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ABSTRACT 

 

 

 

Dimethylsulfoniopropionate (DMSP) and its catabolite dimethyl sulfide (DMS) are 

key marine nutrients, with roles in global sulfur cycling, atmospheric chemistry, signalling 

and, potentially, climate regulation. In the surface layer of salt marsh sediments DMSP 

concentrations are > three orders of magnitude higher than in the overlying seawater, an 

environment usually touted as being the most important site for DMSP production. A third 

of bacterial isolates from salt marsh pond sediment were found to produce DMSP (up to 

160 nmol/mg protein) and, furthermore, many more novel DMSP-producing bacteria were 

identified after performing enrichment microcosm experiments for bacterial DMSP 

production. Most DMSP-producing isolates contained the dsyB gene, but several 

(Alteromonas, Marinobacter and Novosphingobium), lacked this reporter gene for DMSP 

synthesis. A Novosphingobium sp. MBES04 isolate produced DMSP via a novel bacterial 

methionine methylation pathway, and a bacterial methionine methyltransferase ‘mmtN’ 

gene was discovered. BLASTp results revealed a diverse range of bacteria that contain it, 

and both alphaproteobacteria and actinobacteria within that group were shown to produce 

DMSP. DMSP-producing bacteria, mmtN abundance and dsyB transcripts were present 

in all tested seawater samples and Tara Oceans bacterioplankton datasets, but were far 

more abundant in marine surface sediment. Thus, we propose that surface marine 

sediments are environments with high DMSP productivity and that heterotrophic bacteria 

are likely important producers in these environments 
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1 INTRODUCTION 

 

1.1 The sulfur cycle 

Sulfur is the ninth most abundant element in the universe, and is essential to life 

on earth (Sievert et al. 2007). Although the majority of the sulfur on earth is fixed in mineral 

and rock form, it also makes up roughly 1 % of the dry weight of the biomass of an 

organism, in the form of amino acids such as cysteine and methionine, as well as playing 

a role in coenzymes and metalloproteins (Sievert et al. 2007). It exists in several different 

states, the most stable of which is an inorganic sulfate (SO4
2−) (Figure 1-1), and also in 

various reduced and organic forms (Sievert et al. 2007). Although all organisms require 

sulfur to survive, not all are able to use it in its inorganic form. Microorganisms are able to 

use it through a process called ‘assimilation’ (Oduro et al. 2012), where sulfate is 

integrated into different organosulfur compounds, including methionine and DMSP (Figure 

1-1). Animals that are unable to utilise inorganic sulfur are therefore dependent on these 

preformed sulfur compounds (Sievert et al. 2007), which can also be used as electron 

acceptors or donors in sulfur reduction/oxidation reactions.  

 

Figure 1-1: The biosynthetic pathway of DMSP/DMS by marine algae through assimilatory 

sulfate reduction, via methionine enzymatic biotransformation. The reaction processes 

involved in seawater sulfate assimilation by marine algae species are as follows: (1) carrier-

bound sulfate reduction, (2) transsulfuration to methionine biosynthesis, (3) transamination, (4) 

reduction, (5) methylation, (6) oxidative decarboxylation, and (7) cleavage/degradation. (Oduro 

et al. 2012) 
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This assimilation from sulfate to biogenic sulfur and back takes place several times 

in the sulfur cycle (Figure 1-2). Initially, sulfur dioxide is released from rocks in terrestrial 

environments through weathering (Schäfer et al. 2010), and oxidises in the air to become 

sulfate. This is assimilated by various microorganisms and plants and turned into different 

organosulfur molecules (Andreae 1990), which are consumed by animals that then use 

the biogenic sulfur, releasing it as sulfate into the soil during death and decomposition. 

Other emitters of sulfur include volcanic eruptions and biomass burning (Malin 1996). 

Sulfate eventually ends up in the oceans through deposition (fallout from the atmosphere), 

as well as in run-off from lakes and rivers (Schäfer et al. 2010). Here it is assimilated into 

cysteine, methionine, dimethylsulfoniopropionate (DMSP) and, finally dimethyl sulfide 

(DMS) (Stefels 2000) (Figure 1-3).  

Figure 1-2: The cycle of sulfur in the environment. The majority of the sulfur on earth is trapped 

within rocks and fossil fuels, but the fraction that is released through combustion of fossil fuels 

and weathering is cycled through both terrestrial and marine environments. It first oxidises in the 

air and becomes SO2, which reacts in the atmosphere, becoming SO4
2. This is returned to earth 

as dry deposition, assimilated by plants and microorganisms and reduced to various 

organosulfur compounds. These are utilised by animals and other bacteria, and released again 

through decomposition. SO4
2- reaches the ocean through run-off in rivers and through dry 

deposition from the atmosphere. In the oceans SO4
2- is assimilated and becomes methionine. 

Marine algae and bacteria turn methionine into DMSP, which is released and broken down to 

DMS, and emitted into the atmosphere where it oxidises and forms clouds, which bring biogenic 

sulfur to land through wet deposition. This is the only known movement of biogenic sulfur from 

the oceans to land. 
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1.1.1 The assimilation of sulfur 

The assimilation of sulfur resulting in DMSP and DMS first requires the production 

of L-methionine, from which all DMSP is produced. L-Met is formed from cysteine, a 

product of microbial sulfate assimilation (Figure 1-1) (Leustek & Saito, 1999). The uptake 

of sulfate for this reaction requires energy, which is supplied by ATP (Stefels, 2000). It 

passes through the cytoplasm and into the chloroplasts, where it is reduced and eventually 

forms a free sulfide (Stefels 2000). This sulfide combines with O-acetylserine (a product 

of glycolysis), and results in cysteine and acetate (Giovanelli, 1990). Cysteine itself has 

multiple roles inside the cell, in particular the de novo production of methionine. This 

pathway involves the transfer of the cysteine thiol group to O-phosphohomoserine, forming 

homocysteine, which is then methylated to make methionine (Stefels 2000). This 

methionine can subsequently be used in various other reactions via its methyl group and 

the molecule S-adenosylmethionine (AdoMet) that acts as a methyl donor.  

Throughout all stages of the sulfur cycle these biogenic sulfur compounds are well 

utilised by marine organisms. Around 10 % (30 million tonnes) of the DMS produced in the 

ocean is released to the atmosphere (Oduro et al. 2012), and because of the large surface 

area of the oceans from which it is released, it accounts for around 50 % of the biogenic 

sulfur (Andreae 1990), and one tenth of the total sulfur flux in the atmosphere (Jackson 

and Jackson, 2000). Indeed, allowing for a seasonal cycle, the global annual DMS flux 

from the oceans can range from 13 to 37 TgS yr-1 (Kettle & Andreae 2000). This DMS in 

the atmosphere becomes sulfate again, in the form of dimethylsulfoxide (DMSO) and other 

molecules including sulfuric acid, which form cloud condensation nuclei (CCN). Clouds 

form and blow ashore, returning this large volume of sulfur to the terrestrial environment 

as deposition (Figure 1-2) (Sievert et al. 2007). The land to which this sulfur returns is 

sulfur-depleted, making it an important step in the cycle. When it falls, the fresh supply of 

this nutrient positively affects the surface, increasing productivity and therefore 

weathering, thus completing the cycle and bringing more nutrients into the ocean 

environment through run-off (Charlson et al. 1987).  

1.1.2 The CLAW hypothesis 

The clouds produced by DMS emissions not only complete the cycle of sulfur by 

returning it to terrestrial environments (Figure 1-2), but it has also been theorised that their 

albedo effect is part of a feedback loop controlling local climate, termed the CLAW 

hypothesis after the authors who first postulated it (Charlson et al. 1987). This feedback 

loop was suggested because it had already been established that DMS is one of the major 

sources of CCN, and therefore the formation of clouds could be regulated by controlling 

the release and oxidation of DMS (Charlson et al. 1987). Blooms of phytoplankton were 
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found to produce higher amounts of DMS in warmer conditions (Charlson et al. 1987), 

likely because increased solar radiation leads to better growth (Schäfer et al. 2010). Higher 

DMS means increased CCN and therefore cloud formation, reflecting radiation away from 

the surface and cooling it, which then leads to a decrease in growth and production, 

causing the cloud cover to ease off and allow more radiation again, maintaining balance 

(Schäfer et al. 2010). This theory, while often referenced, has not been fully validated, and 

even though there is evidence for levels of DMS being driven by light dosage (Vallina & 

Simó 2007), it is now widely thought to be unlikely, or at the very least more complex than 

previously suggested (Quinn & Bates 2011), namely due to the existence of other sources 

of CCN that are not DMS-derived. 

The amount of sulfur released to the environment through the DMSP/DMS cycle is 

globally dwarfed by anthropomorphic production in this day and age (Malin 1996), but on 

a local scale it is still a major player, particularly in the marine environment, and is worthy 

of being considered a key step in the overall cycling of sulfur (Yoch 2002). The distribution 

and abundance of these sulfur compounds in the environment, specifically DMS and 

DMSP, is largely a result of the microorganisms that produce them and break them down, 

driving biogeochemical cycles on a global scale in the process. Understanding the activity 

of these microorganisms leads to a better understanding of the cycle as a whole. 

 

1.2 The importance of DMSP  

DMSP is not only an important molecule in the sulfur cycle – it is a globally 

significant organosulfur compound produced by a wide range of marine organisms, with 

several petagrams of it being released per year (Galí et al. 2015). As previously described, 

it has been shown to play a significant role in global sulfur cycling (Sievert et al. 2007), 

and is also a signalling molecule (Seymour et al. 2010) and a key nutrient source for 

marine organisms (Curson et al. 2011b), with osmoprotectant and anti-stress properties 

also suggested (Stefels 2000). It is the major precursor for the volatile sulfur gas, DMS, 

which is itself an environmentally important climate-active compound that diffuses into the 

atmosphere, affecting the climate through the albedo effect (Shaw 1987), completing the 

global sulfur cycle through the formation of CCN and precipitation (Stefels et al. 2007), and 

acting as a nutrient source and signalling molecule as well.  
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1.2.1 DMSP structure 

DMSP is a five-carbon compound, synthesised from the amino acid methionine. 

As the name suggests, its structure includes a twice-methylated sulfur molecule and a 

carboxylate in the form of propionate (Figure 1-3). DMSP is a zwitterion, meaning that the 

molecule contains both a negative and positive charge, one at either end. The methylated 

sulfur is positively charged, and the negative charge is on the oxygen in the carboxylate 

group (Sunda et al. 2002).  

Elements of this structure go some way to explaining the function of DMSP in the 

environment: DMS is easily released from the rest of the compound via the cleavage of 

the sulfur-carbon bond (Curson, et al. 2011b). The methyl groups are accessible sources 

of carbon, and the overall structure is very similar to other widely-studied compounds such 

as glycine betaine (GBT) (Otte et al. 2004), differing only in the replacement of the sulfur 

molecule with nitrogen. GBT is known to play a role in osmoregulation, suggesting that 

DMSP may also have osmoregulatory function.  

DMSP is synthesised or transported into organisms from the environment because 

it and its catabolites are thought to provide a number of advantages to the organism 

(Figure 1-4). As previously stated, it acts as a key source of both sulfur and carbon to the 

organisms that break it down (Simó et al. 2009), and is a potential osmoprotectant, 

balancing the cell against high saline conditions. Further suggested functions of 

DMSP/DMS in organisms include use as a signalling molecule (Seymour et al. 2010) and 

Figure 1-3: DMSP and selected compounds involved in DMSP cycling, including significant 

intermediates involved in its production (DMSHB and SMM), the products of its breakdown 

(DMS, Acrylate and 3-Hydroxypropionate), and also the known osmolyte, GBT, demonstrating 

the similarity in structure as a nitrogen-based homolog to DMSP. The two methyl groups 

attached to the sulfur class DMSP as a C1 compound, and also mean that a DMS molecule is 

easily removed from the compound during catabolism. Both DMSHB and SMM also possess the 

twice-methylated sulfur, and can release DMS under particular conditions. 

 



 8 

protection against multiple stresses including oxidative stress and UV damage (Sunda et 

al. 2002). Research into the synthesis, function and cycling of these molecules is key 

because they have major impact in the individual organisms that produce them and also 

in the wider environment and the global sulfur cycle.  

 

Figure 1-4: The cycle of DMSP production and breakdown in the marine environment, a major 

step in the sulfur cycle. DMSP is produced in the ocean by marine organisms such as algae 

and bacteria, and released into the surrounding water upon cell death or lysis. It is taken up 

by bacteria that lyse it and release DMS (alongside acrylate or 3-HP). The oceanic DMS is 

used as a carbon source by marine bacteria, and when it reaches the surface 10 % is released 

as a gas. In both forms it is a chemoattractant for organisms including zooplankton, harbour 

seals and petrels. In the atmosphere it oxidises to either DMSO or SO4
2- aerosols, which form 

CCN. These increase the albedo effect (the reflection of the radiation from the sun) which 

causes local cooling of the waters. When these clouds precipitate they bring biogenic sulfur 

back to the terrestrial environment. 
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1.2.2 DMSP as a source of nutrients 

Between 30 – 90 % of DMSP released into the ocean is immediately metabolised 

by marine bacteria (Figure 1-4) (Seymour et al. 2010). This is because, as previously 

mentioned, DMSP and DMS are both excellent sources of nutrients, and therefore energy, 

in bacteria, bacterioplankton and phytoplankton (Simó et al. 2009), and are well utilised as 

such. In fact, there are no known single compounds that contribute as much sulfur and 

carbon to the food web as DMSP does (Yoch 2002). In DMSP-producing algae DMSP can 

comprise anywhere between 50 – 100 % of the organic sulfur in the cell (Stefels, 2000), 

and it is often the favoured source of sulfur for marine bacteria such as those in the SAR11 

clade (Tripp et al. 2008), who also use it as a carbon source. This is particularly important 

for this clade because several of them lack the complete set of assimilatory sulfate 

reduction genes and therefore rely exclusively on the uptake of externally reduced sulfur 

such as DMSP or methionine (Tripp et al. 2008). 

DMSP also contributes to around 10 % of all the fixed carbon in the ocean (Howard 

et al. 2006), and supports up to 13 % of the bacterial carbon demand in surface waters 

(Kiene et al. 2000), meaning that it is one of the most substantial single sources of labile 

carbon in the surface waters. Bacteria possess many ways in which to breakdown DMSP 

and gain access to the nutrients – not only are there multiple DMSP cleavage enzymes 

(ddd genes) that are very effective in accessing carbon (see below), but the ability to break 

DMSP down via the demethylation pathway (shown by the presence of the gene dmdA) is 

thought to exist in three in every five bacterioplankton cells tested in the GOS data set 

(Howard et al. 2008), showing that DMSP is a hugely beneficial carbon source to these 

surface bacterioplankton. Indeed, in analysis of the OM-RGC database (Sunagawa et al. 

2015), an estimated 20 % of the bacterial species in the metagenomic database contain a 

ddd gene (Curson et al. 2018). 

1.2.3 DMSP as an antioxidant 

In addition to providing a source of carbon and sulfur to various bacteria, DMSP 

also plays several other suggested roles in the organism and the environment. Many of 

these functions are predicted based on the observed increase in DMSP production or 

intake by the organism in response to changed stimuli (Stefels 2000; Sunda et al. 2002; 

Curson et al. 2017). Production of DMSP is often increased as a response to various 

oxidative stresses on the cell (Sunda et al. 2002). Oxidative stress occurs because of an 

imbalance between the production of free radical reactive oxygen species (ROS), and the 

ability of an organism to remove them (Birben et al. 2012). If left in the cell these free 

radicals can cause significant damage to cell structures, including proteins and DNA 

(Birben et al. 2012). Certain environmental conditions increase the amount of oxidative 
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stress experienced by an organism, including the limitation of particular molecules, such 

as CO2 and Fe, an increase in UV radiation or copper levels, or the presence of hydrogen 

peroxide (Yost et al. 2010), all of which cause the formation of highly reactive hydroxyl 

radicals in the cell that can damage lipids, proteins and nucleic acids. There are also 

several natural processes that take place such as respiration and photosynthesis that also 

create ROS. DMSP and the products of its breakdown (DMS and acrylate) act as 

protection from these stressors (Yost et al. 2010) by ‘scavenging’ the harmful hydroxyl 

radicals by rapidly reacting with them (Sunda et al. 2002).  

There are several other conditions that have also been found to increase the levels 

of DMSP production, in addition to increased oxidative stress. It has been speculated that 

DMSP acts as a cryoprotectant (antifreeze), protecting protein integrity from excessive 

temperature decrease, as the levels of DMSP in Antarctic macroalgae increase as the 

temperature is lowered (Kirst et al. 1991; Ko et al. 1994). As previously discussed, DMSP 

has a similar structure to GBT, and therefore is likely to have similar functions to this 

molecule. Furthermore, polar algae has been found to contain significantly higher DMSP 

levels compared to tropical species (Karsten et al. 1992), and could be acting as an 

antifreeze by keeping the cytoplasm liquid, and may even be protecting proteins through 

specific molecular interactions. In Karsten et al. (1996) DMSP was found to not only protect 

the cells from damage during freezing, but also noticeably improved the activity of specific 

enzymes, even at 0°C, compared to the controls.  

1.2.4 DMSP as a compatible solute 

It has also been suggested in numerous instances that DMSP is an osmolyte 

(Dickson & Kirst 1986; Kirst et al. 1991; Karsten et al. 1992), also known as a constitutive 

compatible solute (Stefels 2000). DMSP has even been referenced as one of the dominant 

compatible solutes in marine algae (Kempf & Bremer 1998), although it is usually used in 

combination with other solutes (Kirst, 1996). In high salinity conditions several organisms 

have been shown to produce greater amounts of DMSP (Zhuang et al. 2011; Curson et al. 

2017), and those that are unable to produce it accumulate it from the environment at a 

much higher rate than in lower salinity conditions (Cosquer et al. 1999). An increase in 

salinity is problematic for unicellular organisms because they often lack the cell membrane 

structure that helps prevent desiccation due to the loss of water from the cell via osmosis 

(Kempf & Bremer 1998).  

As microorganisms are unable to actively transport water molecules into the cell to 

maintain turgor (Kempf & Bremer 1998), a different solution is required, in the form of 

production and/or accumulation of osmoprotectants from the environment. These are 

highly soluble compounds that balance changes in external osmotic potential without 
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disturbing the functioning of cellular proteins (Kirst et al. 1991). Both DMSP and GBT are 

effective osmolytes, with DMSP enhancing the salinity tolerance of organisms when 

present at even nanomolar concentrations (Cosquer et al., 1999). These molecules aid 

osmotic acclimatisation, adjusting the potential of the cell to match the outside conditions, 

and enabling it to maintain optimum cell volume and turgor (Stefels 2000). Furthermore, 

these molecules have a net neutral charge, and can accumulate at high concentrations 

without affecting cellular processes such as DNA replication, with Spartina alterniflora 

reported as having upwards of 29 µmol/g fresh weight (Kocsis et al. 1998) (Kempf & 

Bremer 1998). Compatible solutes, including DMSP, are also able to stabilise protein 

structures and metabolic pathways, protecting them from the adverse effects of high 

salinity, such as inhibition or denaturation (Arakawa & Timasheff 1985). It has been 

speculated that the biosynthesis of DMSP by marine organisms could have arisen during 

the last ice age to combat the more highly saline conditions of the oceans at that time 

(Charlson et al. 1987). This theory could be supported by the fact that DMSP is also a 

cryoprotectant, giving organisms better survival rates in the lower temperatures of the 

water.  

1.2.5 DMSP as a chemoattractant 

DMSP is utilised as a chemoattractant for several species of bacterioplankton 

(Seymour et al. 2010) and proteobacteria (Miller et al. 2004), enabling them to find and 

assimilate it so that it can be catabolised. When DMSP is released from the marine 

organisms that synthesise it, it is in limited supply, so the ability to sense DMSP confers 

great advantage to those that possess it (Miller et al. 2004). It is possible that this is not 

an intended function for the organisms that are synthesising it, and is instead something 

that marine bacteria have evolved to exploit (Seymour et al. 2010), or it could be that a 

bacterium-dinoflagellate interaction could be of benefit to both the bacterium and the host 

(Miller et al. 2004). In either scenario, this chemotaxis and subsequent breakdown of 

DMSP to DMS plays an important role in the global sulfur budget (Zimmer-Faust et al. 

1996). DMSP is also detected by planktivorous reef fishes, sea urchins, various sea birds 

and harbour seals (Seymour et al. 2010) that use it as an indicator of feeding activity 

(Debose et al. 2008). It acts as an indirect foraging cue for higher organisms, indicating 

the presence of algal blooms to reef fish, and consequently, the presence of reef fish to 

higher predators such as birds and seals (Debose et al. 2008).  

1.2.6 DMSP as an antimicrobial/antigrazing molecule 

Another suggested purpose for the production or accumulation of DMSP by various 

marine organisms is that of an antimicrobial or anti-grazing role (Wolfe et al. 1997). It is 

thought that bacteria and phytoplankton can use the catabolism of DMSP to produce 
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acrylate as a deterrent to predators such as protozoan herbivores and copepods (Wolfe 

et al. 1997). This is because acrylate has antimicrobial activity at high concentrations, and 

can inhibit growth of various bacterial species, depending on their sensitivity (Slezak et al. 

1994). It has been hypothesised that the catabolism of DMSP to acrylate is actually 

activated by grazing (Wolfe et al. 1997; Strom et al. 2003), with acrylate only being 

produced once the algae was ingested. In these studies it was observed that even though 

acrylate did not appear to have detrimental effects on the grazing protozoa, other, non-

DMSP-containing prey were consumed preferentially and entirely over the DMSP-

producing algae (Wolfe et al. 1997). This suggests that the bacterial catabolism of DMSP 

to DMS may not be exclusively driven by a nutritional need, but could also be as a 

defensive action (Curson et al. 2008). 

It has also been suggested that DMSP can act as a methyl donor during enzymatic 

transmethylations (Kiene & Taylor 1988). 

 

1.3 Dimethyl Sulfide 

DMSP is the major biogenic source of DMS in the environment, which is produced 

at around 300 million tonnes per year (Curson et al. 2011b) via the DMSP lyase pathway 

(see below). The catabolism of DMSP to DMS is an environmentally significant reaction 

(Kiene et al. 1999), and DMS plays several important roles in the ocean. It acts as a 

nutrient source for marine bacteria and it is a volatile sulfur compound that readily diffuses 

through the sea surface to the air (Kettle et al. 1999). Around 10 % of DMS that is produced 

in the ocean is transferred to the atmosphere as a gas (Kettle & Andreae, 2000), and in its 

gaseous form it plays a key role in the sulfur cycle, acting as the main source of natural 

biogenic sulfur returning to land (Sievert et al. 2007). It is also a small-scale 

chemoattractant for foraging seabirds (DeBose & Nevitt 2008), and is purported to play a 

role in local climate control and feedback loops (Charlson et al. 1987).  

The bulk of DMS released into marine environments is a result of the catabolism 

of DMSP (Reisch et al. 2011b), although recently it was also found to be produced through 

the methylation of methanethiol (MeSH) (Carrión et al. 2015), particularly in terrestrial 

environments, which suggests that the production of DMS is a lot more prolific than 

previous projections have found. It can also be produced by the reduction of DMSO under 

anoxic conditions (Schäfer et al. 2010).  

1.3.1 DMS as source of nutrients 

Of the dissolved DMS in the marine environment, the majority is removed by 

microbial activity (Kettle & Andreae 2000). DMS is another C1-sulfur compound and is 
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therefore an excellent source of nutrients, both carbon and sulfur (De Bont et al. 1981). 

Consequently, much of the DMS in the oceans is degraded by microbial activity. Some 

species of bacteria are able to grow using DMS as the sole carbon source, and several 

other microorganisms isolated from a wide range of environments have also been shown 

to have the ability to degrade it (Schäfer et al. 2010). DMS is degraded through one of two 

pathways, with the initial oxidation being carried out by either a DMS monooxygenase (De 

Bont et al. 1981), or a possible methyltransferase (Visscher & Taylor 1993). The oxidation 

step in the monooxygenase pathway results in the production of formaldehyde and 

methanethiol, which can then be degraded to formaldehyde, hydrogen peroxide and 

sulfide (Schäfer et al. 2010). The methyltransferase pathway was theorised when DMS 

degradation was found to occur without the requirement of oxygen (Visscher & Taylor 

1993; Schäfer et al. 2010), with the methyl group being transferred to an acceptor and 

then further oxidised, leaving methanethiol which is then degraded in the same way as the 

monooxygenase pathway. DMS can also be photochemically oxidised to DMSO, which 

can subsequently be used as a carbon source (De Bont et al. 1981). 

1.3.2 DMS in the atmosphere 

When DMS is in its gaseous form it plays several other roles in the environment. It 

is a chemoattractant for multiple organisms, including zooplankton (Steinke et al. 2006), 

harbour seals (Kowalewsky et al. 2006) and sea birds (Nevitt et al. 1995). It is thought that 

this chemotaxis towards DMS offers the same advantages in terms of foraging cues that 

chemoattraction to DMSP does (Nevitt et al. 1995).  

Once the DMSP is released as a gas into the atmosphere it oxidises to form various 

products including DMSO and sulfate aerosols such as SO2 (Malin 1996). These sulfate 

aerosols are the sulfate particles (SO4
2+) that become CCN (Kettle & Andreae 2000), 

around which the water droplets condense and form clouds (see above) (Figure 1-4). 

DMS-derived particulates are not the sole source of CCN over oceanic environments, but 

they are still one of the major contributors to them (Quinn & Bates 2011). As previously 

mentioned, they cause local cooling through the albedo effect, and are also a vital step in 

the sulfur cycle once they blow ashore and precipitate, returning biogenic sulfur to 

terrestrial environments through atmospheric deposition (Sievert et al. 2007).  

 

1.4 DMSP production 

Since its purification from Polysiphonia fastigiata in 1948 (Challenger & Simpson 

1948), it has been thought that DMSP was exclusively synthesised by marine eukaryotes 

(Dickschat et al. 2015). These include algae and single-celled marine phytoplankton 
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(Stefels 2000), as well as more complex organisms such as corals (Raina et al. 2013), and 

several angiosperms (Dickson et al. 1980; Hanson et al. 1994). Wollastonia biflora and 

Spartina sp. are among the angiosperms found to produce DMSP (Otte et al. 2004), 

making them somewhat of an exception, as they are terrestrial rather than marine 

(although still in saline environments). More surprisingly, DMSP production was recently 

found to occur within several bacterial species (Curson et al. 2017), deepening our 

understanding of how widespread this ability is. 

Figure 1-5: The three routes of DMSP production from methionine, named after the first step in 

the pathway. The methylation pathway is utilised by higher plants, the transamination pathway is 

used by macroalgae and phytoplankton, and the decarboxylation pathway discovered in one 

dinoflagellate thus far. The methylation pathway has been found to vary somewhat between 

Compositae (such as Wollastonia biflora) and Gramineae (Spartina alterniflora and sugarcanes) 

(Dickschat et al. 2015), with an additional intermediate (DMSP-amine) being produced during 

DMSP production in Gramineae. It is likely that there is an intermediate formed between SMM and 

DMSP-aldehyde in Compositae, but this has yet to be observed (Dickschat et al, 2015). 
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All known DMSP production pathways begin with methionine and then diverge to 

follow three different pathways, depending on the organism (Dickschat et al. 2015) (Figure 

1-5). Apart from the initial and final molecules, there is no similarity between the three 

routes pictured in Figure 1-5. The generation of DMSP in higher plants (such as 

angiosperms) varies yet further between species (Rhodes et al. 1997; Kocsis & Hanson 

2000). These differences suggest that the ability to synthesise DMSP from methionine is 

highly likely to have evolved independently, on at least two if not three separate occasions 

(Gage et al. 1997). If this is the case, then it implies that the ability to synthesise DMSP is 

an important function for marine organisms and possibly certain higher plants. 

1.4.1 DMSP production in higher plants  

One such pathway is that of DMSP production in higher plants. The ability to 

synthesise DMSP is not widespread among the higher plants, and only a few species of 

angiosperm thus far have been shown to possess it. It is somewhat of a surprise that these 

plants appear to have evolved this mechanism, as many of the roles that DMSP is thought 

to play in single-celled organisms do not appear to be as beneficial in higher plants. Those 

that are known to produce DMSP are Wollastonia biflora (Compositae), some Spartina 

species, and Saccharum (Gramineae) (Stefels, 2000). Although the synthesis route used 

by higher plants is generally thought of as one pathway (the methylation pathway), with 

several of the intermediates being shared between Compositae and Gramineae, the 

central steps differ enough to be significant (Dickschat et al. 2015). The initial step (Figure 

1-5) involves the methylation of L-methionine to S-methylmethionine (SMM), using the 

previously mentioned methyl donor, AdoMet (Hanson et al. 1994). This reaction is 

catalysed by the enzyme S-adenosylmethionine:methionine S-methyltransferase (MMT) 

(James et al. 1995). This methylation takes place in the cytosol, and SMM is then 

transported into the chloroplast for the rest of the pathway (Trossat et al. 1996). The 

conversion of methionine to SMM is not specific to those plants able to produce DMSP – 

it is a commonplace reaction that seems to occur in all angiosperms (Mudd & Datko 1990; 

Kocsis & Hanson 2000), as SMM can then be used as the methyl donor for the production 

of methionine from homocysteine (Ranocha et al. 2000).  

Instead, it is the following step in the pathway that appears to be specific to the 

production of DMSP (Kocsis & Hanson 2000), and, interestingly, it is at this point that the 

two pathways diverge from each other. In Compositae SMM is converted to DMSP-

aldehyde via a pyridoxal 5′-phosphate (PLP) dependent transamination-decarboxylation 

reaction where the amino group is transferred to 2-oxoglutarate and the CO2 is released 

through decarboxylation (Dickschat et al. 2015; Rhodes et al. 1997). As this appears to be 

a two-step reaction it is assumed that there is an intermediate formed before DMSP-

aldehyde, but it is unstable and has yet to be isolated (Dickschat et al. 2015).  



 16 

Despite both pathways removing the amino and carboxyl groups from SMM to 

convert it to DMSP-aldehyde, the Gramineae use a different method to carry this out, 

including an additional intermediate that has been identified as DMSP-amine (Kocsis et al. 

1998) (Figure 1-5). Firstly, SMM undergoes a PLP-catalysed decarboxylation reaction to 

form DMSP-amine (Kocsis & Hanson 2000). This intermediate is then converted to DMSP-

aldehyde by the removal of its amino group. However, in this case the reaction is not a 

transamination, but an oxidative deamination that is not dependent on PLP, possibly 

through an O2-dependent amine oxidase enzyme (Dickschat et al. 2015). The fact that 

these steps differ rather dramatically suggests that this ability may have actually evolved 

independently, on two different occasions – once for Graminae and once for Compositae 

(Kocsis et al. 1998). 

Once DMSP-aldehyde has been formed both pathways converge again. In addition 

to this, many plants other than those known to produce DMSP from methionine contain 

dehydrogenases that are able to convert DMSP-aldehyde to DMSP (Trossat et al. 1996). 

This means that these plants are able to produce DMSP only if supplied with DMSP-

aldehyde, as opposed to synthesising it themselves. In Wollasonia at least, DMSP is 

formed via an oxidation reaction that is catalysed by a dehydrogenase using NAD as a 

cofactor (Trossat et al. 1996; Stefels 2000). 

1.4.2 DMSP production in marine algae and diatoms 

The second pathway featured in Figure 1-5 is the transamination pathway. This 

pathway is used by marine algae, both red and green, as well as by diatoms (Dickschat et 

al. 2015). It was known that algae used methionine as the initial molecule for DMSP 

production (Kiene & Visscher 1987), and indeed, DMSP was first purified from an algal 

species (Charlson et al. 1987), but it took time for the intermediates involved to be fully 

elucidated. The first species in which these intermediates were properly identified was the 

Chlorophytum Enteromorpha intestinalis (now classified as Ulva intestinalis) (Gage et al. 

1997), and DMSHB, a key intermediate, was also identified in other diverse phytoplankton 

species. It was shown that the process of DMSP production in algae followed an entirely 

different pathway to that used by higher plants, with no steps in common (Rhodes et al. 

1997). As the name of this pathway suggests, the initial step is the transamination of 

methionine, leading to the formation of MTOB (4-methylthio-2-oxobutyrate) (Gage et al. 

1997), instead of methylation resulting in SMM. This reversible reaction involves the 

transfer of an amine group from methionine to a keto acid, in this case 2-oxoglutarate, on 

which the reaction is dependent (Summers et al. 1998). Following this, MTOB is reduced, 

gaining a hydrogen to form MTHB (2-hydroxy-4-methylthio butanoic acid), and this is 

catalysed by an NAD(P)H-linked reductase (Summers et al. 1998).  
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The subsequent step methylates MTHB, adding a second methyl group to the 

sulfur molecule to produce DMSHB, via the methyl group donor S-Adenosyl-L-methionine 

(SAM) (Summers et al. 1998). DMSHB is itself an osmoprotectant, and is the final 

intermediate before DMSP is produced. The conversion of MTHB to DMSHB is thought to 

be the committing step in this pathway (Summers et al. 1998), as it is non-reversible and 

is only found in the context of DMSP production, whereas the other steps in the pathway 

also exist in species that are not able to synthesise DMSP. It would has also been shown 

that the regulation of DMSP production in algae is directly defined by the levels of DMSHB 

synthesis (Ito et al. 2011). The final step in this pathway is the conversion of DMSHB to 

DMSP which is an oxidative decarboxylation resulting in the loss of carbon dioxide 

(Dickschat et al. 2015).  

It is likely that this pathway is the most widespread of the three described in Figure 

1-5, as it has also been shown to be the one utilised by diatoms and coccolithophores 

(Dickschat et al. 2015), corals, Acropora millepora and A. tenuis (Raina et al. 2013) and, 

most recently, some marine bacteria (Curson et al. 2017). It was also the pathway from 

which the first DMSP-synthesis gene, dsyB, was identified by Curson et al, (2017) in the 

bacteria Labrenzia aggregata. 

1.4.3 DMSP production in dinoflagellates  

The final route by which DMSP is synthesised is through decarboxylation. This is 

the most understudied of the three pathways, and has only been observed in one 

dinoflagellate species so far (Kitaguchi et al. 1999). Dinoflagellates are some of the major 

DMSP producers in the marine environment (Miller & Belas, 2004), with some species 

containing intracellular concentrations of up to 0.5 M DMSP. They form large algal blooms, 

meaning that a significant amount of DMSP is released from them to the marine 

environment. Despite how widespread production in dinoflagellates is, the pathway used 

by them is less well-understood than other pathways, and only one intermediate and the 

enzyme responsible have been confirmed (Kitaguchi et al. 1999). It was shown that the 

dinoflagellate Crypthecodinium cohnii is able to synthesise DMSP from L-methionine via 

a decarboxylation reaction that produces MTPA (3-methylthiopropylamine), catalysed by 

a PLP-dependent L-methionine decarboxylase that was also purified (Kitaguchi et al. 

1999). The rest of the pathway has yet to be determined, but it is thought that there is only 

one other intermediate missing, which has been predicted to be either MMPA (3-

methylmercaptopropionate) (Dickschat et al. 2015) or MTP (3-methylthiopropionate) 

(Kitaguchi et al. 1999). 
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1.4.4 DMSP production in marine bacteria 

Until recently, it was believed that DMSP is exclusively produced by marine algae, 

phytoplankton and the few terrestrial plants previously listed. However, work by Curson et 

al, (2017) showed that the mechanism for DMSP production also exists within a variety of 

bacterial species, including the marine alphaproteobacterium Labrenzia aggregata 

LZB033 in which it was first observed. This bacterial DMSP production mechanism 

appears to utilise the same pathway as that used by marine algae, the transamination 

pathway (Figure 1-5), as DMSP production was shown to increase in the presence of each 

of the intermediates (MTOB, MTHB, DMSHB), and LC-MS confirmed the production of 

each of them by LZB033 (Curson et al. 2017). Until this study, only the intermediates 

formed and enzymes involved in DMSP synthesis were understood, but in LZB033 the first 

DMSP-synthesis gene in any organism was identified. The gene, dsyB (DMSHB 

synthesis), was found to confer the ability to produce DMSP to Rhizobium leguminosarum 

when subcloned into it, and when it was disrupted in LZB033 it prevented its ability to 

synthesise DMSP. Furthermore, in the mutant an accumulation of MTHB was observed, 

suggesting that this gene encodes an enzyme that is able to catalyse the conversion of 

MTHB to DMSHB (the rate-limiting, committed step). Studying the protein revealed that 

DsyB is an acetylserotonin O-methyltransferase, belonging to the family of S-adenosyl 

methionine-dependent methyltransferases. When the amino acid sequence was searched 

for in online databases it was found that homologs of DsyB exist in roughly 80 other 

alphaproteobacterial species thus far (Figure 1-6), several of which were confirmed to be 

functional. Not only do bacteria possess the ability to synthesise DMSP, but it is more 

widespread than originally thought. 

From this BLAST it was observed that a dsyB homolog exists in several marine 

phytoplankton, including a Chrysochromulina tobin. These were termed DSYB, for dsyB 

in eukaryotes, and it was found that it exists in a variety of species, from macroalgae, 

diatoms, prymnesiophytes and prasinophytes (Curson et al. 2018). The function of these 

genes was confirmed in multiple species, including Symbiodinium microadriaticum, 

Fragilariopsis cylindrus and Prymnesium parvum.  

This discovery was significant because it is the first identified DMSP-producing 

gene in any eukaryote, and these are some of the most significant contributors to the global 

DMSP concentrations (Keller et al. 1989). When studying the evolution of the sequences 

of both prokaryotic and eukaryotic DsyB/DSYB proteins, it was concluded that the first 

DsyB gene clade was alphaproteobacterial. Therefore, it is theorised that DsyB originated 

in prokaryotes and was transferred to eukaryotes, through one of two processes – either 

through the same process by which mitochondria of alphaproteobacterial origin became 

part of eukaryotic cells (endosymbiosis), or, more recently, through horizontal gene 
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transfer (HGT) of DsyB back and forth. When DSYB was imaged through immunogold 

labelling in P. parvum it was found to localise most strongly in the chloroplasts, giving more 

weight to the suggestion that DMSP plays a role as an antioxidant, protecting against 

oxidative stress (Curson et al. 2018).  

 

Figure 1-6: A maximum likelihood tree of the 145 known DsyB/DSYB proteins (Curson et al, 2018) 

identified from sequences in the NCBI, JGI IMG and iMicrobe MMETSP databases. Colour code 

denotes species according to taxonomic class (see key) and proteins that have been tested and 

shown functional are indicated with an asterix (*). 
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1.5 Regulation of DMSP production and/or uptake 

As previously discussed, there are a wide range of suggested functions for DMSP 

in the marine organisms that either produce it or assimilate it. Furthermore, different 

organisms appear to have very different uses for DMSP. Very few of these suggested 

functions have been fully confirmed, but there are multiple conditions that appear to either 

stimulate or inhibit DMSP production, and much can be extrapolated from this.  

1.5.1 Regulation by the presence of nutrients 

Large areas of the oceans are deficient in various nutrients, and one nutrient in 

particular that is known to play a role in DMSP regulation is nitrogen (Sunda et al. 2007). 

Areas of reduced nitrate and silicate in the ocean have been found to correlate with higher 

DMSP concentrations (Trevena et al. 2003), and it has been shown to increase DMSP 

production in higher plants (Hanson et al. 1994), marine algae (Grone & Kirst 1992) and, 

more recently, bacteria (Curson et al. 2017). The reason for this is that DMSP is a sulfur-

based compound, instead of several other osmoprotectants including GBT, which are 

nitrogen-based (Dickschat et al. 2015). Therefore, in nitrogen-limited situations, DMSP is 

the most viable osmoprotectant to synthesise so that any nitrogen taken up can be routed 

into more important pathways for survival. Many species have the ability to synthesise 

multiple osmoprotectants, and therefore in nitrogen-limited environments, organisms 

produce more DMSP, even to the point of replacing GBT completely (Stefels, 2000). 

Marine environments are nitrogen-deficient with an abundance of sulfur, and terrestrial 

environments are relatively the opposite. Considering the different elemental availabilities 

of both environments, it likely explains why marine environments widely utilise the sulfur-

based DMSP as the favoured osmoprotectant, whereas terrestrial environments 

preferentially use nitrogen-based GBT (Sun et al. 2012). 

Another element known to play a role in DMSP regulation is sulfur. Sulfur-deficient 

conditions were found to inhibit both cellular growth and DMSP production in marine algae 

(Ito et al. 2011). DMSP production was inhibited by decreasing the activity of the DMSP-

producing enzyme, MTHB S-methyltransferase. This reduction in activity is accompanied 

by an increase in the activity of O-acetyl serine sulfhydrylase, a sulfur-assimilation gene. 

This is most likely due to the fact that limited sulfur conditions means, by extension, limited 

methionine availability, forcing cells to produce their own. Therefore, methionine synthesis 

enzyme activity increases, and most of the methionine in the organism is destined for vital 

pathways such as AdoMet production, instead of the synthesis of DMSP (Ito et al. 2011). 

Interestingly, both the uptake of DMSP from the environment and the import and 

conversion of DMSHB to DMSP were seen to increase in response to sulfur deprivation. 

This suggests that even when methionine is preferentially used in other production 
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pathways, there is still a need for DMSP to be synthesised/assimilated, and some 

microorganisms utilise multiple routes by which to accumulate it. 

1.5.2 Regulation by salinity 

DMSP is an osmoprotectant (or compatible solute), and as such it is often regulated 

by changes in salinity (Stefels 2000), although some high DMSP-producers such as 

Emiliania huxleyi produce DMSP constitutively (Sunda et al. 2002) and therefore are not 

particularly regulated. In most organisms, higher levels of salinity require a higher 

concentration of an osmoprotectant to maintain cell volume. DMSP is still produced by 

some species at low salinity levels, but is it at the higher salinity levels that production is 

noticeably increased, through increased activity of the MTHB S-methyltransferase (Ito et 

al. 2011). Uptake of DMSHB and DMSP also increase under high salinity conditions (Ito 

et al. 2011), which has also been observed in marine bacteria (Wolfe 1996). Although 

salinity is often one of the most effective regulators of DMSP production, not all species 

respond in this way, with concentrations staying the same between salinity changes in 

organisms living in continuously high salinity conditions, such as Spartina alterniflora (Otte 

et al. 2004). This further suggests that DMSP plays very different roles in different species 

that produce it. It has also been shown that the addition of alternative osmoprotectants, 

such as GBT, can dramatically decrease DMSP levels, especially when combined with 

sulfur-deficient conditions (Ito et al. 2011). 

1.5.3 Regulation by temperature 

DMSP is suggested to be a cryoprotectant, meaning that temperature is also 

proposed to be a regulatory condition (Stefels 2000). Decreasing temperatures have been 

linked to increased DMSP concentrations on multiple occasions (Karsten et al. 1992, 

Sheets and Rhodes 1996) as protection against the damage that freezing can cause. In 

low temperatures, the incorporation of carbon into proteins is often seen to reduce, but the 

production of carbohydrates (which play a role in acetyl-CoA and DMSP production) is 

relatively unaffected (Stefels 2000). 

1.5.4 Regulation by light 

In photosynthetic organisms light is also observed to play a regulatory role in the 

synthesis of DMSP. This is because sulfate reduction is an energy-dependent process and 

is therefore coupled to cell metabolism and, in turn, is stimulated by light (although not 

dependent on it) (Stefels 2000). Increased levels of methionine mean more is available for 

the production of sulfur compounds such as DMSP. Furthermore, in short-day incubations 

it is thought that carbon fixation is reduced, and therefore reserved for vital metabolic 

processes, thus reducing the amount of DMSP produced (Stefels 2000). This relationship 

between increased light levels and DMSP production is seen in multiple species of marine 
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phytoplankton (Karsten et al, 1996), and fluxes of DMSP production are observed in green 

algae through annual cycles, with decreasing DMSP content correlating with decreasing 

daylengths, and vice versa (Karsten et al 1991). Synechococcus is also found to assimilate 

around a 15 % greater proportion of DMSP when incubated in light instead of dark 

conditions (Malmstrom et al. 2005).  

 

1.6 DMSP transport 

In addition to the organisms that can synthesise DMSP, many non-DMSP-

producing strains of phytoplankton and bacteria assimilate it from the environment (Vila-

Costa et al. 2006). Although DMSP is not the only compatible solute that microorganisms 

seek to use, it is thought that it is more preferentially used in marine environments than, 

for example, GBT due to the availability of sulfur in the oceans being much higher than 

nitrogen, therefore DMSP is more readily produced and taken up, and vice versa in 

terrestrial environments (Sun et al. 2012). It is important to note that DMSP is not always 

taken up because of its role as a compatible solute, as uptake is not always regulated or 

affected by salinity (Otte et al. 2004). Between them, bacteria, phytoplankton and 

microzooplankton account for between 10 and 50 % of the DMSP assimilated from the 

marine environment (Vila-Costa et al. 2006), meaning that this assimilation plays a major 

role in the regulation of sulfur emissions to the atmosphere. 

Structurally, DMSP is a zwitterion (Figure 1-3) and this charge means that it is 

unable to pass through the membrane by simple diffusion, so the organisms must rely on 

either specific transporters, or make use of other transport systems already in the organism 

to take it up (Vila-Costa et al. 2006). This is thought to be the case as DMSP and GBT 

have been shown to have inhibitory effects on the uptake of each other, and both have 

similar uptake kinetics (Kiene et al. 1998). Furthermore, even terrestrial species that are 

unlikely to be in regular contact with DMSP demonstrate the ability to take it up when 

subjected to high salinity environments and are requiring a compatible solute (Cosquer et 

al. 1999). There are two main families of transporter that are used for the transport of 

nitrogen-based compatible solutes, and are known to be used by the bacteria 

Roseobacter, SAR11 clade bacteria, cyanobacteria, and also phytoplankton (Dickschat et 

al. 2015) to also transport DMSP into the cell for use and catabolism. These transporters 

have been associated with DMSP transport due to the close proximity of genes encoding 

for their machinery to some of those that are involved in DMSP degradation – the ddd 

genes (DMSP-dependent DMS) (Sun et al. 2012), including dddD (Dickschat et al. 2015). 

This is because DMSP uptake has been shown to be upregulated in Pseudomonas 

doudoroffi cells where DMSP lyase activity was increased (Yoch et al. 1997). 



 23 

1.6.1 BCCT transporters  

One of the transporter types proposed to be utilised by DMSP is the betaine choline 

carnitine transporter (BCCT) (Sun et al. 2012), which are associated with dddD and several 

other catabolic genes within various species (Curson et al. 2011b). These transporters 

exist almost ubiquitously in microorganisms, and, as the name suggests, are known to 

transport GBT across the membrane in species such as Escherichia coli (Dickschat et al. 

2015). The discovery that they are also able to move DMSP followed later (Ziegler et al. 

2010). It was found that although DMSP and GBT appear to use the same transport 

system, the very similar MMPA does not (Yoch 2002), suggesting that the positive charge 

on either the sulfur or nitrogen is important in the use of these transporters, indeed, it is a 

feature shared by many known BCCT carriers (Ziegler et al. 2010). These high-affinity 

uptake systems are often involved in maintaining osmotic concentrations through the 

movement of ions and molecules inside and out of the cell, changing the intracellular 

osmotic potential (and therefore the water flow) accordingly (Ziegler et al. 2010). The 

genes that encode for these transporters are sometimes found to be regulated by changes 

in salinity (Ziegler et al. 2010), enabling a rapid response to changes in the salinity of an 

environment.  

BCCT transporters are secondary transporters, and typically have three monomers 

of 12 predicted transmembrane segments, with variable N- and C-terminal lengths (Ziegler 

et al. 2010). These terminals protrude into the cytoplasm and play a role in the control of 

transport activity. BCCT transporters can be either symporters or antiporters, meaning that 

they transport different solutes in either the same or opposite direction through the 

membrane (Dickschat et al. 2015). The movement of these solutes (e.g. Na+ or H+) is a 

transmembrane motive force, which is exploited by the transporter to provide the energy 

required to transport the DMSP into the cell (Ziegler et al. 2010). The nomenclature and 

amino acid sequences of BCCT transporters varies between species, ranging from CaiT 

in E. coli to BetP in Corynebacterium glutamicum (Sun et al. 2012), and DddT in both 

Marinomonas (Todd et al. 2007) and Halomonas HTNK1 (Todd et al. 2010). This dddT is 

closely linked to dddD, appearing on an operon dddTBCR where dddR is a transcriptional 

regulator that activates dddD in response to DMSP in both Marinomonas and Halmononas 

(Todd et al. 2007; Todd et al. 2010). 

1.6.2 ABC transporters  

The second transporter family found to carry DMSP across the membrane is the 

ATP binding cassette (ABC) transporter, a commonly used primary transporter that can 

be found in all three domains of life (Eitinger et al. 2011). Primary transporters move 

molecules across the membrane in exchange for an ATP molecule (Eitinger et al. 2011). 
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Although there are many variations in nature, the ABC transporter used to transport DMSP 

is of the canonical structure most often found in prokaryotes, although even within this 

group there is still a sizeable amount of variation in structure (Eitinger et al. 2011). The 

standard form of an ABC transporter consists of three parts – a transmembrane protein 

(TMP), a nucleotide binding protein (NBP), and a substrate binding protein (SBP) 

(Dickschat et al. 2015). Eitinger et al. (2011) writes in detail about the function and design 

of ABC transporter. The TMP and NBP form a heterotetramer, with two TMPs spanning 

the membrane forming a translocation pore through it, and two intracellular NBPs that form 

a dimer and bind ATP molecules, subsequently hydrolysing them. In Gram-negative 

bacteria the open SBPs freely diffuse through the periplasm between membranes, and 

have high affinity to the molecules they transport, binding easily. Once bound, the SBP 

interacts with the TBP structure and causes the NBPs to bind ATP. The NBPs are highly 

conserved open structures that bind two ATP molecules and close in a tweezer-like’ 

motion, changing the internal conformation of the NBP, and, subsequently, opening the 

TBP pore to the extracellular environment. The TMP receives the substrate from the SBP 

and it enters the pore. Once the ATP molecules are hydrolysed to ADP and phosphate, it 

provides the energy to shift the TBP back to the internal conformation, releasing the 

substrate into the cell.  

Some bacteria contain multiple ABC transporters that are capable of moving 

DMSP, albeit to differing degrees of success (Dickschat et al. 2015). Bacillus subtilis is 

one such molecule, using its OpuA, OpuC and OpuD ABC transport systems to move not 

only GBT, but also DMSP, through the membrane (Kempf & Bremer, 1998). Another 

example of this type of transport is the DMSP transporter encoded for by the potABCD 

genes in Burkholderia ambifaria (Dickschat et al. 2015). The genes encoding many of 

these ABC transporters, like the BCCT transporters, have been linked to the dddD gene 

in multiple species (Sun et al. 2012). 

 

1.7 DMSP catabolism  

DMSP is released into the ocean from the marine organisms that synthesise it by 

cell lysis following senescence (Stefels & van Boekel, 1993), after damage by viruses 

(Bratbak, 1996), or as a result of grazing by herbivores (Kiene et al. 2000) and 

microzooplankton (Wolfe & Steinke 1996). When it is in the ocean it becomes an available 

resource for marine bacteria and phytoplankton that are able to take it up and utilise it 

(Dickschat et al. 2015). Uptake of DMSP is not simple and requires energy, so the benefits 

of taking it up must be significant. Most species that transport it do so because they require 

it as a source of nutrients, which they have access to once they catabolise it. The two 
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pathways used to do this (demethylation or cleavage) both provide carbon and energy to 

the cell (Varaljay et al. 2015), and there are many species of marine bacteria that use 

DMSP as a carbon source (Curson et al. 2011b). Interestingly, some bacteria transport 

DMSP across the membrane, have the mechanisms to catabolise it through 

demethylation, cleavage, or both, and yet are unable to grow on it as a sole carbon source 

(Johnston et al. 2008). As many species of marine bacteria are also able to use both DMS 

(Schäfer et al. 2010) and acrylate (Todd et al. 2010) as carbon sources, this could be the 

reason behind catabolising DMSP even when it can’t be used as a sole carbon source. 

There are also species that are able to use DMSP as an exogenous sulfur source (Tripp 

et al. 2008). 

Some bacteria take up DMSP because of its use as a compatible solute for osmotic 

acclimatisation (Dickschat et al. 2015) as described above. It may also be taken up and 

cleave as an indirect route for scavenging nutrients from phytoplankton, as suggested in 

the ‘messy eater’ hypothesis by Johnston et al. (2008). It is known that certain species of 

zooplankton that feed on phytoplankton are attracted to DMS emissions, and when they 

feed they usually do not consume the entire organism. This means that there are plenty of 

‘scraps’ left that bacteria could utilise, and suggests that these bacteria could be using the 

lysis of DMSP to produce more DMS and encourage more zooplankton to graze. 

Furthermore, DMS and acrylate are even more efficient scavengers of hydroxyl radicals 

than DMSP (Sunda et al. 2002), meaning that their presence within the cell is equally as 

desirable as an antioxidant. 

 

1.7.1 Demethylation of DMSP  

Once DMSP has been transported into the cell, there are two mechanisms by 

which it can be metabolised (Curson et al. 2011b). The most prevalent route of catabolism 

is a series of reactions, beginning with a demethylation, that break DMSP down into other 

useful compounds and allow nutrient (namely carbon and sulfur) assimilation (Figure 1-7) 

(Kiene et al. 2000). This route processes between 50 – 90 % of the DMSP that is taken up 

by the cells (Kiene et al. 2000). It releases methanethiol (MeSH), enabling the assimilation 

of biogenic sulfur from DMSP that can then be used for the biosynthesis of amino acids 

(Dickschat et al. 2015), or it is released and consumed by plankton. This pathway was 

known to exist for many years before the steps were fully discovered. The first gene 

associated with this pathway, designated dmdA, was discovered by Howard et al. (2006). 
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The demethylation pathway is actually two pathways – the demethylation of DMSP, 

followed by the demethiolation of methyl mercaptopropionate (MMPA) (Reisch et al. 

2011b). The demethylation of DMSP is catalysed by DmdA, an enzyme with strict 

substrate specificity, suggesting that this role is its sole purpose (Reisch et al. 2011b). It 

also requires the presence of FH4 (tetrahydrofolate), which acts as the methyl group 

acceptor, becoming Me-FH4 (Howard et al. 2006). Me-FH4 can then become the methyl 

donor in both methionine and S-adenosyl-methionine synthesis, or can be oxidised to 

become Formyl-FH4, a carbon donor in the synthesis of cysteine from glycine (Reisch et 

al. 2011b).  

The MMPA that results from this demethylation is then demethiolated. For many 

years the breakdown of MMPA was thought to potentially follow several different routes, 

but (Reisch et al. 2011a) showed that, in some species at least, the demethiolation 

pathway resulting in the release of MeSH, CO2 and acetaldehyde is the one used (Figure 

1-7). The MMPA-CoA thioester intermediate was discovered in Ruegeria pomeroyi, the 

formation of which is catalysed by a methylmercaptopropionyl-CoA ligase, termed DmdB, 

and requires one molecule of ATP (Reisch et al. 2011a). The MMPA moiety of this 

thioester is dehydrogenated, forming a double bond and losing two electrons to FAD, 

becoming FADH2. This reaction results in a methylthioacryloyl-CoA (MTA-CoA) 

intermediate, and is catalysed by DmdC, a dehydrogenase (Reisch et al. 2011a). When 

this function was removed, the mutant R. pomeroyi was no longer able to grow on MMPA 

as a sole carbon source, suggesting that this stage is vital to the breakdown of MMPA 

(Reisch et al. 2011a). The final enzyme involved in this pathway is DmdD, which belongs 

Figure 1-7: The demethylation and demethiolation catabolism of DMSP. DMSP is converted to 

MMPA via DmdA, removing a methyl group with tetrahydrofolate (FH4) as the methyl acceptor. 

DmdB then catalyses the conversion of MMPA to MMPA-CoA through the addition of coenzyme, 

followed by the oxidation to MTA-CoA via DmdC. MTA-CoA is transformed via DmdD with the 

addition of H2O, forming a brief intermediate, followed by the immediate release of MeSH to form 

MaS-CoA. This is finally converted to acetaldehyde through the addition of another H2O and the 

release of CoA and a CO2 molecule. 
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to the crotonase family (Tan et al. 2013). This enzyme catalyses multiple steps in this final 

reaction, starting with a hydration that incorporates a molecule of H2O, and liberates MeSH 

immediately. This forms a malonate semialdehyde-CoA (MaS-CoA) intermediate, which 

undergoes a hydrolysis with a second H2O molecule that releases the CoA group from the 

rest of the molecule (Tan et al. 2013). It is thought that MaS-CoA spontaneously 

decomposes to acetaldehyde, releasing CO2. This acetaldehyde can then be converted to 

acetate via an acetaldehyde dehydrogenase (Reisch et al. 2011b). 

Although this pathway is associated with the demethylation of DMSP, it is not 

restricted to it. This pathway is seen in a wider variety of bacteria than dmdA, and 

homologs of dmdB and dmdC have also been found in terrestrial bacteria, suggesting that 

it has other functions (Reisch et al. 2011b). 

1.7.2 DMSP cleavage to DMS 

The second pathway through which DMSP is catabolised is the cleavage pathway 

to DMS and either 3-HP or acrylate (Curson et al. 2011b). It does this through enzymatic 

lysis (Curson et al. 2011b). Although the products are the same, DMSP has been found to 

be lysed through several different routes (Figure 1-8).  

When it is lysed it produces DMS and, depending on the enzyme catalysing the 

reaction, either acrylate (Kirkwood et al. 2010; Curson et al. 2011b) or 3-HP (Todd et al. 

2007), which are both significant molecules in the environment and also in industry (Werpy 

& Petersen, 2004).  

The breakdown of DMSP to DMS is catalysed by enzymes termed Ddd enzymes 

in marine bacteria, although there are homologs in other species (Dickschat et al. 2015). 

There are currently seven different identified ddd genes, with organisms often containing 

Figure 1-8: The catabolic lysis of DMSP, resulting in the production of DMS through one of two 

ways. These reactions are controlled by various ddd genes. The direct lysis of DMSP to 3-HP is 

catalysed by DddD, whereas DddK/L/P/Q/W/Y lyse it to acrylate first, which is then converted 

into 3-HP via AcuNK. DddA catalyses the oxidation of 3-HP to Mal-SA, and DddC enables the 

addition of coenzyme A to form acetyl-CoA. 
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a selection of them, and although ultimately all the Ddd+ enzymes encoded result in the 

catabolism of DMSP and the release of DMS, they are such a varied group of peptides 

and processes that it suggests that there is not one overarching, ubiquitous system for 

DMS production (Curson et al. 2008). 

1.7.3 DMSP lysis to DMS via dddD 

The most notable difference in these enzymes is between DddD, which cleaves 

DMSP to release DMS and 3-HP (Figure 1-8), and the other six Ddd enzymes that release 

acrylate instead of 3-HP alongside DMS (Curson et al. 2011b). DddD was the first DMSP-

catabolising enzyme to be discovered by Todd et al. (2007), in the marine bacterium 

Marinomonas sp MWYL1 that was able to release DMS, but only when the growth media 

was supplemented with DMSP. The DddD enzyme is from the family of type III acyl 

coenzyme A (CoA) transferases, and it appears that its expression is controlled by a 

transcriptional regulator in a second operon, dddTBCR (Todd et al. 2007). DddD is similar 

to an enzyme in E. coli called CaiB that transfers CoA to carnitine, and its structure is 

predicted to contain two CaiB-like intertwined domains that form a long polypeptide linker, 

with the catalytic aspartate that is required for CoA transfer at the C-terminus (Alcolombri 

et al. 2014). The presence of this aspartate suggests that DddD uses a similar two step 

mechanism to CaiB to break down DMSP, transferring CoA to DMSP and forming a 3-HP-

CoA intermediate before releasing the 3-HP, although this intermediate has not yet been 

confirmed (Alcolombri et al. 2014). After this (hypothetical) step, the intermediate is 

hydrolysed to 3-HP very rapidly, which may be the reason why it has not been possible to 

detect the intermediate (Dickschat et al. 2015). The dddD gene has been found in multiple 

species of bacteria, including many gammaproteobacteria such as Halomonas, 

Pseudomonas and Rhizobium leguminosarum (Sun et al. 2012). As previously mentioned, 

it is often found close to an operon containing dddT, a BCCT transporter, suggesting a 

contained system dedicated to DMSP uptake and catabolism (Curson et al. 2011b). 

1.7.4 DMSP lysis to DMS via dddL, dddQ, dddW and dddK 

Once DddD was shown to be involved in the breakdown of DMSP, homologs were 

searched for in online databases such as NCBI, and in other species previously known to 

degrade DMSP. It was found to be present in many ddd-containing bacteria, but there 

were several species where it was not, including the alphaproteobacterium Sulfitobacter 

EE-36 (Curson et al. 2008). This bacterium could be shown to catabolise DMSP, but had 

no DddD homolog, suggesting that another pathway was being used to break DMSP down. 

This pathway was unusual because, instead of cleaving DMSP into DMS and 3-HP, 

Sulfitobacter lysed it into DMS and acrylate (Curson et al. 2008). This gene was termed 

dddL, and encodes a small potentially transmembrane peptide DddL that functions in an 
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entirely different way to DddD (Curson et al. 2008). It is primarily found in roseobacters, 

but also exists in various other marine alphaproteobacteria (Curson et al. 2011b).  

The breakdown pathway catalysed by DddL involves the lysis of DMSP to acrylate 

(Figure 1-8), and is a simple cleavage of the carbon-sulfur bond of DMSP seen in Figure 

1-3. It was found that the majority of acrylate produced remained outside of the cell, in the 

growth medium (Curson et al. 2008), leading to the theory that DddL acts on periplasmic 

DMSP, cleaving it outside of the cell. There are several reasons why DddL would do this. 

Wolfe et al. (1997) suggest that some bacteria use DddL-mediated acrylate production as 

a deterrent to other organisms. Acrylate itself has antimicrobial activity at high 

concentrations, and can deter various predators, such as protozoan herbivores, causing 

them to select strains with lower acrylate production (Wolfe et al. 1997). It has also been 

suggested that the release of acrylate could be related to signalling, and that rather than 

being toxic to predators, acrylate sends some sort of anti-grazing signal to deter them 

(Wolfe et al. 1997; Strom et al. 2003). 

The fact that this lysis may occur outside of the cell could suggest that the bacterial 

catabolism of DMSP to DMS and acrylate may not be predominantly driven by a nutritional 

need, but rather as a defensive action (Curson et al. 2008). This is compounded by the 

fact that several dddL+ strains are unable to utilise acrylate as a sole carbon source 

(Curson et al. 2008). Furthermore, unlike dddD and its operon, dddL does not appear to 

be associated with any genes encoding for transporters, which is explained by the 

transmembrane property of DddL, removing the need for any transporters of DMSP to be 

linked with this ddd gene (Curson et al. 2008). 

DddL is one of several similar DMSP lyases. DddL, DddQ, DddW and DddK are all 

small polypeptides with C-terminal domains that form cupin pockets, and therefore bind to 

transition metals (Curson et al. 2011b). The rest of the protein structures differ between 

the three lyases, classing them as different protein families with domains of unknown 

function (DUFs) that have evolved this cupin separately (Todd et al. 2012). DddQ was 

discovered because it was observed that some knock-outs of dddP did not fully deplete 

DMSP degradation, initially found in Roseovarius nubinhibens (Todd et al. 2011), and later 

on in other roseobacters. DddW was the third DMSP lyase to be discovered in the 

roseobacter Ruegeria pomeroyi DSS-3, alongside DddP and DddQ (Todd et al. 2012). It 

is also a small polypeptide, only found in two roseobacter strains so far (Curson et al. 

2011b). DddK is the most recent protein to be identified as a DMSP lyase (Sun et al. 2016), 

in Pelagibacter HTCC1062. This discovery took place in a study on the switching between 

the cleavage and demethylation pathways, where it was found that, in Pelagibacter at 

least, these two pathways can take place simultaneously (Sun et al. 2016), with the 

balance between them changing with cellular sulfur demands. 
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1.7.5 DMSP lysis to DMS via dddP 

Another Ddd protein was discovered by Todd et al (2009) in the bacterium 

Roseovarius nubinhiens. This was the third DMSP lyase to be discovered, following DddD 

and DddL, and all three were entirely different protein families and structures, 

demonstrating just how widespread the enzymes catalysing the catabolism of DMSP are. 

The gene encoding this peptide was named dddP and homologs have been found in 

multiple species (Curson et al. 2011b). The peptide is a homodimer that is part of the family 

of M24 metallopeptidases, and it splits DMSP to acrylate and DMS (Todd et al. 2009). It is 

an unusual metallopeptidase because it does not require a metal co-factor in order to be 

functional, and also because it cleaves the S-C bond instead of an amino group (Kirkwood 

et al. 2010). This makes it similar to the M24B family, such as creatinase in Paracoccus 

sp. WB1, and not a true metalloprotein (Kirkwood et al. 2010). 

It is a very widespread DMSP lyase, possibly the most abundant (Todd et al. 2009), 

and is found in both marine and terrestrial environments. It has even been identified in 

several species of fungi (Todd et al. 2009), suggesting that one or more HGT events have 

occured in the past. 

1.7.6 DMSP lysis to DMS via dddY 

The final Ddd protein that cleaves DMSP to DMS and acrylate to be described here 

is DddY. This enzyme was identified in the betaproteobacterium Alcaligenes faecalis M3A 

(Curson et al. 2011a), but was previously purified in 1995 by de Souza & Yoch (1995). 

Alcaligenes faecalis M3A, unlike several dddL-containing species, is able to utilise both 

DMSP and acrylate as sole carbon sources (Ansede et al. 1999). The protein family of 

DddY is unidentified, which means that it is also classed as another DUF (Curson et al. 

2011b), but it was strongly predicted to be a periplasmic protein. This prediction was 

supported by the fact that the previously purified protein from this species was thought to 

be periplasmic or associated with the outer cell membrane (de Souza & Yoch 1995), and 

this was later confirmed through fractionation (Curson et al. 2011a). This would make 

DddY the first DMSP lyase to function outside of the cytoplasm (Curson et al. 2011a). The 

use of a periplasmic DMSP lyase compared to a cytoplasmic one could be beneficial to an 

organism in terms of electron transport – there is no need to actively transport DMSP into 

the cell, making its catabolism a less costly process (de Souza & Yoch, 1996).  

DddY is found across multiple species, and is most likely spread through HGT, as 

this gene is very widespread, ranging between beta- gamma- and epsilonproteobacteria, 

but not including alphaproteobacteria, making it the first DMSP lyase not associated with 

this class (Curson et al. 2011a). One feature that almost all dddY+ species have in 

common is that they are all microaerobic, being mostly marine and in sediments. 
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Interestingly, the dddY in Shewanella species was found to be close to genes that are 

involved in anaerobic respiration (membrane-bound cytochromes), suggesting that in 

some species the catabolism of DMSP is not for the release of DMS, but perhaps for the 

production of acrylate, which can be used as an electron acceptor (Curson et al. 2011a). 

1.7.7 ‘Switching’ between lysis and demethylation 

Species that catabolise DMSP are often able to utilise both the lysis and 

demethylation pathways, switching between them when most appropriate (Kiene & Linn 

2000). Several factors have been suggested to regulate this switch, including nutrient 

supply, light and temperature (Levine et al. 2012). It was found that Roseobacter clades 

preferentially use the cleavage pathway to catabolise DMSP when under higher UV-A 

conditions, and the demethylation pathway under low UV-A (Levine et al. 2012), which 

could be explained by the antioxidant function of DMS that protects from reactive oxygen 

species. It was also seen that elevated temperature conditions led to increased DMSP 

cleavage compared to demethylation (Levine et al. 2012). Nutrient assimilation also plays 

a role in regulating DMSP catabolism, indeed, it was observed that the demethylation 

pathway was favoured when DMSP was the predominant source of organic sulfur in the 

environment (Varaljay et al. 2015), as organisms need to first and foremost utilise the 

biogenic sulfur to meet their biosynthetic requirements, rather than losing it in the form of 

gaseous DMS. When other sources of biogenic sulfur are present, then the DMSP 

cleavage pathway is also utilised as it is less vital for DMSP to be a source of sulfur 

(Varaljay et al. 2015). 

 

1.8 Conclusions and Research Gaps 

It has long been acknowledged that DMSP plays a vital role in the marine 

environment, not only in the cycle and provision of nutrients, but also in numerous 

protective roles within the cell, and, indirectly, in local climate control. Despite this 

knowledge, evidence that DMSP production is not restricted to marine eukaryotes and 

does in fact take place in bacteria as well, was only discovered in the last year. This 

discovery has revealed how understudied these particular aspects of the DMSP cycle are, 

namely what species are able to produce it, and what environments this production takes 

place in.  

It is important to rectify this, as our understanding of these processes will affect 

how we model and predict sulfur cycling, and could mean that synthesis of DMSP normally 

attributed to eukaryotes could be partially the result of bacterial production. This work will 

attempt to increase our understanding of bacterial DMSP production by looking at how 
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widespread the ability to produce DMSP is within bacteria, and how significant their 

contribution is to the total levels of DMSP in a specific the environment, namely Stiffkey 

salt marsh. The following research aims will be discussed in this thesis: 

1. To determine the diversity and abundance of dsyB in the environment, in both 

metagenomes and isolated bacteria. 

2. Use culture-independent methods to investigate the importance of bacterial 

DMSP synthesis in Stiffkey salt marsh. 

3. Identify key bacterial DMSP producers and determine the means by which 

DMSP is synthesised in bacteria, using culture-dependent techniques. 
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2 MATERIALS AND METHODS  

 

2.1 Chemical syntheses 

DMSP was synthesized from DMS (Sigma-Aldrich) and acrylic acid (Sigma-Aldrich) 

as described in (Todd et al. 2010). DMSP-amine and SMM were synthesized as described 

in (Curson et al. 2017). Met, MTOB, MTHB and MTPA are commercially available and 

were obtained from Sigma-Aldrich. 

2.2 Media preparation and growth conditions 

Novosphingobium sp. MBES04, Thalassospira profundimaris, Roseovarius indicus 

and the rest of the isolated bacterial strains from Stiffkey were grown in YTSS (González 

et al. 1996), MB (Zobell Marine Broth 2216) (Buck & Cleverdon 1960) medium, or MBM 

(Marine Basal Medium) 35 PSU (practical salinity units) unless otherwise stated, 10 mM 

mixed carbon source from a 1 M stock of 200 mM succinate, glucose, pyruvate, sucrose 

and glycerol, and 0.5 or 10 mM NH4Cl as nitrogen source at 30°C. Streptomyces 

mobaraensis was grown in in GYM Streptomyces medium (4 g glucose, 4 g yeast extract, 

10 g malt extract, 2 g calcium carbonate, 12 g agar per litre distilled water) at 25°C and 

Nocardiopsis chromatogenes was grown in MYM medium (4 g glucose, 4 g yeast extract, 

10 g malt extract, 2 g calcium carbonate, 10 g NaCl, 12 g agar per litre distilled water) at 

37°C. Where indicated, the salinity of MBM was adjusted by altering the amount of sea 

salts (Sigma-Aldrich) added, and nitrogen levels were altered through the adjustment in 

volume of NH4Cl added as the nitrogen source. Methylated sulfur compounds, namely the 

DMSP pathway intermediates, were only added to MBM where indicated in experiments 

that specifically addressed the effect of adding such compounds. Escherichia coli was 

grown in Luria-Bertani (LB) (Sambrook et al. 1989) complete medium at 37 °C. Rhizobium 

leguminosarum was grown in tryptone yeast (TY) (Beringer 1974) complete medium or Y 

(Beringer 1974) minimal medium (with 10 mM succinate as carbon source and 10 mM 

NH4Cl as nitrogen source) at 28°C. Where necessary, antibiotics were added to media at 

the following concentrations: streptomycin (400 µg ml-1), kanamycin (20 µg ml-1), 

spectinomycin (200 µg ml-1), gentamicin (20 µg ml-1), ampicillin (100 µg ml-1), rifampicin 

(400 µg ml-1). Strains used in this study are listed in Table 2-1.  
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 Table 2-1: A list of strains used in this study 

Strain Description Reference 

   

Escherichia coli 803 Strain used for routine transformations Wood (1966) 
   

E. coli BL21 Strain for overexpression of cloned genes in pET 

vectors 

Studier and Moffat 

(1986) 
   

E. coli JM101 Strain for expression of lacZ gene in blue-white 

screen 

Yanisch-Perron et 

al., (1985), 
   

Rhizobium leguminosarum 

J391 

 

Streptomycin-resistant derivative of wild type strain 

3841 used for library screening and expression of 

genes cloned in plasmid pLMB509 or pRK415 

Young et al. (2006) 

   

Labrenzia aggregata LZB033 Wild type strain, isolated from ME3 site, dsyB+ Curson et al. (2017) 
   

Sagittula stellata E-37 Wild type strain, dsyB+ Gonzalez et al. 

(1997) 
   

Oceanicola batsensis 

DSMZ21189 

Wild type strain, dsyB+ Cho and 

Giovannoni (2004) 
   

Amorphus coralli 

DSMZ19760 

Wild type strain, dsyB+ Zeevi Ben Yosef et 

al. (2008) 
   

Pelagibaca bermudensis 

HTCC2597 

Wild type strain, dsyB+ Cho and 

Giovannoni (2006) 
   

Sulfitobacter sp. EE-36  Wild type strain, dsyB- Gonzalez et al. 

(1996) 
   

Alteromonas genovensis 

PQQ33 

Wild type strain, isolated from Stiffkey Salt marsh This study 

   

Oceanicola sp. Ar-45 Wild type strain, isolated from Stiffkey Salt marsh This study 
   

Labrenzia sp. BR-18 Wild type strain, isolated from Stiffkey Salt marsh This study 
   

Marinobacter sp. Set72 Wild type strain, isolated from Stiffkey Salt marsh This study 
   

Novosphingobium sp. BW1 Wild type strain, isolated from Stiffkey Salt marsh  This study 
   

Pseudooceanicola sp. 22II1-

22F33 

Wild type strain, isolated from Stiffkey Salt marsh This study 

   

Roseobacter sp. ARCTIC-P4 Wild type strain, isolated from Stiffkey Salt marsh This study 
   

Rhodobacter sp. AB300d Wild type strain, isolated from Stiffkey Salt marsh This study 
   

Rhodobacterales bacterium 

JB-27 

Wild type strain, isolated from Stiffkey Salt marsh This study 

   

Stappia sp. M8 Wild type strain, isolated from Stiffkey Salt marsh This study 
   

Thalassiospira profundimaris 

WPO211 (DSM 17430) 

Wild type strain used to demonstrate DMSP 

production by mmtN expression  

DSMZ Culture 

Collection 
   

Roseovarius indicus B108 

(DSM 26383) 

Wild type strain used to demonstrate DMSP 

production by mmtN expression 

DSMZ Culture 

Collection 
   

Nocardiopsis chromatogenes 

(DSM 44844) 

Wild type strain used to demonstrate DMSP 

production by mmtN expression 

DSMZ Culture 

Collection 
   

Streptomyces mobaraensis 

IPCR16-22 (DSM 40847): 

Wild type strain used to demonstrate DMSP 

production by mmtN expression 

DSMZ Culture 

Collection 
   

T. profundimaris WPO211-

Rif 

Rifampicin-resistant derivative of T. profundimaris 

WPO211 

This study 

   

T. profundimaris WPO211-

Rif (mmtN-) 

T. profundimaris WPO211-Rif with mutation in 

mmtN 

This study 
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2.3 Transformations into E. coli 

2.3.1 Making chemically competent cells 

A starting culture of 5 ml LB was inoculated with E.coli (803/JM101) and incubated 

overnight at 37C. This was inoculated in a 1:100 dilution to 100 ml LB and incubated at 

37C, 200 rpm for 2 – 3 h (to OD600 0.2 – 0.4). The culture was transferred into 50 ml sterile 

falcon tubes, and cells were retrieved using a pre-cooled centrifuge at 4C, spinning at 

4000 rpm for 10 minutes. Falcon tubes were kept on ice and the supernatant removed. 

Both pellets were carefully mixed with 10 ml ice cold 0.1M CaCl2, and left on ice for 60 

minutes. The mix was centrifuged as before, and the supernatant removed. One pellet 

was resuspended in 2 ml of 0.1M CaCl2, and the second pellet was resuspended in this 

mixture. Cells were left on ice for at least 3 h, and could be stored in the fridge overnight. 

2.3.2 Heat shock transformations 

Up to 16 µl of DNA was added to 100 µl competent cells and incubated on ice 1 hour 

alongside a negative control of cells, and a positive control of vector DNA only. Samples 

were heat shocked at 42C for 2 minutes, and transferred to ice for 2 minutes. Cells were 

mixed with 750 µl LB and incubated at 37C for 60 – 90 minutes. Aliquots of 100 µl of cells 

were plated on LB containing selective antibiotics. The remaining mix was centrifuged at 

max speed for 2 minutes and the majority of the supernatant poured off. The pellet was 

resuspended in the remaining liquid and also plated on LB. Plates were incubate at 37C 

overnight. 

 

2.4 Polymerase chain reaction (PCR) 

Genes were amplified using polymerase chain reaction (PCR) in a Thermal Cycler, 

either 25 µl or 50 µl mixes. Standard 25 µl PCR mixes contained 12.5 µl MyFiTM DNA 

Polymerase (enzyme/buffer/dNTPs/DMSO), 0.5 µl template (50–100 ng), 0.5 µl of 20 pmol 

of F and R primers (list of primers in Table 2-2) and 11 µl nuclease-free H2O. Every PCR 

included a negative control of sterile water instead of template, and a positive control of 

genomic DNA. DNA was also amplified directly from bacterial colonies for large scale 

isolate screening. A sterile toothpick was used to pick the edge of a colony, and then 

stabbed into PCR tubes with 100 µl sterile water. Tubes were microwaved for 10 seconds, 

and 1 µl of the lysed mixture was used in the PCR mix (with 10.5 µl sterile water). 
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Table 2-2: A list of the primers used in this study 

 

Primer name Sequence (5’ to 3’)* Use 
   

27F AGAGTTTGATCCTGGCTCAG Forward primer used to amplify the 
16S rRNA gene for identification 

   

1492R GGTTACCTTGTTACGACTT Reverse primer used to amplify the 
16S rRNA gene for identification 

   

Eub_338F ACTCCTACGGGAGGCAGCAG Reverse primer used to amplify the 
16S rRNA gene for RT-qPCR 

   

Eub_518R ATTACCGCGGCTGCTGG Reverse primer used to amplify the 
16S rRNA gene for RT-qPCR 

   

M13 uni (-43) AGGGTTTTCCCAGTCACGACGTT 
 

Universal forward primer used to 
amplify inserts in pLAFR3 

   

M13 rev (-29) CAGGAAACAGCTATGACC 
 

Universal reverse primer used to 
amplify inserts in pLAFR3 

   

dsyB_deg1F CATGGGSTCSAAGGCSCTKTT Degenerate primer for amplification of 
dsyB in PCR and RT-qPCR 

   

dsyB_deg2R GCAGRTARTCGCCGAAATCGTA Degenerate primer for amplification of 
dsyB in PCR and RT-qPCR 

   

dsyB_deg3R GCCGCCSACRTCSAGCA Degenerate primer trialled for 
amplification of dsyB in PCR 

   

mmtN_degF GGCAGYGAYCTYGAYCCSCG Degenerate primer for amplification of 
dsyB in PCR and RT-qPCR 

   

mmtN_degR CCAVGGRTARTARTGSGC Degenerate primer for amplification of 
dsyB in PCR and RT-qPCR 

   

NOmmtN_NdeI-F CGGATCCCATATGTCTGACGCAGATGACTCC Cloning of N. sp BW1 mmtN into 
pET21a for pET21a-Nov 

   

NOmmtN_EcoRI-R GGAATTCACTCTACCTTGGGGATACC Cloning of N. sp BW1 mmtN into 
pET21a for pET21a-Nov 

   

TPmmtN_NdeI-F CGGATCCCATATGCAACATGCTTTAGAAGAGAGC Cloning of T. profundimaris mmtN into 
pET21a for pET21a-Tprof 

   

TPmmtN_EcoRI-R CGAATTCTTAGGCCGGTGTGCCGCGAATGAC Cloning of T. profundimaris mmtN into 
pET21a for pET21a-Tprof 

   

RImmtN_NdeI-F CGAATTCCATATGACCGATTTCAAAACGCCCG Cloning of R. indicus mmtN into 
pET21a for pET21a-Rind 

   

RImmtN_EcoRI-R CCCGGATCCTCAACGATTGGACGGATCGGTTTCC Cloning of R. indicus mmtN into 
pET21a for pET21a-Rind 

   

NCmmtN_NdeI-F CGGATCCCATATGCCGTCCGAGCACACGATG Cloning of N. chromatogenes mmtN 
into pET21a for pET21a-Ncard 

   

NCmmtN_EcoRI-R CGAATTCATCGCCGGTCCTCCTCGTCGG Cloning of N. chromatogenes mmtN 
into pET21a for pET21a-Ncard 

   

SMmmtN_NdeI-F CGGATCCCATATGAGAACAGAGACCGGACCGCC Cloning of S. mobaraensis mmtN into 
pET21a for pET21a-Smob 

   

SMmmtN_EcoRI-R CGAATTCTACGTGGCGGGTGTGCCCCTGAC Cloning of S. mobaraensis mmtN into 
pET21a for pET21a-Smob 

   

TPSCO_BamHI_F CGGGATCCGTCGCCTTTATCTTGCAAAG Generating a single crossover mmtN 
knockout in T. profundimaris 

   

TPSCO_EcoRI_R CGGAATTCCGTTCCGGAATGTTGCAG Generating a single crossover mmtN 
knockout in T. profundimaris 

   

TP_OUT_EcoRI_F CGGAATTCATGCTAGAAGAGAGCAGC Forward primer to T. profundimaris 
mmtN 

   

TP_OUT_BamHI_R CGGGATCCTTAGGCCGGTGTGCCGCG Reverse primer to T. profundimaris 
mmtN 

   

* Restriction sites included in primers underlined  
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2.5 Visualization and extraction of DNA 

2.5.1 Gel Electrophoresis 

PCR products were visualised using gel electrophoresis. Gels were made to 1 – 

1.5% (w/v) agarose using 1x TAE Buffer (50x stock: 242 g Tris base, 57.1 ml glacial acetic 

acid, 100 ml 500 mM EDTA (pH 8.0), water to 1 liter. A 1x solution contains 40mM Tris, 

20 mM acetic acid, and 1 mM EDTA), melted and cooled to 50°C before adding 3 µl 

Ethidium Bromide (10 mg/ml) and pouring into gel trays. Samples were loaded into wells 

alongside a 1 KB Plus DNA ladder (Invitrogen) for reference to size. Gels were typically 

run at 90 V for 45 – 60 minutes, and the separation of DNA fragments was visualised using 

a UV gel imaging doc. 

2.5.2 PCR purification (Roche) 

PCR amplified DNA was recovered using the Roche High Pure PCR Product 

Purification Kit, using Binding Buffer to five times the PCR mix volume. The purified PCR 

product was eluted from the column using 35 – 50 µl sterile water, collected in a 1.5 ml 

microcentrifuge tube. 

2.5.3 Gel extraction (QIAGEN) 

DNA was extracted from the agarose gel after gel electrophoresis as described in 

the QIAquick Gel Extraction kit. Dissolved gel samples are precipitated with 1 volume of 

isopropanol and 10 µl of 3 M Sodium acetate. DNA was eluted using 35 – 50 µl of sterile 

water added to the centre of the membrane, left to rest for 1 minute and then centrifuged 

for 1 minute.  

 

2.6 Methods of DNA extraction (linear and plasmid) 

2.6.1 Phenol chloroform DNA extractions 

A starting culture of 5 ml LB was inoculated and incubated overnight at 28 – 37C 

with shaking. Up to 1.5 ml culture was poured into a microcentrifuge tube and cells pelleted 

by centrifuging at maximum speed for 2 minutes. Supernatant was discarded and the pellet 

resuspended in 250 µl Buffer P1, mixed by inversion with 250 µl Buffer P2, and 350 µl 

Buffer P3 immediately after. Samples were left on ice for up to 5 minutes, and then 

centrifuged for 10 minutes at maximum speed. The supernatant was removed to a clean 

microcentrifuge tube, mixed with 400 µl Phenol:Chloroform:Isoamyl Alcohol 25:24:1 (v/v) 

and vortexed for 5 – 10 seconds until the mixture was homogenised and cloudy. Samples 

were centrifuged for 2 minutes at maximum speed, and the top aqueous layer was 

removed to a new microcentrifuge tube, to which 800 µl of 100% ethanol was also added. 
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Tubes were mixed by inversion and spun for 10 minutes at maximum speed. The 

supernatant was discarded, and 500 µl of 70% ethanol was added over the pellet. Samples 

were once again spun for 2 minutes at maximum speed, and the ethanol removed. The 

pellet was air-dried for 5 – 10 before being resuspended in 35 – 40 µl nuclease-free water. 

DNA was quantified by nanodrop. 

 

Table 2-3: A list of the plasmids used in this study 

  

Plasmid Description Reference 

   
pLAFR3 Wide host-range cosmid vector, used for library construction  Staskawicz et al. 

(1987) 
   
pET21a Plasmid vector for expression of cloned genes in E. coli  Merck Millipore 
   
pRK2013 Helper plasmid used in triparental matings Figurski and 

Helinski (1979) 
   
pK19-Spec Plasmid used in creating mmtN SCO knockout in T. profundimaris Todd et al 2011 
   
pLMB509 Alpha expression vector used to express mmtN in T. profundimaris 

mutant 
Tett et al 2012 

   
pBIO2275 Prymnesium parvum CCAP946/6 DSYB cloned in pRK415  Curson et al 2018 
   
pBIO2276 Symbiodinium microadriaticum CCMP2467 DSYB, codon-optimised, 

synthesised and cloned in pLMB509 
Curson et al 2018 

   
pBIO2272 Chrysochromulina tobin CCMP291 DSYB, codon-optimised, 

synthesised and cloned in pLMB509 
Curson et al 2018 

   
pBIO2270 Acropora cervicornis DSYB, codon-optimised, synthesised and 

cloned in pLMB509 
Curson et al 2018 

   
pBIO0438 pLAFR3 cosmid from a Novosphingobium sp. MBES04 library that 

contains ~21 kb genomic DNA including mmtN 
This study 

   

pBIO0762 pLAFR3 cosmid from a Novosphingobium sp. MBES04 library that 
contains ~30 kb genomic DNA including mmtN 

This study 

   
pBIO21N1 N. sp MBES04 mmtN cloned in pET21a(+) This study 
   
pBIO509N N. sp MBES04 mmtN cloned into pLMB509 This study 
   
pBIO21T2 T. profundimaris WPO211 mmtN cloned in pET21a(+) This study 
   
pBIO19TK Disruption mutant for T. profundimaris mmtN created in pK19-Spec 

plasmid  
This study 

   
pBIO21R3 R. indicus mmtN cloned in pET21a(+) This study 
   
pBIO21N4 N. chromatogenes mmtN cloned in pET21a(+) This study 
   
pBIO21S5 S. mobraensis mmtN cloned in pET21a(+) This study 
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2.6.2 Minipreps (QIAGEN) 

Plasmid or cosmid DNA was extracted from starter cultures of 5 ml LB incubated 

overnight at 28 – 37C, using the QIAprep Spin Miniprep Kit. Cells were recovered from 

~3 ml culture and DNA extracted. The column was eluted with 35 – 50 µl nuclease-free 

water added to the membrane. This was left to rest for 1 minute, and then centrifuged for 

1 minute to elute the DNA. A list of the plasmids used in this study is in Table 2-3. 

2.6.3 QIAGEN Plasmid Midipreps 

For high quality, high concentration plasmid extractions the QIAGEN Plasmid 

Midiprep kit was used, with the QIAGEN-tip 100 column, on 100 ml culture. The DNA was 

eluted from the column using 5 ml Buffer QF. To precipitate DNA 3.5 ml of room-

temperature isopropanol was added to the eluted DNA and mixed. The mixture was 

separated into 1.5 microcentrifuge tubes and centrifuged immediately at maximum speed 

for 30 minutes. Supernatant was discarded and the DNA pellets washed with 500 µl 70% 

ethanol, centrifuging at maximum speed for 10 minutes. The ethanol was aspirated and 

the pellet left to air-dry for 5 – 10 minutes, then re-dissolved in a suitable volume of 

nuclease-free water. Concentration was quantified by nanodrop, and plasmid stored at -

20°C. 

2.6.4 Genomic DNA extractions (Promega) 

Genomic DNA from bacterial isolates was extracted using the Wizard® Genomic 

DNA Purification Kit. After nuclei lysis, the mix was incubated for 5 min at 80°C, and then 

cooled to room temperature, and 3 µl of RNase Solution was added to the cell lysate, 

mixed and incubated at 37°C for ~45 minutesBetween 35 – 50 µl of DNA Rehydration 

Solution was added to the tube and incubated at 65°C for 1 hour, or at 4°C overnight, after 

which it was stored at -20°C. 

2.7 Restriction digests using FastDigest enzymes  

Digestions of DNA were carried out using Thermo Scientific FastDigest restriction 

enzymes. Up to 16 µl of DNA (depending on the concentration), 1 µl Enzyme 1, 1 µl 

Enzyme 2 (if required), 2 µl FastDigest Buffer and distilled water were mixed in a 

microcentrifuge tube to a total volume of 20 µl. The mix was incubated at 37C for up to 

60 minutes, and then inactivated by incubation at either 65C or 80C for 5 or 20 minutes. 

If necessary the digested DNA was dephosphorylated by adding an additional 1µ alkaline 

phosphatase, 2.5 µl of buffer and 1.5 µl nuclease-free water, and incubating for 60 

minutes. Digested DNA was then visualised on a 1% agarose gel, and the correct sized 

fragment extracted. 
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2.8 Quantification of DMSP 

 

2.8.1 GC quantification of DMSP/DMS/SMM 

To quantify DMS, DMSP and SMM, gas chromatography (GC) assays were utilised. 

This protocol involved of the measurement of headspace DMS, either directly produced 

by the sample, or via alkaline lysis of DMSP/SMM, using a flame photometric detector 

(Agilent 7890A GC fitted with a 7693 autosampler) and a HP-INNOWax 30 m x 0.320 mm 

capillary column (Agilent Technologies J&W Scientific). All measurements on the GC were 

performed using 2 ml glass vials containing 300 µl liquid samples and sealed with 

PTFE/rubber crimp caps. For the measurement of DMSP, it was first lysed to DMS with 

the addition of 100 µl 10 M NaOH to 200 µl culture. Vials were crimp sealed immediately, 

incubated at 22°C for 24 h in the dark, and then measured by GC. For quantifying SMM, 

the same protocol was observed, with an additional step of a 10 minute incubation at 80°C 

before incubating overnight at 22°C. An eight point calibration curve was also produced by 

the alkaline lysis of known DMSP standards in water (Figure 2-1), and incubated in the 

same way. The detection limit for headspace DMS was 0.015 nmol in water.  

 

 

 

 

 

 

 

 

 

 

Figure 2-1: The eight-point calibration curve of DMSP, used to calculate DMSP concentrations in 

samples from DMS released via alkaline lysis. The curve was produced using known 

concentrations of DMSP ranging from 0.015 nmol to 30 nmol, added to 100 µl 10M NaOH and 200 

µl sterile water, then incubated without shaking overnight in the dark. 
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2.8.2 Quantification of DMSP via LC-MS 

LC-MS was required to rule out the possibility that DMS detected by GC was due to 

some other compound, and not DMSP, as both SMM and DMSHB lyse to DMS after 

alkaline hydrolysis. Samples were extracted as follows: cells were recovered from 3 ml of 

culture, and the pellets resuspended in 300 µl of 80% LC-MS grade acetonitrile (extraction 

solvent), and mixed by pipetting. This was centrifuged at maximum speed for 3 minutes, 

and 200 µl of the supernatant was collected in a fresh 2 ml screw-cap tube. For a second 

round of extraction, another 200 µl of the extraction solvent was added to the pellet and 

remaining 100 µl supernatant, and the pellet resuspended before centrifugation for 3 

minutes. Another 200 µl of supernatant was collected, and a third round of extraction was 

then performed in the same way, to give a total volume of 600 µl of the collected 

supernatant for LC–MS analysis. LC-MS was carried out using a Shimadzu Ultra High 

Performance Liquid Chromatography (UHPLC) system formed by a Nexera X2 LC-30AD 

Pump, a Nexera X2 SIL-30AC Autosampler, a Prominence CTO-20AC Column oven, and 

a Prominence SPD-M20A Diode array detector; and a Shimadzu LCMS-2020 Single 

Quadrupole Liquid Chromatograph Mass Spectrometer. Samples were analysed in 

hydrophilic interaction chromatography (HILIC) mode using a Phenomenex Luna NH2 

column (100 x 2 mm with a particle size of 3 µm) at pH 3.75. Mass spectrometry spray 

chamber conditions were capillary voltage 1.25 kV, oven temperature 30 ºC, desolvation 

temperature 250 ºC and nebulising gas flow 1.50 L min-1. Solvent A is 5% acetonitrile + 

95% 5 mM ammonium formate in water. Solvent B is 95% acetonitrile + 5% 100 mM 

ammonium formate in water. Flow rate was 0.6 ml min-1 and gradient (% solvent A/B) was 

t = 1 min, 100% B; t = 3.5 min, 70% B; t = 4.1 min, 58% B; t = 4.6 min, 50% B; t = 6.5 min, 

100% B; t = 10 min, 100% B. The injection volume was 15 μl. All samples were analysed 

immediately after being extracted. The targeted mass transition corresponded to [M+H]+ 

of DMSP (m/z 135) in positive mode. A calibration curve was performed for quantification 

of DMSP using pure DMSP standards in the extraction solvent.  

2.8.3 Quantification of DMSP via Purge-Trap 

Measurements of 0.5 g were weighed out and dissolved in 25 ml distilled water, 

with H2SO4 to 0.5 %. This mix was incubated at room temperature for 1 hour and then 5 

ml was mixed with 1 ml 10 M NaOH and incubated overnight in the dark, before using the 

purge and trap method to quantify the DMS produced (Zhang et al. (2008). The samples 

were purged for 20 minutes and then compounds were detected with an Agilent 7890B 

gas chromatography (GC) instrument and quantified. The calibration curve was made 

using the same method, using 5 ml of each gradient DMSP concentration standards with 

1 ml of NaOH. 



 43 

2.9 Protein quantification 

2.9.1 Quantification of protein concentration by Bradford assay 

In order for DMS/DMSP concentrations to be quantified by cell growth, the protein 

in culture was measured. This was achieved by recovering cells from 1 ml culture through 

centrifugation for 1 minute at maximum speed, and resuspending in 500 µl Tris-HCl buffer 

(50mM, pH 7.5). Following this resuspension, the cells are lysed using sonication, for three 

repeats of 10 seconds, being kept on ice in between. Following sonication, samples were 

centrifuged at max speed for 10 minutes, and 20 µl of the supernatant was mixed with 980 

µl Bradford Reagent. This was added to a cuvette and the absorption measured using a 

spectrometer set to OD595. A four point protein standard graph was produced, using known 

concentrations of BSA (Figure 2-2). Standards include dH2O alone, and concentrations of 

100, 200, and 400 µg/ml. This enables the calculation of the of µg protein in each culture.  

2.9.2 Protein estimations with Qubit 

For estimating protein concentrations in the sediment incubation experiments a 

QubitTM Protein Assay Kit was used as it is more sensitive. Samples were prepped in the 

same way as for the Bradford method, up until the 10 minutes centrifugation. After the 

centrifugation of the samples, 20 µl of the supernatant was added to Qubit assay tubes, 

and mixed with 180 µl Working Solution (199 µl Protein Buffer and 1 µl Protein Reagent) 

and vortexed for 2 – 3 seconds. Samples were incubated in the dark at room temperature 

for 15 minutes and measured on a QubitTM Fluorometer, alongside three standards of 0 

ng/µl, 200 ng/µl and 400 ng/µl BSA concentrations. 

Figure 2-2: The absorbance measured in OD600 of four BSA standards of known 

concentration in Bradford Reagent, plotted with line of best fit to calculate protein 

concentrations of unknown samples. 
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2.10 Experiments at Stiffkey salt marsh 

2.10.1 Sampling of Stiffkey sediment 

Sediment used in this study was sampled from Stiffkey salt marsh (52.9643, 0.9255). 

Triplicate marine sediment samples were collected using acrylic corers tapered at one 

end. DMSP concentration was measured from the water (200 µl), the oxic layer (top 1.5 

cm) and from three anoxic depths (5 cm, 10 cm and 15 cm). All samples were transferred 

to the laboratory and analysed immediately. Other measurements of the environment 

included pH using an electronic pH meter, salinity and temperature. DNA and RNA were 

extracted in tandem from 0.5 g of sediment for sequencing, qPCR and RT-qPCR. All of 

the isolate and enrichment work was carried out on Stiffkey sediments, but Time 0 

measurements were also taken from samples from Cley salt marsh (52.958649, 1.047364) 

and Yarmouth Estuary (52.613321, 1.716267) to enable comparison of DMSP levels, 

abundance and expression of specific genes. 

2.10.2 Isolation of DMSP-producing bacteria 

DMSP-producing bacteria were isolated from Time 0 Stiffkey salt marsh sediment, 

as well as from sediment that was treated to 14-day enrichment incubations under MBM 

media conditions designed to increase the occurrence of DMSP-producing strains (50 

PSU, 0.5 mM nitrogen, 0.1 mM MTHB, 140mM sulfur). Samples from Time 0 and enriched 

samples were serially diluted and plated onto MBM minimal medium. Plates were 

incubated at 28ºC and after 72 h single colonies were obtained. Colonies with different 

morphologies were picked and tested for DMSP production. Positive isolates were purified 

and identified by PCR amplification of the 16S rRNA gene, using the primer set 27F/1492R 

(Lane et al. 1985). Purified PCR products were sequenced by Eurofins Genomics 

(https://www.eurofinsgenomics.eu, Munich, Germany), and the isolates were 

taxonomically identified using BLASTn (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Isolates 

were screened for DMSP production in low nitrogen conditions by GC, and normalized to 

cellular protein content estimated by Bradford assays. Isolates were also checked for the 

presence of dsyB using degenerate primers (described below). To store bacterial isolates 

pure colonies were inoculated into 5 ml LB and incubated overnight at 28 – 37C with 

shaking. Into a 2 ml screw-cap tube 525 µl of culture was mixed with 225 µl xx mM DMSO 

and 750 µl 50% glycerol, and frozen at -80C. Viability of those stocks was tested every 

six months. 

 

https://www.eurofinsgenomics.eu/
https://blast.ncbi.nlm.nih.gov/Blast.cgi


 45 

2.10.3 Microscopy 

Cultures were grown to stationary phase before being examined by Microscopy. 

Aliquots of 5 µl were placed on glass microscope slides, then covered with glass 

coverslips, avoiding as many bubbles as possible. Drops of Immersion Oil were placed on 

the slide and the samples were observed under 100x light magnification using the Olympus 

BX40 microscope, equipped with an Olympus Camedia C-7070 digital camera. Samples 

were checked for contamination by searching for variations in morphology of observed 

cells in multiple areas of the glass slide. If none were observed, samples were declared to 

be pure. 

2.10.4 Whole genome sequencing and analysis 

Several isolated strains from Stiffkey were sent for Whole Genome Illumina 

sequencing to the MicrobesNG sequencing facility (https://microbesng.uk) at the 

University of Birmingham. These included Novosphingobium sp. BW1, Marinobacter sp. 

Set72 and Alteromonas genovesnis. The genomes were sequenced with the Illumina 

MiSeq platform producing 2 x 250 bp paired-end reads. These reads were trimmed using 

Trimmomatic and the quality was assessed using in-house scripts combined with the 

following software: Samtools, BedTools and bwa-mem. Annotation was performed with 

RAST (http://rast.nmpdr.org) (Aziz et al. 2008), the NMPDR, SEED-based, prokaryotic 

genome annotation service. The trimmed forward and reverse reads were uploaded and 

annotated against the genomic sequence of a closely-related species (e.g. 

Novosphingobium sp MBES04). For the genomic library screening, the fragment of 

Novosphingobium DNA found to contain the potential DMSP-producing gene was aligned 

against the sequenced genome, and all the functional genes in that region were analysed 

for the likelihood that they play a role in DMSP synthesis in Novosphingobium by using 

BLAST alignment to determine possible function. 

2.10.5 Growth curves 

Growth curves were measured for Novosphigobium and T. profundimaris to 

determine exponential phase for other growth experiments. Starter cultures were 

inoculated in 5 ml MBM and incubated for 16 hours or until reaching 0.6 OD600. Triplicate 

flasks of 100 ml MBM were then inoculated with 2 ml of the starter culture, and incubated 

at 30C with shaking at 200 rpm. Growth by OD600 was measured in 1 ml of culture taken 

every hour until levels reached stationary phase (the same OD reading for at least three 

hours), and measurements were averaged and plotted on a line graph. 

https://microbesng.uk/
http://rast.nmpdr.org)/
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2.10.6 DMSP production pathways induction experiment  

Rough induction experiments were set up on several isolated strains. Cultures were 

inoculated in 10 ml triplicate MBM, in either standard conditions, (20 PSU with 12 mM 

nitrogen at that time) or MBM containing 5, 35 or 50 PSU salt levels, or lowered nitrogen 

levels at 0.5 mM nitrogen. Cultures in standard MBM were either incubated with 0.5 mM 

Met, DMSHB, MTHB or MMPA (intermediates of the transamination pathway). Cultures 

were incubated overnight at 30°C with shaking and DMSP quantity was measured using 

GC, and normalised for protein concentration. 

An induction experiment specifically for the pathway intermediates was performed 

on Novosphingobium. A starter culture was OD600 adjusted to 0.6 and inoculated into 3 x 

100 ml MBM, and incubated for 12 hours. The DMSP levels the Time 0 culture was 

detected, and then the cultures were measured into 5 ml aliquots and mixed with 0.5 mM 

of each of the intermediates Met, MTOB, MTHB, DMSHB, MMPA, MTPA, SMM and 

DMSP-amine, and a control mix with nothing else added. These mixed cultures were 

incubated at 30°C with shaking, and the DMSP concentration of 200 µl of each culture was 

quantified in triplicate, and protein content were measured at 30, 60, 120 and 240 minutes 

2.10.7 DMSP production in environmental conditions  

The effect of changing environmental conditions on the production of DMSP by 

Novosphingobium was tested from a starter culture of standard media (35 PSU MBM, 12 

mM nitrogen), which was inoculated into 5 ml of either 50 PSU, 35 PSU, 5 PSU MBM with 

12 mM nitrogen, 35 PSU MBM with 0.5 mM nitrogen, or standard media, in triplicate. All 

were incubated at 30°C overnight with shaking at 180 rpm, with the exception of one of 

the standard media cultures, which was incubated at 16°C instead. Measurements of 

protein content and DMSP concentration were taken and compared. For T. profundimaris, 

triplicate cultures were inoculated into MBM of salinity levels of 5, 35, 50 and 70 PSU, with 

0.5 mM nitrogen (which was set as the ‘standard’ MBM condition from this point), to test 

the effect that salinity has on the production of DMSP. Cultures were also grown in 35 PSU 

MBM with high nitrogen levels of 12 mM to observe the impact. Cultures were incubated 

overnight, and DMSP levels quantified on 200 µl. 

2.10.8 DMSP in seawater incubations 

Purge-Trap measurements enable the detection of low levels of DMSP in seawater 

conditions. Strains were grown overnight in triplicate in MBM. Bacterial cells were 

harvested, washed three times and resuspended in filter-sterilised seawater (collected 

from Zhanqiao Pier, Qingdao, January 2018). The resuspended cultures were adjusted to 

an OD600 of 0.4 and then diluted 1:100 into 20 ml filter-sterilised seawater (T0), followed 

by incubation at 25°C with 90 rpm for 21 h (T1) and 43 h (T2). From the T0, T1 and T2 
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samples, bacterial cells were spun down and cell-free supernatants collected. The cell 

pellet was resuspended in Tris-HCl buffer (50mM, pH 7.5), and DMSP in the cells and cell-

free supernatants were measured by alkaline-hydrolysis by adding 500 μl of 10 mM NaOH 

and incubating in dark overnight. Generated DMS was processed by a modified purge and 

trap method described by Zhang et al. (2018) and measured by Agilent 7890B gas 

chromatography (GC) with a flame photometric detector. An HP-5 (0°C – 325°C) 30 m x 

320 µm x 0.25 µm capillary column (Agilent Technologies, Inc) was used to separate sulfur 

gases under the oven thermal cycle of 50°C to 120°C (20°C/min) to 180°C (30°C/min) to 

50°C. The GC detection limit for DMS was ~0.015 nmol. 

 

2.11 Extraction of DNA/RNA from Stiffkey 

2.11.1 Extraction of DNA/RNA from sediment 

DNA and RNA were extracted together following the protocol in Dumont et al. 

(2011) from marine sediment samples taken from Stiffkey, Cley and Yarmouth at Time 0 

and from samples enriched for DMSP-producing bacteria after 14 days. Sediment samples 

were measured into 0.5 g aliquots and flash frozen in liquid nitrogen. To extract nucleic 

acids, 200 µl 0.1 mm silica beads (MP Biomedicals, Cambridge, UK) were added to the 

sediment alongside 1 ml extraction buffer (sodium dodecyl sulfate 87 mM; sodium 

phosphate buffer pH 8.0, 200 mM; sodium chloride 100 mM; ethylenediaminetetraacetic 

acid pH 8.0, 50 mM, Sigma-Aldrich), and bead beaten for 45 seconds at 6 m/s on a Bead 

Blaster 24 bead beater (Benchmark, Edison, NJ, USA). Samples were then centrifuged at 

15 000 x g for 5 minutes at 4°C. The supernatant was carefully removed and mixed by 

vortexing with 850 µl Phenol:Chloroform:Isoamyl alcohol (25:24:1, Sigma-Aldrich), and 

centrifuged at max speed, 4°C for 5 minutes. The aqueous phase was removed and mixed 

by vortexing with 800 µl Chloroform:Isoamyl alcohol (24:1, Sigma-Aldrich), and centrifuged 

again. The aqueous phase was again removed and mixed with 1 ml Precipitation solution 

(polyethylene glycol 6000 20%; sodium chloride 2.5 M), and incubated for at least 1 h at 

room temperature. Samples were centrifuged for 30 minutes at max speed, 20°C and 

washed with 800 µl of ice-cold 75% ethanol, then centrifuged for 10 minutes at 4°C max 

speed. Ethanol was aspirated and the pellet air-dried and dissolved in 100 µl nuclease-

free water. Aliquots of 50 l were stored -80C for RNA purification. 

2.11.2 RNA purification from sediment extraction 

To 50 µl of the DNA/RNA extract 37.5 µl of nuclease-free water, 10 µl of Buffer 

RDD (Qiagen), and 2.5 µl of DNase (Qiagen) were added. This was mixed gently and 

incubated at room temperature for 10 minutes. The RNA was cleaned following the 
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RNeasy Cleanup Protocol kit (Qiagen). The sample was mixed with 350 µl Buffer RLT and 

then 250 µl 100% EtOH before transferring to an RNeasy Mini spin column and 

centrifuging at 10,000 rpm for 15 seconds. Flow through was discarded, and 500 µl Buffer 

RPE was added, and tubes centrifuged as before. Flow through was discarded and a 

second wash of 500 µl Buffer RPE added, centrifuging for 2 minutes. The column was 

placed in a fresh collection tube and centrifuged at full speed for 1 minute before placing 

in a nuclease-free 1.5 ml collection tube. To elute 87.5 µl of nuclease-free water was added 

to the column and centrifuged for 1 minute at 10,000 rpm. The entire DNase treatment 

was repeated, only adding Buffer RDD and DNase (no need for water), and the clean-up 

repeated as well, before eluting in 2 x 30 µl of nuclease-free water. Aliquots were taken to 

quantify by Qubit 3.0 Fluorometer, following the protocol of the Qubit RNA High Sensitivity 

Assay Kit (Thermo Fisher Scientific). To confirm removal of gDNA 16S PCR and gel 

electrophoresis were also carried out. Samples were frozen at -80°C. 

2.11.3 Extraction of DNA from pool water 

Pool water from Stiffkey salt marsh was collected and 250 ml was passed through 

a 0.2 µm membrane filter by pump filtration. The membrane was cut into pieces and placed 

into 2 ml screw-cap tubes containing 200 µl 0.1 mm silica beads (MP Biomedicals, 

Cambridge, UK). To these tubes was added 600 µl STE buffer (NaCl 100 mM, Tris-HCl 

(pH 8.0) 10 mM, EDTA 1 mM), and tubes were bead beaten for 45 seconds at 6 m/s, then 

mixed with 10 µl lysozyme (10 mg/ml) and incubated at 37°C for 30 minutes, mixing every 

10 minutes. Following this, 60 µl SDS (10 % w/v) and 6 µl protease (10 mg/ml) were added, 

and incubated at 65°C for 20 minutes, mixing every 10 minutes. To this 676 µl 

Phenol:Chloroform:Isoamyl alcohol (25:24:1) were added and mixed well, before 

centrifuging at 12,000 rpm for 10 minutes at room temperature. The aqueous phase was 

recovered to a fresh 1.5 microcentrifuge tube and mixed with 676 µl Chloroform:Isoamyl 

alcohol (24:1), then centrifuged as before. The aqueous phase was recovered to fresh 1.5 

microcentrifuge tubes and the Chloroform step was repeated. The aqueous phase was 

recovered again, and mixed thoroughly with 0.7 x volume isopropanol to precipitate DNA. 

Samples were left at -20°C for 3 – 4 hours, then centrifuged for 15 minutes at 14,000 rpm, 

at 4°C. The supernatant was removed and the pellet washed with 800 µl ice-cold 75% 

EtOH, gently rolling the tube before tipping out the EtOH and repeating. All the EtOH was 

aspirated, and the pellet air-dried for 5 – 10 minutes, before being dissolved in 50 µl 

nuclease-free water and stored at -80°C. 

2.11.4 Extraction of RNA from pool water 

RNA was extracted from 200 ml pool water filtered through a 0.2 µm membrane 

filter by pump filtration, stored in RNAlater and flash frozen in liquid nitrogen. Extraction 
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was with Direct-zol RNA MiniPrep (Zymo Research, CA, USA). The work space was 

treated with RNaseZap, and Trizol (Tri Reagent, Sigma, Cat no. T9424) was heated to 65 

°C in 1 ml aliquots. Samples were defrosted, the filters taken out, the RNAlater removed 

and the filter cut into pieces using 70% ethonol and RNaseZap cleaned scissors. The 1 ml 

pre-heated Trizol was added directly onto the filters along with 426-600 µm, acid-washed 

glass beads (Sigma). Cells were disrupted using a Mini-Beadbeater and 3 cycles of 30 

seconds with 1 minute recovery. Samples were incubated at room temperature for 5 

minutes, and centrifuged for 2 minutes at 15,000 rpm, 4°C. The supernatant was 

transferred into fresh 2 ml screwcap tubes and mixed by vortexing with 1 ml EtOH (95 - 

100%). Up to 500 µl of sample was loaded onto the spin column and centrifuged for 1 

minute at 15,000 rpm, 4 °C. Flow through was discarded and steps repeated for residual 

sample. To the column 400 µl RNA preWash was added and centrifuged for 1 minute as 

above. Flow through was discarded, and the wash step repeated. Aliquots of 700 µl RNA 

Wash Buffer was added and samples centrifuged as above, and flow through discarded, 

then centrifuged again for 2 to remove buffer. The spin column was placed in a fresh 1.5 

ml RNAse-free tube with 100 µl of nuclease-free water and incubate for 5 min at 4°C. 

Columns were centrifuged for 1 minute at 4 °C to elute RNA. DNA was removed using 

Turbo DNase (Ambion). To the RNA samples 10 µl of 10x Turbo DNase buffer was added, 

with 1 µl Turbo DNase and incubated at 37°C for 40 minutes. This step was repeated to 

remove all the gDNA contamination, before 10 µl of stop buffer (DNAse Inactivation 

Reagent) was added, and incubated for 2 minutes at room temperature, shaking 

occasionally. Samples were centrifuged for 2 minutes, 4°C and the supernatant transferred 

to a fresh tube. A 5 µl aliquot of RNA was quantified by PCR to check for DNA 

contamination, and agarose gel analysis. All samples were frozen in liquid nitrogen and 

stored at -80°C. 

2.11.5 RNA purification and reverse transcription 

Reverse transcription of RNA was carried out on as close to 100 µg DNA-free RNA 

as possible. Up to 9 µl RNA (≤ 2 µg) was mixed with 1 µl 10 µM specific reverse primer 

(dsyB_deg-R for DsyB identification), and incubated for 5 mins at 70 °C, then cooled briefly 

on ice. Per sample 1 µl 1:1:1:1 mix of dNTPs (10 mM), 4 µl M-MLV 5 x reaction buffer 

(Promega), 0.4 µl RNase Inhibitor (40 U/µl, Roche), 0.8 µl M-MLV reverse transcriptase 

(200 U/µl, Promega) and 3.8 µl nuclease-free water were added, sample mixed and 

incubated at 42 °C for 1 h. The stable cDNA was quantified using a Qubit 3.0 Fluorometer, 

following the protocol of the Qubit dsDNA High Sensitivity Assay Kit (Thermo Fisher 

Scientific), and was stored at -20 °C until needed. 
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2.12 Degenerate primers 

2.12.1 Degenerate primer design and optimisation 

Degenerate primers were designed to enable amplification of multiple genera from 

DNA extracted from environmental samples. The primers were designed by means of an 

amino acid alignment of the 24 DsyB sequences using the ARB project program 

(http://www.arb-home.de). Conserved regions between species were identified, and the 

degeneracy of possible primers calculated, with a cutoff of degeneracy of up to 5 

degenerate bases. Options were synthesised by Eurofins Genomics and tested against a 

set of positive and negative genomic DNA controls. Positive controls included five bacterial 

strains known to contain dsyB, and the negative controls included alphaproteobacterial 

strains unable to produce DMSP, and known eukaryotic DSYB sequences to test 

specificity to bacterial DsyB. The most effective primer combination (dsyB_deg1F and 

dsyB_deg2R, Table 2) amplified a fragment of ~246 bp in size from all positive controls 

tested, with minimal non-specific bands being amplified. The primers were optimised for 

the annealing temperature (tested between 60 – 65°C), extension time (from 15 – 60 

seconds) and number of cycles (between 30 to 40) to give the most specific amplification, 

with the final program involving an initial denaturation step of 95°C for 5 minutes, followed 

by 35 cycles of 95°C for 30 seconds, an annealing step of 61°C for 15 seconds and an 

elongation step of 72°C for 15 seconds, ending in a final extension of 72°C for 5 minutes. 

A similar method of optimisation was adopted when designing degenerate primers 

for the amplification of mmtN from multiple species, although it was found that the 

sequences were too divergent for a single primer set to amplify from all species, so while 

the most optimal primers (mmtN_degF and mmtN_degR, Table 2-2) successfully amplified 

a ~281 bp fragment of mmtN from N. sp BW1, R. indicus and T. profundimaris, they were 

unable to amplify from S. mobaraensis and N. chromatogenes genomic DNA. A solution 

to this could be to design clade-specific primers, as the mmtN sequences have been 

identified in several different classes. Optimisation of the degenerate primers to amplify no 

non-specific bands involved testing annealing temperatures between 50 – 60°C, and 

extension times from 15 – 60 seconds, and the final program had an initial denaturation 

step of 95°C for 5 minutes, followed by 35 cycles of 95°C for 30 seconds, an annealing 

step of 60°C for 30 seconds and an elongation step of 72°C for 30 seconds, ending in a 

final extension of 72°C for 5 minutes.  

http://www.arb-home.de/
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2.12.2 pGEM-T Easy cloning  

For creating clone libraries and standards for qPCR, the pGEM-T Easy Vector 

System (Promega) was used. Fragments to be cloned were amplified using PCR and then 

purified by gel extraction. Ligations were set up after calculating the appropriate volumes 

of PCR products using the insert:vector molar ratio 1:3. This equation was used to 

calculate volumes: 

A standard ligation mix consisted of 5 µl 2X Rapid Ligation Buffer, 1 µl pGEM-T 

Easy Vector (50ng), X µl PCR product, 1 µl T4 DNA ligase (3 Weiss units/µl) and nuclease-

free water to a final volume of 10 µl. Positive controls were also set up with 2 µl control 

insert DNA in the place of the PCR product. Reactions were mixed well and incubated 

overnight at 4°C. Ligations were transformed by heat shock into E. coli JM101 competent 

cells as described above, with 5 µl ligation added to 100 µl competent cells, alongside 

controls. Transformed cells were plated on LB/ampicillin/IPTG/X-Gal agar plates, with 100 

µl of the ligation on one, and the rest on another, alongside the positive control and a 

negative control of cells only. Plates were incubated overnight at 37° and then checked for 

successful cloning using a blue-white screen, where white colonies have the lacZ gene 

successfully disrupted. These are picked and checked using restriction digests or PCR. 

2.12.3 dsyB clone library construction 

Clone libraries were prepared from dsyB primer gene fragments, PCR-amplified 

from DNA extracted from Stiffkey salt marsh using the degenerate primers dsyB_deg1F 

and dsyB_deg2R. Fragments were amplified using the PCR protocol described above, 

imaged using gel electrophoresis and the single specific bands were extracted by gel 

extraction. These fragments were then cloned into the pGEM-T plasmid using the pGEM-

T Easy Vector System I cloning kit (Promega), described above. Transformants were 

plated on LB/ampicillin/IPTG/X-Gal agar plates, and 19 clones in total were picked and 

inoculated to 5 ml LB Ampicilin, and the plasmids were extracted using QIAGEN minipreps, 

then sent for to Eurofins MWG for sequencing. 

 

2.13 Gene library construction 

2.13.1 QIAGEN Genomic DNA extraction 

High quality and high volume genomic DNA extractions were carried out using the 

QIAGEN Genomic DNA extraction kit. Once the genomic DNA was eluted with 1 x 5 ml of 

ng of vector (50 ng) x kb size of insert 

kb size of vector (3 kb) 

 

x    3    =   ng insert 

      1  
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Buffer QF. DNA was precipitated by adding 3.5 ml (0.7 volumes) of room-temperature 

isopropanol to the eluted DNA, and inverting the tube 10 to 20 times. The DNA was 

collected using a sterile 5 ml pipette tip and transferred to a microcentrifuge tube containing 

1 ml of TE buffer (pH 8.0, or 10 mM Tris·Cl, pH 8.5). The DNA was dissolved on a shaker 

at 55°C for up to 2 hours. 

2.13.2 Gene library construction 

To identify the gene or genes involved in the synthesis of DMSP by 

Novosphingobium, a genomic library of Novosphingobium sp. BW1 was constructed so 

that fragments could be screened in the wide-host species R. leguminosarum J391. The 

method followed was essentially described in (Curson et al. 2008). Novosphingobium 

genomic DNA was extracted using a QIAGEN Genomic-tip 100/G kit, and test digestions 

with EcoRI were carried out to determine the stage at which the genome was partially 

digested into roughly 25 – 30 kb fragments (usually digestion continued for 5 – 10 minutes), 

before being flash-frozen in liquid N2 to halt the digest, and run on a 0.5% agarose gel to 

assess fragment size. Once a time was confirmed, up to 10 µg of genomic DNA was 

partially digested, then 100 µl of the digest was transferred to a tube containing 200 µl 

100% ethanol and 10 µl 3M sodium acetate (pH4.8), and frozen in liquid N2 to stop the 

reaction.  

The DNA was ethanol precipitated and quantified, and at least 2.5 µg of genomic 

DNA was used to ligate into the EcoRI-digested, dephosphorylated cosmid vector 

pLAFR3. The ligation was ethanol precipitated resuspended in 17 µl nuclease-free water, 

and then 0.7 µg was packaged, ready to transfect into E. coli 803, using the Stratagene 

Gigapack III XL Packaging mix. The mix was removed from the -80°C freezer until partially 

thawed, at which point the genomic DNA was added and mixed by stirring with the pipette 

tip. Tubes were incubated for 2 hours at 22°C, before being mixed with 500 µl SM buffer 

and 20 µl chloroform. The supernatant containing the phage was removed and stored as 

glycerol. The packaged genomic DNA fragments were transfected into the E. coli strain 

803, which was prepared by inoculation in 100 ml LB supplemented with 10 mM MgSO4 

and 0.2% (w/v) maltose, and incubated at 37°C for 4 – 6 hours, or 30°C overnight (not 

reaching above an OD600 of 1). The cells were pelleted by centrifuging at 500 x g for 10 

minutes, and then resuspended in 10 mM MgSO4 to an OD600 of 0.5. To titre the library 

and determine the number of clones the packaged mix was diluted either 1:10 or 1:50 in 

SM buffer, and 1 µl was mixed with 200 µl host cells and incubated at 37°C for 15 minutes, 

topped up with LB (up to 1.5 ml) and plated on LB tetracycline to select for pLAFR3 

cosmids. The resulting colonies were counted and the number of clones in the library 

calculated – in total the library consisted of an estimated 50,000 clones. Another 

transfection into E. coli was set up with a higher volume of packaged cosmids – 25 µl of 
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cosmid mix and E. coli were mixed 1:1 and incubated at 37°C for 30 minutes, then mixed 

with 200 µl LB and incubated for another hour, gently shaking every 15 minutes. Cells 

were pelleted and resuspended in 50 µl LB, then plated on LB tetracycline. Up to six 

colonies were tested for the correct-sized fragments by digestion with EcoRI, BamHI and 

HindIII. They were also tested to make sure the fragments were different.  

Multiple rounds of infection into E. coli were set up to ensure a high number and 

variation of cosmids, then pooled together and stored in glycerol at -80°C. The clones were 

crossed via triparental mating to R. leguminosarum J391, and a total of 750 

transconjugants were picked to RM medium containing 0.5 mM Met, incubated overnight 

at 30°C and then screened by GC for those conferring the ability to produce SMM to R. 

leguminosarum J391 (as a result of MMT activity) by mixing with 100 µl 10 M NaOH and 

heating at 80°C for 10 minutes, then incubating in the dark overnight before quantifying 

DMS produced. Positive samples were checked by re-inoculation and repeated screening. 

The plasmids were extracted and transformed into E. coli 803 to be mobilised back into R. 

leguminosarum J391 by tri-parental cross, before re-confirming MMT activity. Positive 

cosmids were digested with EcoRI, BamHI, HindIII and PstI to demonstrate the presence 

of inserted fragments in the pLAFR3 cosmid, and compare fragments. 

2.13.3 Tri-parental crossing 

Tri-parental crossing was utilised to transfer plasmids or cosmids from E. coli to 

Rhizobium. It involves three strains: the host strain of Rhizobium, the donor strain of E. 

coli that contains the plasmid or cosmid to conjugate into the Host strain, and the helper 

strain, which is the kanamycin-resistant E. coli strain 803 (pRK2013). A 5 ml universal of 

TY media was supplemented with appropriate antibiotics and the Rhizobium host strain, 

and incubated at 28°C with shaking. The helper plasmid E. coli 803 and donor strain were 

both inoculated in 5 ml LB with antibiotics and incubated at 37°C with shaking overnight. 

A 1 ml aliquot of the host was centrifuged at maximum speed for 1 min. The supernatant 

was removed and the pellet resuspended in 500 µl fresh TY media. This was repeated 

three times to wash out residual antibiotics, before being centrifuged again and resuspend 

in 100 µl of TY media. The donor and helper strains were treated in the same way and 

resuspended in 100 µl TY. A sterile filter was placed on a TY agar plate with no antibiotics 

using ethanol-sterilised forceps. Aliquots of 100 µl of each strain were added to the filter 

and mixed using a sterilised loop. Control crosses were also set up with just the helper 

and host, and just the donor and helper. Plates were incubated at 28°C overnight. Ethanol-

sterilised forceps were used to remove the filters and place them in sterile universals. The 

cells were washed off the filter using 2 ml of 50% glycerol, and then plated at a suitable 

dilution on selective TY plates containing kanamycin and other selective antibiotics from 
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the donor DNA. Plates were incubated at 28°C and successful crosses confirmed using 

colony PCR. 

 

2.14 Identification of MmtN enzymes, phylogenetic trees 

BLAST searches to identify homologues of the Novosphingobium MmtN protein 

were performed using BLASTP at NCBI or JGI. MmtN homologues, along with selected 

other more distantly related methyltransferases in Pfam family PF10672 below the 

predicted cut-off for MMT functionality (E values ≤ 1e-90, iIentity = 36 %), were aligned by 

ClustalW in MEGA v6 and visualised in a maximum-likelihood phylogenetic tree to observe 

the relatedness of the sequences. Predicted non-functional MmtN sequences that are just 

below the cut-off are Candidatus Taylorbacteria bacterium and Candidatus 

Peregrinibacteria bacterium. 

 

2.15 Quantitative PCR with reverse transcription RT-qPCR 

Standards for qPCR were created by PCR amplifying a fragment from either 

community DNA or genomic DNA using primers to the gene of interest. The amplified 

fragment was excised from the gel and purified by gel extraction, then cloned into the 

pGEM-T Easy vector (described above). Once positive clones had been identified the 

colonies were cultured and the plasmids extracted using the QIAGEN Miniprep kit. These 

were sequenced to confirm identity and then digested using FastDigest enzymes in a 50 

µl reaction, performed on 8 µg DNA with 2 µl of the NdeI restriction enzyme to linearise 

the plasmid. To confirm the linearized plasmid was run on gel electrophoresis for 1 hour, 

and the band extracted and purified through gel extraction, eluting in 30 µl, resulting in > 

50 ng of standard. To calculate the copy numbers in the standard this calculation is used, 

and samples are diluted to 10-8 ready for qPCR, and dilutions were repeated every two 

months.  

Number of copies =  

 

To perform quantitative PCR, a master mix was made up for reactions of 20 µl 

aliquots, with 10 µl 2 × SensiFAST SYBR mastermix, 400 nM of both the forward and 

reverse primers (Table 2-2) and 2 µl cDNA, or 2 µl of 1/10- or 1/100-dilutions of DNA. The 

18 µl aliquots were added to a 96-well qPCR plate and 2 µl of either standard or template 

added, alongside three wells that were the no template control (NTC) with only master mix 

in. A single gene was quantified per run, with three biological replicates and three technical 

(6.02 x1023) x ng in digest 

(fragment bp + plasmid bp) x (1 x109) x 650 
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replicates. The plates were sealed and centrifuged for a few seconds to ensure bubbles 

are removed.  

Quantitative PCR was performed with a C1000 Thermal cycler equipped with a 

CFX96 Real-time PCR detection system (BioRad), using a SensiFAST SYBR Hi-ROX Kit 

(Bioline) as per the manufacturer’s instructions for a three-step cycling programme. For 

16S rRNA qPCR a 95°C initial denaturation step for 3 minutes was followed by 40 cycles 

of 95°C for 5 seconds, 53°C for 10 seconds and 72°C for 25 seconds, at which point the 

fluorescence was quantified. For the melt curve stage, the initial temperature was 95°C for 

15 seconds, and then increased from 70°C to 95°C with the data collected every 0.2°C 

increase. dsyB qPCR involved a 95°C initial denaturation step for 3 minutes was followed 

by 40 cycles of 95°C for 20 seconds, 60°C for 30 seconds and 72°C for 30 seconds, at 

which point the fluorescence was quantified. For melt curve analysis, the initial 

temperature was 95°C for 1 minute, and then increased from 60°C to 95°C with data 

collected every 0.5°C increase. For each condition and gene, the cycle threshold (Ct) 

values of the technical and biological replicates were averaged and manually detected 

outliers were excluded from further analysis. Standard curves of control DNA were 

calculated from five points in 1:10 dilutions, and used to calculate copy numbers in the 

samples. 

 

2.16 General in vivo and in vitro genetic manipulations 

Plasmids (Table 2-3) were transferred to E. coli by transformation, or R. 

leguminosarum J391 or T. profundimaris by conjugation in a tri-parental mating using the 

helper plasmid pRK2013. Routine restriction digestions and ligations for cloning were 

performed essentially as in Downie et al. (1983). The oligonucleotide primers used for 

molecular cloning were synthesised by Eurofins Genomics and are detailed in Table 2-2. 

Sequencing of plasmids and PCR products was performed by Eurofins Genomics. 

 

2.17 S-methyl methionine transferase assays 

The SAM-MMT genes from Novosphingobium, R. indicus, T. profundimaris, S. 

mobaraensis and N. chromatogenes were cloned into pET21-a by specific primer-

amplifying fragments from genomic DNA (Table 2-2) that were digested with NdeI and 

EcoRI (BamHI for R. indicus) restriction enzymes. All plasmid clones are described in 

Table 2-3. To measure SMM activity from pET21a clones expressing the mmtN gene in 

E. coli BL21, cultures were grown (in triplicate) overnight in LB complete medium, 1 ml of 

culture was spun down, resuspended in the same volume of LB medium and diluted 1:100 
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into 5 ml LB and incubated for 2 h at 37 °C. This was then induced with 0.2 mM IPTG 

(Sigma-Aldrich) and incubated at 30 °C overnight. For each culture, 1 ml of culture was 

mixed with 0.5 mM L-Met (Sigma-Aldrich), and incubated for 8 hours at 30°C before 

sampling for GC analysis to determine the amount of SMM produced (see ‘Quantification 

of DMS/DMSP/SMM by gas chromatography’). Protein concentrations were determined 

using the Bradford method (BioRad), or using Qubit when higher sensitivity was required. 

Controls run included the media alone, E. coli BL21 and E. coli BL21 containing the empty 

pET21a vector.  

 

2.18 Purification of MmtN and in vitro catalytic assays 

2.18.1 SAM Charcoal affinity testing 

To confirm the sequestering of SAM by activated charcoal 1.5 ml microcentrifuge 

tubes containing either 0.5 mM SAM, 0.5 mM SMM, or both, in 2 x 200 µl sterile water 

were set up. The DMS released from the sample was quantified, then samples were mixed 

with 400 µl of an activated charcoal solution (38 mg ml−1 in 0.1 M Acetic Acid), incubated 

for 5 minutes at room temperature, and centrifuged at mazimuum speed for 1 minute to 

remove the charcoal and the compounds adsorbed to it. The remaining supernatant was 

carefully removed and the DMS measured and compared to levels before charcoal. 

2.18.2 Novosphingobium cell lysate activity 

For Novosphingobium cell lyaste experiments, cultures were inoculated in YTSS 

then harvested by centrifugation and resuspension into a 50 mM Tris-HCl buffer. Samples 

were sonicated to lyse the cells, then centrifuged at maximum speed to pellet debris, and 

the lysate was removed. This lysate was dialysed to remove any pre-existing metabolites, 

using dialysis tubing (SpectrumLabs) in 2 litres of dialysis buffer (20 mM HEPES, 150 mM 

NaCl, pH 7.5) at 4°C overnight. From this lysate 2 x 200 µl was mixed with either 1 mM 

SAM, 1 mM Met, or both, and then incubated for 30 minutes at room temperature, allowing 

for cell extract activity assay. MMT activity was measured in the samples by adding 100 µl 

10 M NaOH and heating for 10 minutes at 80°C before quantifying by GC. 

2.18.3 Purifying MmtN 

The MmtN protein was expressed in E. coli BL21 cultures grown in LB media at 

37°C, to an OD600 of 0.8 – 1.0, and then induced at 20°C for 16 hours with 0.5 mM isopropyl 

β-D-1-thiogalactopyranoside (IPTG). The protein was purified first with Ni2+-NTA resin 

(QIAGEN, Germany), and then fractionated using gel filtration buffer (10 mM Tris-HCl [pH 

8.0] and 100 mM NaCl) on a Superdex-200 column (GE Healthcare, America). Purification 

of the protein took place at 4°C. For the Ni2+-NTA resin purification, wash buffer (50 mM 
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Tris-HCl [pH 8.0], 250 mM NaCl and 20 mM imidazole) was used to remove protein 

impurities, followed by the elution buffer (50 mM Tris-HCl [pH 8.0], 250 mM NaCl and 250 

mM imidazole) to elute the purified protein from the column. MmtN enzyme activity was 

measured by monitoring the production of SAH (S-adenosyl homocysteine) produced by 

the demethylation of SAM, detected by HPLC. Optimal MmtN activity was determined by 

testing temperature and pH conditions, and comparing enzyme activity, with the highest 

activity defining 100 % activity, and other tested conditions described as relative to it. The 

reaction mixtures were incubated at temperature intervals of 10°C, from 0°C to 60°C, for 

30 minutes For optimal pH levels MmtN activity was examined using Brtitton–Robinson 

buffer (40 mM H3BO3, 40 mM H3PO4 and 40 mM CH3COOH), at pH values between pH 

5.0 and pH 10.0. The kinetic parameters (Km) were determined by non-linear analysis, 

based on the initial rates and determined using 3.34 µM MmtN and 0.1 – 4 mM SAM, or 

0.1 – 6 mM Met  

 

2.19 Mutagenesis of mmtN and phenotyping 

A T. profundimaris spontaneous Rif-resistant mutant was created to enable 

selection of T. profundimaris away from E. coli. A highly concentrated number of cells 

(1010) was plated on MB-Rif plates and incubated for 48 - 72 hours, until colonies grew. 

These were picked and tested to confirm resistance. The T. profundimaris-Rif strain was 

then treated as wild-type for all the experiments performed comparing the mmtN- to wild-

type. Primers were designed to amplify a fragment of 500 bp internal to the T. 

profundimaris WPO211 mmtN open reading frames (Table 2-2) as well as containing 

restriction sites for the enzymes BamHI and EcoRI This fragment was cloned into 

pBIO1879 (Todd et al. 2011), a derivative of the suicide vector pK19mob to form 

pBIO19TK. This was transferred to T. profundimaris-Rif+ by tri-parental conjugation, using 

the helper strain E. coli pRK2013. Mutants in which the plasmids had recombined in the 

target genes were selected for by growth on YTSS agar containing rifampicin (WPO211), 

kanamycin (pBIO1879) and spectinomycin (pBIO1879). Potential T. profundimaris mmtN 

mutant colonies were isolated (~200 colonies at 100 dilution), and all were checked for 

DMSP production and were confirmed to have worked by digestion with with BamHI and 

EcoRI to show the insert. PCR was also used with primers designed to either side of where 

the plasmid inserts – gels that show no DNA likely have the enormous plasmid inserted 

into the DNA. The mutant was complemented by crossing the pBIO21N1 plasmid 

containing the Novosphingobium mmtN gene back into T. profundimaris and observing the 

return of at least some function.  
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To identify a phenotype for the mutations in mmtN, T. profundimaris wild type and 

mmtN− strains were grown in MBM with varying levels of salt and nitrogen, and tested for 

survival after freezing. To test the effect of salinity on the mutant, the wild type and mutant 

strains were grown in triplicate MBM minimal medium with 0.5 mM nitrogen (now standard) 

made with different amounts of sea salts (Sigma-Aldrich) equivalent to salinities of 35 and 

50 practical salinity units (PSU), with 35 being the approximate salinity level of sea water, 

and growth of the strains was monitored spectrophotometrically by the optical density at 

600 nm (OD600) until reaching stationary phase. OD values were measured every hour. To 

test the effect of nitrogen levels, the strains were grown in 35 PSU MBM, with 12 mM 

nitrogen to determine the effect of higher levels of nitrogen. Growth was monitored by 

OD600. To test the tolerance to freezing, cultures of the wild type and mutant strains were 

grown to stationary phase in 35 PSU MBM (0.5 mM NH4Cl) then adjusted to the same cell 

density by measuring the OD600 of each culture, spinning down an appropriate volume (∼1 

ml) of culture and then resuspending the cells in 1 ml of the same medium. A 100 µl volume 

of each culture was removed, serial diluted and then plated on MB agar plates to count 

the number of colonies that grew after 2–3 days growth and used to calculate the 

percentage of cell survival for the two strains after exposure to freezing. The remaining 

900 µl of culture was placed at −20 °C for 5 days before thawing, serial dilution and plating 

as above. To further test for any phenotype changes in survival for the two strains 

competition experiments were performed. Cultures of the wild type and mutant strains 

were grown to stationary phase in 35 PSU MBM (10 mM NH4Cl) and mixed in equal parts 

(500 µl of both). The mixed culture was plated for single colonies on MB agar and these 

were picked after 2 days of growth at 30 °C and tested for kanamycin/spectinomycin 

resistance to determine survival. 

The T. profundimaris mmtN- mutant was complemented with an mmtN gene to 

observe a return to function. The plasmid that was used was the Novosphingobium mmtN 

gene that was subcloned from pBIO21N1 into the taurine-inducible wide-host range 

plasmid, pLMB509 using the NdeI and EcoRI restriction enzymes, creating pBIO509N.. As 

it was cloned in pLMB509, it was resistant to gentamycin, meaning that it could easily be 

selected for when mobilised into the mutant. The mmtN clone in pBIO509N was mobilised 

into the T. profundimaris-Rif mmtN- mutant through tri-parental mating, and positive 

colonies growing on genetamycin were tested for the return of DMSP production by GC. 

 

2.20 Statistics 

All measurements for DMSP production or DsyB/MmtN enzyme activity (in cell 

lysate experiments or enzyme assays) are based on the mean of at least three biological 
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replicates per strain/condition tested, as are the metegenomes and 16S amplicon 

sequencing. 

 

2.21 Sequencing and analysis 

2.21.1 16S rRNA amplicon sequencing 

The 16S rRNA gene amplicon sequencing analysis of the DNA extracted from the 

grassland soil samples was performed by MR DNA (Shallowater, TX, USA). Three 

biological replicates of each condition were analysed. The primer set 515F/806R of the V4 

variable region of the 16S rRNA gene (Caporaso et al., 2012) was used in the PCR 

reaction, with the former being barcoded. The PCR reaction consisted of an initial step of 

94 ºC for 3 min, followed by 28 cycles of 94 ºC for 30 s, 53 ºC for 40 s and 72 ºC for 1 min, 

after which a final elongation step at 72 ºC for 5 min was performed. Samples were later 

purified using calibrated Ampure XP beads. Purified products were used to prepare an 

Illumina DNA library. Sequencing was performed on a MiSeq system according to the 

manufacter’s instructions and data were processed using the MR DNA analysis pipeline, 

obtaining an average of 47 984 reads per sample with an average length of 300 bp. The 

data processing included joining the sequences, depleting of the barcodes, removing 

sequences <150 bp and sequences with ambiguous bases. Resulting sequences were 

denoised, operational taxonomic units (OTUs) generated and chimeras removed. 

Sequencing was run on the hits and files from the runs were converted to OTU 

tables, joined in Qiime v1.8. The samples with fewer than 150 bp in size or ambiguous 

bases were filtered out. After running preliminary summary statistics on the data, all 

samples were rarefied to 36,066 sequence counts per sample. The joined tables were 

then split according to type of sample; time 0, control or nriched. Each group of samples 

were analysed separately at the genus level, and the genus-level tables and 

corresponding meta data files were uploaded to a Calypso bioinformatics program 

(http://cgenome.net/wiki/index.php/Calypso) (Zakrzewski et al. 2016). Data were 

normalized using total sum normalisation to convert raw counts to relative abundances. 

Taxa with less than 0.01% mean relative abundance across all samples were removed. 

This kept 330 genera, excluding 491 from the original 821 genera. Rarefaction curves were 

created to demonstrate species richness, with average number of species (richness) 

plotted against number of reads sampled.  

2.21.2 Metagenomic sequencing  

Samples for Time 0, Control and Enriched sample groups were combined in equal 

parts to create pooled samples of the three conditions, in triplicate, on which metagenomic 

http://cgenome.net/wiki/index.php/Calypso)
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analysis could be performed. This sequencing was also carried out by Mr DNA, at 2 x 150 

bp 10-20 million paired sequences per sample. Libraries of DNA extracted from samples 

were prepared using the Nextera DNA Sample preparation kit (Illumina, San Diego, CA, 

USA) following the manufacturer's user guide. The initial concentration of DNA was 

evaluated using the Qubit® dsDNA HS Assay Kit (Life Technologies, Carlsbad, CA, USA). 

The samples were then diluted to achieve the recommended DNA input of 50 ng at a 

concentration of 2.5 ng·µl-1. Samples underwent simultaneous fragmentation and addition 

of adapter sequences. These adapters were incorporated over 5 cycles of PCR. Following 

the library preparation, the final concentration of the library was measured using the 

Qubit® dsDNA HS Assay Kit (Life Technologies), and the average library size was 

determined using the Agilent 2100 Bioanalyzer (Agilent Technologies). The average library 

size Time 0 samples was 826 bp, 931 bp for Control samples and 1364 bp for Enriched. 

The library was then pooled in equimolar ratios of 2 nM, and 10.5 pM of the library pool 

was clustered using the cBot (Illumina) and sequenced paired end for 300 cycles using 

the HiSeq 2500 system (Illumina). Reads were quality-filtered and trimmed using 

Trimmomatic (Bolger et al., 2014), obtaining an average of 13 909 226 reads per sample 

with an average length of 151 bp. Metagenomes were then assembled using SPAdes 

assembler with kmers 55 to 127 (Bankevich et al., 2012), and assemblies were analysed 

using Quast (Gurevich et al., 2013). N50 values were ~1 kb for all metagenomes 

assemblies.  

The abundance of functional genes in unassembled metagenomes was 

determined by tBLASTx (www.ncbi.nlm.nih.gov) of selected ratified gene sequences 

(dsyB, mmtN, DSYB, Alma1, ddd genes) against the raw reads (E≤e-4). Each potential 

sequence retrieved from the analysis of metagenomes was manually curated by BLASTp 

against the RefSeq database and discounted as a true sequence of interest if the top hit 

was not to a known sequence. Only unique hits were counted. Hit numbers were 

normalised against read number of the smallest sample, to gene length and to hits of recA.  

2.21.3 Analysis of metagenomes/metatranscriptomes 

Hidden Markov Model (HMM)-based searches for mmtN homologues in 

metagenome and metatranscriptome datasets were performed as described in (Curson et 

al. 2018) using HMMER tools (version 3.1, http://hmmer.janelia.org/). The MmtN protein 

sequences were used as training sequences to create the HMM profiles. Profile HMM-

based searches eliminate the bias associated with single sequence BLAST queries. HMM 

searches were performed against peptide sequences predicted from OM-RGC database 

assemblies and all hits with an E value cut-off of 1e−30 were retrieved. In the case of 

metatranscriptome datasets (Tara Oceans and GeoMICS metatranscriptomes), 

homologues with an E value cut-off of 1e−5 were retrieved. Each potential MmtN sequence 

http://www.ncbi.nlm.nih.gov/
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retrieved from the analysis of metagenomes and metatranscriptomes was manually 

curated by BLASTP analysis against the RefSeq database, and discounted as a true MmtN 

sequence if the top hits were not to a recognised MmtN. To estimate the percentage of 

bacteria containing mmtN, the number of unique hits to MmtN in metagenomes was 

normalized to the number of RecA sequences.  
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3 DEVELOPING dsyB GENE PROBES 

 

3.1 Introduction 

3.1.1 Using gene probes to study dsyB 

One of the aims of this work was to study the diversity and abundance of dsyB (the 

first bacterial DMSP-synthesis gene to be discovered) in marine environments, as well as 

to identify it in multiple bacterial species. This is because Curson et al. (2017) are confident 

that it can be utilised as a reliable reporter for bacterial DMSP production, as the presence 

of dsyB in an organism is likely indicative of its ability to produce DMSP. Therefore, by 

studying its distribution in an environment we are, by extension, studying the distribution 

of the potential for bacterial DMSP production in any tested environment. Furthermore, 

studying the transcription of dsyB in a given environment would give a good indication that 

the microorganisms possessing this gene are likely producing DMSP. There are both 

culture-dependent and culture-independent methods through which we can investigate the 

abundance, diversity and expression of dsyB in the environment or in model organisms, 

including metagenomics, metatranscriptomic sequencing, metaproteomics and also 

through the use of gene probes on environmental DNA and RNA. This chapter focuses on 

the design, optimisation and validation and use of dsyB gene probes. 

There are multiple ways in which gene probes can be used, including in southern 

blotting (McDevitt et al. 2002), fluorescence in situ hybridization (FISH) (Mühling et al. 

2008), and other fluorescence experiments that involve nucleic acid sequences 

complementary to a target sequence (McLenon & DiTullio 2012). Indeed, primers 

designed to the bacterial 16S ribosomal RNA gene are a type of gene probe, be they 

designed to a phylum/class for use in DGGE analysis (Mühling et al. 2008), or more 

generalised for phylogenetic identification (Lane 1991). For the purpose of this study 

however, it was decided that gene probes in the form of degenerate primers designed to 

functional dsyB was the most suitable approach.  

Degenerate primers are oligonucleotides specifically designed to anneal to 

conserved components of a functional gene, in this case dsyB. The design process 

involves aligning known functional gene sequences, identifying conserved regions and 

then designing primer sets which allow you to specifically target this gene in complex 

nucleotide preps. The aim is to amplify one gene from a phylogenetically diverse group of 

bacteria, where the gene sequences are similar but not identical (Ashelford et al. 2002). 

The primers are designed at the amino acid level as, given the degeneracy of some amino 

acids, there are more conserved regions to observe. In order for a primer to be classed as 
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‘degenerate’ it must contain one or more degenerated base pairs in the sequence, 

accounting for single nucleotide differences in the nucleic acid sequences (Iserte et al. 

2013). These bases have varying levels of degeneracy, with some encoding a fifty-fifty 

chance between two bases at that site, and others offering three or even all four options 

in equal proportion during manufacture (Iserte et al. 2013). 

These degenerate primers can be exploited in several ways that allow us to study 

multiple aspects of dsyB in the environment. Firstly, they can be used in PCR reactions to 

test isolated species for the presence or absence of the gene, without having to send the 

whole genome for sequencing. This is cost and time effective, and allows for large-scale 

screening of bacterial isolates. Furthermore, these primers can be used in diversity assay 

amplicon sequencing of an environment to observe the distribution of dsyB-containing 

bacteria, and how this distribution changes between environments or when treated under 

different conditions. Finally, these primers, if designed properly (described below), can 

also be used in quantitative PCR experiments on DNA and cDNA, enabling us to study 

both the abundance and transcription of dsyB. The latter use is an extremely powerful tool 

to estimate the significance of a process in an environment, e.g. bacterial DMSP 

production in Stiffkey salt marsh sediment, the focus of this thesis. 

3.1.2 Use of degenerate primers in literature 

Degenerate primers (or variations of them known as mixed primers) have been 

used in research for years and are often utilised as a means to study functional genes. In 

the literature they have aided in the answering of a variety of questions, from elucidating 

the full sequence of a gene from a known fragment to identifying entirely new or 

uncharacterised sequences of a particular gene (Compton 1990). 

One example of how degenerate primers have been used to isolate and clone a 

full-length gene from only partial amino acid sequences is seen in Lee et al. (1988) in the 

study of a urate oxidase, an enzyme involved in the oxidation of uric acid to allantoin in 

most mammals (excluding humans and some primates). At the time of publishing, DNA 

sequencing was more complex and time-consuming than it is today, so this technique of 

using mixed oligonucleotide primer amplification meant that the sequencing could be more 

targeted. The identities of the first 32 amino acids of a porcine urate oxidase were 

determined and, due to the degeneracy of many of these amino acids, mixed 

oligonucleotide primers were designed to that section. These primers were used to amplify 

from the reverse transcription of the gene (single-stranded cDNA), and clones that were 

the expected size were checked using Southern blotting with an internal probe, then 

sequenced using the dideoxy procedure. This process resulted in rapid generation of a 

cDNA probe that was then used to screen for the full-length porcine sequence from a 
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cDNA library. This is an example of the convenience of degenerate primers in that there 

is less of a requirement for complete specificity, allowing for variation and unknown 

sequences much more than with regular primer design.  

Another example of this early use of mixed primers is seen in Girgis et al. (1988). 

In this paper primers representing all codon choices for each amino acid were designed 

to the first and last five amino acids of the diabetes associated peptide (DAP). This method 

producing a band of the predicted size from genomic DNA, and resulted in probes that 

could be used to clone the full DAP sequence even with limited amino acid sequence 

information.  

A similar strategy has also been used in the discovery of entirely new or 

uncharacterised sequences that are related to a known gene family. Using conserved 

regions of known sequences, Ehlers et al. (1999) designed degenerate and deoxyinosine-

substituted primers that could successfully amplify the DNA polymerase gene from 

multiple herpesvirus species. They went on to use these primers to amplify several DNA 

polymerase amplicon sequences that were previously uncharacterised, widening the 

understanding of the spread of this herpesvirus in these animals. The primers were also 

used in consensus PCR experiments on DNA extracted from blood samples of various 

species, demonstrating amplification and identity of a particular herpesvirus, the presence 

of which was a novel finding in these particular animals. 

Degenerate primers have been widely utilised as gene probes in the study of genes 

involved in methanotrophy and methylotrophy. For example, in work published by 

McDonald et al. (1995), standard primers were designed using the conserved regions of 

several soluble methane monooxygenase (mmoX) sequences, in order to detect the 

presence of methane-oxidising bacteria in natural environments, without the need to 

perform enrichment and isolation experiments. mmoX is not the only gene involved in this 

pathway however, as there is also a particulate methane monooxygenase (pmoA), which 

is present almost universally in methanotrophs. There is also an ammonia 

monooxygenase (amoA) that is found in ammonia-oxidising nitrifying bacteria. In work 

published by Holmes et al. (1995), degenerate primers were designed to both these genes 

as well, targeting shared conserved regions of their active sites. As neither protein had 

been purified in active form, the fact that their degenerate primers specifically amplified 

homologous genes from nitrifiers and methanotrophs, and that they were not detected in 

species unable to oxidise methane or ammonia, further supports the evidence that pmoA 

and amoA are components of these proteins. 

It was later discovered that mmoX and other genes such as pmoA were not 

ubiquitous within all methanotrophs (specifically proteobacteria) (Lau et al. 2013), so 
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attention was instead turned to mxaF, which encodes for the large subunit of methanol 

dehydrogenase, and is ubiquitous in all but one phylum. In order to use mxaF as a 

phylogenetic and functional marker, it was necessary to design degenerate primers to 

incorporate the wider diversity of sequences compared to mmoX. These primers were 

shown to amplify mxaF from several diverse environments (from soil to hydrothermal vent 

mussel tissues) and isolates, and is a useful phylogenetic marker at the family level (Lau 

et al. 2013). Furthermore, these primers enabled the identification of 13 new putative mxaF 

genes from deep-sea bacteria, showing the usefulness and multi-faceted applications of 

this type of gene probe. 

This technique has also been used in publications looking at aspects of the 

DMSP/DMS cycle (Chapter 1). McDevitt et al. (2002) employed a similar method for the 

elucidation of genes involved in the DMS dehydrogenase (ddh) cluster in Rhodovulum 

sulfidophilum, which catalyses the oxidation of DMS to DMSO, during photoautotrophic 

growth. Conserved regions of the N-terminus amino acids of two of the subunits that make 

up Ddh were identified, and several sets of degenerate primers designed which were then 

used in PCR experiments on chromosomal DNA to discover the full nucleotide and, thus, 

amino acid sequences of the genes in the ddh operon, termed ddhABDC. The amplification 

products of these PCR experiments were sequenced and subsequently used to generate 

probes for Southern blotting experiments that enabled the purification of those genes, 

which were then fully sequenced. 

Finally, degenerate primers have also been used to study genes involved in the 

catabolism of DMSP. One example is work carried out by Peng et al (2012), where 

degenerate primers were designed to conserved regions of an alignment of dddP 

sequences, and used them to investigate the diversity of sequences within mangrove soil 

environments in Southern China, through culture-independent PCR-based analysis on the 

community DNA. Up to 144 clones of dddP were produced and identified, falling into seven 

distinct phylogenetic groups, three of which included sequences belonging to previously 

known Ddd+ bacteria, whereas the other 69% were from novel bacteria. This demonstrated 

a broad diversity of dddP within mangrove soils, the distribution of which appeared to be 

influenced by external pressures such as pH and availability of nitrogen or sulfur. Since 

this work numerous other dddP sequences have been identified, and it appears that the 

primers designed in this study, although useful at the time, are highly biased towards dddP 

in species of Roseobacter. Another gene involved in DMSP catabolism that was studied 

in this was dmdA, which is involved in the other pathway of DMSP catabolism – the 

demethylation pathway. These degenerate primers were created to be either universal or 

clade-specific, from metagenomic reads pulled from the Global Ocean Sampling 

metagenome (Varaljay et al. 2010). They were designed to cover the natural sequence 
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heterogeneity in dmdA, and were used to compared free-living and particle-associated 

bacterial communities in the coastal waters of Sapelo Island, as well as in qPCR 

experiments. It was found that they did not necessarily increase the diversity amplified 

compared to the specific primers, but equally diverse but they certainly captured a slightly 

different suite of sequences. 

3.1.3 Use of quantitative PCR to study gene abundance and transcription 

Another technique that degenerate primer design can be utilised in is quantitative 

PCR. This method is often used to study functional genes in a given environment, and is 

a recognised and well-utilised technique in research today (Saleh-Lakha et al. 2005). 

Instead of regular PCR where amplification occurs and only the end product is analysed, 

qPCR (or Real-Time PCR) works by monitoring the amplification of the target sequence 

throughout the reaction (real-time). This amplification is detected either through specific 

DNA probes that are fluorescently-labelled, or through a non-specific fluorescent dye, such 

as SYBR green, that inserts into any double-stranded DNA (the output of the PCR). The 

accumulation of fluorescence is measured every cycle at the extension step, and displayed 

in a curve. The number of cycles passed before the fluorescence passes the threshold 

point is the quantification cycle, Cq, and from this number and the curve of standards, the 

copy number in the sample can be calculated and normalised per gram of sample. 

Furthermore, in two-step qPCR, RNA can first be transcribed into cDNA using reverse 

transcriptase and random or sequence-specific primers, then quantified in the same way, 

to analyse gene activity. Another aspect of analysis the melting curve, which is a program 

run after the qPCR that gradually increases the temperature of the mix until 50% of the 

double-stranded DNA is denatured. This can be an indicator of whether or not the specific 

product has been amplified, and is useful in non-specific fluorescence reactions, as the 

dye will intercalate into any double-stranded DNA. Furthermore, with primers that may 

have a degree of non-specific binding, which is especially common in degenerate primers, 

it is possible to restrict the melt curve to only the region in which the curve is expected to 

appear if the specific gene has been amplified. It is still important to use this in conjunction 

with other analysis such as gel electrophoresis to determine a single product.  

In order to use degenerate primers in qPCR assays, there are several 

requirements. The size of the fragment amplified should be as small as possible, ideally 

75 – 200 bp (or at least below 250 bp), the GC content should be ~50 – 60 %, and the 

melting temperature between 60 – 65 °C. Once the primers have been designed, they can 

be optimised by testing different concentrations of primer and a standard template in the 

PCR mix, and also by optimising the times and temperatures of the stages of amplification 

(denaturation, annealing and extension), and detecting a single melt curve.  



 68 

qPCR has been used to study several aspects of the DMSP/DMS cycle in the past 

(Levine et al. 2012). It is a relatively inexpensive culture-independent method that does 

not require large-scale sequencing, unlike techniques like metagenomic or 

metatranscriptomic analysis, although qPCR is often used in conjunction with some of 

these sequencing experiments (Yergeau et al. 2010). Often this is because coverage of a 

particular gene in meta-analysis can be weak, as it is governed by the abundance of that 

gene, which can sometimes be lost under more dominating processes. 

In Yergeau et al. (2010) the fate of methane (production and oxidation) in the 

permafrost versus the overlying active soil was studied using a combination of sequencing, 

qPCR and microarrays. qPCR was performed on DNA extracted from these environments, 

on ribosomal genes for identification (16S rRNA) and functional genes including pmoA and 

amoA. The 16S rRNA analysis showed bacterial dominance in both the active layer and 

permafrost, although there were differences in the dominant phyla. A similarity was also 

observed between the two samples when the metagenomic sequencing was analysed for 

functional genes compared to other samples. There were some differences between the 

qPCR experiments and the sequencing; qPCR was able to amplify (at low concentration) 

some genes that were not detected in the metagenomes, and type II methanotrophs were 

detected in large numbers by qPCR, despite not being detected at all in the metagenomic 

libraries. Despite this, the overarching pattern was similar in that the actual quantification 

of 16S rRNA indicated that type I methanotrophs are the dominant group. Almost all the 

genes related to the N-cycle were detected in both metagenomic samples, which was also 

observed in the copy numbers of all the N-cycle related genes tested by qPCR. Many of 

the differences observed between the two methods of analysis were suggested to be due 

to the bias caused by MDA (multiple displacement amplification) treatment on 

metagenomic samples, demonstrating the importance of applying a combination of 

methods when analysing DNA extracted from the environment, especially at a time when 

sequencing data is so easily available. qPCR methods keep environmental analysis 

targeted, and metagenomic analysis enables us to look at conditions and effects beyond 

what we would expect. Furthermore, where they both show similar results it lends weight 

to the conclusions drawn. They both corroborate and expand upon each other 

As well as measuring the copy numbers of ribosomal and functional genes, qPCR 

is also used to analyse RNA, either through one-step RT-qPCR (Levine et al. 2012), or by 

using a cDNA template that has separately undergone reverse transcription (Saleh-Lakha 

et al. 2005), which is also the method used in this thesis, as it is more flexible and allows 

for a limited amount of starting material. This form of qPCR elevates the knowledge that a 

gene is present in a sample, as it informs us on whether or not this gene is transcribed 

and may be expressed in that environment. If a gene is transcribed in an environment it 
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provides a far better indication as to whether the process is active or not. The work carried 

out on samples from the Sargasso sea (Levine et al. 2012) was an in-depth analysis of the 

abundance and transcription of DMSP degradation genes, as well as studying the DMSP 

lyase enzyme rates and consumption and production rates over a 10-month period in the 

Sargasso sea. qPCR was used to study the variability in abundance of dmdA (a DMSP 

demethylation gene) and dddP (a DMSP lyase gene). This was to study to interplay 

between algal DMSP cleavage (by bacterial DddP) and bacterial DMSP demethylation 

(DmdA). The abundance of both genes was shown to follow similar patterns seasonally to 

those observed in previous metatranscriptomic and qPCR studies, (Vila-Costa et al. 2010). 

It seemed that dddP and a few dmdA subclades were more abundant in winter and spring, 

while the other dmdA clades were of higher abundance in the summer and autumn. 

One-step RT-qPCR was used to quantify the transcription levels of the dmdA and 

dddP genes through the 10-month period, finding them to be relatively low all year, with 

the highest transcript numbers occurring in the summer and early fall, despite dddP being 

more abundant in the winter. Many of the increased transcript numbers coincided with time 

points found to have ‘elevated’ DMSP consumption rates, although there were also times 

DMSP levels were elevated when the transcription of dddP and dmsA was not, suggesting 

that the other DMSP degradation genes could be playing a role at those particular times. 

This could be further studied with degenerate primers designed to other ddd genes to 

observe the interplay between the transcription of all of them through the year. They also 

looked at effect on the transcription of both when subjected to elevated UV-A levels, finding 

that bacterial DMSP cleavage is tolerant of it, while DMSP demethylation is not. As there 

are theories that phytoplankton cleave DMSP to DMS as an anti-oxidant response to UV 

radiation (Sunda et al. 2002), it is possible that DMSP cleavage plays a similar role in 

bacteria. It was originally hypothesised that the two pathways would vary , with species 

choosing one or the other, whereas it appeared that both pathways could take place 

together, although other conditions such as UV-A levels, can still cause a ‘switch’ between 

the two (Levine et al. 2012). 

Gene probes combined with qPCR gives a strong analytical tool for gene 

exploration, allowing abundance and transcription to be measured under a myriad of 

conditions or time-frames. Once degenerate primers are designed to dsyB, qPCR will be 

invaluable to the study of it. 
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3.1.4 Chapter aims 

As detailed in Chapter 1, dsyB is a diagnostic gene for potential bacterial DMSP 

production. The aim of this chapter was to design, test and optimise degenerate primers 

to dsyB, using the amino acid sequences of the 24 known DsyB enzymes that are suitable 

not only for taxonomy based work, but also for qPCR. This was achieved by aligning the 

sequences, identifying conserved regions and calculating the optimum degeneracy. 

Multiple options were trialled before selecting the best forward and reverse primers, which 

were then optimised to get the most specific amplification. PCR on various controls 

(positive and negative) demonstrated that the chosen primers amplify dsyB from multiple 

different species. These primer sets were deemed suitable for qPCR and were used on a 

host of environmental DNA/cDNA samples isolated from a range of different marine 

environments. 
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3.2 Methods and Results 

3.2.1 Primer design 

The process of developing degenerate primers for dsyB as gene probes is briefly 

described in materials and methods, and was carried out with help from Dr Jennifer 

Pratscher. Although it is now known that DsyB sequences are found in over 200 bacterial 

species, at the time of primer design only 24 DsyB amino acid sequences were known 

(Figure 3-1). As detailed in the introduction, these sequences were exclusively from 

marine alphaproteobacteria, of three different classes; Rhodobacterales, Rhodospirillales 

and Rhizobiales. These were aligned using ClustalW, alongside DSYB sequences 

(DMSHB synthase enzymes ~ 33% amino acid identity to bacterial DsyB enzymes, see 

Chapter 1) from eukaryotic algae and corals, and non-functional DsyB-like proteins from 

terrestrial bacteria. The data outputs can be seen in the form of a phylogenetic tree in 

(Figure 3-1) and a multiple sequence alignment in (Figure 3-2).  

From the alignment two primer combination options were designed, with one 

forward primer and two reverse primer options from different conserved regions. These 

were a combination of specific and degenerate bases, with degenerate bases coding for 

an equal proportion of a selection of bases. The degenerate bases used in this design are 

‘S’ which results in either G or C, ‘K’ that gives G or T, and ‘R’ that gives A or G (Table 3-

1).  

 

Table 3-1: The oligonucleotide sequences for the degenerate primers, designed from 

three conserved regions of the 24 DsyB amino acid sequences. 

 

Primer  Sequence GC content Melting 
temperature 

(°C) 
    

    
dsyB_deg1F CATGGGSTCSAAGGCSCTKTT 57 64 
    
dsyB_deg2R GCAGRTARTCGCCGAAATCGTA 45 62 
    
dsyB_deg3R GCCGCCSACRTCSAGCA 71 61 
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DsyB 

DSYB 

Non-DsyB 

Figure 3-1: Maximum-likelihood phylogenetic tree of 24 of the known DsyB proteins used in the 

design of degenerate primers, four ratified eukaryotic DSYB sequences and two non-functional 

‘DsyB’ sequences. The tree is drawn to scale, with branch lengths measured in the number of 

substitutions per site, as indicated on the scale bar. 
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3.2.2 Primer optimisation 

Two primer combination options were designed from the alignments (Table 3-1), 

and tested under multiple conditions. The first step was to determine which primer pair 

was most suitable. The two sets were tested for how well they amplified dsyB from the 

genomic DNA of various controls, and how many non-specific bands were also amplified 

by them. 

The first primer pair tested (dsyB_deg1F and dsyB_deg3R) was discarded 

because, despite various condition changes in an attempt to optimise it, there was never 

any amplification of dsyB observed from A. coralli, as visible by the different-sized band 

when samples were run on gel electrophoresis (Figure 3-3). The closest band in size was 

extracted and sequenced, and found to be a 16S rRNA methyltransferase. The A. coralli 

dsyB was checked using primers designed specifically to the sequence, and confirmed to 

be present and of the correct size in the genomic DNA that was being used. Although dsyB 

was successfully amplified from the other positive controls tested, this non-amplification of 

Figure 3-3: Gel electrophoresis of degenerate dsyB primer optimisation, showing the PCR 

amplification of five positive controls, one negative control and a water control (C). Positive 

controls include O. batsensis (Ob), A. coralli (Am), S. stellata E-37 (Ss), L. aggregata LZB033 

(Lb) and P. bermudensis HTCC2597 (Pb), and the negative control was R. leguminosarum 

J391 (Rl). This amplification was carried out using the primer set dsyB_deg1F and 

dsyB_deg3R, amplifying a 475bp fragment (indicated by the red box). Run against a 1Kb Plus 

ladder 
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A. coralli suggested that the primers were not consistently amplifying dsyB, which was not 

acceptable especially since the other pairing of primers were also working and did not 

have this problem (Figure 3-4). As can be seen in Figure 3-4, when using primers 

dsyB_deg1F and dsyB_deg2R, the correct size product was amplified from all positive 

samples, but not from the negative control. Furthermore, the smaller size (~246 bp) makes 

this combination potentially more useful for qPCR amplification. Thus it was decided to 

continue work with dsyB_deg1F and dsyB_deg2R.  

 

The next step in optimising the PCR program for the dsyB_deg1F and dsyB_deg2R 

primers was finding the optimal annealing temperature. This was accomplished using a 

gradient PCR, testing temperatures between 60°C and 65°C depending on the melting 

temperature of the primers. The optimal temperature was determined to be 61°C, as it 

gave the strongest, most specific band. Following this, the extension time and number of 

cycles were also tested to minimise the non-specific bands that can be amplified. For the 

246 bp sized fragment, extension times using the MyFiTM taq was tested between 15 and 

60 seconds, and found to be most effective at 15 seconds. Several variations in the 

number of cycles were also trialled, between 30 and 40, and the optimum was decided to 

be 35.  

Figure 3-4: Gel electrophoresis of final degenerate dsyB primers, showing the optimised PCR 

amplification of dsyB using degenerate primers on five positive controls O. batsensis (Ob), A. 

coralli (Am), S. stellata E-37 (Ss), L. aggregata LZB033 (Lb) and P. bermudensis HTCC2597 

(Pb), six negative controls R. leguminosarum J391 (Rl), Prymnesium parvum (Pp), 

Chrysochromulina tobin (Ct), Symbiodinium microadriaticum (Sm) and Acropora cervicornis 

(Ac) and a water control (C). This amplification was carried out using the primer set 

dsyB_deg1F and dsyB_deg2R, amplifying a 245bp fragment (indicated by the red box) in all 

positive controls. Run against a 1Kb Plus ladder 
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Under these conditions, all the tested positive controls amplified a single specific 

band, while the negative controls showed little or no amplification, even from the negative 

controls (Figure 3-4). Multiple negative controls were used to test different aspects of the 

degenerate primers. Four of these controls were the synthesised DSYB genes of known 

eukaryotic DMSP-producers (P. parvum CCAP946/6, S. microadriaticum CCMP2467, C. 

tobin CCMP291 and A. cervicornis). The fact that no correct band was attained with the 

dsyB primers demonstrates that they are specific to the bacterial dsyB sequences. Further, 

no PCR products were detected from the other two negative controls, which were DNA 

from alphaproteobacterial strains (R. leguminosarum J391 and Sulfitobacter sp. EE-36) 

that are unable to produce DMSP, and lack dsyB. This demonstrates that the dsyB_deg1F 

and dsyB_deg3R primers and conditions applied do not amplify non-specific fragments at 

a similar size as those attained for dsyB in positive control strains.  

To confirm that these primers indeed amplify dsyB and not another gene at the 

same size, bands were excised and purified using the QIAGENTM gel extraction kit, then 

sent to Eurofins Genomics for dideoxy chain termination method sequencing, using the 

dsyB_deg1F primer. The sequences were checked using BLASTp against the NCBI 

database, and aligned to the known sequences using the Clutsal Omega website 

(https://www.ebi.ac.uk/Tools/msa/clustalo/). The sequences were at least 99% identical, 

confirming that the primers amplify dsyB from genomic DNA. Thus, the dsyB_deg1F and 

dsyB_deg2R primers seem to be suitable for use as dsyB gene probes on genomic DNA 

from pure organisms, enabling us to predict whether an isolate has the genetic potential 

to synthesise DMSP. These were also deemed as suitable to test on environmental 

nucleotides (see below). 

 

3.2.3 Utilising the degenerate primers 

Now that the degenerate primers were designed, optimised and demonstrated to 

amplify dsyB, they were tested to see if they would also amplify dsyB from DNA extracted 

from an environment (Figure 3-5). This would mean that they would be able to be utilised 

in qPCR and RT-qPCR experiments, to analyse abundance and transcription easily as 

well as being used to study dsyB diversity. The environment from which the community 

DNA was extracted for these experiments was Stiffkey salt marsh, specifically sediment 

sampled from tidal pools in the lower section of the marsh (see Chapter 4). 

 

 

https://www.ebi.ac.uk/Tools/msa/clustalo/)
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This PCR confirmed that dsyB is easily amplified from the salt marsh DNA. Several 

of the resulting gel fragments were extracted and purified, and then ligated into the pGEM-

T Easy plasmid to make clone libraries. This was done to test the diversity of dsyB 

sequences that can be identified in an environment, and to show that multiple sequences 

of dsyB can be amplified by the same primers. The successfully ligated colonies were 

picked, cultured and the plasmid extracted and sequenced (see Chapter 2). The 

sequences were checked to make sure they were dsyB using BLASTp, and out of 19 

tested, 17 were confirmed to be dsyB. DNA sequences were translated in the correct 

reading frame, and then added to the ClustalW alignment to be placed in a phylogenetic 

tree (Figure 3-6), alongside the other 24 sequences that were used to generate the 

maximum-likelihood tree in Figure 3-1. 
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Figure 3-5: Gel electrophoresis showing the PCR amplification of dsyB using the primers 

dsyB_deg1F and dsyB_deg2R on multiple samples of DNA from a salt marsh environment (1A 

– 3J), a negative control not containing dsyB (S. putrefaciens), and a water control (C). Run 

against a 1Kb Plus ladder. 
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Figure 3-6: Maximum-likelihood phylogenetic tree of the 24 known DsyB proteins used in the 

design of degenerate primers, including the clone library sequences from the salt marsh 

environment (1A – 3F). The tree is drawn to scale, with branch lengths measured in the 

number of substitutions per site, as indicated on the scale bar. 
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The clone library from the Stiffkey salt marsh environment demonstrated that the 

dsyB_deg1F and dsyB_deg2R primer set amplify DsyB sequences that span a range of 

known DsyB sequences. There seems to be a diverse array of DsyB sequences in the salt 

marsh environment that are easily detected using this combination of degenerate primers. 

From this information, we can hypothesise that this salt marsh environment contains a 

variety of bacterial species possessing the ability to synthesise DMSP from Met, and that 

in this way they contribute to the high DMSP levels known to exist in salt marshes (Steudler 

& Peterson 1984). Historically it was thought that the high DMSP and DMS production 

levels in salt marshes was due to the DMSP-producing plant Spartina that widely inhabits 

them (Kocsis et al. 1998). This data suggests that perhaps bacteria may significantly 

contribute to these levels, given they are likely to always be present (discussed in 

subsequent Chapters). It is interesting that the dsyB primers generate a good proportion 

of DsyB sequences which cannot easily be classified by organisms whose genomes have 

been sequenced (Figure 3-6). This provides evidence that the primer set captures a range 

of DsyB diversity, and that Stiffkey salt marsh may contain a high level of DMSP-producing 

bacteria with diverse DsyB sequences, and is something that is addressed in subsequent 

chapters. 

The clone library from the Stiffkey salt marsh environment demonstrated that the 

dsyB_deg1F and dsyB_deg2R primer set amplify DsyB sequences that span a range of 

known DsyB sequences. There seems to be a diverse array of DsyB sequences in the salt 

marsh environment that are easily detected using this combination of degenerate primers. 

From this information, we can hypothesise that this salt marsh environment contains a 

variety of bacterial species possessing the ability to synthesise DMSP from Met, and that 

in this way they contribute to the high DMSP levels known to exist in salt marshes (Steudler 

& Peterson 1984). Historically it was thought that the high DMSP and DMS production 

levels in salt marshes was due to the DMSP-producing plant Spartina that widely inhabits 

them (Kocsis et al. 1998). These data suggests that perhaps bacteria may significantly 

contribute to these levels, given they are likely to always be present (discussed in 

subsequent Chapters). It is interesting that the dsyB primers generate a good proportion 

of DsyB sequences which cannot easily be classified by organisms whose genomes have 

been sequenced (Figure 3-6). This provides evidence that the primer set captures a range 

of DsyB diversity, and that Stiffkey salt marsh may contain a high level of DMSP-producing 

bacteria with diverse DsyB sequences, and is something that is addressed in subsequent 

chapters. 

3.2.4 Optimising degenerate primers for qPCR 

As previously mentioned, one of the intended uses for these degenerate primers 

was in qPCR and RT-qPCR analysis of DNA/RNA extracted from the environment. This 
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method of analysing functional genes allows for a more in-depth study, as it is not only 

encompasses the diversity of sequences but it also quantifies the amount of dsyB 

gene/transcripts present in a sample, and is not restricted to single gene analysis, or to 

those species that are cultivable in the laboratory. As the chosen primer combination 

amplifies a ~246 bp sized fragment, the primers were already a good size for qPCR, the 

optimal size being around 200 bp. Although the degenerate primers designed in this 

chapter do not completely fulfil all the requirements for qPCR primers (see above), they 

were shown to be functional, and it was more important to maintain the degenerate 

characteristics. Test runs using a linearised dsyB standard cloned into a pGEM-T Easy 

vector were set up to optimise the program, determine primer concentrations and to check 

for primer dimers. Although there is a small amount of primer dimerization, it is low enough 

that it is only observed in the no template control (NTC), and the melt curve is identifiable 

as non-dsyB. The efficiency of this primer pair was also calculated during this test run, and 

it is 81.86%, which is acceptable for environmental work. The DNA that was used as the 

template in this dsyB qPCR was extracted from Stiffkey, Cley and Yarmouth sediments, 

which are characterised in Chapter 4 and were found to contain high concentrations of 

DMSP. These samples were also used in RT-qPCR analysis, on cDNA that was created 

from RNA extracted at the same time, which was then reverse transcribed using the 

specific primer dsyB_deg2R as it was found that random hexamer primers did not produce 

any detectable dsyB amplification (see below). The qPCR reactions were set up 

inTriplicate samples (biological replicates) were run in triplicate (technical) (Figure 

3-7). The conditions for dsyB qPCR amplification are described in Chapter 2. 

Due to the lack of ubiquitous housekeeping gene primer sets that could be used 

on DNA extracted from the environment, 16S rRNA gene qPCR primers were decided 

upon as the simplest choice as a rough method of normalisation for the abundance of 

bacterial species in the environment. There is supposed to be an average of 3.61 copies 

of this gene per bacterium (Sun et al. 2013), so copy numbers calculated from the qPCR 

were divided by 3.61 to estimate the cell number in the sample. This then allowed us to 

estimate the extent of bacteria with the genetic potential to produce DMSP in varied marine 

samples. The reaction mix was the same as for the dsyB qPCR. The conditions for 16S 

rRNA qPCR amplification are described in Chapter 2 (Figure 3-7). 
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3.2.5 Using degenerate primers in qPCR 

Running qPCR with ribosomal primers as well as with the dsyB degenerate primers 

on the same samples, provides a way to normalise the abundance of dsyB in those 

environments, and calculate a hypothetical percentage of bacteria containing dsyB. In 

samples taken from Stiffkey salt marsh. it was estimated that 0.21% of bacteria possess 

dsyB, in Yarmouth dsyB is predicted to be in 0.23% of species, and in Cley it is thought to 

be 0.1%.The percentage in Stiffkey seems lower than in the predicted percentages 

calculated from metagenomic work (see Chapter 6), which could be due to the dsyB 

degenerate primers not amplifying all possible dsyB sequences. All these samples are 

coastal, and have high salinity, both Cley and Stiffkey being well-known salt marshes, and 

Yarmouth is an estuary (see Chapter 4).  

Despite seeming low in value (< 0.23), it should be kept in mind that the number of 

bacteria in the sediments are extremely high, being at least 109 in number. Thus even at 

these relatively low predicted percentages, this equates to a huge number of bacteria 

potentially producing DMSP. In fact it is far more than is present in tested seawater 

samples (see Chapter 6). 

After performing qPCR experiments on dsyB standards and on DNA extracted from 

the environment, the next step was to perform reverse transcription on purified RNA to 

Figure 3-7: A semi-logarithmic plot of the abundance (copies/g) of the functional gene dsyB 

(Blue stripes) and the 16S rRNA gene (green dots) amplified using qPCR from Stiffkey salt 

marsh, Cley salt marsh and Yarmouth estuary. dsyB was amplified using the degenerate 

primers dsyB_deg1F and dsyB_deg2R, and the 16S rRNA gene amplified using ribosomal 

primers Eub_338F and Eub_518R. Samples are the average of triplicate data with error bars 

indicating the standard error of the means. 
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produce cDNA. After several experiments using a random hexamer primer in the reverse 

transcription, it seemed that perhaps dsyB is too low in abundance to be easily amplified 

in this manner. Instead, specific primer reverse transcription was utilised, using the 

dsyB_deg2R primer. RT was performed on purified RNA quantified by Qubit. RNA quality 

was assumed. Due to the lack of viable housekeeping gene primers, it was difficult to 

provide much standardisation between samples. Using 16S primers was not appropriate, 

as samples were not treated to remove rRNA and were therefore dominated by 16S rRNA, 

masking other genes and therefore not useful for comparison to the dsyB-RT samples. 

Instead all RT reactions were performed on as close to 100 ng RNA as possible from each 

sample, and then normalised per gram of sediment.  

This method proved more successful, and although it limits the claims that can be 

made about dsyB transcription in the natural environment, we were able to demonstrate 

that dsyB RNA is present in these samples (Figure 3-8) and not in controls. Therefore, it 

is possible to state that bacterial DMSP production through the transamination pathway is 

active in these environments. Although we cannot compare to other gene transcript levels 

in the tested samples, we can at least claim that dsyB transcription might be higher in one 

sample rather than another.  

 

 

Figure 3-8: A semi-logarithmic plot of the transcription levels (transcript copies/g) of the 

functional gene dsyB RT-qPCR, using specific primer cDNA from Stiffkey salt marsh, Cley salt 

marsh and Yarmouth estuary. Samples are the average of triplicate data with error bars 

indicating the standard error of the means. 
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All three marine sediments show that while dsyB appears to be present at fairly 

similar levels of abundance between them (Figure 3-7), the transcription of this gene at 

those sites has more variation (Figure 3-8). DsyB transcripts seem most abundant in 

Stiffkey salt marsh surface sediment, and possible reasons for these differences will be 

explored in other chapters in this study. Clone libraries were made eith the amplicons and 

are currently being sequenced. Unfortunately I do not currently have the data to include in 

this thesis, but it will be important because it will inform us as to the active bacteria likely 

producing DMSP in these particular environments.  



 84 

3.3 Discussion 

3.3.1 Summary of work 

This chapter set out to design and test degenerate primers as an analytical tool for 

the study of dsyB diversity, abundance and transcription in marine sediment environments. 

Known sequences of the gene were aligned and conserved regions identified. Several 

primers were designed and tested against both positive and negative genomic DNA 

controls, and the most specific primer pair chosen.  

3.3.2 The primer design process 

It was surprising that the first set of primers tested in Figure 3-3 were unable to 

amplify dsyB from A. coralli genomic DNA, as the A. coralli dsyB-specific primers amplified 

it correctly, at the right size. Even looking at the alignments in Figure 3-2, in theory the 

primers should have amplified. It could be because dsyB_deg3R was a slightly smaller 

primer than dsyB_deg1F and dsyB_deg2R, and therefore was more likely to bind 

elsewhere in the genome. For whatever reason, this issue was only found with the 

dsyB_deg1F and dsyB_deg3R combination, as the other set successfully amplified a 

246bp-sized fragment from all positive strains tested.  

The chosen primers were then tested on DNA extracted from the environment and 

found to successfully amplify a specific band at the correct size. To confirm that the 

amplified band was dsyB, clone libraries were constructed and several of them sequenced. 

The majority of them were indeed dsyB, demonstrating that the primers are able to amplify 

from both pure genomic DNA and mixed DNA from an environment. It was important that 

these primers were able to do both, as a large reason for their design was to use to test 

isolated bacteria for the presence of dsyB, and to study its abundance in various 

environments.  

From these experiments, we can be almost certain that the presence of a band at 

~246bp after PCR with dsyB_deg1F and dsyB_deg2R denotes the presence of dsyB in a 

species or environment, showing that these degenerate primers are useful tools in 

predicting for the ability to produce DMSP. However, it does not necessarily follow that the 

absence of a band means the absence of the gene – with dsyB sequences continually 

being discovered in new species, even some gammaproteobacteria, it is entirely possible 

that more divergent dsyB sequences exist that still produce a viable enzyme, whilst not 

being amplified by the same primers. This would be potentially rife with horizontal gene 

transfer, which we know is likely with dsyB (Curson et al. 2017). Therefore, whilst these 

primers are effective, they are not definitive, and it is important to take this into account 

when making claims about dsyB abundance, as it is definitely underestimated when using 
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only these primers. This is another reason for combining degenerate primer analysis with 

other techniques, such as metagenomics and metatranscriptomic sequencing (Yergeau et 

al. 2010); to ensure that any conclusions drawn aren’t affected by lack of coverage. It is 

also likely that, with any degenerate primers, there is a degree of primer bias towards 

particular species or sequences (Jin & Mattes 2011), due to PCR conditions, or even 

because of primer mismatches. This can be remedied somewhat by using more 

degeneracy when designing the primers, although this can lead to a lack of specificity. 

Work in the future should look into any potential bias of the dysB primers by mixing different 

standard DNA samples at known concentrations and then observing the relative 

proportions in the clone libraries generated from the PCR product. 

3.3.3 Problems with qPCR 

One issue that was encountered when using qPCR on multiple genomes extracted 

from the environment was the difficulty in finding a housekeeping gene. Although we used 

the 16S rRNA gene for inferring bacterial abundance in sediment, and by extension the 

percentage of bacteria containing dsyB, there are several problems associated with this. 

Firstly, only one primer set was utilised for all qPCR amplification. All primers have some 

degree of bias, meaning that there are undoubtedly species that were not picked up, and 

others that were over-represented. If time had not been a constraint, it may have been 

beneficial to experiment more with different primer combinations, or even use a suite of 

16S rRNA primers that are designed to different domains, phyla or classes (Yergeau et al. 

2010). Furthermore, although the 16S rRNA gene is ubiquitous among bacteria, and is 

excellent for phylogenetic analysis, there is also no guarantee that all species only contain 

one copy – indeed, this is known to not always be the case (Rainey et al. 1996). This 

means that copy numbers could be grossly overestimated, and therefore dsyB 

percentages underestimated compared to the actual number. It is for this reason that other 

methods of study, including metagenomics, have also been undertaken (see Chapter 7). 

Finally, as previously discussed, 16S rRNA primers were not viable for normalisation of 

specific primer RT, making it difficult to draw more significant conclusions from the RT-

qPCR. In future work, perhaps genes such as recA should be looked into as a possible 

substitution, as it has been used in the past (Giloteaux et al. 2013). 

Despite this, much can still be drawn from qPCR and RT-qPCR using dsyB 

degenerate primers and 16S rRNA primers. Even between just three highly saline 

sediment environments there is much to be observed. Stiffkey, Yarmouth and Cley appear 

to have similar 16S copy numbers, but the percentage of dsyB sequences varies quite 

dramatically (Figure 3-7). This is mostly echoed in the differences between dsyB transcript 

numbers (Figure 3-8), showing a decrease in dsyB transcription in Yarmouth compared 

to Stiffkey, and an even greater one in Cley. One reason for this difference could be the 
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type of sediment, and also the site within the salt marsh that they were sampled. Samples 

were taken from Stiffkey salt marsh from the middle of tidal pools close to the sea, whereas 

the samples from Cley, whilst still taken from the salt marsh, were taken from a higher site 

that although still saline, is not as influenced by tides, and can be either much higher 

salinity or much lower salinity depending on rainfall. This could have an effect on both the 

presence of dsyB, and its activity. Yarmouth appeared to have similar levels of dsyB 

abundance, but significantly lower levels of dsyB transcripts. The different conditions 

between Stiffkey and Yarmouth could explain much about the regulation of dsyB, and 

perhaps even the role of DMSP in bacteria. However, only pH, salinity and temperature 

were analysed at each of these sites (see Chapter 4). Further study and more in-depth 

environmental measurement is required to properly explore this topic. 

3.3.4 Concluding Statements 

Degenerate primers as gene probes are an extremely useful molecular tool for the 

study of functional genes. They enable us to broaden our understanding, moving from 

looking at species-specific genes in an environment to looking at the entire spectrum of 

the same gene, as well as giving a wider scope to the search for uncharacterised 

sequences or novel species containing those genes. They are also easily utilised in both 

qPCR and sequencing experiments, including customised diversity assay amplicon 

sequencing using those primers. 

Designing degenerate primers to dsyB has provided many opportunities to study 

various aspects of its abundance, distribution and activity in an environment, which has 

made them a vital tool in answering our questions. These primer sets were extensively 

used in subsequent chapters to determine if DMSP-producing bacterial isolates contain 

dsyB or not, and to study the diversity of DsyB in marine sediments using amplicon 

sequencing.  

Potentially the most important finding of this chapter is that bacteria with the genetic 

potential to synthesise DMSP are abundant in tested marine sediment. Furthermore, given 

that we can detect dsyB transcription in these samples, it leads us to hypothesise that 

bacteria may be important producers of DMSP in these sediment environments, which we 

show in subsequent chapters to be environments of high DMSP standing stocks. 
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4 CULTURE-DEPENDENT IDENTIFICATION 

 

4.1 Introduction 

4.1.1 An introduction to Stiffkey salt marsh 

Studying the importance of heterotrophic bacterial DMSP production in marine 

sediments allows us to draw conclusions about the contribution of bacterial DMSP 

production to the wider environment, and observe gene abundance and activity in situ, 

rather than only in artificial conditions in the lab. To that end, it was decided that bacterial 

DMSP production should be studied in a salt marsh environment. This would be the first 

study of its kind, and would enable the development of techniques that could be applied 

to other environments.  

Stiffkey salt marsh on the North Norfolk coast (Figure 4-2) was chosen as the site 

of study for several reasons. Firstly, salt marsh sediments are highly saline and sulfurous, 

and have DMSP levels several orders of magnitude higher than the overlying seawater 

(see below). Salt marshes have long been demonstrated to be important sites of DMSP 

production (Steudler & Peterson 1984), although until now this has been almost entirely 

attributed to the presence of Spartina grass (Dacey et al. 1987), a known DMSP producer 

(Kocsis et al. 1998). Furthermore, marine sediments cover up to 70 % of the Earth’s 

surface. The tidal pools in the lower marsh of Stiffkey (Davy & Smith 1988) are accessible 

and easily sampled and we will use them as a representive for marine sediment which is 

a major component of the Earth’s surface.  

This sampling site is under an hours drive from the laboratory at UEA, Norwich 

(Figure 4-2) meaning that samples were therefore only a few hours old when they were 

processed. They were therefore fresh and unlikely to have been affected by removal to 

the lab, allowing conclusions drawn to also be applied to sediment in situ. It was also easy 

to sample, as the tidal pools were accessible on foot, and easily identifiable by the Spartina 

grass growing around them. This meant that the same pools could be sampled each time, 

giving confidence to the reproducibilty of the results. The sediment itself was also easily 

identifiable, as the boundary between microoxic and anoxic sediment was distinguished 

by a dramatic colour change (Figure 4-1), meaning that it was easy to ensure that there 

was no contaimination between the two when being processed.  
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Figure 4-2: The location of Stiffkey salt marsh (latitude 52.964947, longitude 0.925655) in 

relation to the UK, Norwich and other salt marshes in Norfolk including Cley salt marsh and 

Yarmouth estuary. 

Figure 4-1: A typical acrylic core sample from a Stiffkey tidal pool. The schematic represents 

the layers seen in the picture, with saline pool water, a top 1 cm layer of oxic sediment, light 

brown in colour, and the rest a dark brown anoxic layer 
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4.1.2 Culture-dependent study of an environment 

In order to study the bacterial contribution to DMSP production within the Stiffkey 

salt marsh environment, a suite of techniques had to be decided upon. The first set of 

experiments carried out were culture-dependent methods including plate isolations and 

characterisation.  

Culture-dependent techniques are some of the oldest, and often simplest, methods 

used to study the microbes within a community and how they function in an environment. 

Indeed, it is sometimes so easy to culture some species that they even grow where they 

are not wanted! Often the isolation of model organisms is the most cost effective way to 

build up a picture of key microbial players in an environment, and the on-going processes. 

Prior to this study, nobody had ever attempted to isolate DMSP-producing bacteria, so 

there was no indication as to how difficult this might be. However, it was decided that 

isolation work would be an important aspect of this study in order to gain an idea of the 

microbes that had this capacity. Thus, we began our environmental study by seeing what 

could be cultured from Stiffkey, and then asking which of these model bacteria might 

produce DMSP. 

The most significant disadvantage to culture-dependent work is the fact that only 

around 1% of bacteria in an environment are predicted to be cultivable under laboratory 

conditions (Davis et al. 2005; Saleh-Lakha et al. 2005), meaning that the majority of 

bacteria are missed. However, often the more prevalent bacteria are the ones most able 

to adapt and grow, meaning they are usually readily isolated. This indicates that there is 

still merit to using this type of study, and indeed, there are several other advantages to 

culturing bacteria from an environment over using only culture-independent methods such 

as metagenomics, metatranscriptomics and qPCR. From our viewpoint culture-dependent 

work was especially important because DMSP production by bacteria was novel, and very 

little was known of the bacteria able to do this, other than what was inferred by genomic 

predictions based on the occurrence of dsyB. Despite the clear importance of culture 

dependent work, it should also be noted that it is not always the case that the most 

abundant and/or important bacteria are the ones you can culture; for example, no one 

would question the importance of SAR11 bacteria in marine biogeochemical cycling 

(Malmstrom et al. 2004), yet these bacteria are notoriously hard to culture. For this reason 

it is vital that any culture dependent work is complemented by suitable culture-independent 

experimentation. 

The degenerate primer clone library work in Chapter 3 demonstrated that bacteria 

with the genetic potential to produce DMSP (dsyB+ bacteria) were present in the three 

tested marine sediment environments, and that the dsyB gene was expressed. Thus far, 
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this is only predictive, and is based on the presence of a single gene, meaning that the 

analysis is biased and does not account for bacteria that might be producing DMSP via 

other pathways, if such bacteria exist. In the same way, 

metagenomics/metatranscriptomics and 16S rRNA amplicon sequencing, despite being 

less skewed and much more representative of the natural environment, can only provide 

information about DMSP production based on what is already known about the genes and 

species involved. There are likely other, more complex methods that can enable the 

discovery of novel DMSP-producing species, such as single-cell sorting and sequencing 

which would enable us to amplify genomes that contain known DMSP-producing genes, 

or more in-depth analysis of metagenomes under different growth conditions. However, 

ultimately, the simplest and most often utilised is plate culturing (Steven et al. 2007; 

Carrión et al. 2017). This method is able to easily isolate bacteria that can be purified and 

tested for DMSP production by GC and/or LC-MS, and is the only method that results in 

pure individual cultures of a DMSP-producing species, regardless of what genes it may or 

may not possess. Although culture-dependent work is biased in as much as you only 

isolate microbes that will grow under lab conditions, it does not predispose or exclude 

bacteria based on the presence or absence of dsyB. 

It is also possible to be reasonably selective when performing plate isolations. In 

some cases the composition of the agar can be changed to semi-solid to increase isolation 

of microaerobic species, or plates can even be incubated in fully anaerobic conditions. The 

salinity or nutrient concentrations can be altered, and any number of additional substances 

can be added in order to push the isolation to favourably grow particular bacterial species. 

All of these alterations can encourage a wider range of bacterial species to be isolated.  

Another strength of culture-dependent isolations of bacterial species is that by 

identifying individual species from a site, it confirms the presence of that species in that 

environment, beyond the level of estimation, especially if the same or similar species are 

isolated multiple times. These isolated species, if easy to maintain and manipulate, can 

sometimes become model organisms for the study of a particular process in that 

environment. This carries more weight than work done on basic models such as E. coli in 

some ways because the species is linked directly to that particular environment, and even 

though the conditions of growth in the lab are not necessarily comparable to those in the 

natural environment, it still gives a more realistic picture. Furthermore, by isolating specific 

bacterial species and sequencing them, it enables a greater level of confidence when 

declaring the presence or absence of genes like dsyB, rather than relying on phylogeny or 

the closest sequence match. 
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4.1.3 Culture-dependent methods in literature 

Most microbiological research on an environment has involved the use of culture-

dependent techniques at some point in the study, often in conjunction with culture-

independent methods in order to give a more complete view of the environment. One such 

study was carried out by Carrión et al (2017), on methanethiol-dependent DMS production 

in terrestrial environments. This work was following on from the discovery of a novel DMS-

producing pathway, the methylation of MeSH to release DMS (Mdd), and the first gene 

associated with it (Carrión et al. 2015). Having characterised this gene, it could then be 

used as a reporter for the Mdd process in different environments, including terrestrial soil 

and marine sediments. Carrión et al. (2017) combines both culture-dependent and –

independent work in the study of this process very effectively to identify microbes involved 

in this process.  

Rates of MeSH consumption and DMS production were measured in samples from 

a variety of environments, and grassland soil was incubated with MeSH in order to enrich 

for MeSH-methylating species that produce DMS, as well as DMS added to enrich for 

DMS-consuming bacteria. Species that were isolated were characterised for their 16S 

rRNA identity, and for the ability to methylate MeSH and/or consume DMS. Alongside 

these isolations, the community was analysed using 16S rRNA amplicon sequencing of 

the T=0 and 14-day enrichments. It was found that the species isolated from T=0 samples 

were consistent with the most abundant classes in the 16S rRNA sequencing, and this 

was the same at genus level, with Pseudomonas, Streptomyces and Bacillus being 

present in both. This pattern was also observed with the enriched samples, even at genus 

level with Ensifer, Pseudomonas and Acinetobacter being the most abundant. The isolates 

were tested for DMS production when supplemented with Met (a MeSH precursor) or 

MeSH, and in T=0 samples ~58% of isolates could generate DMS, demonstrating a 

diverse natural ability in the soil. However, this number increased to ~96% when isolates 

from the enriched samples were tested, demonstrating the effectiveness of enrichment 

cultivation experiments. In this case, both culture-dependent and culture-independent 

methods were used as confirmation against each other – they both showed similar patterns 

of enrichment, and therefore validate the findings of both. It would certainly be worthwhile 

to have such experimentation done, focussed on the process of bacterial DMSP-

production. This is exactly what was attempted in this chapter.  

There are many other studies that also utilise this mix of culturing and high-

throughput sequencing. Steven et al. (2007) is one study that uses the same techniques, 

but with a different application in order to study the diversity of the microbial community in 

the Arctic permafrost. In this study, the two techniques were used to cover different aspects 

of the same site, rather than as confirmation for each other. The culture-independent work 
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involved using community DNA in the creation of 16S rRNA gene libraries for bacteria and 

archaea, which were sequenced and analysed for phylogeny. The isolation work was used 

both to identify previously uncultured organisms from the permafrost samples, and to 

characterise the abilities of those isolates, including their halotolerance and 

psychrotolerance. This enabled Steven et al to draw more in-depth conclusions about the 

salt and temperature tolerance of microbes in that community, as it is the physical 

demonstration of conclusions drawn from the sequencing.  

4.1.4 Culturing bacterial species from Stiffkey salt marsh 

An important aspect of culture-dependent work is, naturally, being able to access 

the sediment from which to culture bacteria. As explained above, Stiffkey is easily 

accessible and easily sampled, and the oxic sediment is immediately identifiable from its 

light brown colour, compared to the dark brown of the anoxic layer (Figure 4-1). Although 

both the oxic and anoxic layers have been shown to produce DMSP (see below), this study 

only used sediment from the microoxic layer, in order to have as much of a focussed and 

in-depth approach as was possible in the time and with the funding available. This was 

also because the microoxic layer has by far the highest standing stock concentration of 

DMSP (compared to the pool water and the anoxic sediment) (see below).  

It is not a complex process to cultivate at least some species of bacteria from this 

type of sediment, as it is known to be bacteria-rich, with some estimates placing the 

number of bacterial cells in intertidal sediments between 2 x 108 and 3.5 x 109 per gram 

(Kuwae & Hosokawa 1999). This is compared to estimates of bacteria in the water column, 

where even in surface waters bacteria only reach numbers up to 1 x 106 per ml (Hobbie et 

al. 1977). This knowledge, combined with the work in the previous chapters that 

demonstrate that Stiffkey has high levels of DMSP, and also contains several versions of 

the DMSP-producing gene, dsyB, meant that we were confident that bacterial DMSP-

producing strains would be easily isolated from the sediment, although this still needed to 

be tested experimentally. 

It is common practice, especially in the Todd lab, to maximise the chance of 

isolating bacteria of interest by carrying out enrichment culturing techniques, such as 

selecting for bacteria able to degrade DMSP by including DMSP in the media as sole 

carbon source. This is relatively easy for bacteria that use a substrate as a carbon source, 

but for DMSP-producing bacteria such substrate enrichments were not appropriate. It was 

not obvious how one could ‘enrich’ for bacteria producing DMSP because, unlike DMSP 

catabolism, there is no single molecule that can be added to increase the activity of those 

species. We would be attempting to enrich for a process, rather than for the use of a 

molecule, and any substrate added is likely to be used as a carbon source, in addition to 
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DMSP production. The process of designing an ‘enrichment’ method for this is described 

below, based on work by (Curson et al. 2017) that showed a variety of growth conditions 

including external conditions like temperature, and internal changes to the media 

composition, all of which were found to alter the production of DMSP by Labrenzia (Figure 

4-3). In the same way, it was proposed that changing some of these aforementioned 

conditions to create an ‘enrichment media’ to incubate sediment in for a period of time 

could push the bacteria to increase DMSP production, possibly conferring a survival 

advantage and eventually skewing the sediment community towards an abundance of 

bacterial DMSP-producers. 

4.1.5 Chapter Aims 

From the degenerate primer PCR amplification and subsequent clone library 

analysis of sediment from Stiffkey salt marsh, we can be confident that DMSP-producing 

bacteria are present in this environment, and RT-qPCR showed that dsyB is actively 

transcribed, confirming that bacterial DMSP production takes place in Stiffkey. We hope 

to show that Stiffkey sediments have higher DMSP standing stocks and production rates 

compared to the overlying seawater, which would suggest that these are highly productive 

areas for DMSP synthesis, perhaps by bacteria.  

The aim of this chapter was to ascertain whether DMSP-producing bacterial 

species could be easily isolated from Stiffkey salt marsh, to design enrichment 

Figure 4-3: DMSP production in L. aggregata LZB033 in MBM media with different conditions. 

Varying growth conditions include salinity, temperature, nitrogen concentration, oxidative 

stress and growth phase. (Curson et al, 2017). 



 95 

experiments that maximise DMSP production in the sediment to increase isolation of 

DMSP-producing species, and to characterise those species, confirming the presence or 

absence of dsyB within them. This would not only demonstrate that bacterial DMSP 

production likely takes place in the salt marsh environment, but could also result in the 

identification of novel DMSP-synthesising bacteria, and/or even novel DMSP-producing 

genes/pathways. 
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4.2 Methods and Results 

4.2.1 Preliminary sediment sampling  

The first set of samples taken from Stiffkey were part of a preliminary excursion 

which also went to Cley salt marsh and Yarmouth estuary, to determine if this type of 

sediment was appropriate for bacterial DMSP-analysis. Samples were collected on 29-07-

2016, alongside measurements of several parameters of the pool water including 

temperature (measured on site), as well pH and salinity (measured in the laboratory using 

an electronic pH meter and a handheld analogue refractometer) (Table 4-1). The sediment 

was sampled using bespoke acrylic corers that were driven into the centre of tidal pools 

(usually 1.5 – 2 m in size) in the lower section of the marsh, to a depth of ~ 15 cm (Figure 

4-1).  

Samples were carefully transported to the laboratory, ensuring that the layers were 

not mixed, and after taking samples and pH/salinity measurements from the water layer, 

this was drained off. The entire surface oxic sediment (the top 1 cm) was removed 

completely for DMSP quantification, as well as for use in initial DMSP experiments such 

as incubations and culturing (see below). The core was then split down the middle, and 

the anoxic sediment from the centre of the core was sampled at distances of 5, 10 and 15 

cm in from the surface sediment. For this study the anoxic sediment was only used for 

DMSP quantification measurements (Table 4-1). Cley and Yarmouth were sampled less 

comprehensively, with only the oxic layer sediment and pool water taken. Aliquots of 0.5 

g of the oxic layer sediment from all three locations were measured into 2 ml screw-cap 

tubes and flash frozen in liquid nitrogen and stored at -80°C for community DNA/RNA 

extractions at a later point. 

The DMSP quantification for all the sediment sampled in this excursion was 

performed on 0.1 g sediment weighed into 1.5 ml GC vials, before being mixed with 100 

µl sterile water and 100 µl 10 M NaOH, crimp-sealed and vortexed for 5 – 10 seconds. 

Pool water measurements were performed on 200 µl water, mixed with 100 µl 10 M NaOH. 

All samples were in triplicate, and were incubated overnight in the dark, before the 

headspace was measured using an Agilent 7890A GC, fitted with a 7693 autosampler.  
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 Table 4-1: The characteristics of Stiffkey, Cley and Yarmouth sediment. 

 

4.2.2 Site characterization of Stiffkey salt marsh 

A more in-depth analysis of the characteristics of the Stiffkey ponds was carried 

out with help from Andrew Hind, UEA, to provide further site information. Mud and water 

samples for incubation were collected from a small tidal pool in the same way that 

sediment was sampled for the culture-dependent and –independent experiments, at low 

tide. The sediment was taken. Salinity was measured to be 32 PSU, and the water 

temperature was 19°C. Conductivity and temperature were measured using a Fisherbrand 

accumet AP75, and salinity was determined from conductivity using a three point 

calibration, using Fisherbrand Traceable Conductivity Standards that are NIST Certified 

Reference Materials (CRM). 

The oxygen saturation of the sediment was 62% immediately below the water 

surface, declining to 34% at half depth (80 mm from surface) and 29% immediately above 

the water/sediment interface (160 mm from surface). Oxygen measurements were made 

using a Jenway 970. A 2-point calibration was performed in the field at ambient 

temperature, using filtered seawater in equilibrium with air (100% oxygen saturation) and 

a 2 M sodium sulphite solution (0% oxygen saturation). Dissolved organic carbon (DOC) 

was calculated to be 3.60 mg/L. This is the mean of triplicate measurements, the standard 

error being 0.07 mg/L. Total dissolved nitrogen (TDN) was 0.59 mg/L, the mean of triplicate 

measurements, standard error 0.01 mg/L. TDN represents the sum of all dissolved 

Sampling site 
(29/07/16) 

Location 
(Lat, Long) 

Depth 
(cm) 

nmol 
DMSP/g  
or /ml 

Salinity 
(PSU) 

pH Temp. 
(°C) 

       

       
Stiffkey sediment 52.964947, 

0.925655 
Oxic, 0 – 1 77.1 ± 15.0    

       
  Anoxic, 1 – 5 9.8 ± 0.8    
       
  Anoxic, 5 – 10 4.6 ± 0.3    
       
  Anoxic, 5 – 15 3.9 ± 0.03    
       
Stiffkey pool water   0.4 ± 0.1 38 7.5 17 
       

       
Cley sediment 52.957825, 

1.046553 
Oxic, 0 – 1 91.4 ± 15.6    

       
Cley pool water   0.3 ± 0.02 32  7.6 17 
       

       
Yarmouth sediment 52.614855, 

1.715255 
Oxic, 0 – 1 103.6 ± 30.4    

       
Yarmouth pool water   0.3 ± 0.01 30 7 17 
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nitrogen-containing species, excluding dinitrogen (N2), and includes organic nitrogen 

species as well as nitrate (NO3
1-), nitrite (NO2

-), ammonium (NH4
+) and nitrous oxide (N2O). 

DOC and TDN measurements were made using a Skalar Formacs CA15 analyser, 

employing a six-point calibration. The calibration was validated against Environment 

Canada Environmental Matrix Reference Material Cranberry-05, lot 0317. Samples were 

also frozen so that nutrients analysis could be performed (phosphate, nitrate, nitrite, 

ammonium and silicate), but these are still awaiting analysis at CEFAS, and are not 

reported here. 

The DMSP content of the oxic layer of sediment from tidal pool sediment (the top 

1 cm) and the pool water at half depth (~80 mm) was also quantified using the purge and 

trap method, which is often used in environmental analysis as it provides greater sensitivity 

compared to standard GC. Measurements of 0.5 g were dissolved in 25 ml distilled water, 

with H2SO4. This mix was incubated at room temperature for 1 hour and then 5 ml was 

mixed with 1 ml 10 M NaOH and incubated overnight in the dark, before using the purge 

and trap method to quantify the DMS produced (Zhang et al. (2008). Purge and trap 

removes all the volatile organic compounds released by the sample through purging with 

an inert gas and trapping them in an analytical trap, which is a short gas chromatograph 

column. The compounds are then desorbed from the trap and injected into an Agilent 

7890B gas chromatography (GC) instrument and quantified. Oxic Stiffkey sediment was 

shown to have a DMSP standing stock of 128.4 ± 14.0 nmol/g, which was 3 orders-of-

magnitude higher compared to the pool water, which contained 0.7 ± 0.1 nmol/ml.  

More sediment was also collected in order to perform a microcosm enrichment 

experiment on Stiffkey sediment to increase the amount of DMSP production by the 

sediment, hopefully enriching the community for DMSP-producers. DNA/RNA from Time 

0 natural sediment and the end-point of the enrichments could then be sent for 16S rRNA 

amplicon and metagenomic sequencing. These experiments are described in Chapter 6. 

4.2.3 Experiments with Spartina anglica in Stiffkey 

As the high levels of DMSP in salt marshes have always been attributed to the 

activity of Spartina anglica, some preliminary experiments were performed with help from 

Peter Riviera and Yanfen Zheng, to quantify the DMSP content in Spartina sp. plants taken 

from Stiffkey, as well as measuring the change in the DMSP content of sediment along a 

transect moving away from Spartina.  

The DMSP content of 0.1 g of four leaf and four root samples from a Spartina plant 

picked from a Stiffkey tidal pool was measured by pulverizing the sample and treating with 

methanol (MeOH) to create a methanolic extract, which was quantified using GC and then 

normalized to 1 g fresh weight (FW). The Spartina roots contained 2,568.6 ± 24.5 nmol/g 
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FW DMSP, and the leaves were found to contain DMSP at a level of 9,579.5 ± 796.9 

nmol/g FW sample, which is close to some levels published in the literature (Otte et al. 

2004), although much lower than in other papers (Kocsis et al. 1998), suggesting that there 

is a very variable range in concentrations, with some species of Spartina not able to 

produce any detectable levels.  

Although the endogenous DMSP levels of the Spartina taken from Stiffkey are 

clearly much higher than any detected in bacteria so far, it was hypothesised that the 

DMSP produced by these plants will only influence the sediment that is most closely 

surrounding them, meaning that while the very high DMSP content in sediment close to 

the cordgrasses is predominantly due to eukaryotic activity, in sediment that is further away 

from the plants bacterial and or algal DMSP production is likely to play more of a significant 

role, as it is unlikely to diffuse through the sediment. To test this, oxic sediment samples 

were taken from a transect, starting with directly below a Spartina plant and then moving 

increasingly further away, and quantified for DMSP content by GC (Figure 4-4).  

 

 

In the first few samples (0 – 20 cm away) the DMSP concentration was extremely 

high, and decreased quite dramatically, but after that it appeared to stabilize, reaching a 

similar level to those measured by GC in other sampling experiments (see above), as the 

tidal pools were usually sampled in the centre, which would be at least 60 – 70 cm away 

Figure 4-4: The change in DMSP concentration of Stiffkey oxic sediment as distance away 

from the cordgrass, Spartina angelica, increases, with 0 cm being sediment directly beneath 

the plant. Error bars display standard error. 
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from any Spartina plants. This suggests that while Spartina certainly contributes to the 

total DMSP content of Stiffkey, there is also likely a major input from other DMSP-

producing organisms, such as bacteria. 

4.2.4 Isolating DMSP-producing bacteria from Stiffkey 

The first experiment performed on Stiffkey salt marsh sediment, extracted on 

17/03/15, was to determine that DMSP-producing bacteria could be isolated from the 

sediment. A serial dilution was performed on 100 µg of sediment in MBM media to a 

dilution factor of 10-6, then 100 µl was plated on MBM agar containing a mixed carbon 

source, with no selective pressure other than selection for heterotrophic bacteria. Plates 

were incubated for a week at 28°C and colonies of different morphologies were purified to 

single colonies (Figure 4-6), then picked and tested for DMSP production GC. Of the 

species isolated and checked, 27% (9 of 33 tested colonies) were found to produce 

detectable peaks of DMS when treated with NaOH (which chemically cleaves DMSP into 

DMS and acrylate) (Table 4-2), and isolates were identified by the sequencing of their 16S 

rRNA gene (Table 4-3). This data showed that DMSP-producing bacteria are present in 

the sediment, and are relatively easy to isolate. Although DMS can be released from other 

compounds upon addition of NaOH, the most likely explanation is that it originated from 

alkaline lysis of DMSP. Furthermore, for several of these bacteria, DMSP production was 

confirmed by analytical LC-MS (Table 4-5). The DMSP-producing bacteria identified were 

mainly alphaproteobacterial, but there were also some gammaproteobacteria isolated. The 

purification and identification of these bacteria is described in detail below. 

4.2.5 Optimising conditions for DMSP-producing bacteria 

The next step was to perform growth experiments on the sediment from Stiffkey to 

investigate conditions that potentially enhance DMSP synthesis. The aim of this is to enrich 

for a variety of DMSP-producing isolates, including some with potentially novel DMSP-

synthesis genes/pathways. This was a challenge because enriching for a process is more 

complicated than enriching for the uptake or degradation of a particular substance, as 

mentioned above.  

Sediment was taken from tidal pools in Stiffkey, and 2 g weighed into 100 ml flasks, 

then mixed with 30 ml MBM medium of different conditions in triplicate, as well as a control 

of standard MBM (Figure 4-5). The conditions were chosen based on those observed to 

increase DMSP synthesis in L. aggregata (Curson et al. 2017) (Figure 4-3). Increased 

salinity has long been known to increase DMSP synthesis (Karsten et al. 1992), as has 

low nitrogen levels (Sunda et al. 2007). Low nitrogen is thought in part to increase DMSP 

synthesis because a lack of nitrogen results in decreased production of glycine betaine, a 

nitrogen-based osmolyte, and therefore in bacteria where both osmolytes are made, 
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DMSP synthesis is preferentially produced. Furthermore the process of DMSP synthesis 

actually liberates an amino group from Met in the transamination step, providing extra 

nitrogen for the organism to use (see Chapter 1). For the same reason, it was 

hypothesised that increased levels of sulfur may increase DMSP production, as extra 

sulfur means that it is available for use in the formation of compounds such as DMSP. The 

other conditions trialled were supplementing the media with MTHB, the precursor for the 

reaction catalysed by dsyB gene product (Curson et al. 2017), and finally, using a 

combination of all four of those conditions. The flasks were incubated at 30°C with shaking 

at 180 rpm for one week, and the DMSP content analysed by NaOH addition and GC 

analysis, as above (Figure 4-5).  

 

 

Unsurprisingly, the most effective enrichment condition by far was the media that 

combined all four of the other conditions, with DMSP production being increased at least 

three-fold more than any other condition. Therefore, this was used as the enrichment 

condition from this point onwards. 

 

 

A - Control 
B - High Salt 
C - High Sulfur 
D - Low Nitrogen 
E - Added MTHB 

F - Combination 

Figure 4-5: The DMSP production by the pelleted sediment taken from Stiffkey and treated 

with one of six conditions, including increased salinity and sulfur, decreased nitrogen, added 

MTHB and a combination of all of them. Samples are averaged and bars display standard 

error. 
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 Table 4-2: Table of the initial DMSP production of isolated bacteria from Stiffkey salt 

marsh, with those isolated from Time 0 sediment labelled T1-9, and those isolated from 

incubated experiments labelled E1-51. 

 

Isolate Conditions of 
isolation 

Intracellular DMSP 
concentration in 
MBM 0.1 mM Met 
(pmol DMSP µg 

protein-1) 

Isolate Conditions of 
isolation 

Intracellular DMSP 
concentration in 
MBM 0.1 mM Met 
(pmol DMSP µg 

protein-1) 
      

S1 T0 sediment 23.1 E22 Low Nitrogen 68.8 
      

S2 T0 sediment 4.9 E23 Low Nitrogen 1.4 
      

S3 T0 sediment 11.4 E24 Low Nitrogen 34.7 
      

S4 T0 sediment 30.9 E25 Added MTHB 21.0 
      

S5 T0 sediment 518.7 E26 Added MTHB 6.9 
      

S6 T0 sediment 125.4 E27 Added MTHB 75.0 
      

S7 T0 sediment 6.8 E28 Added MTHB 9.1 
      

S8 T0 sediment 25.7 E29 Added MTHB 104.2 
      

S9 T0 sediment 6.7 E30 Combination 23.8 
      

E1 Control 28.8 E31 Combination 2.6 
      

E2 High Salt 2.0 E32 Combination 12.0 
      

E3 High Salt 3.2 E33 Combination 2.7 
      

E4 High Salt 2.0 E34 Combination 2.4 
      

E5 High Salt 21.2 E35 Combination 101.0 
      

E6 High Salt 7.6 E36 Combination 2.6 
      

E7 High Salt 3.3 E37 Combination 3.3 
      

E8 High Sulfur 2.0 E38 Combination 2.4 
      

E9 High Sulfur 3.1 E39 Combination 116.3 
      

E10 High Sulfur 2.3 E40 Combination 2.3 
      

E11 High Sulfur 2.9 E41 Combination 83.9 
      

E12 High Sulfur 2.9 E42 Combination 37.7 
      

E13 High Sulfur 5.9 E43 Combination 5.5 
      

E14 High Sulfur 3.7 E44 Combination 52.6 
      

E15 High Sulfur 2.0 E45 Combination 226.8 
      

E16 High Sulfur 2.4 E46 Combination 3.9 
      

E17 Low Nitrogen 2.6 E47 Combination 2.3 
      

E18 Low Nitrogen 2.1 E48 Combination 10.5 
      

E19 Low Nitrogen 5.6 E49 Combination 1.9 
      

E20 Low Nitrogen 3.5 E50 Combination 2.2 
      

E21 Low Nitrogen 1.5 E51 Combination 2.6 
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To test for the variety and abundance of DMSP-producing species in each 

condition, the sediment from these enrichment experiments was then used in isolation 

experiments, similar to the ones described above, plating the sediment on MBM agar 

plates of the same conditions as they were incubated in (Figure 4-6). After incubation at 

28°C for one week, an average of 15 colonies of different morphologies were purified to 

single colonies from each condition and inoculated in MBM with Met, as above. These 

cultures were characterised in the same way as above, testing them for the ability to 

produce DMSP, and the percentage of DMSP-producers compared to non-producers was 

calculated (Figure 4-7). Once again it was found that sediment treated with the media that 

combined all four of the conditions provided the highest percentage of DMSP-producing 

bacteria.  

 

 

Together with the observed increased in DMSP levels in Figure 4-5, the 

combination media was judged to be the most effective in optimising Stiffkey salt marsh 

sediment for increased DMSP production and DMSP-producing isolates.  

TIME 0 – 10-1 dilution COMBINATION– 10-5 dilution 

Figure 4-6: Example MBM agar plates of colonies isolated from Stiffkey sediment displaying 

the variation in morphology. Plates are sediment from before enrichment (T0) at a dilution 

factor of 10-1, and after incubation in the combination media for one week and diluted at a 

factor of 10-5.   
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4.2.6 Purification of DMSP-producing bacteria 

The library of isolates were purified and their taxonomy identified using 16S rRNA 

sequencing. Many of the isolates had the same or similar phylogeny, so only 

representative isolates for each genera was fully characterised, and these are summarised 

in Table 4-3. Purification of isolates was achieved by streaking a culture for single colonies 

on MBM agar plates, until no contaminating colonies were observed. These colonies were 

then inoculated into fresh media, and once grown they were visually checked using 

Microscopy to look for homogeneity in cell size and shape, ensuring purity (Figure 4-8). If 

purity was not confirmed by microscopy, and more than one cell morphology was 

observed, then the cultures were serially diluted to dilution factors between 10-4 and 10-6, 

and plated on MBM agar. If, after incubation at 28°C overnight, colonies of multiple 

morphologies were observed on the plate, both were picked and tested individually for 

DMSP production. Once purified, isolates were stored at -80°C as well as on agar plates 

at 4°C, and streaked again every three months. When DMSP content had been tested 

again and was confirmed, and the samples were pure, they were then classified again to 

confirm identity (Table 4-3). 

 

A - Control 
B - High Salt 
C - High Sulfur 
D - Low Nitrogen 
E - Added MTHB 

F - Combination 

Figure 4-7: The percentage of species isolated from sediment that were able to produce 

DMSP. Sediment was treated with different media conditions including increased salinity and 

sulfur, decreased nitrogen, added MTHB and a combination of all of them. Samples are 

averaged and bars display standard error. 
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The identification of pure isolates was accomplished by using PCR amplification of 

the 16S rRNA gene on genomic DNA isolated from pure cultures of the isolates, using the 

primer set 27F/1429R. The resultant PCR product was extracted using a PCR purification 

kit, after visualising 5 µl of the PCR product using gel electrophoresis, to confirm successful 

amplification. The purified 16S rRNA fragments were then sent to Eurofins Genomics for 

sequencing, and the phylogenetic identity was confirmed by submitting the sequences to 

a nucleotide BLAST against all sequences in the NCBI database, then taking the top hit, 

which was usually 99% identity. One example isolate of each different strain is represented 

in Table 4-3.  

Of the isolates that were identified using 16S rRNA PCR amplification, there were 

several that were expected to be DMSP producers, including Labrenzia, Oceanicola, 

Pseudooceanicola and Stappia. All of these are genera known to contain dsyB and 

produce DMSP, so their identification was not unexpected. In addition to this, Rhodobacter 

and Rhodobacterales are both closely related to Labrenzia, so it was also unsurprising to 

find that they produce DMSP. There were three strains where it was surprising to observe 

DMSP, these were Novosphingobium, Marinobacter and Alteromonas. Novosphingobium, 

while being an alphaproteobacterium, is from the order Sphingomonodales which has not 

been implicated in DMSP production. The same was true for both Marinobacter and 

Alteromonas which are gammaproteobacteria, and are thus the first of this class to be 

shown to produce DMSP. 

Once pure strains were achieved, cultures were inoculated into 5 ml MBM media 

containing 0.5 mM nitrogen, which, although not a low enough level to be classed as 

limited, was significantly lower than the nitrogen conditions used in the initial DMSP 

quantifications in Table 4-2. This low nitrogen condition was used because in both the 

enrichment conditions (Figure 4-5) and in induction experiments on L. aggregata (Figure 

4-3), low nitrogen levels were found to significantly increase the production of DMSP within 

the samples. More importantly, this reduced nitrogen level is closer to the normally limiting 

nitrogen concentrations experienced in many marine environments (see above). DMSP 

levels in reduced nitrogen conditions were quantified after an overnight incubation, and 

are reported in Table 4-3. It should be noted that the nitrogen levels used are still far higher 

than those experienced in the field, but the bacterial isolates will not grow to sufficient 

densities to detect DMSP at any lower amount. Almost all isolates showed an increase in 

DMSP production when incubated under the lower nitrogen conditions. 
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Alteromonas genovensis PQQ3 

Stappia sp. M8 

Rhodobacterales bacterium JB-27 

Pseudooceanicola sp. 22II1-22F33 

Marinobacter sp. Set72 

Labrenzia sp. BR-18 

Novosphingobium sp. MBES04 

Rhodobacter sp. P3-3-2 

Figure 4-8: Microscopy images of 100x magnification of eight of the ten further characterised 

and identified strains, showing some variety in morphology. This technique was used to 

confirm purity of the samples through the presence of only one cell type. 
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Table 4-3: Characterisation of ten of most abundant and/or novel bacteria isolated from 

Stiffkey sediment. 

 

It was important to confirm that peaks of DMS released when these samples were 

lysed in alkaline hydrolysis were in fact due to synthesised DMSP. This is because one 

weakness with using the alkaline hydrolysis method is that other methylated sulfur 

compounds such as SMM and DMSHB also liberate DMS when treated with NaOH, 

although not as readily as DMSP (the mixture has to be incubated at 80°C for 10 minutes 

before they fully lyse). In order to confirm that the bacteria isolated from Stiffkey are 

synthesising DMSP and not just some of its precursors, LC-MS analysis was utilised with 

the help of Ana Bermejo-Martinez to identify and confirm the presence of metabolites 

produced by some of the isolates. Due to time and cost constraints, not all isolates were 

tested in this manner, but of those that were, all accumulated DMSP at a diagnostic 

retention time of 4.9, with the appropriate mass/charge ratio (Table 4-3) (see Chapter 5 

for example chromatograms). 

Example 
isolate 

Closest 16S rRNA 
gene identity 

Conditions 
of isolation 

Intracellular 
DMSP 

concentration, 
MBM 0.5 mM 

nitrogen (pmol 
DMSP µg 
protein-1) 

Presence 
of dsyB 

with 
degenerate 

primers 

Presence 
of DMSP 
indicated 

by  
LC-MS 

      

      
S4 Marinobacter sp. 

Set72 
T0 sediment 39.8 ± 1.3 - YES 

      

S5 Labrenzia sp. BR-18 T0 sediment 278.6 ± 6.2 + YES 
      
S8 Stappia sp. M8 T0 sediment 153.1 ± 11.5 - NT* 
      
E26 Pseudooceanicola sp. 

22II1-22F33 
+ MTHB 64.4 ± 2.3 - YES 

      
E27 Rhodobacter sp. 

AB300d 
+ MTHB 495.4 ± 53.5 - YES 

      
E30 Oceanicola sp. Ar-45 Combination  78.5 ± 0.58 + NT 
      
E35 Rhodobacterales 

bacterium JB-27 
Combination  762.0 ± 403.9 + YES 

      
E37 Roseobacter sp. 

ARCTIC-P4 
Combination  44.2 ± 3.4 NT NT 

      
E45 Novosphingobium sp. 

MBES04 
Combination  665.8 ± 102.3 - YES 

      
E48 Alteromonas 

genovensis PQQ33 
Combination  6.9 ± 3.5 NT NT 

      

* NT, Not Tested     
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4.2.7 Experiments to determine potential inducers of DMSP production 

Further study was undertaken to characterise some of the isolated strains. It had 

been shown that changing growth conditions affected the production of DMSP in many of 

these species, e.g. lower nitrogen levels (Table 4-3). Other induction experiments were 

set up to observe the effect of variations in media or the addition of intermediates from the 

transamination pathway (see Chapter 1) on DMSP synthesis. Isolates were inoculated in 

10 ml triplicate MBM, either standard conditions, which at the time was 20 PSU with 12 

mM nitrogen, with 5, 35 or 50 PSU salinity, or lowered nitrogen levels. Met, DMSHB, MTHB 

or MMPA (intermediates of the transamination pathway) were added separately to a final 

concentration of 0.5 mM to standard MBM. Cultures were incubated overnight at 30°C with 

shaking, reaching stationary phase. DMSP quantity was then measured using GC, and 

normalised for protein concentration (Figure 4-9). 

The results of these growth experiments were interesting, with a noticeable 

variation in DMSP production levels between strains, as well as between growth 

conditions. Both Labrenzia and Stappia show an expected pattern of induction, with low 

nitrogen causing an increase in synthesis compared to the standard, although it was 

surprising that high salinity did not also increase production as was observed in (Figure 

4-3). This could be because some of the bacterial isolates may not survive as well in the 

raised 50 PSU salinity. For both, the most significant increase was when cultures were 

incubated with any of the four transamination pathway intermediates, all of which showed 

similar levels of induction, suggesting that all four are utilised as part of the production 

pathway. 

It was expected that the addition of Met would cause an increase in production, as 

it is thought to be the initial DMSP synthesis precursor molecule (see Chapter 1). Indeed, 

it was found that Met induced higher DMSP levels than the standard samples, consistent 

with it being the universal starting precursor for DMSP synthesis, but there seems to be a 

range of responses. In Marinobacter and Rhodobacterales there is only a slight increase 

in DMSP production with the addition of Met. It could be that those concentrations inhibit 

growth of those species, or it may not be taken up very efficiently. Furthermore, the isolates 

in question may have had more urgent uses for Met, meaning it was not used to make 

DMSP. 
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Stappia sp. M8 

Rhodobacterales bacterium JB-27 

Pseudooceanicola sp. 22II1-22F33 

Marinobacter sp. Set72 Labrenzia sp. BR-18 

Novosphingobium sp. MBES04 

Rhodobacter sp. P3-3-2 

Figure 4-9: Induction experiments performed on seven of the ten isolates from Stiffkey salt 

marsh. Cultures were grown in standard MBM, or in 5, 35 and 50 psu salinity, low nitrogen, 

added Met, DMSHB, MTHB, MMPA. 
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Surprisingly, although Novosphingobium shows a dramatic increase in DMSP 

production once treated with Met, it does not appear to be affected by the addition of other 

transamination pathway intermediates. The most likely explanation for this is that, while 

Novosphingobium is indeed synthesising DMSP, it is not doing so using the transamination 

pathway. This is significant because thus far bacteria have only been observed to be using 

the transamination pathway, believed to be the predominant pathway in marine 

environments used by marine algae, bacteria with dsyB and corals.  

In some isolates the addition of DMSHB caused a higher production of DMSP 

compared to others (Rhodobacter and Rhodobacterales). This is most likely due to the 

previously mentioned issue of DMS being released from DMSHB as well as from DMSP, 

although because the samples were not incubated at 80°C for 10 minutes only a small 

portion of DMSHB would have lysed. 

4.2.8 DMSP seawater incubations 

As the conditions that have been used in DMSP quantification experiments and 

these incubation experiments are far from natural, seawater incubation experiments were 

also designed in order to demonstrate that DMSP could still be produced in situ, and 

therefore is also likely to be taking place in the environment, not just under laboratory 

conditions. Cultures of dsyB-containing Pelagibaca bermudensis and non-dsyB-containing 

Novosphingobium (see later) were inoculated into MBM and incubated overnight, then 

adjusted to an OD600 of 0.4 and diluted 1:100 into 20 ml filter-sterilised seawater (T0), 

followed by incubation at 25°C with 90 rpm for 21 hours (T1) and 43 hours (T2). Bacterial 

cell pellets were collected and resuspended in Tris-HCl buffer (50mM, pH 7.5), and the 

supernatant removed. DMSP in the pellets and supernatants were measured by the 

addition of alkaline-hydrolysis, where DMS was generated and then processed by a 

modified purge and trap method, and measured by GC (Figure 4-10). 

The seawater incubations below demonstrate that Pelagibaca and 

Novosphingobium produce DMSP under close to in situ conditions, and therefore it is likely 

they produce DMSP in natural marine environments, such as Stiffkey salt marsh. The 

DMSP content in the supernatant is much lower than the total (supernatant and pellet), 

and only slightly increases over time, likely due to the release of DMSP from the cells by 

export or cell lysis after death. In contrast, the DMSP in the total increases to a much 

higher level, suggesting that the isolates are synthesising DMSP, not just exchanging it 

with environmental levels. Perhaps a longer incubation would show even more of a more 

significant pattern. 
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4.2.9 Confirming the presence/absence of dsyB 

The next logical step for the DMSP-producing isolates was to establish if they 

contained dsyB, and were therefore likely using the transamination pathway to produce 

DMSP. This was initially accomplished by utilising the degenerate primers, designed in 

Chapter 3, in PCR amplification reactions on several of the isolates. PCR was done on 

genomic DNA isolated from the pure cultures, where indicated in Table 4-3. PCR products 

were subjected to gel electrophoresis as a preliminary method for the detection of dsyB 

(Figure 4-11).  

Figure 4-10: Seawater incubation results for the DMSP produced by both the supernatant 

and total culture of the dsyB-containing isolate, P. bermudensis (A), and for the non-dsyB 

isolate Novosphingobium sp. MBES04 (B), across an incubation of 21 and 43 hours, 

processed by purge and trap and measured by GC. Error bars display standard error. 

A 

B 
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Although we cannot be certain that the lack of a band at 246 bp indicates a 

definitive lack of dsyB, the presence of a band is almost certainly indicative of it. 

Unsurprisingly (see above), the Labrenzia strain showed the presence of dsyB (S5), as 

did the Rhodobacterales (E25, E32, E35, E41) and Oceanicola (E30) isolates, of which 

Oceanicola was previously known to contain dsyB, and Rhodobacterales is similar 

phylogenetically to Labrenzia. The bands were excised and sequenced to confirm dsyB 

identity. However, most of the remaining isolates showed no PCR product. 

Pseudooceanicola (E26) was negative despite closely related strains with genomes being 

known to contain dsyB. Indeed, a Pseudooceanicola DsyB sequence was used in the 

degenerate primer design process. Rhodobacter (E27) and Stappia (S6, S8, E24), from 

the same family as Labrenzia, were also expected to contain it. This suggests that the 

degenerate primers, whilst able to amplify many DsyB sequences from genomic and 

metagenomic DNA, may not cover the full range, perhaps because some are more 

divergent than those from which the primers were designed, or there were inhibitory factors 

in the PCR mix. Interestingly, Novosphingobium (E39, E42, E43, E44, E45) from the 

Sphingomonodales order, and Alteromonas (E48) and Marinobacter (S4) which are both 

gammaproteobacteria, were all negative. This was expected as dsyB is not seen in any 

sequenced representatives from these genera. 

Figure 4-11: Gel electrophoresis of the dsyB degenerate primer PCR on genomic DNA, 

from Stiffkey isolates listed in Table 5.1. Also tested were negative controls (R. 

leguminosarum, R. pomeroyi and S. sp EE-36) and positive controls for dsyB (L. aggregata 

and S. stellata) 
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Thus far we have isolated several species of bacteria that have not been previously 

demonstrated to produce DMSP, several of which do not appear to contain dsyB, the only 

known DMSP-synthesis gene so far. It was hypothesised that, for some of these bacteria 

at least, this was a weakness of the degenerate primers, and not that the species do not 

contain dsyB. To test this, the sequence of a species of Pseudooceanicola sp. La6, 

isolated from the English Channel by Alex Howat in the Murrell lab, was used to design 

specific primers to the dsyB in its genome. Both these and the dsyB-degenerate primers 

were tested on Pseudooceanicola sp. La6, the Pseudooceanicola isolate, L. aggregata as 

a control alphaproteobacterium, and a water control, then run on gel electrophoresis to 

determine if the isolate also contains dsyB (Figure 4-12). 

From this experiment it was clear that not only is it possible to perform PCR 

amplification on Pseudooceanicola genomic extracts, ruling out the possibility that the 

degenerate primers did not amplify due to some inhibitory substance in the genomic 

extraction, but also confirmed that the Pseudooceanicola isolate contains dsyB. This 

suggests that the degenerate primers designed in Chapter 3 are not able to amplify all 

versions of dsyB under the conditions used here, even though they were designed from 

sequences very similar to this isolate. Perhaps more optimisation is required for individual 

bacteria. Although this is unfortunate in that it lessens the ability to definitively identify the 

presence or absence of dsyB, it also means that any assumptions made about the 

abundance and activity of dsyB in the environment are likely to be vast underestimations 

of the actual bacterial DMSP production in those environments. When working with 

degenerate gene probes such as these, this is a common occurrence. Nevertheless these 

dsyB primers are still a valuable environmental resource.  

Figure 4-12: Gel electrophoresis to test Pseudooceanicola, using both the dsyB_degenerate 

primer PCR (A) and Pseudooceanicola dsyB_specific PCR (B) on Pseudooceanicola sp. La6 

(PL), Pseudooceanicola Stiffkey isolate (PS) and L. aggregata IAM12614 (Lb), and a water 

control (C). The dsyB_specific primers should produce a fragment of 700 bp in size, and the 

dsyB_degenerate primers produce a band of ~246 bp. 
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 As the degenerate primers were only a rough method of detection, used to rule 

out dsyB-containing sequences, further analysis was needed to confirm whether or not the 

negative results contain dsyB. In order to accomplish this, several species were sent to 

Microbes NG, Birmingham for Whole Genome Sequencing (WGS). Pure cultures of 

Marinobacter, Stappia, Novosphingobium, Rhodobacter, Rhodobacterales and 

Alteromonas were sent to Birmingham, as all of them show no band at 246 bp (Figure 

4-11).These were sequenced using the Illumina MiSeq platform, and then trimmed and 

checked for quality. Those reads were then annotated against the closest genomic 

sequence available, using RAST (http://rast.nmpdr.org/) (Table 4-4). Although this 

sequencing does not generate complete genomes, the completeness of strains done here 

were greater than 99%.  

 Table 4-4: Whole Genome Sequenced Stiffkey isolates 

 

From the WGS of the isolates it was shown that the three species that were 

expected to contain dsyB do in fact contain it, but the other three, Novosphingobium, 

Alteromonas and Marinobacter, have all been confirmed to not possess a copy. Given the 

nature of this genome sequencing (i.e. not generating complete genomes) it is possible 

that the three remaining DMSP-producing bacteria do indeed contain dsyB but that it is 

contained within a missing component of their genomes which was not sequenced. 

However, I feel this is unlikely given that these bacteria are not closely related to any 

known bacteria which contains dsyB. Further experiments conducted in subsequent 

chapters support the hypothesis that these bacteria do indeed lack DsyB and likely contain 

a novel DMSP synthesis pathway.

Isolate Closest Identity Length 
(Kb) 

Contigs Predicted 
Proteins 

16S 
Identity 

(%) 

Presence 
of DsyB 
Identity 

(%) 

DsyB 
E Value 

        

        
S4 Marinobacter sp. 

Set72 
4221.7 103 3864 99 / / 

        
S8 Stappia sp. M8 6393.0 77 6043 99 96 0.0 
        
E27 Rhodobacter sp. 

AB300d 
6796.2 746 6392 88 60 1.00 E-141 

        
E35 Rhodobacterales 

bacterium JB-27 
6105.0 160 5687 99 86 0.0 

        
E45 Novosphingobium 

sp. MBES04 
4461.8 136 4216 99 / / 

        
E48 Alteromonas 

genovensis 
PQQ33 

4930.8 120 4397 98 / / 

        

http://rast.nmpdr.org/
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4.3 Discussion 

4.3.1 Summary of work  

The work described in this chapter was the culture-dependent analysis of sediment 

sampled from the tidal pools that make up the lower section of Stiffkey salt marsh, on the 

North Norfolk coast. These pools are flooded twice daily with the high tide, and therefore 

maintain seawater levels of salinity all year round (Davy & Smith 1988). This high salinity, 

combined with the large flux of biogenic sulfur, in particular the high emissions of DMS 

(Steudler & Peterson 1984), make Stiffkey sediment an ideal environment in which DMSP 

production is likely to occur. Because of this, we were confident that it would be possible 

to isolate DMSP-producing species, and through those isolations, potentially find novel 

isolates and DMSP synthesis genes. 

It was discovered that this was indeed possible, with almost a third of the bacterial 

species isolated from sediment dilutions incubated on agar with no selective pressure were 

demonstrated to possess the ability to synthesise DMSP (Table 5.1). Furthermore, it was 

also shown that this number could be dramatically increased (from 27% to 77%) when 

sediment was treated with an optimised media mix that created conditions favourable for 

DMSP production. When these bacteria were identified, it was revealed that several of 

them were of genera that had not previously been shown to produce DMSP or contain 

DsyB (Marinobacter, Novosphingobium, and Alteromonas). There were also several 

species of Labrenzia, and the closely related Stappia, which was unsurprising. Indeed, it 

was the reclassification of several species of Stappia that were less related to other 

Stappia sequences that created the genus Labrenzia, including the species in which 

DMSP production was first discovered – Labrenzia aggregata (Biebl et al. 2007). Other 

species of Rhodobacter and Rhodobacterales were also isolated and shown to produce 

DMSP. 

Those bacterial isolates that were shown not to contain dsyB, through the use of 

both degenerate primers and WGS, were most likely either using a dsyB isoform gene to 

synthesise DMSP via the transamination pathway, or they were using an entirely novel 

bacterial pathway to produce this molecule. For Marinobacter it appears likely that it uses 

the transamination pathway since the intermediates from this pathway enhance DMSP 

production in it (Figure 4-9). However, in Novosphingobium, only the addition of Met had 

any effect on the levels of DMSP production detected. To test the above hypothesises on 

Novosphingobium incubation and molecular experiments were carried out to explore this 

as described in subsequent chapters. In brief, known intermediates from the 

transamination, methylation and decarboxylation pathways were added to cultures of 

selected isolates and incubated for a short period of time (to limit possible transformations), 
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and their effect on DMSP production was determined as above. The results from these 

experiments clearly show that Novosphingobium utilises a novel bacterial DMSP synthesis 

pathway (see Chapter 5). 

4.3.2 Issues with culture-dependent study 

There are many benefits from carrying out culture-dependent microbiological work 

in environmental biology, but there are also number of problems associated too (see 

above). Most prominent is the issue of uncultivable bacteria (or as yet uncultivated). 

Although some bacteria such as E. coli and Micrococcus are easy to culture in standard 

conditions in the laboratory, and others like Novosphingobium and other 

alphaproteobacteria grow easily on MBM agar, it is thought that only around 1% of the 109 

bacterial cells in a gram of sediment form colonies in standard plate isolations (Davis et al. 

2005). This could be because other species require a specific combination of nutrients, or 

a particular media composition, or that the conditions for growth are unusual or difficult to 

recreate in the laboratory. Furthermore, not many bacterial species grow fast enough to 

form colonies before the plate is taken over by other, more prolific species. They may also 

be at a lower abundance in the sediment to begin with, meaning that the chances of them 

being picked are much reduced.  

To a degree, the odds of isolating a variety of species can be improved by altering 

the variables of growth (Davis et al. 2005). These can include the dilutions of sediment 

plated, the growth medium and the incubation time, as well as other factors like 

temperature and whether or not the plates are treated aerobically or subcultured before 

plating. Even so, it is unlikely and impractical to attempt to culture every species – it is not 

realistic to trial every possible culture condition, and it is likely that there are many species 

that will not grow on plates, and instead only replicate in liquid media. There has to be a 

balance between optimising for a high number of isolates, and trying to culture everything. 

To that end, in this study culture-dependent plate isolations were used after sediment was 

treated to an ‘enriched’ media, also plating higher dilutions of sediment and having longer 

incubation times of up to two weeks (any longer and fungus started to contaminate the 

plates). Once a good number (~100) of colonies had been picked and tested, it was time 

to move forward with characterising the most interesting species. These techniques were 

not used for any kind of cell counting, or to make assumptions about the full community at 

Stiffkey. Presently (as of work reported in this chapter), we have no way to determine 

whether our isolates are environmentally relevant (present at a significant frequency in the 

Stiffkey sediment) or not. In the next chapter we use 16S rRNA gene sequencing and 

metagenomics to analyse the microbial community within these Stiffkey samples. This 

allows us to more accurately establish the environmental prevalence of any of the bacteria 

that we isolate in this chapter.  
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4.3.3 Other issues with culturing bacteria 

As discussed in the designing of the enrichment condition experiments, it was more 

complicated when attempting to enrich for species with the ability to synthesise DMSP, 

rather than the ability to use it as a carbon source. This is because the synthesis of DMSP 

may not necessarily convey enough of a survival advantage to change the community. For 

this reason, multiple conditions were used in combination, and the levels of DMSP 

production and percentage of DMSP-producing isolates increased, suggesting that the 

enrichment was at least partially successful. Clearly these enrichments are not 

representative of the natural conditions in Stiffkey, but the reason that they were performed 

was to identify and isolate DMSP-producers, so this is less of a concern. One condition 

that should perhaps be changed is the addition of Met, instead of MTHB to the mix, as 

when MTHB was chosen as the intermediate, it was assumed that bacteria were only 

utilising the transamination pathway. However, it is possible that if Met was added, it would 

enrich for too many other processes, not just DMSP production. 

Another issue that arose from altering these growth conditions to optimise for 

DMSP-producing isolates is that the conditions are now no longer like the natural 

environment, limiting the claims that can be made about the species community. This could 

also be said about the pure cultures of isolates from which DMSP quantification 

measurements were taken, as they are grown in higher temperatures and with greater 

access to nutrients than perhaps might be the case in situ. This is why the seawater 

incubation experiment was also included, in order to confirm that DMSP is produced even 

under in situ conditions. 

So far this work has only looked at one species at a time, and not how they interact 

or what the overall community make-up is. Although we can test isolates as close to natural 

environment as possible, there is always lab bias, so we need to perform more tests under 

environmental conditions, and look into culture-independent analysis such as community 

sequencing and metatranscriptomes to make further claims about the function or activity 

of DMSP producers in the actual environment. 

Every day more modern analytical techniques are being developed, including ones 

that study community DNA, such as metagenomic sequencing and even 

metatranscriptomics and RT-qPCR. However, there is still a place for the more simple 

techniques – they need to be used in conjunction with each other. While it would be false 

to claim that culture-dependent experiments are an entirely accurate measurement of the 

actual community, they do have a place in the study of an environment. Plate isolations 

and characterisation are an excellent complement to culture-independent work, as it allows 

for the practical testing of theoretical conclusions drawn from sequencing analysis.  
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4.3.4 Concluding Statements 

We have demonstrated that it is possible to isolate DMSP-producing bacteria from 

Stiffkey, and that the proportion of those bacteria within the sediment can be increased 

through enrichment experiments using specially designed media conditions. Several of 

these species were the first of that particular genus to be shown to have the ability to 

produce DMSP, and it was clear that many were not producing DMSP in the same way 

that L. aggregata has previously been observed to. Many of them did not appear to 

possess dsyB, and some were even confirmed not to. Furthermore, their DMSP synthesis 

levels were not affected with the addition of pathway intermediates from the transamination 

pathway, as was observed in L. aggregata. All this is evidence for the existence of a novel 

DMSP-producing gene, and possibly the use of a different pathway of production. There 

is undoubtedly a more interesting, complex story to be told, and bacterial DMSP production 

is likely not only more widespread, but also more varied than previously thought. 
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5  DMSP-PRODUCERS LACKING dsyB  

 

5.1 Introduction 

5.1.1 Gene discovery 

By far the most interesting discovery of the previous chapter was that several 

bacterial species shown to produce DMSP lacked the only known DMSP-synthesis gene, 

dsyB (Curson et al. 2017). There are two possible explanations for this: i) the existence of 

multiple DMSP-synthesis isoform genes, which perform same enzymatic function (MTHB 

methyltransferase) as DsyB in the organisms that lack dsyB; or ii) the dsyB– 

microorganisms contain a novel DMSP synthesis pathway, using a whole different and 

unknown suite of genes. 

There is some precedent for both these options, as seen in other species of 

bacteria that play a role in DMSP metabolism, namely the existence of eight different ddd 

(DMSP-dependent DMS) genes (Curson, Todd, et al. 2011). Most of these encode for 

proteins that perform almost the exactly the same role, the lysis of DMSP to Acrylate 

(Alma1, DddK, DddL, DddP, DddQ, DddW and DddY), but several of them are completely 

different protein families. DddK, DddL, DddQ and DddW are all small proteins with cupin 

(barrel-shaped) pockets at the C-terminal that bind to transition metals like Fe and Zn 

(Todd et al. 2011; Johnston et al. 2016). Even though the rest of their structure is markedly 

different enough to be classed as separate proteins, they all perform the same function 

(Todd et al. 2012). In contrast, despite also carrying out the lysis of DMSP to Acrylate and 

DMS, the DddP protein is instead from the M24B metalloprotease family, a larger 

polypeptide with a ‘pitta bread’ fold around two active sites (Hehemann et al. 2014). DddD 

is an example of a different pathway used by particular bacteria for producing DMS from 

DMSP (Todd et al. 2007). This DddD enzyme, a Class III acetyl CoA-transferase which 

lyses DMSP through a different route, directly producing 3-HP through the transfer of a 

CoA molecule, and the likely formation of a 3-HP-CoA intermediate (Alcolombri et al. 

2014).  

Indeed, even between prokaryotes and eukaryotes there are proteins that carry out 

the same role in DMSP metabolism – Alma1, a tetrameric protein from the 

aspartate/glutamate racemase super-family (Alcolombri et al. 2015), is the first eukaryotic 

DMSP lyase discovered, totally different in structure and family to the previously described 

Ddd proteins, yet still carrying out the same process of lysis, producing acrylate and DMS 

from DMSP. It likely carries this out through a different method, not cleaving the C-S bond 

as seen in the other cupins and metalloproteases, but instead through the abstraction of 
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a proton close to the DMSP carboxylate, releasing DMS and leaving acrylate (Johnston et 

al. 2016).  

There are several methods by which novel genes can be discovered. For 

eukaryotes it is more complex than prokaryotes, mainly due to the presence of exons 

making the genomes significantly larger and more difficult to screen. In order to identify 

alma1 biochemical fractionation was combined with shotgun proteomics, where DMSP 

lyase activity was identified in a ~100kDa protein in the membrane fraction of the 

chloroplast (Alcolombri et al. 2015). This was further visualised using shotgun liquid 

chromatography–tandem mass spectrometry–based proteomics analysis in combination 

with peptide libraries constructed from RNA sequencing. RNA was also utilised in the 

discovery of dddW, which was identified through the use of microarrays that showed 

greatly enhanced gene expression in a particular gene when Ruegeria pomeroyi DSS-3 

cells were grown in the presence of DMSP (Todd et al. 2012). This was identified and 

tested and confirmed to be a DMSP lyase, termed dddW.  

Although some of these genes were discovered using more unusual techniques, 

the vast majority of DMSP synthesis and catabolic genes were discovered using genomic 

libraries and screening for function in suitable heterologous hosts. This involves the 

creation of a cosmid (or fosmid) library (25-35 kb fragments of contiguous DNA randomly 

cloned into a vector), screening that library for the phenotype of interest (e.g. DMSP lyase 

activity) in a suitable heterologous host, sequencing the positive clone fragments (more 

specifically the cloned genes), and finally the identification of candidate genes within that 

fragment through the use of bioinformatics combined with sub-cloning and further 

screening for activity. The DMSP catabolism genes identified in this way were dddD (Todd 

et al. 2007), dddL (Curson et al. 2008), dddP (Todd et al. 2009), dddQ (Todd et al. 2011), 

dddY (Curson, et al. 2011). Furthermore, mddA, the gene recently discovered in 

Pseudomonas deceptionensis M1T that produces DMS from the methylation of MeSH 

rather than from DMSP (Carrión et al. 2015) was also discovered through this method, as 

was the first DMSP-synthesis gene, dsyB (Curson et al. 2017). This method is especially 

applicable where the function (e.g. DMSP production or catabolism) has been observed 

by a particular strain, but, unlike in the discovery of dddK (Sun et al. 2016) and DSYB 

(Curson et al. 2018), there are as yet no candidate genes that can be individually cloned 

and tested. As this was the case for Novosphingobium, it was therefore decided that this 

method was the most well-suited for searching for the novel DMSP-synthesis gene, as we 

knew that it was producing DMSP and did not contain dsyB, but we did not have any 

candidates for other potential genes. 
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5.1.2 The methylation pathway for DMSP production 

From the precedent set by the ddd genes, it would be unsurprising if 

Novosphingobium or the other strains that appear to lack dsyB in fact contain novel DMSP-

producing genes and/or pathways. Indeed, from the incubation experiments in Chapter 4, 

it seemed very likely that the transamination pathway is not used in Novosphingobium, as 

DMSP production did not increase with any of the intermediates of this pathway. The most 

likely pathway to look into would be the methylation pathway in higher plants (Figure 5-1), 

as there has only been one demonstrated example of the decarboxylation pathway as yet 

(Kitaguchi et al. 1999), and Novosphingobium was isolated from a salt marsh area known 

to contain large amounts of Spartina. Of course, we also cannot entirely rule out the 

possibility that there is a novel DMSP production pathway 

Figure 5-1: The methylation pathway, originally observed in the higher plants Wollastonia 

biflora and Spartina alterniflora, by which DMSP is produced. One of two routes can be taken 

through the pathway after methylation of methionine to SMM, with one forming DMSP-amine 

through the decarboxylation of SMM, and the other producing an as-yet unidentified 

intermediate, before both become DMSP-aldehyde. 
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If this is indeed the case it will be an interesting discovery, as the transamination 

pathway is thought to be the major pathway utilised in the marine environment, with marine 

algae, diatoms and most dinoflagellates using it. If bacteria isolated from salt marsh 

sediments are using the methylation pathway, it is likely that they will also be in marine 

sediments, which are much more abundant than just salt marshes where Spartina grow. 

As described in Chapter 1, this methylation pathway (Figure 5-1) is a split 

pathway, with two different routes being used by either Gramineae (Spartina and 

Saccharum) or Compositae (Wollastonia). The pathway diverges after the first step, which 

is a methylation of Met to SMM (S-methylmethionine), and involves either a 

decarboxylation to the stable intermediate DMSP-amine (Kocsis et al. 1998) followed by 

oxidation to DMSP-aldehyde, or a transamination-decarboxylation reaction that takes 

SMM through an unstable intermediate to DMSP-aldehyde (Rhodes et al. 1997). Both 

pathways result in the synthesis of DMSP-aldehyde, which is in turn oxidised to DMSP 

(Figure 5-1). The first and last steps in the pathway are shared between Gramineae and 

Compositae, and can also be found in many other species, with SMM formation occurring 

in most angiosperms (Mudd & Datko 1990), and although it may not be produced in other 

species, DMSP-aldehyde is able to be oxidised by dehydrogenases found in several non-

DMSP-producing species (Trossat et al. 1997).  

The methylation of Met to SMM is catalysed by a Met S-methyltransferase that 

transfers a methyl group from the co-substrate S-AdoMet (S-Adenosyl Methionine) (James 

et al. 1995). Indeed, Hanson et al. (1994) demonstrated in Wollastonia biflora that SMM 

produced in this manner was the first intermediate created in the process of producing 

DMSP from Met, and the enzyme has been found in multiple angiosperms (Mudd & Datko 

1990), including Spartina alterniflora (Kocsis et al. 1998). The methylation of Met is thought 

to take place in the cytosol, rather than in the chloroplasts (Trossat et al. 1996) where the 

conversion to DMSP-aldehyde takes place. There are several plants that contain the MMT 

gene but have not been shown to produce DMSP, including Sorghum bicolor and Zea 

Mays (both of which are angiosperms), suggesting that SMM production is important in 

plants for reasons other than to produce SMM as an intermediate in DMSP production. 

Indeed, SMM production is part of its own small cycle, where it is synthesised from Met 

(MMT activity) and then used as a methyl donor for Met synthesis by homocysteine (HMT) 

(Figure 5-2), which results in two Met molecules (one left after the methyl group is 

removed, and one formed with the donation of a methyl to Hcy) (Ranocha et al. 2000). It 

is thought that SMM is also produced as a storage molecule for Met, playing a role in Met 

regulation (Stefels 2000).  
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Interestingly, many species of bacteria as well as yeast (Rouillon et al. 1999) have 

been known to use HMT to retrieve Met from SMM that is transported into the cell, allowing 

them to bypass the full Met synthase pathway (Ranocha et al. 2000). However, MMT 

activity, and the ability to produce SMM from Met, has until now only been attributed to 

plants (Ranocha et al. 2000). The discovery that it might exist in bacteria, and play a role 

in bacterial DMSP production, is noteworthy. 

5.1.3 Chapter Aims 

It was clear from the culture-dependent work in Chapter 4 that there are several 

species that possess the ability to synthesise DMSP, but which lack the only known DMSP 

synthesis gene, dsyB. An isolate of Novosphingobium sp. MBES04 was isolated from 

Stiffkey salt marsh, and shown to produce much larger amounts of DMSP than those 

produced by many other marine bacteria, including the previous model organism L. 

aggregata. In Chapter 4 it was demonstrated through WGS of the isolate that no dsyB 

homolog existed in the genome, and preliminary induction experiments suggested that 

DMSP production by Novosphingobium, while stimulated by the addition of Met, was 

largely unaffected by the other intermediates in the transamination pathway (see below).  

We hypothesise that Novosphingobium contains a novel DMSP-producing gene or 

gene cluster and is able to synthesise this osmolyte without dsyB, likely through a different 

pathway instead of the transamination pathway. This gene will be identified, sequenced 

and disrupted within a DMSP-containing species, and the mutant characterised.  

Figure 5-2: The SMM cycle (and some related reactions) in higher plants. Bold lines indicate the 

core reactions, where SMM is produced from Met (via AdoMet) (MMT)and then donates a methyl 

group to Hcy to produce two Met molecules (HMT). The dotted line is a shorter route where AdoMet 

donates a methyl group to Hcy, producing one Met molecule (HMT). Figure from Ranocha et al. 

(2000). 
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5.2 Methods and Results 

5.2.1 Novosphingobium growth experiments 

Before more in-depth experiments could be performed on Novosphingobium it was 

necessary to characterise the growth patterns and conditions under which DMSP 

production appears to increase the most, in order to better design the following 

experiments. The first experiment performed was a growth curve, set up using triplicate 

flasks of MBM. Samples were incubated at 30°C with shaking at 180 rpm, and the OD600 

reading was measured every hour, until the cultures reached stationary phase (Figure 

5-3). 

 

 

Another growth experiment that was carried out on this isolate was measuring the 

effect of different environmental conditions on the production of DMSP by 

Novosphingobium. From a starter culture of Novosphingobium in standard media, flasks 

were inoculated in triplicate into either standard media, media of salinities varying from 50 

PSU to 5 PSU, or media with low nitrogen. All were incubated at 30°C overnight with 

shaking at 180 rpm, with the exception of one of the standard media cultures, which was 

incubated at 16°C instead. Measurements of protein content and DMSP concentration 

were taken and compared (Figure 5-4). 

Figure 5-3: Growth curve in triplicate of cultures of the isolate of Novosphingobium sp. 

MBES04, incubated at 30°C, shaken at 180 rpm for 22 hours until cultures reached stationary 

phase. Error bars display standard error. 
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This was a more refined version of the work carried out in Chapter 4, with more 

salinity conditions tested, as well as lowered temperature. Compared to that study, we see 

a similar pattern between 5 PSU and 35 PSU, although there is less of a significant 

difference in DMSP levels between high and lower nitrogen levels than shown before. It 

appears that increased salinity does increase DMSP production, as is often observed, 

lending weight to the theory of DMSP as an osmoprotectant. Lower temperatures seemed 

to decrease the concentration of DMSP quite dramatically compared to the same media 

conditions (35 PSU, 12 mM nitrogen) at 30°C, suggesting that, in Novosphingobium at 

least, it may not play a role in protection against lowered temperatures.  

5.2.2 Novosphingobium intermediate incubation experiment 

The growth curve in Figure 5-3 allowed us to work out the time taken to reach an 

OD600 of 0.5, which was required for the intermediate induction experiment. This 

experiment was designed specifically to test the DMSP production of the 

Novosphingobium isolate when incubated with intermediates from all three of the 

pathways of production, described in Chapter 1. Its purpose was to identify potential 

intermediates of the DMSP synthesis pathway used by Novosphingobium. The 

intermediates tested in this experiment were Met, which was expected to increase DMSP 

production, then the intermediates in the transamination pathway, MTOB, MTHB and 

DMSHB, as well as MMPA and MTPA which are a part of the decarboxylation pathway, 

Figure 5-4: The effect of changing salinity, nitrogen availability or temperature on the 

production of DMSP by Novosphingobium sp. MBES04, after incubation overnight. Samples 

are in triplicate, and error bars display standard error. 
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and SMM and DMSP-amine, which are two of the intermediates from the methylation 

pathway (Figure 5-1). Increased levels of DMSP production when incubated with a 

particular set of these intermediates would be suggestive of the use of that pathway by the 

isolate, as they would be able to take any of the intermediates through the pathway to 

produce DMSP. 

A starter culture of Novosphingobium was set up overnight, and cultures were 

incubated for 12 hours, reaching an OD600 of ~ 0.5. The DMSP levels of each were 

quantified and then separated into 5 ml aliquots, then mixed with 0.5 mM of each of the 

intermediates individually, including a control mix with nothing else added. These mixed 

cultures were then incubated at 30°C with shaking, and the DMSP concentration and 

protein content were measured at 30, 60, 120 and 240 minutes (Figure 5-5). 

 

This experiment showed very clearly that Novosphingobium produces significantly 

higher levels of DMSP when incubated with SMM than with any other intermediates, 

although Met also caused an increase in production. These results suggest that this isolate 

utilises the methylation pathway used by higher plants, and not the transamination 

pathway. An unusual result is that of the lack of increase in DMSP when Novosphingobium 

was incubated with DMSP-amine, which is also in the methylation pathway, and would be 

expected to cause an increase as well. However, this does not negate the previous 

Figure 5-5: The effect on DMSP production by Novosphingobium when mixed with selected 

intermediates from the three pathways of DMSP production, after incubation with the substrates 

for 4 hours at 30°C. Bars display standard error. 
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conclusion, as the methylation pathway takes two routes, one of which bypasses the 

formation of DMSP-amine and instead goes from SMM to DMSP-aldehyde, via an 

unidentified intermediate (Figure 5-1). Unfortunately, DMSP-aldehyde was not tested in 

this experiment because it is unstable and not commercially available. 

5.2.3 Demonstration of MMT activity in Novosphingobium 

To test the hypothesis that Novosphingobium has the ability to methylate Met to 

SMM, we designed a cell lysate assay for detecting MMT activity. The focal point of this 

assay required the ability to distinguish Met from SMM, and the simplest way to do so was 

to use the fact that SMM can liberate DMS upon alkaline hydrolysis and incubation at 80°C, 

whereas the substrate Met does not, as it does not contain a DMS moiety. DMS can easily 

be detected by GC (see Chapter 2). A complication with using this method of detection 

was that MMT activity on Met requires a methyl donor in the form of S-AdoMet, which does 

contain a DMS moiety, and also liberates it when treated with NaOH and heating. This 

would make the assay ineffective, as peaks of DMS from the production of SMM would be 

completely masked by peaks of the S-AdoMet added to the mix. A solution to this problem 

arose from the fact that S-AdoMet can be sequestered from solution by the addition of 

activated charcoal (Cook & Wagner 1984), due to its nucleotide base region. To test that 

S-AdoMet would be adsorbed onto the charcoal but SMM would be left in the media, 

charcoal sequestration experiments were set up using mixes of S-AdoMet, SMM, or both, 

in sterile water. Samples were then tested for DMS production before and after treatment 

the samples with activated charcoal, as described in Chapter 2, with the DMS released in 

both instances measured by GC and compared between samples (Figure 5-6). 

Figure 5-6: DMS released by samples containing either S-AdoMet, SMM or both, before and 

after treatment with activated charcoal to sequester S-AdoMet. 
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S-AdoMet was completely removed from the samples when tested on its own, and 

although there appears to be a decrease in the amount of DMS released by SMM when 

treated with activated charcoal, it is still detectable and has therefore not been removed 

along with the S-AdoMet. We can therefore be confident that the S-AdoMet is completely 

adsorbed, and therefore treatment with charcoal is a useful technique for removing S-

AdoMet after the cell lysate assay has been performed, whilst leaving SMM to be 

quantified by DMS production after alkaline hydrolysis. It should be noted that the levels 

of SMM synthesised by the samples are likely to be higher than those actually measured 

by GC, as the charcoal was observed to possibly be removing a portion of it from the 

solution. Keeping this in mind, we now have a workable assay for the detection of SMM, 

which was ready to be tested on Novosphingobium cell extracts.  

To test whether Novosphingobium gene products or cell lysate had SAM-

dependent Met methyltransferase activity, cell lysate was created (with the help of Ben 

Pinchbeck). Novosphingobium cultures were harvested and resuspended in 50 mM Tris-

HCl buffer. Cells were lysed by sonication and centrifuged to pellet debris. The lysate was 

dialysed at 4°C overnight to remove any pre-existing metabolites. This lysate was mixed 

with either 1 mM S-AdoMet, 1 mM Met, or both, and then incubated for 30 minutes at room 

temperature, allowing cell extract activity to take place, before using activated charcoal to 

stop the reaction by sequestering the S-AdoMet and removing it.  

 

Figure 5-7: SMM production of purified and dialysed cell lysate containing the SAM-MMT 

protein extracted from Novosphingobium sp. MBES04, in duplicate. The buffer was also 

tested as a negative control, as well as each of the individual compounds, plus a combination 

of the two. SAM = S-AdoMet. Error bars display standard error. 

A – Buffer 

B – Buffer + Met 

C – Buffer + SAM 

D – Buffer + Met + SAM 

E – Lysate 

F – Lysate + Met 

G – Lysate + SAM 

H – Lysate + Met + SAM 
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The MMT activity was measured in the samples as detailed in Chapter 2 (Figure 

5-7). As can be clearly seen, MMT activity was only detectable in the Novosphingobium 

lysate when incubated with both Met and S-AdoMet, and not in any of the other controls. 

Therefore, the Novosphingobium lysate has MMT activity. It is possible that the 

Novosphingobium lysate may have further transformed SMM into other intermediates, 

even potentially all the way to DMSP, but it is unlikely because the downstream enzymes 

in that pathway likely require PLP, NADPH or other metabolites which would have been 

removed from the lysates during the dialysis step.  

5.2.4 Gene library construction and screening 

Given the results above, it seems likely that Novosphingobium contains a novel 

gene encoding for MMT activity (transforming Met to SMM). We have also established that 

we can screen for the production of SMM by Novosphingobium in media by using GC to 

assay the production of DMS liberated from SMM by the addition of NaOH and heating to 

80°C. With this screening method in place, the next logical step was to attempt to identify 

the novel Met methyltransferase gene/s in this bacterium, using the genomic library and 

heterologous host approach, screening for the production of DMS from SMM after the 

addition of Met. A genomic library of the strain was constructed in the cosmid pLAFR3 

(Figure 5-8) (with the help of Andrew Curson). The genomic library was comprised of 

fragments of ~25 – 40 kb of the genome cloned into the EcoRI site of pLAFR3. To do this, 

Novosphingobium genomic DNA was extracted and partially digested using EcoRI, then 

ligated into the pre-digested vector pLAFR3 (Figure 5-8) (Staskawicz et al. 1987) to form 

concatemers.  

These concatomers were packaged using the Stratagene Gigapack III XL 

Packaging mix, and transfected into E. coli 803. The library of clones was then mobilised 

into R. leguminosarum J391 via triparental mating and dilutions were plated on TY for 

single colonies selecting for tetracycline resistance (pLAFR3). These colonies were 

individually picked and inoculated in RM media (a minimal Rhizobium medium to increase 

the likelihood of SMM production and to avoid background noise from a rich medium such 

as TY, which contains yeast extract). Inoculums were mixed with 5 mg/µl tetracyline and 

0.5 mM Met, then incubated overnight at 30°C. Colonies were checked individually for the 

ability to produce SMM, an ability that R. leguminosarum J391 does not naturally possess. 
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750 cosmids were screened with help from Kasha Sweet, an undergraduate 

student, and two were found to be positive. This meant that they produced a peak at a 

retention time that indicates the presence of DMS, showing a peak area that suggested 

the production of ~ 20.7 nmol/ml of DMS in the headspace, through the alkaline hydrolysis 

of either DMSP or SMM, while the negative controls and clones that did not contain the 

fragment including the gene showed no peaks at all. The positive clones were re-

inoculated and measured on the GC a second time to confirm that a peak of DMS was 

indeed produced (from SMM or DMSP). Both cosmids, termed pBIO0438 and pBIO0762, 

were confirmed to be positive even after extracting the plasmid and cloning back into R. 

leguminosarum. Furthermore, in line with Koch postulates, the pBIO0438 and pBIO0762 

plasmids were extracted, transformed into E. coli 803 and then mobilised back into R. 

leguminosarum J391, before re-confirming their MMT activity. From this point on we were 

sure that we had cloned a gene/s that confers MMT activity.  

Figure 5-8: The wide-host-range cosmid cloning vector pLAFR3, with restriction digest sites for 

multiple enzymes, including HindIII, PstI, SalI, BamHI, SmaI and EcoRI. For this study, EcoRI 

was used to construct the clone library of partially digested genomic DNA. Figure was adapted 

from Staskawicz et al. (1987). 
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The cosmids containing the positive fragments were then extracted from newly-

inoculated cultures, using the phenol-chloroform extraction method. Several restriction 

digests were set up using the cosmids and four different enzymes – EcoRI, BamHI, HindIII 

and PstI. This was to demonstrate the presence of inserted fragments in the pLAFR3 

cosmid, and to observe how similar both fragments were (Figure 5-9). 

From the restriction digests performed in Figure 5-9, it is very clear that pBIO0438 

and pBIO0762 contain overlapping DNA, as for example they both contain multiple 

identical EcoRI fragments cloned. These include a large band at ~12 kbp in size, two bands 

either side of the 5 kb marker, and a faint one at the 2 kb marker, as indicated on the gel. 

The large band and smear seen in the PstI digest of pBIO0438 suggests that there was 

no more than one PstI restriction site in the fragment, whereas there was at least two in 

pBIO0762 as one band can be seen (just below 2 kbp in size) that was separated from the 

larger fragment. The fact that pBIO0438 and pBIO0762 are not identical, with extra cloned 

fragments appearing in the pBIO0762 plasmid, likely indicates that the clones likely contain 

extra EcoRI fragments at either end around the essential section that holds the gene or 

genes conferring MMT activity. 

 

 

 

Figure 5-9: Gel electrophoresis showing restriction digests of the two positive 

Novosphingobium genome fragments, pBIO0438 and pBIO0726. Digests were performed 

using the enzymes EcoRI (E), BamHI(B), HindIII(H) and PstI (P). The largest band (red box) is 

likely the 22 kb linearised pLAFR3 cosmid. Fragments in pBIO0726 that are shared with 

pBIO0438 are indicated by a blue dot. 

12,000 

5,000 

2,000 

1,650 

1,000 

850 

12,000 

5,000 

2,000 

1,650 

1,000 

850 



 

133  

5.2.5 Candidate DMSP-synthesis gene identification and characterisation 

Once it was confirmed that pBIO0438 and pBIO0726 both contain the gene/s 

involved in the production of SMM, and both appear to be from the same or similar section 

of the genome (demonstrated by the similarity of band size after the restriction digests, 

Figure 5-9), the next step was to determine which section of the genome was encoded for 

in these fragments, and what genes exist in that area. To identify the nucleotide sequence 

cloned in pBIO0438 and pBIO0726, the termini of the cloned DNA were sequenced at 

Eurofins Genomics, using primers designed to the polylinker in pLAFR3 (M13 uni (-43) 

and M13 rev (-29)). Sequence identities for ~500 base pairs from the beginning and end 

of both the fragments were obtained. These sequences were then searched for in the 

whole genome sequence that was obtained in Chapter 4, enabling either end of the 

fragment to be aligned against the known sequence, consequently revealing the sequence 

of the section between the two ends, which is the fragment cloned into pLAFR3 (Figure 

5-10). The results clearly confirmed what we had established above, that these clones do 

indeed contain overlapping fragments. 

From the alignment to the sequenced genomic DNA for Novosphingobium sp. 

MBES04 it was possible to calculate the sizes of both the fragments, with pBIO0438 found 

to be 21.8 kb in size, and pBIO0726 at a larger 30.9 kb. Both are clearly covering the same 

section of the genome. By using WGS on the Novosphingobium isolate it produced the 

sequence of the bacterial genome, and using RAST meant that this sequence was then 

annotated, with the predicted coding sequences highlighted as light blue boxes in Figure 

5-10. These were then analysed to determine if any were likely candidates for playing a 

role in DMSP production. All the amino acid sequences of the genes within the overlap of 

the two partially digested fragments were identified using BLASTp (Table 5-1). 
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The analysis of the genes in this fragment revealed a gene, termed mmtN by us, 

encoding a SAM-dependent methyltransferase (SAM-MMT), specifically belonging to the 

family of Met S-methyltransferases which require the methyl donor molecule S-AdoMet for 

function (pFAM; Methyltrans_SAM (PF10672)). The mmtN gene product is similar to the 

plant MMT enzyme (E value 2E-18, identity 28%). However, this similarity is only over the 

N-terminal domain of the plant MMT (Figure 5-11), as MmtN is only 307 amino acids in 

size, and thus is ~3 times smaller than the MMT of Arabidopsis thaliana which is a 1,071 

amino acid enzyme (Figure 5-11). The C-terminal domain of MMT that is missing in MmtN 

contains a conserved PLP binding site of an aminotransferase, which is proposed to be 

involved in the regulation of MMT in plants, and therefore is not related to or necessary for 

MMT enzyme function (Bourgis et al. 1999). This is consistent with MmtN lacking this 

domain, yet still appearing to be functional in methylating methionine. MMT has long been 

recognized to catalyse the SAM-dependent methylation of Met to generate SMM in plants 

(Green & Davis, 1960, Ranocha et al. 2000). Given the similarity between these two 

proteins, MmtN was a strong candidate gene for catalysing the first step of DMSP 

synthesis in Novosphingobium, and perhaps other bacteria.  
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Table 5-1:The annotation and BLASTp analysis of genes within a specified fragment of 

the Novosphingobium genome. Genes are from both the forward (+) and reverse (-) 

strands. 

 

Gene location (bp) 
 

1509624 – 1531541 
 

RAST Annotation BLASTp Identity E 
value 

Identity 
(%) 

     
1509579..1509908 

(+) 
L-fucose mutarotase, type 2 L-rhamnose mutarose 8E-63 90 

     
1509970..1510656 

(-) 
Transcriptional regulator, GntR 
family 

Transcriptional regulator, FadR 
family 

8E-143 96 

     
1510882..1512051 

(+) 
Muconate cycloisomerase Mandelate racemase/ 

muconate lactonizing enzyme  
0.0 93 

     
1512135..1513322 

(+) 
Major facilitator superfamily 
MFS_1 

MFS transporter 0.0 94 

     
1513424..1516180 

(+) 
N-acetylglucosamine-regulated 
TonB-dependent outer membrane 
receptor 

TonB-dependent receptor 0.0 95 

     
1516370..1516543 

(-) 
Hypothetical small protein yjiX DUF466 domain-containing 

protein 
6E-27 81 

     
1516540..1518603 

(-) 
Carbon starvation protein A Carbon starvation protein A 0.0 97 

     
1518662..1519849 

(-) 
Putative iron-regulated membrane 
protein 

PepSY domain-containing 
protein 

0.0 94 

     
1519864..1522038 

(-) 
Ferrichrome-iron receptor TonB-dependent receptor 0.0 98 

     
1522809..1523741 

(-) 
Hypothetical protein Hypothetical protein - - 

     
1523952..1524233 

(-) 
Purple acid phosphatase Metallophosphoesterase family 

protein 
2E-43 84 

     
1524642..1525136 

(-) 
Transcriptional regulator, MarR 
family 

Transcriptional regulator, MarR 
family 

4E-103 90 

     
1525222..1525530 

(+) 
Hypothetical protein DUF3861 family protein 7E-59 94 

     
1525557..1526756 

(-) 
Aspartate aminotransferase Pyridoxal phosphate-

dependent aminotransferase 
0.0 98 

     
1526738..1527448 

(-) 
Transcriptional regulator, TetR 
family 

Transcriptional regulator, TetR 
family 

2E-148 93 

     
1527538..1528494 

(-) 
D-3-phosphoglycerate 
dehydrogenase 

Hydroxyacid dehydrogenase 0.0 96 

     
1528718..1529536 

(+) 
Ribulose-5-phosphate 4-
epimerase and related aldolases 

Class II aldolase/adducin family 
protein 

0.0 94 

     
1530026..1530241 

(+) 
Hypothetical protein Hypothetical protein - - 

     
1530445..1531368 

(+) 
Methionine S-methyltransferase SAM-dependent 

methyltransferase 
0.0 95 
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Figure 5-11: Clustal Omega (1.2.4) multiple sequence alignment of the amino acid 

sequences of the MmtN enzyme in Novosphingobium sp. MBES04, compared to the SAM-

dependent methyltransferase in A. thaliana. 
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The MmtN sequence was then used as a probe against NCBI and JGI databases 

using BLASTp, and was found to be in 22 Alphaproteobacteria, 4 Actinobacteria and one 

Gammaproteobacterium at > 50 % identity, from a variety of genera, all of which appear 

to be marine in origin (Figure 5-12). Furthermore, these included species of Labrenzia and 

Sagittula, both of which are already known to produce DMSP. If mmtN was indeed the 

gene able to encode a DMSP synthesis enzyme in bacteria, it is in a more varied range of 

bacteria than those found to contain dsyB, which were almost entirely alphaproteobacteria.  

Figure 5-12: Maximum-likelihood phylogenetic tree of the 26 annotated SAM-MMT proteins, 

retrieved from NCBI and JGI IMG databases. The tree is drawn to scale, with branch lengths 

measured in the number of substitutions per site, as indicated on the scale bar. Stars indicate 

strains shown to produce DMSP, circles indicate cloned, functional genes, and crosses 

indicate the larger MmtN in angiosperms, not linked to DMSP production. Distinctions 

between bacterial classes are demonstrated as colour-coded brackets, with four separate 

classes represented. 
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5.2.6 Novosphingobium MmtN is a MMT enzyme 

Having shown that Novosphingobium lysate produced SMM only when supplied 

with both Met and S-AdoMet (Figure 5-7), the next step was to demonstrate that MmtN is 

a Met methyltransferase in Novosphingobium. To accomplish this, the mmtN gene was 

amplified using primers designed to either end of the gene (Chapter 2) and cloned into 

the E. coli expression plasmid pET21a, creating pBIO21N1 so as to allow for the 

overexpression of this gene in E .coli. The E. coli strain BL21 lacks MMT activity, meaning 

that it does not synthesise DMSP or SMM from Met, even in the presence of S-AdoMet. 

E. coli BL21 containing pBIO21N1 was inoculated into LB media and induced with 0.2 mM 

IPTG, incubating overnight at 30°C. Cultures were mixed with 0.5 mM Met and incubated 

for a further 8 hours at 30°C, before determining SMM content by measuring the DMS 

produced from SMM lysis, and quantifying protein content. Alongside assays of the 

pBIO21N1 a negative control of E. coli BL21 containing the empty pET21a vector was also 

run. E. coli expressing MmtN displayed MMT activity compared to negative controls (E. 

coli BL21, E. coli with empty vector and the buffer) (Figure 5-13). This confirms that mmtN 

has the expected activity, is likely responsible for SMM production from Met in 

Novosphingobium, and possibly other bacteria containing this gene (see below). To 

ultimately demonstrate that mmtN is involved in DMSP synthesis, the gene needs to be 

mutated in the host organism and the effects on DMSP production and MMT activity 

studied. 

 

Figure 5-13: SMM production in E. coli BL21 containing pET21a with the Novosphingobium 

mmtN clone, alongside the buffer, E. coli with the empty vector, and E. coli alone. Error bars 

display standard error. 
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5.2.7 Bacteria with MmtN make DMSP 

Having shown that Novosphingobium MmtN has MMT activity, it was important to test 

whether other marine bacteria that contain MmtN homologues (with > 50 % Identity) 

produce DMSP, and if these MmtN homologues are also functional. In order to test this, 

four other bacterial species across the diversity of this novel protein (Figure 5-12) were 

ordered from DSMZ Culture Collection, to study. The species that were chosen were two 

alphaproteobacteria; Roseovarius indicus and Thalassospira profundimaris, and two 

actinobacteria; Streptomyces mobaraensis and Nocardiopsis chromatogenes. These were 

cultured and checked for purity and 16S rRNA identity, then quantified for DMSP content 

(Table 5-2). The full genomes of each species were also mined for the presence of dsyB. 

DMSP content in the alphaproteobacterial strains was quantified after growth in 35 

PSU MBM, with 0.5 mM nitrogen. For the actinobacterial species this quantification was 

more complex, as they did not grow at all in MBM, nor were they easily cultured in other 

tested liquid media, including several actinobacteria-specific media recipes (GYM and 

MYM). However the Actinobacteria strains grew reasonably well on plates, so for these 

Actinobacterial strains DMSP estimations were based on whole cells extracted from 

plates, which should be taken into consideration when comparing values. 

 

Table 5-2: Isolates containing the mmtN gene originally discovered in Novosphingobium 

sp. MBES04, and the DMSP levels produced by them. Also shown is the confirmation of 

DMSP production by LC-MS, and the presence/absence of dsyB 

 

 Both R. indicus and T. profundimaris produced DMSP as expected. In the case of 

these two bacteria, DMSP production was further confirmed by LC-MS (see Chapter 2). 

For the actinobacteria, despite culturing difficulties, both also produced DMSP, as 

determined by GC, and by LC-MS for N. chromatogenes. 

 Similarity to Novo 
MmtN (BLASTp) 

 

 
Intracellular 

DMSP 
concentration 

(pmol/ug protein) 

 
Presence of 

DMSP 
indicated by 

LC-MS 

 
Presence 
of dsyB in 
genome MmtN-containing species E value Identity 

(%) 
      

      

Roseovarius indicus 3E-136 63 6.02 ± 1.2 YES YES 
      

Thalassospira profundimaris 1E-147 68 54.3 ± 3.6 YES NO 
      

Streptomyces mobaraensis 2E-90 53 3.9 ± 0.7 NT NO 
      

Nocardiopsis chromatogenes 2E-91 51 1.5 ± 0.05  YES NO 
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Knowing that these bacteria produce DMSP, we next needed to show that the 

mmtN gene in these microbes encoded for an enzyme with MMT activity, as was the case 

with Novosphingobium MmtN. To do this, primers containing restriction sites were 

designed to amplify from either end of the mmtN sequences in all four organisms (as with 

Novosphingobium mmtN, above). An amplified fragment of the gene was produced using 

these primers in a PCR reaction, purified, digested using the appropriate restriction 

enzymes and cloned into pre-digested pET21a (see Chapter 2). Clones were checked by 

re-digesting and visualising on gel electrophoresis, and by sequencing the fragment. All 

the clones were correct, resulting in plasmids pBIO21T2 (T. profundimaris mmtN), 

pBIO21R3 (R. indicus mmtN), pBIO21N4 (N. chromatogenes mmtN) and pBIO21S5 (S. 

mobaraensis mmtN). These plasmids were tested for MMT function, namely conferring the 

ability to produce SMM from Met to E. coli, as above (Figure 5-14).  

 We can see that the mmtN gene, as with Novosphingobium above, is functional in 

T. profundimaris, S. mobaraensis and N. chromatogenes. The data on R. indicus is 

inconclusive, and needs more investigation. S. mobaraensis did not appear to produce 

high levels of DMSP (Table 5-2), yet the gene itself appears to be producing the highest 

amounts of SMM. This could be because in this experiment the gene is expressed at 

higher levels when it is in E. coli BL21, which is easier to culture than S. mobaraensis. 

Alternatively, perhaps SMM and/or DMSP are metabolised to other compounds in S. 

mobaraensis, which do not generate DMS upon NaOH lysis. It could also be that S. 

mobaraensis produces DMSP in the natural environment, but is not able to under lab 

Figure 5-14: SMM production by E. coli BL21 containing pET21a with clones of mmtN 

homologs from five species (named on the x-axis), alongside the buffer, E. coli with the empty 

vector, and E. coli alone. Error bars display standard error. 
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conditions, especially considering the difficulties had with culturing. Figure 5-14 only 

shows that mmtN encodes a functional enzyme able to produce SMM from Met, not that 

the purpose for production is to synthesise DMSP.  

5.2.8 Purifying and testing the MmtN protein 

The fact that mmtN clones confer MMT activity to E. coli and that Novospingobium 

lysates have MMT activity (Figure 5-14) suggests that MmtN is responsible for this activity. 

However it is possible that other components of the cell lysate may be carrying out the 

MMT activity. To test this, we needed to overexpress and purify MmtN and characterise 

its activity and enzyme characteristics. The mmtN gene cloned into pET21a (pBIO21N1) 

was subcloned into a second plasmid, pET22b (Novagen, America), which contains a C-

terminal His-tag enabling purification of the gene product through an affinity column. This 

purification work and subsequent characterisation was carried out with Chun-Yang Li at 

the Shandong University, Jinan, China.  

The MmtN protein was expressed in E. coli BL21 cultures grown in LB media at 

37°C, and then induced at 20°C for 16 hours with 0.5 mM IPTG. The protein was purified 

first with Ni2+-NTA resin, and then fractionated using gel filtration buffer on a Superdex-

200 column. Purification of the protein took place at 4°C. For the Ni2+-NTA resin 

purification, wash buffer was used to remove protein impurities, followed by the elution 

buffer to elute the purified protein from the column. The image in Figure 5-15 shows an 

example of the purified MmtN protein (33.55 kD) and DsyB (36.94 kD), as seen on an SDS 

PAGE protein gel, judged to be >95 % pure.  

250 

Ladder     DsyB      MmtN1    MmtN2  MW (kD) 

150 

100 

75 

50 

37 

25 
20 

Figure 5-15: Visualisation of the purified proteins, DsyB and MmtN, on an SDS PAGE protein 

gel, run against a prestained precision protein standard ladder. 
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Measuring MmtN enzyme activity was complicated, as detection of SMM created 

by MmtN activity by HPLC and LC-MS is on-going. Instead, it was achieved by monitoring 

the production of S-AdoHyc (S-adenosyl homocysteine), the molecule produced after S-

AdoMet has donated a methyl group to Met (facilitated by the enzyme MmtN) to generate 

SMM, which can be detected by HPLC. To determine the optimal conditions for MmtN 

activity, multiple temperature and pH conditions were trialled, with the enzyme activity 

compared at each stage. Once activity peaks the highest activity detected is defined as 

100 % activity, and all the other tested conditions are then described as relative to it. The 

reaction mixtures were tested against temperature intervals of 10°C between 0°C to 60°C, 

for 30 minutes (Figure 5-16-a). To determine optimal pH levels, MmtN activity was 

examined using Brtitton–Robinson at discrete pH values between pH 5.0 and pH 10.0 

(Figure 5-16-b). The kinetic parameters (Km) for each of these experiments were 

determined by non-linear analysis, based on the initial rates and determined using 3.34 

µM MmtN and 0.1 – 4 mM S-AdoMet (Figure 5-16-c), or 0.1 – 6 mM Met (Figure 5-16-d).  
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Km : 1.00 ± 0.19 mM Km : 2.02 ± 0.38 mM 

Figure 5-16: Characterization of MmtN. (a) Effect of temperature on the enzymatic activity 

of MmtN. Activity at 30°C was defined as 100%. (b) Effect of pH on the enzymatic activity 

of MmtN. Activity at pH 8.0 was defined as 100%. (c) Non-linear fit curve for SAM 

demethylation by MmtN. Initial rates of SAH generation were determined with 3.34 µM 

MmtN and 0.1 – 4 mM SAM in the reaction buffer. Km was 1.00 ± 0.19 mM. (d) Non-linear 

fit curve for Met methylation by MmtN. Initial rates of SAH generation were determined 

with 2.72 µM MmtN and 0.1 – 6 mM Met in the reaction buffer. Km was 2.02 ± 0.38 mM. 
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All experiments following these were performed under optimal pH and temperature 

for MmtN activity, and the amount of DL-Met and S-AdoMet was always excessive to 

requirements. The finalised method for testing MmtN activity was set as follows. The 

purified MmtN protein (3.34 µM), DL-Met (2.5 mM) and S-AdoMet (0.64 mM) were mixed 

with a reaction buffer containing 50 mM Tris–HCl (pH 8.0), in a total volume of 100 μl. The 

mixture was incubated at 30°C for 30 minutes, and the reaction was stopped with the 

addition of 15 μl 20 % hydrochloric acid (HCl). The amount of S-AdoHyc in the reaction 

mixture at this point was detected by HPLC on a Sunfire C18 column (Waters, Ireland). 

The MmtN methylation activity on other substrates including MTHB, MMPA and L-Gly was 

also tested, as well as a control of MmtN on its own (Figure 5-17). 

 

From the HPLC results, it was confirmed that the only reaction conditions from 

which S-AdoHyc was produced was when MmtN was incubated with S-AdoMet and DL-

Met, meaning that we can assume that the MmtN protein is able to methylate Met through 

the methyl donor S-AdoMet, releasing S-AdoHyc as a by-product.  

5.2.9 Selecting a strain for disruption mutation experiments 

The next stage in determining gene function is its disruption in a wild-type strain. It 

was hypothesised that a mutation in mmtN would reduce or completely knock out DMSP 

production in the host strain, and that subsequent phenotyping may show this to be 

detrimental to the survival of the bacterium under a particular condition. This is necessary 

to show that mmtN is involved the generation of SMM and/or DMSP in Novosphingobium.  

To determine which bacterium would be most suited for the generation of an mmtN–

mutant, several were considered. The DMSP-producing Alphaproteobacteria are easier to 

Figure 5-17: Detection of MTHB, MMPA, L-Gly and DL-Met methylation activity of MmtN via the 

intensity of absorbance on HPLC (wavelength of detection, 260 nm). The different coloured 

curves represent different reaction systems and include different substrates. 
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grow than the actinobacteria, so the three that were considered were Novosphingobium, 

R. indicus and T. profundimaris. As R. indicus contains both dsyB and mmtN (Table 5-2), 

it was not an appropriate choice for a total knock-down in DMSP production because you 

would be less likely to observe a phenotype, as one pathway may compensate for the 

other. However, because of this fact it would be interesting to consider R. indicus for 

comparisons between the two genes in the future. In order to select the most appropriate 

species between Novosphingobium and T. profundimaris, both were tested against 

various antibiotics to determine which would be easiest to work with. The reason for testing 

antibiotic resistance and sensitivity is because the homologous mutation techniques that 

we utilise all involve antibiotic selection, thus if one organism is multi-drug resistant it would 

not be suitable for mutagenesis using this methodology. Cultures were grown to stationary 

phase overnight at 30°C in rich media (MB) before plating on MB agar containing 

gentamycin (20 µg/ml), kanamycin (200 µg/ml), neomycin (20 µg/ml or 40 µg/ml), 

rifampicin (20 µg/ml), spectinomycin (200 µg/ml), streptomycin (200 µg/ml) or tetracycline 

(5 µg/ml or 10 µg/ml), incubating at 28°C and detecting any growth over 48 hours (Table 

5-3). 

Table 5-3: The growth of two species of bacteria, Novosphingobium sp. MBES04 and T. 

profundimaris when tested against various antibiotics. 

 

From this experiment, it was clear that Novosphingobium would not be easy to 

work with for mutagenesis, as it was resistant to all the tested antibiotics. Therefore it was 

decided that T. profundimaris was the best strain in which to create an mmtN mutant, 

because of all the tested antibiotics, it was only resistant to tetracycline.  

 

Antibiotic tested Growth of 
Novosphingobium sp. 

MBES04 

Growth of 
T. profundimaris 

   
Gentamycin YES NO 
   
Kanamycin YES NO 
   
Neomycin YES NO 
   
Rifampicin YES NO 

   
Spectinomycin YES NO 
   
Streptomycin YES NO 
   
Tetracycline YES YES 
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Since all the previous culture dependent work in this chapter had focused on 

Novosphingobium, and not T. profundimaris, some extra growth experiments were 

performed to characterise the optimal growth conditions of T. profundimaris before 

mutagenesis could be attempted. Firstly, a growth curve was performed to determine the 

timeframe before reaching stationary phase (Figure 5-18). This was performed in the 

same way as the Novosphingobium growth curve (Figure 5-3), in triplicate in 35 PSU 

MBM. 

 

We also quantified the DMSP production by T. profundimaris when cultures were 

incubated under different salinity and nitrogen conditions. Triplicate cultures were 

inoculated into MBM of salinity levels between 5 PSU and 70 PSU with 0.5 mM nitrogen, 

to test the effect that salinity has on the production of DMSP. At this point, it became lab 

standard to use the low nitrogen levels (0.5 mM nitrogen) in all work that used MBM media, 

as it was closer to natural conditions compared to the previous standard of 12 mM. 

Cultures were also grown in 35 PSU MBM with high nitrogen levels of 12 mM to observe 

the effect. They were incubated overnight, and DMSP levels quantified (Figure 5-19). 

Figure 5-18: Growth curve of T. profundimaris in triplicate cultures, incubated at 30°C, shaken at 

200 rpm for 15 hours until cultures reached stationary phase. Error bars display standard error. 
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 As expected, when T. profundimaris was grown under increased salinity we 

observed significant increased DMSP production, from no production at 5 PSU to over 100 

pmol/µg protein at 70 PSU. It seems that T. profundimaris has very high tolerance for 

salinity, perhaps in part due to the ability to produce DMSP. This would perhaps be 

expected of a bacterium living in salt marsh sediments. This experiment also confirms that 

it produces almost no DMSP when grown in nitrogen replete conditions. Although it has 

always been observed that decreased levels of nitrogen greatly increase DMSP 

production, it was a surprise that higher levels of nitrogen completely prevented it (at 

detectable levels). This could be because T. profundimaris is able to synthesise GBT as 

well as DMSP, and therefore when nitrogen levels are high it selectively produces GBT 

instead (see below). 

5.2.10 Disrupting mmtN in T. profundimaris 

To generate an mmtN mutant in T. profundimaris, the single homologous 

recombination method using the plasmid pBIO1879 (pK19spec,Todd et al. (2011)), was 

used. The mutagenesis described below was conducted with help from Andrew Curson. 

The first step in generating a T. profundimaris mmtN mutant was to obtain a spontaneous 

Rif resistant mutant. This is required to allow the selection of T. profundimaris away from 

E. coli. This was created by plating high density of cells on plates with Rifampicin in, and 

incubating them for long enough that spontaneous mutants arise. The T. profundimaris-

Rif strain was treated as wild-type for all the experiments performed comparing the mmtN- 

to wild-type.  

Figure 5-19: The effect of changing salinity or nitrogen availability on the production of DMSP 

by triplicate samples of T. profundimaris. Error bars display standard error. 
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The single crossover (SCO) gene disruption method involves cloning an internal 

fragment of a gene (in this case mmtN) into pBIO1879 (Todd et al. 2011), which is a 

derivative of the pK19mob plasmid described in Schäfer et al (1994), with a SpcR cassette 

cloned in. This plasmid is a suicide vector, meaning that it only replicates in E. coli, thus 

when it is mobilised out of the donor strain into a host in which the origin of replication does 

not work, it is not maintained unless it integrates into the genome through homologous 

recombination. Recombination is most likely to occur between the cloned fragment and 

complement sequence within the genome of the host. Once the ~5.7 kb plasmid is 

integrated into the genome it confers spectinomycin resistance, and disrupts the target 

gene to make it non-functional.  

To clone a fragment that was internal to mmtN into pBIO1879, primers were 

designed either side of a ~ 500 bp central region of the T. profundimaris mmtN gene. 

These primers were used to amplify and then digest the fragment, and cloned into pre-

digested pBIO1879, essentially as for the cloning of mmtN genes into pET21a in 5.2.5. 

The plasmid containing the mmtN fragment was transformed into E. coli 803 competent 

cells and then mobilised into T. profundimaris-Rif using tri-parental crossing, as in methods 

(Figurski and Helinski, 1979). Potential T. profundimaris mmtN mutant colonies were 

isolated on YTSS media containing Rifampicin and spectinomycin and kanamycin to select 

for pBIO19TK integration. These potential mutants were checked by PCR using primers 

exterior to the cloned internal fragment. For any potential mutants that gave no PCR 

product (expected because the insertion of the plasmid renders the potential product too 

large for PCR), their DMSP production phenotype was examined by GC, as above. Upon 

carrying out this screen we identified a mmtN- mutant which no longer produced DMSP in 

GC analysis. Furthermore, when examined by LC-MS, this mutant, termed T. 

profundimaris-R (mmtN-), also showed no detectable DMSP (Figure 5-21). Thus, we have 

generated a T. profundimaris mmtN- deletion mutant, and have demonstrated that mmtN 

is required for DMSP-synthesis in this marine alphaproteobacterium. 

In order to show that the lack of DMSP in the T. profundimaris mmtN- mutant is due 

to the mutation it was necessary to complement the strain with a W/T mmtN gene cloned 

on a plasmid (see Chapter 2). The mmtN clone from Novosphingobium, termed 

pBIO21N1, was subcloned into pLMB509 and then mobilised into the T. profundimaris-Rif 

mmtN- mutant, and tested for DMSP production by GC. As can be seen in Figure 5-20, 

the mmtN returned function to the mutant, although not reaching W/T levels, there is a 

noticeable increase in DMSP production from 0 in the mutant. Thus we can be confident 

that the SCO mutant in mmtN is responsible for the observed phenotypes and not 

secondary mutations elsewhere in the genome.  
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Although function was clearly returned to the T. profundimaris-Rif mmtN- mutant, it 

is somewhat lower than that in the W/T. This could be due to the fact that pLMB509 

possesses a taurine-inducible promoter that is not a natural promoter for mmtN, and giving 

it low expression in comparison to the W/T.  

It was notable in the LC-MS work performed on T. profundimaris that the wild type 

strain only produced DMSP, but the mmtN- mutant strain produced large quantities of the 

nitrogenous osmolyte GBT (Figure 5-21). This supports the previously suggested theory 

that there is a switch between the two, where GBT may be being synthesised when DMSP 

is no longer able to be produced, to take over the role as osmoprotectant. Given this result, 

one may not expect to see an obvious phenotype for the mmtN- mutant, if GBT can 

compensate by adopting the role of DMSP in T. profundimaris. 

 

Figure 5-20: DMSP production by the T. profundimaris W/T, mmtN- mutant and the 

complemented mutant, expressing mmtN from Novosphingobium via pBIO509N. 
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5.2.11 Phenotyping the mmtN- mutant 

Having a T. profundimaris mmtN- allowed us to examine any phenotype that the 

lack of DMSP production might cause. Any impact on growth or survival on T. 

profundimaris would suggest that DMSP was either necessary for growth, or at the very 

least required for optimal cell function. As salinity is clearly tied to DMSP production in T. 

profundimaris (Figure 5-19), it was the first condition used to test the mutant with. 

Triplicate 100 ml cultures of MBM were inoculated with the T. profundimaris-Rif wild-type 

or mmtN- mutant. These cultures were either 35 PSU or 50 PSU salinity with 0.5 mM 

nitrogen, or 35 PSU MBM with 12 mM nitrogen as a control. These were incubated for 14 

hours at 30°C, shaking at 200 rpm. The growth was measured every hour by reading the 

OD600 of 1 ml culture, until at least some of the cultures appeared to reach stationary 

phase, judged by similar OD600 levels being measured for at least three hours (Figure 

5-22). 

 

Figure 5-21: LC-MS chromatogram showing DMSP (m/z 135) and GBT (m/z 118[H]+) in T. 

profundimaris-Rif wild-type and mmtN- strains in the presence of Met. 

T. prof-R mmtN- + Met 

T. prof-R wild-type + Met 

GBT and DMSP standards (100µM) 
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Unfortunately there appears to be no significant difference between growth of the 

mutant and wild-type in either salinity regime. Under 50 PSU it is clear that growth rate is 

impeded, but it continues to gradually increase with or without the function of mmtN, 

suggesting that either other osmoprotectants are playing a role (either GBT or others 

where nitrogen is too low), or that DMSP may not in fact play a role in salinity protection in 

T. profundimaris. It could be that DMSP concentration in T. profundimaris is increasing 

under high salinity as the result of other processes, or is simply not required for growth. 

Another method of analysis that was carried out was a competition experiment, 

observing any change in the ratio between W/T and mutant T. profundimaris cells grown 

under various conditions. Cultures of both the mutant and wild-type were inoculated from 

fresh plates into 35 PSU MBM with 12 mM nitrogen, incubated at 30°C overnight, then 

mixed 1:1 (500 μl of each) in a 1.5 ml microcentrifuge tube, leaving one mixed culture in 

35 PSU conditions. A serial dilution was performed and plated on MBM agar and incubated 

at 28°C until single colonies were visible. These were picked and individually streaked in 

the same place on MBM plates with or without kanamycin, enabling differentiation between 

the mutant (Kan-resistant) and the wild-type (Kan-sensitive). The percentages of both 

were calculated. At the same time, the 1:1 mix was also inoculated into high stress 

conditions, including low nitrogen and high salinity. The mix was inoculated into 50 PSU 

MBM with 0.5 mM nitrogen and 35 PSU MBM with 0.5 mM nitrogen. Cultures were 

incubated overnight and the same process of plating and then streaking on MBM 

with/without kanamycin was followed. Percentages were calculated and compared to 

those before the stressed conditions (Table 5-4). 

Figure 5-22: Growth curves of T. profundimaris-Rif wild-type (W/T) and the mmtN- mutant 

(Mut) under 35 PSU or 50 PSU salinity and 0.5 mM nitrogen (indicated by –N), as well as 

under 35 PSU salinity with 12 mM nitrogen (indicated by +N). Samples are in triplicate and 

error bars display standard error. 
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Table 5-4: Percentages of T. profundimaris-Rif wild-type colonies versus T. profundimaris-

Rif mmtN- mutant colonies when in competition in a mixed culture after growth in stress 

conditions. 

 

Once again, there does not appear to be an obvious phenotype, except that there 

is almost consistently a higher proportion of wild-type colonies to mutant colonies in the 

mix. This doesn’t appear to change when the mix was inoculated in 50 PSU conditions, 

and actually decreases under 35 PSU conditions to almost 50:50.  

The effect of temperature was also tested, as it is also thought that DMSP also acts 

as a cryoprotectant. Cultures of both the mutant and wild-type were grown to stationary 

phase in 35 PSU MBM with 0.5 mM nitrogen. The OD600 was adjusted to 0.3 and 1 ml of 

cells were then centrifuged at maximum speed, before washing the pellets in 1 ml MBM 

and performing a serial dilution. These were then plated on YTSS and incubated overnight 

until colonies were visible. These were then counted in order to calculate cfu/ml and 

determine cell numbers before freezing. The 1 ml MBM cultures were frozen at -20°C for 

one week before defrosting, diluting in the same way and plating on YTSS. Colony counts 

were performed, and the cfu/ml compared to those prior to freezing (Figure 5-23). 

Although both the mutant and wild-type had similar cfu/ml counts before freezing, 

there seemed to be no phenotype of the mutant after freezing. Indeed, while the cfu/ml 

counts for the mutant remained almost the same after freezing, the wild-type actually 

seems to have decreased compared to the original counts, which was contrary to what 

was expected.  

Growth condition  Replicate Percentage growth of 
wild-type 

Percentage growth of 
mmtN- mutant 

    

    
Before stressed growth  63 37 
    

    
50 PSU -N  1 64 36 
    
 2 64 36 
    
 3 61 39 
    
 Average 63 37 

    
35 PSU -N  1 61 39 

    
 2 50 50 
    
 3 50 50 
    
 Average 54 46 
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From all the characterisation experiments performed in this chapter, we could not 

identify a phenotype for the T. profundimaris-Rif mmtN- mutant. However, there are always 

other conditions that have yet to be tested, including testing with H2O2 to test the reaction 

to oxidative stress. 

5.2.12 Searching for mmtN in other Stiffkey isolates 

Of the three non-dsyB-containing species that were sent for WGS in Chapter 4, 

Novosphingobium was the only isolate shown to contain mmtN. Both the Alteromonas and 

Marinobacter isolates from Stiffkey do not appear to possess it (from BLASTp analysis), 

although there is an Alteromonodaceae bacterium in the JGI database that has an mmtN 

(Figure 5-12), which suggests that at least some bacteria in that order may have it. 

Interestingly, when the other dsyB-containing sequences were also mined for mmtN, the 

Rhodobacterales also appears to have it (E value 3E-145, identity 69%). This is unusual 

but not unprecedented, as R. indicus also appears to contain both (Table 5-2), and many 

species contain multiple ddd genes (Todd et al. 2011; Curson et al. 2012). 

5.2.13 Other candidate genes in the methylation pathway 

When the mmtN gene was identified in R. indicus it was observed that there 

appeared to be several genes upstream that could be part of a DMSP-synthesis operon. 

This was because the other steps in the methylation pathway likely require some 

combination of a decarboxylase and a transaminase, both of which appear to be close to 

the SAM-dependent methyltransferase in R. indicus (Figure 5-24), with an aspartate 

Figure 5-23: The cfu/ml of T. profundimaris-Rif wild-type (W/T) and T. profundimaris-Rif mmtN- 

mutant (Mut) before and after freezing at -20ºC for one week. Samples were in triplicate, plotted 

on a logarithmic scale and error bars are standard error. 
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aminotransferase and a diaminopimelate decarboxylase adjacent to it. Where possible, 

the whole genome sequences of the other mmtN-containing species were mined for these 

genes, and several of them appear to contain both, also adjacent or close to mmtN. There 

were also a number of species that did not contain this ‘operon’ of genes, for example, 

Novosphingobium appears to contain the same aspartate aminotransferase but no full 

diaminopimelate decarboxylase (although there is a small hypothetical protein that has 

~38% identity to it). Although many of the Thalassospira and Labrenzia sequences 

appeared to contain this small hypothetical protein with similarity to the decarboxylase, 

none of them seem to have the aspartate aminotransferase anywhere near mmtN. 

However, many of them did contain a pyridoxal phosphate-dependent aminotransferase, 

which could be performing the same or similar role (Figure 5-24). 

Both the R. indicus aspartate aminotransferase and diaminopimelate 

decarboxylase, as well as the hypothetical protein between them (Figure 5-24) were 

cloned into pET21a at the same time as the rest of the mmtN genes. Although this was all 

that was accomplished in this body of work, this operon is potentially a very interesting 

route of study to follow up on, as it could be the first demonstration of the full suite of genes 

used by a species to take Met all the way through the pathway to DMSP.  



 

155  

 

F
ig

u
re

 5
-2

4
: 

T
h
e
 s

y
n
te

n
y
 b

e
tw

e
e

n
 t

h
e
 g

e
n

e
s
 i

m
m

e
d
ia

te
ly

 s
u
rr

o
u
n
d

in
g
 
m

m
tN

 i
n
 m

u
lt
ip

le
 m

m
tN

-c
o
n
ta

in
in

g
 s

p
e
c
ie

s
 t

h
a
t 

a
re

 p
o
te

n
ti
a
lly

 i
n

v
o

lv
e
d

 i
n
 D

M
S

P
 

p
ro

d
u
c
ti
o
n
, 

a
n
d
 h

o
w

 t
h

o
s
e

 s
p
e
c
ie

s
 r

e
la

te
 t

o
 e

a
c
h
 o

th
e
r.

 G
e
n
e
s
 o

f 
in

te
re

s
t 

a
re

 h
ig

h
lig

h
te

d
 a

s
 m

m
tN

 (
S

A
M

-d
e
p
e

n
d
e

n
t 

m
e
th

y
lt
ra

n
s
fe

ra
s
e
),

 a
 d

ia
m

in
o
p

im
e
la

te
 

d
e
c
a
rb

o
x
y
la

s
e

, 
a
n

 a
s
p
a
rt

a
te

 a
m

in
o
tr

a
n
s
fe

ra
s
e
 a

n
d
 a

 p
y
ri

d
o
x
a
l 
p
h
o
s
p

h
a
te

-d
e
p

e
n
d

e
n
t 
a
m

in
o
tr

a
n
s
fe

ra
s
e
. 



 

156  

5.3 Discussion 

5.3.1 Summary of work 

The main aim of the work carried out in this chapter was to identify and characterize 

novel DMSP-synthesis genes in Novosphingobium, which had been shown to lack the only 

identified DMSP-synthesis gene, dsyB. This was accomplished with the discovery of a 

second DMSP-synthesis gene, mmtN, which encodes for a SAM-dependent 

methyltransferase that methylates Met to become SMM, which is the first step in the 

methylation DMSP production pathway. This gene was found to be in a variety of other 

species; it not limited to alphaproteobacteria, but is also in several actinobacterial species 

as well as potentially one gammaproteobacterium. It was also demonstrated that when 

this gene is disrupted in T. profundimaris WP0211, DMSP production no longer takes 

place, confirming that this gene plays a role in it. Finally, phenotyping experiments were 

carried out on the mutant to attempt to draw more conclusions about the role that DMSP 

synthesis plays in bacteria. Unfortunately, as yet no definitive phenotype has been 

discovered.  

5.3.2 Moving forward with the mmtN- mutant  

In tested DMSP-producing bacteria, whether they have dysB or mmtN, DMSP 

production, and in case of L. aggregata LZB033 (the only bacterium tested for this so far), 

dsyB transcription is enhanced under various conditions, with high salinity causing the 

highest fold change (Curson et al. (2017). It was therefore expected that the knocking out 

dsyB or mmtN would have an impact on survival in general, or at least under regulating 

conditions. However, this was not the case, both in the published work and in this chapter. 

This could be because while DMSP production is useful and clearly utilised by the 

organisms, it may not necessarily impact the survival of them. However, it could also be 

because the condition in which DMSP is most required has not yet been tested. For the 

mmtN- mutant at least, phenotyping has only just begun. More conditions have yet to be 

trialled, including perhaps higher salinity conditions, as the growth curves only tested up 

to 50 PSU and it has been shown that T. profundimaris can grow and produce DMSP even 

at 70 PSU. Other conditions that could be tested are different types of oxidative stress, 

such as UV light or H2O2 treatments, as it appears that DSYB, the eukaryotic synthesis 

enzyme, at least, might play a role in oxidative stress protection (Curson et al. 2018). There 

may also be other impacts that the loss of DMSP production has within the cell, that are 

not necessarily detrimental to growth. However, a more realistic scenario is that, in terms 

of salinity tolerance at least, other osmoprotectants including, but not limited to, GBT, are 

likely produced at higher volume to cover the loss of DMSP. We clearly demonstrate here 

that GBT accumulation is enhanced in the T. profundimaris mmtN- mutant compared to 
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the WT supporting this hypothesis. In this case it is still likely that DMSP is playing a 

significant role in, for example, osmoprotection. However, we do not notice this due to the 

compensation by e.g., GBT production. The only way to demonstrate this is would be to 

identify and knock-out genes involved in the synthesis of other osmolytes such as GBT in 

the T. profundimaris mmtN- mutant, and then screen for phenotypes in such double knock-

out mutations. Indeed, it is noteworthy that Ana Bermejo Martinez has created mutants of 

the genes for GBT synthesis in L. aggregata LZB033 and observed no detrimental growth 

phenotype under the same conditions tested here.  

Genetic studies so far are limited to two alphaproteobacteria, both of which also 

produce GBT. It would be interesting to create disruption mutants in other mmtN- and/or 

dsyB-containing strains, as they may lack GBT synthesis pathways and use DMSP as the 

sole osmolyte. Furthermore, in such microbes the regulation of DMSP synthesis may be 

different than what is observed in L. aggregata LZB033 and T. profundimaris. One would 

imagine that DMSP synthesis may be constitutive in some organisms, as it is in many 

phytoplankton who use it as their major osmolyte, e.g. a number dinoflgellates (Yoch 

2002). The hypothesis would be that in such organisms a DMSP- mutant would have a 

more severe detrimental phenotype. As yet no work has been carried out on 

actinobacterial DMSP producers, which are clearly very divergent to the 

alphaproteobacteria. These important producers of secondary metabolites may be a good 

place to start. 

It may also be of interest to study DMSP production in bacteria which have multiple 

DMSP-synthesis genes/pathways, e.g. R. indicus. Why would an organism have two 

pathways for the synthesis of the same molecule? Certainly double mutants would need 

to be created in this strain to answer that question. It is possible that the two different 

pathways exist in the same organism as a redundancy or failsafe, suggesting that it might 

be more important for survival in those particular species. 

It may also be worth looking at whether it is the loss of SMM synthesis in bacteria 

with mmtN that might have an effect on growth or function. This is because SMM 

production in plants is not necessarily specific to DMSP production, and this may also be 

the case in bacteria.  

5.3.3  Other characterization of mmtN and bacterial DMSP production 

Even though there is no discernible growth phenotype for the mmtN- mutant, there 

are still other routes of study left to pursue to understand the role that this gene plays within 

the organism. Firstly, now that the protein has been successfully purified, there are many 

experiments that can be performed, such as X-ray crystallography to determine the 

structure and then further understand its reaction mechanism. This may yield important 
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information as to the environmental context if, for example, mmtN is a metalloenzyme. We 

know that some metals, e.g., Fe, are very rare in the open ocean and thus if an enzyme is 

dependent on such a metal then Fe availability may affect DMSP productivity. We have 

not characterised the transcriptional or translational regulation of mmtN in any organism. 

This is essential to gain a better understanding of how DMSP is produced in these 

organisms. This could be done via the generation of lac fusions and/or RT-qPCR as was 

done in Curson et al. (2017) and (2018).  

If we were to gain a better understanding of the regulation of DMSP production and 

mmtN expression a logical progression and interesting question would be to examine the 

molecular control points of this regulation. Is there a master regulator that controls the 

transcription of DMSP synthesis genes and/or other salinity regulated genes? To ask this 

question one would have to identify the promoter region of mmtN and look for conserved 

potential regulator binding sites in this DNA that are common to other mmtN genes form 

other bacteria. There are a huge number of possible ways forward on this topic and it is 

an important set of questions that should be addressed in the near future. 

Given the fact that MmtN is homologous (~ 30 % identity to the N-terminus of MMT 

) to the plant MMT eukaryotic, it could be proposed that one is the progenitor for the other. 

There is a precedent for this with DSYB and DsyB in algae and bacteria respectively 

(Curson et al. 2018). In the case of DSYB/DsyB, evolutionary analysis suggested that 

alphaproteobacteria is the sister clade to the eukaryotic gene. Further analysis led to the 

conclusion that this particular gene actually appeared in prokaryotes first, followed by 

transfer into eukaryotes, potentially on multiple occasions. It was thought that this transfer 

either took place through endosymbiosis (at the time of mitochondrial origin), or more 

recently by horizontal gene transfer (HGT). It would be interesting to perform the same 

analysis on mmtN to determine if perhaps a similar occurrence took place between mmtN 

in prokaryotes and eukaryotes in the past. This would reveal much about the importance 

of bacterial and eukaryotic DMSP production both historically and in the modern day. Initial 

evolutionary analysis of MmtN by Lewis Spurgeon suggests that a different scenario may 

have taken place than what was the case with DSYB/DsyB. Here, the data suggests that 

early on in the evolution of this protein family there was a gene duplication, where one 

developed into the ~ 1000 aa MMT which is present in all flowering plants and some 

bacteria (many deltaproteobacteria), and the other became the shorter MmtN (lacking the 

MMT C-terminal PLP-binding domain), which is found in exclusively in bacteria. Both these 

proteins have retained the same enzyme function, and it is likely that the C-terminal 

domain has a role that is additional to MMT activity, perhaps in regulation as proposed in 

Bourgis et al. (1999). A further point worth noting is that only mmtN is a confident reporter 

of DMSP synthesis, since all tested bacteria that contain it have been shown to produce 
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DMSP. In contrast, only one of the four tested bacteria with MMT made DMSP. This is 

consistent with the fact that all plants have MMT but few make DMSP. 

The discovery of a possible full suite of genes close together in the genome of R. 

indicus and other bacterial genomes was also noteworthy. There are many possible steps 

that could be taken to advance this work. The genes could be cloned into expression 

vectors such pET21 and screened for the expected transformation of SMM into e.g. DMSP 

amine. However, as yet we have no evidence that any bacterium with mmtN uses the plant 

methylation DMSP synthesis pathway. All we know is that MMT is involved, and that SMM 

is an intermediate. Thus it would be prudent to first characterise the DMSP synthesis 

pathway in T. profundimaris. This would involve the feeding of labelled Met (stable or 

radioactive) and the tracing of intermediates via HPLC or LC-MS/NMR. This is essentially 

the method used by Hanson to establish the known DMSP synthetic pathways (Gage et 

al. 1997). Although this metabolomics approach is essential to provide knowledge on the 

pathway, there are other approaches that also could be used. One such approach is to 

mutate the candidate DMSP synthesis genes in T. profundimaris using methods similar to 

those used to generate the mmtN mutant, being careful not to generate polar mutations. 

In recent work Andrew Curson has knocked out the aminotransferase gene and shown 

that the resultant mutant no longer produces DMSP. The metabolites produced by this 

aminotransferase mutant could be analysed by the above metabolomics techniques using 

labelled Met, to identify the reaction the enzyme catalyses by virtue of identifying labelled 

metabolites accumulating in the mutant vs the W/T. 

5.3.4 Concluding Remarks 

The discovery of not only a novel DMSP-synthesis gene, but one that utilises an 

entirely new pathway, is very significant, particularly because it means that estimates of 

bacterial DMSP production based on dsyB as a reporter are in fact conservative, and it is 

likely that even more species are producing DMSP than previously thought. If there are 

two bacterial DMSP-synthesis genes, it is likely that there are more, especially considering 

there are still DMSP-producing strains that have been isolated that do not appear to 

contain either. 
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6 CULTURE-INDEPENDENT IDENTIFICATION 

 

6.1 Introduction 

6.1.1 Work describing bacterial DMSP production so far 

The work carried out in this chapter is the complement to that described in Chapter 

4, which demonstrated that several different genera of DMSP-producing bacteria can be 

isolated from Stiffkey salt marsh. Many of these bacteria contain one of the DMSP-

synthesis genes – either dsyB or mmtN (or in some cases, both). In this body of work so 

far, we have shown through culture-dependent experiments that bacteria can be easily 

isolated from Stiffkey salt marsh sediment, and that it is possible to ‘enrich’ for DMSP 

production within the sediment. Primers were designed to amplify multiple homologs of 

dsyB, and were used as a preliminary screening method for the gene in unknown isolates, 

as well as in qPCR experiments on DNA and cDNA. During this process, it was also 

discovered that bacteria are able to utilize not one but two of the known DMSP-production 

pathways, the transamination pathway (involving dsyB) and a pathway involving a novel 

methylation pathway which involves the newly identified bacterial DMSP-synthesis gene, 

mmtN, which carries out the methylation of Met to SMM. This information is very 

informative as to the rough makeup of the bacterial community in Stiffkey, but does not 

enable large-scale, refined community analysis. 

6.1.2 Combining culture-dependent and –independent analysis  

The discovery of mmtN, and its likely role as a reporter of DMSP production in 

bacteria, means that previously published work describing bacterial DMSP production 

through the analysis of dsyB alone are in fact underestimating the role of DMSP synthesis 

(Curson et al. 2017; Curson et al. 2018). This is an example of how culture-dependent and 

culture-independent analysis can be utilized to complement each other very effectively. 

Culture-independent techniques (metagenomics, 16S rRNA amplicon, qPCR, etc.) are 

valuable tools for widespread analysis of abundance and transcription of functional genes, 

as well as enabling microbial community analysis. However, they are limited in their 

potential usefulness unless they have been informed by culture-dependent study – we can 

only search for genes that we already know are linked to DMSP production (which until 

this point, has only been dsyB). It is necessary to identify key functional genes in model 

organisms in order to better understand how these organisms and processes of interest 

function, at least under controlled laboratory conditions before we can draw conclusions 

about the function that these genes might play in situ. Therefore, culture-dependent 

techniques such as isolation work identifying novel species able to synthesise DMSP, 
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gene discovery and characterization, are all vital to improve the depth of analysis 

performed by culture-independent sequencing.  

Conversely, culture-independent work is also needed in this type of study, because 

while the culture-dependent study revealed that DMSP-producers exist in Stiffkey salt 

marsh, the methods of culturing used typically only identify ~1 % of bacteria in an 

environment (Davis et al. 2005; Saleh-Lakha et al. 2005), meaning that the analysis is 

heavily skewed towards that phylogeny of bacteria, potentially missing a significant 

amount in the natural environment. Culture-independent experiments are able to account 

for the other 99% of uncultivable bacteria in the sediment, and display the true abundance 

of particular species in the community. It is also able to analyse abundance and possibly 

transcription of functional genes without the bias of lab conditions. Metatranscriptomics in 

particular enables the quantification of bacterial gene activity without removing it from its 

natural environment, which could potentially be removing it from a number of interactions 

and factors that are impossible to account for or recreate in the laboratory. Results from 

this type of work are therefore much closer to the true levels of transcription in the 

environment. It has long been recognized that plate culturing is an inaccurate method of 

community analysis (Skinner et al. 1952), although it is acknowledged that other methods 

such as direct counting using a microscope also has disadvantages. For this type of study, 

if culture-dependent methods were the only type of method used, then it results in 

numerous phylogenetic groups being vastly understudied because they are either not 

cultured at all, or are slow growing or complicated to grow. When performing plate culturing 

experiments many species are unable to grow on the agar at all, likely due to missing 

requirements such as particular vitamins or carbon sources. Some would be able to grow 

if given a longer incubation time, but they are often out-competed as plates are overtaken 

by faster-growing bacterial species. If they do not form visible colonies on the plate it 

means that they cannot be picked and tested (Davis et al. 2005). Despite these limitations, 

this method of culturing is still the prevailing method of culturing novel isolates from an 

environment. There are ways in which isolations from sediment can be improved, but for 

the purpose of this study, and taking into account the culture-independent work that was 

also planned, the depth and breadth of species retrieved from Stiffkey salt marsh was 

sufficient. 

Another issue associated with culture-dependent work is the bias associated with 

analysis based on what is cultivable (Torsvik & Øvreås 2002), and the fact that, often out 

of necessity, experiments quantifying gene or protein activity are usually performed under 

conditions that are nowhere near the in situ conditions of an environment. This is often 

unavoidable, and, in the example of nitrogen levels being higher experimentally than in 

seawater environments, a balance has to be found between being able to culture and 
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produce results, and being close to accurate levels. Culture-independent sequencing can 

be performed on Time 0 (natural) samples, meaning that the abundance and activity of 

genes measured by this method are measured in as close to in situ conditions as possible.  

6.1.3 Culture-independent methods in literature 

The strength of combining these two methods is demonstrated by how often they 

are both used in other studies. Not all culture-independent techniques involve large-scale 

sequencing like metagenomics. Indeed, even just the incorporation of 16S rRNA clone 

libraries into community analysis can improve the analysis considerably. In work carried 

out by Steven et al. (2007) it was commented on that previous studies of permafrost 

environments had been performed solely on cultivable cells, missing > 99 % of the total 

microbial community. Therefore, both culturing experiments and 16S clone libraries were 

used to study microbial diversity in an Arctic permafrost sample. Culturing experiments 

were still used to determine viable heterotrophic bacteria in the sample after different 

growth conditions. Indeed, it was found that incubation at lower temperatures (around 5°C 

instead of 25°C) increased cell counts three-fold. Colonies that were different in 

morphology were picked and identified, with some appearing to be entirely novel species. 

Many of the cultured species were spore-forming Firmicutes, with Actinobacteria and 

Proteobacteria also being isolated. As well as growing well in low temperature conditions, 

many species were also found to be halotolerant, and three were actually able to grow 

even at subzero temperatures (at least –5°C). There are characteristics that it would not 

have been possible to detect or confirm through culture-independent work alone. The 16S 

clone libraries were created using PCR amplification from community DNA, and calculated 

to have ~69% Bacterial coverage. The likelihood of PCR bias was also taken into account 

when making claims about the estimates of actual abundance in the permafrost. 

Actinobacteria and Proteobacteria were detected through this method, but Firmicutes were 

found to be much less abundant than predicted through culturing experiments. Many of 

the 16S rRNA genes amplified were only ~97% sequence similarity to species published 

in GenBank, suggesting a high number of novel species within this environment. The clone 

library contained species related to Gemmatimonadetes and Planctomyces, both of which 

had not been previously associated with permafrost samples. It was also possible to draw 

conclusions about the diversity of the community in permafrost compared to the active 

layer as even within a small selection of clones more diverse species are detected in the 

active layer, likely because the permafrost is a more extreme environment and therefore 

more selective. Comparing the two methods of community analysis, the culture 

experiments suggested a very different community composition to the 16S clone libraries, 

although there is the possibility that dead or dormant cells are also included in the clone 
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library, while they are not in plate culturing. This study is an example of both methods 

being analysed in tandem for a more comprehensive study of an environment. 

Another study that uses both methods to effectively study an environment was 

carried out by Carrión et al. (2017), when studying the abundance and diversity of MeSH-

dependent DMS production in soil environments. Having previously discovered that 

bacteria possess a novel DMS-production pathway via MeSH, the first gene associated 

with it (mddA) was also characterized, and found it to be in up to 76% of bacteria in 

terrestrial environments (Carrión et al. 2015). It was present in multiple species that were 

not previously thought to produce DMS, such as several Actinobacterial and Rhizobiales 

species. It was therefore important to analyse the functionality of this gene (and therefore 

the abundance of this pathway) in a range of environments, including terrestrial soil and 

marine sediment. Carrión et al. (2017) focused specifically on grassland soil for a 

comprehensive analysis combining both culture-dependent and –independent techniques 

to study MeSH and DMS cycling in that environment. Soil incubation experiments 

confirmed that microorganisms within the soil turned the MeSH into DMS but only when 

addition MeSH was added. This activity was predicted to be bacterial after treatments with 

either a cocktail of antibiotics reduced DMS production, whereas treatment with 

cycloheximide, a eukaryotic inhibitor, had no effect. An enrichment of soil samples for 

MeSH-consuming species through the addition of MeSH was also carried out. This is a 

widely utilized method that overcomes the difficulty of studying meta-data with low 

frequencies of genes or species of interest (Schloss & Handelsman 2003), and is often 

very effective. The enrichments performed by Carrión et al. (2017) showed an increase in 

the rates of both DMS production and consumption towards the end of the experiment, 

although only a small proportion of the MeSH added appeared to be turned into DMS. 

Community DNA and RNA were extracted and analysed using both 16S rRNA amplicon 

sequencing and metagenomic sequencing.  

The 16S amplicon sequencing showed a change in the diversity of the community 

after enrichment, although not necessarily associated with DMS production. This was 

because MeSH and DMS are both carbon sources, and MeSH can be synthesized from 

DMS as well, meaning that the interactions between microorganism and the two substrates 

are likely more complicated than can be determined in this type of enrichment. Despite not 

revealing potential bacteria involved in MeSH-dependent DMS production, the 16S 

amplicon sequencing did show increased abundance of Methylotenera where DMS 

consumption rates were highest, suggesting it is able to degrade it. To test this, cultures 

of a model strain were tested and demonstrated to be able to consume both MeSH and 

DMS, the first example of this ability in the Methylophilaceae family. Increases in the 

abundance of Massilia were also observed in both 16S and metagenomic analysis, which 
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actually does contain mdd-like genes, and the culturing experiments identified several 

microorganisms containing the Mdd pathway, including several that have not been 

previously expected to contain it (e.g. Ensifer and Sinorhizobium). This suggests that mdd 

is likely more widespread than originally assumed. Metagenomic analysis on natural soil 

also revealed that a high percentage of species contain Mdd (35.9%), although this did not 

appear to increase in the enrichment samples. The work carried out in this Chapter is 

modelled closely on the methods that were performed in this study, which gave a 

comprehensive analysis of the cycling of MeSH and DMS in soil environments.  

Metagenomic-analysis on community DNA in a study is not limited to only those 

data generated during the study, as there are already many large publically available 

datasets to analyse. These were well utilized by Curson et al. (2018) in the study of the 

interplay between dsyB and the newly-identified eukaryotic homolog, DSYB. The ocean 

microbial reference gene catalogue (OM-RGC) metagenomic dataset was mined for the 

presence of many functional genes including dsyB, DSYB and the full suite of ddd genes, 

as well as recA (a single copy gene) for normalization, and to enable abundance of the 

genes to be expressed as percentages of bacteria present. Bacterial dsyB was found in 

0.35% of species, with only a small number of DSYB genes detected, likely in 

picoeukaryotes as this metagenome was only performed on the < 3 µm fraction. 

Metatranscriptomes were also analysed, both the Tara Ocean metatranscriptomic dataset, 

sampled across various oceanic locations (solely apportioned to bacteria), and a smaller-

scale metatranscriptome project in the North Pacific Ocean (GeoMICS) that contained 

fractionation allowing for the study of both bacterial and eukaryotic transcription. dsyB and 

DSYB transcription was observed in both datasets. DSYB was lower than dsyB in both in 

the OM-RGC dataset (abundance) and Tara metatranscriptomes (transcript numbers). 

However, the difference between the two it was much wider in abundance levels, being 

~25-fold lower than dsyB in metagenomic hits, but only 3-fold lower in transcript numbers, 

suggesting that it may be more active than dsyB in this environment, and therefore likely 

plays an important role in oceanic DMSP production. The GeoMICS dataset also revealed 

the expected pattern of higher DSYB transcription levels in the larger-sized fraction (2–53 

µm), and higher dsyB transcription in the smaller-sized fraction (0.2–2 µm) suggesting 

much about the distribution and diversity of bacterial and eukaryotic DMSP production. 

Tools from the studies described above have either been used (clone libraries, see 

Chapter 3) or are about to be reported below (16S amplicon and metagenomic 

sequencing), as part of the culture-independent bioinformatics analysis of the bacterial 

contribution to DMSP production by Stiffkey salt marsh.  
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6.1.4 Chapter Aims 

The aim of this chapter is to examine the community and functional genes in the 

natural Stiffkey sediment, alongside sediment that has been used in a microcosm 

experiment treated with the enrichment media conditions designed in Chapter 4. The 16S 

rRNA amplicon sequences of the sediment will be analysed, enabling the identification of 

the bacteria in the samples, not just those that have been cultured previously. These 

results will be studied in tandem with the metagenomic analysis of the same samples, 

which can give information on both the abundance of species (based on other markers 

than the 16S rRNA gene), as well as any other functional genes including dsyB, mmtN and 

all the ddd genes denoting DMSP catabolism, as a comparison. Furthermore, the dsyB 

degenerate primers can be used on RNA extracted from all the samples to detect changes 

in transcription of the gene between them. Sequencing and RT-qPCR will give a more in-

depth and unbiased picture of the community of DMSP-producers in Stiffkey salt marsh. 

Furthermore, some of these techniques were also used on marine sediment samples from 

the other sites, described in Chapter 4, i.e. Yarmouth Estuary and Cley salt marsh 

samples.



 

167  

6.2 Methods and Results 

6.2.1 Enriching the bacterial community of Stiffkey for DMSP-producers 

In Chapter 4 experiments were carried out in order to determine the enrichment 

conditions that would optimise for increased numbers of DMSP-producing bacteria within 

sediment taken from Stiffkey salt marsh. An enrichment (in triplicate) was performed on 3 

g of the oxic layer of Stiffkey sediment, with 45 ml of Combination Media MBM (see 

Chapter 4; 50 PSU MBM, 0.5 mM nitrogen, added MTHB) incubated for two weeks at 

25C. Alongside this was a control enrichment which was set up because it is likely that 

any microcosm experiment will affect the bacterial community even without any selective 

pressures. This control media was 35 PSU MBM with 12 mM nitrogen. Both media 

conditions used a mixed carbon source detailed in Chapter 2. The DMSP content of both 

sediments was quantified daily by agitating the sediment in the media for 30 seconds and 

allowing it to settle for 5 seconds before taking triplicate aliquots of 300 µl into a 1.5 ml 

microcentrifuge tube. These were centrifuged at maximum speed for one minute and the 

supernatant removed, 200 µl of which was added to GC vials. The pellet was resuspended 

in 200 µl sterile water and also transferred into GC vials, and both supernatant and pellet 

were mixed with 100 µl 10M NaOH and sealed, before incubating overnight in the dark at 

30C. The GC levels of DMSP were quantified and calculated per mg protein (which was 

measured using Qubit as spectrometry was not sensitive enough) (Figure 6-1).  

 From the microcosm enrichment it was clear that more DMSP was being 

produced/accumulating in the samples incubated under the ‘combination’ media, which 

could be due to either a higher abundance of DMSP-producers in the community, or higher 

activity by a smaller number of producers. This microcosm experiment was the basis for 

the work in the rest of this chapter, which focuses on the bacterial community and 

Figure 6-1: The DMSP production after enrichment of Stiffkey sediment in either ‘control’ or 

‘enriched’ MBM conditions. Both the pellet (DMSPp) and supernatant (DMSPd) are quantified. 

Samples were in duplicate, error bars denote standard error. 



 

168  

functional gene abundance in Stiffkey salt marsh at time 0, and how it changes throughout 

the enrichment experiment. This allows us to look at the contribution of bacteria not 

cultured under the conditions used in Chapter 4, which could be ~99 % of the bacteria 

present in the sample. 

6.2.2 Extracting DNA and RNA from Stiffkey sediment 

Community DNA and RNA were extracted in tandem following the phenol-

chloroform extraction method outlined in (Dumont et al, 2011), from 0.5 g of sediment from 

T0, enriched and control samples. Once extracted the precipitated pellets were washed in 

70 % EtOH and air-dried for 5 – 10 minutes, then resuspended in 100 µl of nuclease-free 

water. Once resuspended, the samples were separated into 50 µl aliquots, with some 

being stored at -80C for RNA purification, and the others being stored at –20C as DNA. 

The samples were quantified by nanodrop and also run on a 1.5% agarose gel for 20 

minutes. This was to determine the presence of RNA in the samples, which is seen as two 

bands below the larger band of DNA, roughly either side of the 1Kb marker (Figure 6-2) 

(not denoting actual size as dsDNA ladders are not representative of ssRNA), which are 

the 23S and 16S rRNA bands. If they are clear and not smeared, it suggests a good portion 

of the RNA is intact and not degraded. 

 

 The gel electrophoresis demonstrates that, even in samples with seemingly lower 

concentrations, distinct bands of 23/16S rRNA can be seen, denoting a relatively intact 

RNA extraction and meaning that RNA analysis can be likely be performed on these 

samples to good effect. 
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1Kb+    T01     T02    T03        /       C1      C2      C3        /         E1      E2      E3 (bp) 

Figure 6-2: Gel electrophoresis of community DNA/RNA extracted from samples of natural 

Stiffkey sediment (T0), sediment incubated under control conditions (C) and sediment incubated 

in enriched conditions (E).  
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6.2.3 16S rRNA gene amplicon sequencing  

Following the extraction and quantification of DNA/RNA from the environment, the 

first and most basic method of community analysis is that of 16S rRNA gene amplicon 

sequencing. This enables the taxonomic identification of bacterial (and plastid) 16S rRNA 

sequences within an environment, and allows us to see general changes or patterns 

between the three conditions – if particular species are much more abundant in the 

enriched samples than in the control and time 0, it suggests that they may play a role in 

DMSP production in Stiffkey, and have been enriched by the microcosm experiment. The 

rarerefraction curves give an indication on the depth of bacteria covered within these 

sequencing experiments. DNA samples were sent in triplicate to MR DNA (Shallowater, 

TX, USA) and analysed using the 515F/806R primers that amplify the V4 variable region 

in the 16S rRNA gene. The 515-F primer was barcoded and PCR amplification of the 

samples was followed by purification using calibrated Ampure XP beads, the products of 

which were used to prepare an Illumina DNA library which was sequenced on a MiSeq 

system and processed using the MR DNA analysis pipeline, then checked. The resulting 

OTUs were identified taxonomically by BLASTn.  

Analysis of the results was carried out with help from Brett Wagner (University of 

Auckland). Sequencing was run and files from the runs were converted to OTU tables and 

joined in Qiime v1.8. The samples that were not needed, such as those with fewer than 

150 bp in size or with ambiguous bases were filtered out. After running preliminary 

summary statistics on the data, all samples were rarefied to 36,066 sequence counts per 

sample. The joined tables were then split according to type of sample; time 0, control or 

enriched. Each group of samples were analysed separately at the genus level, and the 

genus-level tables and corresponding meta data files were uploaded to a Calypso 

bioinformatics program (http://cgenome.net/wiki/index.php/Calypso) (Zakrzewski et al. 

2016). 

Data were normalized using total sum normalisation to convert raw counts to 

relative abundances. Taxa with less than 0.01% mean relative abundance across all 

samples were removed. This kept 330 genera, excluding 491 from the original 821 genera. 

Rarefaction curves were created to demonstrate species richness, with average number 

of species (richness) plotted against number of reads sampled (Figure 6-3). This curve 

represents the number of reads that need to be sampled before the diversity of species 

identified is saturated (shown when the curve plateaus).  

http://cgenome.net/wiki/index.php/Calypso)
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While most of these curves have not fully levelled off, or reached the ‘asymptote’, 

suggesting that the sequencing could have been more in depth, they are all almost 

plateaued, meaning that the sequencing was close to being saturated. From the graph it 

appears that the ENR_3 sample, while appearing to almost reach sequencing saturation, 

does not have the same level of species richness compared to the other samples, as it 

seems unlikely that it would reach the full 330 species no matter how many reads are 

taken. This could be due to a less in-depth or lower quality sequencing run, but was still 

worth analysing along with the rest of the samples.  

6.2.4 Analysis of the 16S rRNA sequencing before and after enrichment 

The actual number of the bacterial species found in these three groups of samples 

was converted into the relative (proportion) percentage of sequences within each sample 

that map to the designated taxonomic classification. To keep analysis simple, species that 

were not found to be above 0.5% abundance in any of the samples were removed and 

listed as ‘others’. The rest were averaged to leave three datasets – one for Time 0, one 

for Enriched, and one for Control samples, and the 16S rRNA taxonomy was represented 

in Krona plots – multi-layered pie charts that display the taxonomy of species from domain 

to genus-level in one plot (Figure 6-5, Figure 6-4).  

Figure 6-3: Rarefaction plot of all samples rarefied to 36,066 counts per sample. Richness is 

measured at genus level. All the following analyses were conducted at the rarefied level.  



 

171  

 

Time 0 Sediment 

Figure 6-4: Krona plot of the Time 0 sediment sampled from Stiffkey salt marsh, showing the 

16S rRNA gene taxonomy of bacteria in the sample. Plot displays taxonomy of all the species 

above 0.5% abundance in any of the three samples. 
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Comparing these Krona plots revealed several interesting changes to the 

community. An obvious difference is the dramatic decrease in eukaryotes, with the 

percentages decreasing 10-fold from 9% in Time 0 sediment to 0.5 and 0.7% in the Control 

and Enriched samples. This was unsurprising, as the media conditions the sediments were 

incubated in were selective towards heterotrophic bacteria (MBM media), as it was 

bacteria that we wanted to study. This means that the DMSP increase observed in the 

Enriched sample is due to the activity of bacteria, not eukaryotes. Furthermore, the 

percentage of low-abundance species decreased in both the Control and Enriched 

samples compared to Time 0. This was likely due to the selective pressure of the 

enrichment, which would mean that some bacterial species either became more abundant, 

or the most uncultivable ones were lost. Another potential explanation for this is the 

addition of the mixed carbon source to the incubation experiments. Looking specifically at 

the bacterial portion of the plots, the taxonomy is dominated by proteobacteria, being 75% 

of the total bacterial species in Time 0, and increasing to 82% and 84% in the Control and 

Enriched samples. Previous studies of salt marsh environments have found that 

proteobacteria are easily isolated from that environment (Ansede et al. 2001), and appear 

to dominate the culture-dependent method of analysis. Part of the reason for this could be 

that almost all bacteria linked with DMSP degradation are found to belong to the 

proteobacterial phylum (Curson, Todd, et al. 2011), but it could also be that a degree of 

them are also linked to DMSP production. Indeed, the percentage of alphaproteobacteria 

increases from 3% of total species in Time 0 to 26% in the Enriched, although it also 

increases to 23% in the Control. Although there is a small (2%) percentage of 

Actinobacteria (namely Streptomyces, which has been shown to contain DMSP-producing 

species) in the Time 0 sediment, this almost disappears after incubation, again likely due 

to the incubation conditions being unfavorable. It is unsurprising then, that the majority of 

the species of interest fall in the proteobacteria group. These include Alteromonas, 

Labrenzia, Novosphingobium and Thalassospira, and they are quite dramatically 

pronounced in the Enriched samples versus the Control and natural samples (Time 0). 

In order to look more closely at the species that are likely playing a role in these 

sediments, the abundance of the 330 species was calculated, and the 50 most abundant 

genus-level taxa across all the samples were represented in a bubble plot (Figure 6-6). 

This representation of the sequencing data enabled direct comparison between samples, 

and was used to observe if there were any major changes in the abundance of particular 

genes of interest between the three sets of samples. We were specifically looking to see 

if there was an increased abundance of any species within the enriched sample that was 

not also enriched in the control, as this would suggest that they may be playing a role in 

the demonstrated increase of DMSP production seen in that sample (Figure 6-1). 
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The percentages discussed below are the averaged results of the replicate 

sequencing. Firstly, within the three experimental sets dominant bacterial genera in each 

are Psychromonas (23%) in the Control sediment, Alteromonas (21%) in the Enriched 

sediment samples, and Desulfosarcina (20%) in the Time 0 sediments. In the Enriched 

samples Alteromonas is closely followed by Pseudoalteromonas (10%), and then 

Novosphingobium and Rugeria follow with 5% and 6% respectively, making 

Novosphingobium the fourth most abundant species in the Enriched samples. Both 

Alteromonas and Novosphingobium are barely visible in the other two sample sets, and 

have been demonstrated to produce DMSP (see Chapter 4), suggesting that they both 

may play significant roles in the increased production of DMSP by the Enriched samples. 

Figure 6-6: A bubble plot of top 50 most abundant genus-level taxa found in all samples, with 

the size of the box comparative to the percentage abundance of the species within the 

individual sample. 



 

175  

It is no surprise that Novosphingobium and Alteromonas were also isolated in the culture-

dependent work (see Chapter 4). Indeed, Marinobacter is also present only in significant 

numbers in the Enriched sample, in addition to Oceanicola and Thalassospira, all of which 

represent known DMSP-producing strains. These results go some way to explaining the 

increase in DMSP levels. More surprisingly, Labrenzia was actually higher in the Control 

samples than the Enriched, with 4% in the Control compared to 0.9% in the Enriched. 

Without the discovery of mmtN-containing species in Chapter 5, this 16S abundance 

would not appear to account for the increased DMSP production at all.  

If we follow methods used in work carried out by Curson et al (2017), and use the 

work carried out in this thesis so far, we can make a degree of assumption about the 

percentage of DMSP-producing bacteria in the Control, Enriched and Time 0 sediments. 

These predictions are based on culture-dependent demonstrations of function, alongside 

estimations based on the sequence homology of both mmtN and dsyB. These 

assumptions are used to predict the total percentage abundance of DMSP-producing 

sequences (Figure 6-7), based on genera that have been shown to contain DMSP-

producing species either by isolations, or by the fact that they contain either dsyB or mmtN. 

 

Figure 6-7: The abundance of all the predicted DMSP-producing species within samples from 

Control, Enriched and Time 0 sediment. Genus-level taxonomy is listed and colour coded.  
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 Looking at Figure 6-7 it would appear that there is quite a big difference between 

the bacterial abundance of those we predict to be able to produce DMSP in the Enriched 

samples, compared to both the Control and Time 0. Indeed, the statistical analysis shows 

that there is a significant difference between Time 0 and Enriched samples. This seems 

to explain the differences in DMSP production between the samples, particularly with the 

increase in Alteromonas and Novosphingobium. From Figure 6-7 which shows the hits of 

each genera as a percentage we can calculate the average number of predicted DMSP 

producers in each of the sample groups, with Time 0 sediment containing 3.5%, Control 

containing 14.8%, and the Enriched samples potentially containing up to 42.4% DMSP-

producing bacteria. It should be noted that these values are only estimations; there is much 

room for error, for example, not all genera members will contain dsyB or mmtN, and there 

are likely other DMSP synthesis genes or novel pathways to be discovered. However, it 

does demonstrate the potential role heterotrophic bacteria could be playing in this 

environment.  

Interestingly, although the Control sediment did not show the dramatic increase in 

DMSP production seen in the Enriched sample (Figure 6-1), it also did not appear to 

decrease in production either, remaining at roughly 5 pmol/µg protein all the way through. 

This could be partly explained by the presence of other DMSP producers such as 

Labrenzia, Rugeria, Roseovarius and Thalassobius that are as prevalent, if not more so in 

the case of Labrenzia, in the Control compared to the Enriched samples, although there is 

a fair amount of variation between samples. It is worth noting that these dsyB+ bacteria 

are ones that are also known to contain ddd genes, thus it is possible that DMSP lyase 

activity also increases with synthesis, and thus may mask an observed increase in DMSP 

standing stock in the Control incubations. 

It is also important to note that although the presence of these species is potentially 

indicative of DMSP production taking place, it is not guaranteed, as the activity of those 

species can often vary quite dramatically, as seen in Chapter 4 and 5. This could be 

another reason why the Enriched DMSP production was so much higher – not only is there 

a higher abundance of DMSP-producers, but they may also be more active in the low 

nitrogen conditions and in the presence of the MTHB substrate that is lacking in the other 

experiments. This could also be the case for Time 0 sediment, which we know has high 

levels of DMSP (see Chapter 4) even though they aren’t comparable to the enrichment 

microcosm DMSP levels as the dilutions of sediment in the media are much higher, and 

sediment was not weighed out, but was instead resuspended in solution before being spun 

down and measured as the ‘pellet’. Furthermore, protein estimations were not taken of 

Time 0 samples, as other substances in the sediment make it difficult to measure. 
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One final aspect of the 16S rRNA gene analysis that needed to be addressed was 

the significant eukaryotic component of the Time 0 sediment. Even though the analysis of 

these sites was performed using 16S-specific primers, these can also be used to analyse 

eukaryotes with plastids in the sediment due to the plastid 16S rRNA sequences that exist 

in chloroplasts. Both the Krona plot (Figure 6-4) and the Bubble plot (Figure 6-6) show 

that the most significant eukaryotic sequence in Time 0 sediment is Asterionellopsis, at 

around 6% of the total hits. Diatoms from this genus have been analysed in several 

studies, with some suggesting that it doesn’t produce DMSP (Keller et al. 1989), and others 

finding it to produce it at low levels (Speeckaert et al. 2018). Peter Rivera has since 

isolated a culture of Astrionellopsis from Stiffkey sediment that is 99% identical to the 

sequences amplified in the 16S amplicon sequencing, and shown that it does produce 

DMSP but at extremely low levels (0.863 fmol per cell). Thus, it is likely that diatoms of this 

genus contribute to the DMSP standing stocks in the surface Stiffkey sediment. Also at 

very low abundance are species from the genera Phaeodactylum (0.4%), Thalassiosira 

(0.3%) and Skeletonema (0.7%), which also produce DMSP, at varying levels that are 

generally quite low, as diatoms are generally thought to produce relatively low intracellular 

concentrations of DMSP. It is very likely that there is an element of eukaryotic DMSP 

production contributing to the overall levels of production, but it is also equally as likely that 

the bacterial contribution is important. An indication of comparison between the eukaryotic 

and bacterial DMSP producers can be inferred by the abundance of DMSP-synthesis 

genes in the corresponding metagenomics data from the Time 0 samples (see below). 

6.2.5 Diversity Assay amplicon sequencing of dsyB 

Having designed degenerate primers in Chapter 3, another sequencing 

experiment was carried out to study the diversity of dsyB sequences that can be amplified 

using the dsyB_deg1F and dsyB_deg2R primers. A targeted diversity assay was set up 

with Mr DNA and sequencing of the community DNA samples was performed using the 

same method as the 16S rRNA gene amplicon sequencing, including primer barcoding, 

PCR amplification and Illumina DNA library MiSeq sequencing, but optimised for the use 

of the degenerate primer set. Sequences were analysed using Qiime (Caporaso et al. 

2010: Macqiime,version 1.9.0) to map the reads to a reference database of 113 known 

DsyB amino acid sequences at 55% identity to ratified sequences, and the combined OTU 

table produced was sorted using an ID-mapping file identifying the phylogeny for each 

sequence. Taxonomy was assigned to an average of 15,128 counts per sample, and count 

taxonomy was represented as a percentage bar chart (Figure 6-8). 

 The diversity assay below shows that dsyB can be amplified from all tested 

samples. Although all are presented as a percentage, the total number of dsyB counts 

retrieved from the samples varies, with 9,038 counts in Time 0, increasing to 16,504 in 
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Enriched samples and 16,797 in Control (although this is a biased method of sequencing, 

and therefore is not entirely representative). There seems to be a significant change in 

composition of dsyB diversity between Time 0 and the microcosm samples. The most 

dominant dsyB sequence in the Time 0 samples appears to be a Hyphomicrobiaceae 

(68%), followed by Defluuivimonas (8%), with smaller contributions from Labrenzia, 

Phaeobacter, Roseivivax and Rhodospirillalles. Strangely, in the 16S rRNA data 

Hyphomicrobiaceae appears in (Figure 6-6) most abundant in Enriched samples, and not 

in the Control or Time 0 samples at high numbers.  

In regards to the low number of Hyphomicrobiaceae in the Time 0 sediment, it is 

important to note that this dsyB assay is displaying proportion, and not actual numbers. 

Furthermore, just because the most abundant hits in the natural samples align most closely 

to the dsyB of Hyphomicrobiaceae, this does not necessarily follow that 

Hyphomicrobiaceae is actually the species in that environment containing the particular 

dsyB gene, as we know it can be transferred by horizontal gene transfer (Curson et al. 

2018). 

 

Figure 6-8: The diversity of dsyB sequences found within Stiffkey sediment after dsyB 

amplicon sequencing at Time 0 and after incubation in Control or Enriched condition, 

expressed as percentages.  
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Control and Enriched samples actually show very similar proportions of dsyB 

diversity, dominated by Phaeobacter (~ 60%), although there is a higher proportion of 

Labrenzia in Control samples (21% compared to 4%), which is echoed by the higher 

abundance of Labrenzia seen in the 16S rRNA sequencing (Figure 6-6). There is more 

variation in dsyB diversity in the Enriched samples, with Thalassobius (14%), Ponticoccus 

(3.6%) and Pseudodonghicola (2.4%) also detected, compared to only 4% Thalassobius 

in the Control incubation, with all other dsyB sequences almost undetectable.  

As stated in Chapter 3, there are limitations to the degenerate primers, with some 

dsyB sequences not amplified as well as others, meaning that there is probable bias 

towards particular sequences during PCR amplification, and indeed PCR amplification 

itself also introduces bias. There are likely dsyB sequences that are not represented, or 

that align more closely to those in the Diversity Assay still to be sequenced. However, 

while the Diversity Assay in Figure 6-8 is not a full analysis of the dsyB diversity within the 

samples, it certainly adds to the overall picture of the variety in Stiffkey sediment. It will be 

interesting to look at the abundance and transcription data of dsyB, to gauge the 

importance of this gene and pathway for DMSP synthesis in Stiffkey surface sediment. 

Since the initial degenerate primer design and dsyB clone library production were 

performed in Chapter 3, many more sequenced homologs of dsyB have been published 

on NCBI and JGI databases –110 have been identified thus far. As a complement to the 

Diversity Assay described above, the clone library sequences that were created using 

dsyB degenerate primers on sediment sampled from tidal pools at Stiffkey salt marsh 

(effectively Time 0), were aligned against the full suite of 110 DsyB sequences and 

represented in a Maximum-likelihood phylogenetic tree (Figure 6-9).  
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Figure 6-9: Maximum-likelihood phylogenetic tree of all currently known DsyB proteins alongside 

dsyB clone library sequences from Stiffkey, Chapter 3 (1A – 3F). The tree is drawn to scale, with 

branch lengths measured in the number of substitutions per site, as indicated on the scale bar. 
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Despite the fact that the Stiffkey sediment from which the clone library was created 

was sampled at a different time to the sediment used in the analysis and sequencing in 

this chapter, the phylogenetic tree reveals many of the same patterns as those observed 

in Figure 6-8. The majority of clones from Stiffkey appear to be most closely aligned to the 

Hyphomicrobiaceae dsyB sequence (7 clones), with several others aligning close to 

Defluuivimonas (3 clones), and also one clone aligning to the Roseivivax dsyB. While the 

closest relative to the group of 7 clones might be Hyphomicrobiaceae, the tree also shows 

that they are not so closely aligned that they could be called identical. This suggests that 

there are still more dsyB sequences to be found.  

From this tree it is clear that despite being designed from only 24 sequences, the 

degenerate primers are able to amplify a broad diversity of dsyB sequences from the 

sediment, with clones spread throughout the DsyB sequences in the tree. 

6.2.6 Metagenomic analysis of Stiffkey sediment and enrichments 

Another method of sequencing analysis that was performed on the Time 0, Control 

and Enriched sediment samples was metagenomic sequencing (also in triplicate). Instead 

of restricting the analysis to the 16S rRNA gene as the previous 16S amplicon sequencing 

does, the metagenomic sequencing (in theory) covers all the genes in all organisms 

present in an environment. The only dependent factor is the sequencing depth. As such, 

metagenomics is an incredibly powerful tool for the study of functional genes in an 

environment (genetic potential), as well as looking at the abundance of species based on 

markers other than the 16S rRNA gene identity. Samples for Time 0, Control and Enriched 

sample groups were combined in equal parts to create pooled samples of the three 

conditions, in triplicate, on which metagenomic analysis could be performed. This 

sequencing was also carried out by Mr DNA, Texas, across three separate sequencing 

runs. Metagenomic sequencing involves creating libraries of DNA that was extracted from 

the samples, using the Nextera DNA Sample Preparation Kit. Library adapters were 

incorporated over 5 cycles of PCR. The final library concentration was quantified and 

average library size was determined, and found to be 826 bp for Time 0 samples, 931 bp 

for Control samples and 1364 bp for Enriched. Libraries were pooled in equimolar ratios 

and 10.5 pM of the pool was clustered using the cBot (Illumina) and sequenced paired end 

for 300 cycles, on the HiSeq system.  

Analysis of the metagenomes was carried out with the help of Dr Jennifer 

Pratscher, and involved the trimming of samples using the Trimmomatic program (Bolger 

et al. 2014) to obtain ~13 909 226 reads per sample with an average read length of 150 

bp. The genome taxonomy within these unassembled metagenomes was analysed using 

MetaPhlAn (Segata et al. 2012), and represented in Figure 6-10.  



 

182  

Assembly was carried out using the SPAdes assembler, with kmers 55 and 127 

(Bankevich et al. 2012), and these assemblies were then analysed using Quast (Gurevich 

et al. 2013). N50 values were ~1 Kb for all the assemblies. 
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Figure 6-10: Heatmap of the phylogenetic analysis of metagenomes from the Stiffkey sediment 

and control/enriched microcosms, created using MetaPhlAn. Abundance is represented as a 

logarithmic scale, reporting the 50 most abundant clades, according to the 90th percentile of the 

abundance of each clade. Clustering is performed with average linkage, using Bray-Curtis distance 

for clades and correlation for samples.  
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There are many similarities between the 16S and metagenomics data in terms of 

species abundance. The high levels of Alteromonas and Marinobacter, Thalassospira and 

Oceanicola are seen in the Enriched samples, being much more prevalent than in the 

Control or Time 0 samples, which is entirely consistent with the 16S data analysis. 

Furthermore, Labrenzia, Psychromonas and Vibrio genera are more abundant in the 

Control incubations as is also observed in (Figure 6-6). Whilst there is much that is 

common between the metagenomics and 16S taxonomy data, there are also some notable 

differences/omissions. Despite being at 5% in the 16S rRNA amplicon sequencing of the 

Enriched samples, Novosphingobium does not appear in the 50 most abundant taxa, 

according to MetaPhlAn. Similar cases were seen with Pseudoaletromonas and 

Algibacter, which appear far more abundant in the enriched samples judged by 16S data, 

but are not represented in the metagenomics top 50 genera. 

Discrepancies such as these may arise from the taxonomic analysis of 

metagenomics data. For example, 16S rRNA sequencing is highly specific, working from 

a single gene PCR amplified from each organism, producing longer reads that can be 

easily assigned at OTU level (if it exists in the RefSeq database). In contrast, MetaPhlAn 

uses raw reads, which are very short sequences (~150 bp), from a metagenome that 

contains varying levels of coverage and genome fragments. Raw reads are compared to 

a genome database, searching for strong markers for each respective genome. Depending 

on the genetic properties of genomes within the metagenome and database, some species 

might not have strong markers, or are not represented well enough in the metagenome to 

match. 

For the study of functional genes, analysis was performed on the unassembled, 

trimmed sequences, as annotation enables identification but is not reflective of the actual 

abundance within samples. To create peptide databases, the raw reads were translated 

using the translate function in Sean Eddy’s squid package 

(http://eddylab.org/software.html), generating all open reading frames above 20 amino 

acids in length. These were mined for functional genes using HMMER (version 3.1b2) at 

a cutoff of 1e-5, as described in (Curson et al. 2018). 

Hidden Markov Models were created from amino acid alignments of the genes of 

interest. HMMER finds remote homologs as sensitively as possible, using probability 

models, and is therefore considered less bias than single-sequence BLAST. Results were 

dereplicated and manually curated using BLASTp against the RefSeq database, and 

counted if the top hit was aligned to any of the known sequences. All hits were normalised 

against read number of the smallest sample and to smallest gene length, and bacterial 

genes were normalised to recA hits, to give the percentage of bacteria containing the 

functional gene (Table 6-1).  

http://eddylab.org/software.html
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Interestingly, previous studies on the presence of dsyB in large marine 

metagenomes (Tara and GOS) predicted that around 0.5% of bacterial species contain it 

(Curson et al. 2017). In comparison, the percentage predicated in this study is almost 

double in this salt marsh metagenome, with an abundance of 0.92% in the Time 0 

sediment. Together with the 0.13% predicted to contain mmtN in the Time 0 samples, we 

can estimate that the genetic potential to produce DMSP in situ exists in a minimum of 

1.05% of bacteria in the marine salt marsh sediment. This value is not so dissimilar to the 

predictions made in (Figure 6-7), of ~ 3% of species in the natural Time 0 sediment being 

of genera linked to DMSP production (including isolates in which neither gene has yet 

been found). Given that not all representatives of these genera likely carry out this process, 

we feel 1.05% is a realistic value. In comparison to known DMSP catabolic genes, the 

dsyB gene is more abundant than most DMSP lyase genes, the exceptions being dddD, 

dddL and dddP (present in ~1.90, 4.75 and 6.62 % of bacteria respectively), which are 

likely important in DMS production in these sediments. The number of hits to the eukaryotic 

DMSP-synthesis gene DSYB were very low, even at Time 0 where 9% of the 16S rRNA 

hits were apportioned to eukaryotes, suggesting that there is little eukaryotic DMSP 

production taking place in the salt marsh surface sediment. Alternatively, it could be that 

there are other DSYB isoform enzymes and/or novel DMSP synthesis pathways in diatoms 

such as Astrionellopsis, which would also be interesting to investigate.  

The abundance of both dsyB and mmtN increase after microcosm experiments, 

although the increase does little to explain the increase in DMSP production by Enriched 

samples, because the levels are very similar between these two microcosm sample groups 

(Figure 6-1). For the Control samples dsyB increases to 5.47%, with mmtN at 2.09%, in 

comparison to the Enriched samples where dsyB only increases to 3.85%, and mmtN to 

2.41%, which is slightly higher than the Control, but likely not enough to account for the 

dramatic DMSP increase. It is important to note that abundance does not necessarily result 

in activity, and it is therefore important to also consider RNA (and therefore transcription) 

as well, either through the use of RT-qPCR (see below), or through more comprehensive 

methods such as metatranscriptomics. 

As it was not possible, due to time constraints, to perform diversity assays on MmtN 

like the ones that were carried out on DsyB (Figure 6-8), instead, the identity of the top hit 

for each of the MmtN homologs detected in each metagenome (Table 6-1) were recorded 

when the hits were being manually curated using BLASTp, and the abundance of each 

genus within each metagenome is listed in Table 6-2. This was to produce a rough 

representation of the diversity of mmtN sequences within the Stiffkey sediment samples. 
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The table below shows that while the identities of MmtN in Time 0 samples vary 

between each of the replicates, the most abundant MmtN sequence (at least half of the 

total hits) in the Enriched metagenomes closely aligns to Novosphingobium in all three of 

the replicates, always followed by Thalassospira as the second most abundant. In the 

Control samples Labrenzia is consistently the most abundant, with a variety of different 

MmtN sequences also appearing, including some more unusual sequences such as 

Croceicoccus and Saccharothrix. Both observations seem to support conclusions drawn 

from the 16S rRNA sequencing that shows higher abundance of Novosphingobium in the 

Enriched samples compared to the Control, where Labrenzia is more abundant (Figure 

6-6). 

Table 6-2. The identity of the closest MmtN homologs to sequences extracted from Stiffkey 

metagenomes (Time 0, Control and Enriched). 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Metagenome MmtN identity Number of hits 
   

   

T0_Meta_1 Thalassospira 2 
   

T0_Meta_2 Micromonospora 1 
   

T0_Meta_3 Nocardiopsis 1 
   

   

CON_Meta_1 Labrenzia 
Novosphingobium 

Thalassospira 
Croceicoccus 

29 
8 
2 
1 

   

CON_Meta_2 Labrenzia 
Thalassospira 

16 
4 

   

CON_Meta_3 Labrenzia 
Novosphingobium 

Thalassospira 
Croceicoccus 
Saccharothrix 
Rhodobacter 

19 
7 
1 
1 
1 
1 

   

   

ENR_Meta_1 Novosphingobium 
Thalassospira 

Labrenzia 
Rhodobacter 

48 
15 
4 
1 

   

ENR_Meta_2 Novosphingobium 
Thalassospira 

Labrenzia 

7 
4 
2 

   

ENR_Meta_2 Novosphingobium 
Thalassospira 

Labrenzia 
Rhodobacter 

27 
7 
5 
1 
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6.2.7 Designing degenerate primers for mmtN 

As part of the culture-independent analysis of bacterial DMSP-production in 

Stiffkey sediment, it was decided that degenerate primers should also be designed to 

mmtN, for use in the screening of new libraries of isolates, qPCR on DNA and cDNA to 

assess gene abundance and transcription, and for the production of clone libraries or other 

Diversity Assay sequencing. 

Degenerate primers to the mmtN gene were designed following the same method 

as the dsyB primers in Chapter 3. There are currently 23 species we predict contain 

functional MmtN homologs, including two Actinobacteria (Nocardiopsis chromatogenes 

and Streptomyces mobaraensis). Both the amino acid and nucleotide sequences were 

aligned using ClustalW (Figure 6-11), including a more divergent, supposed non-

functional Candidatus Taylorbacteria bacterium that has only 30% identity to MmtN. When 

the amino acid sequences were aligned, there were several regions that were reasonably 

well conserved, but the nucleotide sequences were more divergent. Degenerate primers 

should not contain more than five degenerate bases or else they become too degenerate 

and there is too much non-specific amplification. However, looking at the nucleotide 

alignments, there were more than five divergent nucleotides. This meant that any primer 

set designed would likely have one or two mismatches to a number of the sequences, 

even with five degenerate bases. Several sets were designed with little amplification, and 

even the most successful pair (Table 6-3) was not able to amplify from the two species of 

Actinobacteria (Figure 6-12).  

Table 6-3: The oligonucleotide sequences for degenerate primers, designed from two 

conserved regions of the 23 MmtN amino acid sequences. 

 

Primer  Sequence GC 
content 

Melting 
temperature 

(°C) 
    

    
mmtN_degF GGCAGYGAYCTYGAYCCSCG 60 65.5 
    
mmtN_degR CCAVGGRTARTARTGSGC 44 56.3 
    



 

188  

F
ig

u
re

 6
-1

1
: 

A
 s

e
c
ti
o
n
 o

f 
th

e
 a

m
in

o
 a

c
id

 a
lig

n
m

e
n
t 

o
f 

2
3
 M

m
tN

 s
e
q
u
e

n
c
e
s
 a

b
o

v
e
 a

 s
e
c
ti
o
n
 o

f 
th

e
 n

u
c
le

o
ti
d

e
 a

lig
n
m

e
n
t 

o
f 

m
m

tN
, 

b
o
th

 a
lig

n
e

d
 u

s
in

g
 C

lu
s
ta

lW
, 

a
lo

n
g
s
id

e
 a

 n
o

n
-f

u
n
c
ti
o
n

a
l 
s
e
q
u
e
n
c
e

 (
C

a
n

d
iT

a
y
C

G
1

1
).

 F
u
lly

 c
o
n
s
e
rv

e
d
 a

m
in

o
 a

c
id

s
 o

r 
n
u
c
le

o
ti
d
e
s
 a

re
 m

a
rk

e
d
 b

y
 a

n
 a

s
te

ri
x
 (

*)
, 

c
lo

s
e
ly

 s
im

ila
r 

a
m

in
o
 a

c
id

s
 a

re
 

m
a
rk

e
d
 b

y
 t
w

o
 d

o
ts

 (
:)

, 
a
n
d

 l
e
s
s
 s

im
ila

r 
a
m

in
o
 a

c
id

s
 a

re
 m

a
rk

e
d
 b

y
 a

 s
in

g
le

 d
o
t 
(.

).
 T

w
o
 p

ri
m

e
rs

 w
it
h
 a

 m
a
x
im

u
m

 o
f 
5
 d

e
g
e
n
e
ra

te
 b

a
s
e
s
 a

re
 s

h
o

w
n
; 
m

m
tN

_
d
e
g
F

 

(t
e
a
l)
 a

n
d
 m

m
tN

_
d
e
g
R

 (
p

u
rp

le
).

 T
h
e
 f

ra
g
m

e
n
t 
p
ro

d
u
c
e

d
 i
s
 ~

2
8

1
 b

p
,.
 O

n
ly

 t
h
e
 f

ir
s
t 

a
n
d
 l
a
s
t 
7

0
 b

p
 o

f 
th

e
 n

u
c
le

o
ti
d

e
 r

e
g

io
n
 a

m
p
lif

ie
d
 b

y
 t

h
e
 p

ri
m

e
rs

 i
s
 s

h
o
w

n
. 



 

189  

The optimised program for these primers had an initial denaturation step of 95°C 

for 5 minutes, followed by 35 cycles of 95°C for 30 seconds, an annealing step of 55°C for 

30 seconds and an elongation step of 72°C for 30 seconds, ending in a final extension of 

72°C for 5 minutes (Figure 6-12). There was good amplification from the three 

alphaproteobacterial strains tested, with bands excised and sequenced and confirmed to 

be mmtN, but despite trialling multiple conditions and dilutions of genomic DNA, it was not 

possible to amplify from either Streptomyces or Nocardiopsis. It would seem that 

attempting to incorporate all the sequences under one set of primers may not be an option 

for degenerate mmtN primers, as they are a more divergent group of sequences than 

dsyB. Therefore, the next step will be to design clade-specific degenerate primers instead. 

Unfortunately, this has not been accomplished in time for this submission, but will be an 

important piece of work in the future. The primers were still tested for amplification from 

community DNA from the environment and for use in qPCR amplification, but amplification 

did not occur from environmental DNA, and although amplification was observed in qPCR, 

when clone libraries were created from the amplified products, they were not mmtN. 

Therefore, this primer design still needs optimisation. 

6.2.8 qPCR analysis of Time 0 and Control/Enriched samples 

As previously mentioned, it is important to pair abundance analysis with analysis 

of the transcription that is taking place in an environment, as the presence of a gene is not 

necessarily indicative of the activity of said gene in every condition. This is why the 

   1Kb+   Tp      Ri      No     Nc     Sm    Lb     Ss      Pb      Rl      C     1Kb+ 
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Figure 6-12: Gel electrophoresis with a 1Kb Plus ladder, showing the optimised PCR 

amplification of mmtN from genomic DNA using degenerate primers on five positive controls T. 

profundimaris (Tp), R, indicus (Ri), Novosphinbobium (No), N. chromatogenes (Nc) and S. 

mobaraensis (Sm), and four negative controls L. aggregata (Lb), S. stellata (Ss), P. 

bermudensis (Pb) and R. leguminosarum (Rl), as well as a water control (C). This amplification 

was carried out using the primer set mmtN_degF and mmtN_degR, amplifying a ~281bp 

fragment (the red box). 
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transcription of functional genes should also be measured, through the RNA produced in 

the samples, as this gives a more realistic estimate of the actual contribution of a gene to 

its environment. As metatranscriptomic analysis is expensive and time-consuming, it was 

not a viable option for this study, although it is a method to consider in future analysis of 

this type. Therefore, qPCR was chosen as a preliminary method to study the DNA/RNA 

content of Stiffkey salt marsh and the microcosm experiments.  

Unfortunately, the mmtN primers were not functional in qPCR, so only dsyB copies 

and transcripts were able to be analysed. The protocol for performing this analysis on 

DNA/RNA was previously established in Chapter 3, with DNA and RNA extracted in 

tandem, and visualised by gel electrophoresis (Figure 6-2). DNA samples were stored at 

-20°C and used as templates for qPCR in dilutions of either 1/10 (for Time 0 samples) or 

1/100 (for microcosm samples) (Figure 6-13). RNA was purified and quantified, and 

concentrations were normalised so that as close to 100 ng as possible was used in reverse 

transcription experiments. These took place using gene-specific primers, namely 

dsyB_deg2R, and the cDNA was quantified and stored at -20°C, then used as the template 

for RT-qPCR (Figure 6-14). 

 

 

 

Figure 6-13: A semi-logarithmic plot of the abundance (copies/g or copies/ml) of the 

functional gene dsyB, amplified using qPCR from Stiffkey, Cley Yarmouth sediment, Control 

and Enriched microcosm experiments, and Stiffkey Pool Water. dsyB was amplified using the 

degenerate primers dsyB_deg1F and dsyB_deg2R. Samples are the average of triplicate 

data with error bars indicating standard error of the means. 
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qPCR on dsyB and 16S rRNA genes was performed on Yarmouth and Cley 

sediment (again), Time 0 Stiffkey sediment, the Control and Enriched incubations, and 

also Pool water sampled from the same tidal pools at Stiffkey salt marsh (see Chapter 2). 

This was to compare the bacterial contribution in sediment and water, as the water column 

is typically considered the major environment in which DMSP production occurs, 

particularly surface waters (Bates 1994), likely because they are the main environment in 

which eukaryotic species dwell. It would therefore be interesting to compare dsyB 

abundance and transcription between these two environments. All qPCR experiments 

were performed in triplicate (biological and technical), and clone libraries of the products 

are currently being sequenced. 

The abundance of dsyB increased in both Control and Enriched samples compared 

to all the Time 0 sediments (Figure 6-13), with Enriched dsyB abundance appearing to be 

slightly higher than the Control, which was surprising as it seemed contrary to most other 

evidence previously discussed. However, once the percentage of bacteria containing dsyB 

was calculated, using the 16S rRNA abundance results from qPCR, it was seen that 1.74% 

of the bacteria in the Control sediment contained dsyB, compared to 0.67% in Enriched 

samples. Although these percentages are lower than those predicted by metagenomic 

analysis (Table 6-1), they appear to be in a similar proportion to each other, with Control 

sediment containing roughly twice the percentage of dsyB species compared to Enriched 

samples.  

The abundances of Time 0, Cley and Yarmouth sediments were all significantly 

higher than the abundance of dsyB in the Pool Water sample, which is unsurprising 

considering that species are more dispersed in water than sediment. When the 

percentages of dsyB-containing species were calculated, 0.21% of bacteria in Stiffkey 

sediment possessed dsyB, in Yarmouth dsyB is predicted to be in 0.23% of species, and 

in Cley it is thought to be 0.1%, all of which were shown to be lower than the percentages 

in Pool water, which is predicted to contain 0.54% dsyB-possessing bacteria.  

Finally, the cDNA produced by all these samples was calculated (Figure 6-14). 

Interestingly, dsyB activity appears to be roughly the same between Time 0, Control and 

Enriched samples, with all of them producing similar numbers of transcript copies. This is 

a much more even balance compared to the abundance of dsyB, which confirms that the 

activity of a gene is not necessarily linked to function within that environment.  
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Stiffkey sediment seems to be higher in activity compared to Yarmouth and Cley, 

which could be due to the slightly higher salinity levels of Stiffkey compared to Yarmouth, 

and the fact that the area of Stiffkey that was sampled is fully tidal, being submerged twice 

a day, which means that it maintains a continually high level of salinity (35-40 PSU). In 

comparison, Cley was sampled much further from the water’s edge, and therefore the 

salinity of the sediment varies much more depending on rainfall and flooding (Silvestri et 

al, 2005). In comparison to all tested sediment samples, the pool water samples showed 

very low transcript levels, at least three orders of magnitude lower than Stiffkey Time 0 

sediment, which was as expected with so little DMSP production (see Chapter 4) and 

such low dsyB abundance. These much reduced transcript levels are in keeping with the 

~3 orders-of-magnitude higher levels of DMSP standing stock in the sediments compared 

to the pool water. 

6.2.9 Mining for dsyB and mmtN in global metagenomes/transcriptomes 

One final bioinformatics tool that was utilised in the study of bacterial contributions 

to DMSP production in marine environments was the mining for mmtN in large ocean 

metagenomes and metatranscriptomes, using the techniques described Curson et al. 

(2018), namely creating Hidden Markov Models, using hmm search to identify all possible 

sequences, and then manually curating them. The first search for mmtN was in the ocean 

microbial reference gene catalogue (OM-RGC) (Table 7-4), which was a large-scale 

metagenomic dataset, sampling at a multitude of depths and locations (Sungawa et al, 

Figure 6-14: A semi-logarithmic plot of transcription levels (transcript copies/g or copies/ml) 

of the functional gene dsyB, using specific primer cDNA from Stiffkey, Cley and Yarmouth 

sediment, Control and Enriched microcosm experiments, and Stiffkey Pool Water. Primers 

used were dsyB_deg1F and dsyB_deg2R. Samples are the average of triplicate data with 

error bars indicating the standard error of the means. 
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2015). This database was generated by sequencing the < 3 µm fraction, meaning that 

many of the eukaryotic sequences were likely removed.  

From the work carried out by Curson et al (2018), it was predicted that dsyB exists 

in roughly 0.35 % of bacterial species in the marine environment (Table 6-4), which is 

almost a third of the size of the percentage predicted from the metagenomes of Stiffkey 

Time 0 sediment (Table 6-1). This pattern is also seen for the percentages of mmtN, with 

a predicted 0.03 % containing mmtN in the OM-RGC database, compared to 0.13 % in 

Stiffkey metagenomes. Conversely, many of the ddd genes are at a higher abundance in 

the marine metagenomes than in the sediment, with dddP predicted to be in 12.53 % of 

species in the OM-RGC but only in 6.62 % in Stiffkey, and dddD with 5.56 % compared to 

1.09 %. The only genes that are lower in abundance than mmtN in the OM-RGC database 

are DSYB and dddW. 

The Tara Oceans metatranscriptomes were also mined in order to detect the 

transcription of MmtN in the oceans. MmtN was only detected in 11 of the 26 samples 

analysed in Curson et al (2018), so only those samples are reported below (Table 6-5), 

although the calculations of transcripts per million sequences was still calculated from the 

total number of samples. It was found that mmtN transcript abundance is far less than 

dsyB and all the ddd genes apart from dddW and Alma1. In addition to the selection of 

Tara Ocean metatranscriptomes that were analysed in Curson et al (2018), there were 

also a number of other samples in which MmtN transcription seemed more abundant, with 

an average of 3.7 transcripts per sample, and some samples containing transcripts as high 

as 14 and 23 hits. These are not fully reported in this work as the full analysis of the other 

DMSP-synthesis and –catabolic genes has not yet been performed, but it suggests that 

while still being lower than dsyB abundance, it is at least transcribed in most environments, 

being detected in 48 of the 59 samples available online. 

It is not possible to compare the transcription of dsyB in Stiffkey to the Tara 

metatranscriptomes, but both show that dsyB is transcribed in both environments, and it 

is likely that mmtN does the same, although we have not been able to perform experiments 

to demonstrate this yet.  
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6.3 Discussion 

6.3.1 Summary of work 

The work carried out in this chapter was the culture-independent counterpart to the 

culture-dependent work previously carried out in Chapter 4, and also builds off the 

discoveries made in Chapter 5 where the novel DMSP-producing gene, mmtN, was 

identified. This chapter focused on the bioinformatic analysis of 16S rRNA amplicon and 

metagenomic sequencing of three treatments of Stiffkey surface sediment. The first was 

the natural Time 0 sediment with no treatment, the second and third were from microcosm 

experiments where they were incubated under conditions that either enriched for DMSP 

production within the environment (Enriched), or were standard growth conditions as a 

control for the effect that incubating sediment will have on natural sediment (Control). Also 

performed were a dsyB amplicon Diversity Assay, qPCR experiments and mining for 

mmtN in publically available metagenome and metatranscriptome datasets.  

The culture-independent work was carried out to look at the bacterial contribution 

to DMSP-production in the natural Stiffkey salt marsh sediment through identifying known 

DMSP-producers in the sample, alongside the abundance of the two DMSP-synthesis 

genes, dsyB and mmtN, as well as their diversity and transcription (where possible). This 

analysis was also used on the two microcosm sediment groups, Enriched and Control, to 

observe differences between them and the Time 0 sediment in the abundance of DMSP-

producers or the functional genes themselves. This was because there were increased 

levels of DMSP production in the Enriched sediment compared to the Control, suggesting 

that any differences in the bioinformatic characterization of the two could be linked to 

DMSP production. 

6.3.2 Problems associated with various methods used 

Although there are numerous strengths to the use of culture-independent 

experiments, many of which are described in the introduction, there are also issues with 

various aspects of some of these techniques. For instance, the metagenomic analysis that 

was carried out by Mr DNA did not contain as full a coverage as it could have – the 

metagenomes produced were only 2 or 3 GB in size, whereas many companies now offer 

up to 6 GB of sequencing data, which could have revealed a greater abundance and 

diversity of the genes and species of interest than is currently described. The 16S rRNA 

amplicon sequencing appeared to have good coverage, with rarefaction curves seeming 

almost horizontal in some samples, which means that we can have greater confidence in 

the analysis performed on it. However, any form of sequencing that involves PCR 

amplification in library preparation (such as 16S amplicon, metagenomic sequencing and 

gene-specific Diversity Assays) will also contain a degree of bias. This is because PCR 
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amplification routinely leads to the under-representation of sequences with extreme base 

compositions (GC content) (Aird et al. 2011), and most DNA polymerases actually 

introduce errors through base substitution roughly every 105 – 106 bases (Cline et al. 

1996). Furthermore, the 16S amplification genes used, 515F/806R, do not necessarily 

amplify all species equally, meaning that certain clades may be represented less than they 

are in the actual samples (Walters et al. 2015). To determine if particular species of interest 

are indeed in the Enriched or Time 0 samples, such as the Novosphingobium that appears 

in 16S sequencing but not in the metagenomes, it may be worth designing specific primers 

to those species and using either qPCR or ddPCR to confirm their presence. Droplet digital 

PCR (ddPCR) is a variation of PCR that separates the solution into discrete, defined water-

in-oil droplets in which the PCR takes place (Pinheiro et al. 2012). This method enables 

more reliable and sensitive measurement of nucleic acid amounts, making it useful in the 

study of variations in gene sequences, and is potentially a method that could be utilized 

alongside qPCR, as it gives an absolute quantification of fluorescence by the number of 

positive droplets observed, as opposed to the intensity of fluorescence, although it only 

gives end-point data. As previously discussed, there is also the issue with multiple 16S 

rRNA genes existing within most species, but for the amplicon analysis it is all represented 

as relative abundance, and therefore is corrected for as much as possible, although it 

assumes that they all have roughly the same number of copies.  

Bias can be introduced at several other stages of the process as well, from the 

choice of DNA extraction methods to the actual sequencing stage, where high cluster 

densities on the flow-cells used in Illumina sequencing can suppress GC-rich reads. It can 

even vary depending on the sequencing centre used (Schloss et al. 2011). Analysis of 

metagenomes can also be skewed depending on the programs used to clean and 

assemble it, and even gene abundance could be bias depending on the size of the different 

genomes in the samples (Beszteri et al. 2010) 

The weaknesses of qPCR have previously been described in the discussion of 

Chapter 3, so there is little to add here, other than the need for primer optimisation. As 

mentioned several times throughout this thesis, the dsyB degenerate primers dsyB_deg1F 

and dsyB_deg2R are not perfect. The primer efficiency, although acceptable, is lower than 

it could be, and we already know that they do not amplify all the known dsyB sequences 

– they have been demonstrated to not amplify certain already identified sequences, and 

there are also undoubtedly many others that have not been published yet. Future work 

could involve the redesigning of these primers, with alignments that utilize the increased 

size of the database of dsyB sequences. There could also be more time spent on 

producing qPCR-suitable primers so that more confidence could be placed on the results. 

However, although these primers are not ideal, it does mean that we can be confident that 
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all analysis linked to these primers is likely an underestimation of the true abundance or 

transcription of dsyB in any given environment.  

It was also unfortunate that, while the mmtN degenerate primers could amplify from 

genomic DNA, they were not able amplify from community DNA, and therefore were not 

utilized in qPCR experiments that could have revealed much about the transcription of 

mmtN in the Enriched and Control samples. Degenerate primers have been an important 

tool in this analysis so far, so it would be beneficial to properly design mmtN degenerate 

primers that can be used in the same way as the dsyB ones. 

6.3.3 Culture-independent analysis of the bacterial contribution 

The analysis of the community and functional gene abundance within the samples 

described above revealed many interesting results. Most importantly, through the 

metagenomic sequencing both dsyB and mmtN are confirmed to exist in the natural 

Stiffkey sediment. Indeed, it appears to have over twice the percentage of dsyB-containing 

species compared to ocean-based datasets, as well as several species with the potential 

to produce DMSP including Streptomyces and Marinobacter species. In addition to this, 

RNA extracted from the sediment contains enough dsyB sequences for the reverse 

transcription using the degenerate primer to amplify a product, compared to water controls. 

This confirms that dsyB transcription takes place in the natural environment, which we 

assume leads to DsyB enzyme activity, thus enabling bacteria to synthesise DMSP. This 

activity is also much higher than that observed in samples taken from the Pool water at 

Stiffkey, which has dramatically lower levels of DMSP production (see Chapter 4) 

compared to the sediment. The evidence is compelling that bacterial DMSP production 

takes place in the natural surface sediment taken from Stiffkey salt marsh. The fact that 

lower values for dsyB and mmtN are observed in the ocean OM-RGC and Tara datasets 

compared to the sediment samples suggests that while algae are important DMSP 

producers, especially in the euphotic section of the water column, bacteria are likely key 

producers of DMSP in salt marsh environments. Although the analysis is mostly performed 

on sediment from Stiffkey, we also have strong evidence to suggest similar levels of dsyB 

abundance in other salt marsh environments, through the qPCR experiments. 

In regards to the Enriched and Control sediments, the picture is less clear. Although 

the Enriched sample appeared to contain a much higher number of DMSP-producers 

compared to the other samples, the presence of dsyBcontaining species predicted by 

metagenomic analysis suggests otherwise, being higher in the Control metagenomes than 

in the Enriched. Even though mmtN abundance is slightly higher in Enriched samples than 

in the Control, it does not seem likely that this would account for the huge increase in 

DMSP production, although it could be possible, as several of the mmtN-containing 
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species analysed so far have the potential to produce large amounts of DMSP. As both 

the diversity of dsyB sequences within the samples and the dsyB activity by transcripts 

amplified by RT-qPCR were almost the same, it suggests that the real difference between 

these two samples may be in the activity of mmtN, which has yet to be quantified, or else 

through the activity of an entirely unknown species, utilizing an unknown gene involved in 

the DMSP-synthesis pathway.  

There are several steps to be taken in order to complete the study of bacterial 

DMSP production in Stiffkey sediment. Firstly, the degenerate primers to mmtN should be 

optimised through redesigning and testing more PCR conditions so that they are able to 

amplify from community DNA, and are also qPCR-compatible, and then used to create 

another Diversity Assay to show the gene variation within Stiffkey sediment as well as in 

qPCR and RT-qPCR experiments to confirm copy number and transcription. Once these 

two primer sets have been designed they can both be used on other sediment samples, 

as has been done already on samples from Cley and Yarmouth, which would allow claims 

made about Stiffkey to be applied to a wider range of environments.  

Furthermore, doubtless there are still several publically available metagenomic and 

perhaps metatranscriptomic datasets that could be mined for all the genes of interest. It 

would be particularly interesting if some of those datasets came from sediment 

environments. 

There is another, less biased method of studying gene activity that should be 

considered for future analysis of this type, namely the use of metatranscriptomic 

sequencing. This measures the community RNA extracted from a sediment sample, and 

would give the most unbiased estimate of the transcription of both dsyB and mmtN. 

However, even transcription does not always result in gene activity, as translation does 

not always take place after a gene has been transcribed. Therefore, to truly study the 

expression of these two genes in the environment, proteomics or even metaproteomics 

should be considered as another option.  

 

 

6.3.4 Concluding Remarks 

DMSP-producing bacteria and their dsyB and/or mmtN transcripts were present in 

Stiffkey, Cley, Yarmouth and all tested seawater samples and Tara Oceans 

bacterioplankton datasets. It seems that dsyB and possibly mmtN are far more abundant 

in marine surface sediment compared to ocean environments. Furthermore, DMSP 

synthesis rates have been found to be higher in surface sediment samples than seawater 
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samples (work carried out by Andy Hind, not included). Thus, it seems probable that 

surface marine sediments are environments with high DMSP productivity, and that 

heterotrophic bacteria are likely important producers in these environments. Nevertheless, 

it is also possible that diatoms, like bacteria, are important DMSP producers in these 

Stiffkey pond surface sediments, and likely other photic surface marine sediments as well. 
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7 DISCUSSION AND CONCLUDING REMARKS 

 

7.1 Aims and research gaps 

DMSP is an environmentally important molecule in marine environments with 

several petagrams predicted to be produced by Earth’s surface oceans (Ksionzek et al. 

2016). DMSP impacts nutrient supply, atmospheric chemistry signalling and sulfur cycling 

(Kiene et al. 2000). Endogenously, DMSP is purported to play several protective roles 

against conditions of stress such as high salinity, low temperatures and/or oxidative stress. 

Since the discovery that the production of this molecule is not restricted to marine 

eukaryotes, and does in fact take place in heterotrophic bacteria as well (Curson et al. 

2017), many assumptions that had previously been made about its distribution, function 

and source had to be called into question. The possible bacterial contribution to global 

levels of DMSP is completely disregarded, and because the habitats in which eukaryotes 

are able to grow are limited, it has therefore limited the environments in which DMSP 

production has been studied in. The work carried out in this thesis was predominantly 

aimed at attempting to address this information deficit, through setting a precedent for 

studying the role that bacteria play in DMSP production, in any environment. The work 

was roughly divided into several different avenues of study: 

1. Determine the diversity and abundance of dsyB, the first known bacterial 

DMSP-production gene, in the environment, both in metagenomes and in 

bacteria isolated from that environment. 

2. Use culture-independent methods to observe the importance of bacterial 

DMSP synthesis in Stiffkey salt marsh. 

3. Identify key bacterial DMSP producers and determine the means by which 

DMSP is synthesised in bacteria. 

It was important to cover all these aspects of DMSP production, so that we can 

improve our understanding of the mechanics and distribution of this environmentally 

important compound. The work was designed to analyse bacterial DMSP production on 

several different levels, from the wider picture of the bacterial community, looking at how 

diversity of species changes under conditions designed to increase DMSP production, and 

determining the community potential for DMSP production, down to the abundance of 

specific functional genes (such as dsyB) in that environment, and even more specifically 

to studying the role of DMSP production in just a single strain, using genetic manipulations 

to analyse it. Although different combinations of these methods have been used to study 

aspects of DMSP cycling previously, this body of work is the first comprehensive, 
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exploratory investigation into bacterial DMSP production in a salt marsh environment. 

Indeed, many protocols that have been developed and optimised, including the process-

based incubation experiments and use of mixed carbon sources with bacterial culturing 

can easily be utilised in the study DMSP-producing bacteria in any other environment, 

steadily adding to our knowledge on how widespread and significant this ability might be. 

From the work performed by Curson et al (2017) and (2018), we knew that the 

reporter gene for bacterial DMSP production, dsyB, exists in a large number of 

alphaproteobacterial species, as well as in large marine ocean metagenome and 

metatranscriptome datasets (OM-RGC and Tara Ocean), suggesting that it is not only 

present but also transcribed under marine conditions. This work expanded upon this 

foundation, further quantifying dsyB diversity and abundance in a specific environment, 

namely Stiffkey salt marsh, as well as searching for non-dsyB containing species that 

produce DMSP.  

 

7.2 Major findings described in this thesis 

7.2.1 dsyB degenerate primers reveal diversity of sequences in Stiffkey sediment, 

confirmed by Amplicon sequencing 

Degenerate primer gene probes were designed from alignments of known DsyB 

sequences, and were utilised in the study of the diversity, abundance and transcription of 

dsyB in unidentified bacterial isolates and community DNA from marine sediments 

(Chapter 3). The primers were useful as a preliminary screen for the presence of dsyB 

species in isolates cultured from Stiffkey, but were even more important in the amplification 

of dsyB DNA and cDNA (from mRNA) in qPCR and RT-qPCR experiments. Although the 

abundance of dsyB-containing bacteria in Stiffkey was predicted to be quite low compared 

to that calculated from metagenomic sequencing (Chapter 6) (0.21 % by qPCR, 0.92 % 

by metagenome), this is partly because the copy numbers of dsyB were normalised for % 

bacteria using 16S rRNA copy numbers, which are far from accurate owing to the 

intragenomic heterogeneity resulting in some species having many more copies compared 

to others (Sun et al. 2013). Furthermore, the primers are not all-encompassing in terms of 

sequencing amplification, and have been shown not to amplify from genomes that contain 

dsyB. However, this does mean that we can assume that although the numbers of both 

abundance and transcript qPCR demonstrate that dsyB is present and likely transcribed 

in Stiffkey, they are in fact underestimations of the true value, with transcripts perhaps 

being missed due to primer bias. In future work, it would be interesting to attempt to re-

design dsyB degenerate primers now that many more sequences have been discovered 
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and to specifically optimise them for qPCR to ensure that as many copies or transcripts 

are being amplified as possible from community DNA. 

 In terms of diversity, the degenerate primers were used to create a clone library 

when there were only ~24 ratified sequences available. When the clones were sequenced 

and phylogeny was displayed in a tree, it was clear that apart from one large grouping of 

clones, the majority were widely spaced throughout the tree. When this alignment was 

repeated against the latest species on NCBI and JGI datasets, a while after the original 

tree was made, there were over 100 sequences to include. This more comprehensive 

phylogenetic tree, despite having many more sequences, still showed the same high level 

of diversity in clones. When the community DNA was sequenced using the custom dsyB-

primer amplicon experiment (Chapter 6), it confirmed that, while being dominated by 

Hyphomicrobiaceae, the rest of the sequences were quite varied in DsyB sequences at 

Time 0 natural sediment. Indeed, this Hyphomicrobiaceae DsyB was the most closely 

related sequence to the largest cluster of clones from the Stiffkey sediment library, making 

it a potential species of interest in further study of DMSP production in this environment. 

7.2.2 Spartina transect and pool water quantification show that bacteria likely play 

an important role in DMSP production 

Spartina species such as Spartina alternifloa and Spartina anglica (the species 

studied from Stiffkey salt marsh) have long been considered the sole reason for the high 

DMSP levels detected in salt marshes (Steudler & Peterson 1984; Kocsis et al. 1998). 

While rough experiments performed on these plants do suggest very high endogenous 

DMSP concentrations, it was shown through transect of sediment that as samples were 

taken from sites moving away from the Spartina plants, DMSP levels were originally very 

high, with a decrease within a distance of 20 cm, after which the sediment DMSP content 

almost seems to stablise, maintaining a mostly constant level of DMSP production 

(Chapter 4). We propose that this could be due to the activity of bacterial/algal DMSP-

synthesis taking over from the DMSP leached from the plants, as it is unlikely to have 

diffused that far from the plants, and would not suddenly stabilise. It should be noted that 

the edges of the pools were always covered in algal matts and we propose that these 

impose a very significant contribution to the highest DMSP levels seen in the sediment 

closest to the Spartina. For some reason these algae were not visibly prominent anywhere 

else except the edges. Furthermore, it should also be noted that Spartina like any organism 

producing DMSP goes to a great deal of effort to make the molecule, energetic cost, thus 

it is unlikely that it gives away a precious resource too easily. Thus, it is more likely that in 

the samples close to the Spartina that some root material may have been included in the 

sediment samples, which is contributing to the highest observed DMSP levels. It would be 



 

204  

very interesting in the future to look at the potential interactions between Spartina, and 

DMSP-producing bacteria in the rhizosphere and phylosphere of these plants. 

Although there is a ~9 % abundance of eukaryotic sequences in salt marsh 

sediment, shown through 16S rRNA analysis to be 6% from the Astrionellopsis genus 

(Chapter 6), it is still thought that the DMSP content of the sediment is still a mostly 

bacterial domain. The levels published for Astrionellopsis sp. DMSP production were very 

varied (Keller et al. 1989; Speeckaert et al. 2018), so instead of relying on previously 

published data to estimate the impact that this eukaryote may have on overall DMSP 

levels, as, we isolated a strain of Astrionellopsis from the actual sediment from Stiffkey. 

From analysis performed on that eukaryotic isolate, which revealed a very low level of 

DMSP-synthesis activity, we hypothesise that it is unlikely to contribute significantly 

compared to bacteria. This hypothesis is supported by the fact that dsyB and to a lesser 

extent mmtN were far more abundant in our metagenomics analysis of the natural 

samples. Of course it could be that these diatoms produce DMSP via an unknown DMSP 

synthesis pathway with novel genes. Nevertheless theer are very high numbers of DMSP-

producing bacteria in these sediments so they must play a significant role in the production 

of DMSP especially considering dsyB transcripts were detected. 

When they were both sampled, Stiffkey sediment and the overlying seawater (Pool 

Water) were found to differ in DMSP content significantly (Chapter 4). DMSP content 

(nmol/g) of sediment was found to be >2 orders-of-magnitude higher than the DMSP 

(nmol/ml) of Pool Water. This was to be expected in a sample with such a high density of 

species, as opposed to water samples where bacteria are much more dispersed. RT-

qPCR on cDNA from Stiffkey sediment and pool water also mirrored this, with the presence 

of dsyB transcripts being detected at a much higher abundance in the sediment than in 

the water samples, suggesting that dsyB activity is much more pronounced in marine 

sediment compared to the ocean. From analysis of the metagenomic analysis of Stiffkey 

and the global ocean dataset, a similar pattern emerges, with both dsyB and mmtN 

abundance higher in salt marsh sediment compared to the water. It is possible that with 

mmtN transcription this is even more pronounced, although this has yet to be tested. From 

this data we predict that marine sediments are environments of high DMSP productivity, 

much more than seawater which is perceived as the hub for DMSP synthesis. It will be 

interesting in the future to test more varied marine sediments and to study the effects of 

pressure, and oxygen of DMSP production. It was apparent that DMSP production does 

not stop in the oxic sediment zones. 
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7.2.3 A range of DMSP-producing isolates can be cultured from Stiffkey 

From the degenerate primer design and clone library construction in Chapter 3, it 

was clear that there was a source of DMSP-producing bacteria in Stiffkey natural sediment. 

It was found that when plating natural sediment on agar with no selection pressure, at least 

1 in 4 colonies could produce DMSP, and this number increased to 77 % of colonies picked 

when sediment was incubated under different conditions such as high salinity, low nitrogen 

and added MTHB (Chapter 4). The identification of some of these bacteria revealed 

species of Labrenzia, and the closely related Stappia, as well as Pseudooceanicola, all of 

which were known to be dsyB-containing species. There were also a number of isolates 

of genera that had not previously been shown to produce DMSP or contain dsyB 

(Marinobacter, Novosphingobium, and Alteromonas). Further characterisation and whole 

genome sequencing of those isolates not containing dsyB (through degenerate primer 

PCR) revealed that the three most unusual isolates did not contain dsyB, despite being 

able to produce DMSP. This was predicted to be because they either have a different 

isoform of DsyB that carries out the same process, despite being a different protein, or 

else they were using an entirely new gene, likely as part of a different production pathway. 

These experiments show that there is undoubtedly a more interesting, complex story to be 

told, and bacterial DMSP production is likely not only more widespread, but also more 

varied than previously thought.  

7.2.4 Novosphingobium contains a novel DMSP-producing gene, mmtN 

Gene discovery is an avenue of research in which the Todd lab excel, having 

identified all of the currently known genes involved in DMSP catabolism (ddd), with the 

exception of the eukaryotic Alma1, as well as the first bacterial DMSP-synthesis gene, and 

its eukaryotic counterpart (dsyB/DSYB) (Todd et al. 2009; Curson, Sullivan, et al. 2011; 

Todd et al. 2012; Curson et al. 2017). It was through the use of these well-established 

experimental procedures for gene discovery, including genomic library construction and 

screening that the second bacterial DMSP-synthesis gene, termed mmtN, was identified 

(Chapter 5). 

After screening the genomic library of a DMSP-producing Novosphingobium and 

sequencing the positive fragments, one gene in particular was looked at as a candidate 

for DMSP production in Novosphingobium. This was because its amino acid sequence 

showed ~30 % similarity to the SAM-dependent MMT that was in Arabidopsis thaliana 

(Ranocha et al. 2000). Although this plant does not produce DMSP, it and many other 

angiosperms produce SMM from Met. That SAM-dependent methyltransferase is able to 

methylate Met, creating SMM, so this activity was looked for in Novosphingobium by 

cloning the mmtN gene into E. coli BL21, and detecting DMS production after heated 
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alkaline hydrolysis, where without mmtN there is no activity. The peak of DMS could have 

arisen from either SMM or DMSP (or both), although it is most likely SMM. Very recent 

LC-MS work has just verified that the reaction product of the pure MmtN enzyme with S-

AdoMet and Met is indeed SMM (Simone Payne and Ana Bermejo Marttinez). When mmtN 

is probed against protein databases it was found to exist in ~24 strains (currently). In 

contrast to dsyB, which almost exclusively exists in alphaproteobacterial species, 

homologs of MmtN were found in a range of classes, including alphaproteobacteria, 

actinobacteria and one gammaproteobacterium. A selection of these mmtN-containing 

species were ordered so that they could be tested for DMSP production, and their mmtN 

genes were cloned and tested in the same way as mmtN was for Novosphingobium. The 

fact that these activity assays were functional in E. coli was interesting, as with dsyB the 

cloned gene had to be mobilised into the wide-range host R. leguminosaurum before it 

would function. Presumably these means that MmtN does not require any 

strange/uncommon co-factors that E. coli does not import or produce. It could also reflect 

the more varied identities of mmtN-containing strains compared to those containing dsyB. 

Following the demonstration that the mmtN gene can confer MMT activity to a bacteria 

that lacks this ability, the protein was overexpressed and purified to measure enzyme 

activity, through the conversion of S-AdoMet to S-AdoHyc, which can be detected by 

HPLC. The optimum conditions for enzyme activity and Km values were determined, and 

then the MmtN protein was tested under optimal conditions with multiple compounds, but 

S-AdoMet was only demethylated to S-AdoHyc when L-Met was added, confirming the 

hypothesis from above.  

Although we have not yet determined the following steps in the production pathway 

used by these bacteria, we know that DMSP is the final molecule produced through LC-

MS confirmation. We hypothesise that Met methylation to produce SMM is the first step in 

the methylation DMSP production pathway (Figure 7-1), used by the angiosperms that 

are able to produce DMSP (Spartina, Wollastonia and sugarcanes) (Stefels 2000). We can 

be confident in this because when this gene was disrupted in T. profundimaris WP0211, 

one of the mmtN-containing species ordered previously, DMSP was no longer produced 

at all, as confirmed by GC, detecting no DMS produced, and LC-MS confirming that DMSP 

(not just SMM) is no longer present. We also predict that out of the two routes taken by 

angiosperms through this pathway (either decarboxylation to DMSP-amine followed by 

oxidation to DMSP-aldehyde, or a transamination/ decarboxylation reaction to produce 

DMSP-aldehyde directly) (Dickschat et al. 2015), the latter is the pathway used by mmtN-

containing species, as when Novosphingobium was incubated with intermediates from all 

the pathways, SMM caused an increase in DMSP production but DMSP-amine did not. 

Furthermore, when one scans the genomic position of mmtN in bacteria containing it, 
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unlike dysB, it is commonly linked to genes predicted to encode decarboxylases and 

aminotransferases. These are the predicted activities for the missing enzymes of the 

DMSP synthesis pathway and are very strong candidates for DMSP synthesis enzymes. 

Indeed in recent work Andrew Curson has knocked out the aminotransferase in T. 

profundimaris WP0211 and has shown that mutant no longer produces DMSP even with 

the addition of SMM. Thus the predictions of this thesis have been shown to be correct. 

When induction experiments were performed on Novosphingobium and 

Thalassospira under various different growth conditions, it was seen that DMSP production 

was significantly increased when in the high salinity media, with Thalassospira in particular 

functioning and producing DMSP even at levels of 70 PSU. Despite this evidence 

suggesting that DMSP production by is likely linked to salinity, phenotyping experiments 

carried out on the mutant did not show any reduction in growth compared to the W/T, even 

when they were grown in high salinity. Other conditions were tested, including varying 

Figure 7-1: The two methods through which bacteria produce DMSP from L-Met. All 

intermediates from the transamination pathway have been confirmed, including the rate-limiting 

committed step that is catalysed by DsyB (red). Only the first step of the methylation pathway 

has been confirmed thus far, catalysed by MmtN (green), although the rest of the steps are 

theorised to include a transamination and decarboxylation reaction to produce DMSP-aldehyde 

before becoming DMSP. 
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nitrogen levels, treating the cells to competition experiments and freeze-thawing them 

were all tested on the mutant to attempt to find a condition that produces a reduced 

phenotype, but none have produced a definitive result so far. This does not necessarily 

mean that there is not one, but so far no tested condition has produced one. One 

explanation could be that, as seen on LC-MS chromatographs, when DMSP is knocked 

out, it would appear that GBT is upregulated, perhaps in order to maintain the same level 

of osmoprotection. 

Even though there is no phenotype as yet, the fact that mmtN exists is a significant 

discovery, as it means that the estimates of dsyB abundance and transcription in the 

environment are not descriptive of the total DSMP production, as there are many more 

DMSP-producing species also contributing to total DMSP levels in the environment.  

7.2.5 Microcosm experiments on Stiffkey sediment dramatically increase DMSP 

production by the sediment. 

The culture-dependent work performed on Stiffkey salt marsh is only one aspect of 

the story (Chapter 4). As a complement to the previous chapters, Chapter 6 was almost 

entirely analysis of sequencing performed on community DNA extracted from Stiffkey 

sediment. This was either natural (Time 0) sediment, or sediment that had been used in a 

microcosm experiment with either a control of standard media conditions, or a combination 

media composition designed in Chapter 4 to increase DMSP production. The enriched 

sediment showed a large amount of DMSP production compared to the control, suggesting 

that DMSP-producing bacteria were either increased in abundance or were highly 

transcribing dsyB, mmtN and any other potential DMSP-synthesis genes. 

The sequencing performed on these samples were two sets of amplicon, one for 

the 16S rRNA gene to enable phylogenetic identification of the community, and one using 

the dsyB degenerate primers to create a Diversity Assay of dsyB in the sediment 

(discussed above), as well as metagenomic sequencing of all the genomes present.  

This analysis showed that there is a high number of genera predicted to include 

DMSP producers present in the natural Stiffkey sediments – up t0 3.5 %. These include 

Streptomyces, Marinobacter and Roseovarius. Of course the numbers of DMSP-producing 

genera increase in abundance in the enriched, as they do in the control incubation, 

revealing a high abundance of the genus Alteromonas, isolates of which have been shown 

to produce DMSP (Chapter 4). It also showed a noticeable abundance of 

Novosphingobium which was not unexpected, as when bacterial isolates were picked from 

sediment incubated in these conditions in Chapter 4 a high proportion of the DMSP-

producing species were Novosphingobium. Surprisingly, the dsyB-containing Labrenzia 

was actually higher in Control sediments compared to Enriched. Although these results 
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are promising, it is also important to note that; i) presence does not guarantee activity, and 

ii) some genera may contain species that do not produce DMSP, as well as ones that do. 

The abundances of bacteria within the community was also analysed by 

metagenomics. This taxonomic data did not completely match those reported in the 16S 

rRNA sequencing, although this could be due to lack of coverage of the metagenomes, as 

well as differences in determining taxonomy. Both still show the higher abundance of 

Alteromonas in Enriched samples, alongside several Thalassospira species. The 

metagenomes were also mined for genes of interest and normalised to RecA to express 

them as percentage of bacterial in the community. The abundance of dsyB and mmtN 

increased in both Control and Enriched samples in comparison to the Time 0 sediment, 

with mmtN being slightly higher in Enriched samples, but for dsyB abundance the Control 

samples were almost twice the percentage in the Enriched. DSYB was only present in the 

Time 0 samples. The diversity of the mmtN sequences was roughly analysed by recording 

the closest-aligning mmtN sequence after BLASTp was performed on the reads. These 

showed that the Enriched samples were dominated with reads from Novosphingobium and 

Thalassospira, and the Control samples contained mostly hits aligning to Labrenzia. 

To test the abundance and transcription of dsyB in these samples, qPCR was 

performed on DNA and cDNA constructed from RNA using specific primers. mmtN primers 

were also designed but were not suitable for qPCR. The abundance of dsyB actually 

appeared to be highest in the Enriched samples compared to the others, while Time 0 was 

higher in abundance than Cley and Pool water. The number of transcripts of dsyB were 

actually similar between all three sets of samples, especially compared to the copy 

numbers from DNA, where Time 0 numbers were much lower than Control and Enriched 

samples. However, this is not necessarily unexpected, as we have already stated that 

these primers need more optimisation for qPCR. The most accurate way to analyse the 

transcription in Stiffkey would be to perform metatranscriptomes, as this would be a less 

biased, all-encompassing analysis. 

 

7.3 Recommendations for future research 

This research has greatly broadened our understanding of the scope of bacterial 

DMSP production, fitting several pieces of the puzzle of the DMSP cycle together, but 

there are now other questions that need answering, and more avenues of research to 

pursue. 

The precedents set out in this study, along with the enrichment experiment 

designed for the purpose of studying bacterial DMSP production, are now being put into 
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practice in other environments, not limited to salt marshes but also Mangrove swamps and 

even the Mariana Trench, which potentially has shown very similar findings as those 

described here. 

7.3.1 Further work on salt marsh environments 

Stiffkey salt marsh has been an excellent source of information on the role that 

bacteria play in DMSP production. There are several other experiments that perhaps could 

be carried out in order to complete the picture. Firstly, the coverage of the metagenomic 

sequencing that was performed was not as high as it could have been, so more, higher 

coverage metagenomic sequencing would be useful to compare to the ones described in 

this thesis. As previously mentioned, metatranscriptomics would also reveal much about 

the true transcript levels in the natural sediment in comparison to other genes, as well as 

perhaps on the Enriched and Control samples. Another option would be to carry out 16S 

rRNA amplicon and metagenomic sequencing on Stiffkey at different times of the year, to 

observe the change in abundance through the year. The anoxic sediment, while not 

producing DMSP at the same level that the oxic layer does, would still be worth analysing 

as it is known that they are sites in which DMSP catabolism takes place (Kiene & Visscher 

1987), so DMSP may be being produced but is then degraded before being detected. At 

the very least, culture-dependent work could give an indication of whether or not bacterial 

DMSP producers exist there. 

Although the dsyB transcript numbers seen in Cley and Yarmouth are relatively 

low, DMSP levels are high (Chapter 4) so it is possible that mmtN is much higher in 

abundance or transcription. It would therefore be a good idea to perform the same 

sequencing, including metatranscriptomes, on these environments as a comparison to 

Stiffkey.  

All the work carried out on Stiffkey focussed on the lower marsh portion, but it is a 

very large salt marsh, and therefore likely varies greatly. It would therefore be interesting 

to perform similar culturing experiments and perhaps sequencing on different areas of the 

marsh. Indeed, the upper marshes, while being more variable depending on rainfall, can 

become very hypersaline after a lack of rain (Davy & Smith 1988), analysis of which could 

provide interesting examples of DMSP-producing species of bacteria. 

To further confirm the hypothesis that bacterial contributions are important in 

Stiffkey compared to the eukaryotic contribution, the activity of prokaryotic and eukaryotic 

organisms in Stiffkey could be compared, perhaps using antibiotics to remove either set 

of organisms from the sediment as carried out by Carrión et al. (2017). 
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Several bacterial isolates from Stiffkey, namely Alteromonas and Marinobacter, 

were found to produce DMSP without containing either dsyB or the newly-identified mmtN. 

It would therefore be very interesting to fully characterise these species, create genomic 

libraries and screen for DMS production. 

7.3.2 Further analysis of dsyB and mmtN 

One of the major findings of this piece of work was the discovery of the novel 

DMSP-producing gene, mmtN. Although a disruption mutant was successfully created of 

mmtN in T. profundimaris, we did not observe any effect on the growth after the loss of 

DMSP. There are however, other conditions in which the mutant has yet to be tested, to 

further analyse the role that DMSP plays in the organism. These include increased levels 

of oxidative stress through the addition of H2O2 or treatment with UV light, and perhaps 

even higher salinity levels, as T. profundimaris still grows at 70 PSU conditions. The LC-

MS analysis suggests that the lack of a phenotype in the mmtN- mutant could be due to 

increased production of GBT, which could be tested by finding the genes involved in GBT 

synthesis in that organism, and then creating a double mutant to confirm that loss of the 

two osmoprotectants affects growth.  

Now that the gene has been identified and the protein purified there are many 

experiments that can be performed in continued analysis of the MmtN enzyme. X-ray 

crystallography would reveal the structure, and perhaps give insight to the mechanism of 

the MmtN and any required compounds it might need. Alongside this, the sequence 

upstream of the gene could be cloned into the pBluescript, and used in lacZ fusions to 

determine the promotor region of the gene, and therefore observe any conditions that 

increase gene expression.  

As mentioned in Figure 7-1, although we know that the methylation of Met to SMM 

is the first step in the production of DMSP in bacteria, we do not yet know what the other 

steps are in the pathway. There is already a precedent for the pathway to take two 

separate routes to reach DMSP, so it could be that bacteria use a third route to achieve 

this. To determine the rest of the pathway intermediates LC-MS and or HPLC work should 

be done on Thalassospira wild type and mutants defective in DMSP synthesis to detect 

the missing intermediates, which could be either DMSP-amine or DMSP-aldehyde. This 

will require the use of either radiochemicals or stable isotope work. Such work is a large 

component of a grant Dr Todd has in review presently. One problem with this might be that 

methionine is not solely used in DMSP production, and therefore may be difficult to track. 

Another option would be to use heavy-isotope labelled SMM instead. 
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7.4 Concluding Remarks 

It was long thought that marine eukaryotes, specifically phytoplankton, are the most 

significant DMSP producers in the environment (Kiene et al. 2000), with species such as 

E. huxleyi producing it at continuously high levels with little regulation (Sunda et al. 2007). 

In this thesis, we show that a wide range of bacteria also possess the ability to synthesise 

DMSP, with many other potential bacterial species yet to be confirmed. Indeed, since the 

discovery of bacterial DMSP production roughly three years ago, two unrelated genes 

involved in this process have been identified, alongside several species that have function 

but do not appear to contain either of the known genes. It is clearly a most prevalent ability.  

We have shown that although eukaryotic activity may be contributing strongly to 

DMSP levels detected in surface ocean waters, and in other eukaryote-rich environments 

such as algal blooms, heterotrophic bacteria are likely important DMSP producers in 

marine sediments like Stiffkey salt marsh, contributing noticeably to the total DMSP levels, 

which, per mass unit, are far more productive than overlying seawater. Indeed, 

experiments very recently carried out by Andy Hind on DMSP-synthesis rates using 10µM 

13C-Met to label processes in Stiffkey sediment has shown that the sediment is much more 

active than the seawater, easily detectable on the GC, in accordance with the findings of 

the RT-qPCR. 

Despite lower abundance of dsyB and mmtN in seawater metagenomes compared 

to the salt marsh ones, the seawater incubation experiments performed in Chapter 4 

demonstrate that both dsyB-containing Pelagibaca and mmtN-containing 

Novosphingobium are able to produce detectable levels of DMSP even when incubated in 

almost in situ seawater conditions, meaning that they and likely others have the potential 

to produce DMSP in the seawater, as well as sediment.  

It was clear from the very first experiments performed on Stiffkey salt marsh 

sediment, that the bulk of the DMSP production takes place in the mud. These have the 

highest levels of DMSP compared to the pool water and anoxic sediment, and are an 

excellent site in which to study bacteria. The sediment also has a higher combined 

abundance of dsyB and mmtN compared to ocean metagenomes (1.05 % of bacteria, 

compared to 0.38 % in the ocean), and higher levels of transcription of dsyB compared to 

overlying pool water. 

One of the limitations to the study of DMSP cycling previous to the discovery of 

bacterial DMSP was that of location. The majority of work has focussed on the photic layer 

of the ocean and other environments, where eukaryotes grow best. This work shows that 

the limits of light (and to a degree, oxygen content) do not apply. Even the anoxic layer of 

Stiffkey sediment is an order-of-magnitude higher than the pool water. 
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DMSP-producing bacteria and their dsyB and/or mmtN transcripts were present in 

Stiffkey, Cley, Yarmouth and all tested seawater samples and Tara Oceans 

bacterioplankton datasets. We therefore hypothesise that dsyB and mmtN are far more 

abundant in marine surface sediment compared to ocean environments. Through this 

study we have demonstrated that not only are the surface marine sediments environments 

with high DMSP productivity, but also that heterotrophic bacteria are likely important 

producers in these environments.  
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