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Abstract—Our focus in this research is on the use of deep 

learning approaches for human activity recognition (HAR) 

scenario, in which inputs are multichannel time series signals 

acquired from a set of body-worn inertial sensors and outputs 

are predefined human activities. Here, we present a feature 

learning method that deploys convolutional neural networks 

(CNN) to automate feature learning from the raw inputs in a 

systematic way. The influence of various important hyper-

parameters such as number of convolutional layers and kernel 

size on the performance of CNN was monitored. Experimental 

results indicate that CNNs achieved significant speed-up in 

computing and deciding the final class and marginal 

improvement in overall classification accuracy compared to the 

baseline models such as Support Vector Machines and Multi-

layer perceptron networks. 

Keywords— Feature Extraction, Signal Processing, 

Convolution, Human activity recognition (HAR); Convolutional 
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I. INTRODUCTION  

The demands for understanding human activities has 

grown enormously in recent years for ubiquitous computing, 

human computer interaction, and healthcare domains such as 

elder care support, rehabilitation assistance, and cognitive 

disorder recognition systems [3-5]. To achieve high accuracy 

in activity recognition with low computational cost is a key 

challenge. To deal with this challenge, the HAR community is 

beginning to adopt deep learning to substitute for well-

established analysis techniques that rely on hand-crafted 

feature extraction. Previously, hand-crafted features were 

mostly limited to statistical features such as mean and 

variance in time domain, and fast Fourier transform 

coefficients in the frequency domain. The use of these features 

required the application prior specific knowledge about the 

signals, in order to capture essential characteristics between 

different activities [6]. In contrast, learning based on deep 

neural networks can automatically extract representative 

features without any prior knowledge about the signals. Here, 

instead of exploring hand-crafted features from time-series 

sensor signals, we aim to show that signal sequences of 

accelerometers and gyroscopes can be processed by Deep 
Convolutional Neural Networks (CNN) to automatically learn 

from the input the optimal features for the activity recognition 

task.  

II. RELATED WORK 

CNNs, which comprise of one or more convolutional and 

pooling layers followed by one or more fully-connected 

layers, have gained popularity due to their ability to learn 

suitable representations from images or speeches, capturing 

local dependency and slight-distortion invariance [7]. CNN 

has recently been applied to the problem of activity 

recognition in number of research papers [2, 4, 8]. However, 

most of the research to date has been conducted using datasets 

that contain either accelerometer data only or data from a 

single sensor (e.g. smartphone sensor).  

In our case, we have collected data from five different 

sensor locations on the lower body in order to classify 

activities more accurately. Reference [9] contains a 

description of our original data collection system based on 

MPU-9150 sensors which has been used to obtain the reported 

results. By combining signals from multiple sensors, it was 

possible to obtain more information compared to the mobile or 

single sensor [10,11] scenario. Hence, we can expect better 

accuracy in the activity recognition. In this context we 

considered the HAR task as a classification problem where 

time-series data from inertial sensor (consisting of 

accelerometers and gyroscopes) has been used to extract 

relevant and discriminative features from them, and finally, to 

recognize activities by using a classifier.   

III. CONVOLUTIONAL NEURAL NETWORK ARCHITECHTURE 

The overall CNN structure used in this paper is shown in 

Fig. 1. To develop more accurate activity recognition 

algorithm, we adopted techniques such as Pooling, Rectified 

linear Unit (ReLU) activation function and soft-max classifier 

popularly used in several deep learning tasks published in [2, 

12]. Convolutional neural networks perform convolution 

instead of matrix multiplication (as with fully-connected 

neural networks). 

For the network shown in Fig. 1, xt
0 is the sensor data input 

vector defined as: 

xt
0=[x1,x2 ,…xN]                      (1) 
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where  N is the number of sensor readings per window after 

segmentation. 
The output of the convolutional layer is 

                  ct
l,i

=σ(bi+ ∑ wj
ixt +j -1

0 , iJ
j=1 )           (2) 

where 'l' is the layer index, σ is the activation function,  bi is 

the bias term for 𝑖th feature map, J is the kernel or filter size 

and   wj
i is the weight for  ith feature map and  jth filter index. 

The pooling layer derives a summary statistic of nearby 

outputs derived from   ct
l,i

.The pooling operation used in this 

paper, max-pooling, is characterized by outputting the 

maximum value among a set of nearby inputs, given by 

ft
l , i

= max
r∈R

(c
t × T + r

l , i
)                 (3) 

where R is the pooling size, and T  is the pooling stride. A 

simple softmax classifier is used to recognize activities, which 

is placed at the final layer. Features from the stacked 

convolutional and pooling layers are aligned to form feature 

vectors: 

f 
l
=[f1,f2 ,…fK]             (4) 

where, K  is the number of units in the last pooling layer, 

acting as input to the soft-max classifier: 

P(c|f)=argmax c∈C (
exp (f

L-1
 wL+ b

L
)

∑ exp (f
L-1 

wn)
Nc
n=1

)            (5) 

Here 𝑐  is the activity class,  L  is the last layer index, and 

 Nc  is the total number of activity classes. 

Forward propagation is performed using (2) to (5), which 

yields the error values of the network. Backpropagation to 

adjust weights is done by computing the gradient of the 

convolutional weights: 

∂E

∂ws
= ∑

∂E

∂xt,j
l y

(t+s)
l-1N-J-1

t=0                (6) 

where  E is the error or cost function and  y(t+s)
l-1 = σ(x

(t+s)

l-1
)+b

l-1
 

is the nonlinear mapping function. The forward and back 

propagation procedure is repeated until a stopping criterion is 

met, e.g., if a maximum number of epochs is reached, among 

others. Further details on the mathematical derivation can be 

found in [2]. 

IV. EXPERIMENTAL RESULTS  

For modelling and evaluating physical activity, we 

collected data from 12 healthy volunteers (age[y]: 24.6±5.2; 

height [m]: 1.63 ± 0.6, weight [kg]: 64.7 ± 7.1) while 

undertaking six common daily life activities such as, 

(1)walking, (2)walking upstairs, (3) downstairs, (4)sitting, 

(5)standing (6) lying down. Functions and features from the 

Machine Learning toolbox in MATLAB have been used to 

implement the CNN network. For processing sensor data from 

a specific location (pelvis, thigh or shank), we performed a 6-

channel 1D convolution on the input, i.e. 3- axis acceleration 

and 3- axis gyro. The raw accelerometer and gyroscope xyz 

signals were pre-processed and segmented into 128 values for 

every activity sample. 

Generally, sensor-based activity recognition methods are 

evaluated in two aspects: recognition accuracy and 

computational cost [13,14]. To improve the accuracy, in our 

previous work [1] we extracted effective  statistical and 

frequency domain features (hand-crafted)  from 3-axis data 

from inertial sensors and explored different classifiers 

including Support Vector Machine(SVM) and  Multilayer 

Perceptron (MLP). The results of the used CNN method and 

two baseline methods SVM and MLP for the collected data 

are compared in Table I. 

The comparison shows an improvement in accuracy by 

using deep learning approaches. Additionally, no overtraining 

is observed without any validation sequence and the training 

stops when performance on the training set no longer 

improves. 

 

 

 
Fig. 1. Deep Convolutional Neural Network Architecture (redrawn from[2]) 

 

TABLE I.  QUANTITATIVE PERFORMANCE COMPARISON OF 

SVM, MLP BASED NEURAL NETWORK AND DEEP CNN 

Learning 

Method 

Classification 

Accuracy (%) 

Computational 

Load(ms) 

SVM [1] 96.4% 10.6 

MLP [1] 91.7% 6.7 

Deep CNN 97.01% 3.53 

 

TABLE II.  HYPER-PARAMETERS RANGE FOR CNN 

IMPLEMENTATION 

CNN hyper-parameter Value 

Number of convolution layers 3 

Learning rate 0.01 

Number of feature maps 10  to 100 

Filter (kernel) size 1x3 to 1x15 

Pooling size 1x2 to 1x15 

 



We also studied the influence of various important hyper-

parameters (kernel sizes, network size) of CNN on the overall 

performance, and showed for almost all the cases that the 

recognition rates are superior to those of state-of-the-art 

methods. Experiments show that increasing the number of 

convolutional layers increases computational load, but the 

complexity of the derived features decreases with every 

additional layer. A gradual increase in the performance was 

observed after adding an extra convolution layer on validation 

data. On the other hand, on test data there was a noticeable 

improvement in performance when third layer was added. 

Tuning the filter and pooling sizes revealed that wider filter 

(i.e. kernel) size and lower pooling size setting improves the 

recognition performance of the CNN as well. Table II displays 

some important CNN hyper-parameters, chosen for yielding 

the best score on the validation set during the training of the 

network. In Table II, the number of feature maps can be 

increased up to 100, depending on the complexity of the 

activity, and the filter and pooling sizes can be increased up to 

1x15. 

V. CONCLUSION AND FUTURE WORK 

Time-series data have inherent local dependency 

characteristics and daily life physical activities tend to be 

hierarchical, as well as translation-invariant in nature. Our 

experimental results demonstrate how these characteristics can 

be exploited by CNNs.  

We used CNN architecture to automate feature learning 

from the raw inputs for human activity recognition task. We 

adopted techniques such as pooling, ReLU and soft-max 

classifier to avoid overfitting of neural network due to small 

size of the training data. Experimental results indicated that 

CNNs manifest marginal improvement compared to SVM and 

MLP in terms of classification accuracy, but it achieved a 

considerable speed-up in terms of computational load, as 

shown in Table I. The influence of various important hyper-

parameters such as kernel size and number of convolution 

layers on the performance was also studied, to allow to  

proceed with the parameter values that displayed best score 

during the training of the CNN. 

Recent research demonstrates increasing interest in 

classification of more challenging or complex actions and 

realistic scenarios [15]. Therefore, we plan to verify the 

effectiveness of our approach by testing it on other 

challenging activities. This will allow us to confirm the benefit 

of the deep learning based feature extraction process. 

Additionally, to take advantage of the availability of multiple 

sensors, CNN with long short-term memory [8] sequence 

classifier, involving retro-propagated error, will be 

implemented and studied in the immediate future. 
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