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Distinct Salmonella Enteritidis lineages associated with enterocolitis in high-income

settings and invasive disease in low-income settings
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Abstract

An epidemiological paradox surrounds Salmonella enterica serovar Enteritidis. In
high-income settings, it has been responsible for an epidemic of poultry-associated,
self-limiting enterocolitis, whilst in sub-Saharan Africa it is a major cause of invasive
nontyphoidal Salmonella disease, associated with high case-fatality. Whole-genome
sequence analysis of 675 isolates of S. Enteritidis from 45 countries reveals the
existence of a global epidemic clade and two novel clades of S. Enteritidis that are
each geographically restricted to distinct regions of Africa. The African isolates
display genomic degradation, a novel prophage repertoire and have an expanded,
multidrug resistance plasmid. S. Enteritidis is a further example of a Salmonella
serotype that displays niche plasticity, with distinct clades that enable it to become a
prominent cause of gastroenteritis in association with the industrial production of

eggs, and of multidrug resistant, bloodstream invasive infection in Africa.
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Introduction

Salmonella enterica serovar Enteritidis (hereafter referred to as S. Enteritidis) has
been a global cause of major epidemics of enterocolitis, which have been strongly
associated with intensive poultry farming and egg production [1]. The serovar is
usually considered to be a generalist in terms of host range and has a low human
invasiveness index, typically causing self-limiting enterocolitis [2]. Following a
number of interventions in the farming industry involving both improved hygiene
and poultry vaccination, epidemic S. Enteritidis has been in decline in many
countries including the United Kingdom and USA [3,4]. S. Enteritidis has also been
used extensively since the early 1900s as a rodenticide (named the “Danysz virus”),
following development at Institut Pasteur, France. Although by the 1960s,
Salmonella-based rodenticides had been banned in the US, Germany and the UK, S.

Enteritidis is still produced as a rodenticide in Cuba, under the name Biorat®[5].

Serovars of Salmonella that cause enterocolitis in industrialised settings are strongly
associated with life-threatening invasive nontyphoidal Salmonella (iNTS) disease in
sub-Saharan Africa (SSA). S. Enteritidis and Salmonella enterica serovar
Typhimurium (S. Typhimurium) are the two leading causes of iNTS disease in SSA
[6] and both are associated with multidrug resistance (MDR)[7]. The clinical
syndrome iNTS disease is associated with immunosuppression in the human host,
particularly malnutrition, severe malaria and advanced HIV in young children and

advanced HIV in adults [8]. It has been estimated to cause 681,000 deaths per year

[9].

Salmonella is a key example of a bacterial genus in which there is a recognizable
genomic signature that distinguishes between a gastrointestinal and an extra-
intestinal /invasive lifestyle [10], whereby functions required for escalating growth
in an inflamed gut are lost when the lineage becomes invasive [11]. In order to

investigate whether there were distinct bacterial characteristics explaining the very

4



116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

different epidemiological and clinical profile of epidemic isolates of serotype S.
Typhimurium from SSA and industrialised settings, whole-genome sequence (WGS)
investigations of this serovar were previously undertaken. These revealed a novel
pathotype of multilocus sequence type (MLST) ST313 from SSA, which differed from
clades that cause enterocolitis in industrialised settings, by showing patterns of
genomic degradation potentially associated with more invasive disease and

differential host adaptation [12-17].

In relation to S. Enteritidis, there is a growing body of literature on the evolutionary
history, phylogeny and utility of WGS for surveillance of S. Enteritidis outbreaks [18-
20]. The broadest study of the phylogeny to date revealed five major lineages, but
contained only two African isolates [21]. There have also been limited reports of
isolates of S. Enteritidis from African patients living in Europe that are MDR and
which display a distinct phage type (PT 42) [22,23]. We therefore hypothesized that
there are distinct lineages of S. Enteritidis circulating in both the industrialised and
developing world with different origins, likely distinct routes of spread and that are
associated with different patterns of disease, which will display the distinct genomic
signatures characteristic of differential adaptation. To investigate this we have
collected a highly diverse global collection of S. Enteritidis isolates and compared
them using whole-genome sequencing, the highest possible resolution typing

methodology.
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Results

Isolate collection

In total, 675 isolates of S. Enteritidis isolated between 1948 and 2013 were
sequenced. The collection originated from 45 countries and six continents (Table 1).
496/675 isolates were from Africa, with 131 from the Republic of South Africa
(RSA), a further 353 from the rest of SSA, and 12 from North Africa (Table 1). There
were 343 isolates from normally sterile human sites (invasive), 124 non-invasive
human isolates (predominantly stool samples) and 40 from animal, food or
environmental sources. The full metadata are described in Supplementary Table 1
and have been uploaded to the publically available database Enterobase

(https://enterobase.warwick.ac.uk/).

Phylogeny

675 S. Enteritidis genomes and one Salmonella enterica serovar Gallinarum were
mapped to the S. Enteritidis strain P125109 reference sequence, variable regions
excluded and the remaining sites were screened for single nucleotide
polymorphisms (SNPs). This left an alignment containing a total of 42,373 variable
sites, from which a maximum likelihood (ML)-phylogeny was constructed using S.
Gallinarum, which is a closely related serovar, as an out-group (Figure 1). HierBAPS
was run over two rounds, which provided clear distinction between clades/clusters
[24]. The phylogeny of S. Enteritidis revealed evidence of three clades associated
with epidemics, one which we have termed the ‘global epidemic clade’ and includes
the reference PT4 isolate P125109 and two African clades: one predominantly
composed of West African isolates (labeled the ‘West African clade’) and a second
composed of isolates predominantly originating in Central and Eastern Africa, called
the ‘Central/Eastern African clade’). Figure 1 also shows the other clades and

clusters predicted by HierBAPS, the largest of which is a paraphyletic cluster from
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which the global epidemic clade emerged (Outlier Cluster in Figure 1), and a further

five smaller clades or clusters predicted by HierBAPS.

The global epidemic clade contains isolates of multiple phage types, including 4 and
1, which have been linked to the global epidemic of poultry associated human
enterocolitis [25]. It comprised 250 isolates from 28 countries, including 43 from
Malawi and 82 from RSA. They were isolated from across a 63-year period (1948-
2013). Antimicrobial susceptibility testing had been performed on 144 isolates and
104 were susceptible to all antimicrobials tested, five were multidrug resistant
(MDR: resistant to 3 or more antimicrobial classes), one was nalidixic acid resistant
and none were extended-spectrum beta-lactamase (ESBL)-producing isolates.
Database comparison of the genomes from this clade revealed that 221 (88%) of
them contained no predicted antimicrobial resistance (AMR) genes apart from the

cryptic resistance gene aac(6')-ly [26].

The global epidemic clade has emerged from a diverse cluster previously described
by Zheng [27], which encompassed 131 isolates (Figure 1: ‘Outlier Cluster’). In
addition to being paraphyletic, this group was geographically and temporally
diverse, and predominantly drug susceptible (59/71 isolates). Whilst the majority of
the diversity of phage typed isolates was contained within the global epidemic clade,
this cluster alone contained isolates of phage type 14b, which was recently
associated with a multi-country outbreak of S. Enteritidis enterocolitis in Europe
associated with chicken eggs from Germany [28]. There were also 41 isolates from
RSA in this clade, where it has been a common cause of bloodstream infection, and
39 bloodstream isolates from Malawi. Database comparison of the genomes from
this clade revealed that 122 (82%) of these genomes contained no predicted AMR

genes apart from the cryptic resistance gene aac(6’)-1y.

There were two related, but phylogenetically and geographically distinct, epidemic
clades that largely originated from SSA. The Central/Eastern African clade included
7
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166 isolates, all but two of which (from RSA) came from this region. Of these,
126/155 (82%) were MDR and 148/153 (97%) displayed phenotypic resistance to
between one and four antimicrobial classes. All of these genomes contained at least
five predicted resistance genes and 128 (77%) contained nine (Table 2 and
Supplementary Table 2). 155/165 (94%) of these isolates were cultured from a
normally sterile compartment of a human (i.e. blood or cerebrospinal fluid) and
were considered to be causing invasive disease (Table 2). The second African
epidemic clade was significantly associated with West Africa with 65/66 isolates
coming from this region and one isolate from USA. This clade was also associated
with drug resistance (62 [94%] resistant to 21 antimicrobial class by phenotype and
genotype) and human invasive disease (61 [92%]). It also included two isolates that

were subtyped as phage type 4.

The remaining 58 isolates included in this study were extremely diverse,
phylogenetically, temporally and geographically. Only two displayed any phenotypic
AMR, one of which was MDR. Inspection of the genome revealed that five had
predicted AMR genes in addition to aac(6')-Iy, four of which were isolated in sub-
Saharan Africa. Twenty were associated with invasive human disease, and six were
recovered from stool. Three isolates were from stocks of rodenticide and these were
phylogenetically remote from both global-epidemic and the two African epidemic

clades.

To add further context to these findings we screened the entire publically available
Public Health England (PHE) sequenced Salmonella routine surveillance collection,
which includes 2,986 S. Enteritidis genomes, 265 of which were associated with
travel to Africa (Supplementary Figure 1). Within this huge collection, including 61
(2.0%) bloodstream isolates and 2670 (89.4%) stool isolates, only 6 isolates (4 from
blood culture, 1 from stool) fell within to the West African clade and 1 (from stool)
belonged to the Central/Eastern African clade. Notably, these isolates were all either

associated with travel to Africa and/or taken from patients of African origin.
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It is apparent from the location of the archetypal reference isolate and archetypal
phage types in the phylogeny (Supplementary Figure 2) that the majority of S.
Enteritidis studied previously belonged to the global epidemic clade associated with
enterocolitis in industrialised countries. Furthermore, its also clear that two
additional, previously unrecognized S. Enteritidis lineages have emerged, largely

restricted to Africa, that are strongly associated with MDR and invasive disease.

To understand how recently these African-associated lineages emerged we used
Bayesian Evolutionary Analysis by Sampling Trees (BEAST) to reconstruct the
temporal history of the epidemic clades [29]. These data (Supplementary Figure 3)
estimate the most recent common ancestor (MRCA) of the Central/Eastern African
clade dates to 1945 (95% Credible Interval [CrI]: 1924-1951) and for the West
African clade it was 1933 (95% Crl: 1901-1956). We estimate the MRCA of the
global epidemic clade originated around 1918 (95% Crl: 1879-1942 -
Supplementary Figure 4), with a modern expansion occurring in 1976 (95% Crl:
1968-1983), whereas the paraphyletic cluster from which it emerged dates to
approximately 1711 (95% Crl: 1420-1868).

The contribution of the accessory genome to the emergence of the African

clades

Prophages have the potential to carry non-essential "cargo” genes, which suggests
they confer a level of specialization to their host bacterial species, whilst plasmids
may confer a diverse array of virulence factors and AMR [30,31]. Therefore it is
critical to evaluate the accessory genome in parallel with the core. 622 sequenced
genomes were used to determine a pangenome, which yielded a core genome
comprising 4,076 predicted genes present in 290% isolates, including all 12
recognised Salmonella Pathogenicity Islands as well as all 13 fimbrial operons found
in the P125109 reference [32]. The core gene definition was set to minimize

stochastic loss of genes from the core due to errors in individual assemblies across

9
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such a large dataset. The accessory genome consisted of 14,015 predicted genes. Of
the accessory genes, 324 were highly conserved across the global and two African
epidemic clades, as well as the outlier cluster. Almost all were associated with the
acquisition or loss of mobile genetic elements (MGEs) such as prophage or plasmids.
Prophage regions have been shown to be stable in Salmonella genomes and are
potential molecular markers, the presence of which has previously been used to

distinguish specific clades [13,33].

The lineage-specific whole gene differences of the major clades are summarized in
Figure 2 and plotted against the representatives of the four major clades in
Supplementary Figure 3. The lineage specific sequence regions include 57 predicted
genes found to be unique to the global epidemic clade (Figure 2), all of which were
associated with prophage ¢SE20, a region shown to be essential for invasion of
chicken ova and mice in one previous study [34]. There were a further 39 genes
conserved in the global epidemic and the paraphyletic outlying cluster, which were
absent from both African clades, 26 of which correspond to region of difference
(ROD) 21 [32]. The Central/Eastern Africa clade contained 77 predicted genes that
were absent in the other clades. 33 were associated with the virulence plasmid and
a further 40 chromosomal genes were associated with a novel, Fels-2 like prophage
region (¢fels-BT). The West African clade had only 15 distinct predicted genes, 11 of
which were plasmid-associated. The two African clades shared a further 102 genes:
48, including a leucine-rich repeat region, were associated with a novel prophage
region closely related to Enterobacter phage P88, 44 were associated with a Gifsy-1
prophage found in S. Bovismorbificans and eight were associated with a Gifsy-2

prophage which has degenerated in the reference P125109.

The S. Enteritidis plasmid is the smallest of the generic Salmonella virulence
plasmids at 58 kb and is unusual in that it contains an incomplete set of tra genes
that are responsible for conjugative gene transfer. The phylogeny of the S.

Enteritidis virulence plasmid backbone was reconstructed using reads that mapped
10
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to the S. Enteritidis reference virulence plasmid, pSENV. 120/675 (18%) genomes
lacked pSENV. The virulence plasmid phylogeny is similar to that of the
chromosome, suggesting that they have been stably maintained by each lineage and

diversified alongside them (Supplementary Figure 6).

The virulence plasmids from the African clades were much larger than those held in
the other clades at ~90 kb. A representative example was extracted from Malawian
isolate D7795, sequenced using long read technology to accurately reconstruct it
(PacBio; see methods) and denoted pSEN-BT (Accession number LN879484). pSEN-
BT is composed of a backbone of pSENV with additional regions that are highly
similar to recently sequenced fragments of an novel S. Enteritidis virulence plasmid
(pUO-SeVR) isolated from an African patient presenting with MDR invasive S.
Enteritidis in Spain [22]. Plasmid pSEN-BT harbours nine AMR genes (full list in
Supplementary Table 2), plus additional genes associated with virulence and a
toxin/antitoxin plasmid addiction system. Of note, plasmids from the West African
isolates carry resistance gene chloramphenicol acetyl transferase A1l (catAl),
whereas the Central /Eastern African strains carry catA2 and tetracycline resistance
gene tet(A). Like pSENV, the African virulence plasmid contained an incomplete set
of tra genes and so is not self-transmissible. This was confirmed by conjugation
experiments and is consistent with previous reports [22,23]. These observations
suggest that the evolution of the S. Enteritidis plasmid mirrors that of the
chromosome; it is thus not a ‘novel’ plasmid, but in different SSA locations has

acquired different AMR genes.

Multiple signatures of differential host adaptation

It has been observed in multiple serovars of Salmonella including S. Typhi, S.
Gallinarum and S. Typhimurium ST313 that the degradation of genes necessary for
the utilization of inflammation-derived nutrients is a marker of that lineage having

moved from an intestinal to a more invasive lifestyle [13,14,32,35]. Accordingly, we

11
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have looked for similar evidence within a representative example of a MDR,
invasive, Central/Eastern African clade isolate, D7795, that was isolated from the
blood of a Malawian child in 2000. The draft genome sequence of D7795 closely
resembles that of P125109, however, in addition to the novel prophage repertoire
and plasmid genes described above, it harbours a number of predicted pseudogenes

or hypothetically disrupted genes (HDGs)[11].

In total, there were 42 putative HDGs in D7795, many of which are found in genes
involved in gut colonisation and fecal shedding as well as various metabolic
processes such as cobalamine biosynthesis which is a cofactor for anaerobic
catabolism of inflammation-derived nutrients, such as ethanolamine, following
infection [36]. Curation of the SNPs and insertions or deletions (indels) predicted to
be responsible for pseudogenisation across the Central/Eastern African clade and
West African clade revealed 37/42 predicted HDGs were fixed in other
representatives of the Central/East African clade, with 27 of them being present in
over 90% of isolates from that clade. Relatively fewer HDGs in D7795 (19/42) were
present in representatives of the West African clade, although 13 were present in

290% of isolates (Supplementary Table 3).

In addition to this evidence of reductive evolution in D7795, there were 363 genes
containing non-synonymous (NS)-SNPs, which change the amino acid sequence and
so may have functional consequences [37]. The two African clades were screened
for the presence of these NS-SNPs and 131 were found to be present and completely
conserved across both clades, including NS-SNPs in 43 genes encoding predicted
membrane proteins, 36 metabolic genes and 23 conserved hypothetical genes
(Supplementary Table 4). Furthermore many of these NS-SNPs fall in genes within
the same metabolic pathways as the HDGs (see Supplementary Results for detailed
description). Supplementary Table 5 provides a list of some of the common traits
identified amongst the functions of genes lost independently by D7795, S. Typhi and
S. Gallinarum. The disproportionate clustering of mutations in membrane structures

12
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observed in the African clades is yet another sign of differential host adaptation

analogous to that reported in both S. Typhi [35] and S. Gallinarum [32].

Biolog™ growth substrate platform profiling

The Biolog™ platform was utilized to generate a substrate growth utilisation profile
for selected S. Enteritidis isolates (see high throughput phenotyping protocol in
Supplementary materials). Corresponding signal values of replicate pairs of a
Central/Eastern African isolate (D7795) and a global epidemic isolate (A1636) were
compared using principal component analysis and found to be highly consistent. In
total, 80 metabolites showed evidence of differential metabolic activity (Figure 3).
Evaluation of data from the Central/Eastern African isolate using Pathway Tools
software revealed that 14/27 (52%) of pathways with evidence of decreased
metabolic activity at 28°C had a corresponding component of genomic degradation.
This was also true for 12/30 (40%) of pathways with evidence of decreased
metabolic activity at 37°C.

Instances of reduced metabolic activity in a Central/Eastern African strain (D7795)
compared to a global epidemic strain (A1636) included dulcitol and glycolic acid in
the glycerol degradation pathway, propionic acid in the propanediol pathway and
ethylamine and ethanolamine. These are all vitamin B12 (cobalamin) dependent
reactions, for which there was a corresponding signature of genomic degradation.
Also there was reduced activity in response to three forms of butyric acid, alloxan
and allantoic acid metabolism. Allantoin can be found in the serum of birds, but not
humans and is utilised as a carbon source during S. Enteritidis infection of chickens,
[38] and HDGs relating to allantoin have been noted in S. Typhimurium ST313 [13].
The full list of differences is detailed in Supplementary Table 6 and 7. This is a
further sign of decreased metabolism of the Central/Eastern African isolate in the

anaerobic environment of the gut.

13
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Chicken infection model suggests evolutionary divide in host range between

global epidemic and African lineages

Given the phenotypic differences observed in the genotypically distinct global and
African clades, we hypothesized that these lineages could have differing infection
phenotypes in an in vivo challenge model. We compared the infection profile of a
member of the Central/Eastern African clade (D7795) to the reference global
epidemic strain P125109 in an avian host. The chicken group infected with P125109
showed mild hepatosplenomegaly consistent with infection by this Salmonella
serovar and cecal colonization (Figure 4A-C). In contrast, the Central /Eastern
African strain displayed significantly reduced invasion at 7 dpi of both liver
(p=0.027) and spleen (p=0.007), however cecal colonization was not significantly
reduced (p=0.160). This is in marked contrast to the behavior of S. Typhimurium

ST313, which is more invasive in a chick infection model [12].

Discussion

S. Enteritidis is an example of a successful Salmonella lineage with the apparent
ability to adapt to different hosts and transmission niches as and when
opportunities for specialization have presented. Langridge et al recently evaluated
the Enteritidis/Gallinarum/Dublin lineage of Salmonella, revealing components of
the nature and order of events associated with host-range and restriction [39]. In
the present study, we have highlighted the plasticity of S. Enteritidis, providing
evidence of three distinct epidemics of human disease. In addition we show multiple
additional clades and clusters that demonstrate the huge reservoir of diversity

amongst S. Enteritidis from which future epidemics might emerge.

An important question posed by this study is why have distinct clades of Salmonella

emerged to become prominent causes of iINTS disease in Africa, from a serotype

14
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normally considered to be weakly invasive? The presence of a highly
immunosuppressed population due to the HIV pandemic is clearly a key host factor
that facilitates the clinical syndrome iNTS disease [40,41]. In addition to human host
factors, there are two distinct African epidemic lineages that have emerged in the
last 90 years. Both lineages are significantly associated with a novel prophage
repertoire, an expanded, MDR-augmented virulence plasmid, and patterns of
genomic degradation with similarity to other host-restricted invasive Salmonella
serotypes including S. Typhi and S. Gallinarum and to clades of S. Typhimurium
associated with invasive disease in Africa [13,32,35]. This pattern of genomic
degradation is concentrated in pathways specifically associated with an enteric
lifestyle, however it is noteworthy that in the chick infection model, the African S.
Enteritidis invaded the chick liver and spleen less well than the global pandemic
clade. This raises the possibility that the two clades occupy different ecological
niches outside the human host or that they behave differently within the human
host and screening of the huge S. Enteritidis collection from routine Salmonella
surveillance by PHE supports the assertion that these lineages are geographically
restricted to Africa. This study therefore indicates a need to understand what these
ecological niches might be, and then to define the transmission pathways of African
clades of S. Enteritidis, in order to facilitate public health interventions to prevent

iNTS disease.

The evolution of the S. Enteritidis virulence plasmid is intriguing; pSENV is the
smallest of the known Salmonella virulence-associated plasmids, but in SSA, the
plasmid has nearly doubled in size partly through the acquisition of AMR genes. The
absence of tra genes necessary for conjugal transfer either indicates that MDR status
has evolved through acquisition of MGEs multiple times or through clonal expansion
and vertical transmission of the plasmid to progeny. The available data suggest that
the former scenario has happened twice, once in West Africa, and once in

Central/Eastern Africa.
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Despite S. Enteritidis being reported as a common cause of bloodstream infection
(BSI) in Africa [6,7] the Global Enteric Multicenter Study (GEMS) found that
Salmonella serotypes were an uncommon cause of moderate to severe diarrhoea in
African children less than 5-years of age [42]. Our data associating the African
lineages with invasive disease is also consistent with data presented in a recent
Kenyan study comparing a limited number and diversity of S. Enteritidis isolates
from blood and stool. Applying the lineages defined in this study to the genome data
reported from Kenya showed that 20.4% of isolates from that study belonging to the
global clade were associated with invasive disease, whereas 63.2% of the isolates in
that study belonging to our Central/Eastern African clade were associated with
invasive disease [43]. The remaining isolates were associated with cases of
enterocolitis or asymptomatic carriage, confirming that the Central/Eastern African
clade can also cause enterocolitis. The association of S. Enteritidis clades circulating
in sub-Saharan Africa with iNTS disease may reflect the fact that their geographical
distribution permits them to behave as opportunistic invasive pathogens in a setting
where advanced immunosuppressive disease is highly prevalent in human

populations.

In summary, two clades of S. Enteritidis have emerged in Africa, which have
different phenotypes and genotypes to the strains of S. Enteritidis circulating in the
industrial world. These strains display evidence of changing host adaptation,
different virulence determinants and multi-drug resistance, a parallel situation to
the evolutionary history of S. Typhimurium ST313. They may have different
ecologies and/or host ranges to global strains and have caused epidemics of BSI in
at least three countries in SSA, yet are rarely responsible for disease in South Africa.
An investigation into the environmental reservoirs and transmission of these

pathogens is warranted and urgently required.

Methods
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Bacterial Isolates

S. Enteritidis isolates were selected on the basis of six factors; date of original
isolation, antimicrobial susceptibility pattern, geographic site of original isolation,
source (human [invasive vs stool], animal or environmental), phage type (where
available), and multilocus variable number tandem repeat (MLVA) type (where
available). S. Enteritidis P125109 (EMBL accession no. AM933172) isolated from a
poultry farm from the UK was used as a reference [32]. The full metadata are in
Supplementary Table 1. Isolates have been attributed to region according to United
Nations statistical divisions

(http://unstats.un.org/unsd/methods/m49/m49regin.htm).

Sequencing, SNP-calling, construction of phylogeny and comparative genomics

PCR libraries were prepared from 500 ng of DNA as previously described [44].
I[solates were sequenced using [llumina GA II, HiSeq 2000 and MiSeq machines
(Illumina, San Diego, CA, USA) and 150 bp paired-end reads were generated. The
strains were aligned to Salmonella Enteritidis reference genome P125109 using a
pipeline developed in-house at the Wellcome Trust Sanger Institute (WTSI). For
each isolate sequenced, the raw sequence read pairs were split to reduce the overall
memory usage and allow reads to be aligned using more than one CPU. The reads
were then aligned using SMALT (www.sanger.ac.uk/science/tools/smalt-0), a
hashing based sequence aligner. The aligned and unmapped reads were combined

into a single BAM file. Picard (https://broadinstitute.github.io/picard) was used to

identify and flag optical duplicates generated during the making of a standard
[llumina library, which reduces possible effects of PCR bias. All of the alignments
were created in a standardized manner, with the commands and parameters stored

in the header of each BAM file, allowing for the results to be easily reproduced.

The combined BAM file for each isolate was used as input data in the SAMtools
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mpileup program to call SNPs and small indels, producing a BCF file describing all of
the variant base positions [45]. A pseudo-genome was constructed by substituting
the base call at each variant or non-variant site, defined in the BCF file, in the
reference genome. Only base calls with a depth of coverage >4 or quality >50 were
considered in this analysis. Base calls in the BCF file failing this quality control filter

were replaced with the "N” character in the pseudo-genome sequence.

All of the software developed is freely available for download from GitHub under an

open source license, GNU GPL 3.

Phylogenetic modelling was based on the assumption of a single common ancestor,
therefore variable regions where horizontal genetic transfer occurs were excluded
[46] [47]. A maximum likelihood (ML) phylogenetic tree was then built from the
alignments of the isolates using RAXML (version 7.0.4) using a GTR+I+G model [48].
The maximume-likelihood phylogeny was supported by 100 bootstrap pseudo-
replicate analyses of the alignment data. Clades were predicted using Hierarchical
Bayesian Analysis of Population Structure (HierBAPS)[24]. This process was
repeated to construct the plasmid phylogeny, using reads that aligned to pSENV.

To ascertain the presence of the clusters defined by HierBAPs in the Public Health
England (PHE) routine Salmonella surveillance collection, seventeen isolates
representing the diversity of the collection were compared against 2986 S.
Enteritidis PHE genomes. Single linkage SNP clustering was performed as
previously described [49]. A maximum-likelihood phylogeny showing the
integration of the seventeen isolates with 50-SNP cluster representatives of the PHE
S. Enteritidis collection was constructed as above. FASTQ reads from all PHE
sequences in this study can be found at the PHE Pathogens BioProject at the
National Center for Biotechnology Information (Accession PRJNA248792).

Temporal reconstruction was performed using Bayesian Evolutionary Analysis
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Sampling Trees (BEAST: http://beast.bio.ed.ac.uk/ version 1.8.2)[50]. A relaxed

lognormal clock model was initially employed. The results of this model indicated
that a constant clock model was not appropriate, as the posterior of the standard
deviation of the clock rate did not include zero. A range of biologically plausible
population models (constant, exponential and skyline) was investigated. Skyline
models can be biased by non-uniform sampling and we observed a strong similarity
between reconstructed skyline population and the histogram of sampling dates and
so this model was excluded. The exponential models consistently failed to converge
and were excluded. Thus, for all datasets, lognormal clock and constant population
size models were used. The computational expense required for this analysis
precluded running estimators for model selection. However, we note that Deng et al
used the same models in their analysis of 125 S. Enteritidis isolates. Default priors
were used except for ucld.mean, Gamma(0.001,1000), initial: 0.0001;
exponential.popSize, LogNormal(10,1.5), initial: 1[21].

Three chains of 100 million states were run in parallel for each clade of the four
major HierBAPS clades, as well as a fourth chain without genomic data to examine
the influence of the prior, which in all cases was uninformative. The final results, as
used here, all had effective sample sizes (ESS) of over 200 and had convergence
between all three runs. For the Global and Global Outlier lineages, the datasets were
not computationally feasible to analyse. We thus created 3 further random subsets
of the data by drawing n isolates from each sampled year where n was sampled
from a Poisson distribution where A=2. The posteriors of all subsets were extremely
similar and runs were combined to produce the final most recent common ancestor

(MRCA) estimates.

In order to gain a detailed insight into genomic differences, a single high quality
sequence from Malawian S. Enteritidis isolate D7795 was aligned against the
P125109 using ABACAS and annotated [51]. Differences were manually curated

against the reference using the Artemis Comparison Tool (ACT)[52]. Sections of
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contigs which were incorporated into the alignment, but which did not align with
P125109 were manually inspected and compared to the public databases using

BLASTn (http://blast.ncbi.nlm.nih.gov). When these regions appeared to be novel

prophages, they were annotated using the phage search tool PHAST and manually
curated [53]. In order to investigate whether the SNPs and/or indels that were
predicted to be responsible for pseudogene formation in D7795 were distinct to that
isolate or conserved across both African epidemic clades, all isolates were aligned to
P12509 and the relevant SNPs/indels investigated using in-silico PCR of the aligned
sequences. Manual curation was performed to confirm the nature of all pseudogene-
associated SNPs/indels. NS-SNPs identified in D7795 were sorted throughout the
African clades by extracting and aligning the appropriate gene sequences from
P125109 and D7795. The coordinates of the NS-SNPs were then used to identify the

relevant sequence and determine the nature of the base.

Accessory genome

The pangenome for the dataset was predicted using ROARY [54]. Genes were
considered to be core to S. Enteritidis if present in 290% of isolates. A relaxed
definition of core genome was used as assemblies were used to generate it and the
more assemblies one uses, the more likely it is that a core gene will be missed in one
sample due to an assembly error. The remaining genes were considered to be core
to the clades/clusters predicted by HierBAPS if present in 275% if isolates from
within each clade/cluster. These genes were then curated manually using ACT to
search for their presence and position in P125109 or the improved draft assembly
of representative isolates of each of the other clades if not present in P125109. Any
large accessory regions identified were blasted against the assembled genomes of

the entire collection to confirm they were grossly intact.

Plasmid identification
Plasmid DNA was extracted from isolate D7795 using the Kado & Liu method and

separated by gel-electrophoresis alongside plasmids of known size, to estimate the

20


http://blast.ncbi.nlm.nih.gov/

595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624

number and size of plasmids present [55]. Plasmid conjugation was attempted by
mixing 100 pL of overnight culture of donor and recipient strains (rifampicin
resistant Escherichia coli C600) on Luria-Bertani agar plates and incubating
overnight at 26°C and 37°C. The plasmid was sequenced using the PacBio platform

(http://www.pacificbiosciences.com/) to gain long reads and a single improved

draft assembly, which was aligned against P125109 plasmid pSENV (Accession
Number HG970000). For novel regions of the plasmid from isolate D7795, genes
were predicted using GLIMMER and manual annotations applied based on
homology searches against the public databases, using both BLASTn and FASTA. The
plasmid phylogeny was reconstructed using the same methodology as the
chromosome; a maximum likelihood (ML) phylogenetic tree was built from the

alignments of the isolates using RAXML (version 7.0.4) using a GTR+I+G model

Identification of AMR genes

A manually curated version of the Resfinder database was used to investigate the
isolates for the presence of AMR genes [56]. To reduce redundancy, the database
was clustered using CD-HIT-EST [57], with the alignment length of the shorter
sequence required to be 90% the length of the longer sequence. All other options
were left as the defaults. The representative gene of each cluster was then mapped
with SMALT (http://www.sanger.ac.uk/science/tools/smalt-0) to the assemblies of
each isolate to identify and matches with an identity of 90% or greater were
considered significant, in line with the default clustering parameters of CD-HIT-EST.
Where partial matches were identified at the ends of contigs, having an identity of
90% or greater to the matched region of the gene, potential AMR gene presence was
recorded. To confirm presence of these partial matches, raw sequencing reads of the
pertinent isolates were mapped using SMALT to these genes to check for 90%

identity across the entire gene.
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Biolog™ growth substrate platform profiling

The Biolog™ platform (http://www.biolog.com) enables the simultaneous

quantitative measurement of a number of cellular phenotypes, and therefore the
creation of a phenotypic profile of a variety of assay conditions [58]. Incubation and
recording of phenotypic data were performed using an OmniLog® plate reader. In
these experiments, two replicates of D7795 were compared to two of PT4-like strain
A1636 at 28 and 37°C to represent environmental and human temperatures.
Biolog™ plates PM1-4 and 9 (Carbon source [PM1, PM2], nitrogen source [PM3] and
phosphor and sulphur source [PM4] metabolism and osmotic pressure [PM9]) were
used. Each well was inoculated as described in the high throughput phenotyping
protocol, thereby testing 475 conditions at once (each plate has one negative control
well). Plates were scanned every 15 min for 48 hours while incubated at 28°C and

37°C in air. Two paired replicates were performed for each of the two isolates.

After completion of the run, the signal data were compiled and analysed using the

limma package (www.bioconductor.org) in ‘R’ (www.R-project.org) as described

previously [59]. A log-fold change of 0.5 controlling for a 5% false discovery rate
was used as a cut-off for investigating a specific metabolite further using Pathway
Tools [60] and whether the metabolic change was related to pseudogenes and non

synonymous(NS)-SNPs in genes in the respective genomes.

In vivo Infection Model

Two isolates were used in the animal models: S. Enteritidis P125109 and D7795.
Unvaccinated commercial female egg-layer Lohmann Brown chicks (Domestic Fowl
[Gallus gallus]) were obtained from a commercial hatchery and housed in secure
floor pens at a temperature of 25°C. Eight chicks per strain per time point were
inoculated by gavage at 10 days (d) of age and received a dose of ~108 Salmonella

colony forming units (CFU) in a volume of 0.2 mL. Subsequently, four to five birds
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from each group were humanely killed at 3, 7 or 21 d post-infection (p.i.). At post
mortem, the liver, spleen, and caecal contents were removed aseptically,
homogenised, serially diluted and dispensed onto Brilliant Green agar (Oxoid) to
quantify colony forming units (CFU) as described previously [61]. Statistical analysis
was performed using SPSS, version 20 (IBM). Kruskal-Wallis was used to compare

bacterial loads between infected groups.

All work was conducted in accordance with the UK legislation governing
experimental animals, Animals (Scientific Procedures) Act 1986, under project
licence 40/3652 and was approved by the University of Liverpool ethical review
process prior to the award of the project license. The licensing procedure requires
power calculations to determine minimal group sizes for each procedure to ensure
results are significant. For these experiments a group size of 8 birds per time point
was chosen, based on a variation in 1.0 logio in bacterial count between groups as
being significant along with prior experience of Salmonella infection studies. Groups
were randomly selected on receipt from the hatchery and investigators conducting
animal experiments were not blinded, as the current UK code of practice requires all
cages or pens to be fully labeled with experimental details. No animals were
excluded from the analysis. All animals were checked a minimum of twice daily to

ensure their health and welfare.

Code availability

Software is referenced and URLS are provided in the text of the methods, all

software is open source.
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Tables

Table 1: Summary of metadata (n) by region in numbers

Region Total Site of isolation Antimicrobial resistance
phenotype
() @ <)
5 5 .73 5% z E
© o () Q. o o o
e t:2 e sEx £ 3
o s £ 23 § gy 2 =3 7
< E Eg5 g @ £ 4 = S M
= Z2 T 8 & ¥ B o
= = Bl E & £
Asia 11 5 5 1 0 0 0 0 0
Europe 61 0 16 24 2 0 0 0 0
South America 27% 3 6 7 8 0 0 0 0
North Africa 12 9 1 1 9 0 0 2 0
Sub-Saharan 353 269 22 7 99 64 14 0 3
Africa 9
Republic of South 131 57 74 0 83 44 4 0 0

Africa

*Multidrug resistant: resistant to 23 antimicrobials

tExtended spectrum beta lactamase producing

tUruguay strains previously characterised by Betancor [62]
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Table 2: Metadata summarised by clade

Major Site of isolation Number (%) of
Clade/cluster N (%) antimicrobial
resistance genes*
S ; -~ =
17 = < o
< S 2 E g 3
= s % £ 5 8 5 ¢ q
= s § < g E A < >~
< E g8 © % =
= 2 - 8 &8 R
E 2 S
West African 61(92) 1(2) 0(0) 4(6) | 22(33) 9 35 (66)
(14)
Central/Eastern 155 7 (4) 0(0) 5(3) 0(0) 11 156
African (93) (7) (93)
Global epidemic 94 (38) 95 31(12) 30 243 7(3) 0(0)
(38) (12) (97)
Outlier cluster 51 (38) 36 27 (20) 20 128 3(2) 3(2)
(27) (15) (96)

*All isolates contained cryptic aminoglycoside acetyltransferase gene aac(6’)-1y[26]

32



909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930

Figures

Figure 1: Maximum likelihood phylogeny of S. Enteritidis based on 675 isolates
rooted to S. Gallinarum. There are 3 epidemic clades; 2 African epidemic clades and

a global epidemic clade. Scale bar indicates nucleotide substitutions per site.

Figure 2: Differences in accessory genomes of 4 major clades. Approximate position

of prophages in chromosome is depicted, although prophages are not drawn to scale

Figure 3: Heat map revealing changes in metabolic activity of Central/Eastern
African clade isolate D7795 when compared to global epidemic isolate A1636 at 28
and 37°C. The figure also displays whether there are corresponding mutations in
genes related to the affected metabolic pathway. (NSSNP=Non-synonymous single
nucleotide polymorphism, HDG = Hypothetically disrupted gene)

Figure 4: Salmonella isolation from a chick infection model demonstrates failure of
Central/Eastern African clade isolate to invade chicken spleen (4A) and liver (4B) or
to colonize chicken caeca (4C) at 7 days post infection (dpi) (n=24 at this time point)
compared to the global epidemic clade. Numbers are expressed as colony forming

units (CFU) per gram of tissue
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Supplementary Data

Supplementary Table 1: Metadata associated with each individual strain including
date, place, and source of isolation plus antimicrobial susceptibility data where
known. Predicted antimicrobial resistance genes are also included
Supplementary Table 2: Full list of predicted antimicrobial resistance genes
Supplementary Table 3: List of pseudogenes identified in D7795 and confirmation of
presence/absence across African clades

Supplementary Table 4: List of genes in both Central/Eastern and West African
clades with non-synonymous SNPs present throughout both clades
Supplementary Table 5: Comparison of genomic degradation seen in African
epidemic clade with that seen in S. Typhi and S. Gallinarum

Supplementary Table 6: Full list of phenotypic differences between an example of
the Central/Eastern African clade (D7795) and an example of the global epidemic
clade (A1636) at 37°C and corresponding genetic differences

Supplementary Table 7: Full list of phenotypic differences between an example of
the Central/Eastern African clade (D7795) and an example of the global epidemic
clade (A1636) at 28°C and corresponding genetic differences

Supplementary Figure 1: Maximum likelihood phylogeny placing representative
isolates from current study within the context of the diversity of S. Enteritidis
genomes in the PHE collection. Black taxa labels represent PHE 50-SNP cluster
representatives, red taxa labels represent seventeen representative strains from
this study.

Supplementary Figure 2: Maximum likelihood phylogeny with strains of known
phage type highlighted, demonstrating the lack of genomic diversity captured by
phage typing

Supplementary Figure 3: BEAST tree of Central/Eastern African Clade and West

African Clades revealing estimated age of clades
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Supplementary Figure 4: Histograms of dates and BEAST results (treeHeight) for the
subsets of the outlier cluster (S3A and S3C) and global epidemic clade (S3B and
S3D)

Supplementary Figure 5: Distribution of prophage regions across the isolate
collection highlighted. Red indicates presence, blue absence. Gaps indicate isolates
not sequenced at Sanger Institute

Supplementary Figure 6: Maximum likelihood phylogeny of S. Enteritidis plasmids

High throughput phenotyping protocol

Supplementary results
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