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Objectives: Shigella sonnei is a globally important diarrhoeal pathogen tracked through the surveillance
network PulseNet Latin America and Caribbean (PNLA&C), which participates in PulseNet International.
PNLA&C laboratories use common molecular techniques to track pathogens causing foodborne illness.
We aimed to demonstrate the possibility and advantages of transitioning to whole genome sequencing
(WGS) for surveillance within existing networks across a continent where S. sonnei is endemic.
Methods: We applied WGS to representative archive isolates of S. sonnei (n ¼ 323) from laboratories in
nine PNLA&C countries to generate a regional phylogenomic reference for S. sonnei and put this in the
global context. We used this reference to contextualise 16 S. sonnei from three Argentinian outbreaks,
using locally generated sequence data. Assembled genome sequences were used to predict antimicrobial
resistance (AMR) phenotypes and identify AMR determinants.
Results: S. sonnei isolates clustered in five Latin American sublineages in the global phylogeny, with many
(46%, 149 of 323) belonging to previously undescribed sublineages. Predicted multidrug resistance was
common (77%, 249 of 323), and clinically relevant differences in AMR were found among sublineages.
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Central America
Genomics
The regional overview showed that Argentinian outbreak isolates belonged to distinct sublineages and
had different epidemiologic origins.
Conclusions: Latin America contains novel genetic diversity of S. sonnei that is relevant on a global scale
and commonly exhibits multidrug resistance. Retrospective passive surveillance with WGS has utility for
informing treatment, identifying regionally epidemic sublineages and providing a framework for inter-
pretation of prospective, locally sequenced outbreaks. K.S. Baker, Clin Microbiol Infect 2017;23:845
Crown Copyright © 2017 Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology
and Infectious Diseases. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
Introduction

Shigella are globally important bacteria, causing more than
190 million diarrhoeal disease cases and 65 796 deaths annually,
18 million and 1023 of which, respectively, occur in the Americas
[1,2]. In Latin America (LA), S. sonnei is a common cause of diar-
rhoeal disease (mainly in children [3e5]) and is variably resistant to
commonly used antimicrobials [6,7]. Explosive outbreaks still occur
(e.g. a 900-case epidemic of S. sonnei in Argentina in 2016; http://
dx.doi.org/10.1101/049940); and increases in endemic S. sonnei
prevalence are also reported (http://www.binasss.sa.cr/
diarreas2014.pdf), mirroring trends in other economically devel-
oping areas [8]. In addition to local transmission, new phylogenetic
lineages of S. sonnei can disseminate nationally and spread inter-
nationally within two to three decades [9,10]. Given its worldwide
distribution, increasing importance and international transmission,
it is unsurprising that S. sonnei is under surveillance through Pul-
seNet International [11].

PulseNet Latin America and Caribbean (PNLA&C) is a regional
network that contributes to PulseNet International, a public health
network of >120 laboratories in >80 countries that has performed
surveillance of foodborne illnesses for 20 years [11]. PNLA&C lab-
oratories use common molecular subtyping techniques and share
their results and associated epidemiologic information through a
regional database to facilitate early identification of disease out-
breaks in an increasingly globalized world [12]. Owing to the
increased resolution compared to traditional techniques (e.g.
pulsed-field gel electrophoresis, PFGE), PulseNet International is
currently transitioning to the use of whole genome sequencing
(WGS) [13].

WGS has been applied to subtype S. sonnei effectively: a species-
defining study identified four main phylogenetic lineages that were
further split into sublineages containing isolates of similar
geographical origins [14]. SubsequentWGS studies of S. sonnei have
demonstrated the emergence of sublineages of public health
importance at national and international levels, often driven by the
acquisition of antimicrobial resistance (AMR) [9,10,14,15]. In a strict
public health setting, Public Health England researchers have used
WGS to identify epidemiologic clusters of S. sonnei because existing
subtyping techniques (phage typing) provided poor lineage
discrimination [16]. WGS has also been used to predict AMR phe-
notypes, with high (e.g. >95%) specificities and sensitivities re-
ported for other Enterobacteriaceae, including Escherichia coli,
Campylobacter and Salmonella [17e19]. Collectively, these studies
suggest that the application of WGS within international surveil-
lance networks, such as PNLA&C, can enhance outbreak detection
and surveillance for S. sonnei and its AMR determinants.

The strength of surveillance frameworks lies in both the use of
common techniques and large reference databases; hundreds of
thousands of PFGE-subtyped pathogen profiles exist within Pulse-
Net International. Populating these databases with WGS data from
passive and active surveillance programs will promote the
continued success of international surveillance. In this study,
members of PNLA&C worked collaboratively towards this goal by
generating a WGS overview of S. sonnei in the region.

Materials and Methods

Clinical isolates

LA archive isolates
To construct a regional overview of S. sonnei across LA,WGS data

were generated from 323 archived clinical isolates of S. sonnei
collected over 19 years from nine countries (Table 1, Fig. 1). Each
national PNLA&C partner was responsible for selecting isolates
from its own archives with the aim of achieving diversity with
respect to the following: PFGE profile, year of isolation, AMR profile,
disease manifestation and PFGE profile linkage to outbreaks of
disease or sporadic cases. Metadata associated with the isolates
frequently included the year of collection, AMR susceptibility
testing results and geographical information (e.g. patient residen-
tial province or address of submitting laboratory). All metadata and
results are shown in Supplementary Table S1.

Global context isolates
To set this regional overview in a global context, publically

available sequence data from global reference isolates (n ¼ 116) of
S. sonnei were also included (Supplementary Table S1). These
comprise temporally and geographically diverse (samples from
four continents collected between 1943 and 2008) isolates used to
define the population structure of S. sonnei [14].

Argentine outbreak isolates
To demonstrate the utility of the LA regional overview for

investigating national outbreaks, WGS data generated at the
PNLA&C reference laboratory (ANLIS) from three Argentinian out-
breaks (n ¼ 16 isolates) of S. sonnei were also used. Previously re-
ported at a national level (http://dx.doi.org/10.1101/049940), these
isolates were from outbreaks in 2010 (n ¼ 5), 2011 (n ¼ 3) and 2016
(n ¼ 8).

Genome sequencing and bioinformatics analysis

Archive isolates were sequenced, trimmed and quality checked
at the Wellcome Trust Sanger Institute according to in-house pro-
tocols [20]. Sequencing data were de novo assembled using a
custom assembly pipeline [21]. All isolates were assembled into
>4MB and <650 contiguous sequences (Supplementary Table S1).
Sequencing data and assemblies are publically available at the Eu-
ropean Nucleotide Archive; accession numbers are listed in
Supplementary Table S1. Argentinian outbreak isolates were
sequenced at ANLIS (http://dx.doi.org/10.1101/049940).

To construct the regional overview phylogeny, a multiple
sequence alignment was created by mapping the sequence data
from 439 taxa (archive and global context isolates) to Shigella
sonnei Ss046 and its five associated plasmids (5055316 bp) using

http://creativecommons.org/licenses/by/4.0/
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Table 1
Shigella sonnei isolates studied

Study Country Years n

Latin America Argentina 2002e2011 50
Chile 2010e2011 27
Colombia 2008e2011 31
Costa Rica 2002e2010 50
Guatemala 2011e2012 30
Paraguay 2008e2012 18
Peru 1999e2012 48
Uruguay 2000e2011 28
Venezuela 1997e2014 41

Global Many 1943e2008 116

Total NA 439
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SMALT, followed by removal of repeat regions and mobile elements
(7210310 bp) [14] and regions of recombination (7074 sites) [22],
resulting in a final alignment of 13 988 variant sites. A maximum
likelihood phylogeny with 100 bootstraps was then inferred [23].
Phylogenetic analysis incorporating outbreak isolates was con-
ducted similarly (final alignment 14 075 variant sites).

For analysis of sequences related to AMR, AMR genes were
detected on assembled sequences [24] and cross-referenced with
phylogeny, contiguous sequence length and traditional compara-
tive genetic approaches including Artemis, BLAST (against National
Center for Biotechnology Information (NCBI) reference databases
and locally) and the Artemis comparison tool, as previously
described [9] to determine the presence of known AMR de-
terminants in shigellae. Single nucleotide polymorphisms (SNPs) in
known quinolone-resistance determining regions, including gyrA
positions 83, 87 and 211, and parC positions 80 and 84 [25], were
retrieved.

Approximate longitude and latitude of locations were deduced,
and phylogeographic analysis was visualized by MicroReact [26].
Figtree and iTOL were used for additional visualizations [27].
Results

Phylogenetic analysis of LA S. sonnei was conducted to define its
population structure within the known four-lineage context of
S. sonnei. This divided the LA isolates into a new genetic lineage and
four genetic sublineages of variable diversity. The new lineage
comprised 26 (8%) of the 323 archive isolates and was designated
lineage V (Figs 1 and 2, Table 1). Since its detection in this study,
lineageV isolateshavebeendetected in SouthAfrica (Supplementary
Fig. S1) and the United Kingdom (Baker et al., in preparation). The
remaining archive isolates clusteredwithin lineages II (n¼ 123, 38%)
and III (n ¼ 174, 54%). The archive isolates in lineage II were further
subdivided into the sublineages IIa and IIb (Table1, Figs 1 and2). LAIIa
and IIbwere phylogenetically distinct from the previously described
South America II sublineage (Supplementary Fig. S2). The archive
isolates in lineage III were similarly subdivided into sublineages IIIa
and IIIb, which were expansions of previously described sublineages
(Table 1, Supplementary Fig. S2), with IIIb being part of the
multidrug-resistant (MDR) Global III sublineage of S. sonnei that
expanded globally after the acquisition of AMR [14]. The four LA
sublineages had variable genetic diversity with, for example, the
maximum multiple sequence alignment pairwise distance between
any two isolates in IIIb being 172 SNPs compared to 309 SNPs for IIb
(Table 2). S. sonnei isolates belonging to lineages I and IV were not
found in this study.

The regional phylogenetic overview provides a nomenclature
for discussion and interpretation of national and regional
surveillance patterns of S. sonnei in LA. For that reason, the geo-
spatial information and phylogenetic results of the archived iso-
lates were loaded into a MicroReact project (http://microreact.org/
project/Shigella_sonnei_in_Latin_America). This public resource
can be used interactively by end users to display and filter the re-
sults of this study on the basis of time, phylogeny and geography to
highlight, for example, that sublineages were not uniformly
distributed around LA or individual countries (Fig. 3).

The isolates within an LA lineage or sublineage were temporally
and geographically diverse. Each lineage or sublineage contained
isolates collected in multiple years over the course of the study,
ranging from 10 years for IIIb to the entire 17 years for IIb (Fig. 1,
Table 2). No obvious shifts in the presence of the LA lineage or
sublineages were seen over time, apart from IIIb possibly pre-
dominating in later years (Fig. 1). The LA lineage and sublineages
were also diverse with respect to their countries of origin, with
each comprising isolates from between four and six countries (Figs
1 and 2, Table 1). Within a given LA lineage or sublineage, isolates
from different countries were frequently intermingled rather than
being phylogenetically separated on the basis of geography (often
with good phylogenetic support; Supplementary Fig. S5), indicating
that international transmission across the region may be occurring.

To demonstrate the utility of this data for contextualising new
outbreaks, we performed further phylogenetic analysis with addi-
tional isolates from S. sonnei outbreaks in Argentina. This confirmed
that the Argentinian outbreaks in 2010 and 2011 were caused by
phylogenetically distinct S. sonnei with distinct AMR profiles
(http://dx.doi.org/10.1101/049940). Here this is demonstrated by
the majority of isolates from the 2011 outbreak belong to sub-
lineage LAIIIa and those from 2010 and 2016 belonging to sub-
lineage LAIIIb (Fig. 4). Notably, however, the 2011 and 2016 isolates
fell into multiple sublineages, indicating that the outbreaks may
have multiple epidemiologic origins.

Predicted AMR phenotypes correlated well with AMR testing
data (94.3% sensitivity, 99.4% specificity of 330 available pheno-
types; Supplementary Table S1); these are the results presented
throughout this text. MDR (resistance to three or more antimicro-
bial classes) was common among the isolates (77%, 249 of 323),
with isolates being resistant to between 0 and 7 antimicrobial
agents (mean 3.7, mode and median 4) (Table 3, Supplementary
Table S1, Fig. 2). No relationship of increasing AMR over time was
detected (Supplementary Fig. S4). Macrolide resistance and an
extended-spectrum b-lactamase gene were found in individual
isolates, conferred by the azithromycin resistance gene mphA in a
IIIb isolate, and a lineage V isolate containing a blaSHV129 gene that
conferred resistance to ceftazidime (Supplementary Table S1).
Resistance to quinolones was similarly infrequent, being present in
only 3% (10 of 323) of isolates (conferred by gyrAmutations (n ¼ 8)
or qnr genes (n¼ 2), Supplementary Table S1, Table 3). Resistance to
other classes of antimicrobials was more common, with 65 to 82%
of isolates being resistant to aminoglycosides (streptomycin),
trimethoprim, sulphonamide and tetracycline classes of antimi-
crobials, and resistance to phenicol and b-lactam classes also being
frequently detected (25 and 48% of isolates respectively) (Fig. 2,
Table 3). These resistances were encoded by a variety of AMR genes
(Supplementary Table S1, Supplementary Fig. S3).

Notably, the distribution of resistance against an antimicrobial
class was not uniform among the sublineages (Fig. 2). For
example, predicted b-lactamase resistance in sublineage IIIa was
90% compared to just 7% for sublineage IIIb (p <0.01), and while
IIIa and IIIb had ~90% resistance to tetracycline, sublineages IIb
and IIa had between 25 and 30% tetracycline resistance (Table 3).
The presence of resistance towards a variety of antimicrobials
gave rise to an AMR profile (i.e. antibiogram) in each isolate
(Fig. 2), with each sublineage containing isolates of between six
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Fig. 1. Distribution of 323 Latin American Shigella sonnei isolates sequenced as part of this study by year and country (top), sublineage designation and year (middle), and sublineage
and country (bottom).
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Fig. 2. Genomic portrait of Latin American (LA) Shigella sonnei in context. Maximum likelihood phylogenetic tree of S. sonnei showing 323 LA isolates. LA sublineages are shown in
black and labelled with adjacent arcs; topology unlinked with LA isolates is shown in grey, with lineages labelled to the inner of the tree. Country of origin of LA isolates is shown on
internal track at tips of tree, coloured according to map. Presence of predicted antimicrobial resistance is shown in outer tracks according to inlaid key. Global reference isolates in
tree do not have country or resistance labels.
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and 13 different AMR profiles. However, in the case of sublineages
IIIa and IIIb, single AMR profiles dominated, with one profile
being present among 69 and 79% (respectively) of the isolates in
the sublineage, and other AMR profiles being present in less than
9% of isolates in the sublineage (Supplementary Table S1, Fig. 2).
The dominant AMR profiles in each of IIIa and IIIb were deter-
mined by the presence of chromosomal and plasmid-encoded
AMR genes conferring resistance to multiple antimicrobial clas-
ses (Table 3). Specifically, sublineage IIIb carried the chromosomal
Int2/Tn7 resistance determinant and the SpA plasmid, and sub-
lineage IIIa carried the chromosomal Shigella resistance locus
(SRL) and a variant plasmid of SpA, pABC-3, on which the ami-
noglycoside resistance gene strA has been interrupted by the
acquisition of a trimethoprim resistance-conferring gene, dfrA14
[28]. In contrast to the presence of a dominant AMR profile in
sublineages IIIa and IIIb, sublineages IIa, IIb and lineage V con-
tained at least three AMR profiles that were present in �15% of
the isolates (Supplementary Table S1).



Fig. 3. Phylogeography of Latin American (LA) Shigella sonnei. Midpoint rooted phylogenetic tree with taxa coloured by LA lineage or sublineage (reference isolates shown in grey).
Distribution of each lineage or sublineage across LA is shown in maps, and for all sublineages and lineages in Costa Rica.

Table 2
Genomic and epidemiologic features of Latin American Shigella sonnei

Characteristic Lineage Sublineage

V LAIIa LAIIb LAIIIa LAIIIb

Isolate features
No. of isolates 26 (8%) 66 (20%) 57 (18%) 89 (28%) 85 (26%)
Years 1997e2009 1999e2012 1997e2014 1999e2012 2002e2012
No. of countries 4 5 6 6 5

Pairwise distances (SNPs)
Average 134 176 161 95 105
Median 160 208 210 95 118
Largest distance 221 295 309 292 172

Previous sublineage namea d Unnamed Unnamed South America (III) Africa/South America,
within Global III

LA, Latin America; SNP, single nucleotide polymorphism.
a According to [14].

K.S. Baker et al. / Clinical Microbiology and Infection 23 (2017) 845e853850



Fig. 4. Argentine Shigella sonnei outbreaks in context of Latin American regional overview. Midpoint rooted phylogenetic tree shows phylogenetic positions of outbreak isolates
from outbreaks in 2010, 2011 and 2016 using data generated locally in Argentina. Tree is labelled similarly to Fig. 2, with additional outbreak isolates being coloured by year
(according to inlaid key) in outermost track exterior to country labels (coloured according to map).
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Discussion

Here we have created a resource of novel WGS diversity of
S. sonnei from LA relevant to public health surveillance on regional
and global scales. We report the identification of a new global
lineage (lineage V) [14]; previously undescribed sublineages of
lineage II (LAIIa and IIb); and expansions in lineage III, including
LAIIIa (previously South America (III)) and IIIb within the MDR
Global III lineage. The subsequent detection of lineage V in Europe
and Africa testifies to the relevance of this diversity for surveillance
on a global scale, and the regional importance of this data is
demonstrated here by contextualisation of Argentinian S. sonnei
outbreaks.
In a previous study, outbreak isolates from Argentina were
discriminated at a national level into three WGS sublineages
(http://dx.doi.org/10.1101/049940). Building these isolates into this
regional overview, the 2010 and 2016 outbreak isolates were con-
tained entirely within the diversity of archive isolates from
Argentina, indicating these epidemics were likely from previously
circulating strains (Fig. 4). In contrast, the 2011 outbreak isolates
were more closely related to IIIa isolates from Peru and Chile than
the single IIIa isolate from Argentina, indicating the epidemic may
have been subsequent to an importation event. Thus, by providing
interpretative context, our results enhance national, regional and
global surveillance of S. sonnei through publically available
sequencing data and MicroReact.

http://dx.doi.org/10.1101/049940


Table 3
Predicted resistance phenotypes and major resistance determinants

Characteristic Lineage Sublineage All (n ¼ 323)

V (n = 26) LAIIa (n ¼ 66) LAIIb (n ¼ 57) LAIIIa (n ¼ 89) LAIIIb (n ¼ 85)

Predicted resistant
Aminoglycoside 81% 58% 70% 90% 100% 82%
b-Lactam 42% 59% 35% 90% 7% 48%
Phenicol 0 2% 0 89% 0 25%
Trimethoprim 85% 61% 68% 81% 100% 80%
Sulphonamide 46% 62% 30% 83% 87% 67%
Tetracycline 73% 30% 25% 90% 91% 65%
Macrolide 0 0 0 0 1% 0
Quinolone 0 0 0 9% 0 3%
ESBL 4% 0 0 0 0 0

MDR
MDR 81% 62% 51% 91% 91% 77%
Average no. of AMR phenotypes per isolate 3.3 2.7 2.3 5.3 3.9 3.7
No. of unique resistance profiles 9 11 13 11 6 30

Previously described major AMR determinants
Aminoglycoside d Int2/Tn7 with bla Int2/Tn7 SRL Int2/Tn7 and SpA d

b-Lactam d Int2/Tn7 with bla d SRL d d

Phenicol d d d SRL d d

Trimethoprim d Int2/Tn7 Int2/Tn7 SRL SpA d

Sulphonamide d d pABC-3 Int2/Tn7 d

Tetracycline d d pABC-3 SpA d

Macrolide d d d d d

Quinolone d d gyrA SNPs, qnrS genes d d

AMR, antimicrobial resistance; ESBL, extended-spectrum b-lactamase; LA, Latin America; MDR, multidrug resistant; SNP, single nucleotide polymorphism.
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TheWGS datawere also used to examine AMR in S. sonnei across
LA. Quinolone and macrolide resistance and genes encoding
extended-spectrum b-lactamases were not widespread; they were
present in only a handful of isolates. Notably, however, quinolone-
resistant isolates in lineage V and sublineage IIIa were outside of
the Central Asia III lineage, thought to act as the global reservoir for
ciprofloxacin-resistant S. sonnei [15]. Resistance against many other
classes of antimicrobials (including aminoglycosides, b-lactams,
trimethoprim-sulphonamides, phenicol and tetracyclines), how-
ever, was common, as was MDR. Common MDR across the sub-
lineages is part of the problem of increasing AMR in Shigella and has
already lead to the emergence of epidemiologically dominant
sublineages elsewhere [9,10].

This study provides applications to future surveillance as well as
retrospective insight on S. sonnei epidemiology across LA. The
presence of closely related isolates from different countries within
an individual sublineage indicates that international transmission
of S. sonnei occurs across LA, as suggested for the Argentina 2011
outbreak. Also, although not a representative epidemiologic cross
section, this study suggests that sublineages IIIa and IIIb are
epidemically expanding across LA, driven by AMR. This is sup-
ported by the temporal incidence of IIIa and IIIb isolates being
weighted towards the latter years of the study and the low
phylogenetic diversity in sublineages IIIa and IIIb compared to
sublineages IIa and IIb, and lineage V, likely resulting from rapid
clonal expansion. Furthermore, the presence of a dominant AMR
profile in each lineage is associated with combinations of specific
AMR determinants already associated with globally epidemic
S. sonnei. Specifically, sublineage IIIb falls within the Global III
sublineage and contains the Int2/Tn7 resistance determinant and
the pSpA resistance plasmid associated with the global expansion
of Global III [14]. Similarly, sublineage IIIa contains the chromoso-
mally integrated SRL and pABC-3, two of the major resistance de-
terminants reported in a recent sublineage of Shigella flexneri 3a
which transmitted globally among men who have sex with men
from a possible LA origin [29]. Notably, pABC-3 has been reported in
epidemic S. sonnei in Chile [28], but the SRL, known as an important
AMR determinant in S. flexneri and Shigella dysenteriae [30,31], has
not been commonly reported in S. sonnei and thus represents a
worrying addition to the armaments of this pathogen.
There were several limitations to this study. It was retro-
spective in nature, and we selected intentionally diverse iso-
lates without a case definition or representation relative to the
disease burden of each country. Thus, the final overview only
approximates proportional representation of the phylogenetic
variation and AMR profiles of S. sonnei in LA and should be
used primarily as a contextual tool for future surveillance.
Additionally, using WGS for Shigella surveillance relies on
isolate culture, which is diagnostically less sensitive than
alternative molecular techniques such as quantitative real-time
PCR [32]. However, as evidenced here, isolate cultures have a
value-added role for epidemiologic, AMR and evolutionary
surveillance given the increased insight that can be gained
through WGS.

As we exploit novel subtyping techniques for understanding the
spread of pathogens, contextual databases need to be rebuilt
through regional cooperation and investment in appropriate
technologies, facilities and training. This study demonstrates that
this is possible within existing infrastructure and surveillance
networks, such as PNLA&C. Through collaborative efforts, we
created a context for S. sonnei across LA showing international
transmission and epidemiologically expanding sublineages within
this region. We have also shown how this information can be used
to place recent outbreaks and increasing levels of AMR into na-
tional, regional and global contexts. This information is essential if
we are to maintain current surveillance activities and halt the in-
crease and spread of AMR in important bacterial pathogens such as
S. sonnei.
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