VAX2 -0.27

ZNF577 -0.02

cpl 2.04

cp2 1.75

cp3 -0.50

Supplementary Table 22 Lasso output for models detecting CB, L, I, H trend using HK

normalised data.

‘ All Transcripts Significant Transcripts Multiple testing
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‘ corrected Transcripts

Transcript Beta Transcript Beta Transcript Beta

ACTRS 0.00 ANKRD34B 0.11 APOCI 0.14

AMH 0.04 APOCI 0.12 DPP4 -0.25
ERG3’ exons 4-

ANKRD34B 0.07 AR exon 9 -0.04 5 0.11
ERG3’ exons 6-

APOCI 0.11 AR exons 4-8 -0.04 7 0.01

AR exon 9 0.02 CDI10 -0.08 GABARAPL?2 -0.26

AR exons 4-8 0.02 MIATNB 0.00 HOXC6 0.08

CDI0 0.05 DLXI 0.03 HPN 0.10

CP 0.05 DPP4 -0.07 ITGBLI 0.10

DLXI 0.01 ERG3’exons4-5 0.10 KLK4 -0.30

DPP4 0.06 ERG3’exons 6-7 0.01 MYOF -0.17

ERG3’ exons 4-5 0.10 FDPS -0.03  PCA3 0.23

ERG3’ exons 6-7 0.01 GABARAPL2 -0.03 TDRD 0.04

- TMPRSS2:ER

GABARAPL?2 0.08 GJBI 0.02 G 0.04

GCNTI 0.03 HOXC6 0.06 cpl 2.63

HISTIHIE 0.03 HPN 0.08 cp2 1.52

HISTIH2BF 0.00 ITGBLI 0.07 cp3 -0.46

HOXCo6 0.05 KLK4 -0.21

HPN 0.05 MED4 -0.13

IGFBP3 0.01 MEMOI -0.09

ISX 0.02 MSMB 0.10

ITGBLI 0.07 MXII -0.24

KLK4 0.16 MYOF -0.06

MED4 0.02 NEATI 0.06

MEMOI 0.05 PCA3 0.21

MXI1 0.13 RPS10 -0.02

MYOF 0.05 SLCI2A1 0.04

NEATI 0.04 SPINKI 0.00

PCA3 0.19 SRSF3 -0.09

PPPIRI2B 0.02 SULTIAI 0.06

SLCI2A1 0.03 TDRD 0.03

SRSF3 0.05 TMPRSS2:ERG 0.03

SULTIAI 0.03 TRPM4 -0.02
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TDRD 0.01 UPK2 0.02
Timp4 0.02 ZNF577 -0.07
TMPRSS2:ERG 0.04 cpl 2.67
UPK?2 0.00 cp2 1.55
ZNF577 0.04 cp3 -0.47
cpl 2.42

cp2 1.41

cp3 0.42
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6.16 Multinomial CBCaM Trend

Supplementary Table 23 Glm test significant probes for CB, Ca, Mets trend

\ KLK2 ratio data KLK2 adjusted data

Transcript p-value Adjusted p-value Transcript p-value Adjusted p-value
HOXC6 5.20X10-10 8.62X10-08 UPK2 2.91X10-08 4.83X10-06
ERG3’ exons 4-5 5.70X10-10 9.41X10-08 SPINK1 2.04X10-07 3.36X10-05
PCA3 4.58X10-09 7.51X10-07 SLC12A1 1.61X10-06 0.0003
TMPRSS2:ERG 1.27X10-08 2.07X10-06 HOXC6 5.86X10-05 0.0096
APOC1 1.42X10-08 2.30X10-06 HPN 7.26X10-05 0.0118
TDRD 2.07X10-08 3.34X10-06 MFSD2A 7.70X10-05 0.0124
SLC12A1 2.82X10-08 4.51X10-06 GAPDH 0.0001 0.0196
HPN 3.41X10-08 5.42X10-06 RAB17 0.0002 0.0285
HOXC4 2.04X10-07 3.23X10-05 KLK4 0.0002 0.0313
RAB17 2.07X10-07 3.26X10-05 PCA3 0.0005 0.0758
GJB1 2.14X10-07 3.34X10-05 GJB1 0.0005 0.0826
ERG3’ exons 6-7 2.32X10-07 3.59X10-05 MIR4435.1HG.I0C541471 0.0007 0.1054
AMACR 4.06X10-07 6.25X10-05 GABARAPL2 0.0007 0.1085
SPINK1 4.92X10-07 7.53X10-05 TMEM45B 0.0009 0.1315
SSTR1 5.08X10-07 7.71X10-05 APOC1 0.0009 0.1376
UPK2 5.69X10-07 8.60X10-05 AURKA 0.0012 0.1751
TMCC2 6.63X10-07 9.94X10-05 ANPEP 0.0012 0.1760
TMEM45B 6.75X10-07 0.0001 SULT1A1 0.0017 0.2479
PPFIA2 7.28X10-07 0.0001 RP11.244H18.1.P712P 0.0020 0.2933
DLX1 8.97X10-07 0.0001 ERG3’ exons 4-5 0.0023 0.3385
PALM3 9.33X10-07 0.0001 PALM3 0.0023 0.3421
SULT1A1 1.03X10-06 0.0001 TMPRSS2:ERG 0.0024 0.3487
RP11.97012.7 1.60X10-06 0.0002 TDRD 0.0028 0.4042
SULF2 2.21X10-06 0.0003 ERG3’ exons 6-7 0.0029 0.4165
AMH 2.21X10-06 0.0003 TBP 0.0031 0.4376
EN2 2.70X10-06 0.0004 HMBS 0.0035 0.4878
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CASKIN1 2.79X10-06 0.0004 ITGBL1 0.0041 0.5687
MIR4435.1HG.10C541471 2.91X10-06 0.0004 AMACR 0.0042 0.5824
HISTIH1C 3.23X10-06 0.0004 TMCC2 0.0044 0.6065
MEX3A 3.24X10-06 0.0004 MYOF 0.0058 0.7895
PECI 3.81X10-06 0.0005 RNF157 0.0073 0.9921
SIM2.short 3.92X10-06 0.0005 PTPRC 0.0079 0.9921
ISX 4.01X10-06 0.0005 SIM2.short 0.0081 0.9921
TMEME86A 4.87X10-06 0.0006 SULF2 0.0088 0.9921
ERG5 5.11X10-06 0.0007 EN2 0.0094 0.9921
TWIST1 5.24X10-06 0.0007 PTN 0.0095 0.9921
ITGBL1 6.47X10-06 0.0008 ALAS1 0.0104 0.9921
MGAT5B 6.56X10-06 0.0008 TMEME86A 0.0115 0.9921
MMP11 7.01X10-06 0.0009 RP11.97012.7 0.0117 0.9921
HMBS 7.33X10-06 0.0009 PPFIA2 0.0122 0.9921
MCTP1 8.97X10-06 0.0011 DPP4 0.0125 0.9921
GAPDH 1.06X10-05 0.0013 STOM 0.0132 0.9921
STOM 1.09X10-05 0.0014 Met 0.0139 0.9921
HIST3HZ2A 1.26X10-05 0.0016 ZNF577 0.0153 0.9921
RPL23AP53 1.29X10-05 0.0016 ERG5 0.0251 0.9921
MFSD2A 1.49X10-05 0.0018 ITPR1 0.0280 0.9921
TERT 1.72X10-05 0.0021 MARCH5 0.0299 0.9921
Met 2.06X10-05 0.0025 HISTIHI1E 0.0342 0.9921
B4GALNT4 2.08X10-05 0.0025 SMIM1 0.0380 0.9921
NLRP3 2.10X10-05 0.0025 DLX1 0.0384 0.9921
PVT1 2.14X10-05 0.0025 RPL23AP53 0.0433 0.9921
MIR146A.DQ658414 2.34X10-05 0.0027 CASKIN1 0.0457 0.9921
CCDC88B 2.70X10-05 0.0031 SEC61A1 0.0474 0.9921
PPAP2A 2.71X10-05 0.0031 AMH 0.0478 0.9921
ITPR1 3.03X10-05 0.0034 IFT57 0.0481 0.9921
ABCB9 3.22X10-05 0.0035 CLU 0.0497 0.9921
ANPEP 3.25X10-05 0.0035 VPS13A 0.0499 0.9921
VPS13A 3.25X10-05 0.0035

MMP25 3.30X10-05 0.0036

PSTPIP1 3.39X10-05 0.0036

400




9: APPENDICES

AURKA 3.44X10-05 0.0036
VAX2 3.72X10-05 0.0039
TRPM4 3.81X10-05 0.0039
PTPRC 3.82X10-05 0.0039
RIOK3 3.85X10-05 0.0039
OGT 4.06X10-05 0.0041
MNX1 4.10X10-05 0.0041
SLC4A1.S 4.52X10-05 0.0045
HPRT 4.84X10-05 0.0047
TBP 4.91X10-05 0.0048
HISTIHI1E 5.41X10-05 0.0052
NAALADL2 5.44X10-05 0.0052
SIM2.long 5.69X10-05 0.0053
CLIC2 6.01X10-05 0.0056
DNAH5 6.67X10-05 0.0061
SMIM1 7.71X10-05 0.0070
PCSK6 8.13X10-05 0.0073
MKi67 8.24X10-05 0.0073
COL9A2 8.76X10-05 0.0077
BRAF 8.85X10-05 0.0077
COL10A1 9.42X10-05 0.0081
TERF2IP 9.55X10-05 0.0081
SSPO 0.0001 0.0091
RPLP2 0.0001 0.0097
SFRP4 0.0001 0.0097
MAPK8IP2 0.0001 0.0097
CDC37L1 0.0001 0.0097
RNF157 0.0001 0.0101
ACTR5 0.0001 0.0103
RPS11 0.0001 0.0110
RPS10 0.0001 0.0110
SYNM 0.0001 0.0111
CDKN3 0.0002 0.0120
AATF 0.0002 0.0127
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EIF2D 0.0002 0.0132
ALAS1 0.0002 0.0139
IMPDH2 0.0002 0.0145
FDPS 0.0002 0.0157
SACM1L 0.0002 0.0165
TFDP1 0.0003 0.0170
MCM7 0.0003 0.0202
NEAT1 0.0003 0.0208
CAMKK2 0.0004 0.0232
IFT57 0.0004 0.0242
MEMO1 0.0005 0.0299
ANKRD34B 0.0005 0.0309
RPL18A 0.0005 0.0310
PPP1R12B 0.0006 0.0364
CACNA1D 0.0006 0.0370
MIC1 0.0008 0.0436
SPON2 0.0008 0.0441
CLU 0.0008 0.0441
BTG2 0.0010 0.0526
GABARAPL2 0.0014 0.0709
SMAP1 exons 7-8 0.0014 0.0709
STEAP4 0.0014 0.0709
CKAP2L 0.0015 0.0727
KLK3 exons 2-3 0.0015 0.0727
ARHGEF25 0.0017 0.0796
LASS1 0.0017 0.0796
STEAP2 0.0019 0.0887
B2M 0.0021 0.0964
MMP26 0.0023 0.0996
MXI1 0.0024 0.1046
SChLAP1 0.0025 0.1056
CDC20 0.0026 0.1085
CAMK2N2 0.0028 0.1104
SIRT1 0.0032 0.1231
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GOLM1 0.0044 0.1676
LBH 0.0062 0.2206
SEC61A1 0.0062 0.2206
AR exons 4-8 0.0064 0.2206
MAK 0.0066 0.2206
PDLIM5 0.0067 0.2206
SRSF3 0.0074 0.2378
SNCA 0.0087 0.2628
FOLH1 0.0089 0.2628
CADPS 0.0091 0.2628
CD10 0.0103 0.2879
MDK 0.0133 0.3598
KLK3 exons 1-2 0.0145 0.3767
MED4 0.0152 0.3792
HIST1H2BG 0.0193 0.4640
PTN 0.0245 0.5637
IGFBP3 0.0268 0.5789
DPP4 0.0276 0.5789
SERPINB5 0.0302 0.6032
ST6GALNACI 0.0343 0.6512
MARCH5 0.0372 0.6697
HISTIH2BF 0.0405 0.6880
MSMB 0.0471 0.7190
SLC43A1 0.0479 0.7190

\ KLK3 adjusted data

GAPDH and RPLPZ2 normalised data

Transcript p-value Adjusted p-value Transcript p-value Adjusted p-value
UPK2 2.39x10-08 3.97x10-06 HOXC6 3.39X10-06 0.0006
SPINK1 1.87x10-06 0.0003 SLC12A1 3.93X10-06 0.0007
SLC12A1 2.58x10-06 0.0004 APOC1 7.43X10-06 0.0012
RAB17 4.04x10-06 0.0007 ERG3’ exons 4-5 2.17X10-05 0.0036
MIR4435.1HG.I0C541471 3.58x10-05 0.0058 SPINK1 2.71X10-05 0.0044
HPN 5.22x10-05 0.0084 KLK2 3.80X10-05 0.0062
KLK4 7.61x10-05 0.0122 TMPRSS2:ERG 5.96X10-05 0.0096
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HOXC6 0.0001 0.0168 HPN 6.42X10-05 0.0103
GABARAPL2 0.0003 0.0404 UPK2 6.50X10-05 0.0103
MFSD2A 0.0005 0.0832 RAB17 6.91X10-05 0.0109
SULT1A1 0.0007 0.1103 TDRD 0.0003 0.0531
GJB1 0.0007 0.1155 KLK4 0.0005 0.0831
APOC1 0.0010 0.1464 ERG3’ exons 6-7 0.0005 0.0843
PCA3 0.0012 0.1782 GABARAPL2 0.0008 0.1191
TMEMA45B 0.0012 0.1888 HOXC4 0.0010 0.1498
RP11.244H18.1.P712P 0.0017 0.2624 TMEMA45B 0.0010 0.1563
MYOF 0.0018 0.2720 P712P 0.0012 0.1870
SULF2 0.0018 0.2720 SULT1A1 0.0016 0.2338
MARCH5 0.0019 0.2796 GJB1 0.0021 0.3090
GAPDH 0.0019 0.2826 DLX1 0.0023 0.3475
ERG3’ exons 4-5 0.0023 0.3348 PCA3 0.0024 0.3598
TMPRSS2:ERG 0.0023 0.3376 MSMB 0.0027 0.3995
PTN 0.0025 0.3557 MIR4435_1HG 0.0028 0.4081
AURKA 0.0036 0.5179 ITGBL1 0.0033 0.4719
ERG3’ exons 6-7 0.0041 0.5766 DPP4 0.0037 0.5275
TDRD 0.0054 0.7671 SULF2 0.0048 0.6756
PALM3 0.0056 0.7794 ZNF577 0.0051 0.7173
ITGBL1 0.0065 0.9059 PPFIA2 0.0052 0.7324
CD10 0.0071 0.9744 PALM3 0.0061 0.8496
TBP 0.0074 0.9897 Met 0.0064 0.8839
KLK2 0.0093 0.9897 PTN 0.0096 0.9961
ZNF577 0.0106 0.9897 MCTP1 0.0105 0.9961
RNF157 0.0107 0.9897 CACNA1D 0.0152 0.9961
PTPRC 0.0107 0.9897 AMACR 0.0174 0.9961
ANPEP 0.0136 0.9897 CcP 0.0181 0.9961
NEAT1 0.0137 0.9897 SSTR1 0.0215 0.9961
Met 0.0137 0.9897 GCNT1 0.0221 0.9961
STOM 0.0148 0.9897 PTPRC 0.0310 0.9961
BTG2 0.0150 0.9897 STOM 0.0317 0.9961
AMACR 0.0159 0.9897 IFT57 0.0322 0.9961
MCTP1 0.0175 0.9897 HISTIH2BF 0.0333 0.9961
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CACNA1D 0.0178 0.9897 RP11 97012.7 0.0360 0.9961
ALAS1 0.0201 0.9897 STEAP2 0.0398 0.9961
ERG5 0.0223 0.9897 TMCC2 0.0409 0.9961
EN2 0.0225 0.9897 MARCH5 0.0431 0.9961
PPFIA2 0.0270 0.9897
SIM2.short 0.0274 0.9897
DLX1 0.0287 0.9897
ITPR1 0.0289 0.9897
TMEME86A 0.0296 0.9897
TMCC2 0.0325 0.9897
RP11.97012.7 0.0336 0.9897
HMBS 0.0343 0.9897
MSMB 0.0355 0.9897
IFT57 0.0375 0.9897
HOXC4 0.0390 0.9897
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Supplementary Table 24 Lasso output for models detecting CB,Ca, Mets trend using

KLK?2 ratio data.

All Transcripts Significant Transcripts ~ Multiple testing
corrected Transcripts
Transcript Beta Transcript  Beta Transcript  Beta
ERG3’ ERG3’
PCA3 0.12 exons 4-5 0.11 exons 4-5 0.11
ERG3’ exons 4-5 0.11 PCA3 0.09 PCA3 0.10
APOCI 0.09 HOXC6 0.08 HOXC6 0.08
HOXC6 0.08 APOCI 0.06 APOCI 0.06
SLCI241 0.05 DLX1 0.03 DLX1 0.04
DLXI 0.04 SLCI2A1 0.02 SLCI2A1 0.03
TDRD 0.03 TDRD 0.01 TDRD 0.01
ERG3’
TMPRSS2:ERG 0.00 cpl 5.00 exons 6-7 0.01
4.85x10
ERG3’ exons 6-7 0.00 cp2 H cpl 5.09
4.69x10
ZNF577 -0.03 cp2 H
GCNTI -0.04
CP -0.09
cpl 5.09
3.99x10
p2 b7

Supplementary Table 25 Lasso output for models detecting CB,Ca, Mets trend using

KLK?2 adjusted data.

All Transcripts Significant Transcripts Multiple testing
corrected Transcripts
Transcript Beta Transcript Beta Transcript Beta
MARCHS -2.11 MARCHS5 -4.03 GABARAPL2  3.18
AMACR 0.09 AMACR 1.17 GAPDH 0.82
APOCI 0.16 ANPEP 0.06 GJBI1 1.07
CASKIN1 0.46 APOC1 0.28 HOXC6 1.52
CDC20 -0.15 AURKA 0.05 HPN 1.12
EN2 0.15 DLX1 0.02 KLK4 1.13
ERGS 0.08 EN2 0.33 MFSD2A 0.97
ERG3’ exons 6- MIR4435.1HG
GABARAPL?2 -2.25 7 0.08 10C541471 0.79
GJBI 0.56 ERGS 0.23 RABI17 0.23
HISTIHIC 1.00 GABARAPL?2 -2.92 SPINK1 0.50
HMBS 0.94 GJBI1 0.67 UPK?2 0.75
HOXC6 0.92 HMBS 1.97 cpl 3.36
4.06
HPN 0.32 HOXC6 1.02 cp2 x10
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4
IGFBP3 -0.12 IFT57 1.08
KLK4 -0.68 ITGBLI -0.46
MFSD24 0.69 KLK4 -0.93
MIR4435.1HG.10CS5
41471 0.28 Met -0.30
MYOF -1.04 MFSD2A4 0.96
MIR4435.1HG.I
NLRP3 0.05 0C541471 0.35
PALM3 0.11 MYOF -1.57
PCA3 0.81 PALM3 0.19
PPAP2A 0.21 PCA3 1.49
PTN -0.25 PPFIA2 -0.65
PTPRC 0.12 PTN -0.72
RNF157 0.38 PTPRC 0.21
RPI11.244H18.1.P71
2P -0.23 RNF157 0.83
RP11.244H18.1
RPL234P53 0.49 P712P -0.88
SFRP4 0.13 RPI11.97012.7  0.24
SIM2.short 1.04 SIM2.short 1.77
SLCI241 0.07 SLCI241 0.35
TBP 0.22 STOM 0.11
TDRD 0.10 TBP 1.04
Timp4 -0.66 TDRD 0.17
TMCC2 0.41 T™MCC2 0.56
TMEMA45B 0.20 TMEMA45B 0.36
TMEMS86A4 0.13 TMEM86A4 0.45
TMPRSS2:ER
TMPRSS2:ERG 0.08 G 0.15
UPK2 0.56 UPK2 0.73
ZNF577 -0.32 ZNF577 -1.06
cpl 5.23 cpl 3.95
-3.58x10° -3.55x10°
p2 14 p2? 14

Supplementary Table 26 Lasso output for models detecting CB,Ca, Mets trend using

KLK3 adjusted data.

All Transcripts Significant Transcripts Multiple testing
corrected Transcripts
Transcript Beta Transcript Beta Transcript Beta
-2.05 -3.75 -
MARCHS MARCHS GABARAPL2  1.96
AMH 0.42 AMACR 0.30 GJBI 0.66
APOCI 0.24 APOC1 0.45 HOXC6 1.57
CP -0.20 DLX1 0.05 HPN 0.90
EN2 0.09 EN2 0.32 KLK4 1.24
ERG3’ exons 4- MIR4435.1HG
ERG3’ exons 4-5 0.09 5 0.37 10C541471 0.18
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ERG3’ exons 6-7 0.00 ERG5 0.22 RABI7 0.66
ERG5S 0.05 GABARAPL2  -1.42 SPINK1 0.68
GABARAPL?2 -1.46 GJBI 0.48 UPK2 115
GJBI 0.18 HMBS 1.05 cpl 4.65
6.23
x10

HISTIHIC 0.40 HOXC4 -0.40 cp2 H
HMBS 0.41 HOXC6 1.00
HOXC6 0.79 IFT57 0.30
HPN 0.10 ITGBLI -0.59
IGFBP3 -0.35 ITPRI 0.29
KLK4 -0.46 KLK2 0.06
MFSD24 0.33 KLK4 -0.42
MIR4435.1HG.10C5
41471 0.02 Met -0.12
MMP25 0.15 MFSD2A 0.51

MIR4435.1HG.1
MX11 -0.05 0C541471 0.21
MYOF -0.41 MYOF -0.63
PALM3 0.06 NEATI 0.22
PCA3 117 PALM3 0.09
PSTPIPI 0.05 PCA3 2.10
PTN -0.26 PPFIA2 -0.46
RNF157 0.27 PTN -0.75
RP11.244H18.1.P71
2P -0.04 PTPRC 0.03
RPL234P53 0.71 RNFI157 0.59

RP11.244H18.1
SIM2.short 0.87 .P712P -0.45
SLCI241 0.23 RP11.97012.7  0.37
TBP 0.65 SIM2.short 1.56
TDRD 0.05 SLCI241 0.49
Timp4 -0.29 STOM 0.02
TMPRSS2:ERG 0.02 TBP 1.70
UPK?2 0.84 TMCC2 0.23
cpl 4.52 TMEM45B 0.24

7.49x10°

cp2 H TMEMS86A 0.32

UPK2 0.91

ZNF577 -0.55

cpl 5.18

cp2 9.67x107"*

Supplementary Table 27 Lasso output for models detecting CB,Ca, Mets trend using HK

normalised data.

All Transcripts Significant Transcripts Multiple testing

corrected Transcripts
Transcript Beta Transcript Beta Transcript Beta

408



9: APPENDICES

MARCH)S -0.02 MARCHS5 -0.15 APOCI 0.12
0.07 ERG3’ exons

ACTRS -0.02 AMACR 0.07 4-5 0.17

AMACR 0.11 APOCI 0.20 HOXC6 0.12

AMH 0.15 CACNAID -0.34 HPN 0.05

ANKRD34B -0.05 cP -0.33 KLK?2 0.29

APOCI 0.22 DLX1 0.09 SLCI12A41 0.08

ERG3’ exons 4-
AR exon 9 -0.07 5 0.06 SPINK1 0.04
ERG3’ exons 6- TMPRSS2:ER

AURKA 0.02 7 0.04 G 0.03

CACNAID -0.30 GABARAPL?2 -0.41 UPK2 0.00

CASKINI 0.18 GCNTI -0.13 cpl 5.27
3.65
x10

CDI0 -0.01 GJB1 0.07 cp2 1

CDC20 -0.04 HOXC6 0.13

CP -0.30 IFT57 0.10

DLXI 0.09 ITGBL1 -0.10

EN2 0.03 KLK?2 -0.11

ERG3’ exons 4-5 0.02 KLK4 -0.24

ERG3’ exons 6-7 0.06 MCTPI1 0.05

GABARAPL?2 -0.87 Met -0.01

GCNTI -0.13 MIR4435 1HG 0.09

GJBI 0.08 MSMB 0.07

GOLM1I -0.02 PALM3 0.13

HISTIHIC 0.41 PCA3 0.21

HMBS 0.24 PTN -0.01

HOXC6 0.17 SLCI12A41 0.05

IGFBP3 -0.01 SSTR1 0.11

ISX 0.09 STOM 0.03

ITGBLI -0.05 SULF?2 0.02

KLK?2 -0.01 TDRD 0.03

KLK4 -0.23 TMCC2 0.28

LASS1 -0.11 TMEM45B 0.30

MCTPI 0.01 ZNF577 -0.17

MED4 -0.03 cpl 6.15

MEMOI -0.08 cp2 3.32x107"*

MEX3A4 0.03

MGAT5B 0.15

MIC] -0.03

MIRI146A4 -0.10

MIR4435 1HG 0.09

MMP25 0.11

MMP26 -0.06

MXI1 -0.07

NEATI 0.04

NLRP3 0.12

ORS52A42 -0.08

PALM3 0.09
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PCA3 0.15
PDLIMS -0.17
PPAP24 0.42
PPFIA2 0.03
PPPIRI2B -0.19
RABI7 0.00
RNF157 0.01
RPL23AP53 0.12
SChLAPI 0.00
SEC61A1 -0.02
SFRP4 0.07
SIRT1 -0.02
SLCI1241 0.04
SLC4341 -0.12
SSPO -0.30
SSTR1 0.07
SULTIAI 0.01
TDRD 0.03
Timp4 -0.13
TMCC2 0.20
TMEM45B 0.29
TMEMS6A4 0.07
TMPRSS2:ERG 0.03
ZNF577 -0.11
cpl 6.38
2.17x10

p2 4
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6.17 Looking for Housekeepers

Supplementary Table 28 Top twenty transcripts with the lowest variance in cell sediment

urine fraction data

Transcript Variance
MNX1 0.94
TWISTI 0.95
SSPO 1.03
SLC441 S 1.04
COLY942 1.09
TERT 1.12
SSTRI 1.14
ABCBY9 1.15
CASKIN1 1.27
MMPI1 1.28
TMCC2 1.33
HISTIHIC 1.42
AMH 1.42
ISX 1.50
RPS11 1.50
AATF 1.51
HISTIHIE 1.53
VAX2 1.55
ARHGEF25 1.66
FDPS 1.66

Supplementary Table 29 Top twenty transcripts with the lowest IQR in cell sediment urine

fraction data

‘ Transcript 1I0OR
SSPO 0.95
RPS11 1.01
SLC441 S 1.03
TWISTI 1.04
ABCBY 1.05
HISTIHIE 1.05
B2M 1.08
VAX2 1.13
CASKIN1 1.13
RIOK3 1.15
CADPS 1.16
RPII1 97012.7 1.18
COLYA42 1.18
MMP26 1.20
MGATSB 1.20
ISX 1.21
TFDP] 1.21
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MNX1 1.21
SSTRI 1.22
RPLI18A 1.23

Supplementary Table 30 Comparing the expression between all clinical categories using

Tukey test, looking for potential house keeping transcripts.

Transcript  Significan  Transcript Significan  Transcript Significan
t t t
MARCHS 0 PTN 0 OR52A42 2
ABCBY 0 PVTI1 0 PCA3 2
ACTRS 0 RAB17 0 PDLIM5 2
AMACR 0 RNF157 0 PSTPIPI 2
AMH 0 RPI1 97012. 0 SIM?2 long 2
7
AR exon 9 0 RPL18A 0 SIM?2 short 2
AR exons 4- 0 RPL23A4AP53 0 SLCI2A1 2
8
ARHGEF25 0 RPLP2 0 SNORA20 2
BRAF 0 RPS10 0 ST6GALNACI 2
CAMK2N2 0 SACMIL 0 T™CC2 2
CASKIN1 0 SChLAPI 0 TMEM86A 2
CDC20 0 SLC4A1 S 0 AGR2 3
CDC37L1 0 SMAPI 0 BTG2 3
exons7-8
CDKN3 0 SMIM1 0 FOLHI1 3
CLU 0 SPINK1 0 GABARAPL?2 3
COLI10A41 0 SPON2 0 MAPKS8IP2 3
CP 0 STEAP2 0 SLC43A1 3
MIATNB 0 STEAP4 0 SNCA 3
DLXI 0 SYNM 0 TDRD 3
ERG3’ 0 TERT 0 ANPEP 4
exons 4-5
ERGS’ 0 TFDPI 0 B2M 4
FDPS 0 Timp4 0 CLIC2 4
GOLM1 0 TMEM47 0 EIF2D 4
HISTIHIC 0 TRPM4 0 GAPDH 4
HISTIHIE 0 TWISTI 0 LASS1 4
HISTIH2B 0 VAX2 0 MIR146A 4
F
HIST3H24 0 VPS13A4 0 MIR4435 1HG 4
HMBS 0 ZNF577 0 NLRP3 4
HOXC4 0 ALAS1 1 SRSF3 4
IFT57 0 ANKRD34B 1 SSPO 4
IGFBP3 0 AURKA 1 TERF2IP 4
IMPDH?2 0 CKAP2L 1 TMPRSS2:ER 4
G fusion
ITGBLI 0 COL9A42 1 AATF 5
KLK2 0 DNAHS 1 B4GALNT4 5
KLK3 exons 0 GJB1 1 CADPS 5
2-3
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KLK4 0 KLK3 exons 1 CAMKK?2 5
1-2
LBH 0 MED4 1 CCDC88B 5
MAK 0 MEMOI1 1 HPN 5
MCM7 0 MMP26 1 ISX 5
MDK 0 MNX1 1 ITPR1 5
Met 0 NAALADL2 1 MFESD2A 5
MEX3A4 0 P712P 1 MMP25 5
MGATSB 0 RPS11 1 SEC61A1 5
MICI 0 SFRP4 1 HPRT 6
MKi67 0 SSTRI 1 RIOK3 6
MMPI1 0 SULTIAI 1 SERPINBS 6
MSMB 0 TBP 1 SIRTI 6
MYOF 0 TMEMA45B 1 ERG3’ exons 6- 7
7

NKAINI 0 UPK2 1 HOXC6 7
OGT 0 CACNAID 2 STOM 9
PALM3 0 CDI10 2 APOCI1 11
PCSK6 0 DPP4 2 MCTPI 11
PECI 0 EN2 2 NEATI 11
PPAP2A 0 GCNTI 2 PTPRC 12
PPFIA2 0 HISTIH2BG 2 SULF2 12
PPPIRI2B 0 MX11 2

6.18 Cancer Vs CB

Supplementary Table 31 Transcripts that have significant differential expression between

CB and cancer samples (L, I, H) in the baseline normalised NanoString data.

MwU glm
Transcript p-value Adjusted p- p-value  Adjusted p- Log:(FC)
value value

HOXC6 0.0002 0.024 0.0014 0.2049 1.64
fRG3 exons 6= 5 84x1077  4.74x10%  0.0008  0.128 1.38
TMPRSS2:ERG 4.52x10"°  0.0069 0.0013 0.1979 1.31
SLC43A41 0.0003 0.0406 0.0019 0.2745 117
CLIC2 2.66x10"  0.0042 0.001 0.1645 1.05
B4GALNT4 3.38x10°  0.0053 0.0012 0.1807 1.04
CADPS 1.37x10°  0.0022 0.0004 0.0682 1.04
CKAP2L 0.0116 1 0.0033 0.4318 1.01
HPN 7.04x10°  0.0103 0.0006 0.1041 0.97
LASSI 0.0002 0.022 0.0011 0.1703 0.97
TDRD 0.0002 0.022 0.0047  0.5935 0.97
SEFRP4 0.0004 0.0478 0.0031 0.4076 0.87
OR5242 0.0343 1 0.0284 0.9777 0.85
ANKRD34B 0.0013 0.1706 0.0093 0.9777 0.83
MAPKSIP2 0.0063 0.6758 0.0067  0.7955 0.8
PCA3 0.0004 0.0565 0.0019 0.2745 0.8
CDKN?3 0.024 1 0.011 0.9777 0.76
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ERGS’ 0.0016 0.2005 0.009 0.9777 0.68
MFSD24 1.32x10"  0.0021 0.001 0.1645 0.66
MMP25 7.80x10"  0.0113 0.0008  0.1278 0.66
APOCI 1.85x10"  0.0003 0.0004  0.0586 0.65
TMCC2 0.0126 1 0.0075  0.8811 0.65
NKAIN1 0.0379 1 0.0429  0.9777 0.62
SIM?2 long 3.72x10"  0.0057 0.0031 0.4076 0.62
MCTPI 3.97x10"  6.59x10"  0.0002 0.0406 0.61
15X 0.0007 0.086 0.0024  0.3365 0.6
X? 0.0032 0.3694 0.59
MMP26 0.0448 1 0.56
AMH 0.0032 0.3694 0.0335  0.9777 0.55
SLC1241 0.0014 0.1798 0.0064  0.7769 0.55
SULF2 9.18x10"  0.0015 0.0011 0.1754 0.55
CCDC88B 6.34x10"  0.0094 0.0012 0.1785 0.54
NLRP3 0.0024 0.29 0.002 0.2817 0.54
UPK2 0.0071 0.7532 0.0147  0.9777 -0.54
TMEMS64 0.0001 0.0202 0.0019  0.2742 0.53
CAMKK?2 2.13x10"  0.0003 0.0005  0.0859 0.51
FOLHI 0.013 1 0.0121 0.9777 0.49
ANPEP 0.0011 0.1472 0.003 0.4076 0.46
SRSF3 0.0002 0.0311 0.0038  0.4879 0.45
MIR1464 0.0019 0.235 0.0023 0.3187 0.44
GCNTI 0.003 0.353 0.0035  0.4645 0.43
SIRTI 5.71x10  0.0085 0.0012 0.1785 0.41
SERPINBS 0.031 1 -0.4
NAALADL?2 0.0059 0.6513 0.0308  0.9777 -0.38
SNORA20 0.0081 0.8455 0.0206  0.9777 0.37
CDC20 0.0063 0.6758 0.0117  0.9777 0.35
TMEM45B 0.0253 1 -0.35
AATF 5.14x10"  0.0077 0.0014  0.2012 0.34
IGFBP3 0.0067 0.7136 -0.34
AURKA 0.0016 0.1909 0.0056  0.6828 0.33
CD10 0.0014 0.1798 0.0053 0.6649 0.33
PTPRC 4.62x10"  0.007 0.0014  0.2012 0.33
SSTRI 0.0164 1 0.0177  0.9777 0.33
SEC6141 0.0002 0.0285 0.0055  0.682 0.32
SIM?2 short 0.0193 1 0.0164  0.9777 0.32
SNCA 0.0016 0.1909 0.007 0.8231 0.32
MMPI11 0.013 1 0.0222 0.9777 0.31
SPINK1 0.0032 0.3694 0.0133 0.9777 -0.31
HPRT 0.0005 0.0666 0.0067  0.7955 0.29
PSTPIPI 0.046 1 0.0226  0.9777 0.28
HOXC4 0.0356 1 0.26
RIOK3 1.03x10"  0.0002 0.0013 0.1979 0.26
0.0469 1 0.25
0.0266 1 0.24
EN2 0.0192 1 0.0282 0.9777 0.24
MEX34 0.0224 1 0.0252 0.9777 0.24
CACNAID 0.0014 0.1798 0.0054  0.681 0.23
MIR4435 IHG 3.72x10"  0.0057 0.0026  0.3533 0.23
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MXI11 0.0001 0.0168 0.0026  0.3537 0.23
DPP4 0.0048 0.54 0.0108  0.9777 0.22
CASKINI 0.0343 1 0.0315  0.9777 0.21
HIST3H24 0.0193 1 0.21
ITPRI 4.15x10"” _ 0.0063 0.0019  0.2745 0.21
NEATI 1.89x10"”  0.003 0.0009  0.1377 0.21
STOM 0.0116 1 0.0219  0.9777 0.21
PDLIMS5 0.0007 0.0916 0.0046  0.5856 0.2
BTG2 0.0037 0.4198 0.0173 0.9777 0.19
GABARAPL? 0.0003 0.044 0.0025  0.3502 0.19
HISTIH2BG 0.0048 0.54 0.0064  0.7753 0.19
MAK 0.0183 1 0.19
EIF2D 0.0026 0.309 0.0125  0.9777 0.18
MGATS5B 0.0446  0.9777 0.18
TBP 0.0063 0.6758 0.0358  0.9777 0.18
TWISTI 0.0138 1 0.18
MED4 0.0146 1 0.0361 0.9777 0.17
TERF2IP 7.80x10"  0.0113 0.0019  0.2745 0.17
GAPDH 2.98x10"  0.0047 0.0007  0.109 0.16
ACTRS5 0.0164 1 0.0123 0.9777 0.15
B2M 0.0002 0.0285 0.0044  0.5721 0.14
0.0438 1 0.11
SACMIL 0.0266 1 0.0347  0.9777 0.11
RPL18A 0.0123 1 0.1
0.0138 1 0.09
STEAP4 0.0474  0.9777 0.09
HISTIH2BF 0.0424  0.9777 0.08
MEMO1 0.0361 1 0.0357  0.9777 0.08
RPS11 0.0173 1 0.08
HMBS 0.0391 0.9777 0.06
SLC441 S 0.0223 0.9777 0.03

SMAPI exons

7.8 0.0458  0.9777 0.03

Supplementary Table 32 Transcripts that have significant differential expression between

CB and cancer samples (L, I, H) in the KLK?2 ratio NanoString data.

MwU glm
Transcript p-value Adjusted p- p-value Adjusted p- Log:(FC)
value value
HOXC6 6.80x10"  0.01 0.004 0.63 0.21
fR G3 exons 6= 5 eox10%  0.01 0.001 0.24 0.18
TDRD 0.0004 0.06 0.004 0.72 0.18
SLC43A41 0.002 0.32 0.17
CADPS 0.004 0.67 0.01 1 0.16
ERGS’ 0.01 0.99 0.15
B4GALNT4 0.01 0.87 0.14
SLCI1241 0.003 0.54 0.03 1 0.13
TMCC2 0.05 0.99 0.05 1 0.13
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TMPRSS2:ERG _ 0.001 0.17 0.01 1 0.13
CKAP2L 0.02 0.99 0.02 1 0.12
MFSD24 0.01 0.99 0.02 1 0.12
CLIC2 0.004 0.58 0.01 1 0.11
LASS1 0.01 0.89 0.01 1 0.11
MMP25 0.01 0.99 0.02 1 0.11
PCA3 3.72x10"  0.01 0.003 0.41 0.1
ANKRD34B 0.04 0.99 0.09
HPN 0.001 0.23 0.01 1 0.09
TMEMS64 0.01 0.99 0.03 1 0.09
NAALADL?2 0.03 0.99 0.04 1 -0.09
UPK2 0.03 0.99 -0.09
APOCI 0.004 0.65 0.08
CCDC88B 0.01 0.99 0.05 1 0.08
ST6GALNACI  0.03 0.99 -0.08
15X 0.01 0.99 0.07
MCTPI 0.01 0.99 0.03 1 0.07
MIR1464 0.02 0.99 0.07
NLRP3 0.03 1 0.07
SULF2 0.01 0.99 0.07
SERPINBS 0.03 0.99 -0.06
SFRP4 0.04 0.99 0.06
FOLHI 0.03 0.99 0.05
OR5242 0.03 1 0.05
SIM?2.long 0.003 0.51 0.01 1 0.05
CAMKK? 0.004 0.62 0.04 1 0.04
GCNTI 0.02 1 0.03
HISTIH2BG 0.04 1 0.03

416




9: APPENDICES

Supplementary Table 33 Transcripts that have significant differential expression between CB and
cancer samples (L, I, H) in the HK normalised NanoString data.

MwU glm

Transcript p-value Adjusted p-  p-value Adjusted p-  Log:(FC)
value value

HOXC6 0.0002 0.0374 0.0019 0.3087 1.5
ERG3’ exons 6-7 0.0006 0.1045 0.0228 0.9861 1.1
TMPRSS2:ERG 0.0036 0.5527 0.0069 0.9861 1.1
CP 0.0146 0.9924 0.0109 0.9861 -1
TDRD 0.001 0.153 0.0105 0.9861 0.9
NAALADL?2 3.33x10" 0.0056 0.0012 0.2012 -0.8
SLC43A41 0.0005 0.0895 0.0168 0.9861 0.8
ST6GALNACI 0.0008 0.1311 0.0238 0.9861 -0.8
SPINK1 7.80x10" 0.0129 -0.7
UPK? 0.0007 0.1128 0.0026 0.4313 -0.7
CADPS 0.0083 0.9924 0.0076 0.9861 0.7
HPN 0.0022 0.3485 0.0072 0.9861 0.7
MFSD2A 0.0123 0.9924 0.0082 0.9861 0.7
DNAHS 0.0116 0.9924 -0.7
IGFBP3 0.0086 0.9924 -0.7
SERPINBS 0.0003 0.0489 0.0205 0.9861 -0.6
B4GALNT4 0.0273 0.9924 0.6
CLIC2 0.0055 0.8138 0.0097 0.9861 0.6
LASS1 0.0055 0.8138 0.0182 0.9861 0.6
PCA3 0.0006 0.1045 0.005 0.8153 0.6
ITGBLI 0.0227 0.9924 -0.6
CCDC88B 0.024 0.9924 0.0349 0.9861 0.5
ERGS’ 0.0164 0.9924 0.5
ISX 0.0169 0.9924 0.0124 0.9861 0.5
MMP25 0.0071 0.9924 0.5
AGR2 0.0227 0.9924 0.0348 0.9861 -0.5
GJBI 0.0024 0.3722 0.0136 0.9861 -0.5
MCTPI 0.0164 0.9924 0.0349 0.9861 0.4
PPAP2A 0.0008 0.1311 -0.4
PPPIRI2B 0.0138 0.9924 -0.4
TMEMS86A 0.0037 0.5561 0.0227 0.9861 -0.4
APOCI 0.003 0.4577 0.0172 0.9861 0.3
CAMKK? 0.024 0.9924 0.3
GCNTI 0.0482 0.9924 0.0425 0.9861 0.3
SIM?2 long 0.0109 0.9924 0.0125 0.9861 0.3
SLCI1241 0.0398 0.9924 0.3
SULF? 0.0391 0.9861 0.3
MDK 0.0022 0.3485 -0.3
MNXI 0.0193 0.9924 -0.3
oGT 0.0253 0.9924 -0.3
PALM3 0.0343 0.9924 -0.3
RABI7 0.0052 0.7725 -0.3
RPS10 0.0155 0.9924 -0.3
STEAP2 0.0076 0.9924 -0.3
MIRI146A4 0.0347 0.9861 0.2
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RIOK3 0.0379 0.9924 0.0486 0.9861 0.2
TMEMGS6A 0.0155 0.9924 0.2
HISTIHIC 0.0379 0.9924 -0.2
IFT57 0.0081 0.9924 -0.2
IMPDH?2 0.0361 0.9924 -0.2
MSMB 0.0091 0.9924 -0.2
MYOF 0.0081 0.9924 -0.2
PTN 0.0266 0.9924 -0.2
RPL18A 0.0253 0.9924 -0.2
RPLP2 0.0138 0.9924 -0.2
RPSI11 0.0253 0.9924 -0.2
ZNF577 0.0193 0.9924 -0.2
HISTIHIE 0.0438 0.9924 -0.1
Lasso Selected Probes - Boxplots for CB vs Cancer
in Cell baseline normalised data
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Supplementary Figure 13 Boxplots of all of the Lasso selected probes involved in CB vs. cancer (L, I,
and H) models from the baseline normalised data.
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Lasso Selected Probes - Boxplots for CB vs Ca

in Cell KLK2 ratio data
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Supplementary Figure 14 Boxplots of all of the Lasso selected probes involved in CB vs. cancer (L, I,
and H) models from the KLK?2 ratio data.
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Lasso Selected Probes - Boxplots for CB vs Cancer
in Cell HK normalised data

CADPS cucz2 ERG3prime.exé_7
15+ ™ ks b4
204
15 4 *
104 Bl 154 '
L] -
Py 104 10+
5 -
* -
: *] * ——
0+ . ®
Cancer cB Cancer cB Cancer c8
HOXC& NAALADL2 SiM2.long
154 - 201 »
a 154
>
W o 104
o~ e 44
& 54
- 57
L T ¥ i ¥ ¥
Cancer cB Cancer cB Cancer c8
TORD UPK2
.
15 L]
104
10
5
-
04 04 .
Cancar cB Cancer CB
Classification

Supplementary Figure 15 Boxplots of all of the Lasso selected probes involved in CB vs. cancer (L, I,
and H) models from the HK normalised data.
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Supplementary Table 34 Random Forest results for Ca vs CBN baseline normalisation

All Transcripts (n = 167) Tanscripts identified by gim (n = 85) Transcripts identified by Mann Whitney U
(n=94)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
TMPRSS2:ERG 0.54 167 APOCI 0.57 85 TMPRSS2:ERG _ 0.78 94
APOCI 0.53 166  SPINKI1 0.47 84 APOCI 0.59 93
ERG3’ exons 6-7 _ 0.53 165 TMPRSS2:ERG  0.47 83 NEATI1 0.49 92
NEATI 0.45 164  RIOK3 0.46 82 RIOK3 0.47 91
RIOK3 0.41 163 ERG3’ exons 6-7  0.44 81 ERG3’ exons 6-7  0.39 90
SIM?2 long 0.38 162  NEATI 0.44 80 MCTPI 0.36 89
MCTPI 0.35 161  SIM2 long 0.39 79 MFSD2A 0.35 38
SPINK1 0.32 160 MCTPI 0.38 78 CADPS 0.34 87
CCDC88B 0.28 159  CADPS 0.36 77 SIM2 long 0.28 86
CADPS 0.27 158 MFSD2A4 0.32 76 SPINK1 0.25 85
MXI1 0.22 157  CCDC88B 0.32 75 CCDC88B 0.24 84
MFSD2A4 0.21 156 CKAP2L 0.24 74 CKAP2L 0.23 83
MMP25 0.21 155 CAMKK?2 0.21 73 GAPDH 0.22 82
CKAP2L 0.19 154 SLC43A41 0.20 72 MXI1 0.21 81
HOXC6 0.16 153  MIR4435 IHG 0.19 71 CAMKK?2 0.20 80
SULF2 0.16 152 MMP25 0.19 70 SLC4341 0.17 79
MIR4435 1HG 0.15 151 SULF2 0.17 69 MMP25 0.16 78
SIRT1 0.15 150 HOXC6 0.17 68 AURKA 0.14 77
CAMKK? 0.14 149 GAPDH 0.16 67 HOXC6 0.14 76
AURKA 0.13 148 UPK2 0.15 66 HPRT 0.13 75
GAPDH 0.13 147 ISX 0.14 65 SIRTI 0.13 74
B4GALNT4 0.11 146  AATF 0.13 64 MIR4435 1HG 0.12 73
TDRD 0.11 145  TDRD 0.13 63 HPN 0.12 72
SLC4341 0.10 144  MXI1 0.12 62 TDRD 0.11 71
UPK?2 0.10 143  AURKA 0.11 61 IGFBP3 0.10 70
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All Transcripts (n = 167) Tanscripts identified by glm (n = 85) Transcripts identified by Mann Whitney U
(n=94)

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
HPN 0.09 142 HPRT 0.11 60 SULF2 0.10 69
IGFBP3 0.09 141 SLC4A1S 0.10 59 UPK2 0.09 68
SNCA 0.09 140 HPN 0.09 58 MMP26 0.09 67
TMEMA45B 0.07 139 PCA3 0.09 57 AATF 0.09 66
AATF 0.07 138 MAPKSIP2 0.09 56 MAPKS8IP2 0.09 65
LASS1 0.07 137 GCNTI 0.09 55 SNCA 0.09 64
GCNTI 0.06 136 STOM 0.09 54 LASS1 0.09 63
HPRT 0.06 135 B4GALNT4 0.08 53 CDI10 0.08 62
NAALADL?2 0.06 134 SLCI2A1 0.08 52 GCNTI 0.08 61
ISX 0.06 133  PTPRC 0.07 51 TMCC2 0.07 60
AMH 0.05 132 DPP4 0.07 50 SFRP4 0.07 59
SLCI2A41 0.05 131 CDI0 0.06 49 ITPR1 0.06 58
SLC4A41 S 0.05 130 EN2 0.06 48 EN2 0.06 57
CACNAID 0.05 129 SNCA 0.06 47 B4GALNT4 0.06 56
RPL23AP53 0.05 128  PDLIM5 0.05 46 ERGS5’ 0.06 55
CDC37L1 0.05 127 TMCC2 0.05 45 SLCI2A1 0.06 54
PCA3 0.05 126  SIRTI 0.05 44 ISX 0.06 53
ACTRS 0.05 125 MGATSB 0.05 43 PCA3 0.05 52
PTPRC 0.04 124  SNORA20 0.05 42 PDLIM5 0.05 51
MMP26 0.04 123  TMEMS86A 0.05 41 STOM 0.05 50
RNF157 0.04 122 LASSI 0.04 40 ACTRS 0.05 49
MAPKSIP2 0.04 121 HISTIH2BG 0.04 39 DPP4 0.05 48
STOM 0.04 120 SRSF3 0.04 38 ERG3’ exons 4-5 0.05 47
CDC20 0.04 119 NAALADL2 0.04 37 TMEMA45B 0.04 46
EN2 0.04 118 AMH 0.04 36 AMH 0.04 45
SRSF3 0.04 117 STEAP4 0.04 35 NAALADL?2 0.04 44
ERGS’ 0.04 116 CACNAID 0.04 34 HIST3H2A 0.04 43
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All Transcripts (n = 167) Tanscripts identified by glm (n = 85) Transcripts identified by Mann Whitney U
(n=94)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
SFRP4 0.04 115 ACTRS 0.04 33 TMEMS86A4 0.04 42
MYOF 0.04 114 ANKRD34B 0.03 32 FOLH1 0.04 41
CLIC2 0.04 113 SFRP4 0.03 31 HISTIH2BG 0.04 40
HISTIH2BG 0.04 112 CDC20 0.02 30 FDPS 0.03 39
MAK 0.04 111  SEC61A41 0.02 29 CLIC2 0.03 38
Timp4 0.03 110 CLIC2 0.02 28 MIR146A 0.03 37
TMEMS6A4 0.03 109  HISTIH2BF 0.02 27 SRSF3 0.03 36
PPPIRI2B 0.03 108 FOLHI 0.02 26 PTPRC 0.03 35
STEAP4 0.03 107  ANPEP 0.02 25 MAK 0.03 34
DPP4 0.03 106  ERGS’ 0.02 24 SEC61A41 0.03 33
CDI10 0.03 105 MIR146A 0.02 23 TWISTI 0.03 32
SULTIAI 0.03 104 TERF2IP 0.02 22 SERPINBS 0.02 31
PDLIMS 0.03 103  MED4 0.02 21 NLRP3 0.02 30
P712P 0.03 102 ITPRI1 0.01 20 CDC20 0.02 29
MSMB 0.03 101  BTG2 0.01 19 RPS11 0.02 28
ERG3 exons 4-5 _ 0.03 100  NKAINI 0.01 18 CACNAID 0.02 27
AGR2 0.02 99 MEMO1 0.01 17 SACMIL 0.02 26
PECI 0.02 98 CASKINI 0.01 16 RPL18A 0.02 25
MNX1 0.02 97 SMAPI exons 7-  0.01 15 ANKRD34B 0.01 24
8

PPAP24 0.02 96 TBP 0.01 14 TERF2IP 0.01 23
PPFIA2 0.02 95 SIM?2 short 0.01 13 GABARAPL?2 0.01 22
PALM3 0.02 94 MEX3A 0.01 12 SNORA20 0.01 21
ITPRI 0.02 93 CDKN3 0.01 11 MEX3A 0.01 20
RPSI11 0.02 92 SACMIL 0.01 10 HOXC4 0.01 19
VAX2 0.02 91 MMPI11 0.01 9 ALAS1 0.01 18
EIF2D 0.02 90 OR52A42 0.00 8 CAMK2N?2 0.01 17
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All Transcripts (n = 167) Tanscripts identified by glm (n = 85) Transcripts identified by Mann Whitney U
(n=94)

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank

FOLHI 0.02 89 GABARAPL?2 0.00 7 MED4 0.01 16

PVTI 0.02 88 EIF2D 0.00 6 NKAINI 0.01 15

AR.ex9 0.02 87 PSTPIPI 0.00 5 MMPI11 0.01 14

ANKRD34B 0.02 86 SSTRI1 0.00 4 ANPEP 0.01 13

MKi67 0.02 85 NLRP3 0.00 3 ARHGEF25 0.01 12

MGATS5B 0.02 84 HMBS 0.00 2 CASKINI 0.01 11

SNORA20 0.02 83 B2M 0.00 1 B2M 0.01 10

IMPDH?2 0.01 82 OR5242 0.00 9

MED4 0.01 81 BTG2 0.00 8

GJBI 0.01 80 SSTRI1 0.00 7

HIST3H2A4 0.01 79 SIM?2 short 0.00 6

CAMK2N2 0.01 78 EIF2D 0.00 5

OGT 0.01 77 MEMO1 0.00 4

HISTIH2BF 0.01 76 CDKN3 0.00 3

DLX] 0.01 75 TBP 0.00 2

MCM7 0.01 74 PSTPIPI 0.00 1

SEC6141 0.01 73

PSTPIP] 0.01 72

ARHGEF25 0.01 71

IFT57 0.01 70

GOLM]I 0.01 69

TMCC2 0.01 68

SERPINBS 0.01 67

TERF2IP 0.01 66

SPON2 0.01 65

SSPO 0.01 64

TMEM47 0.01 63
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All Transcripts (n = 167) Tanscripts identified by glm (n = 85) Transcripts identified by Mann Whitney U
(n=94)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
GABARAPL?2 0.01 62
COL942 0.01 61
RPS10 0.01 60
SIM2 short 0.01 59
MIRI146A4 0.01 58
MEX3A4 0.01 57
ALASI 0.01 56
AMACR 0.01 55
ITGBLI 0.01 54
FDPS 0.01 53
TWISTI 0.01 52
HMBS 0.01 51
KLK3 exons 1-2 0.01 50
KLK4 0.01 49
TFDP1 0.01 48
VPS13A4 0.01 47
MEMO] 0.01 46
ANPEP 0.01 45
RABI17 0.01 44
TRPM4 0.01 43
HISTIHIC 0.01 42
TBP 0.01 41
RPLI18A 0.01 40
KLK2 0.01 39
NKAIN1 0.01 38
ZNF577 0.01 37
BTG?2 0.01 36
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All Transcripts (n = 167) Tanscripts identified by glm (n = 85) Transcripts identified by Mann Whitney U
(n=94)

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank

SChLAPI 0.01 35

PCSK6 0.00 34

CLU 0.00 33

RPLP2 0.00 32

ST6GALNACI 0.00 31

OR5242 0.00 30

SMIM1 0.00 29

CDKN3 0.00 28

MICI 0.00 27

ABCBY9 0.00 26

AR.ex4 8 0.00 25

HISTIHIE 0.00 24

DNAHS 0.00 23

SMAPI exons 7-8  0.00 22

SYNM 0.00 21

TERT 0.00 20

PTN 0.00 19

NLRP3 0.00 18

CASKIN1 0.00 17

BRAF 0.00 16

Met 0.00 15

MIATNB 0.00 14

COLI1041 0.00 13

HOXC4 0.00 12

MDK 0.00 11

SSTR1 0.00 10

LBH 0.00 9
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All Transcripts (n = 167) Tanscripts identified by glm (n = 85) Transcripts identified by Mann Whitney U
(n=94)

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
RPI1 97012.7 0.00 8

STEAP2 0.00 7

KLK3 exons 2-3 0.00 5.5

SACMIL 0.00 5.5

MARCH)S 0.00 4

CP 0.00 3

B2M 0.00 2

MMPI1 0.00 1

Supplementary Table 35 Random Forest results for comparing cancer samples with clinically benign samples in KLK2 factorised cell data.

All Transcripts (n = 166) Tanscripts identified by glm (n = 24) Transcripts identified by Mann Whitney U (n =
33)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
ERG3’ exons 6-7 0.85 166 SLCI1241 0.98 24 HOXC6 1.20 33
SLCI241 0.80 165 ERG3’ exons 6-7 0.92 23 SLCI1241 0.76 32
HOXC6 0.69 164 HOXC6 0.92 22 ERG3’ exons 6-7 0.74 31
APOCI 0.41 163 PCA3 0.63 21 PCA3 0.51 30
CKAP2L 0.38 162  HISTIH2BG 0.59 20 APOCI 0.50 29
HISTIH2BG 0.36 161 CADPS 0.46 19 CKAP2L 0.42 28
TMPRSS2:ERG TMPRSS2:ERG
CADPS 0.27 160 fusion 0.44 18  fusion 0.39 27
LASSI 0.25 159  CKAP2L 0.43 17 CADPS 0.34 26
SLC4341 0.24 158 NAALADL2 0.37 16 HPN 0.34 25
NAALADL?2 0.23 157  SIM2 long 0.36 15 NAALADL?2 0.31 24
PCA3 0.23 156  TDRD 0.35 14 TMEMS86A4 0.30 23
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All Transcripts (n = 166) Tanscripts identified by glm (n = 24) Transcripts identified by Mann Whitney U (n =
33)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
HPN 0.23 155 HPN 0.35 13 UPK?2 0.28 22
SIM?2 long 0.21 154 GCNTI 0.34 12 TDRD 0.26 21
TMPRSS2:ERG fusion  0.19 153  TMEMS86A 0.24 11 SIM?2 long 0.25 20
TMEMS6A4 0.19 152 LASS1 0.24 10 SLC43A41 0.24 19
ANKRD34B 0.17 151 TMcCC2 0.23 9 ST6GALNACI 0.20 18
AMACR 0.17 150 CLIC2 0.21 8 LASSI 0.20 17
TDRD 0.17 149  MMP25 0.20 7 TMCC2 0.18 16
GCNTI 0.14 148  MFSD2A4 0.16 6 ERGS’ 0.18 15
MFSD2A4 0.12 147 MCTPI 0.14 5 SERPINBS 0.18 14
MCTPI 0.10 146  OR52A42 0.14 4 CLIC2 0.17 13
CAMKK? 0.10 145 CAMKK?2 0.11 3 SFRP4 0.17 12
CLIC2 0.09 144 CCDC88B 0.09 2 B4GALNT4 0.17 11
TMCC2 0.09 143 NLRP3 0.05 1 ANKRD34B 0.13 10
B4GALNT4 0.09 142 CAMKK?2 0.10 9
Timp4 0.09 141 MCTPI1 0.09 8
UPK?2 0.09 140 MMP25 0.09 7
ERGS’ 0.08 139 ISX 0.08 6
DLX] 0.08 138 FOLH]I 0.08 5
MMP25 0.08 137 MFSD2A 0.07 4
RNF157 0.08 136 CCDC88B 0.05 3
AURKA 0.08 135 SULF2 0.03 2
TERT 0.08 134 MIR146A 0.03 1
SFRP4 0.07 133
CP 0.06 132
NKAINI 0.06 131
CCDCS88B 0.05 130
OR5242 0.05 129
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All Transcripts (n = 166) Tanscripts identified by glm (n = 24) Transcripts identified by Mann Whitney U (n =
33)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
AR exons 4-8 0.05 128
STOM 0.04 127
ABCBY9 0.04 126
ERG3’ exons 4-5 0.04 125
SERPINBS 0.04 124
SULF2 0.04 123
MAPKSIP?2 0.03 122
AGR2 0.03 121
ISX 0.03 120
STEAP2 0.03 119
CDKN3 0.03 118
FOLHI 0.03 117
MMPI11 0.03 116
TMEM45B 0.03 115
SPINK1 0.03 114
ITGBL1 0.03 113
PPAP24 0.02 112
MEX34 0.02 111
IGFBP3 0.02 110
PVTI 0.02 109
P712P 0.02 108
PPFIA2 0.02 107
TRPM4 0.02 106
MSMB 0.02 105
SLC4A41.8 0.02 104
PPPIRI2B 0.02 103
AMH 0.02 102
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All Transcripts (n = 166) Tanscripts identified by glm (n = 24) Transcripts identified by Mann Whitney U (n =
33)

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
ST6GALNACI 0.02 101

DPP4 0.02 100

SNORA20 0.02 99

TMEM47 0.02 98

VAX2 0.02 97

HMBS 0.02 96

VPS13A4 0.01 95

RPL23AP53 0.01 94

EN2 0.01 93

MKi67 0.01 92

KLK4 0.01 91

PALM3 0.01 90

ALASI 0.01 89

RPLI18A 0.01 88

SEC61A1 0.01 87

PTN 0.01 86

MNXI 0.01 85

TWISTI 0.01 84

MGAT5B 0.01 83

RPSI11 0.01 82

ZNF577 0.01 81

PSTPIP] 0.01 80

RIOK3 0.01 79

KLK3 exons 2-3 0.01 78

COL10A41 0.01 77

OGT 0.01 76

CASKIN1 0.01 75
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All Transcripts (n = 166) Tanscripts identified by glm (n = 24) Transcripts identified by Mann Whitney U (n =
33)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
RPSI10 0.01 74
NLRP3 0.01 73
CLU 0.01 72
HISTIHIC 0.01 71
SMIM1 0.01 70
GJBI 0.01 69
MIATNB 0.01 68
CDI10 0.01 67
PDLIMS 0.01 66
TBP 0.009 65
MMP26 0.009 64
CACNAID 0.009 63
SPON2 0.009 62
MCM7 0.009 61
MEMOI 0.009 60
ACTRS 0.008 59
RPI1I 97012.7 0.008 58
ITPRI 0.008 57
TERF2IP 0.008 56
STEAP4 0.008 35
MAK 0.008 54
SULTIAI 0.007 53
NEATI 0.007 52
MYOF 0.006 51
MICI 0.006 50
KLK3 exons 1-2 0.006 49
HOXC4 0.005 48
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All Transcripts (n = 166) Tanscripts identified by glm (n = 24) Transcripts identified by Mann Whitney U (n =
33)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
SRSF3 0.005 47
GAPDH 0.005 46
MDK 0.005 45
SACMIL 0.005 44
HISTIHIE 0.005 43
GABARAPL?2 0.005 42
MIR4435 1HG 0.005 41
FDPS 0.005 40
COL942 0.004 39
DNAHS5 0.004 38
LBH 0.004 37
RABI7 0.003 36
SChLAPI 0.003 35
BRAF 0.003 34
TFDP1 0.003 33
IFT57 0.003 32
RPLP2 0.003 31
HIST3H2A 0.003 30
SIM2 short 0.002 29
ANPEP 0.002 28
AATF 0.002 27
BTG?2 0.002 26
MXI1 0.002 25
MED4 0.002 24
IMPDH? 0.002 23
SSTR1 0.002 22
MIRI146A4 0.002 21
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All Transcripts (n = 166) Tanscripts identified by glm (n = 24) Transcripts identified by Mann Whitney U (n =
33)

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
Mar-05 0.002 20

SIRTI 0.002 19

AR exon 9 0.002 18

PECI 0.002 17

SYNM 1.15x10"7 16

PTPRC 1.07x10™"7 15

GOLM]I 8.99x10°"® 14

ARHGEF25 7.55x10°" 13

CDC37LI 7.11x107"° 12

CDC20 5.77x107"* 11

SSPO 4.00x10™" 10

SMAPI exons 7-8 3.55x10" 9

EIF2D 2.66x10" 8

SNCA 1.78x107"* 7

B2M 4.44x10™" 6

CAMK2N2 0 3

HISTIH2BF 0 3

HPRT 0 3

Met 0 3

PCSK6 0 3

Supplementary Table 36 Random Forest results for CB vs Cancer in the RPLP2 and TWISTI normalised data.

All Transcripts (n = 167) Tanscripts identified by glm (n = 87) Transcripts identified by polr (n = 65)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
HOXC6 0.76 167 ERG3’ exons 6-7 1.05 87 ERG3’ exons 6-7 0.76 65
SPINK1 0.73 166 APOCI 0.81 86 CCDCS8B 0.53 64
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NAALADL2 0.67 SPINK] 0.65 0.51

UPK2 0.61 164 CCDC88B 0.57 84 B4GALNT4 0.29 62
CADPS 0.43 163 CADPS 0.48 83 HOXC6 0.27 61

TMPRSS2:ERG

ERG3’ exons 6-7 0.34 162 CKAP2L 0.43 82 fusion 0.24 60
HPN 0.32 161 GAPDH 0.37 81 RIOK3 0.19 59
15X 0.29 160 CAMKK2 0.36 80 SIM?2 long 0.19 58
CP 0.25 159 AURKA 0.22 79 MIR4435 1HG 0.18 57
TMPRSS2:ERG fusion _ 0.24 158 HPN 0.22 78 NEATI 0.18 56
PCA3 0.20 157 UPK2 0.21 77 AATF 0.15 35
TDRD 0.19 156 AATF 0.21 76 SIRTI1 0.13 54
B4GALNT4 0.18 155  B4GALNT4 0.20 75 APOCI1 0.12 33
CKAP2L 0.16 154 IGFBP3 0.18 74 HPRT 0.11 52
ST6GALNACI 0.15 153 ISX 0.18 73 MMP25 0.11 51
SFRP4 0.14 152  TDRD 0.17 72 TDRD 0.10 50
GCNTI 0.14 151 PCA3 0.17 71 MCTP1 0.09 49
Timp4 0.13 150 CDI10 0.16 70 TMEMS86A4 0.09 48
APOCI 0.12 149 CLIC2 0.13 69 CLIC2 0.09 47
SLC4341 0.12 148  NAALADL2 0.11 68 SFRP4 0.09 46
CLIC2 0.11 147  ERG3’ exons 4-5 0.10 67 ERGS’ 0.09 45
TMCC2 0.11 146  SLC441S 0.10 66 MEX34 0.09 44
EN2 0.09 145 CDC37L1 0.09 65 SLC43A41 0.08 43
AR exon 9 0.08 144  CACNAID 0.09 64 MFSD2A4 0.08 42
RNF157 0.08 143  HISTIH2BG 0.09 63 SEC61A1 0.07 41
ANKRD34B 0.08 142 SNORA20 0.08 62 MAK 0.07 40
CLU 0.08 141  ACTRS5 0.08 61 HPN 0.07 39
MMP25 0.07 140  TERF2IP 0.07 60 SULF2 0.07 38
SIM?2 long 0.07 139  TMCC2 0.07 59 GCNTI 0.06 37
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All Transcripts (n = 167) Tanscripts identified by glm (n = 87) Transcripts identified by polr (n = 65)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
TMEMS86A 0.07 138 CDC20 0.06 58 EN2 0.06 36
HMBS 0.06 137 DPP4 0.06 57 SPINK1 0.06 35
ERGS’ 0.06 136 TFDPI 0.06 56 PTPRC 0.06 34
DNAHS5 0.06 135 AR exon 9 0.06 55 ANKRD34B 0.05 33
MSMB 0.05 134 MYOF 0.05 54 IGFBP3 0.05 32
MFSD2A4 0.05 133 RNF157 0.05 53 UPK2 0.05 31
SERPINBS 0.05 132 AMH 0.05 52 AURKA 0.05 30
P712P 0.05 131 GABARAPL?2 0.05 51 SNCA 0.05 29
CAMKK?2 0.05 130 FOLHI 0.05 50 CACNAID 0.05 28
TMEM47 0.04 129 ANPEP 0.05 49 LASS1 0.05 27
PPFIA2 0.04 128 EN2 0.05 48 GAPDH 0.05 26
ITGBLI 0.04 127 ST6GALNACI 0.04 47 CAMKK? 0.04 25
MNXI 0.04 126 ANKRD34B 0.04 46 B2M 0.04 24
RIOK3 0.04 125 AMACR 0.04 45 ERG3’ exons 4-5 0.04 23
GJBI 0.04 124 ERGS’ 0.03 44 SLCI12A41 0.04 22
TWISTI 0.04 123 CP 0.03 43 ITPRI 0.04 21
SRSF3 0.03 122  EIF2D 0.03 42 MAPKSIP2 0.03 20
AGR2 0.03 121  MCM7 0.03 41 SRSF3 0.03 19
PPAP2A 0.03 120 Met 0.03 40 ISX 0.03 18
PPPIRI2B 0.03 119 DNAHS 0.02 39 FOLHI1 0.03 17
STEAP4 0.03 118  SIM2 short 0.02 38 EIF2D 0.03 16
MYOF 0.03 117 SMAPI exons 7-8 0.02 37 CDC20 0.03 15
STEAP2 0.03 116 AGR2 0.02 36 GABARAPL?2 0.02 14
IGFBP3 0.03 115 NLRP3 0.02 35 MXI1 0.02 13
CCDC88B 0.03 114 KLK2 0.02 34 AMH 0.02 12
SLC4A41.S 0.03 113 AR exons 4-8 0.02 33 TBP 0.01 11
SULF?2 0.03 112 MAK 0.02 32 PDLIMS 0.01 10
DLXI 0.03 111 TMEM47 0.02 31 ARHGEF25 0.01 9
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All Transcripts (n = 167) Tanscripts identified by glm (n = 87) Transcripts identified by polr (n = 65)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity
SEC61A1 0.03 110 CDKN3 0.02 30 ACTRS 0.01 8
PECI 0.03 109 RPS11 0.02 29 NLRP3 0.01 7
HISTIH2BG 0.03 108 PPAP2A 0.02 28 CDI10 0.01 6
LASS1 0.03 107 PALM3 0.02 27 TERF2IP 0.005 5
NLRP3 0.02 106 RP11 97012.7 0.02 26 ANPEP 0.004 4
SULTIAI 0.02 105 CAMK2N2 0.02 25 MIC1 0.004 3
ACTRS 0.02 104 PECI 0.02 24 CASKINI 0.003 2
MDK 0.02 103 FDPS 0.02 23 SACMIL 5.46x10" 1
SLCI12A41 0.02 102 ARHGEF25 0.02 22

TMEMA45B 0.02 101 HOXC4 0.02 21

MAK 0.02 100 MARCH)S 0.01 20

SIRT1 0.02 99 TBP 0.01 19

MAPKSIP2 0.02 98 ABCBY 0.01 18

MCTPI 0.02 97 B2M 0.01 17

AATF 0.02 96 ALAS1 0.01 16

RABI7 0.02 95 DLX1 0.01 15

MEMO] 0.02 94 BTG2 0.01 14

PALM3 0.02 93 PCSK6 0.01 13

TRPM4 0.02 92 SSTR1 0.01 12

SMIM]1 0.02 91 STEAP2 0.01 11

ABCBY 0.02 90 CLU 0.01 10

MIRI146A4 0.02 89 LBH 0.01 9

IMPDH? 0.02 88 MIATNB 0.01 8

MGAT5B 0.02 87 COL10A1 0.01 7

DPP4 0.02 86 COLY9A2 0.01 6

MIR4435 1HG 0.02 85 oGT 0.01 5

CACNAID 0.01 84 MEX3A 0.01 4

CDC20 0.01 83 GOLM]1 0.01 3
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All Transcripts (n = 167) Tanscripts identified by glm (n = 87) Transcripts identified by polr (n = 65)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
RPS10 0.01 82 CASKINI 0.004 2
CASKINI 0.01 81 BRAF 0.002 1
Met 0.01 80

SPON2 0.01 79

TERF2IP 0.01 78

HISTIHIE 0.01 77

GAPDH 0.01 76

AURKA 0.01 75

NKAIN1 0.01 74

PVTI 0.01 73

STOM 0.01 72

VPS13A4 0.01 71

AMH 0.01 70

COL942 0.01 69

AMACR 0.01 68

SIM2 short 0.01 67

CDI0 0.01 66

FDPS 0.01 65

MMP26 0.01 64

MXI1 0.01 63

ARHGEF25 0.01 62

IFT57 0.01 61

KLK?2 0.01 60

HOXC4 0.01 59

KLK4 0.01 58

MED4 0.01 57

RPLP2 0.01 56

CDKN3 0.01 55
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All Transcripts (n = 167) Tanscripts identified by glm (n = 87) Transcripts identified by polr (n = 65)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
CDC37L1 0.01 54
MMPI1 0.01 53
AR exons 4-8 0.01 52
RPSI11 0.01 51
SMAPI exons 7-8 0.01 50
FOLHI 0.01 49
GOLM1I 0.01 48
PTN 0.01 47
HIST3H2A 0.01 46
ERG3’ exons 4-5 0.01 45
TERT 0.01 44
MEX3A4 0.01 43
SYNM 0.01 42
B2M 0.01 41
SChLAPI 0.01 40
RPI11 97012.7 0.01 39
RPLI18A 0.01 38
GABARAPL?2 0.01 37
HISTIHIC 0.01 36
BRAF 0.01 35
SNORA20 0.01 34
ORS52A42 0.01 33
ANPEP 0.01 32
PSTPIP] 0.01 31
RPL23AP53 0.01 30
COL10A41 0.01 29
SSTR1 0.01 28
LBH 0.005 27
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All Transcripts (n = 167) Tanscripts identified by glm (n = 87) Transcripts identified by polr (n = 65)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
ITPR] 0.005 26
TFDPI 0.005 25
CAMK2N?2 0.004 24
TBP 0.004 23
PTPRC 0.004 22
ZNF577 0.004 21
MARCHS 0.003 20
ALASI 0.003 19
HPRT 0.003 18
oOGT 0.003 17
KLK3 exons 1-2 0.002 16
MCM7 0.002 15
VAX2 0.002 14
SSPO 0.002 13
BTG2 0.002 12
MIC] 0.002 11
NEAT! 0.002 10
MKi67 0.002 9
MIATNB 0.002 8
EIF2D 0.002 7
SACMIL 1.60x10"7 6
SNCA 1.08x10-"7 5
PCSK6 7.99x10°"% 4
HISTIH2BF 1.78x107"% 3
KLK3 exons 2-3 4.44x10°" 2
PDLIMS5 0 1
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6.19 High Risk Vs CB

Supplementary Table 37 Transcripts that have significant differential expression (using
glm and MWU tests) between clinically benign and high-risk cancer samples in the

baseline normalized NanoString data.

MwU glm
Transcript p-value Adjusted p- p-value  Adjusted p- Log:(FC)
value value

HOXC6 0.0002 0.0299 0.004  0.6711 2
fRG3 exons - ¢ 110 0.001 0.0371  0.9942 1.6
TDRD 0.0011 0.1558 0.0333  0.9942 1.5
TMPRSS2:ERG  0.0004 0.0668 0.0386  0.9942 1.3
B4GALNT4 2.88x10"°  0.0048 0.0409  0.9942 1.2
SLC4341 0.002 0.2897 0.0117  0.9942 1.2
CADPS 6.70x10"  0.011 0.02 0.9942 1.1
CLIC2 0.0002 0.0386 0.0087  0.9942 1
HPN 0.0008 0.1258 0.0092  0.9942 0.9
LASSI 0.0011 0.1558 0.0103  0.9942 0.9
MAPKSIP?2 0.0148 1 0.0336  0.9942 0.9
SERP4 0.0013 0.1919 0.0155  0.9942 0.9
CKAP2L 0.0392  0.9942 0.9
CDKN3 0.0326  0.9942 0.9
ANKRD34B 0.0054 0.7002 0.0368  0.9942 0.8
fRG3 exons 4= o 0937 0.5042 0.0434  0.9942 0.8
APOC] 0.0002 0.0386 0.0055  0.9103 0.7
ERGS’ 0.0077 0.9678 0.7
MMP25 0.0045 0.5959 0.0162  0.9942 0.7
AMH 0.0108 1 0.6
CCDC88B 0.0007 0.1014 0.0104  0.9942 0.6
FOLHI 0.0108 1 0.027  0.9942 0.6
ISX 0.0026 0.3638 0.0234  0.9942 0.6
MCTP]I 0.0001 0.0228 0.0098  0.9942 0.6
SIM? long 0.0002 0.0386 0.0124  0.9942 0.6
SRSF3 0.0234 1 0.0225  0.9942 0.6
ANPEP 0.0234 1 0.0324  0.9942 0.5
GCNTI 0.0054 0.7002 0.0209  0.9942 0.5
MFSD2A 0.0017 0.2364 0.0216  0.9942 0.5
NLRP3 0.0202 1 0.0277  0.9942 0.5
SLCI241 0.0064 0.8317 0.0267  0.9942 0.5
SULF2 0.0007 0.1014 0.0141  0.9942 0.5
TMEMS64 0.0005 0.0823 0.022  0.9942 0.5
AATF 0.0007 0.1014 0.0108  0.9942 0.4
CAMKK?2 0.0007 0.1014 0.0128  0.9942 0.4
CDC20 0.0202 1 0.0343  0.9942 0.4
EN2 0.0091 1 0.4
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ARHGEF25 0.0464 1 0.3
AURKA 0.0234 1 0.3
CDI10 0.0127 1 0.0481 0.9942 0.3
HPRT 0.0025 0.3503 0.0255  0.9942 0.3
MEX34 0.0045 0.5959 0.0496  0.9942 0.3
MICI 0.031 1 0.3
PTPRC 0.0013 0.1919 0.0116  0.9942 0.3
RIOK3 5.63x10"  0.0093 0.0237  0.9942 0.3
SEC6141 0.0031 0.4184 0.0341 0.9942 0.3
SIRT1 0.0025 0.3503 0.0206  0.9942 0.3
SNCA 0.027 1 0.3
ACTRS5 0.0127 1 0.2
CACNAID 0.0202 1 0.0356  0.9942 0.2
CASKINI 0.0464 1 0.2
EIF2D 0.0077 0.9678 0.0297  0.9942 0.2
GABARAPL?2 0.0127 1 0.036 0.9942 0.2
ITPRI 0.0008 0.1258 0.0091 0.9942 0.2
MAK 0.0148 1 0.2
MIR4435 1HG _ 0.0007 0.1014 0.0169  0.9942 0.2
MXI11 0.0054 0.7002 0.0206  0.9942 0.2
NEATI 0.0002 0.0299 0.0039  0.6541 0.2
PDLIMS5 0.0464 1 0.2
1BP 0.0202 1 0.2
B2M 0.0008 0.1258 0.0203 0.9942 0.1
GAPDH 0.0031 0.4184 0.0111 0.9942 0.1
SACMIL 0.0234 1 0.1
TERF2IP 0.0045 0.5959 0.0197  0.9942 0.1
IGFBP3 0.0464 1 -0.3
SPINK1 0.0077 0.9678 -0.4
UPK2 0.0202 1 -0.8

Supplementary Table 38 Transcripts that have significant differential expression (using
glm and MWU tests) between clinically benign and high-risk cancer samples in the KLK?

ratio NanoString data.

MwU glm
Transcript p-value Adjusted p- p-value  Adjusted p- Log:(FC)
value value

TMPRSS2:ERG  0.004 0.68 0.028 1.000 0.25
ERG 3’ exons

6-7 0.000 0.07 0.008 1.000 0.25
HOXC6 4.28E-05  0.01 0.25
TDRD 0.001 0.09 0.017 1.000 0.24
SLC43A41 0.002 0.27 0.022 1.000 0.21
CADPS 0.007 1 0.18
B4GALNT4 0.002 0.33 0.035 1.000 0.17
ERG S5’ 0.027 1 0.16
SLCI1241 0.013 1 0.15
ERG 3’ exons

4-5 0.046 1 0.050 1.000 0.14
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LASS1 0.015 1 0.029 1.000 0.13
CLIC2 0.004 0.59 0.027 1.000 0.13
HPN 0.003 0.49 0.032 1.000 0.11
15X 0.017 1 0.11
APOCI 0.009 1 0.09
TMEMS864 0.017 1 0.09
PCA3 0.003 0.49 0.015 1.000 0.08
CCDC88B 0.027 1 0.08
SFRP4 0.031 1 0.08
MCTPI 0.020 1 0.08
SIM?2 long 0.001 0.14 0.028 1.000 0.08
FOLHI 0.008 1 0.07
CAMKK? 0.036 1 0.05
SEC6141 0.046 1 0.05
GCNTI 0.027 1 0.043 1.000 0.04

Supplementary Table 39 Transcripts that have significant differential expression (using
glm and MWU tests) between clinically benign and high-risk cancer samples in the HK

normalised NanoString data.

MwU glm

Transcript p-value Adjusted p- p-value  Adjusted p- Log:(FC)
value value

HOXC6 0.0005 0.0882 0.0059 0.9765 1.6
fRG3 exons 6= 9913 0.2186 0.0266  0.9765 14
TDRD 0.0031 0.4948 0.0272 0.9765 1.1
TM.PRSSZ'ERG 0.0094 1 0.033 0.9765 1.1
fusion
ST6GALNACI  0.0037 0.5969 0.0168 0.9765 -1
SLC43A41 0.0013 0.2186 0.0197  0.9765 0.9
B4GALNT4 0.0202 1 0.8
HPN 0.0077 1 0.0314 0.9765 0.8
CADPS 0.0145 1 0.0326 0.9765 0.7
CCDCS88B 0.031 1 0.0482 0.9765 0.7
SPINK 1 0.0007 0.1115 0.0092 0.9765 -0.7
UPK2 0.0054 0.8564 0.0237  0.9765 -0.7
CLIC2 0.0108 1 0.0278 0.9765 0.6
LASSI 0.0202 1 0.0451 0.9765 0.6
GJBI 0.0108 1 0.0197  0.9765 -0.6
IGFBP3 0.0464 1 -0.6
NAALADL?2 0.0031 0.4948 0.0133 0.9765 -0.6
SERPINBS 0.0054 0.8564 0.0199 0.9765 -0.6
ISX 0.0288 1 0.5
MMP25 0.0407 1 0.5
GCNTI 0.0356 1 0.0446 0.9765 0.4
MCTPI 0.0464 1 0.4
SIM? long 0.0234 1 0.0317  0.9765 0.4
PALMS3 0.0108 1 0.0394 0.9765 -0.4
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APOCI 0.0173 1 0.3
MSMB 0.0356 1 -0.3
PPAP2A 0.0077 1 -0.3
RABI7 0.0356 1 -0.3
RPSI0 0.0464 1 -0.3
SPON2 0.0464 1 -0.3
STEAP2 0.0173 1 -0.3
VAX2 0.0109 1 -0.3
TMEMS86A 0.0464 1 0.2
IFT57 0.027 1 -0.2
PTN 0.031 1 0.0491 0.9765 -0.2
Lasso Selected Probes - Boxplots for CBN vs high-risk Ca
in Cell data with baseline normalisation
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Supplementary Figure 16 Boxplots showing all of the Lasso selected probes in CB Vs. high-risk
cancer models in baseline normalised cell data.
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Lasso Selected Probes - CB vs high-risk cancer
in Cell KLK2 ratio data
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Supplementary Figure 17 Boxplots showing all of the Lasso selected probes in CB Vs. high-risk
cancer models in KLK?2 ratio cell data.
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Supplementary Figure 18 Boxplots showing all of the Lasso selected probes in CB Vs. high-risk
cancer models in HK normalised cell data.
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Supplementary Table 40 Random Forest results for HR-Ca vs CBN.

All Transcripts (n = 167) Tanscripts identified by glm (n = 51) Transcripts identified by Mann Whitney U
(n = 65)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
SPINK1 0.70 167 CADPS 0.67 51 ERG3’ exons 6-7  0.76 65
CADPS 0.69 166 ERG3’ exons 6-7  0.66 50 CCDC88B 0.53 64
NAALADL?2 0.67 165 CCDC88B 0.51 49 CADPS 0.51 63
HOXC6 0.64 164  RIOK3 0.34 48 B4GALNT4 0.29 62
HPN 0.57 163  HOXC6 0.27 47 HOXC6 0.27 61
TMPRSS2:ERG
ERG3’ exons 6-7 _ 0.49 162  B4GALNT4 0.26 46 fusion 0.24 60
TMPRSS2:ERG

UPK?2 0.47 161  fusion 0.26 45 RIOK3 0.19 59
TMPRSS2:ERG

fusion 0.43 160  SIM2 long 0.25 44 SIM2 long 0.19 58
CcP 0.42 159  MIR4435 IHG 0.22 43 MIR4435 1HG 0.18 57
TDRD 0.39 158 SFRP4 0.21 42 NEATI1 0.18 56
MNXI 0.39 157  HPRT 0.17 41 AATF 0.15 55
PCA3 0.36 156 APOCI1 0.16 40 SIRTI 0.13 54
ST6GALNACI 0.34 155 AATF 0.16 39 APOCI 0.12 53
™CC2 0.34 154 NEATI 0.15 38 HPRT 0.11 52
SIM?2 long 0.34 153  TMEMS86A 0.13 37 MMP25 0.11 51
APOCI 0.34 152 MEX34 0.13 36 TDRD 0.10 50
CKAP2L 0.31 151 SLC43A41 0.11 35 MCTPI 0.09 49
PPFIA2 0.29 150 HPN 0.11 34 TMEM86A4 0.09 48
SERPINBS 0.27 149 SEC61A41 0.10 33 CLIC2 0.09 47
TMEM45B 0.27 148  SIRTI 0.10 32 SFRP4 0.09 46
AGR2 0.26 147 CLIC2 0.09 31 ERGS5’ 0.09 45
EN2 0.25 146  GCNTI 0.09 30 MEX3A4 0.09 44
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All Transcripts (n = 167) Tanscripts identified by glm (n = 51) Transcripts identified by Mann Whitney U
(n = 65)

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
ISX 0.25 145 MCTPI1 0.08 29 SLC4341 0.08 43
GCNTI 0.25 144 MFSD2A4 0.08 28 MFSD2A 0.08 42
MFSD2A4 0.24 143 TDRD 0.08 27 SEC61A41 0.07 41
DNAHS 0.24 142 SULF2 0.06 26 MAK 0.07 40
SFRP4 0.24 141  PTPRC 0.06 25 HPN 0.07 39
SLC4341 0.24 140  GAPDH 0.06 24 SULF2 0.07 38
B4GALNT4 0.24 139  ISX 0.06 23 GCNTI 0.06 37
PTN 0.24 138  ANKRD34B 0.05 22 EN2 0.06 36
GJBI 0.23 137 MMP25 0.05 21 SPINK1 0.06 35
MMP25 0.23 136  ITPRI1 0.04 20 PTPRC 0.06 34
Timp4 0.22 135 CACNAID 0.04 19 ANKRD34B 0.05 33
RIOK3 0.21 134  MXII 0.04 18 IGFBP3 0.05 32
MDK 0.21 133 SRSF3 0.04 17 UPK2 0.05 31
CLU 0.20 132 LASS1 0.03 16 AURKA 0.05 30
LASSI 0.20 131  B2M 0.03 15 SNCA 0.05 29
MMPI11 0.20 130 SLCI2A1 0.03 14 CACNAID 0.05 28
ERG3 exons 4-5 _ 0.19 129  GABARAPL2 0.03 13 LASS1 0.05 27
VAX2 0.19 128  ERG3’ exons 4-5  0.03 12 GAPDH 0.05 26
SPON2 0.18 127  EIF2D 0.03 11 CAMKK?2 0.04 25
PPAP24 0.18 126 MAPKSIP2 0.02 10 B2M 0.04 24
TMEM47 0.17 125 FOLHI 0.02 9 ERG3’ exons 4-5  0.04 23
CLIC2 0.17 124 CAMKK?2 0.02 8 SLCI2A41 0.04 22
SLC1241 0.17 123 ANPEP 0.02 7 ITPRI 0.04 21
COL942 0.17 122 CDC20 0.01 6 MAPKSIP2 0.03 20
ANKRD34B 0.17 121  CKAP2L 0.01 5 SRSF3 0.03 19
TWISTI 0.17 120  CDKN3 0.01 4 ISX 0.03 18
SSPO 0.17 119  TERF2IP 0.01 3 FOLH]I 0.03 17
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All Transcripts (n = 167) Tanscripts identified by glm (n = 51) Transcripts identified by Mann Whitney U
(n = 65)

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank

MYOF 0.17 118 CDI10 0.01 2 EIF2D 0.03 16

CCDC88B 0.16 117 NLRP3 0.01 1 CDC20 0.03 15

SIM2 short 0.16 116 GABARAPL?2 0.02 14

DLXI 0.16 115 MXI1 0.02 13

CAMKK?2 0.16 114 AMH 0.02 12

IGFBP3 0.15 113 TBP 0.01 11

IFT57 0.15 112 PDLIMS 0.01 10

MMP26 0.15 111 ARHGEF25 0.01 9

SNORA20 0.15 110 ACTRS 0.01 8

RNF157 0.14 109 NLRP3 0.01 7

TMEMS86A 0.14 108 CDI10 0.01 6

MSMB 0.14 107 TERF2IP 0.01 5

P712P 0.14 106 ANPEP 0.00 4

PALM3 0.14 105 MIC1 0.00 3

SLC4A41.S 0.14 104 CASKINI 0.00 2

MAPKSIP2 0.14 103 SACMIL 0.00 1

MCTPI 0.14 102

ERGS’ 0.14 101

FOLHI 0.14 100

AMH 0.13 99

SEC61A1 0.13 98

AR.ex9 0.13 97

ABCBY 0.13 96

MIRI146A4 0.13 95

RPSI11 0.12 94

RABI7 0.12 93

ORS52A42 0.12 92
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All Transcripts (n = 167) Tanscripts identified by glm (n = 51) Transcripts identified by Mann Whitney U
(n = 65)

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
ACTRS 0.11 91

RPSI10 0.11 90

Met 0.11 89

OGT 0.11 38

STEAP2 0.11 87

MEX34 0.11 86

ITGBL1 0.11 85

PECI 0.10 84

SSTRI 0.10 83

HISTIHIE 0.10 82

HISTIH2BG 0.10 81

MGATS5B 0.10 80

SULF2 0.10 79

HMBS 0.10 78

MAK 0.10 77

AR exons 4-8 0.10 76

SMAPI exons 7-8  0.10 75

CDC37L1 0.09 74

RPLP2 0.09 73

AMACR 0.09 72

NEATI 0.09 71

STEAP4 0.09 70

MED4 0.09 69

AURKA 0.09 68

NKAINI 0.08 67

GOLM]I 0.08 66

CDI10 0.08 65

448



9: APPENDICES

All Transcripts (n = 167) Tanscripts identified by glm (n = 51) Transcripts identified by Mann Whitney U
(n = 65)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
ZNF577 0.08 64
GAPDH 0.08 63
KLK3 exons 1-2 0.08 62
IMPDH? 0.08 61
MXI1 0.08 60
RPL23AP53 0.08 59
FDPS 0.08 58
ALASI 0.08 57
PPPIRI2B 0.08 56
PCSK6 0.08 55
NLRP3 0.08 54
MCM7 0.07 53
DPP4 0.07 52
ARHGEF25 0.07 51
SRSF3 0.07 50
STOM 0.07 49
PTPRC 0.07 48
VPS13A4 0.07 47
CACNAID 0.07 46
ANPEP 0.07 45
MIC] 0.07 44
CAMK2N?2 0.06 43
AATF 0.06 42
KLK4 0.06 41
HISTIHIC 0.06 40
TRPM4 0.06 39
KLK3 exons 2-3 0.06 38
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All Transcripts (n = 167) Tanscripts identified by glm (n = 51) Transcripts identified by Mann Whitney U
(n = 65)

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
PVTI 0.06 37

BTG2 0.06 36

TERT 0.06 35

SIRT1 0.06 34

HPRT 0.06 33

MIATNB 0.05 32

KLK2 0.05 31

MEMOI 0.05 30

RPLISA 0.05 29

COLI1041 0.05 28

RPI1I 97012.7 0.05 27

GABARAPL?2 0.05 26

LBH 0.04 25

MKi67 0.04 24

EIF2D 0.04 23

SULTIAI 0.04 22

HOXC4 0.04 21

CDC20 0.04 20

HIST3H2A4 0.04 19

CDKN3 0.04 18

CASKIN1 0.03 17

MARCHS 0.03 16

BRAF 0.03 15

HISTIH2BF 0.03 14

PSTPIP] 0.03 13

ITPRI 0.03 12

TFDPI 0.03 11
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All Transcripts (n = 167) Tanscripts identified by glm (n = 51) Transcripts identified by Mann Whitney U
(n = 65)

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
TERF2IP 0.03 10

TBP 0.03 9

MIR4435 IHG 0.03 8

SYNM 0.03 7

SACMIL 0.03 6

SChLAPI 0.03 5

SNCA 0.02 4

SMIM1 0.02 3

PDLIM5 0.02 2

B2M 0.01 1
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Supplementary Table 41 Random Forest results for comparing high-risk cancer samples with clinically benign samples in KLK?2 factorised cell data.

All Transcripts (n = 166) Tanscripts identified by glm (n = 12) Transcripts identified by Mann Whitney U (n =
25)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
HOXC6 1.66 166 CLIC2 0.80 12 HOXC6 1.73 25
TDRD 0.33 165 TDRD 0.70 11 FOLH1 0.48 24
SLC4341 0.30 164 SLC4341 0.68 10 CADPS 0.39 23
FOLHI 0.30 163 SIM2 long 0.65 9 TDRD 0.36 22
CADPS 0.27 162  ERG3’ exons 6-7 0.58 8 SIM?2 long 0.35 21
SIM?2 long 0.26 161 PCA3 0.56 7 CLIC2 0.33 20
CLIC2 0.24 160  B4GALNT4 0.45 6 SLC4341 0.30 19
ERG3’ exons 6-7 0.21 159 HPN 0.40 5 ERG3’ exons 6-7 0.25 18
TMPRSS2:ERG
HPN 0.19 158  fusion 0.34 4 PCA3 0.24 17
PCA3 0.14 157  GCNTI 0.32 3 APOCI 0.22 16
B4GALNT4 0.13 156  LASSI 0.23 2 SLCI12A41 0.22 15
APOCI 0.09 155 ERG3’ exons 4-5 0.12 1 B4GALNT4 0.20 14
NAALADL?2 0.09 154 GCNTI 0.11 13
TMPRSS2:ERG

SLCI241 0.08 153 fusion 0.10 12
LASS1 0.07 152 TMEMS86A 0.10 11
TMEMS6A4 0.07 151 SEC61A41 0.10 10
GCNTI 0.07 150 HPN 0.10 9
ISX 0.05 149 CCDCS8B 0.09 8
HISTIH2BG 0.05 148 ISX 0.09 7
DLX] 0.05 147 MCTPI 0.08 6
Timp4 0.04 146 ERGS5’ 0.07 5
CAMKK? 0.04 145 LASS1 0.07 4
TMPRSS2:ERG fusion  0.04 144 ERG3’ exons 4-5 0.06 3
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All Transcripts (n = 166) Tanscripts identified by glm (n = 12) Transcripts identified by Mann Whitney U (n =
25)

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
GJBI 0.04 143 SFRP4 0.03 2
TMEMA45B 0.04 142 CAMKK? 0.03 1
HISTIHIC 0.04 141

SMIM1 0.04 140

MMP25 0.03 139

VAX2 0.03 138

UPK?2 0.03 137

SULTI1AI 0.03 136

ABCBY 0.03 135

SEC61A1 0.03 134

RNF157 0.03 133

CKAP2L 0.03 132

AR exons 4-8 0.03 131

AURKA 0.03 130

IGFBP3 0.02 129

P712P 0.02 128

SIM2 short 0.02 127

SFRP4 0.02 126

GOLM]I 0.02 125

SPINK 1 0.02 124

ERG3’ exons 4-5 0.02 123

CDI0 0.02 122

ERGS’ 0.02 121

MGAT5B 0.02 120

STEAP2 0.02 119

ANKRD34B 0.02 118

CP 0.02 117
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All Transcripts (n = 166) Tanscripts identified by glm (n = 12) Transcripts identified by Mann Whitney U (n =
25)

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
SLC4A41.8 0.02 116

MNXI 0.02 115

ST6GALNACI 0.02 114

LBH 0.02 113

COL942 0.02 112

NKAINI 0.02 111

SRSF3 0.02 110

SERPINBS 0.02 109

KLK3 exons 2-3 0.02 108

PPPIRI2B 0.01 107

ACTRS 0.01 106

SPON2 0.01 105

SULF2 0.01 104

RPL23AP53 0.01 103

CAMK2N2 0.01 102

CDC37L1 0.01 101

HISTIH2BF 0.01 100

MIR1464 0.01 99

TERT 0.01 98

SACMIL 0.01 97

ALASI 0.01 96

OR5242 0.01 95

HIST3H2A4 0.01 94

RPSI11 0.01 93

KLK3 exons 1-2 0.01 92

NLRP3 0.01 91

TMEM47 0.01 90
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All Transcripts (n = 166) Tanscripts identified by glm (n = 12) Transcripts identified by Mann Whitney U (n =
25)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
MEX34 0.01 89
MKi67 0.01 88
RIOK3 0.01 87
PSTPIP] 0.01 86
BRAF 0.01 85
SSPO 0.01 84
MDK 0.01 83
ITGBL1 0.01 82
AMACR 0.01 81
VPS134 0.01 80
RABI7 0.01 79
MICI 0.01 78
PPAP24 0.01 77
KLK4 0.01 76
SNORA20 0.01 75
PECI 0.01 74
PTN 0.01 73
RPSI10 0.01 72
MFSD2A4 0.01 71
CACNAID 0.01 70
PALM3 0.01 69
MCTPI 0.01 68
CCDC88B 0.01 67
AMH 0.01 66
STOM 0.01 65
AGR2 0.01 64
DNAHS 0.01 63
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All Transcripts (n = 166) Tanscripts identified by glm (n = 12) Transcripts identified by Mann Whitney U (n =
25)

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
HOXC4 0.01 62

TWISTI 0.01 61

PDLIMS 0.01 60

AATF 0.01 59

PVTI 0.004 58

B2M 0.004 57

HPRT 0.004 56

DPP4 0.004 35

RPLP2 0.004 54

MEMOI 0.004 33

MSMB 0.004 52

PPFIA2 0.004 51

COL10A41 0.004 50

ZNF577 0.004 49

TRPM4 0.004 48

MIATNB 0.004 47

SChLAPI 0.004 46

GAPDH 0.004 44.5

RPLISA 0.004 44.5

TMCC2 0.003 43

MCM7 0.003 42

NEATI 0.003 41

HISTIHIE 0.003 40

CLU 0.002 39

MYOF 0.002 38

BTG2 0.002 37

ITPRI 0.002 36
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All Transcripts (n = 166)

Transcripts identified by Mann Whitney U (n =
25)

Tanscripts identified by glm (n = 12)

Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
CDC20 0.002 35
STEAP4 0.002 34
Met 0.002 33
EN2 0.002 32
SMAPI exons 7-8 0.002 31
SSTR1 0.002 30
MAPKSIP? 0.002 29
MAK 0.002 28
GABARAPL? 0.002 27
CASKINI 0.002 26
MED4 0.002 25
IFTS7 0.002 24
AR.ex9 0.002 23
TFDP] 2.17604x10"7 22
RPI11 97012.7 2.13163x107"7 21
CDKN3 2.04281x10"7 19.5
HMBS 2.04281x10"7  19.5
SNCA 1.77636x10"7 18
ARHGEF25 1.73195x107"7 17
OGT 1.59872x10"7 16
MXI1 1.55431x10"7 15
MARCHS 1.46549x10"7 14
MMPI11 1.42109x10"7 13
TERF2IP 1.33227x10"7 12
SYNM 1.24345x10"7 11
ANPEP 1.19904x10"7 9.5
IMPDH? 1.19904x10"7 9.5
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All Transcripts (n = 166) Tanscripts identified by glm (n = 12) Transcripts identified by Mann Whitney U (n =
25)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
MIR4435_IHG 1.02141x10"7 8
MMP26 9.32587x10"° 6
PCSK6 9.32587x10" 6
TBP 9.32587x10" 6
FDPS 8.43769x10"° 4
EIF2D 7.10543x10" 3
SIRTI 3.9968x10"° 2
PTPRC 3.55271x10"% 1

Supplementary Table 42 Random Forest results when comparing clinically benign samples to high risk cancer samples using the RPLP2 and TWISTI

normalised data.

All Transcripts (n = 167) Tanscripts identified by glm (n = 20) Transcripts identified by polr (n = 35)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
CADPS 0.59 167  HOXC6 0.87 20 SPINK1 0.69 35
SPINK1 0.58 166  CADPS 0.77 19 HOXC6 0.68 34
HOXC6 0.50 165 SPINKI1 0.77 18 CADPS 0.63 33
ST6GALNAC!I 0.36 164 ERG3’ exons 6-7 0.47 17 ST6GALNACI 0.27 32
VAX2 0.27 163  ST6GALNACI 0.39 16 VAX2 0.26 31
ERG3’ exons 6-7 0.19 162  NAALADL2 0.34 15 ERG3’ exons 6-7 0.25 30
NAALADL?2 0.18 161 SLC43A1 0.25 14 B4GALNT4 0.23 29
SLC4341 0.15 160 CLIC2 0.24 13 NAALADL2 0.22 28
HPN 0.13 159 TDRD 0.23 12 PPAP2A 0.20 27
PPAP24 0.12 158 UPK2 0.22 11 SLC4341 0.19 26
UPK?2 0.12 157 PTN 0.21 10 HPN 0.16 25
TDRD 0.12 156  SERPINBS 0.20 9 UPK2 0.15 24
PTN 0.11 155  PALM3 0.17 8 CLIC2 0.14 23
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All Transcripts (n = 167) Tanscripts identified by glm (n = 20) Transcripts identified by polr (n = 35)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
TMPRSS2:ERG fusion 0.10 154 GJBI 0.16 7 APOCI 0.14 22
IFT57 0.10 153 HPN 0.16 6 TDRD 0.13 21
TMPRSS2:ERG
SERPINBS 0.09 152 fusion 0.15 5 ISX 0.13 20
SFRP4 0.08 151 CCDCS88B 0.13 4 IFT57 0.12 19
GJBI 0.08 150 SIM2 long 0.13 3 TMEMS86A 0.12 18
CLIC2 0.08 149 LASSI1 0.11 2 MSMB 0.12 17
MAPKSIP2 0.08 148 GCNTI 0.09 1 SERPINBS 0.11 16
TMPRSS2:ERG
B4GALNT4 0.07 147 fusion 0.11 15
ERGS’ 0.06 146 MMP25 0.11 14
COL942 0.06 145 SPON2 0.09 13
APOCI 0.06 144 STEAP2 0.08 12
SIM?2 long 0.06 143 PALM3 0.08 11
PECI 0.06 142 GCNTI 0.08 10
ISX 0.06 141 RABI17 0.08 9
MSMB 0.06 140 PTN 0.08 8
CP 0.06 139 SIM?2 long 0.07 7
TMEMS86A 0.05 138 RPS10 0.07 6
MNXI 0.05 137 GJB1 0.07 5
PALM3 0.05 136 CCDC88B 0.07 4
IGFBP3 0.04 135 MCTPI1 0.05 3
ANKRD34B 0.04 134 LASS1 0.05 2
LASS1 0.04 133 IGFBP3 0.05 1
CCDC88B 0.04 132
TMCC?2 0.04 131
GCNTI 0.04 130
FOLHI 0.04 129

459



9: APPENDICES

All Transcripts (n = 167) Tanscripts identified by glm (n = 20) Transcripts identified by polr (n = 35)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
DLXI 0.03 128
MMP25 0.03 127
RABI7 0.03 126
RPLI18A 0.03 125
MDK 0.03 124
RPS10 0.03 123
EN2 0.03 122
RIOK3 0.03 121
MFSD2A4 0.03 120
KLK3 exons 2-3 0.03 119
CKAP2L 0.03 118
PCA3 0.03 117
PPFIA2 0.02 116
MCTPI 0.02 115
MYOF 0.02 114
RNF157 0.02 113
CDC37L1 0.02 112
AMACR 0.02 111
Timp4 0.02 110
CDC20 0.02 109
SEC61A1 0.02 108
STEAP2 0.02 107
SRSF3 0.02 106
STOM 0.02 105
SPON2 0.02 104
MKi67 0.02 103
SMIM]1 0.02 102
ITGBLI 0.02 101
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All Transcripts (n = 167) Tanscripts identified by glm (n = 20) Transcripts identified by polr (n = 35)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
HOXC4 0.02 100
PPPIRI2B 0.01 99
KLK4 0.01 98
ACTRS 0.01 97
CLU 0.01 96
AR exon 9 0.01 95
RPI11 97012.7 0.01 94
CAMKK?2 0.01 93
TRPM4 0.01 92
MIRI146A4 0.01 91
SIRT1 0.01 90
GOLM1I 0.01 89
SLC4A41.S 0.01 88
ZNF577 0.01 87
RPSI11 0.01 86
PTPRC 0.01 85
NLRP3 0.01 84
TMEM47 0.01 83
CACNAID 0.01 82
HMBS 0.01 81
ABCBY 0.01 80
PVTI 0.01 79
SSPO 0.01 78
ITPRI 0.01 77
KLK3 exons 1-2 0.01 76
STEAP4 0.01 75
PCSK6 0.01 74
AURKA 0.01 73
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All Transcripts (n = 167) Tanscripts identified by glm (n = 20) Transcripts identified by polr (n = 35)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
TBP 0.01 72
SChLAPI 0.01 71
VPS13A4 0.01 70
NKAIN1 0.01 69
MIATNB 0.01 68
FDPS 0.01 67
ORS52A42 0.01 66
RPL23AP53 0.01 65
HISTIH2BF 0.01 64
CAMK2N?2 0.01 63
DPP4 0.01 62
SMAPI exons 7-8 0.01 61
HISTIHIC 0.01 60
ALASI 0.01 59
TMEMA45B 0.005 58
TWISTI 0.005 57
HISTIHIE 0.005 56
MMP26 0.004 55
SNCA 0.004 54
BRAF 0.004 53
GABARAPL?2 0.004 52
RPLP2 0.004 51
MIR4435 1HG 0.004 50
ERG3’ exons 4-5 0.004 49
AMH 0.004 48
ANPEP 0.004 47
SACMIL 0.004 46
AGR2 0.004 45
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All Transcripts (n = 167) Tanscripts identified by glm (n = 20) Transcripts identified by polr (n = 35)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
MEX3A4 0.004 44
MXI1 0.004 43
MARCHS 0.004 42
CDI0 0.003 41
EIF2D 0.003 40
ARHGEF25 0.003 39
NEAT! 0.003 38
IMPDH?2 0.003 37
Met 0.002 36
PSTPIP1 0.002 35
P712P 0.002 34
DNAHS 0.002 33
MAK 0.002 32
SIM?2 short 0.002 31
SYNM 0.002 30
MCM7 0.002 29
TERT 0.002 28
AR exons 4-8 0.002 27
PDLIM)S5 0.002 26
B2M 0.002 25
COL10A1 0.002 24
LBH 2.53x10"7 23
SULF?2 2.18x10°" 22
MMPI1 2.13x107"7 20.5
SULTIAI 2.13x10"7 20.5
MGATSB 1.95x10"7 19
CASKINI 1.87x107"7 18
SLCI1241 1.82x10°" 17
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All Transcripts (n = 167) Tanscripts identified by glm (n = 20) Transcripts identified by polr (n = 35)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
HIST3H24 1.78x107" 15.5

MICI 1.78x107"7 15.5

KLK2 1.69x10"7 14

BTG?2 1.64x10"7 13

SNORA20 1.60x10°" 11.5

TFDP] 1.60x10™" 11.5

HISTIH2BG 1.24x107"7 10

HPRT 1.15x10"7 8.5

SSTR1 1.15x10"7 8.5

AATF 1.02x107"7 7

TERF2IP 9.77x107"% 6

CDKN3 9.33x107"% 5

MED4 8.88x10-" 4

MEMOI 8.44x107"® 3

GAPDH 7.99x10"® 2

oOGT 5.33x10" 1
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6.20 CB- L-I-H Trend

Supplementary Table 43 Transcripts that have significant expression trend (using polr and

glm) across clinically benign, low-risk, intermediate-risk and high-risk cancer samples in

the baseline normalised cell NanoString data.

Transcript Glm p-value glm Adjusted Polr p-value  Polr adjusted
p-value p-value
AATF 0.0002 0.035 0.0023 0.3326
ACTRS 0.0114 0.9827 0.0204 0.9931
AMH 0.0387 0.9827
ANKRD34B 0.0033 0.4275 0.0065 0.878
ANPEP 0.0007 0.1031 0.0033 0.4854
APOCI 2.90x10™" 0.0005 0.0001 0.0246
ARHGEF25 0.026 0.9827 0.0251 0.9931
AURKA 0.0066 0.7921 0.0232 0.9931
B2M 0.0022 0.2821 0.0092 0.9931
B4GALNT4 7.83x10" 0.0013 9.95x10™" 0.0166
BTG2 0.0121 0.9827 0.0398 0.9931
CACNAID 0.003 0.3935 0.0184 0.9931
CADPS 0.0001 0.019 0.0017 0.261
CAMKK?2 5.44x10" 0.0087 0.0012 0.1813
CCDC88B 0.0008 0.1059 0.0043 0.6079
CDI10 0.0011 0.158 0.0047 0.6525
CDC20 0.018 0.9827 0.041 0.9931
CDKN3 0.0218 0.9827 0.0342 0.9931
CKAP2L 0.0063 0.7631 0.0163 0.9931
CLIC2 0.0012 0.1699 0.0071 0.9579
COLY942 0.0273 0.9827 0.031 0.9931
DPP4 0.0385 0.9827
EIF2D 0.0038 0.4774 0.0197 0.9931
EN2 0.0141 0.9827 0.0189 0.9931
ERG3’ exons 4-5 0.0065 0.7819 0.0083 0.9931
ERG3’ exons 6-7 5.87x10" 0.001 0.0001 0.0191
FDPS 0.0231 0.9827
FOLHI 0.0031 0.3935 0.0055 0.7553
GABARAPL?2 0.0039 0.4932 0.0317 0.9931
GAPDH 0.0004 0.0542 0.0022 0.3326
GCNTI 0.0002 0.025 0.0008 0.1318
HISTIH2BF 0.0265 0.9827 0.0481 0.9931
HISTIH2BG 0.0092 0.9827 0.026 0.9931
HOXC6 1.85x10™"” 0.003 0.0001 0.0191
HPN 6.51x10™" 0.0102 0.0007 0.1079
HPRT 0.0015 0.1973 0.0107 0.9931
ISX 3.91x10™"” 0.0063 0.0004 0.066
ITPRI 0.0016 0.2177 0.0118 0.9931
LASS1 0.0002 0.0331 0.0019 0.2854
MAK 0.0482 0.9827
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Transcript Glm p-value glm Adjusted Polr p-value  Polr adjusted
p-value p-value
MAPKSIP?2 0.036 0.9827
MCTPI 4.10x10" 0.0007 0.0003 0.0481
MED4 0.0335 0.9827
MEMOI1 0.0368 0.9827
MEX34 0.0046 0.5676 0.0073 0.9736
MFSD24 0.0003 0.0379 0.0035 0.4969
MGATS5B 0.0254 0.9827 0.0352 0.9931
MICI 0.0484 0.9827 0.0359 0.9931
MIR1464 0.021 0.9827
MIR4435 1HG 0.0018 0.2367 0.0131 0.9931
MMPI11 0.0231 0.9827 0.0497 0.9931
MMP25 0.0002 0.0277 0.0014 0.2178
MMP26 0.0317 0.9827 0.032 0.9931
MXI1 0.0006 0.0855 0.0057 0.7873
NEATI 0.0002 0.0265 0.0003 0.047
NLRP3 0.0012 0.1632 0.0042 0.6027
PCA3 0.0154 0.9827
PDLIMS 0.0101 0.9827 0.0468 0.9931
PSTPIPI 0.0149 0.9827 0.0217 0.9931
PTPRC 0.0003 0.0504 0.0036 0.5209
RIOK3 6.64x10™"° 0.0011 0.0003 0.0515
RPLISA 0.04 0.9827
RPS11 0.0436 0.9827
SACMIL 0.0239 0.9827 0.0396 0.9931
SEC6141 0.001 0.1335 0.0074 0.9864
SFRP4 0.0054 0.6665 0.0235 0.9931
SIM?2 long 0.0004 0.061 0.0022 0.3237
SIM?2 short 0.0139 0.9827 0.0253 0.9931
SIRT1 0.0018 0.2367 0.0176 0.9931
SLCI241 0.0317 0.9827
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Supplementary Table 44 Transcripts that have significant expression trend (using polr and

glm) across clinically benign, low-risk, intermediate-risk and high-risk cancer samples in

the KLK?2 ratio cell NanoString data.

ANKRD34B 0.0112 0.998 0.0374 0.994
APOCI 0.0178 0.998

B4GALNT4 0.0216 0.998

CADPS 0.0052 0.8154 0.0112 0.994
CAMKK?2 0.0385 0.998

CCDC88B 0.0175 0.998

CKAP2L 0.0046 0.731 0.0187 0.994
CLIC2 0.0191 0.998 0.0397 0.994
ERG3’ exons 4-5 0.0275 0.998 0.0243 0.994
ERG3’ exons 6-7 2.18 x10” 0.0036 0.0002 0.0283
FOLHI 0.0124 0.998 0.0348 0.994
GCNTI 0.0066 0.998 0.0104 0.994
HOXC6 1.36x10™"” 0.0023 0.0002 0.0406
HPN 0.0027 0.4419 0.0081 0.994
15X 0.0022 0.3607 0.0367 0.994
LASS1 0.005 0.7872 0.0209 0.994
MAPKSIP?2 0.0215 0.998

MCTPI 0.0262 0.998 0.0467 0.994
MEX34 0.0227 0.998 0.0412 0.994
MFSD24 0.0103 0.998

MIR146A4 0.0494 0.998

MMP25 0.0274 0.998 0.0463 0.994
NLRP3 0.0386 0.998

PCA3 0.0182 0.998

PSTPIP] 0.0274 0.998

RIOK3 0.0386 0.998

SEC6141 0.0337 0.998

SFRP4 0.0156 0.998 0.0494 0.994
SIM?2 long 0.0031 0.5021 0.0056 0.9028
SLC4341 0.0199 0.998

SNORA20 0.045 0.998

SULF2 0.0153 0.998

TDRD 0.0002 0.0263 0.0011 0.1757
TMCC2 0.0331 0.998

TMEMS64 0.0079 0.998 0.0184 0.994
TMPRSS2:ERG 6.86 x10" 0.0112 0.0007 0.1136
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Supplementary Table 45 Transcripts that have significant expression trend (using polr and

glm) across clinically benign, low-risk, intermediate-risk and high-risk cancer samples in

the HK normalised cell NanoString data.

CADPS 0.0213 0.9941
CLIC2 0.0333 0.9941
EN2 0.0463 0.9994
ERG 3’ exons 6-7  0.0043 0.6877 0.0098 0.9994
FOLHI 0.0174 0.9941 0.0191 0.9994
GJBI 0.0215 0.9941
HOXC6 4.54 x10°° 0.0008 6.37x10" 0.0106
LASS1 0.0287 0.9941
MEX3A4 0.0243 0.9941 0.0337 0.9994
MSMB 0.0334 0.9941
NAALADL?2 0.0018 0.2913 0.0098 0.9994
PALM3 0.027 0.9941 0.0461 0.9994
SERPINBS 0.0162 0.9941 0.0425 0.9994
SIM?2 long 0.0032 0.5147 0.0043 0.7056
SLC43A41 0.0011 0.1895 0.006 0.978
ST6GALNACI 0.0049 0.7755 0.0179 0.9994
TDRD 0.0012 0.2024 0.0034 0.564
TMEMS86A 0.0107 0.9941 0.0337 0.9994
TM.PRSSZ.ERG 0.004 0.6414 0.0127 0.9994
fusion
UPK2 0.0028 0.4609 0.0077 0.9994
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Boxplots for Risk Stratification — Clinically Benign, Low-risk, Intermediate-risk and High-risk cancer
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Supplementary Figure 19 Boxplots of the Lasso identified transcripts for modeling between clinically
benign, low-risk, intermediate-risk and high-risk cancer categories in the baseline normalised data.
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Lasso Selected Probes for Risk Stratification in Cell
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Supplementary Figure 20 Boxplots showing the Lasso selected transcripts for CB-L-I-H trend in

KLK?2 ratio data.
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Supplementary Figure 21 Transcripts selected by Lasso for showing trend of expression levels across
clinical categories: clinically benign, low-risk, intermediate-risk and high-risk cancer in the HK
normalised cell data.
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Supplementary Table 46 Random Forest rankings for three subsets of transcripts (all 167, the 87 chosen by glm, and the 70 chosen by polr¥), for groups

CB, L, I and H. (*All 70 transcripts identified by polr are were also common to those identified by glm) in the baseline normalization data.

All Transcripts (n = 167) Tanscripts identified by glm (n = 87) Transcripts identified by polr (n = 70)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
ERG3’ exons 6-7 _ 6.60 167 ERG3’ exons 6-7 8.10 87 ERG3’ exons 6-7  5.00 70
TMPRSS2:ERG TMPRSS2:ERG

fusion 4.31 166 APOCI1 3.84 86  fusion 4.76 69
RIOK3 2.55 165 SPINKI1 2.94 85 NEATI1 3.46 68
NEATI 2.32 164 CCDC88B 2.58 84 RIOK3 3.08 67
CADPS 1.74 163 CADPS 2.36 83 APOCI 2.26 66
APOCI 1.51 162  B4GALNT4 2.09 82 SIM2 long 2.14 65
SIM?2 long 1.51 161 CAMKK?2 2.06 81 CCDC88B 1.84 64
SPINK1 1.42 160 GAPDH 1.79 80 MCTPI 1.61 63
MCTPI 1.34 159 CKAP2L 1.45 79 GCNTI 1.55 62
CCDC88B 1.11 158 TDRD 1.24 78 CADPS 1.49 61
MFSD2A4 1.02 157 CP 1.19 77 HOXC6 1.49 60
CAMKK? 1.01 156 ISX 1.07 76 MFSD2A 1.45 59
GCNTI 1.00 155 CD10 1.01 75 SPINK1 1.43 58
MXI1 0.90 154 HPN 0.99 74 CAMKK?2 1.40 57
TMEMS864 0.89 153  UPK2 0.97 73 SIRTI1 1.27 56
HOXC6 0.86 152  SLC441S8 0.93 72 SULTIAI 1.18 55
cP 0.86 151 PCA3 0.89 71 CKAP2L 1.14 54
SLC4341 0.83 150 CACNAID 0.89 70 LASS1 0.93 53
SFRP4 0.82 149  AATF 0.83 69 TMEMS86A4 0.91 52
B4GALNT4 0.78 148  SNORA20 0.81 68 SLC4341 0.88 51
SIRT1 0.72 147 IGFBP3 0.75 67 AURKA 0.87 50
MIR4435 1HG 0.72 146  ANKRD34B 0.70 66 HPRT 0.85 49
CKAP2L 0.71 145 CLIC2 0.69 65 MIR4435 1HG 0.80 48
SULTIAI 0.71 144  SMAPI exons 7- _ 0.69 64 B4GALNT4 0.76 47
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All Transcripts (n = 167) Tanscripts identified by glm (n = 87) Transcripts identified by polr (n = 70)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
8

LASS1 0.67 143 DLXI 0.66 63 CDI10 0.72 46
MYOF 0.56 142 AURKA 0.65 62 MIC1 0.69 45
HPN 0.54 141 MYOF 0.64 61 MMP25 0.69 44
PCA3 0.54 140 ERG3’ exons 4-5 0.62 60 SFRP4 0.58 43
SNORA20 0.52 139 AMH 0.59 59 ANKRD34B 0.57 42
SLC4A41 S 0.50 138 TERF2IP 0.58 58 SRSF3 0.56 41
CDI0 0.49 137  AMACR 0.58 57 HISTIH2BF 0.51 40
SMAPI exons 7-8 0.49 136 ERGS’ 0.55 56 SULF?2 0.50 39
MMP25 0.45 135 MAK 0.48 55 TDRD 0.50 38
AMH 0.42 134 ANPEP 0.46 54 CDKN3 0.49 37
TDRD 0.41 133 DPP4 0.44 53 EN2 0.48 36
SULF?2 0.40 132 NAALADL?2 0.44 52 MXI1 0.46 35
ORS52A42 0.39 131 MEX3A4 0.43 51 STEAP4 0.46 34
MIC] 0.39 130 EN2 0.43 50 ITPRI 0.45 33
HPRT 0.38 129  RNF157 0.41 49 ERG3’ exons 4-5 0.45 32
HISTIHIE 0.37 128 DNAHS5 0.40 48 SNCA 0.44 31
MAPKSIP2 0.37 127 HISTIH2BG 0.39 47 MEX3A 0.44 30
UPK?2 0.37 126 ACTR5 0.38 46 PSTPIP] 0.44 29
GAPDH 0.36 125 TFDPI 0.37 45 GAPDH 0.41 28
AURKA 0.33 124 CDKN3 0.37 44 CACNAID 0.40 27
ANKRD34B 0.32 123 MCM7 0.37 43 ISX 0.39 26
STOM 0.29 122 CDC20 0.36 42 TMCC2 0.38 25
Timp4 0.29 121 AR exon 9 0.34 41 PTPRC 0.38 24
DLXI 0.28 120 PALM3 0.33 40 AATF 0.38 23
EN2 0.27 119 SSTRI 0.31 39 MMP26 0.38 22
RPL23AP53 0.27 118 AGR2 0.31 38 CLIC2 0.36 21
ITPRI 0.26 117 ABCBY9 0.30 37 COLY9A2 0.34 20
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All Transcripts (n = 167) Tanscripts identified by glm (n = 87) Transcripts identified by polr (n = 70)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
ISX 0.26 116 CAMK2N2 0.29 36 TERF2IP 0.33 19
RNF157 0.25 115 CLU 0.28 35 MMPI11 0.31 18
TMEMA45B 0.24 114 BTG2 0.27 34 ACTRS 0.30 17
FOLHI 0.24 113 ALASI 0.27 33 ANPEP 0.30 16
CDKN3 0.24 112 NLRP3 0.27 32 SACMIL 0.30 15
AATF 0.23 111 TMCC2 0.26 31 HISTIH2BG 0.30 14
SLCI2A41 0.23 110 OGT 0.25 30 PDLIMS 0.28 13
CACNAID 0.23 109 EIF2D 0.24 29 NLRP3 0.27 12
SACMIL 0.23 108 ARHGEF25 0.24 28 HPN 0.27 11
IGFBP3 0.22 107 FOLHI 0.24 27 MGATSB 0.26 10
ACTRS 0.21 106 LBH 0.23 26 FOLHI1 0.26 9
MEX3A4 0.20 105 TMEM47 0.22 25 EIF2D 0.21 8
DPP4 0.20 104 ST6GALNACI 0.22 24 SIM? short 0.20 7
SRSF3 0.20 103 B2M 0.22 23 CDC20 0.20 6
AR.ex9 0.20 102  Met 0.21 22 BTG2 0.19 5
ANPEP 0.19 101 RP11 97012.7 0.19 21 GABARAPL?2 0.19 4
VAX2 0.19 100 PPAP2A 0.19 20 SEC61A1 0.16 3
ERGS’ 0.19 99 COLY9A2 0.18 19 B2M 0.15 2
COL942 0.19 98 COL10A1 0.18 18 ARHGEF25 0.15 1
AGR2 0.18 97 GOLM1 0.17 17

CLIC2 0.18 96 PECI 0.16 16

ABCBY 0.18 95 AR exons 4-8 0.15 15

DNAHS 0.18 94 CDC37L1 0.15 14

MSMB 0.18 93 SIM? short 0.15 13

STEAP4 0.17 92 TBP 0.14 12

SSTR1 0.17 91 MIATNB 0.14 11

HISTIH2BF 0.16 90 PCSK6 0.14 10

HMBS 0.15 89 MARCHS5 0.13 9
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All Transcripts (n = 167) Tanscripts identified by glm (n = 87) Transcripts identified by polr (n = 70)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
SChLAPI 0.15 88 BRAF 0.13 8
LBH 0.15 87 HOXC4 0.13 7
PPFIA2 0.15 86 FDPS 0.12 6
NLRP3 0.15 85 KLK?2 0.12 5
PTPRC 0.15 84 RPS11 0.11 4
SPON2 0.14 83 CASKINI 0.11 3
AMACR 0.14 82 GABARAPL?2 0.10 2
MCM7 0.14 81 STEAP2 0.08 1
MIRI146A4 0.14 80

KLK4 0.14 79

ALASI 0.13 78

MMP26 0.13 77

PPAP2A 0.13 76

MNXI 0.13 75

ERG3  exons 4-5 0.13 74

CDC37L1 0.13 73

NAALADL?2 0.13 72

PSTPIP] 0.12 71

SSPO 0.11 70

EIF2D 0.11 69

CDC20 0.11 68

CLU 0.11 67

PALM3 0.11 66

KLK3 exons 2-3 0.11 65

TRPM4 0.11 64

MKi67 0.11 63

TERF2IP 0.10 62

HOXC4 0.10 61
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All Transcripts (n = 167) Tanscripts identified by glm (n = 87) Transcripts identified by polr (n = 70)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
COL10A41 0.10 60
RPII1 97012.7 0.10 59
SEC61A1 0.10 58
RABI7 0.10 57
NKAIN1 0.10 56
MDK 0.10 55
SNCA 0.09 54
MGAT5B 0.09 53
VPS13A4 0.09 52
MED4 0.09 51
ARHGEF25 0.09 50
MAK 0.09 49
PPPIRI2B 0.09 48
TBP 0.09 47
SERPINBS 0.08 46
GJBI 0.08 45
BTG?2 0.08 44
MEMOI 0.08 43
HIST3H2A 0.08 42
TERT 0.08 41
PVTI 0.08 40
TFDPI 0.07 39
P712P 0.07 38
ZNF577 0.07 37
Met 0.07 36
OGT 0.07 35
AR exons 4-8 0.07 34
ITGBLI 0.07 33
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All Transcripts (n = 167) Tanscripts identified by glm (n = 87) Transcripts identified by polr (n = 70)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
GOLM1I 0.07 32
FDPS 0.07 31
MIATNB 0.07 30
B2M 0.07 29
RPS10 0.06 28
ST6GALNACI 0.06 27
RPLI18A 0.06 26
IMPDH? 0.06 25
SMIM1 0.05 24
HISTIH2BG 0.05 23
TMCC?2 0.05 22
STEAP2 0.05 21
RPSI11 0.05 20
IFT57 0.05 19
BRAF 0.05 18
TWISTI 0.05 17
CAMK2N?2 0.05 16
SIM2 short 0.05 15
MMPI1 0.04 14
HISTIHIC 0.04 13
PCSK6 0.04 12
PECI 0.04 11
PDLIM5 0.04 10
MARCH)S 0.04 9
CASKINI 0.04 8
TMEM47 0.04 7
RPLP2 0.04 6
KLK?2 0.03 5
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All Transcripts (n = 167) Tanscripts identified by glm (n = 87) Transcripts identified by polr (n = 70)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
GABARAPL? 0.03 4

PTN 0.03 3

KLK3 exons 1-2 0.03 2

SYNM 0.01 1
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Supplementary Table 47 Random Forest results for trend across clinical categories: CBN-L-I-H in KLK?2 factorised data.

All Transcripts (n = 166) Tanscripts identified by glm (n = 36) Transcripts identified by polr (n = 20)
Transcript IncNodePurity Rank Transcript IncNodePurity Rank Transcript IncNodePurity Rank
PCA3 1.19 166  PCA3 3.36 36 HOXC6 3.58 20
HOXC6 1.14 165 HOXC6 2.56 35 ERG3’ exons 6-7 2.98 19
TMPRSS2:ERG
TMPRSS2:ERG fusion _ 0.89 164 ERG3’ exons 6-7 1.85 34 fusion 2.97 18
TMPRSS2:ERG
ERG3’ exons 6-7 0.88 163 fusion 1.81 33 FOLH1 2.30 17
SLCI1241 0.59 162 FOLHI 1.42 32 TMEMS86A 2.09 16
NAALADL?2 0.59 161  TDRD 1.24 31 HPN 2.01 15
APOCI 0.53 160 APOCI1 1.20 30 CKAP2L 1.97 14
FOLHI 0.50 159  SLC4341 1.16 29 GCNTI 1.82 13
cP 0.49 158 TMEMS86A4 1.15 28 CADPS 1.79 12
OR5242 0.49 157 GCNTI 1.11 27 TDRD 1.77 11
SIM?2 long 0.49 156 CKAP2L 1.09 26 MMP25 1.71 10
TDRD 0.47 155  SIM2 long 1.08 25 SIM?2 long 1.54 9
PALM3 0.45 154 HPN 1.07 24 CLIC2 1.52 8
SERPINBS 0.44 153  B4GALNT4 1.07 23 ISX 1.48 7
AR exons 4-8 0.41 152  CADPS 1.02 22 ANKRD34B 1.47 6
TMEMS6A4 0.40 151 MAPKSIP2 0.95 21 MCTPI 1.46 5
MSMB 0.40 150  ANKRD34B 0.91 20 LASS1 1.44 4
MDK 0.39 149  MMP25 0.90 19 SFRP4 1.40 3
CKAP2L 0.38 148 SEC61A1 0.90 18 MEX3A4 1.30 2
DLX] 0.37 147  LASS1 0.87 17 ERG3’ exons 4-5 1.08 1
HPN 0.36 146  CLIC2 0.85 16
SLC4341 0.36 145 SULF2 0.82 15
STEAP2 0.35 144 TMcCC2 0.80 14
IGFBP3 0.34 143  CCDC88B 0.77 13
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LASS1 0.34 141 CAMKK? 0.74 11
TMEM47 0.34 140 SNORA20 0.72 10
AGR?2 0.33 139 SFRP4 0.72 9
CADPS 0.32 138 MFSD2A 0.69 8
MMPI1 0.31 137 MCTPI 0.68 7
GJBI 0.30 136 ERG3’ exons 4-5 0.66 6
SSTR1 0.30 135 NLRP3 0.62 5
TMCC?2 0.30 134 PSTPIPI 0.59 4
AMACR 0.30 133 MIRI46A4 0.58 3
B4GALNT4 0.29 132 RIOK3 0.54 2
SULF?2 0.29 131 ISX 0.45 1
GCNTI 0.29 130

ZNF577 0.28 129

ANKRD34B 0.28 128

HISTIH2BG 0.27 127

SPINK 1 0.27 126

MMP25 0.27 125

HIST3H2A 0.26 124

TRPM4 0.26 123

SLC4A41.S 0.25 122

SULTI1AI 0.25 121

CDKN3 0.25 120

Timp4 0.25 119

ST6GALNACI 0.25 118

SNORA20 0.25 117

EN2 0.25 116

AR exon 9 0.24 115
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ITGBL1 0.24

UPK?2 0.24 113
MKi67 0.24 112
SChLAPI 0.24 111
AMH 0.23 110
MCTPI 0.23 109
SFRP4 0.23 108
MFSD2A 0.23 107
SIM?2 short 0.23 106
PPPIRI2B 0.23 105
TERT 0.23 104
RABI17 0.22 103
NKAIN1 0.22 102
SMIM1 0.22 101
P712P 0.22 100
ERG3’ exons 4-5 0.22 99
PECI 0.22 98
ERGS’ 0.22 97
VAX2 0.22 96
CLIC2 0.22 95
RNF157 0.21 94
CDC37L1 0.21 93
CCDC88B 0.21 92
CLU 0.20 91
MICI 0.20 90
TMEM45B 0.20 89
MNXI 0.20 88
ISX 0.20 87
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HISTIHIC 0.19 86

KLK4 0.18 85
LBH 0.18 84
COL1041 0.18 83
MED4 0.18 82
HISTIH2BF 0.18 81
PPAP2A 0.18 80
ABCBY9 0.17 79
STOM 0.17 78
DNAHS5 0.17 77
DPP4 0.17 76
MMP26 0.17 75
HOXC4 0.16 74
MGATSB 0.16 73
MIRI1464 0.16 72
PCSK6 0.16 71
CAMKK? 0.16 70
MARCHS 0.15 69
RPL234P53 0.15 68
IMPDH? 0.15 67
HPRT 0.15 66
ACTRS5 0.15 65
MAPKSIP2 0.15 64
SNCA 0.15 63
SYNM 0.15 62
PSTPIP] 0.15 61
CACNAID 0.14 60
PVTI 0.14 59
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SACMIL 0.14 57
KLK3 exons 2-3 0.14 56
COL9A42 0.14 55
SRSF3 0.14 54
KLK3 exons 1-2 0.13 53
RPS10 0.13 52
NLRP3 0.13 51
RPI11 97012.7 0.13 50
PPFIA2 0.13 49
SMAPI exons 7-8 0.13 48
MAK 0.13 47
AATF 0.13 46
CDC20 0.13 45
MXI1 0.13 44
SSPO 0.13 43
MEX3A 0.13 42
MCM7 0.12 41
PDLIMS 0.12 40
OGT 0.12 39
GOLM]I 0.12 38
MYOF 0.12 37
VPS134 0.12 36
CASKIN1 0.12 35
RPS11 0.11 34
RIOK3 0.11 33
B2M 0.11 32
FDPS 0.11 31
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CD10 0.11 29
RPLI8A 0.11 28
ITPRI 0.11 27
SEC6141 0.11 26
EIF2D 0.11 25
TFDP] 0.10 24
TWISTI 0.10 23
MEMO! 0.10 22
RPLP2 0.10 21
HISTIHIE 0.10 20
Met 0.10 19
GABARAPL?2 0.10 18
AURKA 0.10 17
MIATNB 0.10 16
ALASI 0.09 15
PTN 0.09 14
STEAP4 0.09 13
GAPDH 0.09 12
TERF2IP 0.08 11
IFT57 0.08 10
MIR4435 1HG 0.08 9

TBP 0.08 8

BRAF 0.07 7

BTG2 0.07 6

CAMK2N2 0.07 5

ARHGEF25 0.07 4

NEATI 0.06 3
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Supplementary Table 48 Random Forest results for CB, low-risk, intermediate-risk and high-risk cancer trend using the RPLP2 and TWISTI

normalised data.

All Transcripts (n = 167) Tanscripts identified by glm (n = 19) Transcripts identified by polr (n = 15)
Transcript MeanDecreaseGini  Rank Transcript ‘ MeanDecreaseGini  Rank Transcript MeanDecreaseGini  Rank
PCA3 1.20 167 HOXC6 3.24 19 HOXC6 3.53 15
HOXC6 0.81 166 NAALADL2 2.78 18 NAALADL2 3.35 14
TMPRSS2:ERG
CP 0.79 165 ERG3’ exons 6-7 2.75 17 fusion 2.84 13
PALM3 0.70 164 PALM3 2.47 16 UPK2 2.76 12
ERG3’ exons 6-7  0.67 163 UPK2 2.34 15 PALM3 2.75 11
TMPRSS2:ERG
NAALADL?2 0.61 162 fusion 2.28 14 ERG3’ exons 6-7 2.64 10
UPK2 0.60 161  ST6GALNACI 2.11 13 SIM?2 long 2.53 9
TMPRSS2:ERG
fusion 0.57 160  TMEMS86A4 2.06 12 TMEMS86A 2.47 8
OR5242 0.52 159 CADPS 2.00 11 TDRD 2.44 7
SPINK1 0.51 158  SIM2 long 1.97 10 ST6GALNACI 2.43 6
VAX2 0.49 157 SERPINBS 1.79 9 EN2 2.30 5
TDRD 0.48 156 GJBI 1.76 8 SERPINBS 2.14 4
CKAP2L 0.44 155 TDRD 1.75 7 FOLHI1 1.94 3
CADPS 0.43 154  LASS1 1.66 6 SLC4341 1.85 2
HPN 0.42 153 CLIC2 1.47 5 MEX3A 1.68 1
AMH 0.42 152 SLC4341 1.43 4
HMBS 0.38 151 MSMB 1.40 3
APOCI 0.37 150 FOLHI 1.22 2
PPAP2A 0.37 149 MEX3A 1.18 1
TMEM47 0.37 148
LASS1 0.34 147
SIM?2 long 0.34 146
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ST6GALNACI 0.33 145

15X 0.33 144
DLXI 0.32 143
MAPKSIP2 0.31 142
AR.ex9 0.30 141
MKi67 0.30 140
TMEMA45B 0.30 139
TMEMS86A4 0.29 138
PTN 0.29 137
TERT 0.28 136
EN2 0.28 135
B4GALNT4 0.28 134
CAMKK? 0.28 133
ERGS’ 0.27 132
IGFBP3 0.27 131
GCNTI 0.27 130
MMPI1 0.27 129
AGR2 0.27 128
MFSD24 0.26 127
SFRP4 0.26 126
NKAINI 0.26 125
MDK 0.26 124
DNAHS5 0.26 123
Timp4 0.25 122
SLC441.8 0.24 121
SPON2 0.24 120
GJBI 0.24 119
KLK4 0.24 118
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PPPIRI2B

AMACR 0.24 116
SLC43A41 0.24 115
TMCC?2 0.24 114
HOXC4 0.23 113
ANKRD34B 0.23 112
SERPINBS 0.23 111
SChLAPI 0.23 110
SLCI2A1 0.23 109
MMP25 0.23 108
CLU 0.23 107
TWIST1 0.23 106
MYOF 0.22 105
Met 0.22 104
MARCH)S 0.22 103
MIRI146A4 0.22 102
FOLHI 0.21 101
CCDC88B 0.21 100
COL9A42 0.21 99
HISTIH2BG 0.20 98
MNXI 0.20 97
PCSK6 0.20 96
AATF 0.20 95
SMIM1 0.20 94
PDLIMS 0.20 93
HPRT 0.20 92
ACTRS 0.19 91
KLK3 exons 2-3  0.19 90
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HISTIH2BF

ZNF577 0.19 88
SRSF3 0.19 87
ANPEP 0.19 86
CLIC2 0.18 85
MAK 0.18 84
RIOK3 0.18 83
SIRTI 0.18 82
SMAPI exons 7-

8 0.18 81
VPS13A4 0.18 80
PPFIA2 0.18 79
ERG3 exons 4-5 0.17 78
IMPDH? 0.17 77
IFT57 0.17 76
GOLM]I 0.17 75
LBH 0.17 74
TFDPI 0.17 73
CDKN3 0.17 72
ITGBL1 0.17 71
RPI11 97012.7 0.17 70
BTG?2 0.17 69
CACNAID 0.16 68
HISTIHIC 0.16 67
MICI 0.16 66
CASKIN1 0.16 65
CDC37L1 0.16 64
PECI 0.16 63
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All Transcripts (n = 167) Tanscripts identified by glm (n = 19) Transcripts identified by polr (n = 15)
Transcript MeanDecreaseGini  Rank Transcript MeanDecreaseGini Rank Transcript MeanDecreaseGini Rank
MMP26 0.16 62
MCTPI 0.16 61
MGATS5B 0.15 60
HIST3H2A 0.15 59
TRPM4 0.15 58
HISTIHIE 0.15 57
RNF157 0.15 56
ARHGEF25 0.15 55
SNORA20 0.14 54
STEAP? 0.14 53
MEX3A 0.14 52
CDI0 0.14 51
RABI7 0.14 50
MCM7 0.14 49
PTPRC 0.14 48
PSTPIP1 0.14 47
SULF2 0.14 46
SSTRI 0.14 45
SACMIL 0.14 44
RPLP2 0.13 43
KLK3 exons 1-2  0.13 42
KLK2 0.13 41
P712P 0.13 40
SIM?2 short 0.13 39
MSMB 0.13 38
SEC61A41 0.13 37
AR.ex4 8 0.13 36
SULTIAI 0.13 35
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All Transcripts (n = 167) Tanscripts identified by glm (n = 19) Transcripts identified by polr (n = 15)
Transcript MeanDecreaseGini  Rank Transcript MeanDecreaseGini Rank Transcript MeanDecreaseGini Rank
SSPO 0.13 34
OGT 0.13 33
ALASI 0.12 32
RPL23AP53 0.12 31
STEAP4 0.12 30
SYNM 0.12 29
COLI0A1 0.12 28
AURKA 0.12 27
ABCB9 0.12 26
NEATI 0.12 25
PVTI 0.12 24
RPS11 0.12 23
DPP4 0.12 22
SNCA 0.12 21
CAMK2N?2 0.11 20
STOM 0.10 19
RPLI8A 0.10 18
MED4 0.10 17
GABARAPL? 0.10 16
RPS10 0.10 15
FDPS 0.10 14
CDC20 0.10 13
MXI] 0.10 12
ITPR] 0.09 11
TBP 0.09 10
MIR4435 1HG 0.09 9
TERF2IP 0.09 8
BRAF 0.09 7
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All Transcripts (n = 167) Tanscripts identified by glm (n = 19) Transcripts identified by polr (n = 15)
Transcript MeanDecreaseGini  Rank Transcript MeanDecreaseGini  Rank Transcript MeanDecreaseGini  Rank
MIATNB 0.09 6

NLRP3 0.08 5

EIF2D 0.08 4

GAPDH 0.07 3

B2M 0.07 2

MEMOI1 0.06 1
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6.21 Cell vs EV fraction

Supplementary Table 49 The 129 transcripts that are significantly (post multiple testing

correction) different between the cell and microvesicular fraction.

Transcript p-value Adjusted p-value Log?2 Fold Change
NEATI 1.77E-16 2.94E-14 -0.88
PTPRC 1.77E-16 2.94E-14 -1.97
MMP25 2.17E-16 3.58E-14 -1.43
SULF2 2.48E-16 4.07E-14 -1.69
HISTIHIC 2.83E-16 4.59E-14 0.25
MCTPI 2.83E-16 4.59E-14 -1.09
IFT57 2.93E-16 4.66E-14 0.43
CCDC88B 2.93E-16 4.66E-14 -1.27
STOM 2.93E-16 4.66E-14 -1.73
MFSD2A4 3.24E-16 5.12E-14 -1.66
B2M 3.46E-16 5.44E-14 -0.36
PSTPIP] 3.96E-16 6.17E-14 -1.44
APOCI 6.72E-16 1.03E-13 -1.07
NLRP3 6.72E-16 1.03E-13 -1.64
MIR4435 1HG 6.94E-16 1.06E-13 -0.43
MSMB 7.18E-16 1.09E-13 0.29
KLK2 8.19E-16 1.24E-13 0.55
AR.ex4 8 9.33E-16 1.40E-13 0.51
KLK3.ex2 3 1.03E-15 1.53E-13 0.51
KLK4 1.10E-15 1.63E-13 0.41
PTN 1.17E-15 1.73E-13 0.76
BTG2 1.34E-15 1.95E-13 -0.34
DPP4 1.52E-15 2.20E-13 0.47
CLIC2 1.52E-15 2.20E-13 -1.35
STEAP2 1.57E-15 2.25E-13 0.52
MIR1464 1.74E-15 2.47E-13 -0.96
PECI 2.04E-15 2.88E-13 0.30
IMPDH?2 2.65E-15 3.70E-13 0.30
RPLP2 3.77E-15 5.24E-13 0.11
P712P 6.29E-15 8.69E-13 0.67
TWISTI 8.38E-15 1.15E-12 0.34
RPI1I 97012.7 8.65E-15 1.18E-12 0.22
RPSI11 9.51E-15 1.27E-12 0.10
TMEMS6A4 9.51E-15 1.27E-12 -1.19
MAK 1.39E-14 1.85E-12 -1.15
ZNF577 1.43E-14 1.89E-12 0.38
PPAP24 1.68E-14 2.20E-12 0.29
HISTIH2BF 2.16E-14 2.80E-12 0.24
TERT 2.22E-14 2.87E-12 0.51
05-Mar 3.04E-14 3.89E-12 0.26
PCA3 7.66E-14 9.73E-12 0.58
SERPINBS 9.78E-14 1.23E-11 0.79
NKAINI 1.07E-13 1.34E-11 0.57
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Transcript lu Adjusted lu 2 Fold Change
SMIM1 1.69E-13 2.09E-11 0.62
SSPO 1.85E-13 2.27E-11 0.38
FOLHI 2.28E-13 2.78E-11 0.51
RPLI8A 2.57E-13 3.11E-11 0.17
FDPS 3.27E-13 3.92E-11 0.19
AMACR 3.37E-13 4.01E-11 0.50
OR5242 3.57E-13 4.22E-11 0.77
MICI 4.15E-13 4.85E-11 -0.67
GABARAPL?2 6.86E-13 7.95E-11 0.15
PDLIMS5 7.06E-13 8.12E-11 0.19
RPSI10 7.27E-13 8.29E-11 0.14
KLK3.exl 2 7.71E-13 8.71E-11 0.46
PPFIA2 2.07E-12 2.32E-10 0.65
SEC61A1 2.40E-12 2.66E-10 -0.46
MNXI 3.48E-12 3.82E-10 0.40
CDI0 4.24E-12 4.63E-10 0.30
NAALADL?2 5.18E-12 5.59E-10 0.38
CAMK2N?2 6.68E-12 7.14E-10 0.53
TFDP] 9.35E-12 9.91E-10 0.18
Met 9.62E-12 1.01E-09 -0.88
SIM2.long 1.68E-11 1.74E-09 0.65
COLI10A41 2.09E-11 2.15E-09 -0.59
SSTRI 3.16E-11 3.22E-09 0.24
CP 4.49E-11 4.54E-09 -0.99
PCSK6 6.05E-11 6.05E-09 0.40
Timp4 6.74E-11 6.67E-09 0.61
VAX2 1.09E-10 1.06E-08 0.36
CACNAID 1.09E-10 1.06E-08 0.19
HOXCo6 1.12E-10 1.07E-08 0.81
SPON2 2.40E-10 2.28E-08 0.34
AMH 2.60E-10 2.44E-08 0.30
ARHGEF25 6.56E-10 6.10E-08 0.58
EIF2D 6.90E-10 6.35E-08 0.12
SChLAPI 8.67E-10 7.89E-08 0.67
GJBI 1.01E-09 9.08E-08 0.49
AURKA 1.17E-09 1.04E-07 -0.35
HIST3H2A 2.08E-09 1.83E-07 0.37
RABI17 2.47E-09 2.15E-07 0.38
HMBS 2.80E-09 2.41E-07 0.25
MKi67 3.85E-09 3.27E-07 -1.18
DNAHS 5.02E-09 4.22E-07 0.57
CKAP2L 8.93E-09 7.41E-07 -0.50
CASKIN1 1.05E-08 8.65E-07 0.24
SULTIAI 1.08E-08 8.75E-07 -0.18
MXI1 1.57E-08 1.24E-06 0.13
ITPRI 1.57E-08 1.24E-06 -0.14
MMPI11 1.94E-08 1.51E-06 0.30
HPRT 3.16E-08 2.43E-06 0.18
SIM?2.short 3.30E-08 2.51E-06 0.35
PALM3 3.62E-08 2.72E-06 0.31
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Transcript lu Adjusted

AGR2 4.06E-08 3.00E-06 0.32
SYNM 4.87E-08 3.55E-06 0.54
MDK 1.42E-07 1.02E-05 0.21
EN2 2.66E-07 1.89E-05 0.36
MED4 3.15E-07 2.21E-05 0.09
RNF157 3.58E-07 2.47E-05 0.58
MGATSB 7.01E-07 4.76E-05 0.28
LBH 1.01E-06 6.80E-05 0.28
IGFBP3 1.06E-06 6.98E-05 -0.56
TMEMA45B 1.30E-06 8.42E-05 -0.28
HOXC4 1.82E-06 0.0001 0.37
CLU 2.99E-06 0.0002 0.61
SNCA 2.99E-06 0.0002 0.15
MYOF 4.76E-06 0.0003 0.12
CDC37L1 5.24E-06 0.0003 0.11
GOLM1 7.66E-06 0.0005 0.39
SACMIL 1.11E-05 0.0006 0.11
SFRP4 1.27E-05 0.0007 0.35
ERG3prime.ex4 5 2.31E-05 0.001 0.64
LASS1 2.31E-05 0.001 -0.46
B4GALNT4 2.71E-05 0.001 -0.45
MEX3A 2.86E-05 0.002 0.39
STEAP4 4.06E-05 0.002 -0.11
HPN 4.66E-05 0.002 0.21
MAPKSIP2 4.74E-05 0.002 -0.45
TRPM4 7.91E-05 0.004 0.37
ANPEP 9.04E-05 0.004 -0.18
TERF2IP 9.50E-05 0.004 0.04
SRSF3 9.99E-05 0.005 -0.19
HISTIHIE 0.0002 0.007 0.09
ANKRD34B 0.0003 0.012 -0.35
PPPIRI2B 0.0003 0.015 0.12
HISTIH2BG 0.0005 0.021 0.15
CDC20 0.0009 0.039 0.22
TMEM47 0.0011 0.043 0.61
SMAPI.ex7 8 0.0013 0.049 0.14
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