

1 Distinct *Salmonella* Enteritidis lineages associated with enterocolitis in high-income
2 settings and invasive disease in low-income settings

3

4

5 Authors

6 Nicholas A. Feasey 1,2,3,4, James Hadfield 2, Karen H. Keddy 5, Timothy J Dallman
7 21, Jan Jacobs 6,7, Xiangyu Deng 8,9, Paul Wigley 4, Lars Barquist 10, Gemma C.
8 Langridge 2, Theresa Feltwell 2, Simon R. Harris 2, Alison E. Mather 2*, Maria
9 Fookes 2, Martin Aslett 2, Chisomo Msefula 3,11, Samuel Kariuki 12, Calman
10 Maclennan 2,13, Robert S. Onsare 12, François X. Weill 14, Simon Le Hello 14,
11 Anthony M. Smith 5, Michael McClelland 15, Prereak Desai 15, Christopher M. Parry
12 16,17, John Cheesbrough 18, Neil French 4, Josefina Campos 19, Jose A. Chabalgoity
13 20, Laura Betancor 20, Katie L. Hopkins 21, Satheesh Nair 21, Tom J. Humphrey 22,
14 Octavie Lunguya 23,24, Tristan A. Cogan 25, Milagritos Tapia 26, Samba Sow 27,
15 Sharon M. Tennant 26, Kristin Bornstein 26, Myron M. Levine 26, Lizeth Lacharme-
16 Lora 4, Dean B. Everett 4, Robert A. Kingsley 2,28, Julian Parkhill 2, Robert S.
17 Heyderman 3,29, Gordon Dougan 2, Melita A Gordon† 3,4 & Nicholas R. Thomson†
18 2, 30

19

20 †These authors contributed equally

21

22 Affiliations

- 23 1. Liverpool School of Tropical Medicine, Liverpool, UK
- 24 2. Wellcome Trust Sanger Institute, Cambridge, UK
- 25 3. Malawi Liverpool Wellcome Trust Clinical Research Programme, University of Malawi College of
26 Medicine, Blantyre, Malawi
- 27 4. Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
- 28 5. National Institute for Communicable Diseases and Faculty of Health Sciences, University of the
29 Witwatersrand, Johannesburg, South Africa
- 30 6. Institute of Tropical Medicine, Antwerp, Belgium
- 31 7. Department of Microbiology and Immunology, University of Leuven, Belgium
- 32 8. Center for Disease Control, Atlanta, USA
- 33 9. Center for Food Safety, Department of Food Science and Technology, University of Georgia

34 10. Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
35 11. University of Malawi, The College of Medicine, Blantyre, Malawi
36 12. Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
37 13. Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
38 14. Institut Pasteur, Paris, France
39 15. Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
40 16. London School of Hygiene & Tropical Medicine, London, UK
41 17. School of Tropical Medicine and Global Health, Nagasaki University, Japan
42 18. Department of Epidemiology and Population Health, University of Liverpool, Liverpool, UK
43 19. Enteropathogen Division, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS)
44 Carlos G. Malbran Institute, Buenos Aires, Argentina
45 20. Departamento Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la
46 Repùblica, Uruguay
47 21. Gastrointestinal Bacteria Reference Unit, Public Health England, Colindale, UK
48 22. Swansea Medical School, Swansea University, Swansea, UK
49 23. National Institute of Biomedical Research, Kinshasa, the Democratic Republic of the Congo
50 24. University Hospital of Kinshasa, Kinshasa, the Democratic Republic of the Congo
51 25. School of Veterinary Sciences, University of Bristol, Bristol, UK
52 26. Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, USA
53 27. Centre pour le Développement des Vaccins, Bamako, Mali
54 28. Institute of Food Research, Colney, Norwich, UK
55 29. Division of Infection and Immunity, University College London, London, UK
56 30. The London School of Hygiene and Tropical Medicine, London, UK
57 * Current address: Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
58

59
60 Corresponding Author
61 Nicholas Feasey
62 Liverpool School of Tropical Medicine
63 5 Pembroke Place
64 Liverpool
65 L3 5QA
66 Tel: 0151 705 3214

67
68 Running Title: Emergence of distinct lineages of *S. Enteritidis*
69 Key words: *Salmonella* Enteritidis, global, multidrug resistant, bacteraemia,
70 gastroenteritis
71

72 **Abstract**

73 An epidemiological paradox surrounds *Salmonella enterica* serovar Enteritidis. In
74 high-income settings, it has been responsible for an epidemic of poultry-associated,
75 self-limiting enterocolitis, whilst in sub-Saharan Africa it is a major cause of invasive
76 nontyphoidal *Salmonella* disease, associated with high case-fatality. Whole-genome
77 sequence analysis of 675 isolates of *S. Enteritidis* from 45 countries reveals the
78 existence of a global epidemic clade and two novel clades of *S. Enteritidis* that are
79 each geographically restricted to distinct regions of Africa. The African isolates
80 display genomic degradation, a novel prophage repertoire and have an expanded,
81 multidrug resistance plasmid. *S. Enteritidis* is a further example of a *Salmonella*
82 serotype that displays niche plasticity, with distinct clades that enable it to become a
83 prominent cause of gastroenteritis in association with the industrial production of
84 eggs, and of multidrug resistant, bloodstream invasive infection in Africa.

85

86 **Introduction**

87

88 *Salmonella enterica* serovar Enteritidis (hereafter referred to as *S. Enteritidis*) has
89 been a global cause of major epidemics of enterocolitis, which have been strongly
90 associated with intensive poultry farming and egg production [1]. The serovar is
91 usually considered to be a generalist in terms of host range and has a low human
92 invasiveness index, typically causing self-limiting enterocolitis [2]. Following a
93 number of interventions in the farming industry involving both improved hygiene
94 and poultry vaccination, epidemic *S. Enteritidis* has been in decline in many
95 countries including the United Kingdom and USA [3,4]. *S. Enteritidis* has also been
96 used extensively since the early 1900s as a rodenticide (named the “Danysz virus”),
97 following development at Institut Pasteur, France. Although by the 1960s,
98 *Salmonella*-based rodenticides had been banned in the US, Germany and the UK, *S.*
99 *Enteritidis* is still produced as a rodenticide in Cuba, under the name Biorat®[5].

100

101 Serovars of *Salmonella* that cause enterocolitis in industrialised settings are strongly
102 associated with life-threatening invasive nontyphoidal *Salmonella* (iNTS) disease in
103 sub-Saharan Africa (SSA). *S. Enteritidis* and *Salmonella enterica* serovar
104 Typhimurium (*S. Typhimurium*) are the two leading causes of iNTS disease in SSA
105 [6] and both are associated with multidrug resistance (MDR)[7]. The clinical
106 syndrome iNTS disease is associated with immunosuppression in the human host,
107 particularly malnutrition, severe malaria and advanced HIV in young children and
108 advanced HIV in adults [8]. It has been estimated to cause 681,000 deaths per year
109 [9].

110

111 *Salmonella* is a key example of a bacterial genus in which there is a recognizable
112 genomic signature that distinguishes between a gastrointestinal and an extra-
113 intestinal/invasive lifestyle [10], whereby functions required for escalating growth
114 in an inflamed gut are lost when the lineage becomes invasive [11]. In order to
115 investigate whether there were distinct bacterial characteristics explaining the very

116 different epidemiological and clinical profile of epidemic isolates of serotype *S.*
117 *Typhimurium* from SSA and industrialised settings, whole-genome sequence (WGS)
118 investigations of this serovar were previously undertaken. These revealed a novel
119 pathotype of multilocus sequence type (MLST) ST313 from SSA, which differed from
120 clades that cause enterocolitis in industrialised settings, by showing patterns of
121 genomic degradation potentially associated with more invasive disease and
122 differential host adaptation [12-17].

123

124 In relation to *S. Enteritidis*, there is a growing body of literature on the evolutionary
125 history, phylogeny and utility of WGS for surveillance of *S. Enteritidis* outbreaks [18-
126 20]. The broadest study of the phylogeny to date revealed five major lineages, but
127 contained only two African isolates [21]. There have also been limited reports of
128 isolates of *S. Enteritidis* from African patients living in Europe that are MDR and
129 which display a distinct phage type (PT 42) [22,23]. We therefore hypothesized that
130 there are distinct lineages of *S. Enteritidis* circulating in both the industrialised and
131 developing world with different origins, likely distinct routes of spread and that are
132 associated with different patterns of disease, which will display the distinct genomic
133 signatures characteristic of differential adaptation. To investigate this we have
134 collected a highly diverse global collection of *S. Enteritidis* isolates and compared
135 them using whole-genome sequencing, the highest possible resolution typing
136 methodology.

137

138

139

140

141

142

143

144

145 **Results**

146

147 **Isolate collection**

148

149 In total, 675 isolates of *S. Enteritidis* isolated between 1948 and 2013 were
150 sequenced. The collection originated from 45 countries and six continents (Table 1).
151 496/675 isolates were from Africa, with 131 from the Republic of South Africa
152 (RSA), a further 353 from the rest of SSA, and 12 from North Africa (Table 1). There
153 were 343 isolates from normally sterile human sites (invasive), 124 non-invasive
154 human isolates (predominantly stool samples) and 40 from animal, food or
155 environmental sources. The full metadata are described in Supplementary Table 1
156 and have been uploaded to the publically available database Enterobase
157 (<https://enterobase.warwick.ac.uk/>).

158

159 **Phylogeny**

160

161 675 *S. Enteritidis* genomes and one *Salmonella enterica* serovar Gallinarum were
162 mapped to the *S. Enteritidis* strain P125109 reference sequence, variable regions
163 excluded and the remaining sites were screened for single nucleotide
164 polymorphisms (SNPs). This left an alignment containing a total of 42,373 variable
165 sites, from which a maximum likelihood (ML)-phylogeny was constructed using *S.*
166 *Gallinarum*, which is a closely related serovar, as an out-group (Figure 1). HierBAPS
167 was run over two rounds, which provided clear distinction between clades/clusters
168 [24]. The phylogeny of *S. Enteritidis* revealed evidence of three clades associated
169 with epidemics, one which we have termed the 'global epidemic clade' and includes
170 the reference PT4 isolate P125109 and two African clades: one predominantly
171 composed of West African isolates (labeled the 'West African clade') and a second
172 composed of isolates predominantly originating in Central and Eastern Africa, called
173 the 'Central/Eastern African clade'). Figure 1 also shows the other clades and
174 clusters predicted by HierBAPS, the largest of which is a paraphyletic cluster from

175 which the global epidemic clade emerged (Outlier Cluster in Figure 1), and a further
176 five smaller clades or clusters predicted by HierBAPS.

177

178 The global epidemic clade contains isolates of multiple phage types, including 4 and
179 1, which have been linked to the global epidemic of poultry associated human
180 enterocolitis [25]. It comprised 250 isolates from 28 countries, including 43 from
181 Malawi and 82 from RSA. They were isolated from across a 63-year period (1948-
182 2013). Antimicrobial susceptibility testing had been performed on 144 isolates and
183 104 were susceptible to all antimicrobials tested, five were multidrug resistant
184 (MDR: resistant to 3 or more antimicrobial classes), one was nalidixic acid resistant
185 and none were extended-spectrum beta-lactamase (ESBL)-producing isolates.
186 Database comparison of the genomes from this clade revealed that 221 (88%) of
187 them contained no predicted antimicrobial resistance (AMR) genes apart from the
188 cryptic resistance gene *aac(6')-Iy* [26].

189

190 The global epidemic clade has emerged from a diverse cluster previously described
191 by Zheng [27], which encompassed 131 isolates (Figure 1: 'Outlier Cluster'). In
192 addition to being paraphyletic, this group was geographically and temporally
193 diverse, and predominantly drug susceptible (59/71 isolates). Whilst the majority of
194 the diversity of phage typed isolates was contained within the global epidemic clade,
195 this cluster alone contained isolates of phage type 14b, which was recently
196 associated with a multi-country outbreak of *S. Enteritidis* enterocolitis in Europe
197 associated with chicken eggs from Germany [28]. There were also 41 isolates from
198 RSA in this clade, where it has been a common cause of bloodstream infection, and
199 39 bloodstream isolates from Malawi. Database comparison of the genomes from
200 this clade revealed that 122 (82%) of these genomes contained no predicted AMR
201 genes apart from the cryptic resistance gene *aac(6')-Iy*.

202

203 There were two related, but phylogenetically and geographically distinct, epidemic
204 clades that largely originated from SSA. The Central/Eastern African clade included

205 166 isolates, all but two of which (from RSA) came from this region. Of these,
206 126/155 (82%) were MDR and 148/153 (97%) displayed phenotypic resistance to
207 between one and four antimicrobial classes. All of these genomes contained at least
208 five predicted resistance genes and 128 (77%) contained nine (Table 2 and
209 Supplementary Table 2). 155/165 (94%) of these isolates were cultured from a
210 normally sterile compartment of a human (i.e. blood or cerebrospinal fluid) and
211 were considered to be causing invasive disease (Table 2). The second African
212 epidemic clade was significantly associated with West Africa with 65/66 isolates
213 coming from this region and one isolate from USA. This clade was also associated
214 with drug resistance (62 [94%] resistant to ≥ 1 antimicrobial class by phenotype and
215 genotype) and human invasive disease (61 [92%]). It also included two isolates that
216 were subtyped as phage type 4.

217
218 The remaining 58 isolates included in this study were extremely diverse,
219 phylogenetically, temporally and geographically. Only two displayed any phenotypic
220 AMR, one of which was MDR. Inspection of the genome revealed that five had
221 predicted AMR genes in addition to *aac(6')-Iy*, four of which were isolated in sub-
222 Saharan Africa. Twenty were associated with invasive human disease, and six were
223 recovered from stool. Three isolates were from stocks of rodenticide and these were
224 phylogenetically remote from both global-epidemic and the two African epidemic
225 clades.

226
227 To add further context to these findings we screened the entire publically available
228 Public Health England (PHE) sequenced *Salmonella* routine surveillance collection,
229 which includes 2,986 *S. Enteritidis* genomes, 265 of which were associated with
230 travel to Africa (Supplementary Figure 1). Within this huge collection, including 61
231 (2.0%) bloodstream isolates and 2670 (89.4%) stool isolates, only 6 isolates (4 from
232 blood culture, 1 from stool) fell within to the West African clade and 1 (from stool)
233 belonged to the Central/Eastern African clade. Notably, these isolates were all either
234 associated with travel to Africa and/or taken from patients of African origin.

235 It is apparent from the location of the archetypal reference isolate and archetypal
236 phage types in the phylogeny (Supplementary Figure 2) that the majority of *S.*
237 Enteritidis studied previously belonged to the global epidemic clade associated with
238 enterocolitis in industrialised countries. Furthermore, it is also clear that two
239 additional, previously unrecognized *S. Enteritidis* lineages have emerged, largely
240 restricted to Africa, that are strongly associated with MDR and invasive disease.

241

242 To understand how recently these African-associated lineages emerged we used
243 Bayesian Evolutionary Analysis by Sampling Trees (BEAST) to reconstruct the
244 temporal history of the epidemic clades [29]. These data (Supplementary Figure 3)
245 estimate the most recent common ancestor (MRCA) of the Central/Eastern African
246 clade dates to 1945 (95% Credible Interval [CrI]: 1924-1951) and for the West
247 African clade it was 1933 (95% CrI: 1901-1956). We estimate the MRCA of the
248 global epidemic clade originated around 1918 (95% CrI: 1879-1942 –
249 Supplementary Figure 4), with a modern expansion occurring in 1976 (95% CrI:
250 1968-1983), whereas the paraphyletic cluster from which it emerged dates to
251 approximately 1711 (95% CrI: 1420-1868).

252

253 **The contribution of the accessory genome to the emergence of the African
254 clades**

255

256 Prophages have the potential to carry non-essential "cargo" genes, which suggests
257 they confer a level of specialization to their host bacterial species, whilst plasmids
258 may confer a diverse array of virulence factors and AMR [30,31]. Therefore it is
259 critical to evaluate the accessory genome in parallel with the core. 622 sequenced
260 genomes were used to determine a pangenome, which yielded a core genome
261 comprising 4,076 predicted genes present in $\geq 90\%$ isolates, including all 12
262 recognised *Salmonella* Pathogenicity Islands as well as all 13 fimbrial operons found
263 in the P125109 reference [32]. The core gene definition was set to minimize
264 stochastic loss of genes from the core due to errors in individual assemblies across

265 such a large dataset. The accessory genome consisted of 14,015 predicted genes. Of
266 the accessory genes, 324 were highly conserved across the global and two African
267 epidemic clades, as well as the outlier cluster. Almost all were associated with the
268 acquisition or loss of mobile genetic elements (MGEs) such as prophage or plasmids.
269 Prophage regions have been shown to be stable in *Salmonella* genomes and are
270 potential molecular markers, the presence of which has previously been used to
271 distinguish specific clades [13,33].

272

273 The lineage-specific whole gene differences of the major clades are summarized in
274 Figure 2 and plotted against the representatives of the four major clades in
275 Supplementary Figure 3. The lineage specific sequence regions include 57 predicted
276 genes found to be unique to the global epidemic clade (Figure 2), all of which were
277 associated with prophage ϕ SE20, a region shown to be essential for invasion of
278 chicken ova and mice in one previous study [34]. There were a further 39 genes
279 conserved in the global epidemic and the paraphyletic outlying cluster, which were
280 absent from both African clades, 26 of which correspond to region of difference
281 (ROD) 21 [32]. The Central/Eastern Africa clade contained 77 predicted genes that
282 were absent in the other clades. 33 were associated with the virulence plasmid and
283 a further 40 chromosomal genes were associated with a novel, Fels-2 like prophage
284 region (ϕ fels-BT). The West African clade had only 15 distinct predicted genes, 11 of
285 which were plasmid-associated. The two African clades shared a further 102 genes:
286 48, including a leucine-rich repeat region, were associated with a novel prophage
287 region closely related to *Enterobacter* phage P88, 44 were associated with a Gifsy-1
288 prophage found in *S. Bovismorbificans* and eight were associated with a Gifsy-2
289 prophage which has degenerated in the reference P125109.

290

291 The *S. Enteritidis* plasmid is the smallest of the generic *Salmonella* virulence
292 plasmids at 58 kb and is unusual in that it contains an incomplete set of *tra* genes
293 that are responsible for conjugative gene transfer. The phylogeny of the *S.*
294 *Enteritidis* virulence plasmid backbone was reconstructed using reads that mapped

295 to the *S. Enteritidis* reference virulence plasmid, pSENV. 120/675 (18%) genomes
296 lacked pSENV. The virulence plasmid phylogeny is similar to that of the
297 chromosome, suggesting that they have been stably maintained by each lineage and
298 diversified alongside them (Supplementary Figure 6).

299

300 The virulence plasmids from the African clades were much larger than those held in
301 the other clades at ~90 kb. A representative example was extracted from Malawian
302 isolate D7795, sequenced using long read technology to accurately reconstruct it
303 (PacBio; see methods) and denoted pSEN-BT (Accession number LN879484). pSEN-
304 BT is composed of a backbone of pSENV with additional regions that are highly
305 similar to recently sequenced fragments of an novel *S. Enteritidis* virulence plasmid
306 (pUO-SeVR) isolated from an African patient presenting with MDR invasive *S.*
307 *Enteritidis* in Spain [22]. Plasmid pSEN-BT harbours nine AMR genes (full list in
308 Supplementary Table 2), plus additional genes associated with virulence and a
309 toxin/antitoxin plasmid addiction system. Of note, plasmids from the West African
310 isolates carry resistance gene chloramphenicol acetyl transferase A1 (*catA1*),
311 whereas the Central/Eastern African strains carry *catA2* and tetracycline resistance
312 gene *tet(A)*. Like pSENV, the African virulence plasmid contained an incomplete set
313 of *tra* genes and so is not self-transmissible. This was confirmed by conjugation
314 experiments and is consistent with previous reports [22,23]. These observations
315 suggest that the evolution of the *S. Enteritidis* plasmid mirrors that of the
316 chromosome; it is thus not a 'novel' plasmid, but in different SSA locations has
317 acquired different AMR genes.

318

319 **Multiple signatures of differential host adaptation**

320

321 It has been observed in multiple serovars of *Salmonella* including *S. Typhi*, *S.*
322 *Gallinarum* and *S. Typhimurium* ST313 that the degradation of genes necessary for
323 the utilization of inflammation-derived nutrients is a marker of that lineage having
324 moved from an intestinal to a more invasive lifestyle [13,14,32,35]. Accordingly, we

325 have looked for similar evidence within a representative example of a MDR,
326 invasive, Central/Eastern African clade isolate, D7795, that was isolated from the
327 blood of a Malawian child in 2000. The draft genome sequence of D7795 closely
328 resembles that of P125109, however, in addition to the novel prophage repertoire
329 and plasmid genes described above, it harbours a number of predicted pseudogenes
330 or hypothetically disrupted genes (HDGs)[11].

331

332 In total, there were 42 putative HDGs in D7795, many of which are found in genes
333 involved in gut colonisation and fecal shedding as well as various metabolic
334 processes such as cobalamin biosynthesis which is a cofactor for anaerobic
335 catabolism of inflammation-derived nutrients, such as ethanolamine, following
336 infection [36]. Curation of the SNPs and insertions or deletions (indels) predicted to
337 be responsible for pseudogenisation across the Central/Eastern African clade and
338 West African clade revealed 37/42 predicted HDGs were fixed in other
339 representatives of the Central/East African clade, with 27 of them being present in
340 over 90% of isolates from that clade. Relatively fewer HDGs in D7795 (19/42) were
341 present in representatives of the West African clade, although 13 were present in
342 $\geq 90\%$ of isolates (Supplementary Table 3).

343

344 In addition to this evidence of reductive evolution in D7795, there were 363 genes
345 containing non-synonymous (NS)-SNPs, which change the amino acid sequence and
346 so may have functional consequences [37]. The two African clades were screened
347 for the presence of these NS-SNPs and 131 were found to be present and completely
348 conserved across both clades, including NS-SNPs in 43 genes encoding predicted
349 membrane proteins, 36 metabolic genes and 23 conserved hypothetical genes
350 (Supplementary Table 4). Furthermore many of these NS-SNPs fall in genes within
351 the same metabolic pathways as the HDGs (see Supplementary Results for detailed
352 description). Supplementary Table 5 provides a list of some of the common traits
353 identified amongst the functions of genes lost independently by D7795, *S. Typhi* and
354 *S. Gallinarum*. The disproportionate clustering of mutations in membrane structures

355 observed in the African clades is yet another sign of differential host adaptation
356 analogous to that reported in both *S. Typhi* [35] and *S. Gallinarum* [32].

357

358 **Biolog™ growth substrate platform profiling**

359

360 The Biolog™ platform was utilized to generate a substrate growth utilisation profile
361 for selected *S. Enteritidis* isolates (see high throughput phenotyping protocol in
362 Supplementary materials). Corresponding signal values of replicate pairs of a
363 Central/Eastern African isolate (D7795) and a global epidemic isolate (A1636) were
364 compared using principal component analysis and found to be highly consistent. In
365 total, 80 metabolites showed evidence of differential metabolic activity (Figure 3).
366 Evaluation of data from the Central/Eastern African isolate using Pathway Tools
367 software revealed that 14/27 (52%) of pathways with evidence of decreased
368 metabolic activity at 28°C had a corresponding component of genomic degradation.
369 This was also true for 12/30 (40%) of pathways with evidence of decreased
370 metabolic activity at 37°C.

371

372 Instances of reduced metabolic activity in a Central/Eastern African strain (D7795)
373 compared to a global epidemic strain (A1636) included dulcitol and glycolic acid in
374 the glycerol degradation pathway, propionic acid in the propanediol pathway and
375 ethylamine and ethanolamine. These are all vitamin B12 (cobalamin) dependent
376 reactions, for which there was a corresponding signature of genomic degradation.
377 Also there was reduced activity in response to three forms of butyric acid, alloxan
378 and allantoic acid metabolism. Allantoin can be found in the serum of birds, but not
379 humans and is utilised as a carbon source during *S. Enteritidis* infection of chickens,
380 [38] and HDGs relating to allantoin have been noted in *S. Typhimurium* ST313 [13].
381 The full list of differences is detailed in Supplementary Table 6 and 7. This is a
382 further sign of decreased metabolism of the Central/Eastern African isolate in the
383 anaerobic environment of the gut.

384

385 **Chicken infection model suggests evolutionary divide in host range between**
386 **global epidemic and African lineages**

387

388 Given the phenotypic differences observed in the genotypically distinct global and
389 African clades, we hypothesized that these lineages could have differing infection
390 phenotypes in an *in vivo* challenge model. We compared the infection profile of a
391 member of the Central/Eastern African clade (D7795) to the reference global
392 epidemic strain P125109 in an avian host. The chicken group infected with P125109
393 showed mild hepatosplenomegaly consistent with infection by this *Salmonella*
394 serovar and cecal colonization (Figure 4A-C). In contrast, the Central/Eastern
395 African strain displayed significantly reduced invasion at 7 dpi of both liver
396 ($p=0.027$) and spleen ($p=0.007$), however cecal colonization was not significantly
397 reduced ($p=0.160$). This is in marked contrast to the behavior of *S. Typhimurium*
398 ST313, which is more invasive in a chick infection model [12].

399

400

401 **Discussion**

402

403 *S. Enteritidis* is an example of a successful *Salmonella* lineage with the apparent
404 ability to adapt to different hosts and transmission niches as and when
405 opportunities for specialization have presented. Langridge *et al* recently evaluated
406 the *Enteritidis/Gallinarum/Dublin* lineage of *Salmonella*, revealing components of
407 the nature and order of events associated with host-range and restriction [39]. In
408 the present study, we have highlighted the plasticity of *S. Enteritidis*, providing
409 evidence of three distinct epidemics of human disease. In addition we show multiple
410 additional clades and clusters that demonstrate the huge reservoir of diversity
411 amongst *S. Enteritidis* from which future epidemics might emerge.

412

413 An important question posed by this study is why have distinct clades of *Salmonella*
414 emerged to become prominent causes of iNTS disease in Africa, from a serotype

415 normally considered to be weakly invasive? The presence of a highly
416 immunosuppressed population due to the HIV pandemic is clearly a key host factor
417 that facilitates the clinical syndrome iNTS disease [40,41]. In addition to human host
418 factors, there are two distinct African epidemic lineages that have emerged in the
419 last 90 years. Both lineages are significantly associated with a novel prophage
420 repertoire, an expanded, MDR-augmented virulence plasmid, and patterns of
421 genomic degradation with similarity to other host-restricted invasive *Salmonella*
422 serotypes including *S. Typhi* and *S. Gallinarum* and to clades of *S. Typhimurium*
423 associated with invasive disease in Africa [13,32,35]. This pattern of genomic
424 degradation is concentrated in pathways specifically associated with an enteric
425 lifestyle, however it is noteworthy that in the chick infection model, the African *S.*
426 *Enteritidis* invaded the chick liver and spleen less well than the global pandemic
427 clade. This raises the possibility that the two clades occupy different ecological
428 niches outside the human host or that they behave differently within the human
429 host and screening of the huge *S. Enteritidis* collection from routine *Salmonella*
430 surveillance by PHE supports the assertion that these lineages are geographically
431 restricted to Africa. This study therefore indicates a need to understand what these
432 ecological niches might be, and then to define the transmission pathways of African
433 clades of *S. Enteritidis*, in order to facilitate public health interventions to prevent
434 iNTS disease.

435
436 The evolution of the *S. Enteritidis* virulence plasmid is intriguing; pSENV is the
437 smallest of the known *Salmonella* virulence-associated plasmids, but in SSA, the
438 plasmid has nearly doubled in size partly through the acquisition of AMR genes. The
439 absence of *tra* genes necessary for conjugal transfer either indicates that MDR status
440 has evolved through acquisition of MGEs multiple times or through clonal expansion
441 and vertical transmission of the plasmid to progeny. The available data suggest that
442 the former scenario has happened twice, once in West Africa, and once in
443 Central/Eastern Africa.

444

445 Despite *S. Enteritidis* being reported as a common cause of bloodstream infection
446 (BSI) in Africa [6,7] the Global Enteric Multicenter Study (GEMS) found that
447 *Salmonella* serotypes were an uncommon cause of moderate to severe diarrhoea in
448 African children less than 5-years of age [42]. Our data associating the African
449 lineages with invasive disease is also consistent with data presented in a recent
450 Kenyan study comparing a limited number and diversity of *S. Enteritidis* isolates
451 from blood and stool. Applying the lineages defined in this study to the genome data
452 reported from Kenya showed that 20.4% of isolates from that study belonging to the
453 global clade were associated with invasive disease, whereas 63.2% of the isolates in
454 that study belonging to our Central/Eastern African clade were associated with
455 invasive disease [43]. The remaining isolates were associated with cases of
456 enterocolitis or asymptomatic carriage, confirming that the Central/Eastern African
457 clade can also cause enterocolitis. The association of *S. Enteritidis* clades circulating
458 in sub-Saharan Africa with iNTS disease may reflect the fact that their geographical
459 distribution permits them to behave as opportunistic invasive pathogens in a setting
460 where advanced immunosuppressive disease is highly prevalent in human
461 populations.

462

463 In summary, two clades of *S. Enteritidis* have emerged in Africa, which have
464 different phenotypes and genotypes to the strains of *S. Enteritidis* circulating in the
465 industrial world. These strains display evidence of changing host adaptation,
466 different virulence determinants and multi-drug resistance, a parallel situation to
467 the evolutionary history of *S. Typhimurium* ST313. They may have different
468 ecologies and/or host ranges to global strains and have caused epidemics of BSI in
469 at least three countries in SSA, yet are rarely responsible for disease in South Africa.
470 An investigation into the environmental reservoirs and transmission of these
471 pathogens is warranted and urgently required.

472

473 **Methods**

474

475 Bacterial Isolates

476

477 *S. Enteritidis* isolates were selected on the basis of six factors; date of original
478 isolation, antimicrobial susceptibility pattern, geographic site of original isolation,
479 source (human [invasive vs stool], animal or environmental), phage type (where
480 available), and multilocus variable number tandem repeat (MLVA) type (where
481 available). *S. Enteritidis* P125109 (EMBL accession no. [AM933172](#)) isolated from a
482 poultry farm from the UK was used as a reference [32]. The full metadata are in
483 Supplementary Table 1. Isolates have been attributed to region according to United
484 Nations statistical divisions
485 (<http://unstats.un.org/unsd/methods/m49/m49regin.htm>).

486

487 Sequencing, SNP-calling, construction of phylogeny and comparative genomics

488

489 PCR libraries were prepared from 500 ng of DNA as previously described [44].
490 Isolates were sequenced using Illumina GA II, HiSeq 2000 and MiSeq machines
491 (Illumina, San Diego, CA, USA) and 150 bp paired-end reads were generated. The
492 strains were aligned to *Salmonella* Enteritidis reference genome P125109 using a
493 pipeline developed in-house at the Wellcome Trust Sanger Institute (WTSI). For
494 each isolate sequenced, the raw sequence read pairs were split to reduce the overall
495 memory usage and allow reads to be aligned using more than one CPU. The reads
496 were then aligned using SMALT (www.sanger.ac.uk/science/tools/smallt-0), a
497 hashing based sequence aligner. The aligned and unmapped reads were combined
498 into a single BAM file. Picard (<https://broadinstitute.github.io/picard>) was used to
499 identify and flag optical duplicates generated during the making of a standard
500 Illumina library, which reduces possible effects of PCR bias. All of the alignments
501 were created in a standardized manner, with the commands and parameters stored
502 in the header of each BAM file, allowing for the results to be easily reproduced.

503

504 The combined BAM file for each isolate was used as input data in the SAMtools

505 mpileup program to call SNPs and small indels, producing a BCF file describing all of
506 the variant base positions [45]. A pseudo-genome was constructed by substituting
507 the base call at each variant or non-variant site, defined in the BCF file, in the
508 reference genome. Only base calls with a depth of coverage >4 or quality >50 were
509 considered in this analysis. Base calls in the BCF file failing this quality control filter
510 were replaced with the "N" character in the pseudo-genome sequence.

511
512 All of the software developed is freely available for download from GitHub under an
513 open source license, GNU GPL 3.

514
515 Phylogenetic modelling was based on the assumption of a single common ancestor,
516 therefore variable regions where horizontal genetic transfer occurs were excluded
517 [46] [47]. A maximum likelihood (ML) phylogenetic tree was then built from the
518 alignments of the isolates using RAxML (version 7.0.4) using a GTR+I+G model [48].
519 The maximum-likelihood phylogeny was supported by 100 bootstrap pseudo-
520 replicate analyses of the alignment data. Clades were predicted using Hierarchical
521 Bayesian Analysis of Population Structure (HierBAPS)[24]. This process was
522 repeated to construct the plasmid phylogeny, using reads that aligned to pSENV.
523 To ascertain the presence of the clusters defined by HierBAPS in the Public Health
524 England (PHE) routine *Salmonella* surveillance collection, seventeen isolates
525 representing the diversity of the collection were compared against 2986 *S.*
526 Enteritidis PHE genomes. Single linkage SNP clustering was performed as
527 previously described [49]. A maximum-likelihood phylogeny showing the
528 integration of the seventeen isolates with 50-SNP cluster representatives of the PHE
529 *S. Enteritidis* collection was constructed as above. FASTQ reads from all PHE
530 sequences in this study can be found at the PHE Pathogens BioProject at the
531 National Center for Biotechnology Information (Accession PRJNA248792).

532
533
534 Temporal reconstruction was performed using Bayesian Evolutionary Analysis

535 Sampling Trees (BEAST: <http://beast.bio.ed.ac.uk/> version 1.8.2)[50]. A relaxed
536 lognormal clock model was initially employed. The results of this model indicated
537 that a constant clock model was not appropriate, as the posterior of the standard
538 deviation of the clock rate did not include zero. A range of biologically plausible
539 population models (constant, exponential and skyline) was investigated. Skyline
540 models can be biased by non-uniform sampling and we observed a strong similarity
541 between reconstructed skyline population and the histogram of sampling dates and
542 so this model was excluded. The exponential models consistently failed to converge
543 and were excluded. Thus, for all datasets, lognormal clock and constant population
544 size models were used. The computational expense required for this analysis
545 precluded running estimators for model selection. However, we note that Deng et al
546 used the same models in their analysis of 125 *S. Enteritidis* isolates. Default priors
547 were used except for ucl.d.mean, Gamma(0.001,1000), initial: 0.0001;
548 exponential.popSize, LogNormal(10,1.5), initial: 1[21].

549

550 Three chains of 100 million states were run in parallel for each clade of the four
551 major HierBAPS clades, as well as a fourth chain without genomic data to examine
552 the influence of the prior, which in all cases was uninformative. The final results, as
553 used here, all had effective sample sizes (ESS) of over 200 and had convergence
554 between all three runs. For the Global and Global Outlier lineages, the datasets were
555 not computationally feasible to analyse. We thus created 3 further random subsets
556 of the data by drawing n isolates from each sampled year where n was sampled
557 from a Poisson distribution where $\lambda=2$. The posteriors of all subsets were extremely
558 similar and runs were combined to produce the final most recent common ancestor
559 (MRCA) estimates.

560

561 In order to gain a detailed insight into genomic differences, a single high quality
562 sequence from Malawian *S. Enteritidis* isolate D7795 was aligned against the
563 P125109 using ABACAS and annotated [51]. Differences were manually curated
564 against the reference using the Artemis Comparison Tool (ACT)[52]. Sections of

565 contigs which were incorporated into the alignment, but which did not align with
566 P125109 were manually inspected and compared to the public databases using
567 BLASTn (<http://blast.ncbi.nlm.nih.gov>). When these regions appeared to be novel
568 prophages, they were annotated using the phage search tool PHAST and manually
569 curated [53]. In order to investigate whether the SNPs and/or indels that were
570 predicted to be responsible for pseudogene formation in D7795 were distinct to that
571 isolate or conserved across both African epidemic clades, all isolates were aligned to
572 P12509 and the relevant SNPs/indels investigated using *in-silico* PCR of the aligned
573 sequences. Manual curation was performed to confirm the nature of all pseudogene-
574 associated SNPs/indels. NS-SNPs identified in D7795 were sorted throughout the
575 African clades by extracting and aligning the appropriate gene sequences from
576 P125109 and D7795. The coordinates of the NS-SNPs were then used to identify the
577 relevant sequence and determine the nature of the base.

578

579 Accessory genome

580 The pangenome for the dataset was predicted using ROARY [54]. Genes were
581 considered to be core to *S. Enteritidis* if present in $\geq 90\%$ of isolates. A relaxed
582 definition of core genome was used as assemblies were used to generate it and the
583 more assemblies one uses, the more likely it is that a core gene will be missed in one
584 sample due to an assembly error. The remaining genes were considered to be core
585 to the clades/clusters predicted by HierBAPS if present in $\geq 75\%$ of isolates from
586 within each clade/cluster. These genes were then curated manually using ACT to
587 search for their presence and position in P125109 or the improved draft assembly
588 of representative isolates of each of the other clades if not present in P125109. Any
589 large accessory regions identified were blasted against the assembled genomes of
590 the entire collection to confirm they were grossly intact.

591

592 Plasmid identification

593 Plasmid DNA was extracted from isolate D7795 using the Kado & Liu method and
594 separated by gel-electrophoresis alongside plasmids of known size, to estimate the

595 number and size of plasmids present [55]. Plasmid conjugation was attempted by
596 mixing 100 μ L of overnight culture of donor and recipient strains (rifampicin
597 resistant *Escherichia coli* C600) on Luria-Bertani agar plates and incubating
598 overnight at 26°C and 37°C. The plasmid was sequenced using the PacBio platform
599 (<http://www.pacificbiosciences.com/>) to gain long reads and a single improved
600 draft assembly, which was aligned against P125109 plasmid pSENV (Accession
601 Number HG970000). For novel regions of the plasmid from isolate D7795, genes
602 were predicted using GLIMMER and manual annotations applied based on
603 homology searches against the public databases, using both BLASTn and FASTA. The
604 plasmid phylogeny was reconstructed using the same methodology as the
605 chromosome; a maximum likelihood (ML) phylogenetic tree was built from the
606 alignments of the isolates using RAxML (version 7.0.4) using a GTR+I+G model
607

608 Identification of AMR genes

609
610 A manually curated version of the Resfinder database was used to investigate the
611 isolates for the presence of AMR genes [56]. To reduce redundancy, the database
612 was clustered using CD-HIT-EST [57], with the alignment length of the shorter
613 sequence required to be 90% the length of the longer sequence. All other options
614 were left as the defaults. The representative gene of each cluster was then mapped
615 with SMALT (<http://www.sanger.ac.uk/science/tools/smalt-0>) to the assemblies of
616 each isolate to identify and matches with an identity of 90% or greater were
617 considered significant, in line with the default clustering parameters of CD-HIT-EST.
618 Where partial matches were identified at the ends of contigs, having an identity of
619 90% or greater to the matched region of the gene, potential AMR gene presence was
620 recorded. To confirm presence of these partial matches, raw sequencing reads of the
621 pertinent isolates were mapped using SMALT to these genes to check for 90%
622 identity across the entire gene.

623

624

625 BiologTM growth substrate platform profiling

626

627 The BiologTM platform (<http://www.biolog.com>) enables the simultaneous
628 quantitative measurement of a number of cellular phenotypes, and therefore the
629 creation of a phenotypic profile of a variety of assay conditions [58]. Incubation and
630 recording of phenotypic data were performed using an OmniLog® plate reader. In
631 these experiments, two replicates of D7795 were compared to two of PT4-like strain
632 A1636 at 28 and 37°C to represent environmental and human temperatures.

633 BiologTM plates PM1-4 and 9 (Carbon source [PM1, PM2], nitrogen source [PM3] and
634 phosphor and sulphur source [PM4] metabolism and osmotic pressure [PM9]) were
635 used. Each well was inoculated as described in the high throughput phenotyping
636 protocol, thereby testing 475 conditions at once (each plate has one negative control
637 well). Plates were scanned every 15 min for 48 hours while incubated at 28°C and
638 37°C in air. Two paired replicates were performed for each of the two isolates.

639

640 After completion of the run, the signal data were compiled and analysed using the
641 limma package (www.bioconductor.org) in 'R' (www.R-project.org) as described
642 previously [59]. A log-fold change of 0.5 controlling for a 5% false discovery rate
643 was used as a cut-off for investigating a specific metabolite further using Pathway
644 Tools [60] and whether the metabolic change was related to pseudogenes and non
645 synonymous(NS)-SNPs in genes in the respective genomes.

646

647 *In vivo* Infection Model

648

649 Two isolates were used in the animal models: *S. Enteritidis* P125109 and D7795.
650 Unvaccinated commercial female egg-layer Lohmann Brown chicks (Domestic Fowl
651 [*Gallus gallus*]) were obtained from a commercial hatchery and housed in secure
652 floor pens at a temperature of 25°C. Eight chicks per strain per time point were
653 inoculated by gavage at 10 days (d) of age and received a dose of ~10⁸ *Salmonella*
654 colony forming units (CFU) in a volume of 0.2 mL. Subsequently, four to five birds

655 from each group were humanely killed at 3, 7 or 21 d post-infection (p.i.). At post
656 mortem, the liver, spleen, and caecal contents were removed aseptically,
657 homogenised, serially diluted and dispensed onto Brilliant Green agar (Oxoid) to
658 quantify colony forming units (CFU) as described previously [61]. Statistical analysis
659 was performed using SPSS, version 20 (IBM). Kruskal-Wallis was used to compare
660 bacterial loads between infected groups.

661
662 All work was conducted in accordance with the UK legislation governing
663 experimental animals, Animals (Scientific Procedures) Act 1986, under project
664 licence 40/3652 and was approved by the University of Liverpool ethical review
665 process prior to the award of the project license. The licensing procedure requires
666 power calculations to determine minimal group sizes for each procedure to ensure
667 results are significant. For these experiments a group size of 8 birds per time point
668 was chosen, based on a variation in $1.0 \log_{10}$ in bacterial count between groups as
669 being significant along with prior experience of *Salmonella* infection studies. Groups
670 were randomly selected on receipt from the hatchery and investigators conducting
671 animal experiments were not blinded, as the current UK code of practice requires all
672 cages or pens to be fully labeled with experimental details. No animals were
673 excluded from the analysis. All animals were checked a minimum of twice daily to
674 ensure their health and welfare.

675
676 Code availability

677
678 Software is referenced and URLs are provided in the text of the methods, all
679 software is open source.

680

681 **ACKNOWLEDGEMENTS**

682 This work was supported by The Wellcome Trust. We would like to thank the
683 members of the Pathogen Informatics Team and the core sequencing teams at the
684 Wellcome Trust Sanger Institute (Cambridge, UK). We are grateful to David Harris
685 for work in managing the sequence data.

686 **FUNDING**

687 This work was supported by a number of organizations. The Wellcome Trust Sanger
688 Institute authors were funded by Wellcome Trust Award 098051; NF was supported
689 by the Wellcome Trust Research Fellowship WT092152MA. NF, RSH and this work
690 were supported by a strategic award from the Wellcome Trust for the MLW Clinical
691 Research Programme (101113/Z/13/Z). The Institut Pasteur (IP) authors were
692 funded by the IP, the Institut de Veille Sanitaire, and by the French Government
693 “Investissement d’Avenir” program (Integrative Biology of Emerging Infectious
694 Diseases” Laboratory of Excellence, grant no. ANR-10-LABX-62-IBEID). JJ was
695 supported by the antibiotic resistance surveillance project in DR Congo, funded by
696 Project 2.01 of the Third Framework Agreement between the Belgian Directorate
697 General of Development Cooperation and the Institute of Tropical Medicine, Antwerp,
698 Belgium. SK was supported by the NIH Grant Number R01 AI099525-02. AEM was
699 supported by Wellcome Trust grant 098051 whilst at the Wellcome Trust Sanger
700 Institute, and Biotechnology and Biological Sciences Research Council grant
701 BB/M014088/1 at the University of Cambridge. The funders had no role in study
702 design, data collection and analysis, decision to publish, or preparation of the
703 manuscript.

704 **AUTHOR CONTRIBUTIONS**

705 Study design: NAF, NRT, MAG, GD, RAK, JP. Data analysis: NAF, NRT, JH, TF, LB, PQ
706 LLL, GL, SRH, AEM, MF, MA. Isolate acquisition and processing and clinical data
707 collection: NAF, KHK, JJ, XD, CMe, SK, CMI, RSO, FXW, SLH AMS, MM, PD, CMP, JC, NF,
708 JC, JAC, LBe, KLH, TJH, OL, TAC, M T, SS, SMT, KB, MML, DBE, RSH. Manuscript
709 writing: NAF, JH, NRT, MAG. All authors contributed to manuscript editing.

710 **COMPETING FINANCIAL INTERESTS**

711 The authors declare no competing financial interests.

712

713

714 References

- 715 1. Ward LR, Threlfall J, Smith HR, O'Brien SJ (2000) *Salmonella enteritidis* epidemic. Science 287: 1753-1754; author reply 1755-1756.
- 716 2. Jones TF, Ingram LA, Cieslak PR, Vugia DJ, Tobin-D'Angelo M, et al. (2008) Salmonellosis outcomes differ substantially by serotype. J Infect Dis 198: 109-114.
- 720 3. O'Brien SJ (2013) The "decline and fall" of nontyphoidal salmonella in the United kingdom. Clin Infect Dis 56: 705-710.
- 721 4. Braden CR (2006) *Salmonella enterica* serotype Enteritidis and eggs: a national epidemic in the United States. Clin Infect Dis 43: 512-517.
- 724 5. Friedman CR, Malcolm G, Rigau-Perez JG, Arambulo P, 3rd, Tauxe RV (1996) Public health risk from *Salmonella*-based rodenticides. Lancet 347: 1705-1706.
- 725 6. Reddy EA, Shaw AV, Crump JA (2010) Community-acquired bloodstream infections in Africa: a systematic review and meta-analysis. Lancet Infect Dis 10: 417-432.
- 726 7. Feasey NA, Masesa C, Jassi C, Faragher EB, Mallewa J, et al. (2015) Three 727 Epidemics of Invasive Multidrug-Resistant *Salmonella* Bloodstream Infection in 729 Blantyre, Malawi, 1998-2014. Clin Infect Dis 61 Suppl 4: S363-371.
- 731 8. Feasey NA, Dougan G, Kingsley RA, Heyderman RS, Gordon MA (2012) Invasive 732 non-typhoidal salmonella disease: an emerging and neglected tropical disease in 733 Africa. Lancet 379: 2489-2499.
- 734 9. Ao TT, Feasey NA, Gordon MA, Keddy KH, Angulo FJ, et al. (2015) Global burden of 735 invasive nontyphoidal salmonella disease, 2010(1). Emerg Infect Dis 21.
- 736 10. Nuccio SP, Baumler AJ (2015) Reconstructing pathogen evolution from the ruins. 737 Proc Natl Acad Sci U S A 112: 647-648.
- 738 11. Nuccio SP, Baumler AJ (2014) Comparative analysis of *Salmonella* genomes 739 identifies a metabolic network for escalating growth in the inflamed gut. MBio 5: 740 e00929-00914.
- 741 12. Parsons BN, Humphrey S, Salisbury AM, Mikoleit J, Hinton JC, et al. (2013) Invasive 742 non-typhoidal *Salmonella* typhimurium ST313 are not host-restricted and have an 743 invasive phenotype in experimentally infected chickens. PLoS Negl Trop Dis 7: 744 e2487.

745 13. Kingsley RA, Msefula CL, Thomson NR, Kariuki S, Holt KE, et al. (2009) Epidemic
746 multiple drug resistant *Salmonella Typhimurium* causing invasive disease in sub-
747 Saharan Africa have a distinct genotype. *Genome Res* 19: 2279-2287.

748 14. Okoro CK, Barquist L, Connor TR, Harris SR, Clare S, et al. (2015) Signatures of
749 adaptation in human invasive *Salmonella Typhimurium* ST313 populations from
750 sub-Saharan Africa. *PLoS Negl Trop Dis* 9: e0003611.

751 15. Herrero-Fresno A, Wallrodt I, Leekitcharoenphon P, Olsen JE, Aarestrup FM, et al.
752 (2014) The role of the *st313-td* gene in virulence of *Salmonella Typhimurium*
753 ST313. *PLoS One* 9: e84566.

754 16. Ramachandran G, Perkins DJ, Schmidlein PJ, Tulapurkar ME, Tennant SM (2015)
755 Invasive *Salmonella Typhimurium* ST313 with naturally attenuated flagellin elicits
756 reduced inflammation and replicates within macrophages. *PLoS Negl Trop Dis* 9:
757 e3394.

758 17. Okoro CK, Kingsley RA, Connor TR, Harris SR, Parry CM, et al. (2012)
759 Intracontinental spread of human invasive *Salmonella Typhimurium*
760 pathovariants in sub-Saharan Africa. *Nat Genet* 44: 1215-1221.

761 18. Allard MW, Luo Y, Strain E, Pettengill J, Timme R, et al. (2013) On the evolutionary
762 history, population genetics and diversity among isolates of *Salmonella*
763 *Enteritidis* PFGE pattern JEGX01.0004. *PLoS One* 8: e55254.

764 19. den Bakker HC, Allard MW, Bopp D, Brown EW, Fontana J, et al. (2014) Rapid
765 whole-genome sequencing for surveillance of *Salmonella enterica* serovar
766 *enteritidis*. *Emerg Infect Dis* 20: 1306-1314.

767 20. Taylor AJ, Lappi V, Wolfgang WJ, Lapierre P, Palumbo MJ, et al. (2015)
768 Characterization of Foodborne Outbreaks of *Salmonella enterica* Serovar
769 *Enteritidis* with Whole-Genome Sequencing Single Nucleotide Polymorphism-
770 Based Analysis for Surveillance and Outbreak Detection. *J Clin Microbiol* 53:
771 3334-3340.

772 21. Deng X, Desai PT, den Bakker HC, Mikoleit M, Tolar B, et al. (2014) Genomic
773 epidemiology of *Salmonella enterica* serotype *Enteritidis* based on population
774 structure of prevalent lineages. *Emerg Infect Dis* 20: 1481-1489.

775 22. Rodriguez I, Guerra B, Mendoza MC, Rodicio MR (2011) pUO-SeVR1 is an
776 emergent virulence-resistance complex plasmid of *Salmonella enterica* serovar
777 *Enteritidis*. *J Antimicrob Chemother* 66: 218-220.

778 23. Rodriguez I, Rodicio MR, Guerra B, Hopkins KL (2012) Potential international spread
779 of multidrug-resistant invasive *Salmonella enterica* serovar *enteritidis*. *Emerg*
780 *Infect Dis* 18: 1173-1176.

781 24. Cheng L, Connor TR, Siren J, Aanensen DM, Corander J (2013) Hierarchical and
782 spatially explicit clustering of DNA sequences with BAPS software. *Mol Biol Evol*
783 30: 1224-1228.

784 25. Rodrigue DC, Tauxe RV, Rowe B (1990) International increase in *Salmonella*
785 *enteritidis*: a new pandemic? *Epidemiol Infect* 105: 21-27.

786 26. Magnet S, Courvalin P, Lambert T (1999) Activation of the cryptic *aac(6')*-ly
787 aminoglycoside resistance gene of *Salmonella* by a chromosomal deletion
788 generating a transcriptional fusion. *J Bacteriol* 181: 6650-6655.

789 27. Zheng J, Pettengill J, Strain E, Allard MW, Ahmed R, et al. (2014) Genetic diversity
790 and evolution of *Salmonella enterica* serovar *Enteritidis* strains with different
791 phage types. *J Clin Microbiol* 52: 1490-1500.

792 28. Inns T, Lane C, Peters T, Dallman T, Chatt C, et al. (2015) A multi-country
793 *Salmonella Enteritidis* phage type 14b outbreak associated with eggs from a
794 German producer: 'near real-time' application of whole genome sequencing and
795 food chain investigations, United Kingdom, May to September 2014. *Euro*
796 *Surveill* 20.

797 29. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by
798 sampling trees. *BMC Evol Biol* 7: 214.

799 30. Thomson N, Baker S, Pickard D, Fookes M, Anjum M, et al. (2004) The role of
800 prophage-like elements in the diversity of *Salmonella enterica* serovars. *J Mol*
801 *Biol* 339: 279-300.

802 31. Rotger R, Casadesus J (1999) The virulence plasmids of *Salmonella*. *Int Microbiol* 2:
803 177-184.

804 32. Thomson NR, Clayton DJ, Windhorst D, Vernikos G, Davidson S, et al. (2008) Comparative genome analysis of *Salmonella Enteritidis* PT4 and *Salmonella*
805 *Gallinarum* 287/91 provides insights into evolutionary and host adaptation
806 pathways. *Genome Res* 18: 1624-1637.

807 33. Cooke FJ, Wain J, Fookes M, Ivens A, Thomson N, et al. (2007) Prophage
808 sequences defining hot spots of genome variation in *Salmonella enterica* serovar
809 *Typhimurium* can be used to discriminate between field isolates. *J Clin Microbiol*
810 45: 2590-2598.

811 34. Shah DH, Zhou X, Kim HY, Call DR, Guard J (2012) Transposon mutagenesis of
812 *Salmonella enterica* serovar *Enteritidis* identifies genes that contribute to
813 invasiveness in human and chicken cells and survival in egg albumen. *Infect*
814 *Immun* 80: 4203-4215.

816 35. Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, et al. (2001) Complete
817 genome sequence of a multiple drug resistant *Salmonella enterica* serovar Typhi
818 CT18. *Nature* 413: 848-852.

819 36. Thiennimitr P, Winter SE, Winter MG, Xavier MN, Tolstikov V, et al. (2011) Intestinal
820 inflammation allows *Salmonella* to use ethanolamine to compete with the
821 microbiota. *Proc Natl Acad Sci U S A* 108: 17480-17485.

822 37. Kingsley RA, Kay S, Connor T, Barquist L, Sait L, et al. (2013) Genome and
823 transcriptome adaptation accompanying emergence of the definitive type 2 host-
824 restricted *Salmonella enterica* serovar *Typhimurium* pathovar. *MBio* 4: e00565-
825 00513.

826 38. Dhawi AA, Elazomi A, Jones MA, Lovell MA, Li H, et al. (2011) Adaptation to the
827 chicken intestine in *Salmonella Enteritidis* PT4 studied by transcriptional analysis.
828 *Vet Microbiol* 153: 198-204.

829 39. Langridge GC, Fookes M, Connor TR, Feltwell T, Feasey N, et al. (2015) Patterns of
830 genome evolution that have accompanied host adaptation in *Salmonella*. *Proc
831 Natl Acad Sci U S A* 112: 863-868.

832 40. Feasey NA, Everett D, Faragher EB, Roca-Feltre A, Kang'ombe A, et al. (2015)
833 Modelling the Contributions of Malaria, HIV, Malnutrition and Rainfall to the
834 Decline in Paediatric Invasive Non-typhoidal *Salmonella* Disease in Malawi.
835 *PLoS Negl Trop Dis* 9: e0003979.

836 41. Gordon MA, Banda HT, Gondwe M, Gordon SB, Boeree MJ, et al. (2002) Non-
837 typhoidal salmonella bacteraemia among HIV-infected Malawian adults: high
838 mortality and frequent recrudescence. *AIDS* 16: 1633-1641.

839 42. Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, et al. (2013) Burden
840 and aetiology of diarrhoeal disease in infants and young children in developing
841 countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-
842 control study. *Lancet* 382: 209-222.

843 43. Kariuki S, Onsare RS (2015) Epidemiology and Genomics of Invasive Nontyphoidal
844 *Salmonella* Infections in Kenya. *Clin Infect Dis* 61 Suppl 4: S317-324.

845 44. Harris SR, Cartwright EJ, Torok ME, Holden MT, Brown NM, et al. (2013) Whole-
846 genome sequencing for analysis of an outbreak of meticillin-resistant
847 *Staphylococcus aureus*: a descriptive study. *Lancet Infect Dis* 13: 130-136.

848 45. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The Sequence
849 Alignment/Map format and SAMtools. *Bioinformatics* 25: 2078-2079.

850 46. Holt KE, Parkhill J, Mazzoni CJ, Roumagnac P, Weill FX, et al. (2008) High-
851 throughput sequencing provides insights into genome variation and evolution in
852 *Salmonella* Typhi. *Nat Genet* 40: 987-993.

853 47. Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J, et al. (2011) Rapid
854 pneumococcal evolution in response to clinical interventions. *Science* 331: 430-
855 434.

856 48. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic
857 analyses with thousands of taxa and mixed models. *Bioinformatics* 22: 2688-
858 2690.

859 49. Ashton P, Peters T, Tewolde R, Day M, Doumith M et al. (2015) Revolutionising
860 Public Health Reference Microbiology using Whole Genome Sequencing:
861 *Salmonella* as an exemplar. *bioRxiv*.

862 50. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with
863 BEAUti and the BEAST 1.7. *Mol Biol Evol* 29: 1969-1973.

864 51. Assefa S, Keane TM, Otto TD, Newbold C, Berriman M (2009) ABACAS: algorithm-
865 based automatic contiguation of assembled sequences. *Bioinformatics* 25: 1968-
866 1969.

867 52. Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, et al. (2005)
868 ACT: the Artemis Comparison Tool. *Bioinformatics* 21: 3422-3423.

869 53. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS (2011) PHAST: a fast phage
870 search tool. *Nucleic Acids Res* 39: W347-352.

871 54. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, et al. (2015) Roary: Rapid
872 large-scale prokaryote pan genome analysis. *Bioinformatics*.

873 55. Kado CI, Liu ST (1981) Rapid procedure for detection and isolation of large and
874 small plasmids. *J Bacteriol* 145: 1365-1373.

875 56. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, et al. (2012)
876 Identification of acquired antimicrobial resistance genes. *J Antimicrob Chemother*
877 67: 2640-2644.

878 57. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets
879 of protein or nucleotide sequences. *Bioinformatics* 22: 1658-1659.

880 58. Tracy BS, Edwards KK, Eisenstark A (2002) Carbon and nitrogen substrate
881 utilization by archival *Salmonella typhimurium* LT2 cells. *BMC Evol Biol* 2: 14.

882 59. Croucher NJ, Mitchell AM, Gould KA, Inverarity D, Barquist L, et al. (2013) Dominant
883 role of nucleotide substitution in the diversification of serotype 3 pneumococci
884 over decades and during a single infection. *PLoS Genet* 9: e1003868.

885 60. Karp PD, Paley SM, Krummenacker M, Latendresse M, Dale JM, et al. (2010)
886 Pathway Tools version 13.0: integrated software for pathway/genome informatics
887 and systems biology. *Brief Bioinform* 11: 40-79.

888 61. Salisbury AM, Bronowski C, Wigley P (2011) *Salmonella Virchow* isolates from
889 human and avian origins in England--molecular characterization and infection of
890 epithelial cells and poultry. *J Appl Microbiol* 111: 1505-1514.

891 62. Betancor L, Yim L, Fookes M, Martinez A, Thomson NR, et al. (2009) Genomic and
892 phenotypic variation in epidemic-spanning *Salmonella enterica* serovar *Enteritidis*
893 isolates. *BMC Microbiol* 9: 237.

894

895

896

897 **Tables**

898 Table 1: Summary of metadata (n) by region in numbers

899

Region	Total	Site of isolation			Antimicrobial resistance phenotype					
		Human Invasive	Human non-invasive	Food/Animal/Environment	Drug susceptible	Resistant to 1-2	1st line	MDR*	Fluoroquinolone	ESBL†
Asia	11	5	5	1	0	0	0	0	0	0
Europe	61	0	16	24	2	0	0	0	0	0
South America	27‡	3	6	7	8	0	0	0	0	0
North Africa	12	9	1	1	9	0	0	0	2	0
Sub-Saharan Africa	353	269	22	7	99	64	14	0	3	
Republic of South Africa	131	57	74	0	83	44	4	0	9	0

900

901 *Multidrug resistant: resistant to ≥ 3 antimicrobials

902 †Extended spectrum beta lactamase producing

903 ‡Uruguay strains previously characterised by Betancor [62]

904

905 Table 2: Metadata summarised by clade

Major Clade/cluster	Site of isolation				Number (%) of antimicrobial resistance genes*			
	N (%)	Human Invasive	Human non- invasive	Food/Animal/ Environment	Unknown	1-3	4-6	7-9
West African	61 (92)	1 (2)	0 (0)	4 (6)	22 (33)	9	35 (66)	(14)
Central/Eastern African	155 (93)	7 (4)	0 (0)	5 (3)	0 (0)	11 (7)	156 (93)	
Global epidemic	94 (38)	95 (38)	31 (12)	30 (12)	243 (97)	7 (3)	0 (0)	
Outlier cluster	51 (38)	36 (27)	27 (20)	20 (15)	128 (96)	3 (2)	3 (2)	

906

907 *All isolates contained cryptic aminoglycoside acetyltransferase gene *aac(6')-ly*[26]

908

909

910 **Figures**

911

912 Figure 1: Maximum likelihood phylogeny of *S. Enteritidis* based on 675 isolates
913 rooted to *S. Gallinarum*. There are 3 epidemic clades; 2 African epidemic clades and
914 a global epidemic clade. Scale bar indicates nucleotide substitutions per site.

915

916 Figure 2: Differences in accessory genomes of 4 major clades. Approximate position
917 of prophages in chromosome is depicted, although prophages are not drawn to scale
918

919 Figure 3: Heat map revealing changes in metabolic activity of Central/Eastern
920 African clade isolate D7795 when compared to global epidemic isolate A1636 at 28
921 and 37°C. The figure also displays whether there are corresponding mutations in
922 genes related to the affected metabolic pathway. (NSSNP=Non-synonymous single
923 nucleotide polymorphism, HDG = Hypothetically disrupted gene)

924

925 Figure 4: *Salmonella* isolation from a chick infection model demonstrates failure of
926 Central/Eastern African clade isolate to invade chicken spleen (4A) and liver (4B) or
927 to colonize chicken caeca (4C) at 7 days post infection (dpi) (n=24 at this time point)
928 compared to the global epidemic clade. Numbers are expressed as colony forming
929 units (CFU) per gram of tissue

930

931 **Supplementary Data**

932

933 Supplementary Table 1: Metadata associated with each individual strain including
934 date, place, and source of isolation plus antimicrobial susceptibility data where
935 known. Predicted antimicrobial resistance genes are also included

936 Supplementary Table 2: Full list of predicted antimicrobial resistance genes

937 Supplementary Table 3: List of pseudogenes identified in D7795 and confirmation of
938 presence/absence across African clades

939 Supplementary Table 4: List of genes in both Central/Eastern and West African
940 clades with non-synonymous SNPs present throughout both clades

941 Supplementary Table 5: Comparison of genomic degradation seen in African
942 epidemic clade with that seen in *S. Typhi* and *S. Gallinarum*

943 Supplementary Table 6: Full list of phenotypic differences between an example of
944 the Central/Eastern African clade (D7795) and an example of the global epidemic
945 clade (A1636) at 37°C and corresponding genetic differences

946 Supplementary Table 7: Full list of phenotypic differences between an example of
947 the Central/Eastern African clade (D7795) and an example of the global epidemic
948 clade (A1636) at 28°C and corresponding genetic differences

949

950 Supplementary Figure 1: Maximum likelihood phylogeny placing representative
951 isolates from current study within the context of the diversity of *S. Enteritidis*
952 genomes in the PHE collection. Black taxa labels represent PHE 50-SNP cluster
953 representatives, red taxa labels represent seventeen representative strains from
954 this study.

955 Supplementary Figure 2: Maximum likelihood phylogeny with strains of known
956 phage type highlighted, demonstrating the lack of genomic diversity captured by
957 phage typing

958 Supplementary Figure 3: BEAST tree of Central/Eastern African Clade and West
959 African Clades revealing estimated age of clades

960 Supplementary Figure 4: Histograms of dates and BEAST results (treeHeight) for the
961 subsets of the outlier cluster (S3A and S3C) and global epidemic clade (S3B and
962 S3D)
963 Supplementary Figure 5: Distribution of prophage regions across the isolate
964 collection highlighted. Red indicates presence, blue absence. Gaps indicate isolates
965 not sequenced at Sanger Institute
966 Supplementary Figure 6: Maximum likelihood phylogeny of *S. Enteritidis* plasmids
967
968 High throughput phenotyping protocol
969
970 Supplementary results