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Abstract—1In recent years machine learning methods for
human activity recognition have been found very effective.
These classify discriminative features generated from raw
input sequences acquired from body-worn inertial sensors.
However, it involves an explicit feature extraction stage from
the raw data, and although human movements are encoded
in a sequence of successive samples in time most state-of-the-
art machine learning methods do not exploit the temporal
correlations between input data samples. In this paper we
present a Long-Short Term Memory (LSTM) deep recurrent
neural network for the classification of six daily life activities
from accelerometer and gyroscope data. Results show that our
LSTM can processes featureless raw input signals, and achieves
92% average accuracy in a multi-class-scenario. Further, we
show that this accuracy can be achieved with almost four times
fewer training epochs by using a batch normalization approach.

I. INTRODUCTION

Many applications in healthcare make use of wearable
activity monitors such as the well known Fitbit for day-to-
day activity tracking [1], [2]. However the accuracy of these
systems is still highly debated [3], and there is a significant
amount of ongoing work for improving the performance of
Human Activity Recognition (HAR) from inertial sensors.
Recently deep learning approaches to machine learning have
gained a significant amount of research interest. However
to date the application of deep learning models to train
time-series of inertial sensor data for activity recognition is
still under-explored [2], [4]-[8]. Deep learning models such
as Convolutional Neural Networks (CNN) and Recurrent
Neural Networks (RNN) employ a data-driven approach to
learning discriminative features from raw sensor data to
infer complex, sequential, and contextual information in a
hierarchical manner [4], [9]. This avoids the need to perform
an explicit feature generation and selection stage, which is
time consuming when handcrafting features, can introduce
bias with different feature sets being best suited to different
data sets, and complicates direct comparisons of performance
as different features are used in different studies. In addition,
deep learning approaches are highly suited for exploiting
temporal correlations in data sets. Developed for applications
such as speech recognition, language modeling, and video
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processing, CNNs and RNNs can take contextual relation-
ships in data sequences into account [2], [5].

They are thus very suitable for application to HAR
classification where potentially a large amount of data is
available, and human movements are encoded in a sequence
of successive samples in time and the current activity is
not defined by one small window of data alone. A number
of recent studies have investigated this. [7] used CNNs to
classify activities using data from multiple inertial sensors on
the body. This performed well, and was optimized for low-
power devices, but reintroduced the extraction of handcrafted
features by using a spectrogram of the input data, and it
required multiple sensor devices (whereas most people wear
just one unit at any time). [5] and [10] used Long-Short
Term Memory (LSTM) RNNs to better exploit the temporal
correlations between input data samples by having memory
cells and controlling gates embedded in the architecture.
Hybrid models combining CNN and LSTM RNNs were
also suggested in [7]. These have achieved a high level of
classification accuracy. [5] used a DeepConvLSTM network
and achieved 91.7% accuracy. [7] reported an F1 score of
90.8% with a factorized LSTM network.

However, to our knowledge no previous studies have used
a stacked LSTM architecture, which has the capability of
providing better generalization and robust temporal pattern
learning [11], for HAR classification. Previous works are also
focused on mostly accelerometer based datasets, not making
use of the additional sensing available in modern internal
sensor units such as gyroscopes. In this paper we have
implemented and improved a stacked LTSM architecture
for the feature-free classification of activities using both
accelerometer and gyroscope signals as the raw data input.
To make the network fast and robust we have employed
dropout regularization and the recently introduced batch
normalization method. Batch normalization has previously
been demonstrated in feed-forward networks and has also
found limited use in stacked RNNs for text and speech
processing [12], where the normalization is applied to the
input of each RNN only for very short sequences (10
samples). We successfully applied the technique to LSTMs
with 128 sample sequences and found a significant reduction
in training epochs in comparison to the generic LSTM
model. To our knowledge, this is the first application of the
method to HAR classification. We achieved a 92% average
classification accuracy with a six-class inertial sensor dataset,
and a four times reduction in the number of training epochs
required.

The remainder of this paper is organized as follows.



Section II introduces the mathematical background of the
LSTM architecture. Section III gives details on our parameter
settings for the implemented network and testing methods,
and the classification performance results shown in Sec-
tion IV.

II. MATHEMATICAL BACKGROUND

RNNs such as Long-Short Term Memory (LSTM) net-
works can learn very long-term dependencies [7], which
makes them well suited to model temporal dynamics in
activity time-series. They retain important data from the
previous inputs and use that information to modify the
current output. In this section we introduce the fundamental
components and mathematical model of a generic LSTM
unit, and our used batch normalization approach.

A. LSTM architecture

The fundamental LSTM unit is shown in Fig. 1, and is
composed of a cell with an input gate, output gate, and
forget gate. LSTMs use the concept of gating to deal with
the vanishing or exploding gradient problem [11]. The cell
is responsible for remembering values over arbitrary time
intervals, and each of the three gates can be thought of as a
conventional artificial neuron, computing an activation (using
an activation function) of a weighted sum of the current data
T, a hidden state h;_; from the previous time step, and any
bias b. Intuitively, the gates can be thought as regulators of
the flow of values through the connections of the LSTM [5],
[11]. At each time step they control which operation is
performed by the cell as defined below. In (1) to (6), w;
are the weights associated with each multiplication at gate 7,
and o and tanh are options for the activation functions.

In Fig. 1 the input gate controls the extent to which a new
value flows into the cell, known as a wrife operation:

it = a(wi[ht,l,xt] + bz) (1)

The forget gate performs a similar operation, controlling the
extent to which the current cell value is kept, doing a reset
operation:

fi = o(wg[hi—1,z¢] + by). 2
The candidate memory cell is updated similarly as
C, = tanh(welhy—1, 2] + be) 3)

and by combining these different internal values the internal
long-term memory or the next cell memory is generated as:

Ct:ft00t+it0a~ 4

From this, the cell output is generated by the output gate
to control the extent to which the value in the cell is used
to compute the output activation, doing a read operation:

or = o (wolhi—1,¢] + b). @)
Finally the cell’s hidden output is found as

ht = 0t © tanh(ct) (6)
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Fig. 1. TIllustration of a Long-Short Term Memory (LSTM) unit.

for passing to other cells in the deep network. Each of the
gates has parameters for its weights and biases, giving a
large number of parameters for deep networks with many
units present. The weights of these connections are learned
or updated during the training of the network.

B. Batch normalization

Training LSTMs is complicated by the fact that the statisti-
cal distribution of each layer’s inputs changes during training,
as the parameters of the previous layers change. This slows
down the training by requiring lower learning rates and
careful parameter initialization, and makes it extremely hard
to train models with saturating non-linearities [12]. Batch
normalization has recently been introduced to overcome this
by normalizing the z; and h;_ activations going into each
layer by applying a covariate shift. This enforces the means
and variances of z; and h;_; to be invariant to changes
in the parameter distributions of the underlying layers and
effectively decouples each layers parameters from those of
other layers, leading to a better-conditioned optimization
problem [12]. We have embedded the batch normalization
technique in our proposed model discussed in the next
section.

III. METHODS
A. Proposed LSTM model

A schematic diagram of our multi-layer stacked architec-
ture LSTM network for multi-class HAR classification is
presented in Fig. 2. The model architecture is novel in its
use of longer temporal sequences in the LSTM and its use
of batch normalization for HAR with the RNN architecture
when compared to ones reported in the literature [8], [9].

As activity data is recorded from the sensor as a time-
series, preparing the training data as per the requirements of
the LSTM is crucial for building and training. In our LSTM
implementation the data input z; is multi-dimensional, con-
taining three channels from a 3-axis accelerometer, and three
from a 3-axis gyroscope. We needed to reshape these six
parallel 1-D time series data into the 3-D structure required
by an LSTM with the specific number of neurons in one
dimension, the number of memory steps to process per time
step in another dimension, and different sensor channels on
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Fig. 2. Proposed deep LSTM network architecture for HAR classification.

the third dimension. For the architecture shown in Fig. 2 we
prepared a reformatted matrix of shape: No. of data rows X
128 samples/sequence x 6 channels. In every data row 127
previous samples were arranged to work as a memory for
the current data.

The model is implemented using the Keras open source
library in Python [13], and we have utilized the sequential
model and with Dense, LSTM, Dropout, and Batch Nor-
malization layers. The input layer has 30 neurons using
the 128 previous data points. A second LSTM layer was
stacked in our model to utilize a deeper time dependency in
predicting the next value. Finally, the network was converted
into a classifier using a fully connected hidden Dense layer
with 15 neurons followed by an output Dense layer of six
neurons with a soft-max classifier to provide probabilistic
assignments of labels/classes from the raw data. The final
model was trained with an Adam optimizer with a learning
rate of 0.002 and binary cross-entropy [13].The training of
the model is done offline without any GPU, on a conventional
computer with a 2.4GHZ CPU and 16GB memory.

B. Dataset Preparation

To evaluate the performance of the model, we processed
the time series data from a waist mounted inertial sensor
recorded at 50 Hz sampling frequency containing both
accelerometer and gyroscope measurements. Data for 20
subjects is present, described in detail in [14]. The dataset
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Fig. 3. Confusion matrix for the test set, and per-class sample numbers.

contains six everyday activities: O-walk on level surface;
1-walk upstairs; 2—walk downstairs; 3-sitting; 4—standing;
5-lying. We kept the data from 14 volunteers, with approxi-
mately 7500 labeled activities as training data, and data from
6 volunteers, 3000 labeled activities, as a test dataset. The test
set was separated entirely from the training dataset during
our experiments. Also to avoid over-fitting the model with
training data, 20% of the training dataset was held back as
a validation set.

IV. RESULTS AND DISCUSSION

A. Performance Evaluation

To verify the performance of our LSTM model Fig. 3
shows the full confusion matrix of the test set. Some misclas-
sifications are present, but overall the classification is highly
accurate. This is quantified in Fig. 4 the via precision and
F1 score. For activities such as walking level, walking up
and walking down the average precision is over 95%. These
time-dependent dynamic activities benefited from the LSTM
memory processing for highly accurate classification. In
contrast, from Fig. 3 and Fig. 4 it is clear that in our test data
set most of the misclassifications are for static activities such
as sitting and standing. These have less temporal correlations
and repetitive components for learning by the LSTM.
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Fig. 4. Class-wise performance on the test data set assessed via precision
and F1 score for a generic LSTM and a batch normalized LSTM.
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Fig. 5. Average training and validation set accuracy performance over 120
epochs for an LSTM model with and without Batch Normalization (BN).
TABLE I

QUANTITATIVE COMPARISON OF SVM, FULLY CONNECTED DENSE
NEURAL NETWORK AND LSTMS FOR HAR CLASSIFICATIONS.

Learning method Dataset ~ Accuracy (%)
SVM with handcrafted features [14] [14] 934
Fully connected DNN [14] [14] 91
DeepConvLSTM |[5] [15] 91.7
Factorized LSTM [7] [15] 90.8
This work: LSTM (raw data in, no BN) [14] 88

This work: LSTM+BN (raw data in) [14] 92

B. Performance improvement with batch normalization

Fig. 4 also shows the LSTM performance when Batch Nor-
malization (BN) is employed during training and validation
of the network. The batch normalized LSTM (LSTM+BN)
consistently outperforms the generic LSTM model with a
class-wise accuracy of 92% (up 4% from the LSTM without
BN). In addition, Fig. 5 plots the performance of the network
training process for different numbers of iterations. During
training the LSTM+BN achieves 98% training set accuracy
four times faster (using 20 epochs) than the generic LSTM
(80 epochs). This is also true with the validation data set.
Potentially this allows a reduction in the training epochs
required, and will be of vital importance for training future
networks with bigger datasets.

C. Comparison with other approaches

To place our results in context Table I summaries the per-
formance of other classification techniques when applied to
the same data set as used in this paper, and to previous LSTM
models. Our proposed LSTM+BN that processes featureless
raw signals achieves 92% overall classification accuracy
which is slightly lower than the Support Vector Machine
(SVM) method in [14] which used handcrafted features to
achieve 93.4% accuracy. This compromise in accuracy can be
discounted by the fact that the LSTM classification is more
generalized and capable detecting activities that have long
term dependence which is not the case for SVM. Our LSTM
performance is similar to that reported previously for LSTM
activity classification, but the use of batch normalization can
potentially obtain similar accuracy with substantially fewer
training epochs.

V. CONCLUSIONS

We have presented an LSTM model with 92% average
recognition accuracy for 6 daily-life activities using raw
accelerometer and gyroscope data as the input. Dropout
regularization and batch normalization made the network fast
and robust in terms of speed and performance accuracy and
achieved a four times reduction in training epochs required
which will be beneficial when training on large amounts of
data with a wide variety of complex activities. We will verify
the effectiveness of our approach by testing it on a larger
physical activity dataset from UK Biobank[16].
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