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Decoding High Level Influences on Facial Expression Recognition 

 

Abstract 

The present thesis explores the neural mechanisms underlying the recognition of 

emotion; the effect of high-level influences such as prior knowledge, task goals and 

the possible contribution of embodied simulation in facial expression recognition. 

The initial experiments (Chapters 2 & 3) investigate high-level processing that 

occurs when facial features are occluded in the recognition of facial expressions 

(visual route of recognition). This research examines the information about occluded 

facial features in early visual (V1-V3), face and emotion sensitive areas with fMRI, 

as well as the temporal dynamics of posterior brain regions in processing occluded 

facial features with EEG. MVPA reveals similar patterns of decoding across non-

overlapping samples of face information, suggesting the involvement of contextual 

influences beyond low-level processing (Chapter 2), as well as reliable decoding of 

facial expression (happy, fear and disgust) in conditions missing feature information 

(Chapters 2 & 3). This decoding, found 50-700ms, has three decoding phases, which 

potentially reveal the presence of feedforward and feedback processes (Chapter 3). 

These chapters also investigate the influence of task constraints, finding decoding 

differences between implicit and explicit processing conditions. Overall, this 

research helps understand how the brain deals with occluded stimuli; in keeping with 

accounts implying the rich role for top-down influences, such as predictive coding. 

The following experiment (Chapter 4) investigates embodiment in emotion 

recognition with fMRI; exploring shared representation in the perception and 

production of facial expression. MVPA reveals reliable expression decoding in the 

premotor brain regions across perception and production, demonstrating 

representational overlap across the sensory perception and motor production of 

expression. This tentatively supports strongly embodied simulation-based (non-

visual) theories. Collectively, the present research contributes to our knowledge of 

high-level influences in facial expression recognition, supporting the involvement of 

visual and non-visual routes to recognition, as well as providing further directions 

for future research. 
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Chapter 1: Facial Expression Recognition 
 

The visual recognition of emotion has been abundantly explored in previous 

literature due to the evolutionary and social importance of recognising emotion 

(Niedenthal, Krauth-Gruber, & Ric, 2006). Recognition activates basic fight or flight 

responses (approach or avoidance behaviours) and is key to successful social 

communication and relationships (Ekman, 1982). Research focuses on the six 

universal emotions identified by Ekman and Friesen (1975): fear, happiness, sadness, 

disgust, anger and surprise, with the understanding that complex emotional states can 

be obtained from subtle facial cues providing powerful nonverbal expressive 

displays (Peelen, Atkinson, & Vuilleumier, 2010). Successful decoding or 

recognition of a sender’s expression is dependent on multiple aspects, including 

viewing distance (F. W. Smith & Schyns, 2009), presentation time (Balconi & 

Bortolotti, 2013), facial feature availability (Kotsia, Buciu, & Pitas, 2008), lighting 

(Bettadapura, 2012), context (Rousselet, Mace, & Fabre-Thorpe, 2004) and the 

emotional state of the observer (Niedenthal, Winkielman, Mondillon, & Vermeulen, 

2009). The present research will continue to explore the visual recognition of 

emotion, with a particular focus on the high-level influences that occur under 

conditions of facial feature occlusion, and the possible contribution of embodied 

simulation in facial expression recognition.   

To begin this research, it is important to define what a facial expression is. 

This definition is dependent on an individual’s theory of emotion. This is because 

facial expressions can either be considered as universal, in line with earlier work 

advocating support for innate or evolutionary theories, or considered in terms of 

cultural differences, in line with social constructionism (Gendron & Barrett, 2009). 

With regards to evolutionary emotion theories, an expression is said to be an 

involuntary emotional response, functioning to increase our chances of survival; 

whereas in social constructionism theories, an expression is said to be voluntary, 

shaped by social communication and cultural display rules (Schmidt & Cohn, 2001; 

Adolphs 2002, E. Fox, 2008).  

Evolutionary theories focus on the six universal emotions identified above 

(Ekman & Friesen, 1975). Evidence for these culturally ubiquitous facial expressions 

of emotion have been presented in research studying the isolated pre-literate western 

culture of New Guinea in 1971 (Ekman, 1994; Ekman & Friesen, 1971). This 
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cultural group was able to select a face expressing the appropriate emotional 

response to a story, in the absence of western media influences; showing that they 

could associate facial muscular patterns with a given emotion (Ekman & Friesen, 

1971). On the other hand, social constructionist accounts categorise the experience 

of emotion using core shared affect (feeling of pleasantness or unpleasantness), with 

arousal, approach or reward systems (Lindquist et al., 2012; Wilson-Mendenhall, 

Barrett, & Barsalou, 2013). Evidence that the recognition of a sender’s expression is 

dependent on a given situation, context and culture, is shown by western (U.S) and 

eastern (Japanese) cultures greater accuracy to recognise emotions expressed by 

members of their own culture (ethnic, national or regional group) (Dailey et al., 

2010). This entrenched phenomena, known as in-group advantage, may explain the 

existence of recognition variability among cultures (Elfenbein & Ambady, 2002). 

Interestingly the recognition of happiness and anger were less affected by in-group 

advantage (Elfenbein & Ambady, 2002) and may be less culturally specific 

emotions.  

Present work now widely advocates an interactionist perspective whereby 

both evolutionary and social elements of recognising expression are accepted 

(Elfenbein & Ambady, 2002). This is because there are universal emotions that 

seemingly share the same components, but there is also diversity across cultures 

(Elfenbein & Ambady, 2002). Nonetheless, it is important to note that there is also 

research in support of an embodied theory of emotion which considers sensorimotor 

brain activation and individual differences (Niedenthal, 2007). 

1.1 Visual Recognition of Emotion  

1.1.1 Visual Stream Model of Emotion Recognition.   

The visual processing pathway is critical to expression recognition (Pessoa & 

Adolphs, 2010). This details the transfer of information from the retina to the lateral 

geniculate nucleus (LGN) and the primary visual cortex (V1), before information 

transfers to the extra-striate visual cortices (V2-V4) and inferior temporal areas (this 

information transfer is visually represented later as part of Figure 1.3). Research has 

shown that faces can be decoded around 70ms, suggesting the use of low-level image 

features when visual information first reaches the cortex (Cichy, Pantazis, & Oliva, 

2014; Nemrodov, Niemeier, Mok, & Nestor, 2016), and the sensitivity to complex 

features and faces occurring further along the visual pathway (Pessoa & Adolphs, 

2010). Simple feedforward computational models also account for the visual 
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recognition of expression (see Figure 1.1), these suggest that the categorisation of an 

expression occurs after a perceptual V1 level analysis and a gestalt inferior temporal 

(IT) level analysis has taken place (Dailey, Cottrell, Padgett, & Adolphs, 2002); this 

will be discussed further when considering bottom-up versus top-down processing of 

expression recognition.  

Figure 1.1. Diagram of a simple feedforward computational model that categorises 
facial expressions of emotion, from Dailey et al. (2002).  
 

The advent of deep learning techniques and the use of deep neural networks 

for facial expression recognition have advanced computational modelling (Li & 

Deng, 2018). In deep learning models of facial expression recognition, there is a pre-

processing step where facial information irrelevant to expression is normalised, as 

such faces are aligned and normalised for illumination, before deep models for 

feature learning, such as the convolutional neural network (CNN) or generative 

adversarial network (GAN), are applied for deep feature classification. These 

computational models are principally trained on large face and object recognition 

datasets and tested on small-scale expression recognition datasets; therefore, 

irrelevant facial information may be learnt, which could subsequently affect the 

networks ability to recognise facial expressions. Recently however large-scale 

datasets for facial expression have been created. It is important to note that both 

these deep neural networks and the simple feedforward computational models, 

described previously, may have difficulty processing occluded stimuli (Pepik, 

Benenson, Ritschel, & Schiele, 2015).  

1.1.2 Face Models of Emotion Recognition. 

Numerous cognitive models have been developed which separate 

components specialised for different aspects of facial processing (Bruce & Young, 

1986; Haxby, Hoffman, & Gobbini, 2000). Bruce and Young (1986)’s model of face 

perception begins with the structural encoding of a face, before expression and other 
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aspects of the face are processed independently (Figure 1.2a). Whilst, the importance 

of the visual processing pathway to expression recognition has been specified, other 

brain regions have been identified as vitally important in the processing of faces. 

These are shown in a further model put forward by Haxby et al. (2000), who 

identified the inferior occipital gyrus (IOG), lateral fusiform gyrus (LFG) and the 

superior temporal sulcus (STS) as the three core face selective areas (see Figure 

1.2b). Haxby et al. (2000) also detailed the function of these regions; notably 

separating the importance of the LFG in processing invariant aspects of faces, from 

the importance of the STS in processing changeable aspects of the face, involved in 

processing emotion (including static and dynamic facial features). 

The existence of dedicated individual regions in the brain, separating facial 

identity from expression, is further suggested in the double dissociation found 

between the neurological disorder prosopagnosia (impairment to recognise faces) 

and prosopo-affective agnosia (inability to recognise expressions) (Calder & Young, 

2005). Additionally research postulates the FG or Fusiform Face Area (FFA) as a 

domain-specific module activated during face perception or identity but not 

expression processing (Ghuman et al., 2014; Kanwisher, 2006; Li, Richardson, & 

Ghuman, 2018), which partially corresponds to the face-specific N170 component 

found in electroencephalogy (EEG) experiments (Bentin, Allison, Puce, Perez, & 

McCarthy, 1996; Itier, Alain, Sedore, & McIntosh, 2007; Yovel, 2016). On the other 

hand, the STS has been consistently implicated in expression processing (Engell & 

Haxby, 2007; Said, Moore, Engell, Todorov, & Haxby, 2010). The idea of domain-

specificity in the brain with particular brain regions dedicated to aspects of 

cognition, has stemmed from evolutionary psychology (Cosmides & Tooby, 1994), 

the study of phrenology (Simpson, 2005) and cognitive psychology (Fodor, 1983). 

Whilst this research implicates dedicated neural substrates in the processing of facial 

perception, other research has shown the domain-specificity of the human primary 

motor cortex (Meier, Aflalo, Kastner, & Graziano, 2008) and five domain-specific 

areas of social cognition (Saxe, 2006). 
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Figure 1.2. Face models of Emotion Recognition. a. Bruce and Young’s (1986) 
model of face perception, expression analysis occurs after structural encoding. b. 
Haxby et al.’s (2000) hierarchical model of brain areas involved in processing faces 
(Apicella, Sicca, Federico, Campatelli, and Muratori, 2013). c. Duchaine and 
Yovel’s (2015) revised neural framework for face processing revealing additional 
face-selective areas in anterior regions of the brain. This model shows a ventral face-
processing pathway through the OFA, FFA and the Anterior Temporal Lobe (ATL), 
and a dorsal face-processing pathway, through the STS and the inferior frontal gyrus 
(IFG). -FA; face selective area. Model shows back connections/recurrent processing. 

 

a. b. 

c. 

b. (continued) 
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However, other research contradicts the finding of STS’s independent 

involvement in processing changeable facial features and the segregation of identity 

and expression areas within the brain. This has been shown in adaptation studies 

finding the FFA (C. J. Fox, Moon, Iaria, & Barton, 2009; X. Xu & Biederman, 2010) 

and STS (C. J. Fox et al., 2009) sensitive to changes in both the perception of 

identity and expression. Furthermore, information about facial expressions has been 

represented in FG activation as opposed to the STS, within the same areas that 

represent identity (Li et al., 2018). Moreover Haxby et al. (2001) discredited 

evidence for domain specificity, finding representations between objects and faces to 

overlap in the ventral temporal cortex.  

In light of new research and the contradictory results for domain specificity, 

findings for the roles and connections between face-selective areas were reviewed by 

Duchaine and Yovel (2015). These findings proposed several modifications and 

additions to Haxby’s (2000) leading face model of emotion recognition (Duchaine & 

Yovel, 2015). Firstly, further evidence implicating the role of the FFA in the 

perception of changeable aspects of the face were discussed, and thus the role of this 

region in Haxby’s (2000) version needed to be revised. Overall, the FFA is 

epitomised to have a general role in representing invariant facial structure 

information, such as identity, gender or age information, in addition to a contributing 

role in the recognition of facial expressions. Furthermore, Duchaine and Yovel 

(2015) identified three additional anterior face-selective areas besides the OFA, FFA 

and pSTS, namely the anterior temporal lobe (ATL), the anterior superior temporal 

sulcus (aSTS) and the inferior frontal gyrus (IFG), see Figure 1.2c. Duchaine and 

Yovel (2015) further showed that three of these regions, the pSTS, aSTS and IFG 

responded greater to dynamic face stimuli. Based on the new evidence they revised 

the three original core areas of Haxby’s (2000) model and additional regions into a 

framework with a dorsal and ventral face-processing pathway. As such the areas that 

responded greater to dynamic face stimuli and gaze information were in the dorsal 

face processing pathway, driven by motion and form information, whereas the OFA, 

FFA and ATL comprised the ventral processing pathway, representing form 

information but also contributing to facial expression recognition. In the ventral 

route, the processing of structural information develops from processing faces in one 

particular view (view-specific), to processing across symmetrical viewpoints, and 
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finally to processing from any viewpoint (view-independent) that contains key 

featural information.  

1.1.3 Using FMRI to Investigate the Regions Involved in Expression 

Recognition: Univariate or Multi-Voxel Pattern Analysis (MVPA). 

Univariate fMRI analyses investigate the activation of regions in response to 

a specific stimulus, with activated voxels indicating their involvement (Mur, 

Bandettini, & Kriegeskorte, 2009). In univariate analyses, general linear models 

(GLM) are used to investigate activation between experimental conditions, both at a 

single-subject and group-level basis. It is important to note that these analyses lack 

sensitivity, as activation is spatially smoothed and averaged across voxels within a 

region of interest (ROI) (Haynes & Rees, 2006; Mur et al., 2009; Norman, Polyn, 

Detre, & Haxby, 2006). An abundance of fMRI (Functional Magnetic Resonance 

Imaging) studies use this analysis to investigate the regions involved in the 

perception and experience of emotion, however, studies are gradually applying 

MVPA to also investigate these regions. MVPA investigates the representational 

content of regions, allowing patterns of brain activation to be extracted and 

compared across stimuli or experimental conditions (Mur et al., 2009). Therefore, in 

this analysis, differences between conditions can be detected for the same ROI with 

fine-grained pattern information (Norman et al., 2006; Tong & Pratte, 2012). In 

MVPA, advanced pattern-classification algorithms are applied to fMRI data, these 

aim to decode information represented in an individual region of a participant’s brain 

(Haynes, 2015; Mur et al., 2009; Norman et al., 2006). Thus, MVPA is a more 

sensitive measure than univariate analyses in recognising cognitive states and the 

organisation of these within the brain (Coutanche, Solomon, & Thompson-Schill, 

2016; Norman et al., 2006). As a result of this, MVPA is the preferred choice of 

analysis in future fMRI studies investigating the regions involved in expression 

recognition.  

1.1.3.1 FMRI studies investigating the regions involved in expression 

recognition.  

Univariate fMRI (Functional Magnetic Resonance Imaging) research has 

focussed on investigating neural substrates dedicated to the perception and 

experience of an individual emotion (Lindquist, Wager, Kober, Bliss-Moreau, & 

Barrett, 2012). Findings from these univariate meta-analyses vary, with some 

suggesting the involvement of separate brain areas responsible for the experience of 
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discrete emotions (Phan, Wager, Taylor, & Liberzon, 2002), to others finding the 

perception and experience of emotion to activate areas across the brain (Fusar-Poli et 

al., 2009; Kober et al., 2008; Lindquist et al., 2012). Whilst the amygdala-fear 

hypothesis has been consistently supported, with the perception and experience of 

fear specifically linked to amygdala activity in 60% of studies (Murphy, Nimmo-

Smith, & Lawrence, 2003; Phan et al., 2002); this finding is called into question with 

the processing of other emotions, including happiness, sadness, neutral, disgust and 

anger, which have been found to similarly activate the amygdala (Fusar-Poli et al., 

2009; Murphy et al., 2003; van der Gaag, Minderaa, & Keysers, 2007). Thus, more 

recently the amygdala has been recognised as a centre for vigilance with face 

responsive neurons processing affective salient, uncertain, novel or unusual stimuli 

irrespective of valence (Fusar-Poli et al., 2009; Lindquist et al., 2012). Furthermore 

insular and basal ganglia activation has been consistently linked to the perception 

and experience of disgust, however increased activity also corresponds with 

experiencing anger, happiness or fear (Fusar-Poli et al., 2009; Lindquist et al., 2012; 

Phan et al., 2002; van der Gaag et al., 2007). Thus this region may correspond to 

valence and regulate approach or avoidance behaviour (Phan et al., 2002). Further 

hypotheses have linked activity in the lateral orbitofrontal cortex (OFC) to the 

experience and perception of anger, and activity in the Anterior Cingulate Cortex 

(ACC) to the perception and experience of sadness and happiness (Fusar-Poli et al., 

2009; Lindquist et al., 2012).   

Whilst correlations persist between certain brain areas and emotion 

categories, these may arise in the bias to report previously identified areas (Kober et 

al., 2008), thus overlooking the associated emotion labels is likely to yield new 

insights into the organisation of emotion in the brain (Kober et al., 2008). Therefore, 

Kober et al. (2008) undertook an inductive data-driven approach to which they 

located activated brain areas independent of basic emotion categories. They did this 

by identifying activated voxels in emotion perception and experience studies, and 

used a nonmetric dimensional scaling (NDMS) reduction technique and clustering to 

classify voxels into regions. This approach identified six functionally distributed 

networks in the brain for emotion (e.g. for visual processing, attention, regulation of 

emotion, motivation, selecting context appropriate actions, salience), with vast 

interconnections predominantly occurring between frontal and limbic areas (Kober et 

al., 2008). Connectivity may stem from posterior areas, such as the IOG, to the 
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prefrontal cortex (PFC), potentially bypassing limbic structures such as the amygdala 

(Dima, Stephan, Roiser, Friston, & Frangou, 2011). The PFC has been found to have 

an important role in the recognition of facial expressions (Dalgleish, 2004; Dima et 

al., 2011; Kober et al., 2008), in constructing knowledge of an emotion (Fusar-Poli 

et al., 2009). 

Additionally a number of cortical and subcortical areas have been suggested 

in the emotional brain (Dalgleish, 2004; Kober et al., 2008); particularly the early 

role of occipital and temporal areas and the subsequent requirement of the amygdala 

to process emotional faces (Fusar-Poli et al., 2009). Moreover, a study by Saarimäki 

et al. (2015) found distinct neural signature patterns across the somatomotor and 

limbic regions for the experience of emotions, using Multi-Voxel Pattern Analysis 

(MVPA; an analysis technique that will be discussed further in the next paragraph). 

Alternatively an interplay between two neural systems: a ventral and dorsal stream 

have been suggested to identify, produce and regulate emotion (M. L. Phillips, 

Drevets, Rauch, & Lane, 2003). Furthermore, Haxby et al. (2000)’s identification of 

a core and extended system, and Pessoa and Adolphs (2010)’s multiple-waves model 

(see Figure 1.3), show additional support for a distributed network of brain regions 

involved in the processing of faces or emotions (Haxby & Gobbini, 2011). The 

distributed nature of activation may be a result of combining a variety of stimuli, 

measures, experimental tasks and different ways of transforming and pre-processing 

data (Lindquist et al., 2012).  

 

 

 

 

 

 

 

 

 
Figure 1.3. Diagram of the multiple-waves model of processing showing the 
involvement of a distributed network of brain areas in the recognition of emotion. TE 
and TEO, Inferior temporal area, from Pessoa and Adolphs (2010). 
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MVPA decoding studies have investigated selected regions involved in 

emotion perception, finding reliable decoding in the STS (Said et al., 2010), FFA 

(Harry, Williams, Davis, & Kim, 2013) and early visual cortex (Harry et al., 2013; 

Petro, Smith, Schyns, & Muckli, 2013). However, to allow comparisons to be made 

between regions, Wegrzyn et al. (2015) considered the seven brain regions involved 

in the core and extended face network, outlined in Haxby’s model of face processing 

(Haxby & Gobbini, 2011). MVPA was implemented in seven regions of interest 

(ROI’s, see Figure 1.4) to decode happiness, anger, fear and neutral expressions in a 

gender recognition task (Wegrzyn et al., 2015). They found decoding accuracies 

above chance in all ROI’s, including the FG, STS and inferior occipital (IO) areas 

which form the core face network, as well as the anterior temporal (AT), insula 

(INS), intraparietal sulcus (IS), and the amygdala which form the extended face 

network (Wegrzyn et al., 2015). Highest decoding accuracy was present in the FG 

and STS, whereas decoding was lowest in the amygdala (Wegrzyn et al., 2015). 

Whilst these results show support for the regions conceptualised by Haxby et al. 

(2000), emotion recognition appears dependent on further overlapping and 

distributed neural mechanisms. The consistent finding of FFA or FG involvement in 

emotion (C. J. Fox et al., 2009; Fusar-Poli et al., 2009; Kawasaki et al., 2011) is 

surprising giving its initial conceptualisation of processing invariant facial features 

such as identity. Thus, the FFA may broadly be responsible for face processing 

(identity and expression) in which an individual has visual expertise (Tarr & 

Gauthier, 2000). However, the role of the FFA in the perception of changeable 

aspects of the face, or expression processing was later identified in the revised model 

of face processing by Duchaine and Yovel (2015), mentioned above. Furthermore, 

other literature suggests the role of the FFA in the processing of facial expression, as 

well as its role in processing structural identity information (Vuillemier, Armony, 

Driver, & Dolan, 2001; Ganel, Valyear, Goshen-Gottshein, & Goodale, 2005; 

Duchaine & Yovel, 2015). Vuillemier et al. (2001) found greater right fusiform and 

amygdala activation in response to fearful than neutral expressions, independent of 

attention; thereby concluding that the FFA may be receiving feedback related to an 

emotional response from the amygdala. 

Furthermore, in Wegrzyn et al. (2015), the FG is not significantly different 

from decoding accuracy in the STS, but significantly higher than the amygdala, 

insula, intraparietal sulcus and the IOG. This is surprising given these other regions 
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are highly involved in processing emotion. However, this could be due to a number 

of reasons: the static face stimuli were not enough to elicit an arousal response, the 

difficulty of scanning limbic structures in fMRI or the absence of disgust stimuli 

(Wegrzyn et al., 2015). Critically, however, Wegrzyn et al. (2015) do not generalise 

across specific face identities or other non-overlapping representations in their 

MVPA, and thus do not necessarily tap into high-level representations to minimise 

the role of low-level features in decoding. Thus, their basic decoding analysis could 

be strongly influenced by low-level effects.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.4. Mean accuracy for all seven ROI’s selected in Wegrzyn et al. (2015), 
successful recognition in all brain areas is above chance (25%); FG, fusiform gyrus, 
STS, superior temporal sulcus; AT, anterior temporal; INS, insula; IS, intraparietal 
sulcus; IO, inferior occipital gyri; AMY, amygdala. Image from Wegrzyn et al. 
(2015).  
 

 Zhang et al. (2016) used a hierarchical classification analysis to investigate 

whether facial expressions (neutral, fear, angry and happiness) could be 

differentiated from other expressions in a number of face-selective regions. They 

found decoding present in the amygdala, primarily between fearful and non-fearful 

faces, and at a second-level classification between neutral and emotional faces 

(Zhang et al., 2016). Furthermore they found decoding in the posterior STS between 

neutral and emotional faces, and at the next level of analysis between happy versus 

fearful and angry faces, playing an additional role in discerning positive from 

negative emotions (Zhang et al., 2016). They did not find significant decoding within 

their other regions of interest (ROI’s) including the OFA, FFA, aIT and V1; this may 

be due to using a slow event-related design because this is associated with lower 

statistical power and subject expectation and habituation, as a consequence of slow 

 



Section 2 – Experimental Chapters 

13 
 

and repeated stimuli presentations. Furthermore, the absence of this decoding may be 

due to the stringent permutation used to test for significance or generalising across 

identity (Zhang et al., 2016). However, it is important to highlight, unlike Wegrzyn 

et al. (2015), that this study, generalising across specific trained and then tested face 

identities in their MVPA analysis, is able to minimise the role of low-level features 

in decoding and consequently tap into high-level representations. This study also 

advocates evidence for the neural dissociation in expression and identity recognition, 

as decoding of identity was found in the FFA and aIT (Zhang et al., 2016).  

Furthermore to augment the previous findings, a recent study, using all six 

basic emotions, found strong decoding accuracy in bilateral FFA, OFA and posterior 

rSTS; as well as in motion-selective areas: V5f/hMT+ and another posterior rSTS 

ROI (defined from a separate localiser but partially overlapping with the previous 

face-selective STS) (Liang et al., 2017). These findings support Wegrzyn et al. 

(2015) with significant decoding accuracy present in the FG and STS. Alongside 

these regions, finding significance in OFA (situated in or close to the inferior 

occipital gyrus) further supports the regions identified in Haxby’s model of face 

processing (Haxby & Gobbini, 2011). However, it is important to note that this 

study, akin to Wegrzyn et al. (2015), only carried out basic decoding and did not 

generalise across specific face identities or representations in further MVPA cross-

classification analyses. Therefore again, this study may not necessarily be tapping 

into high-level representations and could be strongly influenced by low-level effects. 

1.1.4 Bottom-up Versus Top-down Models of the Visual System. 

 Computational models present a bottom-up feedforward approach to 

expression recognition, assuming that the visual cortex (V1) provides a direct 

representation of a presented visual signal (Kober et al., 2008; Murphy et al., 2003). 

This corresponds with standard models of V1 that establish the properties of V1’s 

simple and complex cell responses (i.e. tuned for orientation, motion, colour and 

spatial frequency). Based on these assumptions, simple computational models (as 

aforementioned previously when detailing the visual stream model), have been 

developed to depict this feedforward network of expression recognition, representing 

some vital functions that occur within the visual system (Dailey et al., 2002). These 

neural network models are comprised of three processing layers (see Figure 1.1): the 

first layer, a perceptual analysis of V1, is carried out with the use of a Gabor filter to 

model the response properties of neurons in V1 (including edge detection), the 
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second layer provides a gestalt object representation in inferior temporal (IT) cortex, 

which is achieved with a dimensionality reduction method of principal component 

analysis (PCA), and lastly the third layer represents the categorisation of an 

expression. 

 Other computational bottom-up models decode facial expression 

anatomically with the classification of facial Action Units (AU’s) (Tian, Kanade, & 

Cohn, 2011). Many systems of classifying these units have been developed, 

including the Facial Action Coding System (FACS) and Facial Animation 

Parameters (FAPs) (Bettadapura, 2012). Whilst FAC’s is an approach requiring the 

identification of individual or sets of facial muscle movement involved in a given 

expression (Bettadapura, 2012; Ekman, 1982), FAPs is a system defining feature 

points (FPs) of an action, thus the degree of change such as subtleness or intensity of 

an expression is taken into consideration (Bettadapura, 2012; Igor & Robert, 2003). 

 These computational models are engineered to recognise emotion in clearly 

presented whole face stimuli, however, facial features are often occluded from view 

when interacting with individuals in the real world, and these models would not 

necessarily be able to process occlusion well. This is because bottom-up models do 

not generalise from whole objects and are unsuccessful in achieving human-level 

performance in partial object recognition (Tang et al., 2018). Additionally these 

models will have difficulty modelling contributions from recurrent connections 

(Tang et al., 2014). Furthermore, a large proportion of V1’s function is unaccounted 

for, such that a representative sample of neurons have not been tested when 

ecologically complex stimuli are presented (Carandini et al., 2005; Olshausen & 

Field, 2005). Moreover, V1 is thought to contain feedback connections from a 

number of brain regions, including the amygdala, or more local connections from 

within the visual system (Olshausen & Field, 2005). Subsequently, there may be 

many top-down influences involved in the visual recognition of expression, and 

these may be especially relevant when processing conditions of uncertainty caused 

by partial occlusion (Greening, Mitchell, & Smith, 2018; Muckli, 2010; Muckli, 

Petro, & Smith, 2013). 

The predictive coding framework offers an account into the mechanisms that 

take place within the visual system, including the role of top-down feedback 

processing to V1 (see Figure 2.11, Chapter 2) (Clark, 2013; Friston, 2005, 2008; Rao 

& Ballard, 1999). This framework details how predictions, concerning the current 
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sensory information in V1, originate in higher level areas of the cortex and are fed 

back to early visual regions, which in turn transmit error signals back with a 

computed difference between expected and observed information. Petro et al. (2013) 

tested the role of top-down feedback to V1 in face processing; demonstrating top-

down modulation occurring in V1, where this region appeared to receive task 

dependent feedback from higher visual areas (Petro et al., 2013). Furthermore, 

research indicates the role of a bidirectional pathway; with V1 receiving feedforward 

information, as well as top-down or processed recurrent feedback from cortical 

(FFA, OFA) and subcortical brain areas (amygdala) (Bannert & Bartels, 2013; Petro 

et al., 2013). Other top-down models have been developed for the visual system, to 

account for the role of bottom-up and feedback processes in the brain, these include 

recurrent feedback models of object recognition (Tang et al., 2014; Tang et al., 2018; 

Wyatte, Curran, & O'Reilly, 2012), Bayesian and infomax accounts of processing 

(Lee & Mumford, 2003; W. A. Phillips, Kay, & Smyth, 1995), as well as a 

hierarchical neural network model (Heeger, 2017). Predictive coding and other top-

down models of the visual system will be described in more detail in Chapter 2 

(2.1.1.1).  

Research has investigated the role of these top-down effects in conditions of 

occlusion; as these conditions offer a way to observe predictions regarding the visual 

context (Greening et al., 2018; F. W. Smith & Muckli, 2010). It is important to note 

that in predictive coding, occluded, as opposed to non-occluded stimuli, are 

suggested to create higher responses in sub-regions of V1, until continued processing 

acts to subdue uncertainty or error responses. Whilst other top-down models in 

comparison to predictive coding, suggest that occluded as opposed to non-occluded 

stimuli, create an overall decrease in response, which amplifies through processing 

(O'Reilly, Wyatte, Herd, Mingus, & Jilk, 2013; Wyatte et al., 2012). The 

contribution of cortical feedback processes in V1 is testable when taking advantage 

of V1’s retinotopic organisation (Petro et al., 2013; F. W. Smith & Muckli, 2010). 

This is because mapping occluded parts of visual space and finding V1 sensitivity in 

an occluded area of a natural visual scene, devoid of feedforward input, suggests the 

involvement of contextual mechanisms (feedback and lateral connections) in early 

visual cortex (F. W. Smith & Muckli, 2010). These are most likely to be feedback 

effects as opposed to lateral connections, as the same paradigm investigating an 

occluded scene was applied in a study by Muckli et al. (2015), finding feedback in 
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superficial outer layers of V1 likely projecting from extra-striate visual, cortical and 

subcortical brain regions. Furthermore, research has begun to test the role of cortical 

feedback in perceiving facial expressions under occlusion; finding neural 

information in early visual cortex to generalise across independent visual face parts, 

such as faces depicting eyes only to the corresponding minus eyes stimuli (Greening 

et al., 2018). Comparing responses in the brain across non-overlapping visual face 

stimuli can tap into feedback processes, however, this study did not retinotopically 

map the visual cortex (using instead a group-level probabilistic V1 mask). This 

restricts the assumptions that can be made on the role of cortical feedback processing 

to V1.  

Whilst research has studied the occlusion of objects and scenes, little research 

has examined the involvement of early visual cortex (V1-V3) in processing occluded 

facial features. As faces are such biologically salient signals (Pessoa & Adolphs, 

2010), it is likely that facial occlusion may recruit greater use of top-down (or lateral 

interactions) to fill in missing feature information. Thus, it is pertinent for research to 

further understand what factors mediate or influence the recognition of emotional 

expression; the relatively unexplored top-down effects of context and prior 

experience in early brain areas (Petro et al., 2013).  

1.1.5 Behavioural Studies Demonstrating the Optimal Conditions for 

Emotion Recognition. 

The visual route to the recognition of emotion assumes that knowledge 

regarding a facial feature configuration is adequate for successful emotion 

recognition (Goldman & Sripada, 2005). Face perception typically relies on a 

holistic approach, whereby all facial features are taken into consideration to form the 

final percept (Bettadapura, 2012), thus, this plausibly suggests that the face as a 

whole will provide rich information vital for emotion recognition (Kanwisher & 

Yovel, 2009). To test the limits of the visual system, behavioural studies have 

researched the optimal conditions for accurate face recognition (Bettadapura, 2012). 

Many factors affect recognition such as occlusion, the difference between 

spontaneous “true” emotions and deliberate “posed” emotions and the faster 

detection of emotions in natural contexts (Cauchoix, Barragan-Jason, Serre, & 

Barbeau, 2014). 

Studies demonstrate that expression recognition can occur when specific 

facial features or visual information from the face is occluded (M. L. Smith, Cottrell, 
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Gosselin, & Schyns, 2005). These studies are important for identifying which 

features for recognition are pertinent in everyday life (Bettadapura, 2012). Real-

world occlusion is commonplace including instances of interacting with an 

individual whose hat, sunglasses, scarf, facial hair or hands may be covering up part 

of their face. Furthermore, emotion can still be recognised when facial features are 

presented blurred or scrambled (Bombari et al., 2013). Occlusion may also 

encompass situations where there is poor lighting and the only visible head 

orientation is non-frontal (Bettadapura, 2012). Observers seem well equipped to 

successfully recognise facial expressions under constrained viewing conditions 

(Calvo & Nummenmaa, 2015) and those presented in peripheral vision (Bayle, 

Schoendorff, Hénaff, & Krolak-Salmon, 2011; Calvo, Fernández-Martín, & 

Nummenmaa, 2014; F. W. Smith & Rossit, 2018).   

 The bubbles technique is commonly used, whereby Gaussian windows are 

randomly placed on face stimuli, to ascribe human’s categorisation ability to specific 

visual information and reveal the information used in recognition (Gosselin & 

Schyns, 2001). Depending on the expression, the resulting classification images of 

the basic emotions implicated the eyes and mouth as the two central facial features 

(see Figure 1.5); with the mouth as the most important feature in happiness and 

disgust (with an additional focus for disgust recognition on wrinkles around the nose, 

mouth and eyes) and the eyes most important in fear (enlarged eye whites and raised 

eyebrows) and anger (with a further focus on a furrowed brow and lowered 

eyebrows) (F. W. Smith et al., 2008; M. L. Smith et al., 2005; M. L. Smith & 

Merlusca, 2014). Thus mouth occlusion would likely decrease the recognition of 

happiness and disgust, whereas eye occlusion would likely decrease the recognition 

of fear and anger (F. W. Smith & Schyns, 2009; M. L. Smith & Merlusca, 2014). 

However, strong evidence from ‘Reading the Mind in the Eyes’ task (RMET) for 

complex emotions (Baron-Cohen, 2004) and responsivity to eye-whites (Whalen et 

al., 2004), highlight the overarching importance of eye information in complex or 

secondary emotion recognition. However, Whalen et al. (2004) only presented 

participants with eye information, but not information from the mouth, to make their 

decisions on fear and happiness. It appears that the eyes and mouth are important 

facial features, but information from the eyes may be sufficient for recognition. 

Largely, results indicate a human’s robust ability to recognise emotion even under 

conditions of uncertainty caused by partial occlusion.    
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Figure 1.5. Diagnostic features necessary to categorise each of the basic emotions, 
adapted from M. L. Smith et al. (2005). 
  

Further behavioural studies have investigated the ability to recognise 

different emotions, these show the ease at which humans recognise happiness and 

surprise over disgust, fear, anger and sadness (Du & Martinez, 2011; F. W. Smith & 

Schyns, 2009). Petro et al. (2013) also showed a faster reaction time in response to 

happy faces than fear or neutral. Many researchers turn to evolution to understand 

the differences amongst the emotions. It seems disadvantageous that humans poorly 

recognise fear and anger when these emotions signal threat and danger. However, it 

may be reasonable that sadness is poorly recognised as it has no survival advantage 

(F. W. Smith & Schyns, 2009). Finding surprise to be recognised well makes 

evolutionary sense as this signal is indicative of an unexpected event in an 

individual’s environment that needs to be responded to (F. W. Smith & Schyns, 

2009). Lastly the recognition of happiness can be explained in evolutionary terms 

with humans need for social contact and its role in society as an approach signal or 

through adaptation of a bared-tooth display hitherto used in fear (F. W. Smith & 

Schyns, 2009). Alternatively, the enhanced recognition may be due to the frequency 

that an emotion is viewed in an observers daily environment; when recording the 

frequency of seen expressions happiness and surprise were observed most (Calvo, 

Gutiérrez-García, Fernández-Martín, & Nummenmaa, 2014; Calvo & Nummenmaa, 

2015). However, more simply, enhanced recognition may result from larger easily-

identifiable facial shape deformations involving the mouth and eyebrows (Du & 

Martinez, 2011; Pardàs & Bonafonte, 2002; F. W. Smith & Schyns, 2009). Here I 

argue that the differences amongst the emotions can be explained in evolutionary 

terms, but evolution cannot provide a complete account as the emotions signalling 

threat and danger are not the most recognised. Therefore, I believe the frequency 

with which an expression is used and the presence of easily-identifiable features, 

such as the mouth, account for the differential ability to recognise emotions, 

particularly the increased ability to recognise happiness and surprise.   
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1.1.6 EEG Studies Demonstrating the Effect of Occlusion on the N170. 

Even though research has demonstrated that expression recognition can occur 

when specific facial features are occluded (M. L. Smith et al., 2005), few studies 

have investigated how the N170 component may change as a result of partial face 

occlusion. The first studies to explore this investigated eye occlusion; they found a 

delayed N170 response to faces missing eye information (Eimer, 1998; Itier et al., 

2007). This delay was approximately 10ms, with whole face processing (155-

160ms), occurring significantly faster than processing faces missing eyes (155-

170ms) (Itier et al., 2007). These studies, however, showed that faces missing eye 

information had no effect on the N170 amplitude (Eimer, 1998; Itier et al., 2007). 

Itier et al. (2007) also investigated the effect of only showing the eyes; this further 

delayed the N170 response (~175ms) and was again significantly different from the 

whole face condition. Conversely, the eyes prompted an earlier peak N170 (of ~10-

15ms) in a more recent study that used the ‘bubbles’ technique to investigate which 

facial features had an effect on the N170 response (Rousselet, Ince, van Rijsbergen, 

& Schyns, 2014). This difference may result from the bubbles technique always 

comparing the same overall amount of information rather than comparing the eyes to 

a whole face stimulus. Furthermore, in both studies, they found that when the eyes 

were present the N170 was greater in amplitude (Itier et al., 2007) and this was 

particularly apparent for the left eye, activating the rN170 (Rousselet et al., 2014); 

this increase in amplitude to isolated eyes was also shown in an early study by 

Bentin et al. (1996). Overall, it seems apparent that the eyes are important to 

expression recognition, with their absence associated with delays in processing and 

their presence associated with a larger N170 response (Bentin et al., 1996; Itier et al., 

2007). 

Whilst the previous studies isolated individual facial features (Bentin et al., 

1996; Eimer, 1998; Itier et al., 2007) or presented random samples of face 

information (Rousselet et al., 2014), a variant on this was conducted, whereby 

fixation was directed to the mouth, nose, right or left eye of a whole face (face offset, 

fixation remained central) (Neath-Tavares & Itier, 2016). This experiment 

additionally showed an increase in the N170 amplitude to the eyes, this eye-

sensitivity did not vary across expression (happy, fear, neutral) (Neath-Tavares & 

Itier, 2016; Neath & Itier, 2015). The authors further state the surprising nature of 

this, as the eyes are more lateral and the N170 amplitude is known to decrease with 
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face eccentricity (Neath-Tavares & Itier, 2016). Additionally, this study found larger 

amplitudes around the P100 in occipital areas, when participants were directed to the 

mouth, (Neath-Tavares & Itier, 2016). Whilst this findings may, at 100ms, purely 

reflect the low-level visual properties of the mouth (its high contrast); it may be 

indicative of early top-down processing to this area that has previously been stated as 

important for expression recognition (F. W. Smith & Schyns, 2009). 

1.2 Non-Visual Routes to Emotion Recognition  

 Currently only research detailing the visual routes to emotion recognition 

have been discussed; whilst the use of visual information is crucial, research has also 

suggested that individuals make use of sensorimotor simulation or embodiment for 

recognition (Wood, Rychlowska, Korb, & Niedenthal, 2016). Thus, these non-visual 

routes, implicating the critical involvement of sensorimotor simulation, are thought 

to be a top-down influence on recognition (Wood, Rychlowska, et al., 2016). A 

model developed by Wood, Rychlowska, et al. (2016), shows how simulation is fed 

back to a visual input, to enable the perception of a stimulus to be continuingly 

regulated. Thus the iterative loop between visual perception (visual routes of 

emotion recognition) and sensorimotor simulation (non-visual routes to recognition) 

suggests that both visual and sensorimotor pathways create sources of information in 

constructing a prediction of another’s emotion (Wood, Rychlowska, et al., 2016). 

Furthermore, regions of the intraparietal sulcus (IPS), important for simulation, have 

been found to modulate higher-level and early visual regions, additionally showing 

support for the incorporation of both routes as being involved in the recognition of 

emotion (Iacoboni & Dapretto, 2006; K. N. Kay & Yeatman, 2017) 

1.2.1 What is Embodiment? 

Recent accounts ground emotion in modality-specific systems of 

introspection, perception and action (Niedenthal et al., 2009) with facial expression 

recognition being aided by simulation-like processes (Niedenthal et al., 2006). These 

simulation based accounts are known as the theories of embodied cognition or 

embodied simulation. The embodiment of emotion occurs when the processing of 

emotional information, including visual recognition, partly reactivates the neural 

substrates activated when the individual previously experienced that emotion 

(Niedenthal et al., 2009). Thus neural structures overlap in sensory, motor and 

affective systems when recognising a sender’s facial expression and personally 

experiencing the same emotion (Niedenthal, 2007).  
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The notion of embodiment in facial expression research emerged from early 

research on the facial feedback hypothesis, which detailed how expression not only 

provides the outward manifestation of emotion, but can influence an observer’s 

subjective state and the processing of information (Niedenthal et al., 2006). Further 

research has found that adopting a sender’s expression produces the corresponding 

affective state in an observer (Niedenthal, 2007). This explains why smiles are 

viewed as contagious (Wild, Erb, Eyb, Bartels, & Grodd, 2003) and how feelings of 

fear and pain are shared (Bastiaansen, Thioux, & Keysers, 2009), as well as how an 

observer’s preferences and behaviours are influenced (Niedenthal, 2007). The effects 

of embodiment, facial mimicry, and the phenomena of emotional contagion (Hatfield 

& Cacioppo, 1994) can influence recognition by intensifying emotions; promoting 

understanding and empathy between individuals (Niedenthal et al., 2006). Mimicry 

has been shown to play a fundamental role in processing a sender’s expression 

(Niedenthal et al., 2009), with early research showing the strong nature to imitate 

yawning (Provine, 1986) and 12-21 day old infants propensity to imitate mouth 

opening and tongue protrusion (Meltzoff & Moore, 1977). However, embodiment 

theorists would argue that mimicry is not always necessary in the recognition of 

another’s expression, suggesting that sensorimotor simulation can occur with or 

without the use of facial mimicry (Adolphs, 2002).  

1.2.1.1 The importance of embodied simulation and mimicry. 

Goldman and Sripada (2005) outline several models of embodiment 

including reverse simulation, the “as if” loop model of simulation and an unmediated 

resonance model. The reverse simulation model details the link between mimicry, 

experience and recognition of one’s emotion (see Figure 1.6) (Goldman & Sripada, 

2005). Classical studies have manipulated expression experimentally, by facilitating 

or inhibiting certain facial muscles, for example Strack, Martin, and Stepper (1988) 

asked participants to hold a pen between their front teeth to facilitate the muscles 

associated with smiling, but hold a pen between their lips to inhibit these muscles. 

Participants in the pen-in-teeth condition rated cartoons as more humorous (Strack et 

al., 1988). A further study fixed stickers to the inside of participant’s eyebrows and 

instructed them to bring them together, this used muscles to contract the brow 

(Larsen, Kasimatis, & Frey, 2008). Consequently participants reported greater 

sadness to aversive photographs (Larsen et al., 2008). Furthermore, the application 

of a constrictive gel facemask was found to affect the ability to recognise 
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expressions but not non-face control stimuli (Wood, Lupyan, Sherrin, & Niedenthal, 

2016). Overall, the manipulations of positive and negative affect, as well as the 

facemask expression manipulation technique, support the importance and specificity 

of mimicry in expression recognition (Wood, Lupyan, et al., 2016). 

 

 

 

 

 

 

 

 

Figure 1.6. Reverse simulation model with the “as if” loop, from Goldman and Sripada 

(2005). 

 

Niedenthal, Brauer, Halberstadt, and Innes-Ker (2001) showed individuals 

mimicking the first expression of a computerised morph movie to be faster at 

detecting a change in facial expression, than individuals who did not initially mimic 

the first expression. The experience of emotional state congruence with the first 

expression, portrays an ease and willingness to mimic the expression and detect an 

incongruent expression change as it occurs (Niedenthal et al., 2001). Conversely less 

shift in facial mimicry was required when experiencing incongruence (where the first 

expression was not mimicked) as the change becomes concurrent with a sender’s 

own expression (Niedenthal et al., 2001). Comparatively an fMRI study by Wild et 

al. (2003) showed quicker responses to an expression that was congruent with the 

facial movement the participant was told to produce (e.g. participants were faster to 

respond to a smile if instructed to move the corners of their mouth upwards). Overall 

this research demonstrates the extent to which embodiment and convergence of 

facial movements can influence an observer’s ability to experience, process and 

understand a sender’s emotion (Niedenthal, 2007).  

Studies have also investigated the embodiment of emotion concepts by 

asking participants to carry out property verification tasks, where they judge whether 

a word is associated with an emotion, or perceptual word tasks, where they judge a 

word as upper or lower case (Niedenthal et al., 2009). Furthermore embodiment was 
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tested directly with facial electromyography (EMG), these measurements were 

obtained by applying electrodes to four facial muscles (see Figure 1.7): the 

corrugator supercilii (strongly activated in response to anger to produce a frown), 

levator labii superioris (in response to disgust to produce a grimace), zygomaticus 

major and orbicularis oculi (activated in response to happiness to produce a smile) 

(Niedenthal et al., 2009). The emotion task revealed that words related to emotion 

significantly activated corresponding facial muscles, whereas no somatic or muscular 

responses were activated in the perceptual word task (Niedenthal et al., 2009). This 

provides observable evidence for simulation embodiment effects in relation to words 

that are judged as emotional (Niedenthal et al., 2009).  

 
 
 
 
 
 
 
. 
 
 
 
 

 

 
Figure 1.7. Diagram showing the muscles activated in response to facial expressions, 
measured using EMG, from Niedenthal (2007). 
 

 Studies have been carried out specifically investigating expression 

recognition with EMG. Using the biting pen manipulation, Oberman, Winkielman, 

and Ramachandran (2007) found this to significantly impair the recognition of 

happiness over disgust, fear and sadness, with happiness presumably the most 

affected due to its outward manifestation (requiring vast muscle activation) 

compared to the other emotions that are usually constrained and activated internally 

(Oberman et al., 2007). Although no facial muscles were inhibited, Kunecke, 

Hildebrandt, Recio, Sommer, and Wilhelm (2014), found mimicry to improve basic 

emotion recognition, showing increased corrugator activity when perceiving anger 

and sadness but decreased activity when perceiving happiness. Against expectations, 

zygomaticus activity was not found in response to happiness, although this may be 

due to artificial laboratory settings preventing the formation of a smile, and the high 
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variability of this muscle (Kunecke et al., 2014). Therefore, such disadvantages limit 

the application of EMG in studying the effects of embodied emotion. Greater control 

of upper and lower facial muscles is necessary to ascertain the effects of mimicry on 

recognition (Oberman et al., 2007).  

A novel study investigated the effects of blocking facial mimicry on 

recognition with a sample of clinical patients (Neal & Chartrand, 2011). They tested 

recognition with the ‘Reading the Mind in the Eyes’ task, for subtle, non-

prototypical emotions, likely to be encountered in everyday life. Patients were either 

undergoing Botox (treatment that paralyses facial muscles) or Restylane (dermal 

filler that does not modify muscles) injections for expression-related facial wrinkles 

(Neal & Chartrand, 2011). Patients receiving Botox experienced less muscular 

feedback and consequently were less accurate at perceiving positive and negative 

emotions, than patients receiving Restylane who showed typical task performance 

(Neal & Chartrand, 2011). Botox has also be shown to interact with depression; with 

paralysis of the corrugator muscle reducing depression (Finzi & Rosenthal, 2014; 

Wollmer et al., 2012) but paralysis of the zygomatic muscle increasing symptoms of 

depression (VanSwearingen as cited in Wood, Rychlowska, et al., 2016). It is 

noteworthy to highlight that although a significant difference was found between the 

Botox and Restylane group; those receiving Botox could nevertheless accurately 

recognise expressions. This finding suggests that mimicry is not vital for recognition 

as it can be achieved single-handedly through perceptual analysis, pattern matching 

or associated knowledge (Adolphs, 2002; Hess & Blairy, 2001). Overall, however, 

the results suggest that non-prototypical stimuli are more likely to engage mimicry 

and influence expression recognition (Hess & Blairy, 2001).  

The clinical technique of facial muscle inhibition was valuable in 

strengthening previous research (Neal & Chartrand, 2011), as the preceding 

manipulation methods (e.g. biting a pen) recruit additional cognitive processing 

(Neal & Chartrand, 2011). Furthermore, most other studies only inhibit the mimicry 

of mouth movements (Niedenthal et al., 2009), but this study with clinical patients 

additionally blocked the use of the upper face and surrounding eye muscles; muscles 

pertinent in emotion recognition, particularly the recognition of fear (Whalen et al., 

2004). Further research needs to address internally simulated aspects of emotion in 

brain regions, as opposed to just addressing the outward blocking of expressions 

(Oberman et al., 2007). 
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1.2.1.2 Is mimicry necessary for the recognition of facial expressions?  

 There are two main experimental techniques used to test whether mimicry is 

necessary for the recognition of facial expressions and these are expected to 

correspond to each other: facilitating or blocking certain facial muscles 

corresponding to specific expressions or testing the muscle activity corresponding to 

a specific expression with EMG. However, few studies using the first technique of 

faciliating or blocking expressions have directly tested expression recognition, 

instead showing mimicry to affect humour ratings (Strack et al., 1988), produce 

sadness (Larsen et al., 2008) and detect expression changes (Niedenthal et al., 2001; 

Wild et al., 2003). Manipulation studies that have directly tested expression 

recognition present conflicting findings; with the idea that mimicry may not be 

essential for recognition aforementioned in Neal and Chartrand (2011)’s Botox 

study, but the importance of mimicry in Wood, Lupyan, et al. (2016)’s constrictive 

gel facemask study (as preventing mimicry was shown to affect the recognition of 

sadness and anger). EMG studies have shown corresponding muscle activation to 

help detect emotive words (Niedenthal et al., 2009) and improve anger and sadness 

recognition (Kunecke et al., 2014). Further research combining facial blocking with 

EMG has found the inhibition of mimicry to impair expression recognition 

(Oberman et al., 2007). The previous EMG research suggests that mimicry is needed 

for recognition, and this corresponds with Lipps (1907) proposed three stage model 

detailing causal linear links between imitation, emotional contagion and recognition 

(Hess & Blairy, 2001). However, further EMG research has contradicted this 

claimed assumption, showing no benefit of mimicry on expression recognition 

(Blairy, Herrera, & Hess, 1999; Hess & Blairy, 2001).  

Blairy et al. (1999) tested basic emotion recognition accuracy with varying 

physical intensities. They found no significant correlations between mimicry and 

recognition, and mimicry did not improve recognition through emotional contagion, 

when the participant reported a matched emotional state (Blairy et al., 1999). This 

contradicts Lipps model of recognition, as well as previous research showing that 

mimicry is needed in expression recognition (Oberman et al., 2007; Wood, Lupyan, 

et al., 2016); finding mimicry to lead to the perception of an easier task but not 

improve accuracy (Blairy et al., 1999). A follow-up study conducted by Hess and 

Blairy (2001) studied the application of mimicry when recognising non-prototypical 

dynamic expressions; as previous research has concentrated on the recognition of 
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basic strong prototypical emotions that may not require mimicry to recognise (Hess 

& Blairy, 2001). Again, however, no link was found between mimicry and 

recognition, and recognition was not mediated through emotional contagion (Hess & 

Blairy, 2001). Mimicry was measured through muscle activation and was apparent in 

all facial expressions (Hess & Blairy, 2001), however recordings from the 

zygomaticus were unusable, which is a significant muscle in facial expressiveness 

(Hess & Blairy, 2001). Furthermore counter to expectations lower levels of muscular 

activity (corrugator and orbicularis oculi) was related to greater recognition accuracy 

(Hess & Blairy, 2001). Thus, these findings present a chaotic picture, questioning 

why we use mimicry when viewing a sender’s expression.   

These contradictory findings can be explained with Goldman and Sripada 

(2005) “as if” loop model of simulation; this model suggests that successful 

expression recognition can occur without facial feedback (see Figure 1.6). Thus, this 

model purports the existence of a direct link between visual and somatosensory 

representations of what an expression would feel like (Goldman & de Vignemont, 

2009; Goldman & Sripada, 2005). This embodied recognition model has close 

parallels with the Somatic Marker hypothesis (Damasio, 1996) as it additionally 

postulates an ‘as if’ body loop. This hypothesis was proposed following research into 

the role of the ventromedial PFC in responding to emotionally charged stimuli 

through bio-regulatory processes. The learnt associations between bio-regulatory 

‘marker’ signals, or emotional state, and the correspondent factual knowledge of a 

complex situation were found to influence how an individual processes and responds 

to stimuli (Damasio, 1996). This theory suggests that emotions can be detected in 

specific brain areas and result from perceiving one’s internal body states (ANS 

activation, skin conductance responses SCRs, biochemical or hormonal indicators). 

In other words, the brain can activate areas that would be associated with a change in 

bodily state or emotion even when these changes have not been overtly expressed 

(Damasio, 1996; E. Fox, 2008). Therefore, the “as if” model account is less affected 

by counter evidence as it shows how mimicry is not key for recognition (Goldman & 

de Vignemont, 2009; Goldman & Sripada, 2005). Furthermore, these inhibitory 

mechanisms may be in place to allow for expression perception without the 

development of mirror-touch synaesthesia (Case, Pineda, & Ramachandran, 2015). 

There are strands of research that suggest a number of contextual and 

motivational moderators can suppress mimicry (Wood, Rychlowska, et al., 2016). In 
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regards to context, mimicry is more likely to occur in ambiguous situations, when an 

individual does not know what an expresser is feeling (Wood, Rychlowska, et al., 

2016). However, motivation is also important, as mimicry is reliant on an 

individual’s motivation to communicate and understand another’s expression (Wood, 

Rychlowska, et al., 2016). An individual’s motivation can differ depending on eye 

contact, gender, age, empathic ability, power status, social anxiety and their 

relationship with the expresser (Rychlowska, Zinner, Musca, & Niedenthal, 2012; 

Wood, Rychlowska, et al., 2016). An abundance of these factors have been 

considered in the context of Niedenthal, Mermillod, Maringer, and Hess (2010)’s 

Simulation of Smiles Model (SIMS). In particular, this model addressed how eye 

contact leads to greater mimicry, but it also highlights how mimicry can be 

suppressed due to societal or cultural factors, if a smile is perceived as too friendly or 

intimidating (Bastiaansen et al., 2009; Niedenthal et al., 2010). Research has also 

been carried out, purporting links between pacifier use in infancy with deficits in 

mimicry and emotional competence in young adolescent boys (Niedenthal et al., 

2012) and further adults engaging in less facial mimicry when viewing babies with 

their mouths occluded (Rychlowska, Korb, et al., 2014). Preventing automatic 

mimicry and inhibiting embodiment during this important period in development is 

problematic for expression recognition. Furthermore, the relationship with the 

expresser is shown to affect embodiment as participants instructed to convey 

emotions (word concepts of joy or anger) to a close friend, engage in more facial 

activity and embodied simulation, than when they are conveying emotions to a 

superior (Niedenthal et al., 2009). Thus, it is clear that contextual factors can 

modulate these lower-level simulation processes, similar to effects seen in the visual 

recognition of emotion. Overall, due to the nature of task instructions and limited 

emotions tested, more research is needed to generalise findings (especially 

Niedenthal et al. (2009)’s research on emotive word concepts, as the processing of 

words would be very different to processes involved in the facial expression 

recognition) and elucidate the possible existence of individual differences in 

simulation and embodiment. 

1.2.2 Brain regions involved in embodiment. 

The aforementioned connectivity between perception and action, as well as 

the tendency for individuals to mimic and thus simulate a sender’s state advocates 

the potential involvement of overlapping neural areas in a human mirror neuron 
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system (MNS) (Oberman et al., 2007). Mirror neurons (MNs) are neurons that fire 

when an individual perceives a sender’s action and executes the same action 

(Iacoboni & Dapretto, 2006) and may be activated to support simulation. The MN 

system corresponds with Goldman and Sripada (2005)’s unmediated resonance 

model, which suggests that observing an emotive face directly produces sub-

threshold brain activation in the correspondent motor substrate for that emotion. 

Whilst MNs are determined in frontoparietal areas in primate studies (di Pellegrino, 

Fadiga, Fogassi, Gallese, & Rizzolatti, 1992; Rizzolatti et al., 1988), evidence of 

equivalent regions in humans are less conclusive (van der Gaag et al., 2007). 

However, these regions are likely to be the intraparietal lobe (IPL), and the ventral 

premotor cortex (PMC) or the inferior frontal gyrus (IFG) (Niedenthal, 2007) (see 

Figure 1.8 for these regions on a human brain).  

Neuroimaging and the fMRI analysis MVPA, has aided advancements in this 

field, revealing common crossmodal areas in the human brain that represent a 

stimulus in a similar way (Oosterhof, Wiggett, Diedrichsen, Tipper, & Downing, 

2010). Common regions have also been found important in perceiving and producing 

the emotional meaning of voices (Adolphs, 2010; Aziz-Zadeh, Sheng, & Gheytanchi, 

2010), social hand gestures (Montgomery & Haxby, 2008) and facial expressions 

(Heberlein & Atkinson, 2009; van der Gaag et al., 2007), showing the HMNS to 

contain distinct regions for different kinds of nonverbal communication.  

Studies have shown the observation and execution of facial expressions to 

recruit common areas of the inferior frontal gyrus (IFG) and the posterior parietal 

cortex (see Figure 1.8) (Carr, Iacoboni, Dubeau, Mazziotta, & Lenzi, 2003; 

Hardwick, Caspers, Eickhoff, & Swinnen, 2017; Kircher et al., 2013; Montgomery 

& Haxby, 2008; van der Gaag et al., 2007). A further fMRI study discerned the 

relative activation of the frontal operculum (posterior IFG) in viewing faces as 

opposed to hand gestures in the MNS (Montgomery & Haxby, 2008). A double 

dissociation was found whereby gestures created greater parietal activation than 

faces (Montgomery & Haxby, 2008). However, the amalgamation of simulation 

within somatosensory, motor and subcortical brain areas has been implicated in 

expression (van der Gaag et al., 2007).  
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Figure 1.8. Human mirror neuron system for imitation, showing the implicated areas 
for the observation and execution of facial expressions: Premotor Cortex (PMC), 
Inferior frontal gyrus (IFG), Inferior Parietal Lobe (IPL) and Superior Temporal 
Sulcus (STS), from Iacoboni and Dapretto (2006).  
 

1.2.2.1 Somatosensory and motor cortices. 

 Common activations in somatosensory and motor cortices have been found 

for action understanding, language and affective processing (Gazzola et al., 2012) 

and it is thought that the primary motor cortex and posteriorly bordered 

somatosensory cortex is important for embodiment (sensorimotor cortices). These 

areas comprise somatotopic body maps known as the sensory and motor 

homunculus, see Figure 1.9 (Meier et al., 2008). These maps are typically a reversed 

arrangement of the body; with the motor representation of the tongue located 

ventrally and the toes represented dorsally in the brain (Meier et al., 2008). Hand (or 

finger) movement and the face have a much larger brain representation than other 

body parts, due to the fine motoric abilities inherent in these areas (Meier et al., 

2008).  
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Figure 1.9. Somatotopic maps: the sensory and motor homunculus, from Ibric and 
Dragomirescu (2009). 
 

Evidence from patients with focal brain lesions to their right somatosensory 

cortex show impairment in emotion recognition (Adolphs, Damasio, Tranel, Cooper, 

& Damasio, 2000), detailed further in Chapter 4 (4.1.2). Additionally, research 

investigating overlaps between the perception, imitation and production of facial 

expressions, have found activation in an abundance of motor, premotor and 

somatosensory regions: the primary motor cortex (Montgomery & Haxby, 2008), 

and the premotor cortices (Carr et al., 2003; Hardwick et al., 2017; Hennenlotter et 

al., 2005; Kircher et al., 2013; Leslie, Johnson-Frey, & Grafton, 2004; Montgomery 

& Haxby, 2008; van der Gaag et al., 2007), including the supplementary motor area 

(SMA) (Hardwick et al., 2017; Leslie et al., 2004) and pre-SMA (Hardwick et al., 

2017; Kircher et al., 2013; van der Gaag et al., 2007), as well as the primary 

somatosensory cortex (Montgomery & Haxby, 2008; van der Gaag et al., 2007) and 

secondary somatosensory cortices (Hennenlotter et al., 2005; Leslie et al., 2004; van 

der Gaag et al., 2007). However, in Hardwick et al. (2017), no overlap was present in 

the primary motor cortex with activation only present in execution. The role this 

region plays in embodiment has been long debated; it is unclear whether it is 

important for observation, activated at a low-threshold, or whether it just reflects a 

motor-sensitive area (Hardwick et al., 2017).  

Activation, occurring in the extended MNS for the perception, imitation and 

execution of expressions, is commonly found bilaterally in premotor regions (Carr et 
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al., 2003; Hardwick et al., 2017; Leslie et al., 2004; Montgomery & Haxby, 2008; 

van der Gaag et al., 2007). This activation was commonly stronger in the right 

hemisphere for perception but there were no differences between the hemispheres in 

imitation or production; this corresponds to theories of right hemispheric dominance 

in emotion processing (Hennenlotter et al., 2005; Leslie et al., 2004; Montgomery & 

Haxby, 2008). Moreover, studies that focussed exclusively on the perception and 

production of happiness versus neutral found overlaps in the right premotor cortex 

(PMD and PMV), see Figure 1.10 (Hennenlotter et al., 2005; Kircher et al., 2013). It 

is important to note that recent MVPA studies on shared brain networks in action 

have challenged the dominant role of the pre-motor cortex in the HMNS, suggesting 

that the pre-motor cortex is more concerned with observing one’s own actions 

(Oosterhof, Tipper, & Downing, 2012, 2013). However, this research was based on 

hand actions and therefore cannot be generalised to all actions, including movements 

of the face.   

Figure 1.10. Brain activation for perceiving (green) and producing (red) happiness 
expressions; overlaps (yellow) present in the right PMD and PMV, as well as the 
right S2, adapted from Hennenlotter et al. (2005). 
 

 Recent studies have applied Transcranial Magnetic Stimulation (TMS) to 

create a momentary disruption to a specific area of cortex (Balconi & Bortolotti, 

2013). Studies that have delivered TMS to the somatosensory cortex demonstrate the 

importance of this area in the expression recognition (Pitcher, Walsh, & Duchaine, 

2011). Pitcher, Garrido, Walsh, and Duchaine (2008) targeted the right occipital face 
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area (OFA) and the right somatosensory cortex (SC), either administering no TMS 

(to the vertex) or high frequency TMS (to the OFA or SC) on the onset of a face, to 

compare performance across control and experimental conditions. Participants 

responded when a target face matched a previously presented face, either in terms of 

expression or identity (Pitcher et al., 2008). The disrupted brain areas independently 

compromised participants’ ability to discriminate the six basic expressions; with 

identity task performance left intact (Pitcher et al., 2008). Furthermore, suppression 

of the right SC and right pre-motor cortex (PMC) was found to impair the 

discrimination of auditory emotions but not identity, showing support for areas 

specific to the recognition of facial expressions (Banissy et al., 2010). Furthermore, 

disrupting the PMC with TMS demonstrates the role of the simulation process in 

recognising expressions at both short and long stimulus durations (Balconi & 

Bortolotti, 2013). This presents the idea that simulation occurs both in response to 

conscious and unconsciously perceived stimuli (Balconi & Bortolotti, 2013). Results 

showed the pre-motor cortex (PMC) important in recognising emotion, in particular 

with the increased reaction times (RTs) and false alarms when recognising anger or 

fear during inhibition (Balconi & Bortolotti, 2013). As the ventral PMC is part of the 

HMNS, Goldman and Sripada (2005)’s unmediated resonance model may be a 

particularly relevant in explaining how face-based emotion recognition is 

undertaken.   

 Further research has shown that disrupting specific brain areas with TMS 

impairs the recognition of certain emotions (Pourtois et al., 2004; Rochas et al., 

2013). A study by Pourtois et al. (2004) found TMS to the right SC disrupted fear 

but not happiness, however, Pitcher et al. (2008) found no differences between 

recognising the basic emotions. This disparity may be accounted for by differences 

in TMS intensity as Pitcher et al. (2008) delivered 10Hz for 500ms, but Pourtois et 

al. (2004) single-pulse TMS did not exceed 0.3Hz of stimulation. The lower intensity 

potentially shows the importance of an internal somatic representation in the 

recognition of fear (Pourtois et al., 2004) as this emotion is disrupted earlier at 

greater ease. Rochas et al. (2013) found disrupting left pre-SMA activity to impair 

facial happiness recognition (FHR) and laughter but not fear or anger. This finding 

shows a common area for happiness. Due to the seemingly robust ability and 

specificity to recognise basic prototypical displays of happiness (F. W. Smith & 

Schyns, 2009); Niedenthal et al. (2010) developed the aforementioned Simulation of 
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Smiles Model (SIMS) to focus on the conditions that embodied simulation uses to 

judge the meaning between a variety of smiles (enjoyment, affiliation or dominance 

smiles).  

Furthermore, an MVPA study has explored the role of the somatosensory 

cortex in subjective emotional experience (Kragel & LaBar, 2016); whilst this differs 

from the study of emotion recognition, it is important to consider. Kragel and LaBar 

(2016) presented participants with facial or vocal expressions before asking them to 

report how they felt. This experiment could have been appraised on the networks 

involved in expression perception, but due to the nature of the task (using an atypical 

visual matching task) the perception of stimuli could not be separated from 

experience. They found that the experience of emotion could be decoded from 

patterns of activation in the right primary somatosensory cortex. Furthermore, Kragel 

and LaBar (2016) carried out a preliminary analysis to investigate whether the 

experience of emotion differentially activated parts of the somatotopic body maps 

relevant to the features used in their recognition. As mouth regions represent a large 

area in the homunculus (Figure 1.9), they hypothesised that happiness and surprise 

(emotions using the mouth region for recognition) would have larger classification 

weights than fear and anger (which primarily rely on information from the eyes for 

recognition). They found two clusters in the right lateral postcentral gyrus that 

responded more to surprise and happy expressions, fitting in with previous work on 

somatotopic organisation.  

 Somatosensory sensitivity to emotional versus neutral expression processing 

has been shown in an EEG study, using tactile stimulation to understand visual and 

somatosensory processing in emotion recognition (Sel, Forster, & Calvo-Merino, 

2014). This novel design found facial expressions to enhance early somatosensory 

activity independent of visual processing. The study concluded that recognition must 

involve an Emotional Homunculus; where the body is represented in somatosensory 

cortex (Sel et al., 2014). However, Pitcher et al. (2008) demonstrated the time course 

of visual (60-100ms) and somatosensory brain areas (100-170ms) in recognising 

expressions; showing that somatosensory activity does not occur independently of 

visual processing. Finding expression processing to be disrupted early at the OFA 

and later at the SC support hierarchical models of face processing from the visual 

processing pathway (Pessoa & Adolphs, 2010). However, this study also showed 

support for embodied accounts of expression recognition as TMS applied to the face 
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region, as opposed to the finger region of the somatosensory cortex impaired 

expression recognition (Pitcher et al., 2008).  

 Overall, studies inhibiting the somatosensory and premotor cortex areas are 

indicative of their importance on expression recognition, however, we presently 

cannot assume that mirror neurons exist in these areas (Pitcher et al., 2011). This is 

supported in embodied accounts describing the initial involvement of visual areas 

before the simulation of somatic and visceral areas accompanied with recognising an 

expression (Pitcher et al., 2008). The particular disruption of the right SC infers the 

role of this area in internally simulating an expression and later using this simulation 

to recognise a sender’s facial expression (Pitcher et al., 2011).  

1.2.2.2 Subcortical activations. 

 Other areas of the brain have been found to overlap in the perception, 

production and imitation of facial expression, including the amygdala (Carr et al., 

2003; Kircher et al., 2013; van der Gaag et al., 2007), insula (Carr et al., 2003; 

Hennenlotter et al., 2005; Montgomery & Haxby, 2008; van der Gaag et al., 2007), 

cerebellum (Kircher et al., 2013; Leslie et al., 2004; van der Gaag et al., 2007) and 

hippocampus (van der Gaag et al., 2007). Surprisingly, van der Gaag et al. (2007), 

found the insula and frontal operculum to be more involved in the recognition of 

expression, with neutral expressions causing greater activation in the somatosensory 

cortex. The importance of the insula is highlighted with its connections to the 

somatosensory cortex, IFG and amygdala (Kircher et al., 2013). Lastly, Wicker et al. 

(2003) identified a common neural basis in the perception and feeling of disgust. 

This fMRI experiment showed areas of the anterior insula and ACC to activate when 

participants watched an individual on video exhibit a disgust expression and when 

they inhaled a disgusting odour (Wicker et al., 2003).  

 In summary, evidence of the embodied account is shown with emotion 

processing to partly reactivate the neural substrates involved when personally 

experiencing a correspondent emotion (Niedenthal, 2007). The embodied evidence 

argues for the importance of mimicry (Niedenthal et al., 2001; Wood, Lupyan, et al., 

2016) but also demonstrates that it is not always necessary in expression recognition 

(Adolphs, 2002; Blairy et al., 1999; Hess & Blairy, 2001). Instead an individual can 

experience an emotion without overtly expressing it (Goldman & de Vignemont, 

2009; Goldman & Sripada, 2005). Neuroimaging (fMRI) provides strong evidence 

for the embodied account of expression recognition, with the observation and 
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execution of facial expressions to recruit similar areas of the HMNS, as well as 

additional somatosensory, motor, premotor and subcortical brain areas (Hardwick et 

al., 2017; van der Gaag et al., 2007). Further TMS experiments (inhibiting the 

somatosensory and premotor cortex) implicate the embodied account of expression 

recognition (Balconi & Bortolotti, 2013; Banissy et al., 2010; Pitcher et al., 2008; 

Pitcher et al., 2011). 

1.3 Overall Aims and Objectives of the Current Research 

 The literature in this chapter details the two main routes involved in the study 

of emotion recognition, as well as detailing research into its correspondent brain 

basis. The literature presents a complex picture with research often focussing on the 

visual or non-visual (simulation-based) route of recognition (Goldman & Sripada, 

2005). The visual route to expression recognition implicates a distributed number of 

cortical and subcortical areas, including the STS, FG and amygdala, as well as early 

visual regions (Harry et al., 2013; Haxby et al., 2000; Liang et al., 2017; Petro et al., 

2013; Said et al., 2010; Wegrzyn et al., 2015; Zhang et al., 2016), whereas, the non-

visual embodiment approach frequently identified premotor, somatosensory and 

subcortical structures (Hardwick et al., 2017; van der Gaag et al., 2007).  

For the first line of experiments (Chapters 2 & 3) in the current thesis, top-

down influences to the visual system (in the visual route of recognition) are 

investigated. As aforementioned, standard bottom-up computational models do not 

account for occlusion (Tang et al., 2018), which in regards to expression recognition 

may be especially needed, as accessories, such as wearing a scarf or sunglasses, can 

conceal certain facial features from view. Top-down influences may therefore be 

particularly relevant for recognition under conditions of occlusion, to help fill in 

missing feature information (Greening et al., 2018; Muckli, 2010; Muckli et al., 

2013). Furthermore, the contribution of bottom-up information cannot necessarily be 

separated from top-down influences in many of the current fMRI decoding studies, 

that highlight some of the key regions involved in the recognition of expression 

(Liang et al., 2017; Wegrzyn et al., 2015). However, Zhang et al. (2016) performed 

further cross-classification analyses with decoding across identity, to highlight some 

of the key regions involved in expression recognition. This tapped into higher level 

representations and enabled the role of low-level features in decoding to be 

minimised to a degree. Nonetheless, it is important to note this as a relatively weak 
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form of tapping into high-level representations and there are other ways to achieve 

this. 

Thus, a paradigm similar to F. W. Smith and Muckli (2010) was used; such 

that the visual cortex was retinotopically mapped, and sensitivity within V1 was 

investigated to see whether top-down feedback (and possibly lateral) influences 

contribute to the perception of occluded facial expressions. Although Greening et al. 

(2018) only investigated expression recognition with an explicit task and did not 

map the visual cortex with retinotopy, they compared responses of non-overlapping 

visual face stimuli, which can purely tap into high-level processes in the brain. 

Therefore, the experiments in this thesis will use retinotopic mapping and compare 

responses to non-overlapping face stimuli across both an implicit and explicit task, to 

provide a novel way to investigate how contextual mechanisms (top-down feedback 

and lateral connections) contribute to the perception of occluded facial expressions. 

By comparing representations across non-overlapping stimuli, e.g. eye region to rest 

of face minus eyes, this study provides a stronger form of tapping into high-level 

representations, strongly minimising the role of low-level features in decoding. 

Certain accounts of visual system processing, such as predictive coding and recurrent 

feedback models of object completion, imply that similar representations may be 

present in each case due to feedback (or lateral connections) (Clark, 2013; O'Reilly 

et al., 2013; Rao & Ballard, 1999; Tang et al., 2014; Wyatte et al., 2012). However at 

present, more research is necessary to understand the visual processes involved in 

facial expression recognition, especially in how we predict hidden features of 

emotional faces (Greening et al., 2018).  

The present research will primarily investigate the role of cortical processing 

in V1, due to the previous literature highlighting V1’s involvement in higher-level 

processing (Petro et al., 2013; F. W. Smith & Muckli, 2010). However, it is also 

important to understand the sources of the feedback connections (Clark, 2013; 

Pessoa & Adolphs, 2010) and subsequent involvement of face and emotion sensitive 

areas (such as the FG and STS) in the processing of occluded facial features (Harry 

et al., 2013; Liang et al., 2017; Said et al., 2010; Wegrzyn et al., 2015; Zhang et al., 

2016). The current research will also investigate the high-level influence of task 

context and how this influences the early sensory processing of expression, to gain a 

greater understanding of top-down effects in emotion recognition (Petro et al., 2013; 

M. L. Smith & Merlusca, 2014). 
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Both fMRI and EEG data were obtained and subsequently analysed with 

univariate and multivariate analyses in the first line of experiments (fMRI data 

presented in Chapter 2 and EEG data presented in Chapter 3). However, the research 

focus lies with the decoding technique of multivariate pattern analysis (MVPA) to 

understand how occluded objects are represented in different regions (fMRI) of the 

brain and different time-windows of the EEG response. Furthermore, MVPA is 

particularly pertinent for investigating occlusion, as univariate research looking at 

brain activations may show slight or no differences in brain regions between 

occluded and non-occluded stimuli (Wyatte, Jilk, & O'Reilly, 2014). As the present 

research is looking to investigate the role of processing differently occluded facial 

expressions within the same ROI, such as V1, and univariate analyses spatially 

smooth and average activated voxels in an experimental condition within a ROI, 

differences in occlusion may likely go undetected using a univariate analysis 

(Haynes & Rees, 2006; Mur et al., 2009; Norman et al., 2006). In MVPA, patterns of 

brain activation can be detected in the same ROI and voxels are not spatially 

smoothed; consequently this analysis, which is highly sensitive in detecting fine-

grained differences, is necessary to address the experimental aims and objectives of 

the current research. The collection of data from two neuroimaging approaches 

(fMRI and EEG) aim to provide a comprehensive picture of processing occluded 

facial features in the brain, as both high spatial and temporal information about brain 

activity is available (Cichy et al., 2014; Fusar-Poli et al., 2009; Sadeh, Podlipsky, 

Zhdanov, & Yovel, 2010). Thus, the experiments aim to understand how the brain 

compensates and feeds information back to account for missing feature information 

(Greening et al., 2018), as well as the temporal dynamics of this process.  

At present MVPA research exploring the neural time-course of expression 

recognition under conditions of occlusion has not been undertaken, although 

research has shown that faces and expressions can be neurally decoded from EEG 

data (Cauchoix et al., 2014; Li et al., 2018). An investigation into timing information 

is pertinent to investigating the role of bottom-up versus top-down feedback 

mechanisms, as bottom-up processing is quicker and can take place before feedback 

has occurred (Tang et al., 2014). These studies will also help inform the theoretical 

accounts of visual processing, such as predictive coding (Clark, 2013; Friston, 2005, 

2008; F. W. Smith & Muckli, 2010) and recurrent feedback models of object 

recognition (Tang et al., 2014; Tang et al., 2018; Wyatte et al., 2012; Wyatte et al., 
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2014), to understand the mechanisms that take place in the visual system, including 

the role of top-down feedback processing of how the brain deals with occlusion. In 

the predictive coding account, the brain is assumed to the use context, experience 

and prior knowledge to make sense of visual input. To do this all areas of the brain 

continuously make predictions on expected visual information based on information 

from higher cortical areas, the resulting representations are compared with incoming 

sensory information (Clark, 2013; de Lange, Heilbron, & Kok, 2018). This account 

will be explained further in Chapter two (2.1.1.1.1). However, within this account it 

is implied that the processing of faces with missing feature information may occur 

later, as more feedback from higher cortical areas is necessary to predict occluded 

information.    

The final experiment (Chapter 4) in the current thesis investigates the non-

visual route of emotion recognition, as research on the embodied simulation account 

suggests that motor/premotor and somatosensory simulation of emotion contributes 

to the recognition of facial expressions (Goldman & Sripada, 2005; Niedenthal et al., 

2009). Whilst neural networks have been identified in the brain for embodiment, the 

precise architecture of embodied cognition need refining in future work (Niedenthal, 

2007). As a result, the present research investigates the neural mechanisms of 

embodiment, and tests the assumption that the same representations will be found 

across the sensory perception and motor production of expression. Again, fMRI data 

were obtained and subsequently analysed with univariate and multivariate analyses 

in the brain regions mentioned above (data presented in Chapter 4). Additionally, the 

present research focusses on MVPA, in an attempt to advocate a strongly embodied 

account of expression recognition, investigating representational overlap across 

perception and production of expression. This paradigm were designed to inform 

theories of embodied cognition or embodied simulation (Niedenthal, 2007; 

Niedenthal et al., 2006; Niedenthal et al., 2009), such as the reverse simulation 

model, the “as if” loop model of simulation and the unmediated resonance model 

(Damasio, 1996; Goldman & de Vignemont, 2009; Goldman & Sripada, 2005), 

described further in Chapter 4.  

Thus, the proceeding chapters aim to investigate the involvement of both 

routes to the recognition of emotion, as it may be that one route cannot provide a full 

understanding of expression recognition (Wood, Rychlowska, et al., 2016). Both the 

visual and sensorimotor pathways are consistently found important in perceiving 
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expression (Wood, Rychlowska, et al., 2016), thus the focus of this thesis will be to 

investigate the role of implicated brain regions with MVPA. The overarching aim is 

to investigate the role of high-level influences, originating in both the visual (from 

occluded faces, task goals) and non-visual (embodiment) routes, on the neural 

processing of facial expressions.  
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SECTION 2 
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Experimental Chapters 
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Chapter 2: Early Visual (V1-V3), Face and Emotion Sensitive Areas Contain 

Information about Occluded Facial Features 

 

2.1 Introduction 

2.1.1 Visual processing. 

 Previous research has shown the substantial involvement of higher level 

processes in primary visual cortex (V1) (Petro et al., 2013; F. W. Smith & Muckli, 

2010; Vetter, Smith, & Muckli, 2014). The presumption that V1 solely reflects 

retinal input has diminished, with evidence demonstrating the minor role of bottom-

up or feedforward processing, and evidence of high-level effects to the visual cortex 

(Muckli, 2010; Muckli et al., 2015; F. W. Smith & Muckli, 2010). Research has 

shown that information from higher cortical areas is fed back to influence early 

visual regions (Muckli et al., 2015). It is particularly evident that feedback might 

play an even greater role in conditions of uncertainty; in highly ambiguous situations 

where objects are occluded (O'Reilly et al., 2013; F. W. Smith & Muckli, 2010; Tang 

et al., 2014; Tang et al., 2018; Wyatte et al., 2014).  

Current research has begun to understand the role of cortical feedback in 

perceiving facial expressions under occlusion (Greening et al., 2018); as it is 

important to understand the involvement of early visual (V1-V3), face and emotion 

sensitive areas in processing occluded facial features. To study the involvement of 

feedback mechanisms beyond low-level processing, one method is to investigate 

whether representations of expression are similar across independent facial features, 

e.g. occluded eyes to eyes-only stimuli; occluded mouth to mouth-only stimuli 

(Greening et al., 2018; Petro et al., 2013). Similarity between these visual signals 

would be in keeping with accounts of visual processing, such as predictive coding, 

and recurrent feedback models of object recognition (F. W. Smith & Muckli, 2010; 

Tang et al., 2018; Wyatte et al., 2014). Accordingly, this chapter will extend upon 

the previous research helping to understand how the brain deals with occluded 

stimuli and whether high-level processing (spatial context and task goals) accounts 

for how humans recognise occluded facial expressions.  

2.1.1.1 Accounts of visual processing. 

2.1.1.1.1 Predictive coding. 

Top-down processing or feedback may be explained by predictive coding 

(Clark, 2013; Friston, 2005, 2008). This account of visual processing details how 
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each visual region computes the difference between expected and observed incoming 

sensory information (Clark, 2013). As such, predictions originate in higher level 

areas of the cortex and are fed back to early visual regions, to predict the current 

information projected to V1; in turn early visual areas transmit error signals back to 

higher level regions with the computed difference between expected and observed 

information, see Figure 2.11 (Rao & Ballard, 1999; Wyatte et al., 2012). Thus, it is 

possible, that context, experience or prior expectations can affect the responses of 

neurons in V1 and subsequently the processing of information (Clark, 2013). 

Furthermore, research has shown the potential role of predictive coding when filling 

in missing information from occluded visual scenes (F. W. Smith & Muckli, 2010). 

 

Figure 2.11. Model of predictive coding (Stefanics, Kremláček, & Czigler, 2014). E: 
Error; R: Representation. 

  

2.1.1.1.2 Recurrent feedback models of object recognition. 

The framework, derived from recurrent feedback models of object 

recognition, suggests the importance of recurrent feedback signals in hierarchically 

adjacent areas within the ventral visual stream (Tang et al., 2014; Tang et al., 2018; 

Wyatte et al., 2012). These signals are said to originate in extra-striate regions (high-

level visual areas of V3, V4 and V5) to aid recognition in occluded situations 

immediately after the feedforward process (Wyatte et al., 2014). This local feedback 

has been receiving increasing attention, and differs from feedback that originates in 

frontal parietal areas: as it is rapid, automatic and excitatory (Wyatte et al., 2014). 

Recurrent feedback amplifies neurons in V1 that were weakened or prevented from 
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firing to start a complex filling-in process (Wyatte et al., 2012; Wyatte et al., 2014). 

Feedforward connections continue to the inferior temporal (IT) cortex and further 

excitatory reinforcement from the IT cortex can help strengthen V1 responses 

(Wyatte et al., 2012). Processes within the IT cortex could be enough to fully support 

object completion (Wyatte et al., 2014), however prefrontal areas may also be 

involved in this process, see Figure 2.12.   
 

Figure 2.12. Feedforward and feedback connections in early visual processing 
(Wyatte et al., 2014). V1: Primary Visual Cortex; IT: Inferior Temporal; PFC: 
Prefrontal Cortex. 
 

2.1.1.1.3 Other accounts of processing. 

Alternative Bayesian accounts of processing suggest the existence of 

recurrent feedforward and feedback loops within the brain that concurrently 

assimilate bottom-up observations with top-down contextual priors to create 

probabilistic inferences (Kersten, Mamassian, & Yuille, 2004; Lee & Mumford, 

2003; Yuille & Kersten, 2006). Coherent infomax accounts (W. A. Phillips, Clark, & 

Silverstein, 2015; W. A. Phillips et al., 1995) place greater weight on predictive and 

current relevance, seeking contextual guidance throughout processing and learning 

(J. W. Kay & Phillips, 2011). 

These accounts are in keeping with the predictive coding and recurrent 

feedback models of object recognition. However, there is an important difference 

between the predictive coding and alternative accounts of processing, including 

recurrent feedback models of object recognition; whereby predictive coding requires 

inhibitory feedback, the other accounts advocate excitatory feedback. Thus with 

predictive coding, occlusion creates higher responses than non-occluded stimuli, 
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with processing over time acting to subdue response signals as error decreases. 

Whereas in the other accounts occlusion leads to an overall decrease in response, but 

processing over time amplifies the early visual response signals for degraded stimuli 

(J. W. Kay & Phillips, 2011; Lee & Mumford, 2003; Wyatte et al., 2012). Albeit 

this, all accounts portray vision and categorisation as extremely interactive and 

dynamic processes that are contingent on multiple brain areas within the visual 

stream (Wyatte et al., 2012). This is further supported with a recent hierarchical 

neural network model proposed by Heeger (2017), which details the relative 

contribution of a feedforward, feedback and prior drive in information processing. 

Overall, the processes detailed in these accounts need to be explored further in 

relation to understanding the mechanisms that aid the visual system, particularly the 

role of top-down feedback processing to V1 and how the brain deals with occluded 

face stimuli. Furthermore, these various possible top-down models help explain 

ambiguous information processing beyond the standard model of V1 (Tang et al., 

2018).   

2.1.1.2 How to study feedback? 

2.1.1.2.1 Using retinotopy. 

To underpin top-down processing, studies have tested the contribution of 

cortical feedback to ongoing processing in V1, and taken advantage of its retinotopic 

organisation (Petro et al., 2013; F. W. Smith & Muckli, 2010). A retinotopic 

localiser task is used to map positions in visual space, thus with visual space 

mapped, the sensitivity occurring in an occluded area of a visual scene can be 

investigated (F. W. Smith & Muckli, 2010). Sensitivity in such a region will suggest 

the involvement of contextual mechanisms (feedback and lateral connections) as the 

occluded area is devoid of feedforward input (F. W. Smith & Muckli, 2010). Only a 

few studies have investigated the role of top-down modulation in occluded visual 

space, but the use of multivariate pattern analysis (MVPA) has been insightful in 

understanding neural activity in early visual regions (Muckli et al., 2013). This is 

particularly apparent in the processing of occluded natural scenes; where MVPA was 

used to decode the scene shown to participants even when there was no visual scene 

information presented to specific sub regions of V1 (F. W. Smith & Muckli, 2010). 

This paradigm, developed by F. W. Smith and Muckli (2010), provides evidence that 

V1 can contain rich contextual information about the visual environment.  
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The former results investigate the feedback contribution within V1 when 

processing scenes, and it is only applicable to orthogonal tasks irrelevant to the 

context, such as a one-back task detecting a colour change (F. W. Smith & Muckli, 

2010). It would be interesting to see whether this effect generalises across stimuli 

and tasks, especially to address the uncertainty around how early visual regions are 

involved in the recognition of occluded facial expressions. It is important to 

understand this, as real-world occlusion is commonplace in emotion recognition 

(Bettadapura, 2012) and it is unclear how humans have a robust ability to recognise 

expressions under conditions of occlusion (Kotsia et al., 2008; F. W. Smith et al., 

2008; M. L. Smith et al., 2005).   

Research by Greening et al. (2018) begins to address this gap in the literature, 

as to how context shapes the processing of expressions using non-orthogonal 

emotion categorisation tasks. However, this research did not specifically map V1 

with retinotopy, instead mapping the cortex less effectively with a cytoarchitectonic 

map (Eickhoff et al., 2005). This map is sub-optimal because the same probabilistic 

V1 mask is applied to all participants, as opposed to retinotopic mapping that is 

based on each individual subject, defining spatially localised voxels from a constant 

fixation on different stimuli. Therefore caution is needed over the extent to which the 

results reflect early visual cortex and can account for individual differences 

(Greening et al., 2018). Nonetheless, they found neural information in early visual 

cortex to generalise across independent visual face parts, such as faces depicting 

eyes only to the corresponding minus eyes stimuli (Greening et al., 2018). This 

cross-classification MVPA analysis suggests the involvement of higher cortical 

regions and the potential role of cortical feedback in decoding occluded facial 

expressions. The following study will build on this research, using additional 

independent face parts and MVPA, to understand whether top-down processing 

accounts for how humans recognise occluded facial expressions. However, more 

generally this study will help to inform how V1 deals with occluded stimuli, adding 

to previous research studying occlusion (F. W. Smith & Muckli, 2010).     

Overall, prior research has principally studied the occlusion of objects and 

scenes but not faces. However, more top-down or lateral interactions may be 

expected to fill in missing feature information when dealing with facial occlusion, as 

faces are such biologically salient signals (Pessoa & Adolphs, 2010). Research has 

begun to examine the visual processing involved in emotion recognition from 
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occluded eye stimuli (Greening et al., 2018). However, it is pertinent to further study 

how we compensate for missing facial feature information, and this research needs to 

be pursed in more depth, by examining the occlusion of additional facial features, 

such as the mouth.  

2.1.1.2.2 Backwards masking.  

Recurrent processing also becomes more important for recognition in highly 

ambiguous and occluded situations (O'Reilly et al., 2013; Tang et al., 2014). A 

number of studies have taken advantage of backwards masking to selectively disrupt 

feedback and disentangle feedforward from recurrent processing (Tang et al., 2018; 

Wyatte et al., 2012). A mask shown after stimulus presentation when recurrent 

processing begins, forces the brain to process the incoming mask stimuli and thus the 

only information recovered before mask encoding can be used in categorisation 

(Wyatte et al., 2012). These studies show decreased recognition ability for occluded 

stimuli with a mask than occluded stimuli with no mask; with greater levels of 

occlusion causing greater susceptibility to mask interference (Wyatte et al., 2012). 

Lamme and Roelfsema (2000) suggest that this impairment is due to the mismatch 

between mask responses propagating up through the ventral stream, when encoded 

responses regarding the initial stimulus are feeding information back through 

recurrent connections. Overall, backwards masking is an ingenious technique for 

investigating the visual processing involved in occluded object recognition.    

2.1.1.3 Face and emotion selective areas. 

Whilst it is pertinent to understand how we predict hidden features of 

emotional faces in the early visual cortex, it is crucial to understand the sources of 

the feedback connections (Clark, 2013; Pessoa & Adolphs, 2010). For this, it is 

important to reconsider the studies discussed in Chapter 1 (1.1.3), that research the 

brain regions involved in emotional face processing and the use of MVPA for 

decoding emotional expressions in these regions. This research showed high emotion 

decoding ability in the FG (Harry et al., 2013; Li et al., 2018; Liang et al., 2017; 

Wegrzyn et al., 2015) and the (p)STS (Liang et al., 2017; Said et al., 2010; Wegrzyn 

et al., 2015; Zhang et al., 2016). Further, decoding significance was found in the 

OFA (situated in or close to the IOG) (Liang et al., 2017; Wegrzyn et al., 2015) as 

well as the amygdala and insula (Wegrzyn et al., 2015). In these regions, decoding 

ability was reported less and was generally lower than the FG and STS (Wegrzyn et 

al., 2015; Zhang et al., 2016). It is important to note that these studies were not 
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explicitly studying feedback, they were investigating the relative importance of each 

region in expression recognition (Wegrzyn et al., 2015). However, Wegrzyn et al. 

(2015) state that if results were predominantly due to differences in low-level visual 

features, the highest decoding performance would have been expected in the 

occipital gyrus (Wegrzyn et al., 2015). The fact that decoding performance was 

highest in FG and STS advocates the role of higher level processing in emotion 

recognition.   

Liang et al. (2017) also found strong decoding accuracy in motion-selective 

areas: V5f/hMT+. This was the first study to decode across multiple emotions using 

dynamic face stimuli, as well as dynamic stimuli with obscured eyes, and static 

stimuli to allow further comparisons; Said et al. (2010) used dynamic stimuli but 

only tested the STS. Counter to the previous results using static stimuli, this study 

found no decoding for static faces (Liang et al., 2017), it is not clear why, but it may 

result from using a six-way emotion classification. Furthermore this study found no 

decoding for obscured eye stimuli, even though behavioural recognition was the 

same for complete and obscured dynamic videos (Liang et al., 2017). The finding of 

no decoding in the brain for obscured eye stimuli is compatible with research 

showing the importance of the eye region in emotion recognition, and is especially 

relevant for the Eastern sample of participants collected, with this culture relying 

heavily on information from the eyes as opposed to the mouth (Jack, Blais, 

Scheepers, Schyns, & Caldara, 2009). Lastly, whilst this study is informative, an 

early visual ROI should have been investigated, to separate the decoding effects into 

high and low-level information.  

 To conclude, the idea that the early visual brain (or V1) uses cortical 

feedback to provide information to V1 about missing parts of a visual stimulus is 

relatively unexplored, especially in understanding how we process and compensate 

for missing facial information. To understand how high-level influences (spatial 

context and task goals) shape early visual processing warrants further investigation. 

Due to previous research highlighting V1’s involvement in higher level processes to 

a surprising degree, this study places an emphasis on understanding the role of 

cortical processing in V1, however other regions will also be investigated. With a 

combination of fMRI, retinotopy and MVPA, this study will address the gaps in 

understanding how we process occluded facial expressions within the brain. It is 

clear that future research is needed to understand the relative contributions of 
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feedforward, recurrent and feedback connections within the brain and their time 

course (Wyatte et al., 2014) as there is currently considerable debate in the literature 

(O'Reilly et al., 2013). Furthermore, research looking at brain activations show slight 

or no differences in brain regions between occluded and non-occluded stimuli; thus 

more research using decoding or representational similarity analysis (RSA) 

techniques is needed to fully understand how occluded objects are represented in 

different brain regions (Wyatte et al., 2014).    

2.1.1.4. Present study and hypotheses. 

2.1.1.4.1 The involvement of early visual cortex. 

As aforementioned, previous research has suggested that feedback to early 

visual cortex contains more than just low-level input information (F. W. Smith & 

Muckli, 2010). To test for feedback pathways that could modulate and in a way 

prepare the visual cortex with the correct contextual information, four differing 

partial face stimuli were created to present sub-samples of visual information.  

 

H1: Similar brain representations will be revealed in V1 and EVC (V1-V3) when 

completely independent visual signals are presented (e.g. independent parts of a face: 

occluded eyes and eyes-only stimuli; occluded mouth and mouth-only stimuli) (see 

Figure 2.13). 

 

This is important because if activity is similar between the independent 

signals, it will suggest an involvement of feedback mechanisms beyond low-level 

processing (Petro et al., 2013). This finding would be in keeping with accounts of 

feedback such as predictive coding models of early sensory processing, which 

propose to explain ambiguous information processing (F. W. Smith & Muckli, 

2010). Furthermore this would be in line with recurrent feedback models of object 

recognition (Wyatte et al., 2014).  

 

2.1.1.4.2 The involvement of face and emotion selective areas. 

In the present study five other brain regions will be tested (as well as V1 and 

EVC), including the FG, STS, inferior occipital gyrus (IOG), amygdala (AMY) and 

insula (INS).  
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H2: Similar brain representations will be activated in face and emotion selective 

areas when completely independent visual signals or parts of a face are presented, 

akin to V1 and EVC.  

 

2.1.1.4.3 The involvement of task. 

 In addition to above, the study will also investigate the sensitivity of task 

context (explicit vs implicit) when processing facial expressions, as only a small 

amount of research has studied how task context influences the early sensory 

processing of expression (Petro et al., 2013; M. L. Smith & Merlusca, 2014). As well 

as occlusion, task goals are high-level influences on visual processing. Petro et al. 

(2013) retinotopically mapped facial features (eyes and mouth) in regions of the 

primary visual cortex and show how task influences face category processing in 

specific sub-regions of V1. They found strong implicit task effects, whereby when 

participants were asked to judge expression (between happy and fearful faces) in the 

mapped eye region of the visual cortex, only gender information could be decoded, 

whereas gender could not be decoded in the gender task (Petro et al., 2013). 

Furthermore, when participants were asked to judge gender (male and female faces) 

in the mapped mouth region, their performance was higher (but not significantly so) 

when decoding emotion information (Petro et al., 2013). Overall, this study showed 

V1 to contain high-level information about facial expressions (Petro et al., 2013), but 

the implicit task effects were surprising. It is unclear why decoding would be better 

in implicit conditions, particularly in early visual cortex, so further studies are 

necessary. Most research has only studied implicit emotion recognition, by asking 

participants to carry out a one-back task (Harry et al., 2013), memory task (Said et 

al., 2010), colour change task (Zhang et al., 2016), or a gender recognition task 

(Wegrzyn et al., 2015). Whilst this research shows strong implicit performance of 

expression decoding, there is no direct comparison to explicit performance. One 

study has studied explicit emotion recognition without implicit task performance 

(Liang et al., 2017). Thus, it is imperative that this study investigates explicit and 

implicit task context, to provide a direct comparison between the two tasks.  

 

H3: Emotion processing will be affected by its task context: whereby expression 

decoding will be stronger in the implicit task compared to the explicit task, for V1, 

EVC and the face and emotion selective areas. 
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2.2 Methods 

2.2.1 Participants.  

After piloting 22 participants (17 females, 5 males; aged 21-37) in a 

behavioural study aimed to inform about design and methodology, 15 participants 

(10 females, 5 male) took part in the functional imaging experiment, aged 19-35 

years (M = 25, SD = 4). Due to excessive head motion in three participants, the final 

sample consisted of 12 participants (8 females, 4 males), aged 19-35 (M = 24.58, SD 

= 4.23). Participants were recruited via Scannexus (the company operating the 

scanning facilities at Maastricht Brain Imaging Centre) and paid for their 

participation. All were right-handed with normal or corrected to normal vision. 

Participants gave written, informed consent in accordance to approved ethics by the 

Psychology Research Ethics Committee at the University of East Anglia.    

2.2.2 Stimuli.  

Participants were presented with static grey-scale face images from the 

California Facial Expression of Emotions (CAFE) dataset, see Figure 2.13 or images 

at http://cseweb.ucsd.edu/~gary/ (Dailey, Cottrell, & Reilly, 2001). Six identities 

were chosen (3 males and 3 females) and based on the behavioural pilot study the 

following three emotions were used: disgust, fear and happiness. Non-overlapping 

samples of face information were created from these whole face (WF) stimuli 

producing four partial face (hereafter referred to as PF) conditions: eyes only (EO), 

rest of face minus eyes (Minus Eyes, ME), mouth only (MO) and rest of face minus 

mouth (Minus Mouth, MM) conditions, see Figure 2.13. The WF provided a control 

condition. The stimuli, totalling 90 different combinations from six identities, three 

emotions and five PF conditions, were presented at a visual angle height of 10° using 

Psychtoolbox 3 for Matlab (Brainard, 1997; Pelli, 1997). The size of the eye and 

mouth regions, as well as the occluded regions were a visual angle height of 3.1°, 

with a 1.4° visual angle difference between the eye and mouth region.  
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Figure 2.13. Example stimuli (15 conditions, one identity); disgust, fear and 
happiness (created using WF images from CAFE dataset). 
 

2.2.3 Design and procedure. 

Participants were presented with all PF stimuli (within-subjects) and asked to 

explicitly recognise facial expression or gender on different runs while in the fMRI 

scanner, see Figure 2.14. This rapid event related experiment consisted of eight 

experimental runs lasting 444 seconds (222 TR2 volumes). Four of the experimental 

runs entailed an explicit emotion recognition task, requiring participants to recognise 

expression in a three AFC (Alternative Forced Choice) task. In the remaining four 

runs participants completed an implicit task where they were asked to recognise 

gender, two AFC. Each run comprised 90 experimental four second trials (6 

identities, 15 conditions: 3 emotions, 5 stimulus types: WF, EO, ME, MO, MM) and 

15 null events, with each stimuli being presented for one second. There was also a 12 

second fixation at the beginning and end of each run. Fixation was always on and 

participants were told to fixate throughout the run. Task order was blocked and 

counterbalanced among participants; whereby participants carried out the four runs 

of one task followed by the next. Participant responses were recorded with a button 

press; button order was also counterbalanced among subjects. Two participants only 

carried out three runs of expression. 

 

 

Whole Face Eyes Only  Minus Eyes Mouth Only  Minus Mouth 
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Figure 2.14. a. Experimental design, subjects either carried out four runs of the 
emotion task followed by four runs of the gender task (A), or subjects carried out 
four runs of the gender task followed by four runs of the emotion task (B); b. 
Sequence of stimulus presentation. 
 

Following the experimental runs participants were asked to undertake a 

retinotopic mapping session lasting 664 seconds (Morgan, Petro, & Muckli, 2016; 

Muckli et al., 2015). In this task, participants were asked to fixate on a central blue 

dot in the middle of a flashing checkerboard. The checkerboard (9.34° visual angle) 

would rotate 10 times around their central fixation point. Participants were required 

to press their button when the fixation dot changed colour from blue to red (see 

Figure 2.15). The scanning session lasted a maximum of two hours, including time 

for set up (15 minutes), anatomy scans (10 minutes), retinotopic mapping to localise 

early visual regions (15 minutes) and the main experimental runs. Participants were 

A 1 2 3 4 1 2 3 4 

EMOTION GENDER 

TIME 

B 1 2 3 4 1 2 3 4 

GENDER EMOTION 

TIME 

a. 

b.
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also shown the WF stimuli before entering the scanner to familiarise themselves with 

the stimuli.  These stimuli were printed out for the participants and they were given a 

few minutes to look at the faces (please find stimulus sheets in Appendix A). The 

experimenter showed the participants which column of faces were displaying which 

emotion and where to find the male and female faces, but no specific training was 

given. 

 

 

 

 

 

 

 

 

Figure 2.15. Retinotopy task; participants asked to fixate on the blue dot, see image 
to the left, and respond when the dot changed to red, see image on the right.  
 

2.2.4 MRI data acquisition.  

MRI data were collected with a 3T Siemens Prisma fit scanner with a 64 

channel head coil and intergrated parallel imaging techniques (Scannexus, Brains 

Unlimited, Maastricht, Netherlands). Participants were positioned head first, supine 

in the scanner. For the main runs of the experiment and the retinotopic localiser task, 

blood oxygen level-dependent (BOLD) signals were recorded with a gradient echo-

planar imaging sequence (TE = 30ms, TR = 2000ms, FOV = 200mm x 200mm, Flip 

angle = 77˚, matrix size 80x80 and slice thickness = 2.5mm (no gap) giving 2.5mm 

isotropic voxels). Data, collected from 35 oblique slices of the brain, was positioned 

over the visual cortex, temporal lobe and frontal cortex. High resolution anatomical 

scans were recorded in the same session (3DMPRAGE, 1 x 1 x 1mm3 resolution). 

2.2.5 MRI data processing. 

BrainVoyager QX [version 2.8] (BrainInnovation, Maastricht, The 

Netherlands) was used for fMRI data analysis (Goebel, Esposito, & Formisano, 

2006). Firstly, standard pre-processing steps were applied for each subject 

independently, these included slice scan time correction, 3D motion correction and 

temporal filtering. No spatial smoothing was carried out to maintain voxel 
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resolution. Anatomical and functional data was transformed into ACPC and 

Talairach space. 

2.2.6 Retinotopic mapping. 

Advanced segmentation methods were used to create high quality meshes of 

the visual cortex. This involved upsampling the 1mm3 anatomical scans to 0.5mm3, 

segmenting the white and grey matter, selecting the occipital lobe to be reconstructed 

and creating a map on the inflated cortex. This map was created using the phase-

encoded retinotopic mapping data of the eight polar angle conditions and 

subsequently was used to define the early visual regions (Morgan et al., 2016) (see 

Figure 2.16). Linear cross correlation analysis was employed to correlate the 

maximally responsive V1 voxels with the number of lags per hemisphere (Goebel, 

Khorram-Sefat, Muckli, Hacker, & Singer, 1998).  

Thus, the predicted hemodynamic signal time course was correlated for the 

first 1/8th of stimulation cycle, corresponding to a 45° visual angle, and this reference 

function was shifted sequentially to match the recording time (4 seconds) for one 

volume (Muckli, Kohler, Kriegeskorte, & Singer, 2005; Muckli, Naumer, & Singer, 

2009). Through selecting the lag values with the highest cross-classification voxels, 

the visual cortex was encoded by pseudo-colours (based on their intensities) (Muckli 

et al., 2005). These were then projected as surface patches (triangles) on each 

individuals reconstructed cortex; the boundaries of retinotopic cortical areas V1, V2, 

V3 were manually estimated on the corresponding inflated cortical surface (Muckli 

et al., 2005). The red, orange and yellow colours delineate boundaries of V1-V3 in 

the right upper hemisphere and left lower hemisphere; the blue and green colours 

delineate boundaries in the upper left hemisphere and lower right hemisphere, see 

Figure 2.16. 
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Figure 2.16. Example of retinotopic mapping; the borders between early visual 
regions are shown in white, V1-V3. 
 

2.2.7 Analysis. 
For the multivariate analyses, a GLM was applied to estimate response 

amplitudes independently for each voxel in each run on a single trial basis (5 PF 

conditions X 3 expressions X 6 identities, giving 90 predictors per run, plus 

confound). The resulting beta weights estimate peak activation for each single-trial, 

based on a standard 2γ model of hemodynamic response function (F. W. Smith & 

Muckli, 2010). These beta weight voxel estimates formed the input for the pattern 

classification analyses described below.   

For univariate region of interest analysis of V1, a deconvolution analysis was 

necessary to accurately model the hemodynamic response function (HRF) in each 

condition. A general linear model (GLM) was performed with 10 predictors per 

condition (5 PF conditions X 3 emotions, totalling 150 predictors) to fully model the 

HRF per condition for each subject. The beta values for this analysis were extracted 

using a minimum threshold (approximately 6000 voxels for each participant) of 

significant voxels in V1. Time points three and four were extracted and averaged 

together to estimate peak activity of explicit and implicit expression perception; this 

gave the peak amplitude after stimulus for all subjects.  

For the univariate whole brain random effects (RFX) analysis (WBA) 

(Appendix B), a deconvolution analysis was again necessary, however, unlike the 

Left Hemisphere Right Hemisphere 
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previous analyses, the data was spatially smoothed with a Gaussian Filter function of 

full width half maximum (FWHM) of 6mm. To identify active brain regions, 

corrected for multiple comparisons, a cluster threshold of 200 voxels (cluster level p 

< .05) was applied at t = 4.5 (corrected to voxel-wise p < .001) using the Cluster-

level Statistical Threshold Estimator [Brain Voyager Qx Plug in]. Two analyses were 

carried out; the first analysis was a contrast between explicit and implicit expression 

recognition, whilst the second contrasted activated brain regions for WF against ME 

and MM.  

2.2.8 Additional face and emotion related ROI’s. 

Five other ROIs were selected to investigate the potential role of several 

higher level visual or emotional areas to effects observed within retinotopically 

defined V1. These ROIs, consisting of the fusiform gyrus (FG), superior temporal 

sulcus (STS), inferior occipital gyrus (IOG), amygdala (AMY) and insula (INS), 

were defined from a meta-analysis in the NeuroSynth database (Yarkoni, Poldrack, 

Nichols, Van Essen, & Wager, 2011), see Table 2.1. These regions were chosen 

based on a previous study by Wegrzyn et al. (2015). Regions were generated from 

running a meta-analysis for a particular anatomical keyword (e.g. inferior occipital) 

using the reverse inference option and saving the generated statistical map (FDR 

corrected at q = .01) (Yarkoni et al., 2011). For comparability to Wegrzyn et al. 

(2015) a set of several voxel sizes in each ROI were defined (50, 100, 200, 400, 800) 

and the results were averaged across these voxel sizes.  
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Table 2.1.  

Selected Reverse Inference Maps for ROI’s downloaded from www.neurosynth.org 

on 27th July 2016. As of that date, the database consisted of 11406 studies. Peak 

voxel coordinates defined in Talairach space using BrainVoyager QX.  

 

2.2.9 Multivariate pattern classification analysis. 

Classifiers were built independently for each ROI (including the 

retinotopically defined visual regions, and the higher order visual/emotional 

regions). Based on the retinotopy data, the 100 most visually sensitive voxels were 

extracted from V1, V2 and V3; as well as 1000 voxels from early visual cortex 

(EVC) as a whole for feature selection. Results from V2, V3 can be found in 

Appendix C. Furthermore, five different voxel sizes for each ROI defined from 

Neurosynth were extracted, including 50, 100, 200, 400 and 800 voxels (based on 

Wegreyzn et al’s., 2015).  

Pattern classifiers were trained to discriminate between the three expressions, 

independently for each PF condition and task, using a Linear Support Vector 

Machine (LIBSVM 3.12 toolbox, Chang & Lin, 2011). Accordingly, these classifiers 

were trained to learn the mapping between multivariate observations of brain 

activation and the expression condition presented, to test whether there was pattern 

information to discriminate between the emotions for each PF condition (in ROIs). 

The classifiers were trained with beta values from a set of single-trial brain activity 

patterns. These were tested on independent single trials (beta weights) for each 

stimulus condition in the independent set of test data. An n-fold leave-one-run-out 

ROI 
 

Neurosynth 

keyword 

Number of 

studies 

Peak voxel 

 

x y z 

Lateral fusiform 

gyrus 

‘fusiform gyrus’ 475 -40 -50 -21 

Superior temporal 

sulcus 

‘sts’ 181 -58 -17 -6 

Inferior occipital gyri ‘inferior occipital’ 81 47 -77 -12 

Amygdala ‘amygdala’ 1245 -22 -4 -17 

Insula ‘insular cortex’ 185 35 -8 9 
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cross-validation approach was used to estimate performance, whereby the model was 

built from n – 1 runs and tested on the nth independent run (F. W. Smith & Goodale, 

2015; F. W. Smith & Muckli, 2010). This procedure minimises the problem of 

overfitting data. 

In further cross-classification analyses (hereafter referred to as XC) the 

classifier was trained to discriminate expression from one PF condition and tested on 

another, see Figure 2.17. This analysis was carried out on three pairs of conditions 

containing non-overlapping samples of face information: eye region and rest of face 

minus eye region (EO and ME), mouth region and rest of face minus mouth region 

(MO and MM) and, finally, the eye and mouth regions (EO and MO). In the final 

pair of conditions receptive cells in V1 are prevented from overlapping, as the 

typical maximum is 1˚ of receptive field size in the centre of V1 (up to eccentricities 

of 12˚) (A. T. Smith, Singh, Williams, & Greenlee, 2001) and there is a featural 1.4˚ 

angle separation between the stimuli in this study. Again an n-fold leave-one-run-out 

cross-validation approach was used. Performance for each direction of training and 

testing the classifier was computed and averaged (e.g. train eye region and test rest 

of face minus eyes, with train rest of face minus eyes and test eye region). Again, 

this data was trained on single-trial brain activity patterns and tested on single-trial 

brain activity patterns. For each ROI, a repeated measures ANOVA was conducted 

to investigate task and PF condition, or cross-classified PF pair, on decoding 

accuracy. The Greenhouse-Geisser correction was reported if sphericity was violated 

and the estimated epsilon was less than 0.75; the Huynh-Feldt correction was 

reported if the estimated epsilon was greater than 0.75, this correction was 

recommended by Girden (Field, 2009). For all analyses, decoding accuracy was 

reported for each PF condition using one-tailed one-sample t-test results with chance 

level at 33.3%. Significance levels are presented on graphs to p < .05 and p < .01. 

The LIBSVM toolbox (version 3.12) was employed (Chang & Lin, 2011). 

Default parameters were used for the linear SVM with C = 1. Before inputting into 

the SVM, the training data was normalised to lie within -1 and 1, with the test data 

normalised using the relevant parameters from the training data (max, range) (Chang 

& Lin, 2011; F. W. Smith & Goodale, 2015; F. W. Smith & Muckli, 2010; Vetter et 

al., 2014). 
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Figure 2.17. Example MVPA analysis; testing for pattern similarity in non-
overlapping PF conditions, namely EO vs ME. 
 

2.3 Results 

2.3.1 Behavioural results. 

Behavioural data revealed that participants, as expected, subjectively 

performed better at the gender task (M = 95.97%, SD = 5.94%) than the expression 

task (M = 82.42%, SD = 17.3%) across all PF conditions. With closer analysis of the 

PF conditions, see Table 2.2, it appears that participants performance was highest in 

the WF conditions, followed by MM and ME in the expression task (see Figure 

2.18), and ME and MM in the gender task. Further, when comparing emotion 

recognition accuracy; happiness was subjectively the most recognisable emotion (M 

= 95.16%, SD = 7.08%), followed by disgust (M = 82.2%, SD = 13.96%) and then 

fear (M = 69.88, SD = 18.4%). 
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Table 2.2. 

All to 2d.p in percentage. WF: whole face, EO: eyes only, ME: minus eyes, MO: 

mouth only, MM: minus mouth. 

Task WF EO ME MO MM 

Expression 85.53  

(SD = 15.42) 

80.21 

(SD = 15.93) 

82.87 

(SD = 18.9) 

78.86 

(SD = 21.39) 

84.61 

(SD = 13.85) 

 

Gender 

 

98.96 

(SD = 1.97) 

90.28 

(SD = 9.55) 

97.45 

(SD = 2.83) 

95.83 

(SD = 4.41) 

97.34 

(SD = 3.52) 

 

2.3.1.1 Emotion accuracy. 

A two-way repeated measures ANOVA was employed to explore the effects 

of PF condition and emotion on accuracy. In the expression task, there was a 

significant main effect of PF condition on accuracy, F(4, 44) = 4.851, p = .002, p
2 = 

.306, as well as a significant main effect of emotion on accuracy, F(2, 22) = 24.686, 

p < .001, p
2 = .692. Collapsed across PF conditions, post-hoc pairwise comparisons 

with Bonferroni correction, showed accuracy rates for both disgust and fear 

statistically different from happiness (p < .01); with no significant accuracy 

difference between disgust and fear (p = .062). Furthermore, there was a significant 

interaction between PF condition and emotion, F(3.270, 35.965) = 11.783, p < .001, 

p
2 = .517 (greenhouse-geisser corrected). 
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Figure 2.18. Overall recognition accuracy (%) in each PF condition for each 

emotion. 

 

As a result of the significant interaction, a simple effects analysis was 

undertaken, whereby eight separate repeated measures ANOVA’s were carried out. 

Firstly the effect of emotion at each PF condition was investigated by carrying out 

five ANOVAs (all five were significant at p < .05) and then the effect of PF 

condition for each emotion in turn was investigated by carrying out three separate 

ANOVAs (all three were significant at p < .05), these results can be found in 

Appendix D (Table D1 and Table D2). Additional post-hoc Bonferroni and paired 

sample t-tests were carried out to understand the differences between the conditions, 

see Figures 2.19 and 2.20.   

A. WF      D. MO    
  Disgust Fear Happy    Disgust Fear Happy 

Disgust        Disgust       

Fear         Fear        

Happy       Happy       
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B. EO      E. MM    
  Disgust Fear Happy    Disgust Fear Happy 

Disgust        Disgust       

Fear  p = .059      Fear        

Happy        Happy       

C. ME       
  Disgust Fear Happy  p < .05 corrected (bonferroni)  
Disgust        p < .05 uncorrected   
Fear         p > .05    
Happy            

Figure 2.19. Paired sample t-test results comparing the differences between the 
emotions for each PF condition (see Table D3 in Appendix D for statistics). 
 

Overall, these figures show that there were fewer differences between the 

emotions in the MM condition whereby participants showed similar accuracy across 

the three emotions (Figure 2.19 & 2.18). Participants showed greater differences in 

accuracy between all the emotions when there was mouth information present.  

A. Disgust       
  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only           

Minus Eyes           

Mouth Only p = .051         

Minus Mouth           

B. Fear      
  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only           

Minus Eyes           

Mouth Only           

Minus Mouth           

C. Happy       
  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only           

Minus Eyes           

Mouth Only   p = .053       

Minus Mouth                 
p < .05 corrected (bonferroni)    
p < .05 uncorrected     
p > .05      

Figure 2.20. Paired sample t-test results comparing the differences between the PF 
conditions for each emotion (see Table D4 in Appendix D for statistics).  
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Results for disgust recognition (Figure 2.20A) show the EO condition 

significantly different from all other conditions; looking into the statistics of this the 

subjects are significantly worse at recognising disgust from purely eye information 

(M = 67.5% in comparison to the averaged mean of the other four PF condition = 

85.9%). This is in line with previous findings showing humans reliance on 

information from the nose and mouth region to detect disgust (F. W. Smith & 

Schyns, 2009; M. L. Smith & Merlusca, 2014).   

Similarly, results for fear recognition (Figure 2.20B) show the EO condition 

being statistically different from almost all other PF conditions. However, in 

comparison to disgust recognition this shows the importance of the eyes in 

recognising fear, with subjects performing significantly better (p < .05 Bonferroni 

corrected post-hoc pairwise comparison) in the EO condition (M = 81.6%) compared 

to the ME (M = 63.4%) and the MO condition (M = 55.9%). Fear recognition is the 

lowest in the MO condition, this is also significantly different from the MM 

condition. This supports literature detailing the importance of the eyes and “eye 

whites” in fear recognition (F. W. Smith & Schyns, 2009; M. L. Smith et al., 2005; 

M. L. Smith & Merlusca, 2014; Whalen et al., 2004). The finding of no difference in 

recognising fear in the MM and EO condition further supports this, as these 

conditions both contain information from the eyes.   

The results for happy recognition suggest few differences in accuracy 

between the PF conditions (Figure 2.20C); participant’s performance was similar 

when presented with a WF compared to ME and MO (Figure 2.18). Looking closer 

into the mean performance values, differences again arose in the EO (91.6%) and 

minus mouth (91.3%) conditions (with the M of other conditions – 97.6%), lending 

similarities to disgust recognition and in line with previous literature detailing the 

importance of the mouth in happiness recognition, subjects performed worse in these 

conditions (F. W. Smith & Schyns, 2009; M. L. Smith et al., 2005). 

2.3.1.2 Gender accuracy. 

A two-way repeated measures ANOVA was employed to explore the effects 

of PF condition and gender on accuracy in the gender task. In the gender task, there 

was a significant main effect of gender on accuracy, F(1, 11) = 6.592, p = .026, p
2 = 

.375, with participants significantly more accurate at recognising the male faces (M 

= 97.13%, SD = 3.23%) than the female faces (M = 94.81%, SD = 7.61%), see 
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Figure 2.21. In addition, there was a significant main effect of PF condition on 

accuracy, F(2.081, 22.890) = 15.219, p < .001, p
2 = .580 (greenhouse-geisser 

corrected). These effects are driven by the EO condition, as there were significant 

post-hoc pairwise comparisons, with Bonferroni correction, between the EO and WF 

condition (p = .001), EO and ME condition (p = .012) as well as the EO and MM 

condition (p = .002). Furthermore, there was a significant interaction between PF 

condition and gender, F(1.765, 19.415) = 14.453, p < .001, p
2 = .568 (greenhouse-

geisser corrected).   

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 

Figure 2.21. Showing overall recognition accuracy (%) in each PF condition 
between male and female stimuli. 

 

Again, as a result of the significant interaction, a simple effects analysis was 

undertaken. ANOVAs testing the effect of gender for each PF condition only found 

significance in the EO condition (F(1, 11) = 19.809, p = .001, p
2 = .643). Testing 

the effect of PF condition on gender found significance for both male and female 

faces (p < .01); the simple effects ANOVA results can be found in Table D5 and 
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Table D6 (Appendix D). Further post-hoc tests and paired sample t-tests were carried 

out to establish the differences between the PF conditions for male and female faces, 

see Figure 2.22.  

Figure 2.22. Paired sample t-test results comparing the differences between the PF 
conditions for male and female faces (see Table D7 in Appendix D for statistics: t-
value, df and p-value). 
 

These results suggest that it is harder to recognise male faces in ME or MO 

conditions compared to WF conditions, therefore indicative of using the eyes more 

to make a judgement on a male face (M. L. Smith, Gosselin, & Schyns, 2004). 

Generally recognising male faces is accurate across all PF conditions, whereas, when 

recognising female faces it seems that the EO condition is significantly different 

from all other conditions. It is unclear why it would be hard to recognise if a face is 

female from just seeing their eyes, but it is suggestive that to recognise a female 

either more mouth information or broader face information may be used. 

2.3.2 Retinotopy. 

 The principal objective of this study was to investigate the decoding of 

expression across conditions with non-overlapping feature information in early 

visual regions (V1 and EVC); as such the main interest lies within the XC effects. 

However, to help understand these, the basic decoding results for each region will be 

presented first, followed by the XC results. 

A. Male       
  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only           

Minus Eyes           

Mouth Only           

Minus Mouth           

B. Female       
  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only           

Minus Eyes           

Mouth Only           

Minus Mouth           
      
P < .05 corrected (bonferroni)    
p < .05 uncorrected     
p > .05      
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2.3.2.1 Basic decoding.  

Results for decoding of expression in V1 and EVC are presented first; these 

are split by task for each PF condition. Explicit expression decoding refers to when a 

participant is performing the emotion recognition task and the classifier is decoding 

emotion in their brain, whereas implicit expression decoding refers to when a 

participant is asked to judge gender (between male and female faces) but the 

classifier is again decoding emotion in their brain.  

2.3.2.1.1 Primary visual cortex (V1). 

For decoding of expression, one sample t-tests showed explicit decoding in 

V1 significantly above chance in the WF (t(11) = 1.823, p = .048, d = 0.526 

(medium effect-size)), ME (t(11) = 1.847, p = .046, d = 0.533 (medium effect-size)) 

and MO (t(11) = 6.111, p < .001, d = 1.764 (large effect-size)) conditions, see Figure 

2.23. Implicit decoding of expression, in contrast, was subjectively higher and 

reliable in all PF conditions (p < .01) above chance; t-test results can be found in 

Table D8 (Appendix D). A repeated measures ANOVA showed a main effect of PF 

condition on decoding accuracy, F(4, 44) = 4.308, p = .005, p
2 = .281, as well as a 

significant main effect of task, F(1, 11) = 34.507, p < .001, p
2 = .758, with decoding 

accuracy significantly higher in the implicit task (M = 51%) compared to the explicit 

task (M = 37%). Additionally there was an interaction between PF condition and 

task on decoding accuracy, F(4, 44) = 5.197, p = .002, p
2 = .321.  

As a result of the significant interaction, a separate ANOVA was carried out 

for each task. In the explicit task, a repeated measures ANOVA showed no 

significant main effect of PF condition, F(4, 44) = .823, p = .518, p
2 = .070, 

whereas in the implicit task there was a significant main effect of PF condition, F(4, 

44) = 8.545, p < .001, p
2 = .437.   

Post-hoc pairwise comparisons with Bonferroni correction show significant 

differences between WF and ME (p = .033), EO and ME (p = .001) as well as the 

ME and MO conditions (p < .001), such that decoding accuracy in the ME condition 

is significantly higher than WF, EO and MO. Furthermore, paired sample t-tests 

were carried out to explore the effect of task for each PF condition, apart from in the 

MO condition, there was a significant difference between the tasks in each PF 

condition (p < .05; t-test results can be found in Table D9, Appendix D).  
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Figure 2.23. Explicit and implicit expression decoding accuracy of the PF conditions 
V1, significant results from one-sample t-tests represented with stars. 
 

2.3.2.1.2 Early visual cortex. 

For decoding expression from EVC (V1-V3), one sample t-tests show greater 

explicit decoding; with performance significantly above chance in the WF (t(11) = 

4.154, p < .001, d = 1.199 (large effect-size)), MO (t(11) = 6.351, p < .001, d = 

1.833 (large effect-size)) and MM conditions t(11) = 2.449, p = .016, d = 0.707 

(medium effect-size)), see Figure 2.24. Analogous to V1, all implicit conditions were 

significantly above chance (p < .001); t-test results can be found in Table D10 

(Appendix D). A repeated measures ANOVA showed a highly significant main 

effect of PF condition on decoding accuracy, F(4, 44) = 6.985, p < .001, p
2 = .388, 

with higher decoding accuracies in the ME and MM conditions demonstrated with 

significant post-hoc pairwise comparisons, with Bonferroni correction, between the 

EO and ME (p = .008), EO and MM (p = .004) and finally the MO and MM 

conditions (p = .016). There was also a highly significant main effect of task on 

decoding accuracy, F(1, 11) = 149.739, p < .001, p
2 = .932, with decoding accuracy 

significantly higher in the implicit (M = 66.5%) compared to the explicit task (M = 

/ 

/ 
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39.6%), as well as a significant interaction between PF condition and task, F(4, 44) = 

9.294, p < .001, p
2 = 458. Further paired sample t-tests were carried out to explore 

the effect of task for each PF condition, these were all significant between the PF 

conditions (p < .001); t-test results can be found in Table D11 (Appendix D). As a 

result of the significant interaction, a separate ANOVA was carried out for each task. 

In the explicit task, a repeated measures ANOVA showed a non-significant main 

effect of PF condition, F(4, 44) = 1.458, p = .231, p
2 = .117. However, in the 

implicit task, a repeated measures ANOVA showed a significant main effect of PF 

condition, F(4, 44) = 15.995, p < .001, p
2 = 593. Post-hoc pairwise comparisons, 

with Bonferroni correction, show significant differences between WF and ME (p = 

.009), EO and ME (p < .001), EO and MM (p = .002), ME and MO (p = .002), as 

well as MO and MM (p = .004); highlighting that decoding accuracies are 

significantly higher in the ME and MM condition. 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 2.24. Explicit and implicit expression decoding accuracy of the PF conditions 
for 1000 voxels in EVC, significant results from one-sample t-tests represented with 
stars. 
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2.3.2.2 Cross classification (XC). 

2.3.2.2.1 Primary visual cortex (V1). 

One sample t-tests show implicit cross-decoding in V1 significantly above 

chance for the EO and ME (t(11) = 5.033, p < .001, d = 1.453 (large effect-size)) as 

well as the MO and MM pair (t(11) = 6.031, p < .001, d = 1.741 (large effect-size)), 

with explicit cross-decoding significantly above chance for the EO and MO pair 

(t(11) = 2.107, p = .029, d = 0.608 (medium effect-size)); see Figure 2.25 and other 

t-test results in Table D12 (Appendix D). A repeated measures ANOVA showed a 

significant main effect of task, F(1, 11) = 8.03, p = .016, p
2 = .422, and cross-

classification pair, F(2, 22) = 18.75, p < .001, p
2 = .630, on decoding accuracy in 

V1, as well as a significant interaction, F(2, 22) = 23.877, p < .001, p
2 = .685. As a 

result of the significant interaction, a separate ANOVA for each task was carried out. 

In the explicit task, a repeated measures ANOVA showed no main effect of 

condition pair, F(2, 22) = 1.270, p = .301, p
2 = .104. However, in the implicit task 

there was a significant effect of condition pair, F(2, 22) = 32.228, p < .001, p
2 = 

.746, with all post-hoc pairwise comparisons, with Bonferroni correction, significant 

between the classification pairs (p < .05). Paired sample t-tests were carried out to 

explore the effect of task for each condition pair, these were all significant (p < .01; 

t-test results can be found in Table D13, Appendix D); with the implicit conditions 

significantly higher than the explicit conditions in the first two condition pairs (EO 

and ME; MO and MM), but significantly lower than the explicit condition in the last 

condition pair (EO and MO). To look into these findings further, confusion matrices 

can be found in Appendix E.  
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Figure 2.25. Explicit and implicit expression decoding accuracy of the condition 
pairs of PF conditions in V1. Results from one-sample t-tests included with stars 
representing significance.  
 

2.3.2.2.2 Early visual cortex. 

Akin to V1, one sample t-tests show implicit expression decoding 

significantly above chance for the EO and ME (t(11) = 12.718, p < .001, d = 3.671 

(large effect-size)) as well as the MO and MM (t(11) = 4.918, p < .001, d = 1.420 

(large effect-size)) condition pair, with explicit cross-decoding significant in the EO 

and MO pair (t(11) = 5.065, p < .001, d = 1.462 (large effect-size)). There is 

additional significance above chance in the explicit decoding of the MO and MM 

condition pair (t(11) = 2.964, p = .006, d = 0.856 (large effect-size)), see Figure 2.26 

and other t-test results in Table D14 (Appendix D). Similar to V1, a repeated 

measures ANOVA showed a significant main effect of task (F(1, 11) = 11.296, p = 

.006, p
2 = .507) and cross-classification comparison (F(2, 22) = 35.849, p < .001, 

p
2 = .765) on decoding accuracy, as well as a significant interaction (F(1.305, 

14.358) = 87.945, p < .001, p
2 = .889 (greenhouse-geisser corrected)). To explore 

the effect of task for each condition pair, paired sample t-tests were carried out, these 

/ 

/ 
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were significant at p < .001 in the EO and ME pair, as well as the EO and MO pair; 

with the implicit condition significantly higher than the explicit condition in EO and 

ME pair but significantly lower than the explicit condition in the EO and MO pair 

(see Table D15, Appendix D, for the t-test results). As a result of the significant 

interaction, a separate ANOVA for each task was carried out. In the explicit there 

was no main effect of condition pair, F(2, 22) = 1.268, p = .301, p
2 = .103; whereas 

there was a main effect of condition pair in the implicit task, F(1.289, 14.183) = 

90.080, p < .001, p
2 = .891 (greenhouse-geisser corrected). Pairwise (Bonferroni 

corrected) comparisons between the condition pairs are all highly significant (p < 

.001), with decoding accuracies in the EO vs ME pair significantly higher than the 

other two condition pairs and the MO vs MM pair significantly higher than the EO 

vs MO pair. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.26. Explicit and implicit expression decoding accuracy of the condition 
pairs of PF conditions in EVC. Results from one-sample t-tests included with stars 
representing significance. 
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2.3.2.3 Permutation tests. 

Permutation tests were performed to be sure that single-trial classification 

performance was around chance in the implicit conditions. These tests, using 1000 

iterations per subject, randomised the relationship between stimulus labels and data, 

with the same cross-validation script and ROI’s selected as the pattern classification 

analysis. Permutation analyses were performed in EVC (V1-V3) for basic and cross-

decoding. Mean performance was, as expected, close to chance of 33%.  

2.3.3 Additional face and emotion related ROI’s. 

2.3.3.1 Basic decoding. 

A 2 (task) x 5 (ROI) x 5 (voxel size) x 5 (PF) repeated measures ANOVA 

was carried out (see full results write-up in Appendix F). ROI and voxel size were 

included in the analysis for comparability to Wegrzyn et al. (2015). Wegrzyn et al. 

(2015) found no interaction of ROI by voxel size and subsequently averaged across 

the voxel sizes. This method will also be applied in this study if no interactions are 

found. In respect to voxel size, there appears to be a trend between higher amounts 

of voxels and greater decoding (see Figure 2.27), however, there was no significance 

within pairwise comparisons and no significant interactions with voxel size; further 

analyses will thus average across this variable akin to Wegrzyn et al. (2015). 
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Figure 2.27. Showing decoding accuracy across voxel sizes for each ROI.  

 

Similar to the retinotopy analysis, the five ROI’s have been studied 

individually to investigate the effects of task and PF condition on decoding accuracy. 

Both basic and cross classification implicit and explicit expression decoding were 

investigated.  

2.3.3.1.1 Fusiform gyrus (FG). 

One-sample t-tests show implicit expression decoding in the FG significantly 

above chance in the WF (t(59) = 2.584, p = .006, d = 0.334 (small effect-size)), ME 

(t(59) = 7.080, p < .001, d = 0.914 (large effect-size)), MO (t(59) = 3.125, p = .001, d 

= 0.403 (small effect-size)) and MM conditions (t(59) = 4.225, p < .001, d = 0.545 

(medium effect-size)), with explicit expression decoding significant above chance in 

the WF (t(59) = 3.802, p < .001, d = 0.491 (small effect-size)), EO (t(59) = 2.279, p 

= .013, d = 0.294 (small effect-size)), ME (t(59) = 2.407, p = .001, d = 0.311 (small 

effect-size)) and MO (t(59) = 6.253, p < .001, d = 0.807 (large effect-size)), see 

Figure 2.28 and Table D16 (Appendix D). A repeated measures ANOVA showed a 

non-significant main effect of task, F(1, 59) = 1.735, p = .193, p
2 = .029, but a 
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strong significant main effect of PF condition on decoding accuracy, F(4, 236) = 

3.942, p = .004, p
2 = .063, as well as a significant interaction, F(3.600, 221.388) = 

4.565, p = .002, p
2 = .072 (Huynh-Feldt correction).  

As a result of the significant interaction, a separate one-way ANOVA, with 

PF condition as a factor, was carried out for each task. In the explicit task, there was 

a significant main effect of PF condition, F(2, 236) = 3.376, p = .010, p
2 = .054, 

with post-hoc Bonferroni corrected pairwise comparisons showing significance 

between the MO and MM condition (p = .001). There is also a significant main 

effect of PF condition in the implicit task, F(4, 236) = 5.004, p = .001, p
2 = .078, 

with post-hoc Bonferroni corrected pairwise comparisons showing significance 

between the EO and ME condition (p = .001). Paired sample t-tests were carried out 

to explore the effect of task for each PF condition, these found decoding accuracy 

between the tasks to be significantly different in the ME (t(59) = -3.350, p = .001, d 

= -0.433) and MM conditions (t(59) = -3.185, p = .002, d = -0.411), this mirrors the 

V1 effect (see other t-test results in Table D17, Appendix D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.28. Explicit and implicit expression decoding accuracy of the PF conditions 
in the FG, significant results from one-sample t-tests represented with stars. 

/ 

/ 
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2.3.3.1.2 Superior temporal sulcus (STS). 

One-sample t-tests show explicit expression decoding in the STS 

significantly above chance in the WF (t(59) = 4.039, p < .001, d = 0.521 (medium 

effect-size)), EO (t(59) = 3.676, p < .001, d = 0.475 (small effect-size)), ME (t(59) = 

5.598, p < .001, d = 0.723 (medium effect-size)) and MO conditions (t(59) = 5.792, p 

< .001, d = 0.748 (medium effect size)), with implicit expression decoding 

significant in the MO condition (t(59) = 2.872, p = .003, d = 0.371 (small effect-

size)), see Figure 2.29 and other t-test results in Table D18 (Appendix D). A 

repeated measures ANOVA showed a main effect of PF condition of decoding 

accuracy, F(3.672, 216.674) = 3.411, p = .012, p
2 = .055 (Huynh-Feldt correction), 

as well as a significant main effect of task, F(1, 59) = 52.885, p < .001, p
2 = .473, 

with decoding accuracy significantly higher in the explicit task (M = 37.3%) 

compared to the implicit task (M = 33.7%). There was also a near significant 

interaction between PF condition and task on decoding accuracy, F(4, 236) = 2.344, 

p = .055, p
2 = .038. As the interaction was near significance, further exploratory 

post-hoc Bonferroni corrected pairwise comparisons between task were carried out. 

Furthermore, exploratory paired sample t-tests showed a significant effect of task in 

all PF conditions (p < .01) except MM, see full results in Table D19 (Appendix D). 
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Figure 2.29. Explicit and implicit expression decoding accuracy of the PF conditions 
in STS, significant results from one-sample t-tests represented with stars.  
 

2.3.3.1.3 Inferior occipital gyrus (IOG).  

One-sample t-tests show explicit expression decoding in the IOG 

significantly above chance in the MO (t(59) = 2.905, p = .003, d = 0.375 (small 

effect-size)) and MM (t(59) = 2.106, p = .020, d = 0.272 (small effect-size)) 

conditions, with all implicit expression decoding conditions significantly above 

chance (p < .01), see Figure 2.30 and other t-test results in Table D20 (Appendix D). 

A repeated measures ANOVA showed a main effect of PF condition on decoding 

accuracy, F(4, 236) = 7.557, p < .001, p
2 = .114, as well as a significant main effect 

of task, F(1, 59) = 33.967, p < .001, p
2 = .365, with decoding accuracy significantly 

higher in the implicit task (M = 39%) compared to the explicit task (M = 34.1%). 

Additionally there was a significant interaction between PF condition and task on 

decoding accuracy, F(3.728, 220.016) = 14.966, p < .001, p
2 = .202 (Huynh-Feldt 

correction). Post-hoc pairwise comparisons, with Bonferroni correction, show 

significant differences between the WF and MM condition (p = .028), the EO and 

ME condition (p = .001) and finally the EO and MM condition (p < .001).  

/ 

/ 
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 As a result of the significant interaction, one-way ANOVAs, with PF 

condition as a factor, were carried out for each task separately. In the explicit task, 

there was a significant main effect of PF condition, F(4, 236) = 3.470, p = .009, p
2 = 

.056, with post-hoc Bonferroni corrected pairwise comparisons showing decoding 

accuracy in the ME condition to be significantly lower than the MO condition (p = 

.009). In the implicit task, there was also a significant main effect of PF condition, 

F(3.648, 215.225) = 16.721, p < .001, p
2 = .221 (Huynh-Feldt correction), with 

post-hoc Bonferroni corrected pairwise comparisons showing decoding accuracy to 

be significantly higher in the ME condition compared to the WF (p < .001), EO (p < 

.001) and MO (p < .001) condition. As well as this, post-hoc Bonferroni corrected 

pairwise comparisons show decoding accuracy to be significantly higher in the MM 

condition compared to the EO (p < .001) and MO condition (p = .003). Paired 

sample t-tests were also carried out to explore the effect of task for each PF 

condition, apart from in the MO condition, decoding accuracy was significantly 

different in all other PF conditions (p < .05; t-test results can be found in Table D21, 

Appendix D).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.30. Explicit and implicit expression decoding accuracy of the PF conditions 
in the IOG, significant results from one-sample t-tests represented with stars. 
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2.3.3.1.4 Amygdala (AMY). 

 One-sample t-tests show implicit expression decoding in the amygdala only 

significantly above chance in the EO condition (t(59) = 3.808, p < .001, d = 0.492 

(small effect-size)). In explicit expression decoding, the ME condition is 

significantly above chance (t(59) = 2.356, p = .011, d = 0.304 (small effect-size)), 

other t-test results can be found in Table D22 (Appendix D). A repeated measures 

ANOVA showed a non-significant main effect of task, F(1, 59) = .033, p = .856, p
2 

= .001, but a strong significant main effect of PF condition on decoding accuracy, 

F(4, 236) = 3.821, p = .005, p
2 = .061, as well as a significant interaction F(3.799, 

224.129) = 4.900, p = .001, p
2 = .077 (Huynh-Feldt correction).  

As a result of the significant interaction, one-way ANOVAs, with PF 

condition as a factor, were carried out for each task. In the explicit task, there was no 

significant main effect of PF condition, F(3.415, 201.492) = 2.040, p = .101, p
2 = 

.033 (Huynh-Feldt correction). Whereas in the implicit task, there was a significant 

main effect of PF condition, F(4, 236) = 6.921, p < .001, p
2 = .105. Further, post-

hoc pairwise comparisons, with Bonferroni correction, show a significant effect 

between WF and EO (p = .013), EO and ME (p = .009), and EO and MM conditions 

(p < .001). Paired sample t-tests were carried out to explore the effect of task for 

each PF condition, with significance in the EO (t(59) = -2.886, p = .005, d = -0.373) 

and ME condition (t(59) = 2.383, p = .020, d = 0.308), see Figure 2.31 and other t-

test results in Table D23 (Appendix D). This potentially reveals a cross-over effect, 

with the presence of the eyes important for implicit tasks and their absence important 

for explicit tasks.  
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Figure 2.31. Explicit and implicit expression decoding accuracy of the PF conditions 
in the amygdala. Results from one-sample t-tests included with stars representing 
significance. 
 

2.3.3.1.5 Insula (INS). 

 One-sample t-tests show explicit expression decoding in the insula 

significantly above chance in the ME (t(59) = 3.163, p = .001, d = 0.408 (small 

effect-size)) and MO condition (t(59) = 3.706, p < .001, d = 0.478 (small effect-

size)), see Figure 2.32 and other t-test results in Table D24 (Appendix D). There was 

no implicit expression decoding significant above chance (p > .05). A repeated 

measures ANOVA showed a non-significant main effect of task, F(1, 59) = 3.481, p 

= .067, p
2 = .056, and PF condition on decoding accuracy, F(3.653, 215.511) = 

1.935, p = .112, p
2 = .032 (Huynh-Feldt correction). However there was an 

interaction between task and PF, F(4, 236) = 5.517, p < .001, p
2 = .086. As a result 

of the significant interaction, a one-way ANOVA, with PF condition as a factor, was 

carried out for each task separately. In the explicit task, there is a significant main 

effect of PF condition, F(3.758, 221.727) = 6.624, p < .001, p
2 = .101 (Huynh-Feldt 

correction), with significant post-hoc Bonferroni corrected pairwise comparisons 

between EO and ME (p = .047), EO and MO (p = .009), ME and MM (p = .002) and 

/ 

/ 
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MO and MM (p = .001). There is a non-significant main effect of PF in the implicit 

task, F(3.576, 210.961) = .354, p = .820, p
2 = .006 (Huynh-Feldt correction). Paired 

sample t-tests were carried out to explore the effect of task for each PF condition, 

there was a significant difference in task for the ME (t(59) = 2.583, p = .012, d = 

0.333), MO (t(59) = 3.744, p < .001, d = 0.483) and the MM (t(59) = -2.085, p = 

.041, d = -0.269) conditions, other t-test results can be found in Table D25 

(Appendix D).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.32. Explicit and implicit expression decoding accuracy of the PF conditions 
in the insula. Results from one-sample t-tests included with stars representing 
significance.  
 

2.3.3.2 Cross classification (XC). 

A 2 (task) x 5 (ROI) x 5 (voxel size) x 3 (condition pairs) repeated measures 

ANOVA was carried out. This showed no main effect of task, F(1, 11) = .043, p = 

.839, or ROI, F(4, 44) = 2.119, p = .094, or condition pair, F(2, 22) = .045, p = .956, 

but a significant main effect of voxel size, F(4, 44) = 3.079, p = .025, p
2 = .219. In 

respect to voxel size, there appears to be a trend between higher amounts of voxels 

and greater decoding, however, there was no significance in follow-up pairwise 

/ 
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comparisons and no significant interactions with voxel size; further analyses thus 

average across this variable akin to Wegrzyn et al. (2015). 

Similar to the above, the five ROI’s have been studied individually to 

investigate the effects of task and PF condition on decoding accuracy. Expression 

decoding was investigated, looking into the effects of implicit and explicit 

expression decoding. Paired sample t-tests for each ROI show no significant 

differences between the decoding accuracies of task across condition pairs.  

2.3.3.2.1 Fusiform gyrus (FG).  

One-sample t-tests show explicit expression decoding significantly above 

chance decoding accuracy in the EO and ME condition pair (t(59) = 2.435, p = .009, 

d  = 0.314 (small effect-size)), and implicit expression decoding significantly above 

chance in the EO and ME condition pair (t(59) = 2.731, p = .004, d = 0.353 (small 

effect-size)), as well as the MO and MM condition pair (t(59) = 2.456, p = .009, d  = 

0.317 (small effect-size)), see Figure 2.33 and other t-test results in Table D26 

(Appendix D). Further a repeated measures ANOVA was conducted to investigate 

task and condition pair on decoding accuracy in the FG; this showed a non-

significant main effect of task, F(1, 59) = .121, p = .729, p
2 = .002, and condition 

pair on decoding accuracy, F(2, 118) = 2.024, p = .137, p
2 = .033, as well as a non-

significant interaction, F(2, 118) = 1.076, p = .344, p
2 = .018. 
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Figure 2.33. Explicit and implicit expression decoding accuracy of the condition 
pairs of PF conditions in the FG, significant results from one-sample t-tests 
represented with stars. 
 

2.3.3.2.2 Superior temporal sulcus (STS).  

One-sample t-tests show explicit expression decoding significantly above 

chance in the EO vs ME pair (t(59) = 3.050, p = .002, d = 0.394 (small effect-size)) 

and the EO vs MO pair (t(59) = 4.837, p < .001, d = 0.625 (medium effect-size)), 

these were also the condition pairs that were significantly above chance in the 

implicit expression decoding task (t(59) = 2.234, p = .015, d = 0.288 (small effect-

size), t(59) = 2.210, p = .016, d = 0.285 (small effect-size) respectively), see Figure 

2.34 and other t-test results in Table D27 (Appendix D). A repeated measures 

ANOVA was conducted to investigate task and condition pair on decoding accuracy 

in the STS. This showed a significant main effect of task, F(1, 59) = 6.546, p = .013, 

p
2 = .100, with decoding accuracy significantly higher in the explicit (M = 35.7%) 

compared to the implicit task (M = 34.4%). Furthermore, this showed a significant 

main effect of condition pair on decoding accuracy, F(1.834, 108.212) = 5.591, p = 

.006, p
2 = .087 (Huynh-Feldt correction), where post-hoc pairwise comparisons, 

/ 

/ 
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with Bonferroni correction, showed a significant difference between the lower 

decoding accuracies in the MO and MM condition pair compared with the higher 

decoding accuracies in the EO and MO condition pair (p = .016). However there was 

a non-significant interaction between task and condition pair on decoding accuracy, 

F(2, 118) = .947, p = .391, p
2 = .016.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.34. Explicit and implicit expression decoding accuracy of the condition 
pairs of PF conditions in the STS, significant results from one-sample t-tests 
represented with stars. 
 

2.3.3.2.3 Inferior occipital gyrus (IOG).  

 One-sample t-tests show explicit expression decoding significant in the EO to 

MO condition (t(59) = 2.432, p = .009, d = 0.314 (small effect-size)), whereas in the 

implicit expression decoding conditions the EO to ME and MO to MM conditions 

were significant (t(59) = 5.789, p < .001, d = 0.747 (medium effect-size) and t(59) = 

5.650, p < .001, d = 0.729 (medium effect-size) respectively), see Figure 2.35 and 

other t-tests in Table D28 (Appendix D). A repeated measures ANOVA was 

conducted to investigate task and condition pair on decoding accuracy in the IOG. 

This showed a significant main effect of task, F(1, 59) = 24.069, p < .001, p
2 = .290 

/ 

/ 
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and cross-classification on decoding accuracy, F(2, 118) = 3.511, p < .033, p
2 = 

.056, as well as a significant interaction, F(2, 118) = 18.087, p < .001, p
2 = .235.  

As a result of the significant interaction, separate one-way ANOVAs were 

carried out for each task. In the explicit task, a repeated measures ANOVA showed a 

significant main effect of condition pair, F(2, 118) = 5.883, p = .004, p
2 = .091, 

with post-hoc Bonferroni corrected pairwise comparisons significant between the EO 

vs ME and EO vs MO pair (p = .002). In the implicit task, there was a significant 

main effect of condition pair, F(2, 118) = 17.100, p < .001, p
2 = .225, with post-hoc 

Bonferroni corrected pairwise comparisons significant between the EO vs ME and 

EO vs MO pair, as well as the MO vs MM and EO vs MO pair (both p < .001). 

Further, a post-hoc Bonferroni corrected pairwise comparison between task shows 

decoding accuracy to be significantly higher (p < .001) in the implicit task (M = 

36%) compared to the explicit task (M = 33.4%). Paired sample t-tests were carried 

out to explore the effect of task for each condition pair, these showed a significant 

main effect of task in the EO to ME pair (t(59) = -6.598, p < .001, d = -0.852) as well 

as the MO and MM pair (t(59) = -3.666, p = .001, d = 0.473), see Figure 2.35 and 

other t-tests in Table D29 (Appendix D). 
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Figure 2.35. Explicit and implicit expression decoding accuracy of the condition 
pairs of PF conditions in the IOG. One-sample t-test results included with stars 
representing significance above chance.  
 

2.3.3.2.4 Amygdala (AMY). 

One-sample t-tests show explicit expression decoding significant in the EO to 

MO condition (t(59) = 1.842, p = .035, d = 0.238 (small effect-size)) but no 

significant PF conditions in implicit expression decoding (p > .05), see Figure 2.36 

and all t-test results in Table D30 (Appendix D). A repeated measures ANOVA was 

conducted to investigate task and condition pair on decoding accuracy in the 

amygdala. This showed a non-significant main effect of task, F(1, 59) = 1.701, p = 

.197, p
2 = .028, and cross-classification on decoding accuracy, F(2, 118) = .008, p 

= .992, p
2 < .001, as well as a non-significant interaction, F(1.826, 107.722) = 

2.910, p = .064, p
2 = .047 (Huynh-Feldt correction).  
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Figure 2.36. Explicit and implicit expression decoding accuracy of the cross 
classified pairs of PF conditions in the amygdala. One-sample t-test results included 
with stars representing significance above chance. 
 

2.3.3.2.5 Insula (INS). 

One-sample t-tests also show explicit expression decoding significant in the 

EO to MO condition (t(59) = 1.952, p = .028 , d = 0.252 (small effect-size)) but no 

significant PF conditions in implicit expression decoding (p > .05), see Figure 2.37 

and all t-test results in Table D31 (Appendix D). A repeated measures ANOVA was 

conducted to investigate task and condition pair in the insula. This showed a non-

significant main effect of task, F(1, 59) =  2.261, p = .138, p
2 = .037 and cross-

classification on decoding accuracy, F(1.828, 107.873) = 1.850, p = .166, p
2 = .030 

(Huynh-Feldt correction), as well as a non-significant interaction, F(2, 118) = .246, p 

= .782, p
2 = .004. 
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Figure 2.37. Explicit and implicit expression decoding accuracy of the cross 
classified pairs of PF conditions in the insula. One-sample t-test results included with 
stars representing significance above chance.   
 

2.3.4 Univariate analysis in V1. 

As a result of finding high-level effects within the expression decoding 

analyses of V1, a subsequent univariate analysis was carried out, to investigate 

whether similar effects are shown at a univariate level for V1. Thus, a deconvolution 

design was selected due to the use of a rapid-event related paradigm. A 2 (task) x 3 

(emotion) x 5 (PF) repeated measures ANOVA was carried out. This showed no 

significant main effect of task, F(1, 11) = 2.405, p = .149, p
2 = .179, but a 

significant main effect of emotion, F(2, 22) = 14.674, p < .001, p
2 = .572 and PF 

condition, F(4, 44) = 5.848, p = .001, p
2 = .347. There was also a significant 

interaction between task and emotion, F(2, 22) = 6.160, p = .008, p
2 = .359. This 

interaction further suggests that a high-level effect is occurring in V1.   

As a result of the significant interaction, a separate ANOVA was carried out 

for each task. In the explicit task, a repeated measures ANOVA showed a significant 

main effect of emotion, F(2, 22) = 11.315, p < .001, p
2 = .507 and PF condition, 

/ 

/ 
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F(4, 44) = 4.456, p = .004, p
2 = .288, but a non-significant interaction, F(8, 88) = 

.885, p = .533, p
2 = .074. Post-hoc pairwise comparisons, with Bonferroni 

correction, show significance between disgust and happy (p = .023) as well as fear 

and happy (p = .008), whereas there were no significant post-hoc pairwise 

comparisons between the PF conditions. In the implicit task there was also a 

significant main effect of emotion, F(2, 22) = 8.107, p = .002, p
2 = .424, and PF 

condition, F(4, 44) = 2.647, p = .046, p
2 = .194, as well as a non-significant 

interaction, F(8, 88) = .899, p = .521, p
2 = .076. Post-hoc pairwise comparisons, 

with Bonferroni correction, show significance between disgust and fear (p = .008), 

but again there were no significant post-hoc pairwise comparisons between the PF 

conditions, see Figure 2.38.  

Figure 2.38. Mean beta weights of the task differences between the emotions. 
 

Paired sample t-tests were carried out to explore the effect of task for each PF 

condition, the MM condition showed significance (t(11) = 2.972, p = .013), see 

Figure 2.39 and other t-test results in Table D32 (Appendix D). Thus there is a task 

effect when the mouth is absent.  
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Figure 2.39. Univariate analysis showing the mean beta values for each PF condition 
as a function of task, explicit versus implicit expression perception. A paired samples 
t-test shows the tasks to be significantly different in the MM condition. 
 

2.4 Discussion 

 This study principally set out to explore the decoding of expression across 

conditions with non-overlapping visual inputs in V1 and EVC, and investigate how 

task context may affect this. Therefore the cross-classification PF results will be 

outlined first, with reference to other brain analyses, where applicable, to help 

understand the effects. These results will be followed by the observed task effects in 

this study.  

2.4.1 High-level information about facial expressions in V1 and EVC. 

2.4.1.1 Cross-decoding shows high-level context effect. 

The cross-decoding results are important to ascertain the role of contextual 

mechanisms (feedback and lateral connections) in early visual areas. As 

aforementioned, these results investigate whether there are similar brain 

representations across non-overlapping PF conditions. As there is no common visual 

information between the conditions, this provides a robust measure that purely taps 

into feedback and lateral connections in the brain (Greening et al., 2018). Therefore, 
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these results are important to ascertain how high-level information shapes early 

visual processing, and more specifically how feedback (and possible lateral 

connections) provide information about missing facial information potentially useful 

for expression recognition. XC analysis in V1 and EVC revealed implicit expression 

decoding across PF condition in two condition pairs, the EO to the ME, as well as 

the MO to the MM. The final condition pair, the EO to the MO, is decoded 

significantly in V1 and EVC for explicit expression decoding. The MO to the MM 

pair is also decoded significantly for explicit expression decoding in EVC. As 

similar brain representations were observed in V1 and EVC when completely 

independent parts of a face are presented, this supports the first hypothesis (H1) and 

suggests the involvement of contextual mechanisms beyond low-level processing 

(Petro et al., 2013). The presence of high-level information, accounting for how 

occluded and ambiguous stimuli are processed, is in line with predictive coding and 

recurrent feedback models of object completion (F. W. Smith & Muckli, 2010; Tang 

et al., 2014; Tang et al., 2018; Wyatte et al., 2014). Results showing EVC to contain 

information about missing facial features, is consistent with the idea that faces are 

such biologically salient signals (Pessoa & Adolphs, 2010); additionally the results 

extend previous research showing EVC to contain information about occluded 

natural scenes (F. W. Smith & Muckli, 2010).  

2.4.1.2 Task effects.  

Results show both whole and PF stimuli can be decoded in several regions in 

the brain, including early visual and face processing areas, during an explicit and 

implicit emotion recognition task. Results in V1 and EVC are similar, with 

extremely high classifier performance (decoding accuracy) discriminating between 

the emotions, across PF conditions in implicit expression decoding. This supports the 

last hypothesis (H3) that emotion processing in V1 will be affected by its task 

context, and more specifically will be stronger in the implicit compared to the 

explicit task. Past results have also shown these implicit task effects (Petro et al., 

2013). Petro et al. (2013) additionally found implicit V1 task effects in the opposite 

direction (when participants were asked to judge expression, gender information 

could be decoded); this result can also be seen in the gender decoding results of this 

study, see Appendix G. 

Classifier performance was higher than chance, and the WF condition, in the 

ME and MM implicit conditions where there is less information. In these conditions, 
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some important featural information for emotion recognition is missing, as such, in a 

purely feedforward model based on visual input, these conditions would likely be 

associated with lower brain signal. However, there is an implication that information 

is being fed back from higher brain regions to account for the missing visual input 

and predict the correct emotion. Kok, Failing, and de Lange (2014) showed that top-

down or prior expectations of a visual stimulus can activate a reliable template of the 

expected stimuli in V1 to process omitted visual stimuli efficiently. It seems 

counterintuitive that the WF condition did not produce the highest decoding 

accuracy; however, Alink, Schwiedrzik, Kohler, Singer, and Muckli (2010) explain 

that predictive visual stimuli which resemble the natural world evoke smaller V1 

responses, whilst unpredictable sensory inputs (missing facial features) require more 

activation of V1 and higher visual areas. This is further supported in the WBA for 

WF versus ME and MM stimuli, whereby these PF conditions corresponded with 

greater brain activation (see Appendix B for WBA). Additionally implicit task 

performance was higher in the XC pairs of EO to ME and MO to MM. The 

univariate analysis of V1 further shows the MM condition associated with greater 

brain activation, but it is important to note that there are no significant differences 

between this and the other PF conditions in this V1 analysis.  

2.4.1.2.1 Task changes in basic decoding. 

In the basic decoding results, there are changes between the tasks across the 

PF conditions; notably when decoding from 100 voxels in V1, significance is present 

across all conditions in the implicit task but not the explicit task. Decoding 

accuracies in explicit tasks are subjectively greater for conditions with mouth 

information present, whereby in implicit tasks high decoding accuracies are present 

for conditions where either mouth and/or eye information is present. This pattern 

change implies that differences do not simply arise as a result of accuracy. It may 

result from needing mouth information more in emotion recognition (explicit task) 

and both eye and mouth information in a gender task (implicit task); furthermore 

previous literature suggests that the eyes are used more to make a judgement on 

gender (M. L. Smith et al., 2004).  

2.4.1.2.2 Task changes in XC. 

In XC, the results for the EO to MO pair changes, with implicit task decoding 

performance being lower than explicit task performance in V1 and EVC. This was 

investigated further by running permutation tests and examining confusion matrices. 
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Permutation tests showed that classification performance was distributed around 

chance; hence, there was no bias in the classifier. The XC confusion matrices show 

happy and disgust to be systematically confused; whereby when the classifier was 

presented happy expressions, these were confused with disgust and when the 

classifier was shown disgust, the classifier thought the expression was happiness. 

However, this confusion does not explain the task difference between explicit and 

implicit task performance.   

There are several possible reasons why implicit task performance could be 

lower for the EO to MO pair. Firstly, the EO and MO conditions contain the visual 

information central for expression recognition (F. W. Smith et al., 2008; M. L. Smith 

et al., 2005), unlike the other condition pairs that contain a stimulus with an occluded 

necessary feature. Thus, in the explicit case, a greater decoding accuracy may have 

been a result of participants attending to the central features given (eyes and mouth) 

to complete the task. This would potentially explain why there would be less 

confusion in classifier decoding. In the implicit task, decoding accuracies may have 

been lower as only one of the conditions (the EO) contains visual information central 

for gender recognition (M. L. Smith et al., 2004) where the eyes needed to be 

focused on. Ironically, a lack of attention to the mouth only stimuli may have 

resulted in confusions between expressions for recognition.   

Secondly, asking the classifier to discriminate expressions from the EO to the 

MO partial face condition is the hardest test in the data, as there is a large space 

between the segments of feature information to fill. Furthermore, the missing 

information from the nose and centre of the face is important to visual scan paths of 

emotion recognition; as scanning the centre of the face allows the viewing of salient 

facial features (eyes, nose, mouth) (Horley, Williams, Gonsalvez, & Gordon, 2003; 

M. L. Smith & Merlusca, 2014). The absence of this feature information will 

predominantly affect disgust recognition. However, for this condition pair, where 

there is a 1.4° angle separation between the eye and mouth information, there was 

significance in the explicit task for V1 and EVC, giving credence to the influence of 

higher cortical feedback effects. Lateral interactions may be the main driver for 

filling in missing feature information in the previous two classifications, as in these 

cases there is no 1.4˚ separation in cells. As mentioned previously the maximum 

receptive field size in V1 is 1˚, up to eccentricities of 12˚, (A. T. Smith et al., 2001), 

thus the 1.4° separation prevents V1 cells from overlapping.  
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2.4.2 Decoding in face and emotion regions. 

2.4.2.1 Comparison between the decoding results and previous research.  

Results from the additional face processing ROI’s vary, however, similar 

patterns of decoding were observed in the FG and IOG to that of V1 and EVC; 

finding high classifier performance across implicit conditions (apart from in the EO 

condition for FG), with highest decoding in ME and MM. The ability to decode 

emotions in the FG is supported by Harry et al. (2013), Li et al. (2018), Wegrzyn et 

al. (2015) and Liang et al. (2017), whilst decoding within the IOG was found 

previously in Liang et al. (2017) and Wegrzyn et al. (2015). However, whilst this 

study found high decoding in the ME condition, Liang et al. (2017) found no 

decoding for obscured eye stimuli (although behaviourally subjects could judge the 

correspondent expression on the face). It is worth noting that the results from Liang 

et al. (2017) are garnered from an explicit emotion recognition task, and the 

decoding results for the ME condition, in this study, are prevalent in the implicit 

emotion recognition task. Thus, task differences may be causing these differential 

effects in response to obscured eye stimuli, with implicit effects seen when attention 

is not explicitly directed to emotion in the eyes or face for recognition. The XC 

results were also similar to that of V1 and EVC, with significance above chance for 

implicit expression decoding in the EO to ME and the MO to MM condition pair; as 

well as significance in the IOG for the EO to MO condition pair in explicit 

expression decoding.   

Furthermore high decoding was observed in the STS, but this showed 

opposite effects, with greater significance in the explicit task across PF conditions 

(excluding MM). The ability to decode emotions in STS is supported by Said et al. 

(2010), Wegrzyn et al. (2015), and Liang et al. (2017), with the pSTS found to 

decode between neutral and emotional as well as positive versus negative emotions 

in Zhang et al. (2016). In the XC analysis explicit decoding was also highest, but 

interestingly the implicit and explicit EO to MO condition pair was significant. 

Finding above chance significance is optimum in this pair and had not been reached 

in both tasks for other ROIs; this pair resembles pure feedback processes at work as 

the visual input is separated sufficiently to minimise lateral interaction effects. Thus, 

this suggests the presence of high-level representations in the STS; former XC 

research has also shown this with STS representations of emotion across different 

modalities such as facial expressions, vocal intonations and bodily movements 
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(Peelen et al., 2010). These supramodal emotion representations can generalise 

across the lighting and the positioning of facial expression stimuli (Skerry & Saxe, 

2014). Similar high-level representations are also shown in a study where 

representations of identity generalise across face halves in the anterior temporal lobe 

(Anzellotti & Caramazza, 2016). This finding supports the current results of this 

study, showing the brains adept ability to generalise across non-overlapping facial 

features necessary for face recognition. 

 Significant decoding accuracies were observed for certain PF conditions in 

the amygdala and insula. Interesting the EO condition was significant in the 

amygdala for implicit expression decoding. This significance suggests the 

importance of the eyes in processing expression even if attention is not explicitly 

directed to emotion in the face for recognition. Furthermore, there was significance 

in the ME condition for explicit expression decoding. These significant results in the 

amygdala potentially reveal an exciting cross-over effect; with the absence of the 

eyes important for explicit tasks and the presence of the eyes important for implicit 

tasks. Furthermore, this corresponds to research showing the amygdala to be more 

responsive in an implicit task to larger as opposed to smaller eye whites (Whalen et 

al., 2004). In the insula there was significance in the explicit task for a couple of PF 

conditions, including the ME and MO conditions. Both these PF conditions are 

missing one of the important facial features in expression recognition. Significant 

decoding for the amygdala and insula was also found in Wegrzyn et al. (2015) as 

well as in Zhang et al. (2016) between fear and non-fear stimuli and between neutral 

and emotional stimuli. However, generally low decoding has been reported for the 

amygdala and insula throughout the previous literature; low decoding in the 

amygdala may result from the use of static stimuli or the low signal-to-noise ratio 

with this region difficult to scan with fMRI. Apart from the interesting effects 

described above, compared to the other face and emotion sensitive regions, decoding 

accuracies in the amygdala and insula were generally lower and there were 

subsequently weak cross decoding effects found.  

Overall, the XC results reveal that the FG, IOG and STS were in line with the 

second hypothesis (H2) that similar brain representations will be activated when 

completely independent face parts are presented. However, against H2, weak XC 

significance was found in the amygdala and insula. In general, decoding accuracies 

are above chance in all the additional ROIs for some of the PF conditions. This is 
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supported in the univariate analyses that show greater brain activation in response to 

the ME and MM partial face conditions than the WF condition. This activation is 

distributed throughout the brain, including the FG, pSTS, middle occipital gyrus, and 

insula; potentially the recruitment of these additional face and emotion regions help 

process ambiguous facial information and feed information back to V1.  

2.4.2.2 Task effects.  

 In support of H3 and past literature (Wegrzyn et al., 2015), high classifier 

performance was found in the IOG and FG for the implicit expression decoding task, 

whereby participants carry out a gender task but the classifier can decode the 

emotion shown. This suggests that implicitly the participant is attending to the 

emotion on the face. Furthermore, the univariate WBA (Appendix B) for explicit 

versus implicit processing is in line with the MVPA results: showing greater 

activation within the brain for implicit expression recognition. However, it is 

important to note that high classifier performance was found in the STS for the 

explicit expression decoding task and there were no task interactions in the amygdala 

and insula, these findings are against H3. The differences between implicit and 

explicit emotion processing will be addressed later to help explain these differing 

effects. 

2.4.2.3 How do these results help explain the findings from V1 and EVC? 

The results from the additional ROIs show promising trends regarding the 

higher cortical areas involvement in the feedback stream, adding greater weight that 

results are conforming with accounts of visual processing such as predictive coding, 

and explaining the significant findings in V1 and EVC. Whilst these results add to 

the body of research, and clearly show early visual and face-selective areas to 

contain information about occluded facial features, it is important to note some 

pitfalls to the experimental design. Notably, the regions of early visual cortex were 

individually defined for each participant, therefore the selection of voxels in the 

visual regions (V1 and EVC) was accurately represented. The other ROI’s chosen in 

the ventral face processing stream were converted from an average brain mask in 

Neurosynth. Therefore sub-optimally, they are not based on each individual 

participant or a selected cluster of their activated voxels. Ideally, without scanning 

time constraints, localiser scans would have been carried out to define regions such 

as the STS and FG. However, whilst the primary focus of this study was to 

understand the contextual effects in early visual cortex, this was of less importance.  
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2.4.3 Can a low-level model explain the high-level effects in this data?  

 Whilst the strong cross-decoding results imply that they are not a result of 

low-level confounds in V1, further research using computational modelling (see 

Appendix H) was conducted within the laboratory (Maloret & Smith, 2017, 

Unpublished Raw Data). This aimed to investigate the extent to which expression 

recognition across the PF conditions relied on higher or lower-level processes. There 

were no significant differences between the PF conditions and WF condition in the 

standard model of V1, but significant differences between the PF conditions in the 

MVPA analysis (with better decoding in the ME and MM conditions than the WF 

condition). Furthermore, there were no significant differences between the condition 

pairs in the low-level model for cross-decoding, but differences in the MVPA 

analysis. These results support the idea that decoding performance in this study may 

be driven by top-down feedback processes in V1.  

2.4.4 Implications for models of cortical feedback. 

 The various possible models of cortical feedback, outlined in the introduction 

of this chapter (2.1), could help explain the role of high-level effects in the 

processing of occluded facial expressions. In predictive coding, for instance, visual 

regions may be expecting whole face stimuli but when this stimulus is missing facial 

features and is therefore different from expectation, this may lead to an increased 

response to occlusion (Clark, 2013). Furthermore, in alternative Bayesian accounts 

of processing, early visual response signals would strengthen, following the 

formation of probabilistic inferences regarding the content of missing facial feature 

information, through concurrently assimilating bottom-up observations of occluded 

face stimuli with top-down contextual priors (Kersten et al., 2004; Lee & Mumford, 

2003; Yuille & Kersten, 2006). Thus the heightened decoding found in the current 

cross-classification results for the early visual regions (V1-V3) provide support for 

these top-down models of visual processing.  

The results could also be explained with a hierarchical neural network model 

(Heeger, 2017), whereby the neural responses and recognition of whole face stimuli 

are likely to depend on a feedforward bottom-up drive, but responses to partial face 

stimuli are likely to also depend on a feedback and prior drive. In these conditions 

top-down contextual knowledge and expectation is combined with the sensory input 

to predict the content of missing feature stimuli. Furthermore, the heightened 

decoding in the cross-classification results for the early visual regions as well as the 
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cross-classification results for the EO to ME pair in the fusiform gyrus, are in line 

with recurrent feedback models of object completion. This is because recurrent 

feedback signals to V1, sent immediately after the feedforward process, from extra-

striate visual regions, followed by the inferior temporal cortex, would attempt to 

process occluded face stimuli (Wyatte et al., 2014). Overall, results are in keeping 

with various top-down models of visual processing and these models also help to 

explain how feedback or lateral connections may account for the present results. 

2.4.5 Explicit and implicit emotion perception.  

2.4.5.1 Why implicit decoding is higher? 

2.4.5.1.1 Task difficulty? 

 The task effect, finding higher implicit than explicit expression decoding in 

V1, may to some extent be due to task difficulty, as there is an accuracy difference 

between the two tasks. This is shown in the behavioural results with lower accuracy 

in the emotion (3AFC) than the gender task (2AFC). However, results also show 

better implicit decoding of gender in V1 (when a participant is asked to judge 

emotion) (see Appendix G). Therefore, task difficulty does not seem to be driving 

the task effects in this research.   

2.4.5.1.2 Default versus socially aware mode? 

 The high decoding rates in the implicit decoding expression task could reflect 

which mode of visual processing the brain is engaged in. Puce et al. (2015) identified 

two modes; one whereby a subject is not explicitly concentrating on or aware of the 

social meaning of a stimulus, namely default mode; or where a subject makes an 

overt social judgement, specifically social aware mode. It is worth noting that the 

brain can still be sensitive to potentially threatening stimuli in default mode whilst 

the brain is maximally primed to process stimuli optimally in social aware mode 

(Puce et al., 2015). In default mode, neural activation between conditions has been 

shown to differ depending on context or task influences; however, in socially aware 

mode, neural activations remain constant across conditions to process stimuli 

equally. 

These modes could correspond to implicit and explicit decoding in this 

experiment, and could explain why decoding between the expression categories is 

found in the implicit but not in the explicit task. This is because the implicit task 

could be undertaken in default mode and as emotions are potentially threatening 

stimuli they are still attended to; but in the explicit task, the sensory systems could 
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be maximally primed to account for and recognise all emotions in the social aware 

mode. The default mode could also link to the key cross decoding findings where 

decoding accuracy is greater in the implicit task for a condition pair with an occluded 

feature necessary for expression recognition (ME and MM in the EO and ME, or 

MO and MM condition pair respectively). This is because these conditions are 

ambiguous and could contain potentially threatening stimuli that needs to be 

attended to. Furthermore, the default mode could also explain why decoding 

accuracy is low in the implicit task for the EO to MO condition pair, as this pair is 

less ambiguous containing visual information central for expression recognition (the 

eyes and the mouth) (F. W. Smith et al., 2008; M. L. Smith et al., 2005). 

2.4.5.1.3 Differences between implicit and explicit emotion processing. 

Following on from the previous argument regarding the engagement of a 

default brain mode in improving implicit expression decoding, the results reflect an 

enhancement of processing under conditions not explicitly directed to emotion in the 

face. This is not the only study to show implicit task effects, Petro et al. (2013) found 

implicit task effects when decoding emotion or gender in the visual cortex. In 

addition to this, explicit and implicit processing differences are present in other brain 

regions when processing emotions (Scheuerecker et al., 2007). An abundance of 

research has found increased brain signals in the amygdala and hippocampus for 

implicit compared to explicit processing; these regions, as well as a host of 

subcortical areas also respond faster under implicit conditions (Critchley et al., 2000; 

Gur et al., 2002; Hariri, Bookheimer, & Mazziotta, 2000; Scheuerecker et al., 2007). 

Nonetheless, these differences must be interpreted with caution as Habel et al. (2007) 

and Winston, Strange, O'Doherty, and Dolan (2002), found the amygdala and insula 

to activate similarly under implicit and explicit conditions. Winston et al., 2002, 

argued however, for a slight dissociation between the amygdala activating 

automatically (under implicit conditions) and the STS activating intentionally (under 

explicit conditions).  

2.4.5.1.4 Biological Salience 

Furthermore, the enhancement of processing under conditions where 

attention is not explicitly directed to emotion in the face tentatively suggests that as 

expressions are such biologically salient signals (Pessoa & Adolphs, 2010), feedback 

to V1 may be enhanced under these conditions. The rapid automatic activation of 
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subcortical pathways, when attention is not explicitly directed to an emotional task, 

further supports the biological significance of processing facial expressions. 

2.5 Conclusion 

Given evidence that primary visual cortex can contain and predict rich 

information about the visual environment, it was important to understand the 

involvement of retinotopically defined early visual regions in processing and 

compensating for missing facial information. In the present study, the influence of 

context on processing facial expressions of emotions in early visual and higher brain 

regions involved in face and emotion processing was investigated. Multivariate 

pattern analysis (MVPA) showed reliable decoding of facial expression (happy, fear 

and disgust) in V1, EVC, IOG, FG and STS across conditions with non-overlapping 

visual inputs. This study also found similar patterns of decoding across non-

overlapping samples of face information, suggestive of the involvement of feedback 

mechanisms beyond low-level processing. This was particularly robust under 

implicit processing conditions. Overall, these results show that information about 

facial expression can be read out from early visual regions and demonstrate the 

strong involvement of contextual influences in early visual processing when devoid 

of overlapping feedforward information. Results are thus in keeping with top-down 

models of visual processing such as predictive coding (and other approaches such as 

recurrent feedback models of object completion, Heeger (2017)’s hierarchical neural 

network model and alternative Bayesian accounts of processing). This research has 

also helped to inform how V1 deals with occluded stimuli, adding to previous 

research studying occlusion. 
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Chapter 3: Temporal Dynamics Underlying Visual Perception of Occluded 

Faces 

 

3.1. Introduction 

3.1.1 Background. 

 Following up on the previous study and literature, this chapter provides a 

compliment to Chapter 2, where the same experimental paradigm and multi-variate 

pattern analyses (MVPA) are applied with electroencephalogy (EEG). Thus, in 

addition to understanding where the brain compensates and feeds information back 

to account for missing feature information (Greening et al., 2018), this experiment 

aims to understand the temporal dynamics of this process. The collection of fMRI 

and EEG data should provide a comprehensive picture of processing occluded facial 

features in the brain, as both high spatial and temporal information about brain 

activity will be available (Cichy et al., 2014; Fusar-Poli et al., 2009; Sadeh et al., 

2010).  

 The use of EEG, can also add to the previous fMRI study, about the potential 

role of feedforward and feedback processes, see Figure 2.11 (Chapter 2). The 

findings from the fMRI study showed similar activity patterns in V1, EVC, IOG, FG 

and STS across conditions with non-overlapping visual inputs. An alternate way of 

looking at bottom-up versus feedback processing is by investigating time; this is 

because bottom-up processing is quicker and can take place before feedback has 

occurred (Tang et al., 2014; Tang et al., 2018). This is consistent with accounts of 

visual processing, such as predictive coding (Clark, 2013; Friston, 2005, 2008; F. W. 

Smith & Muckli, 2010) and recurrent feedback models of object recognition 

(O'Reilly et al., 2013; Tang et al., 2014; Tang et al., 2018; Wyatte et al., 2012; 

Wyatte et al., 2014). These theoretical accounts, outlined in Chapter 2 (2.1.1.1), 

address the ways the brain may process occlusion.  

3.1.2 EEG and MVPA.  

Current research has begun to apply MVPA to EEG data (for a review, see; 

Grootswagers, Wardle, & Carlson, 2017), and more specifically understanding when 

faces are detected and individuated (Cauchoix et al., 2014; Cichy et al., 2014; 

Ghuman et al., 2014; Kaneshiro, Perreau Guimaraes, Kim, Norcia, & Suppes, 2015; 

Li et al., 2018; Nemrodov et al., 2016). MVPA has numerous advantages, providing 

a data-driven EEG approach that is not restricted by its univariate counterpart 
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reliance on established event-related potentials (ERPs) (Cichy et al., 2014; Kaneshiro 

et al., 2015; Nemrodov et al., 2016). Essentially EEG face recognition research has 

focused on specific ERPs, however, these may overlook other components that have 

not been selected or have been lost in averaging electrodes (Das, Giesbrecht, & 

Eckstein, 2010; Ghuman et al., 2014; Nemrodov et al., 2016). Nemrodov et al. 

(2016) demonstrated this by carrying out univariate and whole-brain multivariate 

analyses in a face identity recognition study; whilst they found effects in traditional 

ERP components of individual face processing (P100, N170, N250), they also found 

early effects using MVPA from 63-96ms, as well as heightened effects for identity 

along the time interval (106-800ms).  

A study, analysing whole-brain MEG (an alternative time-series 

neurophysiological measure to EEG) and fMRI data, found significant decoding 

between human / non-human faces at 70ms (Cichy et al., 2014). This time-point, 

within the significant interval for the study above, suggests that low-level feature 

processing may occur before the earliest recognised ERP component at 100ms. This 

time-point was followed by two significant peaks of activation at 127ms and 190ms 

(Cichy et al., 2014). Thus, MVPA can provide greater depth and precision into the 

time-course of face processing (Das et al., 2010). Furthermore, Cichy et al. (2014) 

investigated the correspondence between their MEG and fMRI data; showing early 

MEG responses to correlate more with V1 than the inferior temporal (IT) cortex at 

79-102ms (with peak correspondence at 93ms), and later MEG responses to correlate 

more with IT activation than V1 at 152-303ms (peak at 284ms). The early activation 

corresponds with when visual information first reaches the cortex (Carlson, Tovar, 

Alink, & Kriegeskorte, 2013).  

A whole-brain EEG study, using the same stimuli as the aforementioned 

MEG study (Cichy et al., 2014), found significantly stronger classifier decoding 

accuracy to faces than other animate (human body, animal body or face) or non-

animate categories (fruit or vegetable, an inanimate object) in a six-class category-

level decoding analysis (Kaneshiro et al., 2015). This decoding reached early 

significance at 48-128ms, before peak significance at 144-224ms, and additional 

above chance results between 336-464ms (Kaneshiro et al., 2015). Three significant 

decoding phases were also found in another EEG whole-brain MVPA study on face 

category detection: with an initial phase at 95-149ms (corresponding to the P100), 

followed by a plateau at 140-195ms (corresponding to the N170) and a later phase at 
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185-350ms (corresponding to the P300) associated with a significant increase in 

accuracy (Cauchoix et al., 2014).  

In the initial decoding phase, Cauchoix et al. (2014) infer the involvement of 

feedforward processes from V1 to occipital-temporal areas; this is correlated with 

low-level stimulus properties. They surmise that the available face information hits 

maxima and stabilises in the following phase, as information is no longer 

feedforward but recurrently processed in posterior areas to the OFA via the FFA 

(Cauchoix et al., 2014). The third phase is thought to reflect a complete face 

representation which can be consciously accessed; at this point feedforward and 

feedback processes have occurred and activation is distributed in temporal, parietal 

and frontal brain regions (Cauchoix et al., 2014). The three decoding phases show 

resemblance with the three key univariate ERP components; with decoding analyses 

providing a richer account of visual information that can be read out from the brain 

(De Vos, Thorne, Yovel, & Debener, 2012).    

Another study, using MVPA and intra-cranial EEG, positioned electrodes 

directly on the FFA, to investigate its responsivity to faces and further eye, mouth 

and configural face information (Ghuman et al., 2014). They found decoding in 

response to faces than other visual images (bodies, houses, hammers, shoes and 

phase-scrambled faces) at 50-75ms. Furthermore, they found face identity decoding, 

invariant of expression information, at 200-500ms (Ghuman et al., 2014). As they 

found this time window to also contain featural and configural face information, they 

suggest this information was used to help individuate faces (Ghuman et al., 2014). 

Ghuman et al. (2014) speculate that these two peaks of activation may reflect the 

involvement of a feedback loop, as the latter time window is consistent with timings 

for recurrent top-down and bottom-up interactions. Furthermore, intra-cranial EEG 

electrodes were placed on the FG in a recent study by Li et al. (2018) demonstrating 

two distinct stages of face processing: a rapid feedforward face-selective decoding 

stage around 180ms in posterior FG, and a later decoding of expression stage 

between 230ms-460ms in mid-fusiform regions. The later stage may resemble an 

integration of information, and consequently a possible backwards projection of top-

down information. 

Whilst MVPA has been used to explore the neural time-course of face 

detection and individuation across expression in the visual cortex (Nemrodov et al., 

2016), these analyses have not explored the neural time-course of expression 
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recognition under conditions of occlusion. F. W. Smith and Smith (2016, June, 

OHBM Abstract) showed that it is possible to reliably decode expression using EEG, 

through investigating the representations of expression and identity. However, they 

did not study occlusion and studying this may elucidate the involvement of feedback 

in the brain beyond low-level processing. Thus, the present study will measure 

decoding accuracy to various partial face (PF) conditions, testing when the brain can 

decode the presented expression, to understand when feedforward and feedback 

processes are involved in the recognition of occluded faces. In the following 

sections, the current ERP research exploring the effects of occlusion and emotion 

will be detailed; whilst these do not use MVPA methods, this research is of 

relevance to understanding how and when the brain deals with occlusion and 

recognises an expression. 

3.1.3 ERP research investigating occlusion. 

An abundance of literature has focussed on the face-specific N170 

component along the posterior, occipital-temporal brain (Bentin et al., 1996; Itier et 

al., 2007; Yovel, 2016), thought to reflect STS and FG (but not IOG) activation 

(Pitcher et al., 2011; Wronka & Walentowska, 2011). Furthermore research has 

investigated the recognition of occluded expressions (M. L. Smith et al., 2005). 

However, few studies have investigated how the N170 may change as a result of PF 

occlusion. Research that has investigated eye-occlusion has shown a delay (but no 

change in amplitude) in the N170 to faces missing eye information (Eimer, 1998; 

Itier et al., 2007), these delays are detailed in Chapter 1 (1.1.6). Conversely, research 

showed one or both eyes to prompt an earlier peak N170 (Rousselet et al., 2014), and 

a greater amplitude (Bentin et al., 1996; Itier et al., 2007; Neath-Tavares & Itier, 

2016; Neath & Itier, 2015). Evidently limiting analyses to ERP components could 

overlook finding this early latency eye-sensitivity (Rousselet et al., 2014).  

Research has also shown larger amplitudes to the nose and mouth at 150-

200ms (occipitally) and 200-250ms (occipital-lateral) when participants fixation was 

directed to these features of a whole face (face offset, fixation remained central) 

(Neath-Tavares & Itier, 2016). Whilst this is not directly investigating occlusion, its 

methodology bears resemblance to an occlusion study, as the rest of the face is not 

openly in vision. Additionally, this study found larger amplitudes around the P100, 

in occipital areas, when participants were directed to the mouth (Neath-Tavares & 

Itier, 2016). Whilst this may purely reflect low-level visual properties; as 
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aforementioned in Chapter 1 (1.1.6), it may be indicative of early top-down 

processing to an area that has previously been stated important for expression 

recognition (Jack et al., 2009; F. W. Smith & Schyns, 2009). 

Based on these studies, there is an expectation to see amplitude and timing 

differences between PF stimuli used in the present study; as such an isolated mouth 

may have some effects on the strength of processing emotion, with these affects 

distributed along the time-course, both before and after the N170 (Neath-Tavares & 

Itier, 2016). Furthermore, from the importance of processing eye information, 

isolated eyes are more likely to create stronger amplitudes around the N170 (Itier & 

Batty, 2009; Nemrodov, Anderson, Preston, & Itier, 2014). Overall, the occlusion of 

these features is likely to have an effect on the latency of the responses, with 

occlusion causing a delay in processing (Eimer, 1998; Itier et al., 2007). It is also 

important to note, that amplitudes are likely to be more pronounced for partial 

stimuli after 300ms as the P300 ERP responds to salient and unexpected stimuli 

(Hajcak, MacNamara, & Olvet, 2010). A detailed exploration into the efficacy and 

time-course of processing occluded stimuli will follow. 

Using Gaussian bubbles, an intra-cranial electrode study, investigated the 

effects of occlusion among several whole and partial objects (including animals, 

faces and vehicles) in the visual ventral stream (Tang et al., 2014). They found 

similar object preferences, amplitude and waveform responses amongst electrodes 

(around the IOG and FG) when participants were presented with whole and highly 

occluded images (where only 9-25% of the object areas were visible) (Tang et al., 

2014). However, responses to partial stimuli occurred ~100ms later; these delays 

were higher in the ventral stream (FG, ITG) (Tang et al., 2014). Tang et al. (2014) 

infer the involvement of top-down recurrent processing and reason against a 

feedforward model, as there are no latency delays in early visual areas. If delays 

were present in early visual regions these could potentially be caused by partial 

images propagating through the ventral stream at a slower rate (Tang et al., 2014).  

Overall, a pattern of similar or stronger amplitude seems to be emerging 

among studies, depending on whether features are respectively occluded or isolated. 

A pattern of delayed latency also seems to be emerging for occluded and isolated 

stimuli, apart from finding an earlier peak for the isolated eyes in Rousselet et al. 

(2014). This discrepancy could result from comparing different but equals samples 

of face information, rather than comparing to a whole face stimulus, which is the 
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case for the other studies. To summarise, the research outlined, whilst important, 

does not fully consider emotion differences. These are important as Leppänen, 

Hietanen, and Koskinen (2008) found no N170 when recognising fear with an 

occluded eye region; thus the N170 is likely bound to which diagnostic emotion 

features, for fear the eyes, need to be encoded for recognition (Schyns, Petro, & 

Smith, 2007, 2009). Schyns et al. (2007) and Schyns et al. (2009) detailed how 

information for expression recognition focusses on the eyes, before attention moves 

towards the mouth for processing the whole face; thus emotions that require 

diagnostic eye information generate an earlier N170 than those that require mouth 

information.  

3.1.4 ERP research investigating differences between emotions. 

 There is mixed evidence for differentiation amongst the N170 in processing 

separate emotions; some research has found differences in processing emotions 

(Batty & Taylor, 2003; Blau, Maurer, Tottenham, & McCandliss, 2007; Calvo & 

Nummenmaa, 2015; Hinojosa, Mercado, & Carretié, 2015; Neath-Tavares & Itier, 

2016) where other research has not (Eimer & Holmes, 2002, 2007; Eimer, Holmes, 

& McGlone, 2003; Herrmann et al., 2002; Rossion, 2014).  

The differences appear in emotional valence with positive emotions eliciting 

a significantly earlier ERP response (Batty & Taylor, 2003) but negative emotions, 

particularly fear, eliciting an increased N170 amplitude (Batty & Taylor, 2003; Blau 

et al., 2007; Calvo & Nummenmaa, 2015; Hinojosa et al., 2015; Turano et al., 2017). 

However, some studies show the N170 to be unaffected by expression; this is not 

surprising as the activation of the N170 is generally thought to reflect face 

perception (Eimer & Holmes, 2002, 2007; Eimer et al., 2003; Rossion, 2014). These 

results do not explain why differences have been shown in the literature, but the 

conflicting findings could result from task differences. 

3.1.5 ERP research investigating task. 

 The differentiation of ERP response between emotions could be explained by 

task as the studies that find emotion differences in the previous section use implicit 

tasks (Batty & Taylor, 2003; Blau et al., 2007; Hinojosa et al., 2015; Neath-Tavares 

& Itier, 2016). These implicit task effects are reminiscent with research investigating 

how task context influences the processing of expression in fMRI experiments 

(Critchley et al., 2000; Hariri et al., 2000; Petro et al., 2013; Scheuerecker et al., 

2007), and with findings from Chapter 2. To recap, findings from Chapter 2 (2.3) 



Section 2 – Experimental Chapters 

106 
 

showed higher classifier performance in the implicit expression decoding task (for 

V1, EVC and IOG compared to the explicit task), where participants carried out a 

gender task but the classifier was decoding emotion. However, there was high 

classifier performance in the explicit expression decoding task for the STS. This 

research also showed stronger brain activation for the implicit WBA in the rIOG, 

SFG, anterior cingulate, precuneus, lMFG, lIPL and lS2.  

 EEG studies also highlight the importance of attending to emotional stimuli 

in implicit conditions (Neath-Tavares & Itier, 2016; M. L. Smith, 2011). This is 

revealed in research showing: significant emotion differences in an implicit unaware 

condition (whereby a face is immediately masked with a scrambled image) (M. L. 

Smith, 2011) and an emotion irrelevant oddball task (Neath-Tavares & Itier, 2016). 

In implicit unaware conditions a significantly enhanced frontal positivity (M. L. 

Smith, 2011) and N170 (Neath-Tavares & Itier, 2016) have been reported in 

response to fear (vs neutral and happiness) recognition. Only a general increased 

N170 to emotional vs neutral expression has been reported in explicit aware 

conditions (Neath-Tavares & Itier, 2016; M. L. Smith, 2011). An ensuing meta-

analysis and review propose a greater N170 amplitude to emotional than neutral 

expression in both implicit and explicit tasks (Hinojosa et al., 2015; Turano et al., 

2017). However, they further state that effect sizes are larger in implicit tasks and 

thus, automatic processes are important for perception (Hinojosa et al., 2015). These 

findings suggest that processing occurs under conditions not explicitly directed to 

emotion in the face, and may result from expressions being biologically important to 

process (Pessoa & Adolphs, 2010).  

However, Wronka and Walentowska (2011) found the N170 to be insensitive 

during an implicit (gender) task, proposing that expression effects involve voluntary, 

top-down modulation (FFA, STS) to differentiate expressions (Winston et al., 2002). 

In addition, an implicit perceptually demanding lines task in the presence of 

emotional faces also acted to eliminate any expression effects (Eimer et al., 2003). 

Furthermore, no differences in the N170 were reported between an expression and 

gender recognition task; in both tasks the N170 was sensitive to the eyes (Schyns, 

Jentzsch, Johnson, Schweinberger, & Gosselin, 2003; M. L. Smith et al., 2004).  

Further task differences have been found in later ERPs to expression; with 

increases in P300 and late positive potential (LPP) when participants attend to 

emotional (counting surprised faces) rather than gender attributes (counting males / 
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females) of a face (Hajcak et al., 2010; Krolak-Salmon, Fischer, Vighetto, & 

Mauguière, 2001). More specifically, during an explicit expression task, ERPs to 

emotional vs neutral faces were observed between 250-550ms and expression 

differences emerged between 550-750ms (with happiness and fear significantly 

different from disgust) (Krolak-Salmon et al., 2001). These late ERPs have also been 

shown where participants carried out expression and gender recognition tasks; the 

P300 was sensitive when attending to the features relevant for task completion, such 

as when using the eyes diagnostically in a gender task and the mouth in an 

expression task (M. L. Smith et al., 2004). It is also important to note that a stronger 

P300 response has been shown when a participant detects a target stimulus in an 

oddball task (Picton, 1992), this may reflect a feedback effect to help the participant 

process the information.  

3.1.6 Present study and hypotheses. 

To conclude, this study will utilise EEG and MVPA to investigate the neural 

time-course of expression processing under conditions of face occlusion. This timing 

information is pertinent to understanding when the brain processes or compensates 

for ambiguous occluded information and the role of bottom-up vs top-down 

mechanisms. Prior MVPA research suggests that faces and expressions can be 

neurally decoded from EEG data (Cauchoix et al., 2014; F. W. Smith & Smith, 2016, 

June, OHBM Abstract) but research has not explored the time-course of expression 

recognition under conditions of occlusion.  

 

H1: Successful decoding across non-overlapping visual inputs (e.g. independent 

parts of a face: occluded eyes and eyes-only stimuli; occluded mouth and mouth-

only stimuli) will occur at a later time relative to whole face decoding, after feedback 

from higher cortical areas has filled in missing feature information.  

 

H2: Emotion processing will be affected by task context: whereby expression 

decoding will be stronger in the implicit task compared to the explicit task.  
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3.2 Study 1 

3.2.1 Methods. 

3.2.1.1 Participants. 

A total of 16 participants (8 females, 8 males) took part in this experiment, 

aged 20-36 years (M = 25.31, SD = 3.77). Participants were recruited via the 

University of East Anglia’s (UEA) paid participant panel and advertisements around 

the university (they were paid for their participation). All participants had normal or 

corrected to normal vision. Participants gave written, informed consent in 

accordance to approved ethics by the Psychology Research Ethics Committee at the 

University of East Anglia.   

3.2.1.2 Stimuli.  

 This study used the same stimuli from the CAFE dataset as the 

aforementioned fMRI experiment: six identities, created into five PF conditions (see 

Chapter 2, Figure 2.13), displaying three emotions (disgust, fear and happiness). The 

stimuli, totalling 90 different combinations were presented on a white background at 

a visual height of 10˚ using E-Prime 2.0 Software.  

3.2.1.2.1 Materials. 

 Both the Empathy Quotient (EQ) (Baron-Cohen & Wheelwright, 2004) and 

The Toronto Alexithymia Scale (TAS) (Bagby, Parker, & Taylor, 1994) were used, 

for further details on these measures and the distribution of participant scores, see 

Appendix I. 

3.2.1.3 Design and procedure.  

 Participants were presented with all the PF stimuli (within-subjects) and 

asked to explicitly recognise facial expression or gender depending on the task, 

while a 64-channel EEG cap measured their brain activation. In the explicit emotion 

task, participants were required to recognise expression in a three AFC task; in the 

implicit task they were asked to recognise gender (two AFC). Both tasks consisted of 

540 trials with six repetitions of the 90 stimuli: 15 conditions (five PF conditions: 

WF, EO, ME, MO, MM; three emotions) and six identities. Each task began with six 

practice trials and took approximately 22 minutes to complete, with a break every 45 

trials. Participants were asked to sit in a chin rest to minimise head movement. Each 

trial consisted of a fixation period (500ms) followed by a face (1000ms) and a 

variable delay period between 800ms and 1200ms before the next trial (see Figure 

3.40). Participants were asked to respond after the stimulus was displayed and up to 
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the presentation of the next stimulus. Task order was blocked and counterbalanced 

among participants; whereby participants carried out one task followed by the other. 

Participant responses were recorded with a keyboard response of 1, 2 and 3 or 1 and 

2; button order was also counterbalanced among subjects. The experiment lasted a 

maximum of three hours, including time for set up, the main experimental runs, cap 

removal and hair washing, as well as filling in the questionnaires and debrief. 

Participants were shown the WF stimuli before the experiment to familiarise 

themselves with the stimuli (see Appendix A for stimulus sheets). 

 

 

 
Figure 3.40. Sequence of stimulus presentation. 
 

3.2.1.4 EEG acquisition. 

The EEG was recorded with Brain Vision Recorder using an active 63-

channel electrode system (ActiCAP, Brain Products GmbH) mounted to a nylon 

EEG cap. Electrodes were placed equidistantly according to the 10-10 system. The 

electrode FCz served as the reference, and the AFz as ground (see Figure 3.41). The 

electrooculography (EOG) channel was recorded using electrode FT9 (see Figure 

3.41), this was positioned below the left eye to record vertical eye movements and 

eye blinks. Signals were continuously acquired at a sampling rate of 1000hz using a 

BrainAmp amplifier (Brain Products). The impedance was kept below 50kΩ.  

3.2.1.5 EEG data pre-processing for MVPA. 

For the MVPA analysis, the EEG data was pre-processed using EEGLAB 

(Delorme & Makeig, 2004) on Matlab R2014a. Firstly the data was high and low-

pass filtered between 0.01 and 35hz. Epochs were then generated for each stimulus 

presentation: 200ms prior to stimulus, to provide a pre-stimulus baseline, and lasted 

a total of 800ms (600ms post-stimulus onset). Whilst standard pre-processing steps 

would reject noisy trials and epochs; for this analysis no artefact correction was 

applied and all trials and epochs were included in the analysis, with the intention to 

increase power with more trials. Furthermore, this step was less crucial for MVPA 

analysis as classifiers can learn to subdue noise and overlook bad channels during 

training (Grootswagers et al., 2017); artefact corrected results can however be found 

in Appendix J. Following epoch generation the eye channel was rejected and further 

Face 
1000ms 

Fixation 
500ms 

Variable delay 
800-1200ms 
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bad channels were interpolated. All epochs were included in the ERP analysis and 

data were re-referenced to an average of all electrodes excluding the eye channel.  

3.2.1.6 Multi-variate pattern analysis. 

 MVPA was conducted on single-trial EEG signal using a linear support 

vector machine (LIBSVM 3.20 toolbox, Chang & Lin, 2011). Pattern classifiers 

were trained to discriminate between the three expressions, independently for each 

PF condition and task. Accordingly these classifiers were trained to decode the 

expression presented in single trials from 15 time windows of the EEG signal across 

19 posterior visual electrodes (O1, O2, Oz, PO7, PO8, PO9, PO10, PO4, PO3, POz, 

P7, P8, P5, P6, P3, P4, P1, P2 and Pz), to test at each time window whether there 

was information to discriminate between the emotions for each PF condition. A k-

fold cross validation approach was used to estimate performance, whereby the model 

was built from k – 1 subsamples (70% of trials) and tested on the remaining 

independent k subsample (30% of trials). This was carried out on ten randomly 

partitioned training test set iterations. An overlapping time bin approach was used to 

reduce data dimensionality from multiple time points (800) (Kaneshiro et al., 2015) 

and clearly reveal the temporal aspects of information processing in the brain, as 

such time bins commenced at -200ms, with a length of 100ms, shifting in 50ms 

steps; for example -200ms to -100ms, -150ms to -50ms, 250ms to 350ms, up until 

450ms to 550ms and 500ms to 600ms (Hausfeld, De Martino, Bonte, & Formisano, 

2012). 

For the analyses, decoding accuracy was reported for each PF condition in 15 

time steps of an 800 time point window (-200 to 600ms) using one-tailed one sample 

t-test results, with chance level of 33.3%. Significance levels are presented on graphs 

with p < .05 displayed with an ‘X’ and p < .05 (FDR corrected) displayed with a ‘*’. 

Unfortunately, as the basic decoding results were poor (see MVPA results, 3.3.2.2); 

the planned cross-classification analyses were not run. 

3.2.1.7 Univariate EEG pre-processing and analysis.  

Offline analyses were conducted using the following MatLab toolboxes: 

EEGLAB (Delorme & Makeig, 2004) and ERPLAB (Lopez-Calderon & Luck, 

2014), toolboxes run with Matlab R2014a (The Mathworks, Inc., Natick, MA, USA). 

The recordings were high and low pass filtered at 0.01 and 35Hz, respectively, 

before epochs were created. Epochs were generated every 1s: 200ms prior to 

stimulus, to provide a pre-stimulus baseline, and lasted a total of 800ms, 600ms post-
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stimulus onset. All epochs were included in the ERP analysis. Before data were re-

referenced to an average of all electrodes, an automated artefact reduction technique 

was carried out to reject the trials consisting of an abrupt change in voltage (the eye 

channel was rejected entirely). The voltage threshold was set to 100uV in this step 

function technique (Luck, 2005). Furthermore, if the rejection rate was high (above 

12%), bad channels affecting the dataset were manually interpolated.  

The following occipito-temporal-parietal ERP’s or ROIs were selected: the 

P100 (O1, O2) at 80-120ms (Jacques & Rossion, 2006; M. Xu, Lauwereyns, & 

Iramina, 2012), the lN170 (P7, PO7) and rN170 (P8, PO8) at 140-190ms (Jacques & 

Rossion, 2006; M. L. Smith, 2011; M. Xu et al., 2012), as well as the P300 (Pz, POz, 

PO3, PO4) at 300-500ms (Hajcak et al., 2010; Luck, 2014), see Figure 3.41. The 

chosen electrodes and time windows were based on the ERP data; from the 

individual electrode plots with high amplitudes and scalp maps. Furthermore, this 

was also based on previous literature consistently using these electrodes and time 

windows. The P100 and P300 were selected to analyse earlier versus higher-level 

processing in the brain (Cauchoix et al., 2014), whilst also aiming to correspond to 

the fMRI study; the P100 closest to reflecting early visual processing, including 

potentially feedback, and the P300 reflecting higher visual processing (Cichy et al., 

2014).  

For each ROI, a repeated measures ANOVA was conducted to investigate task, 

emotion and PF condition on accuracy.  
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Figure 3.41. ROIs displayed on EEG electrode map 
(www.fieldtriptoolbox.org/_media/template/acticap-64-channel-standard-
2_original.jpg). ROIs include the P100 (O1, O2) highlighted in orange, the lN170 
(P7, PO7) and rN170 (P8, PO8) highlighted in purple, as well as the P300 (Pz, POz, 
PO3, PO4) highlighted in blue. The EOG eye channel is highlighted in red; ground 
and reference electrodes also displayed. 
 

3.2.2 Results. 

3.2.2.1 Behavioural results.  

Due to excessive eye blinks in one participant and another reporting left-

handedness during the experiment, the final analysed sample consisted of 14 

participants (8 females, 6 males), aged 20-28 (M = 24.64, SD = 2.65).  

Akin to the fMRI experiment, behavioural data revealed that participants, as 

expected, subjectively performed better at the gender (M = 95.93%, SD = 4.15%) 

than the expression task (M = 85.37%, SD = 9.63%) across all PF conditions. 

Performance was highest in the WF conditions, followed by the MO and ME in the 

expression task, and ME and MO in the gender task (Table 3.3). Comparing emotion 

recognition accuracy; happiness was subjectively the most recognisable emotion (M 
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= 94.21, SD = 7.16), followed by disgust (M = 83.25, SD = 11.28) and fear (M = 

78.65, SD = 12.75), further akin to the fMRI experiment.  

 

Table 3.3. 

All to 2 d.p in percentage. WF: whole face, EO: eyes only, ME: minus eyes, MO: 

mouth only, MM: minus mouth. 

Task WF EO ME MO MM 

Expression 89.09  

(SD = 7.71) 

83.73 

(SD = 11.18) 

84.33 

(SD = 9.56) 

87.24 

(SD = 11.39) 

82.47 

(SD = 7.44) 

 

Gender 

 

98.15 

(SD = 1.54) 

88.96 

(SD = 6.16) 

96.69 

(SD = 2.92) 

96.16 

(SD = 2.90) 

94.71 

(SD = 3.15) 

 

3.2.2.1.1 Emotion accuracy. 

A two-way repeated measures ANOVA was employed to explore the effects 

of PF condition and emotion on accuracy in the expression task. There was a 

significant main effect of PF condition, F(4, 52) = 8.565, p < .001, p
2 = .397 and 

emotion on accuracy, F(2, 26) = 19.136, p < .001, p
2 = .595. Collapsed across PF 

conditions, post-hoc pairwise comparisons with Bonferroni correction, showed 

accuracy rates for both disgust and fear statistically different from happiness (p < 

.01), with happiness being the most recognisable emotion; accuracy differences 

between disgust and fear were not statistically significant (p = .535), see Figure 3.42. 

Furthermore there was a significant interaction between PF condition and emotion, 

F(8, 104) = 13.995, p < .001, p
2 = .518 (greenhouse-geisser corrected).  

As a result of the significant interaction, a simple effects analysis was 

undertaken; whereby eight separate repeated measures ANOVA’s were carried out. 

Firstly the effect of emotion at each PF condition was investigated by carrying out 

five ANOVAs (all five were significant at p < .05) and then the effect of PF 

condition for each emotion in turn was investigated by carrying out three separate 

ANOVAs (all three were significant at p < .05), these results can be found in 

Appendix D (Table D33 and Table D34). Additional post-hoc Bonferroni and paired 

sample t-tests were carried out to understand the differences between the conditions, 

see Figures 3.43 and 3.44. 
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Figure 3.42. Overall recognition accuracy (%) in each PF condition for each 
emotion.  

 

Overall, there were greater accuracy differences between the emotions in the 

MO condition (Figure 3.43). In disgust there were differences between the EO and 

other PF conditions, reflecting the poor performance for EO (Figure 3.44 & 3.42). In 

fear there were differences within the MO and ME in comparison to the other PF 

conditions, reflecting the poorer performance in these PF stimuli missing eye 

information (Figure 3.44 & 3.42). Furthermore, in happiness there were more 

differences within the EO and MM in comparison to the other PF conditions, 

reflecting poorer performance in these PF stimuli missing mouth information (Figure 

3.44 & 3.42). These results support the importance of the nose and mouth in disgust, 

the eyes in fear and the mouth in happiness recognition (F. W. Smith & Schyns, 

2009; M. L. Smith et al., 2005). 
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A. WF      D. MO    
  Disgust Fear Happy    Disgust Fear Happy 

Disgust        Disgust       

Fear         Fear        

Happy        Happy       

B. EO      E. MM    
  Disgust Fear Happy    Disgust Fear Happy 

Disgust        Disgust       

Fear        Fear        

Happy        Happy       

C. ME         
  Disgust Fear Happy  p < .05 corrected (bonferroni)  

Disgust        p < .05 uncorrected   
Fear         p > .05    
Happy            

Figure 3.43. Paired sample t-test results comparing the differences between the 
emotions for each PF condition (see Table D35 in Appendix D for statistics: t-value, 
df and p-value). 
    

A. Disgust       
  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only           

Minus Eyes           

Mouth Only          

Minus Mouth           

B. Fear      
  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only           

Minus Eyes           

Mouth Only           

Minus Mouth           

C. Happy       
  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only           

Minus Eyes           

Mouth Only          

Minus Mouth           
      
p < .05 corrected (bonferroni)    
p < .05 uncorrected     
p > .05      

Figure 3.44. Paired sample t-test results comparing the differences between the PF 
conditions for each emotion (see Table D36 in Appendix D for statistics: t-value, df 
and p-value). 
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3.2.2.1.2 Gender accuracy. 

A two-way repeated measures ANOVA was employed to explore the effects 

of PF condition and gender on accuracy (Figure 3.45). There was a significant main 

effect of PF condition, F(2.141, 27.831) = 24.396, p < .001, p
2 = .652 (greenhouse-

geisser corrected), but no significant main effect of gender, F(1, 13) = 4.02, p = 

.066, p
2 = .236. However, there was a significant interaction between PF condition 

and gender on accuracy, F(2.212, 28.752) = 13.379, p < .001, p
2 = .507 

(greenhouse-geisser corrected).  

Figure 3.45. Overall recognition accuracy (%) in each PF condition between male 
and female stimuli.  
 

Again, as a result of the significant interaction, a simple effects analysis was 

undertaken. ANOVAs testing the effect of gender at each PF condition found 

significance in the EO (F(1, 13) = 18.539, p = .001, p
2 = .588) and ME (F(1, 13) = 

6.707, p = .022, p
2 = .340) condition. Testing the effect of PF condition on gender 

found significance for both male and female faces (p < .05); the simple effects 
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ANOVA results can be found in Table D37 and Table D38 (Appendix D). 

Additional post-hoc Bonferroni and paired sample t-tests were carried out to 

understand the differences between the conditions, see Figure 3.46.  

The differences seen in the male faces between the WF and PF conditions, 

suggest that it is easier to recognise WF male stimuli (see also Figure 3.45). 

Nonetheless, the recognition of male faces is accurate across all PF conditions. 

However, the significant differences seen in the females faces between the EO and 

other PF conditions, suggest that it is hard to recognise female faces from the EO 

condition. This finding was also present in the aforementioned fMRI study and it is 

unclear why it would be hard to recognise a female face from just seeing their eyes.  

A. Male       
  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only           

Minus Eyes           

Mouth Only          

Minus Mouth           

B. Female       
  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only           

Minus Eyes           

Mouth Only          

Minus Mouth                 
p < .05 corrected (bonferroni)    
p < .05 uncorrected     
p > .05      

Figure 3.46. Paired sample t-test results comparing the differences between the PF 
conditions for male and female faces (see Table D39 in Appendix D for statistics: t-
value, df and p-value). 
 

An ANOVA (akin to the emotion task) exploring the effect of PF and 

emotion on accuracy was also conducted (see Appendix K). Furthermore, ANOVAs 

exploring the effect of PF and emotion on reaction time for both the emotion and 

gender task were conducted (see Appendix L). 
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3.2.2.2 MVPA results. 

 The main goal of this study was to provide an additional way of looking at 

bottom-up versus feedback processing, to the previous fMRI experiment (Chapter 2), 

by investigating the neural time-course of cross-decoding expression (under 

conditions of occlusion) in posterior visual electrodes. These electrodes were studied 

as a comparison to the fMRI experiment, which principally investigated early visual 

regions, as well as a host of posterior face and emotion selective areas. The central 

hypothesis is to investigate the decoding of expression across conditions with non-

overlapping visual inputs, with the expectation that decoding across non-overlapping 

visual inputs will occur at a later time point, after feedback has filled in missing 

information. As such the main interest lies within the XC effects, however, as 

aforementioned, the basic decoding results were poor and the planned cross-

classification analyses were not run. Nonetheless, the basic decoding results are 

presented next. 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 3.47. Decoding Expression, Expression Task.  
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Figure 3.48. Decoding Expression, Gender Task.  
 

As expected, significant (p < .05) FDR effects are greatest in the WF 

condition, with medium to large effect-sizes, for 100-500ms in the explicit task; 

demonstrating very early decoding accuracy for expression in the WF condition. 

Significant FDR effects are also present in the explicit task (Figure 3.47) for the ME 

condition at 250-350ms, t(13) = 3.506, p = .002, d = 0.94 (large effect-size), and 

similarly, in the MO condition at 300-400ms, t(13) = 2.851, p = .007, d = 0.76 

(medium effect-size). These two conditions have mouth information present and thus 

it seems that the mouth is more informative; corroborating with Neath-Tavares and 

Itier (2016) and other research demonstrating the importance of the mouth in early 

expression recognition (Jack et al., 2009; F. W. Smith & Schyns, 2009). Furthermore 

the MM condition was not FDR significant around this time point.  

Significant FDR effects with medium to large effect-sizes are also present for 

the explicit task post 500ms, in the WF (500-700ms), ME (600-700ms), MO (500-

600ms and 600-700ms) and MM conditions (500-600ms). This could reflect 

attention to the explicit task, allowing continued processing of the emotion (similar 

to the P300 ERP), but it may just reflect the participants response as they are 

required to make a three-way choice as opposed to a binary choice in the implicit 

task. Surprisingly, considering the importance of the eyes in processing faces and 

more specifically emotions (Baron-Cohen, 2004; F. W. Smith et al., 2008; M. L. 
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Smith et al., 2005; Whalen et al., 2004), decoding accuracy in the EO condition was 

not significant anywhere in the time-course. 

Given that behavioural accuracy is good in the implicit task, it is surprising 

that there are no significant FDR decoding effects present (Figure 3.48). Although 

there are trends in expression decoding accuracy in the WF (100-200ms and 250-

450ms), ME (200-300ms), MO (250-400ms) and MM conditions (150-300 and 

350ms-500ms) associated with medium effect-sizes. It may be that more robust 

decoding in the explicit compared to the implicit task (seen in terms of more 

significant time points overall), maps onto the STS results found in the preceding 

fMRI chapter, where explicit decoding of expression was stronger than implicit 

decoding of expression. Strangely there are also trends for expression decoding in 

the baseline for the WF condition between -100 to 0ms and the MM condition 

between -200 to -100ms. 

 Whilst the basic decoding MVPA analysis has provided some interesting 

results, this study, as abovementioned, did not have enough significant conditions to 

reliably run the planned cross-classification analyses and answer the key hypothesis. 

Statistical power may be a potential factor causing this; to increase this, a bigger 

sample size (closer to 30 or more participants) and/or the inclusion of more trials or 

fewer conditions would have been beneficial. Thus, these results must be classed as 

exploratory, and therefore the time-course of processing and potential feedforward 

and feedback affects cannot be ascertained reliably from the present data. In order to 

relate the current studies to the past ERP face perception research outlined in the 

introduction (see 3.1) (Batty & Taylor, 2003; Eimer, 1998; Hinojosa et al., 2015; 

Itier et al., 2007; Neath-Tavares & Itier, 2016), a univariate ERP analysis was carried 

out on the data.  

3.2.2.3 Univariate results. 

3.2.2.3.1 rN170. 

A repeated measures ANOVA was employed to explore the effects of task 

(2), emotion (3) and PF condition (5) on the mean amplitude in the rN170 time 

window (140-190ms). There was a non-significant main effect of task, F(1, 13) = 

.090, p = .769, p
2 = .007, and emotion on the mean amplitude, F(2, 26) = 1.939, p = 

.164, p
2 = .130. However, there was a significant main effect of PF condition, F(4, 

52) = 15.088, p < .001, p
2 = .537, where amplitudes were greatest for the ME (M = 
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140-190ms 

140-190ms 

-8.51) followed by the MO (M = -8.17), EO (M = -8.03), MM (M = -7.07) and WF 

condition (M = -5.82) (Figure 3.49). Post-hoc pairwise comparisons, with Bonferroni 

correction, show significant differences between the WF and EO (p = .023), WF and 

ME (p < .001), WF and MO (p < .001), WF and MM (p = .045), ME and MM (p = 

.003), as well as the MO and MM conditions (p = .025) as decoding accuracy in the 

WF and MM was significantly lower than other PF conditions. Furthermore there 

was a significant interaction between emotion and PF condition, F(8, 104) = 3.896, p 

< .001, p
2 = .231 (Figure 3.50). 

 

 

 

 

 

 

 

 

Figure 3.49. rN170 (PO8, P8) grand average ERP (μV) split by PF condition in the 
emotion task (top), gender task (bottom). Time window (140-190ms) used for 
analysis marked with dash lines. Negative voltage plotted down.  
 

To explore this interaction a simple effects analysis was conducted, where, as 

above, eight separate repeated measures ANOVAs were carried out (these analyses 

were collapsed across task). Firstly, the effect of emotion at each PF condition was 

investigated by carrying out five ANOVAs (the WF, EO and MO were significant at 

p < .05), and then the effect of PF condition for each emotion in turn was 

investigated by carrying out three separate ANOVAs (all three were significant at p 

< .05), the simple effects ANOVA results can be found in Table D40 and Table D41 

(Appendix D). Additional post-hoc Bonferroni and paired sample t-tests were carried 

out to understand the differences between the conditions, see Figures 3.51 and 3.52.  

These additional post-hoc tests show differences between disgust and 

happiness in the WF condition (Figure 3.51), with amplitudes weaker in happiness 

than disgust (Figure 3.50). This corresponds with the emotion behavioural results of 
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this study, as well as previous research showing happiness to be recognised with 

ease; thus less amplitude may occur with easier recognition (F. W. Smith & Schyns, 

2009). These tests also show fear and happiness to be significantly different in the 

MO condition (Figure 3.51); the stronger amplitude to happiness (Figure 3.50) 

corresponds with research demonstrating the importance of the mouth (F. W. Smith 

& Schyns, 2009). These findings suggest that higher amplitudes occur when the task 

is easier, for example features most important for recognition are present, but higher 

amplitudes may also imply that greater processing is needed for recognition. The 

latter explanation is more probable when behavioural results between the PF 

condition and emotion can justify that the effects are not a result of task difficulty, 

however, the behavioural emotion results show the MO condition associated with 

significantly stronger accuracy in happiness than fear.  

Figure 3.50. Mean amplitude of the rN170 for each emotion and PF, collapsed 
across task. 

 

There is greater significance in fear and happiness recognition for the WF 

comparisons (Figure 3.52); this corresponds to lower amplitudes in the WF 

compared to the PF conditions (Figure 3.50). Thus, it seems the rN170 responds to 

process occlusion; however, it may simply be a result of task difficulty with the 
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partial stimuli being harder to recognise. Furthermore, there are differences between 

the ME and MM conditions in fear and happiness, with stronger amplitudes in the 

ME compared to the MM conditions (Figure 3.50). There is a significant accuracy 

difference in the behavioural emotion results for fear, with significantly lower 

accuracy in the ME compared to the MM. As this is the inverse to the difference 

found in the ERP results, the higher amplitude may reflect where feedback is needed 

to help fill in missing important information. Behavioural results for happiness 

recognition show no difference between the ME and MM conditions, thus finding 

stronger amplitudes to the ME in happiness also suggests that greater processing is 

needed to account for key features missing. This seemingly contradicts most research 

showing the importance of the mouth in happiness (F. W. Smith & Schyns, 2009), 

but the importance of eye information in happiness recognition has also been found 

(M. L. Smith et al., 2005). Whilst the amplitude for the ME is strong in happiness, 

the difference between the EO and MM and between the MO and MM reflects 

equally strong amplitudes to other PF conditions (Figure 3.50). 

 

A.  WF      C. EO    
  Disgust Fear Happy    Disgust Fear Happy 

Disgust        Disgust       

Fear         Fear        

Happy        Happy       
B. MO      

  Disgust Fear Happy  p < .05 corrected (bonferroni)  
Disgust        p < .05 uncorrected  
Fear         p > .05    
Happy            

Figure 3.51. Paired sample t-test results comparing the differences between the 
emotions for the significant PF conditions (see Table D42 in Appendix D for 
statistics: t-value, df and p-value). 
 
 

A. Disgust       
  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only           

Minus Eyes  p = .052         

Mouth Only          

Minus Mouth           
 
 
 
      



Section 2 – Experimental Chapters 

124 
 

B. Fear      
 

  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only           

Minus Eyes           

Mouth Only           

Minus Mouth           

C. Happy        
  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only           

Minus Eyes           

Mouth Only          

Minus Mouth           
      
p < .05 corrected (bonferroni)    
p < .05 uncorrected     
p > .05      

Figure 3.52. Paired sample t-test results comparing the differences between the PF 
conditions for each emotion (see Table D43 in Appendix D for statistics: t-value, df 
and p-value). 
 

3.2.2.3.2 lN170. 

A repeated measures ANOVA was employed to explore the effects of task, 

emotion and PF condition on the mean amplitude in the lN170 time window (140-

190ms). There was a non-significant main effect of task, F(1, 13) = .103, p = .753, 

p
2 = .008 and emotion on the mean amplitude, F(2, 26) = .924, p = .410, p

2 = .066. 

However, there was a significant main effect of PF condition, F(2.253, 29.286) = 

3.531, p = .037, p
2 = .214 (greenhouse-geisser corrected), where amplitudes were 

greatest for the MO (M = -4.13), followed by the ME (M = -4.07), MM (M = -3.01), 

WF (-2.79) and EO condition (-2.6) (Figure 3.53). However, post-hoc pairwise 

comparisons, with Bonferroni correction, show no significance between the PF 

conditions. Furthermore, there were no significant interactions within the ANOVA.  
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Figure 3.53. lN170 (PO7, P7) grand average ERP (μV) split by PF condition in the 
emotion task (top) and gender task (bottom). Time window (140-190ms) used for 
analysis marked with dash lines. Negative voltage plotted down. 
 

3.2.2.3.3 P100.  

A repeated measures ANOVA was employed to explore the effects of task, 

emotion and PF condition on the mean amplitude in the P100 time window (80-

120ms). There was a non-significant main effect of task, F(1, 13) = .230, p = .639, 

p
2 = .017, but a significant main effect of emotion on the mean amplitude, F(2, 26) 

= 4.776, p = .017, p
2 = .269, whereby amplitudes were greatest for disgust (M = 

5.67), followed by fear (M = 5.55) and happiness (M = 5.32). Post-hoc pairwise 

comparisons, with Bonferroni correction, show a significant difference between 

disgust and happiness (p = .05). There was also a significant main effect of PF 

condition, F(2.173, 28.249) = 3.298, p = .048, p
2 = .202 (greenhouse-geisser 

corrected), where amplitudes were greatest for the ME (M = 5.97), followed by the 

MM (M = 5.86), WF (M = 5.51), EO (M = 5.38) and MO condition (M = 4.84) 

(Figure 3.54). Post-hoc pairwise comparisons, with Bonferroni correction, show a 

significant difference between the ME and MO condition (p = .016). There were no 

significant interactions within the ANOVA.  

 

 

 

 

140-190ms 

140-190ms 
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Figure 3.54. P100 (O1, O2) grand average ERP (μV) split by PF condition in the 
emotion task (up) and gender task (bottom). Time window (80-120ms) used for 
analysis marked with dash lines. Positive voltage plotted up.  
 

3.2.2.3.4 P300. 

A repeated measures ANOVA was employed to explore the effects of task, 

emotion and PF condition on the mean amplitude in the P300 time window (300-

500ms). There was a non-significant main effect of task, F(1, 13) = 1.915, p = .190, 

p
2 = .128, but a significant main effect of emotion on the mean amplitude, F(2, 26) 

= 5.271, p = .012, p
2 = .288, whereby amplitudes were greatest for fear (M = 6.43), 

followed by disgust (M = 6.1) and happiness (M = 5.99). Post-hoc pairwise 

comparisons, with Bonferroni correction, show a significant difference between 

disgust and fear (p = .015), as well as between fear and happy (p = .043). There was 

also a significant main effect of PF condition, F(4, 52) = 4.156, p = .005, p
2 = .242, 

where amplitudes were greatest for the MO (M = 6.85), followed by the ME (M = 

6.48), WF (M = 6.34), EO (M = 5.61) and MM condition (M = 5.58) (Figure 3.55). 

Post-hoc pairwise comparisons, with Bonferroni correction, show a significant 

difference between the MO and MM condition (p = .023). Furthermore, there was a 

significant interaction between task, emotion and PF condition, F(8, 104) = 2.514, p 

= .015, p
2 = .162. 

 

 

 

 

80-120ms 

80-120ms 
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Figure 3.55. P300 (Pz, PO3, POz, PO4) grand average ERP (μV) split by PF 
condition in the emotion task (top) and gender task (bottom). Time window (300-
500ms) used for analysis marked with dash lines. Positive voltage plotted up.  
 

 To explore this interaction, further two-way ANOVAs were carried out, 

where the interaction between emotion and PF was tested on the basis of task. Firstly 

a repeated measures ANOVA was carried out on the emotion task. This showed a 

significant main effect of emotion, F(2, 26) = 5.092, p = .014, p
2 = .281, whereby 

amplitudes were greatest for fear (M = 6.361), followed by disgust (M = 5.98) and 

happiness (M = 5.65), and also a significant main effect of PF condition, F(4, 52) = 

5.029, p = .002, p
2 = .279 (greenhouse-geisser corrected) where the amplitudes 

were greatest for the MO (M = 6.82), followed by the ME (M = 6.59), WF (M = 

5.95), EO (M = 5.4) and MM condition (M = 5.22). Post-hoc pairwise comparisons, 

with Bonferroni correction, show significant differences between fear and happiness 

(p = .020) and between the MO and EO (p = .032), as well as the MO and MM 

conditions (p = .006) respectively. There was no significant interactions within this 

ANOVA, F(8, 104) = 1.590, p = .137, p
2 = .109. Results from the gender task found 

no significant main effect of emotion, F(2, 26) = 1.745, p = .194, p
2 = .118, or PF 

on mean amplitude, F(4, 52) = 2.332, p = .068, p
2 = .152, but a significant 

interaction between emotion and PF condition, F(8, 104) = 2.392, p = .021, p
2 = 

.155 (Figure 3.56). 

300-500ms  

 300-500ms 
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Figure 3.56. Mean amplitude of the P300 response for each emotion and PF in the 
gender task. 

 

As a result of the significant interaction within the gender task, a simple 

effects analysis was conducted. Firstly, the effect of emotion at each PF condition 

was investigated by carrying out five ANOVAs (the WF condition was significant at 

p = .01), and then the effect of PF condition for each emotion in turn was 

investigated by carrying out three separate ANOVAs (disgust and fear were 

significant at p = .04), see simple effects ANOVA results in Table D44 and Table 

D45 (Appendix D). Additional post-hoc Bonferroni and paired sample t-tests were 

carried out, see Figures 3.57 and 3.58. 

Post-hoc tests revealed differences in the WF condition between fear and 

happy, as well as fear and disgust (Figure 3.57), with fear causing the strongest 

amplitude (Figure 3.56). This difference is unlikely to be a result of task difficulty as 

there was no differences between these conditions in the behavioural gender results 

(Appendix K), thus the higher signal may be a result of greater processing needed for 

fear recognition. There is additional significance in disgust between MO and MM, 

with the MO causing the strongest amplitude (Figure 3.58). This difference is also 

not seen (uncorrected) in the behavioural gender results for disgust, thus finding 
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disgust recognition associated with a stronger amplitude in the MO condition implies 

that features missing for recognition (nose information) have resulted in a bigger 

ERP response (F. W. Smith & Schyns, 2009). Furthermore, there is significance in 

fear with a stronger amplitude for the WF than EO and MM. In the gender 

behavioural results recognition in the WF condition is significantly higher than the 

EO condition as well as the MM condition (uncorrected). Thus the findings may 

simply reflect the amount of activity that is generated with whole faces important for 

recognition. It is also interesting to note that amplitudes were greater, but not 

significantly so, in the gender task across the emotions and most PF conditions. 

 

Figure 3.57. Paired sample t-test results comparing the differences between the 
emotions for the significant WF condition (see Table D46 in Appendix D for 
statistics: t-value, df and p-value). 
 

A. Disgust       
  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only           

Minus Eyes           

Mouth Only          

Minus Mouth        p = .05   

B. Fear      
  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only           

Minus Eyes           

Mouth Only           

Minus Mouth           
 

   
p < .05 corrected (bonferroni)     
p < .05 uncorrected      
p > .05      

Figure 3.58. Paired sample t-test results comparing the differences between the PF 
conditions for the significant emotions (see Table D47 in Appendix D for statistics: 
t-value, df and p-value). 
 

A. WF      
  Disgust Fear Happy  
Disgust        p < .05 corrected (bonferroni) 

Fear   p = .024      p < .05 uncorrected 

Happy        p > .05 
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3.3 Study 2 

3.3.1 Methods. 

3.3.1.1 Participants. 

A total of 20 participants (10 females, 10 males) took part in this experiment, 

aged 18-35 years (M = 23.8, SD = 4.25). Akin to study one, participants were 

recruited via the paid participant panel and advertisements. All participants were 

right-handed with normal or corrected to normal vision; they gave written, informed 

consent in accordance to approved ethics. 

3.3.1.2 Stimuli. 

Study one unfortunately had limited trials per condition for the nature of an 

EEG experiment. Therefore, this study was devised using two emotions: fear and 

happy; as fear concentrates on recognition from the eyes and happiness from the 

mouth. Thus, the stimuli, totalling 60 different combinations from six identities, five 

partial face conditions and two emotions, were presented on a grey background at a 

visual height of 10˚ using E-Prime 2.0 Software. 

3.3.1.2.1 Materials. 

 Again, the Empathy Quotient (EQ) (Baron-Cohen & Wheelwright, 2004) and 

The Toronto Alexithymia Scale (TAS) (Bagby et al., 1994) were used, for further 

details on these measures and the distribution of participant scores, see Appendix I. 

3.3.1.3 Design and procedure. 

 Akin to study 1, participants carried out an expression or gender recognition 

task on presented PF stimuli, whilst their brain activation was measured. In this 

study both the explicit emotion task and implicit gender task were two AFC; each 

task consisted of 600 trials, with 10 repetitions of 60 stimuli: 10 conditions (five PF 

conditions, two emotions), six identities. Each task began with practice trials and 

took approximately 25-30 minutes, with a break every 50 trials. Each trial consisted 

of a fixation period (500ms) followed by a face (500ms) and a variable delay period 

between 1100 and 1500ms before the next trial (see Figure 3.59). Again, sat in a chin 

rest, participants were asked to respond after the stimulus was displayed; and again, 

task order was counterbalanced and blocked. Fixation was always on and 

participants were told to fixate throughout the run. Responses were recorded with a 

counterbalanced keyboard response of 1 and 2. Participants also undertook an eye-

tracking calibration test. Again, the experiment lasted a maximum of three hours and 

participants were shown the WF stimuli before the experiment commenced. 
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Figure 3.59. Sequence of stimulus presentation.  
 

3.3.1.4 EEG acquisition. 

 The EEG was recorded with Brain Vision Recorder using the same active 63-

channel electrode system (ActiCAP, Brain Products GmbH) as study one. 

Accordingly the same 10-10 electrode placement system and electrodes for ground, 

reference and EOG were used (refer to study 1 EEG acquisition). Furthermore, akin 

to study one, signals were continuously acquired at a sampling rate of 1000hz, with 

impedance kept below 50kΩ.  

3.3.1.5 EEG Data pre-processing for MVPA. 

The EEG data were pre-processed with the same steps as study one (refer to the 

previous pre-processing steps). However, as accuracy rates were higher in this study, 

only epochs containing correct responses (M = 88%, SD = 8.1%) were included, this 

ranged from 62% to 98%. Subsequently the number of correct trials per condition 

was reduced to the lowest number of correct trials in one of the conditions to reduce 

classification bias.  

3.3.1.6 Multi-variate pattern analysis. 

 Again, MVPA was conducted on single-trial EEG signal using a linear SVM 

(LIBSVM 3.20 toolbox, Chang & Lin, 2011). In this study, pattern classifiers were 

trained to discriminate between the two expressions, independently for each PF 

condition and task. The classifiers were again trained to decode the expression 

presented in single trials from 15 time windows of the EEG signal across 19 

posterior and visual electrodes using the same k-fold cross validation and 

overlapping time bin approach (refer to the MVPA analysis in study one). Akin to 

study one, decoding accuracy was reported for each PF condition in 15 time steps of 

an 800 time point window (-200 to 600ms) using one-tailed one sample t-test results, 

with chance level of 50%. Significance levels are presented on graphs with p < .05 

displayed with an ‘X’ and p < .05 (FDR corrected) displayed with a ‘*’.  

3.3.1.7 Univariate EEG pre-processing and analysis. 

The same offline pre-processing and analysis steps were conducted to that of 

study one (see above); with the analysis carried out on the previously chosen ROIs 

Face 
500ms 

Fixation 
500ms 

Variable delay 
1100-1500ms 
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(Figure 3.41). However, in this study, instead of including all epochs in the analysis, 

only epochs containing correct responses were included.  

3.3.2 Results 

3.3.2.1 Behavioural results. 

Unlike the fMRI experiment, behavioural data revealed that participants 

subjectively performed better in the expression (M = 88.88%, SD = 9.65%) than the 

gender task (M = 87.59%, SD = 8.51%) when averaged across all PF conditions. 

Performance was highest in the ME and MM, followed by the WF in the expression 

task and performance was highest in the WF for the gender task, closely followed by 

the ME, MO and MM conditions (Table 3.4). Comparing emotion recognition 

accuracy, participants were subjectively more accurate at recognising happiness (M 

= 89.9%, SD = 8.41%) than fear (M = 87.8%, SD = 10.25%).  

 

Table 3.4. 

All to 2d.p in percentage. WF: whole face, EO: eyes only, ME: minus eyes, MO: 

mouth only, MM: minus mouth. 

Task WF EO ME MO MM 

Expression 90.33  

(SD = 8.93) 

83.58 

(SD = 10.75) 

91.58 

(SD = 7.98) 

87.54 

(SD = 9.73) 

91.38 

(SD = 9.14) 

 

Gender 

 

90 

(SD = 7.67) 

82.78 

(SD = 9.44) 

88.97 

(SD = 7.38) 

88.17 

(SD = 9.24) 

88.1 

(SD = 7.54) 

 

3.3.2.1.1 Emotion accuracy.  

A two-way repeated measures ANOVA was employed to explore the effects 

of PF condition and emotion on accuracy in the expression task. There was a 

significant main effect of PF condition, F(2.460, 664.995) = 21.665, p < .001, p
2 = 

.533 (greenhouse-geisser corrected), but no significant main effect of emotion on 

accuracy, F(1, 19) = .483, p = .496, p
2 = .025 (Figure 3.60). Furthermore there was 

a near significant interaction between PF and emotion, F(2.961, 56.254) = 2.765, p = 

.051, p
2 = .127 (greenhouse-geisser corrected).  
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Figure 3.60. Overall recognition accuracy (%) in each PF condition for each 
emotion. 
 

As it was a near significant interaction, a simple effects analysis was carried 

out to understand what effects were likely to be behind this. ANOVAs testing the 

effect of emotion at each PF condition found significance in the MM condition (F(1, 

19) = 8.855, p = .008, p
2 = .318) with fear recognised more accurately than 

happiness. Testing the effect of PF condition for each emotion found significance for 

both happiness and fear (p < .001); the simple effects ANOVA results can be found 

in Table D48 and Table D49 (Appendix D). Additional post-hoc Bonferroni and 

paired sample t-tests were carried out to understand the differences between the 

conditions, see Figure 3.61.  
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A. Happy       
  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only           

Minus Eyes           

Mouth Only          

Minus Mouth    
  

     
  

  
 

B. Fear      
  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only           

Minus Eyes           

Mouth Only           

Minus Mouth           
      
p < .05 corrected (bonferroni)    
p < .05 uncorrected     
p > .05      

Figure 3.61. Paired sample t-test results comparing the differences between the PF 
conditions for the significant emotions (see Table D50 in Appendix D for statistics: 
t-value, df and p-value). 
 

 In fear and happiness recognition there were significant differences between 

the EO and other PF conditions (apart from EO and MM in happiness), reflecting the 

poor performance for EO (Figure 3.60 & 3.61). There were also differences between 

the MM and most other PF conditions in happiness, also reflecting poor performance 

in this condition. Interestingly, these results show eye information in fear to be less 

important when asked to categorise between these two emotions, but still the mouth 

to be more important in happiness than fear recognition (F. W. Smith & Schyns, 

2009; M. L. Smith et al., 2005). 

3.3.2.1.2 Gender accuracy. 

A two-way repeated measures ANOVA was employed to explore the effects 

of PF condition and gender on accuracy in the gender task. There was a significant 

main effect of PF condition, F(4, 76) = 11.290, p < .001, p
2 = .393 and gender on 

accuracy, F(1, 19) = 5.424, p = .031, p
2 = .222, with participants significantly more 

accurate at recognising the male faces (M = 89.23%) than the female faces (M = 

85.96%) (Figure 3.62). There was also a significant interaction between PF and 

gender, F(2.474, 47.002) = 11.791, p < .001, p
2 = .383 (greenhouse-geisser 

corrected).  
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Figure 3.62. Overall recognition accuracy (%) in each PF condition between male 
and female stimuli.  
 

Again, a simple effects analysis was undertaken. ANOVAs testing the effect 

of gender for each PF condition only found significance in the EO condition (F(1, 

19) = 19.919, p < .001, p
2 = .512) with male faces being recognised better than 

female faces in this condition. Testing the effect of PF condition on gender found 

significance for the female faces only (F(2.047, 38.893) = 17.034, p < .001, p
2 = 

.473 (greenhouse-geisser corrected)); the simple effects ANOVA results can be 

found in Table D51 and Table D52 (Appendix D). Further post-hoc tests were carried 

out (Figure 3.63). These show greatest significance in the EO condition (Figure 

3.63), where performance is worse (Figure 3.62). This finding was also present in the 

previous EEG study and in the fMRI results (Chapter 2), although it is unclear why 

this is.  
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Figure 3.63. Paired samples t-test results for PF condition in female stimuli (see 
Table D53 in Appendix D for statistics: t-value, df and p-value). 
 

An ANOVA (akin to the emotion task) exploring the effect of PF and 

emotion on accuracy was also conducted (see Appendix M). Furthermore, ANOVAs 

exploring the effect of PF and emotion on reaction time for both the emotion and 

gender task were conducted (see Appendix N). 

 

3.3.2.2 MVPA results. 

 

 

 

 

 

 

 

 

 

 

Figure 3.64. Decoding Expression, Expression Task.  
 

 

 

 

 

 

A. Female       
  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only           

Minus Eyes           

Mouth Only           

Minus Mouth           
      
p < .05 corrected (bonferroni)    
p < .05 uncorrected     
p > .05      
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Figure 3.65. Decoding Expression Gender Task. 
  

Significant (p < .05) FDR effects are greatest in the ME condition with 

medium effect-sizes for 50-250ms in the explicit task (Figure 3.64); demonstrating 

early decoding accuracy for expression in the ME condition. As this condition has 

mouth information present, it seems, akin to study 1, that the mouth is more 

informative; corroborating with Neath-Tavares and Itier (2016) and other research 

demonstrating the importance of the mouth in early expression recognition (Jack et 

al., 2009; F. W. Smith & Schyns, 2009). This early significance is also likely to 

reflect the N170 response and thus STS or FG activation and again matches up with 

finding explicit task decoding accuracy for the STS in the preceding fMRI 

experiment. In addition, there are trends with small to medium effect-sizes in the WF 

(50-250ms and 300-550ms), ME (350-450ms and 450-550ms) and MO condition 

(300-400ms). These trends also somewhat demonstrate the importance of the mouth 

in expression recognition, and this is further supported with finding no trends for the 

EO condition in the explicit task. This is surprising considering the importance of the 

eyes in processing faces and more specifically emotions (Baron-Cohen, 2004; F. W. 

Smith et al., 2008; M. L. Smith et al., 2005; Whalen et al., 2004), however, there is 

also a trend for the MM condition (350-450ms with a medium effect-size, and 500-

600ms with a small effect-size). 

Given that behavioural accuracy is good in the implicit task, it is surprising 

that there is only one significant (p < .05) FDR effect, and this is in the EO condition 

between 400 and 500ms (Figure 3.65), t(19) = 3.176 , p = .003 , d = 0.71 (medium 
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effect-size). There are trends with small to medium effect-sizes in expression 

decoding for the implicit task; with early decoding accuracy in the WF, EO and ME 

condition between 100 and 250ms, MO condition between 300 and 400ms, as well 

as later decoding trends in the WF condition between 350 and 500ms, and the EO 

condition between 250-350ms, 350-450ms and 500-600ms. These late decoding 

trends are likely to reflect when the brain has completed its representation of a face 

(Cauchoix et al., 2014). The suggestion of more robust decoding of expression in the 

explicit (Figure 3.64) compared to the implicit task (Figure 3.65), in terms of more 

significant time points overall, maps onto the STS fMRI results, as it is comparable 

to the results found for the STS, where explicit decoding of expression was stronger 

than implicit decoding of expression.  

It is interesting to find the EO condition significant for the implicit task in 

this study; this is supportive of previous literature finding information from the eyes 

sufficient for expression discrimination (Itier et al., 2007). It is surprising that this 

did not show in the explicit task or in study 1. However, it was the implicit task in 

the previous literature where emotion differences were present, rather than in the 

explicit task (Neath-Tavares & Itier, 2016; M. L. Smith, 2011). Furthermore, the 

classifier in study 2 was decoding between two emotions: fear and happy; as a 

stronger difference tended to be found in implicit fear recognition (Neath-Tavares & 

Itier, 2016; M. L. Smith, 2011), generally garnered from eye information (F. W. 

Smith & Schyns, 2009; M. L. Smith et al., 2005), the extra emotion and subsequent 

conditions in study 1 may have concealed this result.  

 Whilst the basic decoding MVPA analysis has again provided some 

interesting results, this study, as aforementioned, does not have enough significant 

conditions to reliably run the planned cross-classification analyses. Again, statistical 

power may be a potential factor causing this. Thus, these results must, for a second 

time, be classed as exploratory; the time-course of processing and potential 

feedforward and feedback affects cannot be ascertained reliably from the present 

data. Again, in order to relate the current studies to the past ERP face perception 

research outlined in the introduction (Batty & Taylor, 2003; Eimer, 1998; Hinojosa 

et al., 2015; Itier et al., 2007; Neath-Tavares & Itier, 2016), an ERP analysis was 

carried out on the data. 
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3.3.2.3 Univariate results. 

3.3.2.3.1 rN170. 

A repeated measures ANOVA was employed to explore the effects of task 

(2), emotion (2) and PF condition (5) on the mean amplitude in the rN170 time 

window (140-190ms). There was a near significant main effect of task, F(1, 19) = 

4.303, p = .052, p
2 = .185, with amplitudes greater in the gender (M = -6.06) than 

the emotion task (M = -5.47), but a non-significant main effect of emotion on the 

mean amplitude, F(1, 19) = .274, p = .607, p
2 = .014. However, there was a 

significant main effect of PF condition, F(2.321, 44.092) = 3.932, p = .022, p
2 = 

.171 (greenhouse-geisser corrected), where amplitudes were greatest in the ME (M = 

-6.66), followed by EO (M = -6.19), MO (M = -5.86), MM (M = -5.13) and WF 

condition (-5) (Figure 3.66). Post-hoc pairwise comparisons, with Bonferroni 

correction, show a significant difference between the ME and MM condition (p = 

.001). There were no significant interactions within the ANOVA.  

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.66. rN170 (PO8, P8) grand average ERP (μV) split by PF condition in the 
emotion task (top) and gender task (bottom). Time window (140-190ms) used for 
analysis marked with dash lines. Negative voltage plotted down. 
 

3.3.2.3.2 lN170. 

A repeated measures ANOVA was employed to explore the effects of task, 

emotion and PF condition on the mean amplitude in the lN170 time window (140-

140-190ms 

140-190ms 
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190ms). There was a non-significant main effect of task, F(1, 19) = 2.274, p = .148, 

p
2 = .107 and emotion on the mean amplitude, F(1, 19) = .570, p = .460, p

2 = .029. 

However, there was a significant main effect of PF condition, F(2.638, 50.117) = 

4.311, p = .011, p
2 = .185 (greenhouse-geisser corrected), where amplitudes were 

greater in the MO (M = -4.29), followed by the ME (M = -4.28), WF (M = -3.74), 

EO (M = -3.57) and MM condition (M = -2.57) (Figure 3.67). Post-hoc pairwise 

comparisons, with Bonferroni correction, show significant differences between the 

ME and MM (p = .012), as well as the MO and MM conditions (p = .011). There 

was also a significant interaction between emotion and PF condition, F(4, 76) = 

5.534, p = .002, p
2 = .226, see Figure 3.68. 

 

 

 

 

 

 

 

 

 

 
1 
 

 

 

Figure 3.67. lN170 (PO7, P7) grand average ERP (μV) split by partial face condition 
in the emotion task (top) and gender task (bottom). Time window (140-190ms) used 
for analysis marked with dash lines. Negative voltage plotted down. 
 

To explore this interaction a simple effects analysis was conducted, where, 

seven separate repeated measures ANOVAs were carried out (these analyses were 

collapsed across task). Firstly, the effect of emotion at each PF condition was 

investigated by carrying out five ANOVAs (the MM condition was significant at p < 

.05), and then the effect of PF condition for each emotion in turn was investigated by 

carrying out two separate ANOVAs (fear was significant at p < .05, happiness was 

near significance at p = .055); the simple effects ANOVA results can be found in 

140-190ms 

140-190ms 
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Table D54 and Table D55 (Appendix D). Additional post-hoc Bonferroni and paired 

sample t-tests were carried out (Figure 3.69), these included further exploratory tests 

for happiness as the ANOVA result was near significance.  

 

 

 

Figure 3.68. Mean amplitude of the lN170 for each emotion and PF, collapsed 
across task. 

 

These tests revealed significance between the ME and MM for fear and 

happiness (Figure 3.69); as strong amplitudes are present in the ME and weak 

amplitudes are present in the MM condition (Figure 3.68). Finding fear associated 

with a stronger amplitude in the ME condition implies that occluding the features 

needed for fear recognition (the eyes) (Greening et al., 2018; F. W. Smith & Schyns, 

2009; M. L. Smith et al., 2005) creates stronger amplitudes around the N170 ERP, 

potentially involved in feedback processes. This corresponds with the behavioural 

results showing no differences in accuracy between the ME and MM condition for 

fear. However, finding larger amplitudes in the ME condition for happiness supports 

the task difficulty explanation as behavioural emotion results show participants to be 

more accurate at recognising happiness from ME than MM stimuli; as the mouth is 

more important for task completion (F. W. Smith & Schyns, 2009).  
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A. Fear      
  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only           

Minus Eyes           

Mouth Only           

Minus Mouth           

B. Happy       
  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only          

Minus Eyes           

Mouth Only          

Minus Mouth           
      
p < .05 corrected (bonferroni)    
p < .05 uncorrected     
p > .05      

Figure 3.69. Paired sample t-test results comparing the differences between the PF 
conditions for each emotion (see Table D56 in Appendix D for statistics: t-value, df 
and p-value). 
 

3.3.2.3.3 P100. 

A repeated measures ANOVA was employed to explore the effects of task, 

emotion and PF condition on the mean amplitude in the P100 time window (80-

120ms). There was a non-significant main effect of task, F(1, 19) = 1.422, p = .248, 

p
2 = .070 and emotion on the mean amplitude, F(1, 19) = .750, p = .397, p

2 = .038. 

However, there was a significant main effect of PF condition, F(2.506, 47.610) = 

3.876, p = .020, p
2 = .169 (greenhouse-geisser corrected), where amplitudes were 

greater in the ME (M = 5.518), followed by the MM (M = 4.78), MO (M = 4.4), WF 

(M = 4.05) and EO condition (M = 4.02) (Figure 3.70). Post-hoc pairwise 

comparisons, with Bonferroni correction, show a significant difference between the 

WF and ME condition (p = .022). There was also a significant interaction between 

emotion and PF condition, F(4, 76) = 3.441, p = .012, p
2 = .153, see Figure 3.71. 
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Figure 3.70. P100 (O1, O2) grand average ERP (μV) split by PF condition in the 
Emotion Task (top) and gender task (bottom). Time window (80-120ms) used for 
analysis marked with dash lines. Positive voltage plotted up. 
 

To explore this interaction a simple effects analysis was conducted, where, 

seven separate repeated measures ANOVAs were carried out (these analyses were 

collapsed across task). Firstly, the effect of emotion at each PF condition was 

investigated by carrying out five ANOVAs (the EO, F(1, 19) = 4.367, p = .05, p
2 = 

.187, and MO condition were significant, F(1, 19) = 4.532, p = .047, p
2 = .193, as 

responses to happiness were greater than fear in these two conditions), and then the 

effect of PF condition for each emotion in turn was investigated by carrying out two 

separate ANOVAs (fear but not happiness was significant at p < .05); the simple 

effects ANOVA results can be found in Table D57 and Table D58 (Appendix D). 

Additional post-hoc Bonferroni and paired sample t-tests were carried out to 

understand the differences between the conditions in fear recognition, see Figure 

3.72. These tests showed differences between the ME and all other PF conditions 

(Figure 3.72); with the P100 responding maximally to the ME condition in fear 

(Figure 3.71). Thus the heightened amplitude in the ME condition for fear may 

reflect early top-down processing to the eye region that is missing for recognition, or 

it may simply result from task difficulty.  

80-120ms 

80-120ms 
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Figure 3.71. Mean amplitude of the P100 for each emotion and PF, collapsed across 
task. 
 

A. Fear      
  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only           

Minus Eyes           

Mouth Only           

Minus Mouth           
      
p < .05 corrected (bonferroni)    
p < .05 uncorrected     
p > .05      

Figure 3.72. Paired sample t-test results comparing the differences between the PF 
conditions for fear (see Table D59 in Appendix D for statistics: t-value, df and p-
value). 
 

3.3.2.3.4 P300. 

A repeated measures ANOVA was employed to explore the effects of task, 

emotion and PF condition on the mean amplitude in the P300 time window (300-

500ms). There was a non-significant main effect of task, F(1, 19) = .484, p = .495, 

p
2 = .025, but a significant main effect of emotion on the mean amplitude, F(1, 19) 



Section 2 – Experimental Chapters 

145 
 

= 9.274, p = .007, p
2 = .328, with greater amplitudes for fear (M = 5.92) than happy 

(M = 5.59). There was also a significant main effect of PF condition, F(2.414, 

45.862) = 16.649, p < .001, p
2 = .467 (greenhouse-geisser corrected), where 

amplitudes were greater for the MM (M = 7.08), followed by the ME (M = 6.39), EO 

(M = 5.53), WF (M = 5.1) and MO condition (M = 4.68) (Figure 3.73). Post-hoc 

pairwise comparisons, with Bonferroni correction, show significant differences 

between the WF and ME (p = .013), WF and MM (p = .005), EO and MO (p = 

.003), EO and MM (p = .002), ME and MO (p < .001), as well as the MO and MM 

conditions (p < .001). There were no significant interactions within the ANOVA.   

   

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.73. P300 (Pz, PO3, POz, PO4) grand average ERP (μV) split by partial face 
condition in the Emotion task (top) and gender task (bottom). Time window (300-
500ms) used for analysis marked with dash lines. Positive voltage plotted up.  
 

3.4 Discussion 

This study, akin to the fMRI experiment, principally set out to explore the 

cross-decoding of expression across conditions with non-overlapping feature 

information and investigate how task context may affect this. Unfortunately, due to 

the limited significance found in the basic MVPA decoding, the cross-classification 

analyses to investigate H1 could not be carried out. Nevertheless, the basic decoding 

and ERP analyses provide insight into the temporal processing of occluded facial 

expressions and are fruitful to compare against the fMRI results.  

300-500ms 

300-500ms 
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3.4.1 MVPA results. 

The basic MVPA decoding results showed that expression could be decoded 

from 50ms to 700ms post-stimulus onset, with variations across PF conditions. The 

heightened early significance, distributed across the time window, supports research 

demonstrating the sensitivity of multivariate approaches, in revealing effects that are 

overlooked by traditional ERP components (Ghuman et al., 2014; Nemrodov et al., 

2016). It is surprising that expression can be decoded at 50-150ms in this study, but 

other research has found significance for identity or general face decoding as early as 

50ms (Ghuman et al., 2014; Kaneshiro et al., 2015) or 70ms (Cichy et al., 2014; 

Nemrodov et al., 2016). These early time effects could reflect the processing of low-

level stimulus features, or suggest the importance of processing faces due to their 

biological salience (Pessoa & Adolphs, 2010). However, it is not possible to 

ascertain whether the early time effects in this study (between 50 and 150ms) are or 

are not a result of low-level stimulus features. To clearly adjudicate this, these results 

need to be compared with behavioural studies or a low-level model.  

For both studies, decoding was more robust (with more time points 

significant overall) in the explicit task where subjects were asked to recognise 

expression. Whilst this seems to contradict H2, and prior fMRI findings, that 

expression decoding will be stronger in the implicit task; it should be noted that this 

experiment, as opposed to the fMRI experiment, was more closely linked to 

decoding in the FG and STS than early visual areas of the brain. As such, the 

suggestion of stronger decoding in the explicit task corresponds with the high 

classifier performance found in the fMRI experiment for the STS (Chapter 2, 

2.3.3.1.2). In the explicit task for study one, decoding accuracy was significant in the 

ME (250-350ms) and MO condition (300-400ms), with significance greatest in the 

ME condition (50-250ms) for study two. Both the ME and MO conditions show 

significant decoding accuracy in the fMRI experiment for the STS; and the MO 

condition was subjectively higher for explicit than implicit in the FG (but this was 

not significant). Thus these results further support the idea that this is more closely 

linked to decoding in the STS and FG. Furthermore, the MM condition was not 

significant in study two or in study one before 500ms. The MM condition was also 

not significant in the explicit task for the STS or FG in the fMRI experiment, 

suggesting further consistency between the two studies.  



Section 2 – Experimental Chapters 

147 
 

 The finding of more robust decoding in the explicit task corroborates with 

research showing an attenuation of the N170 (thought to reflect FG or STS 

activation) during an implicit task involving gender categorisation (Wronka & 

Walentowska, 2011). Further research found greater P300 amplitudes (reflecting 

processing further down the ventral stream and around the STS) when participants 

were asked to attend to an explicit emotion task with features relevant for task 

completion, than to a gender task (Hajcak et al., 2010; Krolak-Salmon et al., 2001; 

M. L. Smith et al., 2004).  

The MVPA results appear to reflect three decoding phases that also bear 

resemblance with face-selective ERP components (Cauchoix et al., 2014; Kaneshiro 

et al., 2015). It seems that there is an early decoding phase around 100ms that is 

indicative of feedforward processing (P100). This feedforward sweep is generally 

associated with the processing of low-level stimulus properties (Cauchoix et al., 

2014), such as the high contrast of the mouth (Neath-Tavares & Itier, 2016). This 

supports the idea that responses to positive emotions are elicited earlier than negative 

emotions, as the mouth is most commonly used for happiness recognition (Batty & 

Taylor, 2003; Neath-Tavares & Itier, 2016). However, the early decoding of the 

mouth, only apparent in the explicit tasks (MO trend at 100-250ms in study one and 

the early ME significance in study two at 50-250ms), could also reflect essential 

rapid (top-down feedback) processing to an area important for expression 

recognition (Jack et al., 2009; F. W. Smith & Schyns, 2009). This is also supported 

by the P100 likely corresponding to V1 activation, thus whilst reflecting early visual 

processing, this area could also contain feedback effects (Cichy et al., 2014). There 

also seems to be a second decoding phase around 170ms (N170), likely to reflect 

recurrent processing of the stimulus, and a later phase post 300ms (P300).  

This later phase would be indicative of feedback processes if amplitudes are 

greater for partial than WF stimuli. This is because unexpected partial stimuli are 

likely to be more difficult to process (Ghuman et al., 2014; Hajcak et al., 2010; Tang 

et al., 2014) with subjects needing to predict missing feature information (Greening 

et al., 2018) to make an accurate emotion or gender categorisation. Results suggest 

this in the explicit task with significance in study one at 300-400ms, 500-600ms and 

600-700ms for the MO condition, additional significance at 500-600ms for the MM 

condition and at 600-700ms for the ME condition; as well as trends in expression 

decoding in study two for the MO (300-400ms), MM (350-450ms and 500-600ms) 
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and the ME condition (350-450ms and 450-550ms). However, the WF condition was 

also significant in study one at these times points, with additional respective trends 

in study two. Nonetheless, in the implicit task for study two, the EO could be 

decoded but the WF condition could not at 400-500ms, supporting the idea that later 

time points are involved in the processing of partial stimuli.    

Finding significance in the EO condition for the implicit task in study two is 

interesting, suggesting the importance of the eyes in processing expression, 

particularly when attention is not explicitly directed for recognition. Significance in 

the EO condition was shown in the amygdala of the fMRI experiment for implicit 

expression decoding. This potentially reveals an exciting cross-over effect; with the 

absence of the eyes important for explicit tasks and the presence of the eyes 

important for implicit tasks. Whilst, the presence of the eyes was also important for 

implicit tasks in V1 and EVC, it is important to note that the absence of the eyes was 

more important for these regions in the implicit task. 

In the explicit task the most consistent decoding occurred in response to the 

WF condition in study 1 and the ME condition in study 2. However, the ME 

condition seems particularly important in the explicit tasks of both studies, with 

significance in study 1 around 250-350ms and significance in study 2 around 50-

250ms. In the implicit tasks, there were trends in decoding for all PF conditions 

except the EO condition in study 1 and the MM condition in study 2.  

Based on previous literature, it is expected that the time of decoding would 

occur later for partial that whole face stimuli. This seems to apply in the explicit task 

for study 1, whereby significant decoding begins in the WF condition around 100ms 

and significant decoding in the PF conditions begins later around 250-350ms. This is 

in line with accounts of visual processing, such as predictive coding and recurrent 

feedback models of object recognition. However, it is important to note the potential 

confound of less information in the partial stimuli, which may instead be driving 

these delays in response. Moreover, partial stimuli cannot be compared with whole 

stimuli in the implicit task of study one as no conditions were significantly decoded. 

Further, results in the explicit task for study two only show significant decoding to 

occur in the ME condition, and results for the implicit task only show the EO 

significant at 400-500ms. Therefore, from the MVPA results, it is not possible to 

fully address whether decoding would occur later for partial than whole face stimuli.  
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Overall these were the first EEG experiments to examine the decoding of 

expression from PF stimuli and the MVPA analyses garnered some interesting 

results. It has shown that expression can be decoded from partial stimuli, and 

provides a complementary view to the ERP analysis, on the neural time-course of 

expression processing under conditions of occlusion (De Vos et al., 2012). Whilst 

the concern of insufficient trials (36 trials per condition in study one when split by 

both PF and emotion) was addressed by carrying out a second study with more trials 

and only two emotions; there were potentially still insufficient trials in study two (60 

trials per condition) to yield enough basic decoding significance and reliably run the 

cross-classification analyses. Previous MVPA face decoding EEG and MEG studies 

have used a range of trials per condition, from 20-30 trials in Cichy et al. (2014), 72 

trials in Kaneshiro et al. (2015), 270 trials in Cauchoix et al. (2014), to over 650 

trials per condition in Nemrodov et al. (2016). Furthermore, the experiments in this 

chapter may have also tested insufficient participants and thus generally had 

insufficient power. This is a greater concern in experiment one, with only 14 

participants used in the final analyses. Ideally a sample size close to 30 or above 

would have been collected. Although research has started to apply MVPA to EEG 

data, it has not examined the ideal number of trials or participants to use in these 

studies. It is clear that future MVPA research is needed to explore the neural 

processing of occluded facial expressions; with a simplified design consisting of 

more trials or fewer conditions, as well as a greater number of participants. 

3.4.2 Univariate results. 

 In both experiments the ERP analysis showed PF condition and emotion to 

affect the mean amplitudes of the selected ERP components (the N170, P100 and 

P300). This was particularly evident bilaterally in the N170 (rN170 of study one, 

lN170 of study two), whereby amplitudes were greatest when the eyes were 

occluded (albeit the ME or the MO condition) and weakest when information from 

the eyes was available (MM). These findings are inconsistent with previous research 

finding occluded eyes to have no effect on the N170 (Eimer, 1998; Itier et al., 2007) 

and eyes only stimuli to increase the amplitude (Bentin et al., 1996; Itier & Batty, 

2009; Nemrodov et al., 2014; Rousselet et al., 2014). This previous research was 

focussed on face detection and orientation or contrast judgement tasks; expression or 

gender recognition tasks were not used. However, studies using the bubbles 

technique has shown information from the eyes and mouth to be important (M. L. 
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Smith et al., 2005), and further the presence of the eyes to drive the N170 response, 

especially in fear (Schyns et al., 2007). Whilst the greatest amplitudes are to the ME 

condition in this study, the research does not dispute the eye-sensitivity of the N170. 

This is because the increased amplitude may reflect the occurrence of a prediction or 

an error signal in predictive coding, helping predict and fill in the important missing 

feature information; that they expect to make their emotion or gender judgement 

(Greening et al., 2018; Hajcak et al., 2010).  

However, the nature of occlusion may be driving the differences in N170 

effects for occluded eye stimuli. In this chapter’s experiments, the occluded eyes are 

overlaid in black; whereas the previous research removed the eyes by blending it to 

the same colour of the face (Eimer, 1998; Itier et al., 2007). Johnson and Olshausen 

(2005) showed how the recognition of a partially occluded object is affected by 

removing information, as opposed to using an occluder. This recognition advantage 

of using an occluder is thought to occur as feature absence can be explained by 

amodal completion; visualising the continuation of an objects shape (Johnson & 

Olshausen, 2005). This amodal completion cannot occur when objects have been 

removed (Johnson & Olshausen, 2005). Therefore, finding an N170 effect in the 

chapter’s experiments, as opposed to previous research, may be explained by an 

occluder promoting the use of amodal completion.  

Similarly amplitudes were greatest when the eyes were occluded in the P100. 

This could reflect early top-down processing to the eyes, which have previously been 

stated as important for expression recognition, but it is likely to reflect feedforward 

processes as amplitudes for the occluded mouth are also high. Amplitude strength 

appears to be based on the amount of information; with more information associated 

with higher amplitudes and less information associated with lower amplitudes. This 

processing, based on visual input, reflects the involvement of early visual regions 

and subsequently strengthens the idea that these amplitudes are a reflection of 

feedforward processing (Cauchoix et al., 2014). 

Amplitudes in the P300 were associated with the features relevant for task 

completion and also responded to unexpected stimuli (Hajcak et al., 2010; M. L. 

Smith et al., 2004). This was evidenced with greater amplitudes to an isolated mouth 

(compared to the minus mouth condition) when participants were to discriminate 

between disgust, fear and happiness, but greater amplitudes to an occluded mouth 

(compared to a whole face, eyes only or mouth only stimulus) when asked to 
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discriminate between fear and happy. An isolated mouth was found to impair disgust 

and fear recognition in the 3AFC task, with significant accuracy differences between 

all three emotions (disgust, M = 83.93%; fear, M = 66.27%; happy, M = 97.2%), this 

is because there is an absence of nose information for disgust recognition and eye 

information for fear, making the task harder and more unexpected. Categorising 

between fear and happy, on the other hand, can be achieved with the presence of 

mouth information. Thus, the high amplitude to an occluded mouth makes sense, as 

the features relevant for task completion are missing, and this is unexpected. In both 

cases, the bigger amplitude could be associated with where feedback is needed to 

help fill in important missing information, potentially reflecting P300 oddball effects 

(Picton, 1992) with an increased response to target stimuli necessary to make the 

correct categorisation, but more simply it could just be a result of task difficulty. 

Furthermore, akin to the N170 and P100, amplitudes were strong when the eyes were 

occluded in the P300. This may again reflect a feedback effect or top-down 

processing (Greening et al., 2018; Schyns et al., 2007; M. L. Smith et al., 2005), 

where the amplitude is associated with the requirement to fill in the important 

missing eye information, or again, it may be a reflection of task difficulty because 

information from the eyes is important for recognition.  

There were subsequent interactions between PF condition and emotion; these 

interactions primarily occurred between the occluded eye condition and fear 

recognition. Whilst the rN170 in study one and lN170 of study two responded 

greater in the occluded eyes condition (compared to the occluded mouth condition), 

this was seen in both fear and happiness recognition. Previous literature found no 

differences in the N170 when recognising fearful faces with an occluded eye region 

(Leppänen et al., 2008). However finding greater amplitudes to fear supports a 

number of previous studies, including Batty and Taylor (2003), Blau et al. (2007), 

Calvo and Nummenmaa (2015) and Turano et al. (2017), suggesting a propensity to 

detect threat in the environment (Calvo & Nummenmaa, 2015). Turano et al. (2017) 

additionally found fear associated with a distinctive neural signature. Previous 

research has also shown increased N170 amplitudes in response to happiness 

(Hinojosa et al., 2015), which could be explained with the attentional salience of a 

smile (Calvo & Nummenmaa, 2015). Although there is an association between the 

importance of mouth information and the recognition of happiness, research carried 

out using the bubbles paradigm also showed the importance of eye information in 
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recognition (M. L. Smith et al., 2005). Moreover, the stronger amplitude observed in 

fear and happiness recognition in response to occluded eyes, could suggest that the 

brain is trying to fill in missing diagnostic information for successful recognition 

(Greening et al., 2018; Schyns et al., 2007, 2009). The amplitude was not stronger in 

the occluded eyes condition for disgust recognition; and furthermore, research using 

the bubbles paradigm does not show the eyes important for disgust (M. L. Smith et 

al., 2005). Thus, this may provide further support that emotion recognition firstly 

focusses on the eyes and the N170 only peaks in an attempt to fill in missing 

diagnostic information (Greening et al., 2018; Schyns et al., 2007, 2009). The 

behavioural results in this chapter (3.2.2.1 and 3.3.2.1) provide further supporting 

evidence that the increased ME amplitude for fear (in the rN170 study one and 

lN170 study two) reflects feedback, where the brain could be forming a prediction of 

the diagnostic facial feature. This is because the behavioural results do not find fear 

in the ME condition to be recognised more accurately than in the MM condition. 

However, it is important to note that this result may depend on the nature of 

occlusion that was used, and may not have been found if the stimuli were different, 

with information removed rather than concealed behind an occluder (Johnson & 

Olshausen, 2005). 

 Alternatively, however, the N170 could simply occur in the absence of 

feature information to help process occlusion independently of emotion. This is 

supported in the rN170 of study one, where lower amplitudes in the WF condition, 

across emotion, are found in comparison to the other PF conditions. This is 

consistent with past work on the N170 that found amplitude did not vary across 

expression (Eimer & Holmes, 2002, 2007; Eimer et al., 2003; Neath-Tavares & Itier, 

2016; Neath & Itier, 2015; Rossion, 2014). However, this finding may simply be a 

result of task difficulty with the partial stimuli being harder to recognise. This is 

supported with ERP research also finding strong amplitudes in response to a harder 

task, such as the recognition of inverted faces (Bentin et al., 1996) and previous 

literature showing occlusion to have no effect on the N170 amplitude (Eimer, 1998; 

Itier et al., 2007; Tang et al., 2014).  

In study two, the P100 was also shown to respond maximally to fear in the 

occluded eyes condition (compared to all other PF conditions). This result, as seen in 

the N170, could reflect early top-down processing to the eye region that is missing 

and needed for fear recognition, but it could also reflect task difficulty. The P300 
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was shown to respond maximally to fear (than happiness) but this effect did not 

interact with PF condition. This result implies that greater processing is needed for 

fear recognition or that more activity is generated demonstrating the importance of 

recognising fear. As there was an interaction in study one, separate analyses were 

carried out for both tasks. In the expression task, amplitudes were again greatest for 

fear (than happiness). Additionally, in the gender task, fear (compared to happiness) 

was associated with the greatest P300 amplitude in the whole face condition; this 

may be due to the salience of the emotion. Furthermore, disgust was found stronger 

in the isolated mouth than the minus mouth condition. This finding follows the same 

argument that features missing for recognition (nose information) have again 

resulted in a bigger ERP response. Moreover, this is unlikely to be a result of task 

difficulty as the behavioural results show no accuracy differences between these 

conditions.  

Previous research has shown emotion differences present only in implicit 

tasks where fear is higher, or an enhancement towards emotional versus neutral 

expressions (Rossion, 2014). However, the findings of emotion differences are 

present across task, akin to Turano et al. (2017) who found fear to enhance the early 

neural coding of faces irrespective of task (categorising expression, identity or both). 

As no significant task effects were observed in the univariate analysis, this goes 

against the hypothesis that expression recognition would be stronger in the implicit 

task. Only a trend for greater amplitudes in the gender task was observed in the N170 

and P300. Thus hinting to the importance of implicitly processing expressions due to 

their biological saliency (Pessoa & Adolphs, 2010). The finding of no task effects 

corresponds with some previous literature (Schyns et al., 2003; F. W. Smith & 

Smith, 2016, June, OHBM Abstract; M. L. Smith et al., 2004; Turano et al., 2017). 

However, it is important to note that explicit and implicit expression recognition was 

not compared the same in these studies, for example Schyns et al. (2003) and M. L. 

Smith et al. (2004) asked participants whether a face was expressive or not (happy vs 

neutral), instead of asking them to discriminate between different emotions. F. W. 

Smith and Smith (2016, June, OHBM Abstract) asked participants to discriminate 

between the seven basic emotions in their explicit task, but to firstly perform an 

identity, as opposed to a gender categorisation task, in their implicit task. Studies 

that found task effects masked the stimulus (M. L. Smith, 2011) or used the oddball 

paradigm (Neath-Tavares & Itier, 2016), these implicit tasks differ from those 
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employed in this chapters experiments. It seems the design of an implicit or explicit 

task can influence subsequent results. 

On visual inspection, the peak for partial stimuli occurs after the whole face 

stimuli, bilaterally for the N170. This suggests the possibility that the time of 

decoding may occur later for partial stimuli than whole stimuli. This would be in line 

with previous literature (Eimer, 1998; Itier et al., 2007; Tang et al., 2014; Tang et al., 

2018). However, no latency analyses have been run with the analysed ERP data and 

the peak timing for partial and whole stimuli can only be hinted at from the ERP 

plots. An investigation into the latency of the ERP peaks would enable this to be 

tested, to see whether univariate ERP differences between emotion would occur later 

for partial than whole face stimuli.  

Overall, results from the univariate analysis show that when information 

needed to process an emotion is missing, amplitudes are stronger. This heightened 

amplitude, found principally in response to occluded eye stimuli and fear 

recognition, is interesting. To some extent this higher amplitude may reflect the 

occurrence of prediction or error signals in predictive coding, however, this study 

was not set up to directly test this account. Therefore, the heightened amplitudes 

cannot simply imply feedback; they may instead be due to a number of other factors, 

such as task difficulty or the nature of occlusion. Testing the predictive coding 

account directly is an important avenue for future research; this will be discussed 

further in the general discussion (5.6, Chapter 5).  

3.4.3 Comparison of results to fMRI study. 

 Decoding accuracies were also amplified in the occluded eye conditions of 

the previous fMRI study. This significance was revealed with the highest decoding 

accuracy in the ME condition for implicit expression decoding in V1, EVC, FG and 

IOG; and the highest decoding accuracy in the MO condition for explicit expression 

decoding in V1, EVC, FG, IOG and the insula. The ME condition was also 

significant in the FG (at p < .01) and insula (at p < .01), with the amygdala also 

showing ME significance (at p < .05) for explicit expression decoding. Furthermore 

in the STS, the ME and MO conditions were significant in explicit expression 

decoding, with the MO significant in implicit expression decoding. Thus it seems 

that whilst the occluded eye effects are more prevalent for implicit expression 

decoding in the fMRI study, there are hints that these effects are present across both 

tasks. This matches the significance of occluded eye effects present across both tasks 
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in this EEG study. Furthermore, as aforementioned, the N170 is thought to reflect 

the FG or STS, but not IOG activation (Pitcher et al., 2011; Wronka & 

Walentowska, 2011), thus the N170 peak in the occluded eye conditions in this 

study, corroborates with the high decoding accuracies seen in the ME and MO 

conditions for these areas of the brain. Therefore, the apparent discrepancy between 

the fMRI and EEG study in terms of task results can be explained when considering 

which regions of the brain each study taps into. As aforementioned, the STS results 

in the fMRI study map onto the more robust decoding found in the explicit compared 

with the implicit task for the EEG study. Furthermore, no specific task effects were 

found with the univariate EEG analysis, although it is important to note that this 

analysis would have lacked sensitivity and cannot be directly compared with the 

fMRI multivariate analysis, finding task differences in decoding accuracy.  

3.5 Conclusion 

 Following up from the previous study, this chapter explored the neural time-

course of expression processing under conditions of occlusion. Given evidence that 

the brain can predict rich information about the visual environment, it was important 

to understand the temporal dynamics of processing and compensating for missing 

feature information. Multivariate pattern analysis (MVPA) showed reliable decoding 

of facial expression (happy, fear and disgust) in conditions missing feature 

information, with more robust decoding in the explicit task. Significant expression 

decoding was possible from 50-700ms, with three decoding phases potentially 

inferring the presence of feedforward and feedback processes. Furthermore, a 

supplementary univariate analysis showed enhanced early ERP responses (P100 and 

N170), independent of task, to stimuli with occluded eye information. This response 

was heightened if the emotion needed information for recognition from the eye 

region (thus it mainly affected fear recognition). This amplitude lends to speculate 

the involvement of feedback, as the brain could be forming a prediction of the 

occluded facial feature. However, from these results it was not possible to ascertain 

the amount of feedback taking place and whilst it can elucidate some timing 

information as to when feedback occurs (post 170ms stimulus onset), information 

related to where this feedback takes place cannot be established. Furthermore, this 

result contradicts with previous research showing responses to stimuli missing eye 

information to have no effect on the N170 (Eimer, 1998; Itier et al., 2007). 

Moreover, heightened amplitudes cannot simply be taken to imply feedback, as the 
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result could be due to a number of other factors, such as task difficulty or the nature 

of occlusion. Overall, results broadly agree with the fMRI experiment, further adding 

to previous research in understanding how the brain deals with occlusion. 
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Chapter 4: Shared Representations in the Perception and Production of Facial 

Expressions; Testing the Embodied Account of Emotion Recognition 

 

4.1 Introduction  

There is an accumulation of evidence that visual recognition of emotion may 

depend on a primitive embodied simulation account, whereby we internally simulate 

another’s expression to aid recognition (Goldman & Sripada, 2005; Niedenthal, 

2007). The embodied account can be evidenced by studies showing the importance 

of somatosensory and motor regions when visually recognising facial expressions 

(Dalgleish, 2004; Kober et al., 2008; Saarimäki et al., 2015). As expressions are 

often fleeting, and features can be occluded, expression recognition by visual signal 

alone can be challenging (Wood, Rychlowska, et al., 2016). 

The role of the primary motor cortex in emotion recognition has also been 

ascertained (Banissy et al., 2010; van der Gaag et al., 2007). Furthermore, secondary 

motor regions have been implicated in recognition, including the supplementary 

motor area (SMA), premotor and posterior parietal cortex (van der Gaag et al., 

2007). These regions could be involved in embodiment, especially since the ventral 

premotor and posterior parietal cortex is defined as part of the human mirror neuron 

system (HMNS), considered to support simulation (see Figure 1.8, Chapter 1) 

(Iacoboni & Dapretto, 2006; Kircher et al., 2013; Oberman et al., 2007). 

To study embodiment in emotion recognition, a number of studies have 

found overlaps in brain activation across the perception and motor production of an 

emotional expression (Hennenlotter et al., 2005; Kircher et al., 2013). Whilst finding 

sensorimotor activation, a number of other interconnected regions relevant to 

emotion processing were activated, including the FG, amygdala and insula 

(Hennenlotter et al., 2005; Kircher et al., 2013).  

Despite this, research into the embodied simulation account of expression 

recognition is still in its infancy. The prediction of a strongly embodied account of 

emotion recognition, predicting representational overlap in brain regions across 

perception and production, with multivariate analysis, has yet to be tested. 

Furthermore, studies have been predominately designed to test models that propose 

the recruitment of shared brain networks in action (Crammond, 1997; Grèzes & 

Decety, 2001; Hardwick et al., 2017; Jeannerod, 2001). Theories of embodiment, 

addressed in Chapter 1 (1.2.1), will be summarised. Followed by this, lesion, TMS 
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and fMRI studies supportive of the embodied account of emotion will be outlined; 

these strands of research demonstrate the importance of pre-/ primary motor and 

somatosensory cortices in expression recognition (Wood, Rychlowska, et al., 2016).   

4.1.1 Theories of embodiment. 

According to simulation based accounts, such as the theory of embodied 

cognition or embodied simulation, expression recognition is aided by simulation-like 

processes, see Chapter 1 (1.2.1) (Niedenthal et al., 2006). This is because neural 

activity overlaps in sensory, motor and affective systems, across the recognition and 

experience or production of an emotion (Niedenthal, 2007). Embodiment is closely 

linked to research investigating mimicry (the “chameleon effect”) (Chartrand & 

Bargh, 1999) and the phenomena of emotional contagion (Hatfield & Cacioppo, 

1994), as these automatic unconscious social behaviours play an important role in 

processing a sender’s (often subtle) expressions (Niedenthal et al., 2009). 

Goldman and Sripada (2005) outlined the reverse simulation models of 

embodiment, which detail the link between imitation, experience and recognition 

(see Figure 1.6, Chapter 1). However, the role of imitation is questioned as some 

research has shown no benefit of mimicry on facilitating expression recognition 

(Blairy et al., 1999; Hess & Blairy, 2001). This finding can be explained with 

Goldman and Sripada (2005) “as if” loop model of simulation whereby recognition 

can occur without facial feedback or mimicry (see Figure 1.6, Chapter 1). Thus, this 

model suggests that there is a direct link between visual and somatosensory 

representations of what an expression would feel like (Goldman & Sripada, 2005) 

and has close parallels with the “as if” body loop postulated in the Somatic Marker 

hypothesis (Damasio, 1996), detailed further in Chapter 1 (1.2.1). Moreover, 

Goldman and de Vignemont (2009) further separated imitation from embodiment, 

proposing that imitation does not meet the criteria for embodiment on its own. They 

state that imitation does not directly affect an individual’s own behaviour and 

cognitions, but a receiver’s own facial musculature can lead to embodiment by 

influencing their mood or emotion (Goldman & de Vignemont, 2009). Furthermore, 

Goldman and Sripada (2005)’s unmediated resonance model, corresponding with the 

mirror neuron system, details how observing an emotive face directly produces sub-

threshold brain activation in the correspondent motor substrates for that emotion (see 

1.2.1, Chapter 1). 
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4.1.2 Patient investigations. 

In a lesion mapping fMRI study, Adolphs et al. (2000) asked subjects (N = 

108 with focal brain lesions, N = 18 normal controls) to rate the six basic emotions 

on intensity. Mean emotion recognition scores were separated into two groups; 

analysing subjects in the lowest half (N = 54) or quartile (N = 27), respectively with 

the upper half or quartile of scores. Patient’s scores were correlated with the ratings 

given by the normal controls. Findings demonstrated that patients with focal brain 

lesions to their right somatosensory cortex were impaired in emotion recognition 

(Adolphs et al., 2000). Furthermore, low emotion recognition scores were associated 

with lesions in the right somatosensory related cortices, including S1 and S2, as well 

as the anterior supra-marginal gyrus and lesions in the left frontal operculum, see 

Figure 4.74. As these patients do not have damage to their visual cortices, 

impairment as a result of somatosensory lesions is consistent with the idea that 

expression recognition is embodied. It seems that these lesions are preventing 

somatosensory representations of another’s emotion to be internally generated, and 

thus the patient cannot simulate and recognise an individual’s expression. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.74. Distribution of lesion overlaps (upper quartile of subjects scores 
subtracted from the lowest quartile); red corresponds to locations where lesions 
resulted in emotion recognition impairments (RH somatosensory cortices, left frontal 
operculum), blue corresponds to lesions associated with normal performance, white 
lines show the position of the sagittal slice, RH top, LH bottom. From Adolphs et al. 
(2000).  
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Besides Adolphs et al. (2000), most lesion studies were based on a few single 

case studies. Whilst Adolphs et al. (2000) is important to the understanding of 

somatosensory cortex lesions in the recognition of facial expressions, it is not clear 

whether recognition ability is exclusively related to damage in the somatosensory 

regions. This is because lesions commonly cause damage to surrounding areas, thus 

more research restricted to the somatosensory cortices is essential to understand the 

exact role of the somatosensory cortex (Adolphs et al., 2000). 

4.1.3 TMS investigations of shared networks. 

 Studies have applied TMS to areas of the somatosensory cortex to 

demonstrate the importance of this area in the recognition of emotional expression 

(Pitcher et al., 2011), see 1.2.2 in Chapter 1. However, the key studies will be 

summarised again here. Pitcher et al. (2008) applied TMS to the right somatosensory 

cortex and r-OFA, this disruption independently compromised the discrimination of 

facial expression but not identity. Similarly the suppression of somatosensory or 

premotor cortex activity (TMS to the right somatosensory and right premotor cortex) 

impaired the discrimination of auditory emotions but not identity performance 

(Banissy et al., 2010).  

 Furthermore, studies have applied TMS to the pre-motor cortex (PMC); this 

research has also demonstrated the role of simulation processes in recognising 

expressions (Balconi & Bortolotti, 2013). Balconi and Bortolotti (2013) showed 

PMC disruption to result in increased RTs and false alarms when recognising anger 

or fear, overall showing the importance of the PMC in detecting emotion. This 

specific impairment to recognise negative emotions is supported by Pourtois et al. 

(2004), where TMS applied to the right SC disrupted fear but not happiness 

recognition. However, Rochas et al. (2013) found TMS applied to the left pre-SMA, 

to impair the recognition of happiness but not fear or anger; supporting the 

seemingly robust ability to recognise happiness (F. W. Smith & Schyns, 2009).  

 Overall, studies inhibiting the somatosensory and premotor cortex areas are 

indicative of disrupting embodied cognition, as TMS seemingly disrupts the role of 

these areas in internally simulating an expression and later using this simulation to 

recognise a sender’s facial expression (Pitcher et al., 2011).  
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4.1.4 fMRI investigations of shared networks for perception, production 

and imitation.  

 fMRI studies have investigated the embodiment of emotion by identifying 

shared networks of regions across perception, production and imitation tasks; these 

experiments, as aforementioned in Chapter 1 (1.2.2), have found overlaps in the 

premotor cortex (PMD and PMV) (Carr et al., 2003; Hennenlotter et al., 2005; 

Kircher et al., 2013; Leslie et al., 2004; Montgomery & Haxby, 2008; van der Gaag 

et al., 2007), further supporting the role of embodiment in this area for emotion 

recognition. Experiments have found additional overlaps in secondary motor and 

somatosensory regions (detailed further in 1.2.2, Chapter 1) including the SMA, pre-

SMA, S1 and S2 cortices (Hardwick et al., 2017; Hennenlotter et al., 2005; Kircher 

et al., 2013; Leslie et al., 2004; van der Gaag et al., 2007), which could result from 

viewing dynamic displays of emotions in the perception tasks. The role of the 

somatosensory cortex in subjective emotional experience was also explored in a 

MVPA study (Kragel & LaBar, 2016); whilst the study of emotional experience 

differs from emotion recognition, it is important to consider. They found that 

experienced emotion could be decoded from patterns of activation in the right 

primary somatosensory cortex (see 1.2.2.1, Chapter 1, for more detail). 

  Although the above-mentioned studies suggest similar involvement of brain 

regions, only recently has neuroimaging literature been quantitatively synthesised to 

compare brain networks across tasks (Hardwick et al., 2017). Thus, a meta-analysis 

identified a reliable premotor-parietal and somatosensory network across the tasks, 

with bilateral clusters in the premotor cortices (PMD, PMV) across perception and 

production, see Figure 4.75; these results were similar when the meta-analysis was 

separated according to the body part they investigated (face, leg and arm). The face 

meta-analyses consisted of imagery, observation and execution studies involved in 

mouth movements, speech and facial expressions, thus it does not solely reflect 

overlapping networks in facial expression recognition. Furthermore, it is worth 

noting that these results need to be considered exploratory as the face execution 

meta-analysis only contained 13 studies (N > 20 studies necessary to analyse the 

results sufficiently) (Eickhoff et al., 2016). Nonetheless, these results are consistent 

with the previously mentioned research. 
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Figure 4.75. Brain activation networks from a meta-analysis investigating motor 
imagery (N = 4902 participants), action observation (N = 11032 participants) and 
movement execution (N = 2302 participants); across the three tasks there is 
similarity evident in premotor-parietal and somatosensory areas, from Hardwick et 
al. (2017). 
 

 Additional frontal and subcortical regions of the brain have also been found 

to overlap in the perception, production and imitation of facial expression (see 1.2.2, 

Chapter 1, for more detail): with frontal regions including the IFG and dorsolateral 

PFC (Carr et al., 2003; Kircher et al., 2013) and subcortical regions including the 

amygdala, insula, cerebellum and hippocampus (Carr et al., 2003; Hennenlotter et 

al., 2005; Kircher et al., 2013; Leslie et al., 2004; Montgomery & Haxby, 2008; van 

der Gaag et al., 2007). However, in Hardwick et al. (2017) subcortical regions were 

not activated in perception but consistently activated in production tasks; these 

regions included the thalamus, putamen and cerebellum. Lastly, overlaps were seen 

in the parietal regions including the posterior parietal cortex, more specifically the 

IPL (Hardwick et al., 2017; Montgomery & Haxby, 2008; van der Gaag et al., 2007), 

an area characteristically involved in processing multisensory information (Hardwick 

et al., 2017). Furthermore, activations of the STS, FG, ventral amygdala and visual 

cortex were found in perception, validating the role of face-selective regions in 

emotion recognition (Hardwick et al., 2017; Hennenlotter et al., 2005; Leslie et al., 

2004; Montgomery & Haxby, 2008; van der Gaag et al., 2007).  
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4.1.5 Methodological fMRI considerations. 

 The fMRI experiments began investigating shared networks in the perception 

and imitation of expression (Carr et al., 2003; Leslie et al., 2004). Whilst these are 

important and imitation requires the production of a desired facial expression, the 

task inherently provides visual or perceptual input. Furthermore, caution needs to be 

taken with studies that induce emotions with personal scenarios (van der Gaag et al., 

2007) as this will cause variation amongst participants and activate additional brain 

regions associated with cognition. A few recent studies have, however, devised 

production tasks where motor aspects of producing expressions are studied without 

any visual or cognitive influences (Hennenlotter et al., 2005; Kircher et al., 2013; 

Montgomery & Haxby, 2008). Moving forward, it is very important to obtain a true 

production measure to understand the brain regions involved in producing 

expressions. 

 Furthermore, it is important for the perception, imitation or production tasks 

to run on separate runs or blocks in the scanner to prevent participant’s temptation to 

imitate or produce expressions during the perception trials. In Montgomery and 

Haxby (2008), the STS was unexpectedly activated in production when shown a 

static word stimuli, as this region is thought to exclusively have a role in imagined 

biological motion. This surprising finding may therefore result from combining tasks 

in the same run. Moreover, it is important that perception tasks are carried out first 

and participants are naïve to the subsequent production tasks to remove any implicit 

biases for a motor response during the perception of expression. Notably, van der 

Gaag et al. (2007) found premotor activation to overlap when participants were naïve 

to the production tasks ahead. This finding suggests the strong involvement of 

premotor areas and the role of motor preparation in observation. Again moving 

forward to the present study it is very important to separate the experimental tasks in 

order to truly measure the brain regions involved in the embodiment of emotion.  

 The choice of stimuli is also very important with the use of dynamic stimuli 

preferable over static displays of expression to increase ecological validity. 

However, it is important to note that dynamic stimuli are associated with more brain 

activation (Leslie et al., 2004; van der Gaag et al., 2007), thus careful thought should 

be given as to why some brain regions are active, such as the greater likelihood of 

STS activation with moving stimuli. To further this point, studies requiring a 

participant to move in the scanner are associated with motion artefacts, thus Leslie et 
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al. (2004) chose to use smiling movies where the mouth was always closed and 

imitation could subsequently be performed with the mouth closed. However, happy 

expressions are usually depicted with the mouth open; and this could cause variation 

in brain activation among other studies using open mouthed happiness expressions. 

Van der Gaag et al. (2007) tried to reduce motion artefacts in the imitation task by 

analysing brain activation when stimuli were presented on screen, before simulation 

had taken place, as they argued that this would reflect when participants would 

attend to the motor aspects of the expression whilst avoiding any motion artefacts. 

Although, a truer reflection of the brain activation would have been garnered during 

movement and this would have partially eradicated the problem of visual input for 

expression imitation.  

Moreover, whilst similar areas have been shown to overlap across studies, 

this co-activation may reflect different populations of voxels within the regions 

(Hardwick et al., 2017). Thus, multivariate approaches are needed to fully 

investigate the overlap in activity of voxels or representations in the brain. To date it 

is unclear whether the same representations are utilised across perception and motor 

production. Finding the same representations across these tasks, suggests that we 

internally simulate another’s expression in perception to aid expression recognition 

(Niedenthal et al., 2006; Niedenthal et al., 2009); as such the visual representation of 

an expression may activate a motor or somatosensory representation, allowing the 

experience of that emotion and subsequent recognition (Goldman & de Vignemont, 

2009; Goldman & Sripada, 2005). 

4.1.6 Rationale and hypothesis. 

Overall, the collection of lesion, TMS and fMRI results provide a good basis 

to understand the neural networks involved in the perception and production of facial 

expressions. This literature is in support of an embodied simulation account of 

emotion recognition and shows the perception, imitation and production of an 

expression to consistently activate pre-/primary motor and somatosensory cortices 

(Wood, Rychlowska, et al., 2016).    

 However, as mentioned previously, there is no literature investigating 

whether there is representational overlap across the sensory perception and motor 

production of expression, to advocate a strongly embodied account (Crammond, 

1997; Grèzes & Decety, 2001; Hardwick et al., 2017; Jeannerod, 2001). Therefore 

the present study will investigate this using fMRI and multivariate pattern analysis 
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(MVPA) to further understand the neural mechanisms of embodiment. A number of 

brain regions will be explored, with a particular emphasis on studying overlap in 

premotor cortices. This is because previous literature and understanding of the 

HMNS, suggests that the premotor cortices are strongly involved in embodiment.   

 

H1: The same brain representations will be found in premotor cortices across the 

perception and production of emotional expressions. 

 

Perceptual and sensorimotor areas will also be defined to confirm a network 

of face-selective and motor-sensitive brain regions, previously identified in the fMRI 

literature. However, it is worth noting that a true face and somatosensory localiser 

was not implemented in the present study.  

 

4.2 Methods 

4.2.1 Participants.  

A total of seventeen participants (9 females, 8 male) took part in this 

experiment, aged 18-35 years (M = 24.06, SD = 4.78), two additional pilot subjects 

were tested but not used due to using a different design. Excessive head motion 

prevented the use of data in two participants and technical problems prevented the 

use of data from two further participants; thus, the final sample consisted of 13 

participants (7 females, 6 males), aged 20-34 (M = 24.08, SD = 4.03). Participants 

were recruited via Scannexus (the company operating the scanning facilities at 

Maastricht Brain Imaging Centre) and paid for their participation. All were right-

handed with normal or corrected to normal vision. Participants gave written, 

informed consent in accordance to approved ethics by the Psychology Research 

Ethics Committee at the University of East Anglia.    

4.2.2 Stimuli. 

 In the perception task (task one) participants were presented with grey-scale 

STOIC movies from the database of dynamic and static faces expressing highly 

recognizable emotions (Roy et al., see 

http://mapageweb.umontreal.ca/gosselif/cv.html and 

http://www.mapageweb.umontreal.ca/gosselif/sroyetal_sub.pdf). Ten identities (5 

males and 5 females) were chosen each posing happiness, disgust and sadness. These 

dynamic stimuli were presented for 500ms, with their faces cropped into an oval. 
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The 30 stimuli from 10 identities and 3 emotions were presented at a visual angle 

height of 6.5° using Psychtoolbox 3 for Matlab (Brainard, 1997; Pelli, 1997). A 

static noise stimulus was also created from neutral faces by scrambling the phase 

spectrum through Fourier analysis (F.W. Smith & Rossit, 2018). This gives similar 

low-level properties to the original without any image structure. Therefore, this 

provided a control condition.  

4.2.3 Design and procedure. 

 This experiment consisted of two separate tasks. In the first task participants 

were asked to explicitly recognise facial expression while in the fMRI scanner. Each 

trial started with a fixation cross so participants maintained their gaze on fixation 

throughout, the stimuli was then presented for 500ms, followed by an ISI response 

period. This rapid-event related design required participants to undertake a one-back 

task and press their response button when they detected an emotion category that 

repeated across trials (such as two happy, disgust or sad expressions presented one 

after another). These four perception runs each lasted 424 seconds (212 TR2 

volumes) with four second trials and 12 seconds fixation at the start and end of each 

run (see Figure 4.76). Participants were given 100 trials per run; 60 emotion trials 

(10 trials per emotion, repeated twice), 20 null events (requiring fixation only) and 

20 noise trials (used as a control).  

 

 

 

 

 

Figure 4.76. Experimental sequence in task one. 
 

In the second task, participants were asked to produce the same basic facial 

expression categories viewed in the perception task while in the fMRI scanner. Thus, 

participants were asked to move a specific set of facial muscles (perform happy 

facial movements by moving the corners of the mouth up, perform sadness by 

moving the corners of the mouth down and perform disgust by wrinkling their nose). 

This was a block design protocol, whereby each block preceded with an instruction 

(cue) to move appropriate facial muscles or make a right index finger movement 
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(control condition). These movements were to take place at fixed intervals within the 

block when the fixation marker changed colour to red and green. Participants were to 

refrain from the movement and simply fixate when the marker was black and white 

(see Figure 4.77); the fixation marker changed every second allowing participants to 

make the movement five times. This ‘Move’ period occurred in the first 10 seconds 

of a 20 second on/off cycle; after this participants were to ‘Rest’ for 10 seconds (see 

Figure 4.77). Birn, Cox, and Bandettini (2004) argued that a block design with 10 

seconds on followed by 10 seconds off is a good method for reducing motion 

artefacts associated with speech-related movements of the face. Overall participants 

carried out four production runs each lasting 338 seconds, 170 TR2 volumes; there 

were 16 blocks per run and 4 blocks of each movement.   

 Participants were naïve to the second task until they had taken part in the 

perception runs; this was to remove any implicit biases for a motor response in the 

first part of the experiment. Therefore, before the participants carried out the 

production task they were given some practice examples to ensure they understood 

and could perform the task. For these practice trials, stimuli of each expression 

(happy, sad and disgust) were taken from the Cohn-Kanade database. These practice 

trials followed the same temporal sequence as task two, where participants were to 

mimic the facial expression shown on screen every two seconds within the 10 second 

block, see Figure 4.77. There were multiple blocks for each expression; after this, 

participants were asked if they understood the procedure before continuing to the 

main task.    

 

 

 

 

 
Figure 4.77. Experimental sequence of task two.  
 

The scanning session itself took less than 1 hour 30 minutes, including time 

for set up (10 minutes), anatomy scans (10 minutes) and the main experiment runs. 

Additional time was required for participants to complete the MRI-screening forms, 

ask questions, read the information sheets, sign consent and receive debriefing 
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information (15 minutes). Participants were also shown the static versions of the 

stimulus before entering the scanner to familiarise themselves with the stimuli (see 

Appendix A for stimulus sheets).   

4.2.4 MRI data acquisition. 

MRI data were collected with a 3T Siemens Prisma fit scanner with a 64 

channel head coil and integrated parallel imaging techniques (Scannexus, Brains 

Unlimited, Maastricht, Netherlands). Participants were positioned head first, supine 

in the scanner. Blood oxygen level-dependent (BOLD) signals were recorded with a 

gradient echo-planar imaging sequence (TE = 30ms, TR = 2000ms, FOV = 200mm x 

200mm, Flip angle = 77˚, matrix size 80x80 and slice thickness = 2.5mm (no gap) 

giving 2.5mm isotropic voxels). Data, collected from 35 oblique slices of the brain, 

was positioned to cover the premotor, somatosensory, parietal and visual cortex. 

High resolution anatomical scans were recorded in the same session (3DMPRAGE, 

1 x 1 x 1mm3 resolution). 

4.2.5 MRI data processing and analysis. 

BrainVoyager QX [version 2.8] (BrainInnovation, Maastricht, The 

Netherlands) was used for fMRI data analysis (Goebel et al., 2006). Firstly, standard 

pre-processing steps were applied for each subject independently, these included 

slice scan time correction, 3D motion correction and temporal filtering. No spatial 

smoothing was carried out to maintain voxel resolution. Anatomical and functional 

data were transformed into ACPC and then Talairach space. 

4.2.5.1 Task 1: 

4.2.5.1.1 General Linear Model (GLM) univariate analysis.  

A GLM approach was used to estimate blood oxygen level-dependent 

(BOLD) response amplitude to faces and noise stimuli in four predictors, one for 

each of the three expressions plus one for phase noise. The data was spatially 

smoothed with a Gaussian Filter function of 6mm full width half maximum 

(FWHM). A contrast was subsequently computed between emotion and phase noise. 

To identify active brain regions, corrected for multiple comparisons, a cluster 

threshold of 200 voxels (cluster level p < .05) was applied at t = 4.318 (corrected to 

voxel-wise p = .001) using the Cluster-level Statistical Threshold Estimator 

[BrainVoyager Qx Plug-in].    
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4.2.5.1.2 Multivariate analysis. 

A GLM was applied to estimate response amplitudes independently for each 

voxel in each run on a single trial basis to create the patterns for MVPA (3 emotions 

X 10 identities, repeated twice, and 20 noise stimuli, giving 80 predictors per run). 

The resulting beta weights estimate peak activation for each single-trial, based on a 

standard 2γ model of hemodynamic response function (F. W. Smith & Muckli, 

2010). These beta weight voxel estimates formed the input for the pattern 

classification analyses described below.  

4.2.5.2 Task 2: 

4.2.5.2.1 General Linear Model (GLM) univariate analysis.  

A GLM approach was used to estimate blood oxygen level-dependent 

(BOLD) response amplitude to face movement and finger movement stimuli in four 

predictors, one for each of the three facial movements plus one for finger movement. 

In the first level GLM analysis (run on each subject individually), motion parameters 

and the movement cues were also included. The data was spatially smoothed with a 

6mm FWHM Gaussian Filter, akin to task one. A contrast was subsequently 

computed between face and finger movement. Furthermore, to identify brain regions, 

corrected for multiple comparisons, a cluster threshold of 200 voxels (cluster 

threshold p < .05) was applied at t = 4.318 (corrected to voxel-wise p = .001) using 

the Cluster-level Statistical Threshold Estimator [Brain Voyager Qx Plug in].   

4.2.5.2.2 Multivariate analysis. 

A GLM was applied to estimate response amplitudes independently for each 

voxel in each run on a single block basis (16 blocks, four for each movement type, 

giving 16 predictors per run). The resulting beta weights estimate peak activation for 

each single-trial, based on a standard 2γ model of hemodynamic response function 

(F. W. Smith & Muckli, 2010). These beta weight voxel estimates formed the input 

for the pattern classification analyses described below.  

4.2.6 ROI selection. 

4.2.6.1 Task 1: 

Perceptual regions of interest (ROIs) were defined from an orthogonal Face > 

Noise GLM contrast, appropriate for the main interest of studying expression, to 

reveal a face network of regions (bilateral STS, FG and early visual cortex or EVC), 

as well as premotor regions (bilateral PM1 and PM2). This a priori contrast was run 

to prevent double dipping (Kriegeskorte, Simmons, Bellgowan, & Baker, 2009). The 
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peak voxels within each ROI were selected using a threshold of t > 2.5; this is a low 

threshold to account for the weak signal strength caused by the nature of an event-

related design. The localisation of each region will be defined in turn; with a 

posterior STS defined between the superior temporal gyrus (STG) and the medial 

temporal gyrus (MTG), the FG located medially between the inferior temporal gyrus 

and the parahippocampal gyrus and a posterior EVC defined around the calcarine 

sulcus. The identified PM1 and PM2 regions were guided by the univariate GLM 

analysis (Task 1); with PM1 reflecting a dorsal to ventral premotor region and PM2 

reflecting a ventral area of the premotor cortex. These were respectively defined in 

the superior and inferior pre-central sulcus. It is important to note that not all the 

regions could be defined in all participants, see Table 4.5. ROIs were subsequently 

created into 9mm radius spheres using a TalCoord2Voi 2.0m [BrainVoyager Qx 

Plug-in]. In one analysis, all active voxels within the 9mm sphere were investigated; 

this radius size was chosen based on previous research (Anzellotti, Fairhall, & 

Caramazza, 2014; Furl, Henson, Friston, & Calder, 2013) and the results can be 

found in Appendix O. However, depending on how the voxels are distributed within 

each ROI, this analysis can produce weak results especially when studying XC 

effects. These weak effects occur if voxels are too diffused within each ROI. 

Furthermore, voxel size could vary considerably between the ROIs. Thus, further 

analyses were carried out to examine the 100 most sensitive voxels within each 9mm 

sphere. Selecting the top 100 voxels is typical in fMRI research (F. W. Smith & 

Goodale, 2015), and this analysis selection was used in V1 for Chapter 2.  

4.2.6.2 Task 2: 

Production ROIs were defined from an orthogonal Face Movement > Finger 

Movement GLM contrast to reveal the following sensorimotor areas (the SMA 

proper and bilateral sensorimotor cortices (S1/M1), as well as bilateral premotor 

regions: PM1, PM2 and bilateral secondary somatosensory cortices, S2). Again this 

a priori contrast was appropriate for the main interest of studying expression and 

carried out to prevent double dipping (Kriegeskorte et al., 2009). The peak voxels 

within each ROI were selected using a threshold (t) of > 3. The localisation of each 

region will be defined in turn; with the SMA (proper) defined posterior to the 

vertical commissure anterior line (VCA, coordinates 0, 0, 0) (Mayka, Corcos, 

Leurgans, & Vaillancourt, 2006; Picard & Strick, 2001) and the S1/M1 region 

defined in the central sulcus, with S2 in the parietal operculum. The premotor 
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regions, PM1 and PM2 were defined from the univariate GLM analysis (Task 2). 

Again, it is important to note that not all regions could be defined in each participant, 

see Table 4.5. Again, ROIs were subsequently created into 9mm radius spheres using 

a TalCoord2Voi 2.0m [BrainVoyager Qx Plug-in] and all active voxels within the 

9mm sphere were investigated, see results in Appendix O. Again, further analyses 

were carried out to examine the 100 most sensitive voxels within each 9mm sphere.
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Table 4.5. 

Peak voxel coordinates (x, y, z) of each ROI averaged across participants, SD in 

brackets (all to 2d.p.). The final column details the number of participants each ROI 

was defined in; please note that not all regions could be defined in all participant. 

Task ROI x y z n of 

participants 

ROI defined 

Perception r-STS 47.38 (4.81) -42.77 (5.55) 8.08 (3.17) 13 

 l-STS -51.08 (5.57) 47.75 (7.47) 9.25 (4.87) 12 

 r-FG 36 (4.20) -54.9 (4.11) -16.4 (3.75) 10 

 l-FG   -39.27 (4.00) -52.64 (5.10) -14 (3.33) 11 

 EVC -0.15 (13.64) -98 (3.57) -1.54 (6.63) 13 

 r-PM1 41.15 (5.78) -3.15 (4.07) 45.77 (5.58) 13 

 l-PM1 -40.23 (8.04) -3.69 (4.97) 48.69 (6.71) 13 

 r-PM2 38.46 (3.32) 5 (4.57) 28.77 (3.83)  13 

 l-PM2 -41.42 (4.86) 4.33 (5.76) 28.34 (4.78) 12 

Production SMA 2 (4.80) -10 (4.99) 56.23 (3.31) 13 

 r-S1/M1 46.08 (4.70) -15.38 (3.03) 39.85 (3.30) 13 

 l-S1/M1 -46.77 (5.44) -14.15 (5.95) 37.54 (3.41) 13 

 r-PM1 43.85 (6.07) -9.23 (3.94) 50.85 (4.20) 13 

 l-PM1 -45.82 (6.58) -9.36 (6.96) 50.27 (6.37) 11 

 r-PM2 58.54 (3.61) -0.92 (4.45) 21.23 (9.04) 13 

 l-PM-2 -58.55 (1.88) -1.64 (3.52) 17.73 (6.35) 11 

 r-S2 45.54 (4.16) -15.38 (4.39) 17 (2.15) 13 

 l-S2 -46.17 (3.41) -14.83 (4.39) 16.83 (2.15) 12 
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4.2.7 MVPA. 

Classifiers were built independently for each ROI (see ROI’s in Table 4.5 

above); and combined for bilateral ROIs (such that an additional classifier was built 

for PM1 which encompassed r-PM1 and l-PM1). Pattern classifiers were trained to 

discriminate between the three expressions, independently for each task (perception 

and production), using a Linear Support Vector Machine (LIBSVM 3.12 toolbox, 

Chang & Lin, 2011). Accordingly, these classifiers were trained to learn the mapping 

between multivariate observations of brain activation and the expression presented or 

produced, to test for pattern information that discriminates the emotions either in 

perception or production (in the ROIs defined). The classifiers were trained with beta 

values from a set of single-trial or single-block brain activity patterns. These were 

tested on independent single trials or single blocks (beta weights) for each emotion 

in the independent set of test data. An n-fold leave-one-run-out cross-validation 

approach was used to estimate performance, whereby the model was built from n – 1 

runs and tested on the nth independent run (Greening et al., 2018; F. W. Smith & 

Goodale, 2015; F. W. Smith & Muckli, 2010). 

In further cross-classification analyses, the classifier was trained to 

discriminate emotion on perception and tested to discriminate emotion on 

production, and vice versa, see Figure 4.78. Analyses were computed individually 

for each region of interest (N=13). Again an n-fold leave-one-run-out cross-

validation approach was used. Performance for each direction of training and testing 

the classifier was computed and averaged to test for evidence of similarity across 

both tasks; the regions analysed were either based on ROIs defined from perception 

or production. Data was trained on single trials and tested on single blocks to 

generalise across perception, or trained on single blocks and tested on single trials to 

generalise across production. For all analyses, decoding accuracy was reported for 

each ROI using one-tailed one-sample t-test results with chance at 33.3%. 

Significance levels are presented on graphs to p < .05 and p < .05 FDR corrected.  
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The LIBSVM toolbox (version 3.12) was employed (Chang & Lin, 2011). 

Default parameters were used for the linear SVM with C = 1. Before inputting data 

into the SVM, the training data was normalised to lie within -1 and 1, with the test 

data normalised using the relevant parameters from the training data (max, range) 

(Chang & Lin, 2011; F. W. Smith & Goodale, 2015; F. W. Smith & Muckli, 2010; 

Vetter et al., 2014). 

Figure 4.78. Example MVPA analysis; testing for pattern similarity across the 
perception and production task of expression in ROIs, namely sensorimotor regions.  
 

4.3 Results 

 Results from the whole brain univariate analysis will be presented first. The 

univariate analysis from the perception task shows the regions of the brain that are 

activated when viewing expressions over viewing noise trials. The univariate 

analysis, from the production task, shows the regions of the brain that are activated 

when executing expressions over executing finger movements. These results are 

important for understanding the underlying networks involved in the perception and 

production of emotional expressions, and further add to the previous univariate 

literature. The correspondent surface maps, created with the whole brain analysis 

(WBA), helped guide the regions defined for the multivariate analysis. Therefore the 

probability maps showing the regions defined across subjects are presented next, 

followed by the multivariate results.  

Similarity 

Perception Production 
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 Subsequently, the MVPA results for the top significant 100 voxels in each 

ROI are explored, presenting the decoding results within perception and production, 

before the cross-classification results. The MVPA results are the main focus for this 

chapter, with a particular emphasis on the cross-classification findings. The cross-

classification results are important for exploring potential representational overlap in 

brain regions across perception and production of expression. MVPA results for 

9mm radius ROI’s can be found in Appendix O; these results are informative but 

associated with disadvantages with larger ROI’s relating to diffusion and voxel size 

differences, outlined above in ROI selection. 

4.3.1 Univariate Whole Brain Analysis (WBA). 

4.3.1.1 Task 1: 

 Stronger activation for viewing emotional expressions, over noise stimulus, is 

shown in the following bilateral brain regions: the premotor cortex (PMD and PMV), 

IOG, SFG and pre-SMA, as well as the rSTS and rMT, see Figure 4.79. 

4.3.1.2 Task 2: 

 Stronger activation for a facial emotion movement, over a finger movement, 

is shown in the following bilateral brain regions: the premotor cortex (PMD and 

PMV), S1, M1, SMA and the RCZ, as well as the rSPOC, rVIP and rS2, see Figure 

4.80. 
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Figure 4.79. Surface maps showing the regions activated for emotion vs phase noise 
in the perception task; from left to right hemisphere.  
 

 
Figure 4.80. Surface maps showing the regions activated for face movement vs 
finger movement in the production task; from left to right hemisphere.  
 

4.3.2 Regions defined. 

 The following bilateral brain regions were defined in the perception task in 

most subjects (see Table 4.5 for participant number): PM1, PM2, STS and FG. Each 

region was created into a probabilistic map to investigate whether the activation was 

spatially consistent across subjects, see Figure 4.81. The maps show a focal location 

for each ROI with little spatial variability. More consistency is found within the 
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rPM2 and lFG, where there is a higher percentage of subjects ROI’s that overlap 

(nearer to 100%).   

Figure 4.81. Probability map of perceptual ROIs, averaged across all subjects with 
available ROI’s. From Right to Left Hemisphere.  

 

 The following bilateral brain regions were identified in the production task 

for most subjects (see Table 4.5 for participant number): PM1, S1/M1, S2 as well as 

the SMA. Each region was created into a probabilistic map to investigate whether the 

activation was spatially consistent across subjects, see Figure 4.82. Again, the maps 

show a focal location for each ROI with little spatial variability.  
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Figure 4.82. Probability maps of production ROIs, averaged across all subjects with 
available ROI’s. From Right to Left Hemisphere.  

 

4.3.3 Decoding results. 

4.3.3.1 Decoding within perception and production. 

Results for decoding of expression in the perception task are presented first, 

followed by decoding in the production task. ROI results are given for each 

hemisphere in turn (right then left), before the result of the combined bilateral ROI is 

given. The bars on the graph are either displayed in blue or grey: blue bars represent 

premotor regions of the brain, whereas grey bars represent either the face network or 

sensorimotor regions of the brain, depending on whether the results are from the 

perception or production task respectively. Furthermore, the result graph axis begins 

at 30% in both tasks; however, please note that this scale is set to 40% in the 

perception task and 80% in the production task, to account for variability in decoding 

accuracy between the tasks. This 30-40% scaling in the perception task was deemed 

necessary to clearly portray the differences in accuracy among the ROI’s (this 

difference in scaling is used throughout the decoding results).  

One-sample t-tests showed significant decoding (FDR p < .05) in the 

perception task for the r-PM1 (t(12) = 2.608, p = .0115, d = .72 (medium effect-

size)), PM2 (t(11) = 2.547, p = .0136, d = .74 (medium effect-size)), l-FG (t(10) = 

2.806, p = .009, d = .85 (large effect-size)) and EVC (t(12) = 2.788, p = .008, d = .77 

(medium effect-size)) ROIs, see Figure 4.83. There was also a trend towards 

decoding in the lSTS (t(11) = 2.280, p = .022, d = .66 (medium effect-size)). 
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Figure 4.83. Expression decoding accuracy from the significant voxels (100) 
analysis in the perception task, one-sample t-test results represented with stars. Blue 
bars represent premotor regions of the brain; grey bars represent the face network of 
brain regions. 
 

One-sample t-tests showed significant decoding in all ROIs (FDR p < .05; 

large effect sizes, d’s > 1.5) for the production task, see Figure 4.84. 
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Figure 4.84. Expression decoding accuracy from the significant voxels (100) 
analysis in the production task, one-sample t-test results represented with stars. Blue 
bars represent premotor regions of the brain; grey bars represent sensorimotor 
regions of the brain. 
 

4.3.3.2 Cross-classification. 

The cross-classification results based on ROIs defined in the perception task 

are presented first, followed by ROIs defined in the production task. For these 

analyses, classifiers were trained on one task and test on another, and vice versa.  

Although there were no significant FDR effects in cross-decoding based on 

the perceptual ROIs, one-sample t-tests showed decoding trends in the l-PM1 (t(12) 

= 3.000, p = .006, d = 0.83 (large effect-size)) and FG (t(8) = 2.105, p = .034, d = 

0.70 (medium effect-size)) ROIs, see Figure 4.85. Furthermore, with the focus on the 

premotor regions, a Bonferroni correction (p < .008) was applied to these regions 

(six ROIS highlighted in blue within the graph), where the l-PM1 was significant. 
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Figure 4.85. Expression decoding accuracy from the significant voxels (100) cross-
classification analysis, one-sample t-test results represented with stars. ROIs defined 
from the perception task. Blue bars represent premotor regions of the brain; grey bars 
represent the face network of brain regions. 
 

Although there were no significant FDR effects in cross-decoding based on 

the production ROIs, one-sample t-tests showed decoding trends in the r-PM1 (t(12) 

= 1.843, p = .045, d = 0.51 (medium effect-size)) and PM1 (t(10) = 2.634, p = .013, 

d = 0.79 (medium to large effect-size)) ROIs, see Figure 4.86.  
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Figure 4.86. Expression decoding accuracy from the significant voxels (100) cross-
classification analysis, one-sample t-test results represented with stars. ROIs defined 
from the production task. Blue bars represent premotor regions of the brain; grey 
bars represent sensorimotor regions of the brain. 
 

4.3.4 Supplementary Analyses. 

The results presented above define ROIs separately in the perception and 

production tasks; but to corroborate with the previous fMRI investigations, outlined 

in the introduction that detail the shared networks for perception, production and 

imitation, a univariate analysis was carried out. This found overlapping networks of 

brain regions or voxels across the perception and production task, thus providing 

another way to test the embodied account of emotion recognition, without the use of 

MVPA. It was apparent that similar regions were identified using this method, 

including the SMA, premotor cortices and STS, see overlap in Figure 4.87.  
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Figure 4.87. The regions activated that overlap between the two tasks (overlapping 
regions are purple and displayed within a white circle); orange scaling reflecting the 
activation in the perception task, and blue scaling reflecting the production task.  
 

Furthermore, to confirm that the ROI’s from single subjects, created into 

probability maps, are consistent with the group level RFX analyses, Figures P-1 to P-

9 were created to show this, see Appendix P.    

Overall the univariate, multivariate and supplementary analyses consistently 

show the involvement of the premotor cortex in the perception and production of 

emotional expressions. Importantly, the MVPA results demonstrate that the premotor 

cortex (dorsal and ventral) can discriminate facial expressions in both perception and 

production; with a dorsal premotor ROI, defined in the perception task showing a 

similar representation (Bonferroni corrected) of facial expression across perception 
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and production and a strong trend towards this similarity within dorsal premotor 

regions defined in the production task.  

4.4 Discussion  

Previously, little research had investigated the production of facial 

expressions in the brain (Hardwick et al., 2017), and whilst studies had found 

overlapping voxels across the perception and production of expression (Hennenlotter 

et al., 2005; Kircher et al., 2013), research had not investigated representational 

overlap. This study primarily set out to investigate representational overlap within 

the premotor cortices across the sensory perception and motor production of 

expression (H1). Thus, the cross-classification analyses from the premotor cortices 

are outlined first, with reference to other decoding and supplementary analyses to 

help understand the effects. Following this, results from other regions of the brain, 

including sensorimotor and perceptual areas, are summarised and discussed.   

4.4.1 Representations of expression in premotor cortices. 

Importantly, the present findings demonstrate the role of the premotor 

cortices in emotion recognition. This is shown in the cross-decoding results, whereby 

a perceptually defined premotor ROI (l-PM1) shows a similar representation of 

facial expression across perception and production (Bonferroni corrected) and a 

strong trend for a similar effect is present within production defined dorsal to ventral 

premotor regions (rPM1 and PM1). These premotor results or trends towards 

representational overlap in perception and production are supportive of the main 

experimental hypothesis (H1). Besides these premotor regions, representational 

overlap was not found in other areas of the brain. It is surprising that an effect was 

not shown in the somatosensory regions; however, it may be that the ROI defined is 

only tapping into the motor specific sub-region of S1. A face localiser with tactile 

stimulation could have been implemented to better define this brain region (i.e. area 

3a from area 3b); accordingly this will provide a stronger test to investigate the 

effects in somatosensory cortex. Furthermore, it is important to note that even 

though this study did not find representational overlap in the somatosensory cortices, 

it does not mean that effects were not present.  

Previous TMS and fMRI research has highlighted the importance of the 

premotor regions in emotion recognition, showing disruption to the premotor cortex 

to interfere with the recognition of anger and fear (Balconi & Bortolotti, 2013) and 

overlap in activity across the perception, imitation and execution of facial 
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expressions in the premotor cortices (Carr et al., 2003; Hardwick et al., 2017; 

Hennenlotter et al., 2005; Leslie et al., 2004; Montgomery & Haxby, 2008; van der 

Gaag et al., 2007). However, this is the first experiment to find representational 

overlap in premotor regions, across the perception and production of an emotional 

expression using MVPA.  

During this experiment, classifiers are trained on one task (perception or 

production) and tested on the other (i.e. production or perception) to test for 

similarity in the ROIs discriminating emotion across the tasks. Therefore, the 

similarity or overlap found within this neural structure provides support for the 

simulation or embodied account of emotion recognition, especially the reverse 

simulation models of embodiment, in the recognition of basic emotions (happiness, 

sadness, disgust) (Goldman & de Vignemont, 2009; Goldman & Sripada, 2005; 

Niedenthal, 2007; Wood, Rychlowska, et al., 2016). This reverse simulation model 

demonstrates the link between experiencing an emotion and then correspondingly 

being able to recognise the emotion, thus activation in pre-motor brain regions when 

visually recognising a facial expression is supportive of the embodied simulation 

account (Goldman & Sripada, 2005; Niedenthal, 2007; Saarimäki et al., 2015). 

More importantly, this finding of overlap is present in a dorsal to ventral 

premotor region, an area considered important in expression recognition (Wood, 

Rychlowska, et al., 2016), with the ventral premotor cortex considered to be part of 

the HMNS in supporting simulation (Iacoboni & Dapretto, 2006; Kircher et al., 

2013; Oberman et al., 2007). Thus, the unmediated resonance model may be 

particularly relevant in explaining how this face-based emotion recognition is carried 

out in the premotor cortices (Goldman & Sripada, 2005). Previous MVPA research 

investigating action had begun to challenge the involvement of the premotor cortex 

in the HMNS, suggesting that it was more concerned with observing one’s own 

actions (Oosterhof et al., 2013). However, this study, with the use of MVPA, was 

able to provide stronger evidence of an embodied simulation account of emotion 

recognition. 

In support of these cross-classification results, the decoding results within 

both perception and production demonstrate that the premotor cortex can 

discriminate between facial expression categories; where in the perception task both 

the ROI spanning dorsal to ventral PMC (r-PM1) and the ventral PMC (PM2) could 

decode expression above chance, and in the production task, the left, right and 
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bilateral PM1 and PM2 regions of interest (encompassing dorsal and ventral parts of 

the premotor cortex) could also decode expression significantly above chance. 

Furthermore, the univariate WBA demonstrates the activation of the bilateral 

premotor cortices (PMD and PMV) in both tasks, and in the supplementary overlap 

analysis it seems that perceiving and producing a facial expression recruit partially 

overlapping networks of brain regions.  

4.4.2 Representations of expression in other regions of the brain. 

Given literature showing activation of similar voxels in sensorimotor areas 

for perception and production (Hardwick et al., 2017; Hennenlotter et al., 2005; 

Leslie et al., 2004; Montgomery & Haxby, 2008; van der Gaag et al., 2007), 

somatosensory (or pre-SMA) TMS stimulation interfering with emotion recognition 

(Banissy et al., 2010; Pitcher et al., 2008; Rochas et al., 2013) and impaired 

recognition performance among patients with somatosensory lesions (Adolphs et al., 

2000), it may seem surprising that this study did not find representational overlap in 

other primary or secondary motor and somatosensory areas. Effects were only 

present in the production task whereby the SMA, as well as the left, right and 

bilateral S1/M1 and S2 regions of interest could decode expression significantly 

above chance.  

As aforementioned a localiser was not used to map out the somatosensory 

regions and finding no representational overlap in this study does not mean that there 

were no effects. However, the univariate WBA analysis also demonstrated 

segregation in results; with the perception task activating the pre-SMA and the 

production task activating the SMA, bilateral S1/M1 and rS2. In the supplementary 

overlap analysis both tasks seemed to recruit the SMA, but no overlap was shown in 

the somatosensory cortices.  

Nonetheless, results from the motor sensitive brain regions provide validation 

that the production task activates the sensorimotor networks within the brain 

(Kanwisher, 2010; Meier et al., 2008). This network was also shown to activate in 

production tasks of fMRI studies (Carr et al., 2003; Hardwick et al., 2017; Leslie et 

al., 2004). It is interesting to note that van der Gaag et al. (2007) found neutral 

expressions versus emotion (happy, fear and disgust) to generate greater activation in 

bilateral S1 and S2, with emotion versus neutral to generate greater activation 

bilaterally in the insula, frontal operculum (IFG), right anterior STS and pre-SMA. 
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Thus it appears the embodiment of emotion may be more associated with frontal 

than somatosensory regions (van der Gaag et al., 2007).   

Results from the face-selective brain regions validate that the perception task 

reliably activates the perceptual face network in the brain (Haxby & Gobbini, 2011; 

Haxby et al., 2000), with the l-FG and EVC significantly decoding expression above 

chance, with a trend towards decoding in the l-STS. When cross decoding, none of 

the face regions (bilateral STS, FG and EVC; although there was a trend in the FG) 

could decode expression; however, this was to be expected as these regions are 

primarily involved in perceptual face processing. This network was shown to 

activate in perception tasks of the fMRI studies investigating shared networks for 

perception, production and imitation (Hardwick et al., 2017; Hennenlotter et al., 

2005; Leslie et al., 2004; Montgomery & Haxby, 2008; van der Gaag et al., 2007). 

Furthermore, perceptual MVPA decoding studies have found similar effects, with 

decoding of expression possible in perceptual face areas, including the FG (Harry et 

al., 2013; Wegrzyn et al., 2015), EVC or IOG (Greening et al., 2018; Wegrzyn et al., 

2015), STS (Greening et al., 2018; Peelen et al., 2010; Said et al., 2010; Wegrzyn et 

al., 2015; Zhang et al., 2016) and LO/VT areas of the brain (Greening et al., 2018). 

4.4.3 Limitations and future directions. 

4.4.3.1 Are the results due to imagery? 

There is an argument that the results could be due to imagery, whereby 

participants imagine moving their facial muscles during the perception task or 

imagine an expression in the production task without truly executing it. Ideally, 

without time and practical constraints, the perception and production task would 

have been carried out on separate days to train the participants outside of the scanner 

to execute the required facial movements at the appropriate times. Additionally the 

use of a camera or EMG equipment during the experiment would have enabled 

monitoring the subject during the experimental tasks. A camera was set up in Kircher 

et al. (2013)’s study to check that participants were not imitating during their 

observation runs and if they were correctly executing expressions in the movement 

conditions; Kircher et al. (2013) vigilantly stopped the run and started it again if they 

observed any of these problems. Despite these concerns, activation was present 

within the S1/M1 region of interest (an area encompassing the brains motor 

structures) in the production task and not in the perception task; therefore it seems 

likely that the results are driven by participants externally making a motor movement 
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correctly over imagining a particular expression. Furthermore, the peak of activation 

appeared to be located anteriorly in the motor rather than the tactile part of S1. The 

motor part of S1, namely area BA3a, behind the central sulcus, has close connections 

with the motor cortex receiving proprioceptive information (Keysers, Kaas, & 

Gazzola, 2010); whereas regions successively posterior to this, BA3b, as well as 

BA1 and BA2 in the postcentral sulcus are areas involved in tactile processing. Thus, 

it is important to reiterate the importance of using a face localiser with tactile 

stimulation to define the areas within somatosensory cortex in future research.  

Furthermore, it is important to note that early regions, such as the S1/M1, are 

not reliably activated during motor imagery (Dechent, Merboldt, & Frahm, 2004; 

Hétu et al., 2013), and it appears that motor imagery involves higher level regions, 

such as premotor, prefrontal, parietal and supplementary motor areas (Dechent et al., 

2004; Gerardin et al., 2000; Hanakawa et al., 2003; Hétu et al., 2013; Park et al., 

2015). Therefore, as activation was found in the S1/M1 ROI in this study, it further 

contends the idea that results could be a result of imagery. However, it would have 

been beneficial to implement an imagery task in the present research to control for 

the potential role of this factor; thus imagery cannot be completely disregarded in the 

current study. Furthermore, contradictory research has shown M1 to be activated 

during imagery, with studies showing overlap in motor imagery and execution in 

primary motor, bilateral premotor and parietal regions of the brain (Case et al., 2015; 

Gerardin et al., 2000; Hétu et al., 2013; Sugata et al., 2016), with an area in M1, 

namely area 4a, a sub-region more specifically related to implicit mental simulation 

processing (Tomasino & Gremese, 2016).  

4.4.3.2 Were appropriate stimuli used? 

 Dynamic displays of expression were used in this study; this choice of 

stimuli was preferable despite the potential confounds with finding greater brain 

activation, see methodological fMRI considerations in the chapter introduction 

(4.1.5). However, it would have also been important to consider the number of 

emotional expressions and the inclusion of a neutral expression in this study. Studies 

have varied in the number of expressions tested with Hennenlotter et al. (2005) 

testing for overlap between happiness and neutral, to Carr et al. (2003) testing all six 

basic emotions without a neutral expression. This study reliably tested between three 

basic emotions; however, the inclusion of neutral would have been beneficial as 

activity between perception and production cannot be tested for affect-specificity 



Section 2 – Experimental Chapters 

189 
 

without this. Nonetheless this research addressed all the methodological concerns 

addressed in the chapter introduction (4.1.5), including the creation of a production 

task devoid of any face stimuli or cognitive influences, as well as removing any 

implicit biases to execute a facial expression in the perceptual task. 

4.4.3.3 Are results exclusive to the embodiment of facial expressions? 

 Whilst these results provide evidence that there is similarity across the 

sensory perception and motor production of expression, it does not address whether 

these results are specific to the recognition of facial expressions or actions more 

generally. It may be that as faces are such biologically salient signals (Pessoa & 

Adolphs, 2010), see Chapter 2, that the overlaps found are specific to this. Hardwick 

et al. (2017) compared the face meta-analyses with leg and arm meta-analyses of 

action observation and execution; they found more activation in the face meta-

analyses for inferior regions, the left thalamus and bilateral amygdala when 

observing faces. Although there are some differences, it seems that a general shared 

brain network in action exists, which encompasses the premotor and parietal cortices 

as well as the SMA, and is inherently similar to shared face networks (Crammond, 

1997; Grèzes & Decety, 2001; Hardwick et al., 2017; Jeannerod, 2001). Leslie et al. 

(2004) further showed this with the similar shared network for the perception and 

production of hand actions to facial expressions. This non-exclusivity to faces may 

mean that the premotor results found in this study, likely reflect generalised 

representational overlap across the sensory perception and motor production of 

action. Therefore, in addition to tentatively supporting a strongly embodied account 

of emotion recognition, results may support the existence of an embodied account of 

action (Goldman & Sripada, 2005).  

4.4.4 Wider implications. 

 The embodied nature of motor imagery and perception is appealing. There 

has been considerable interest using action imagery or simulation to improve skill 

acquisition and development, particularly in sport, as well as in rehabilitation 

settings for patients who have experienced a stroke, spinal cord injury or suffer from 

Parkinson’s disease (Case et al., 2015; Hardwick et al., 2017; Tamir, Dickstein, & 

Huberman, 2007; Zimmermann-Schlatter, Schuster, Puhan, Siekierka, & Steurer, 

2008). Research has shown that recurrent motor imagery increases premotor and 

primary motor activation in the brain (Case et al., 2015). Applying this principle, 

motor imagery could benefit a number of clinical populations that have difficulties 
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recognising emotions such as autism, anxiety, depression, schizophrenia and PTSD 

sufferers.  

4.5 Conclusion 

 Given evidence that sensorimotor regions of the brain are active when 

perceiving and producing a facial expression, it was important to understand whether 

this activation was representationally similar. In the present study, participants were 

to perceive and later produce three basic facial expressions (happiness, disgust and 

sadness) in the scanner. Multivariate pattern analysis (MVPA) showed reliable 

decoding of expression in a face network of brain regions within the perception task, 

and sensorimotor regions within the production task. Furthermore, within perception 

and production, there was reliable expression decoding in premotor brain regions. 

Trends towards decoding expression in premotor brain regions were also shown 

within the cross-classification analyses, when the classifier was trained to 

discriminate emotion on perception and tested to discriminate emotion on 

production, or vice versa. These cross-classification results demonstrate 

representational overlap across the sensory perception and motor production of 

expression; and tentatively support a strongly embodied account of emotion 

recognition whereby we internally simulate another’s expression to aid recognition 

(Goldman & Sripada, 2005). Thus visual recognition of emotion may depend in part 

on a primitive embodied account.
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Chapter 5: General Discussion 

 

5.1 Chapter Overview 

 The research presented in this thesis explored the visual recognition of 

emotion, in particular the decoding of high-level influences on facial expression 

recognition. Both fMRI and EEG data were collected, and this data was primarily 

analysed with MVPA to examine the representation of facial expressions of emotion. 

Chapters 2 and 3 investigated extracted patterns of activation to understand how 

occluded facial features are represented in different brain regions and different time 

points, with pattern similarity across non-overlapping face parts implying the role of 

top-down contextual mechanisms. Furthermore, these chapters explored the effects 

of task, to further understand how the brain processes missing facial feature 

information when emotion is perceived in an explicit or implicit context. Chapter 4 

investigated representational overlap across the sensory perception and motor 

production of expression, with pattern similarity testing for an embodied account of 

expression recognition. The results from chapters’ 2 to 4 will be summarised in the 

present chapter, followed by a discussion of methodological and theoretical 

implications, with suggestions for future research. 

5.2. Summary of Results  

5.2.1 Chapters 2 and 3.  

5.2.1.1 The high level influence of spatial context on expression 

processing. 

 Experiments conducted in Chapters 2 and 3 explore facial feature occlusion 

in expression recognition, given evidence that the brain can predict rich information 

about the visual environment. This is because it was important to understand how the 

brain processes and compensates for missing feature information, and more 

generally understand how the brain deals with occlusion. The fMRI study of Chapter 

2 focuses on the occluded information contained within early visual (V1-V3), face 

and emotion sensitive areas, whilst the EEG study in Chapter 3 focussed on the 

temporal dynamics of processing occlusion (in posterior brain regions). MVPA 

results showed reliable decoding of facial expression (happy, fear and disgust) within 

conditions missing feature information. Importantly in Chapter 2, there were similar 

patterns of decoding across non-overlapping samples of face information, suggestive 

of the involvement of feedback mechanisms beyond low-level processing. These 
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cross-decoding results suggest the occurrence of a high-level context effect occurring 

in V1 and EVC (Clark, 2013; Greening et al., 2018; Heeger, 2017; Lee & Mumford, 

2003; F. W. Smith & Muckli, 2010; Tang et al., 2014; Tang et al., 2018). Additional 

support for the potential role of feedback is provided by the presence of a later 

decoding peak post 300ms in Chapter 3. However, a follow-up univariate analysis 

with a novel finding of enhanced ERP responses to stimuli with occluded eye 

information (predominantly in fear recognition) suggests that the brain could be 

forming a prediction of this occluded facial feature. Nonetheless, this result may be 

due to an abundance of factors including task difficulty. 

5.2.1.2 The high level influence of task goals on expression processing. 

 The experiments conducted in Chapters 2 and 3 also explore how task 

context affects the decoding of expression within and across conditions with non-

overlapping feature information. Results from Chapter 2 find more robust decoding 

of expression under implicit processing conditions in early visual areas (V1-V3) and 

the IOG, but more robust decoding of expression under explicit processing 

conditions in the STS. More robust decoding of expression was suggested to occur in 

the explicit task of Chapter 3 (with more significant time points overall; Figure 3.47 

for the explicit task compared to Figure 3.48 for the implicit task and Figure 3.64 for 

the explicit task compared to Figure 3.65 for the implicit task), these results are 

aligned more to decoding in the STS than early visual areas of the brain and thus 

correspond to the previous results. Thus it seems that implicit expression decoding, 

where participants carry out a gender task but the classifier can decode the emotion 

shown, is more prominent in early visual areas, and explicit expression decoding, 

where participants carry out an expression task and the classifier is decoding the 

emotion, more recruits the STS.  

It is not clear why implicit expression decoding is generally higher in the 

early visual regions. The enhancement of processing in conditions where attention is 

not explicitly directed to an emotion, tentatively suggests that as expressions are 

such biologically salient signals (Pessoa & Adolphs, 2010), feedback may be 

enhanced under these conditions. The rapid automatic activation of subcortical 

pathways, when attention is not explicitly directed to an emotional task (Critchley et 

al., 2000; Gur et al., 2002; Hariri et al., 2000; Scheuerecker et al., 2007), further 

supports the biological significance of implicitly processing facial expressions. 

Finding higher explicit expression decoding in the STS corresponds with previous 
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research, finding this brain region to activate intentionally in processing faces under 

explicit conditions (Winston et al., 2002); although other studies have also shown 

decoding in the STS under implicit conditions (Said et al., 2010; Wegrzyn et al., 

2015; Zhang et al., 2016). Furthermore, K. N. Kay and Yeatman (2017) found a 

categorisation or a one-back task, to affect both high-level and early visual responses 

through modulation from the intraparietal sulcus (IPS), in comparison to a sensory 

fixation task. Thus, the task goals of an experiment act as a high-level influence on 

perception of facial expression.  

5.2.2 Chapter 4. 

5.2.2.1 The high level influence of embodiment on expression processing. 

The experiment conducted in Chapter 4 explores embodiment in emotion 

recognition, investigating the overlapping representations in the perception and 

production of facial expressions. Results demonstrated reliable decoding of 

expression in dorsal and ventral premotor brain regions within perception and 

production, as well as trends towards representational overlap in the dorsal premotor 

regions of the brain across the sensory perception and motor production of 

expression. These findings are partially compatible with previous research showing 

the ventral premotor cortex to be part of the HMNS in supporting simulation 

(Iacoboni & Dapretto, 2006; Kircher et al., 2013; Oberman et al., 2007), and 

generally an area regarded important in expression recognition (Wood, Rychlowska, 

et al., 2016). The results of this chapter tentatively support a strongly embodied 

account of emotion recognition, whereby we internally simulate another’s expression 

to aid recognition (Goldman & Sripada, 2005). Furthermore, the embodied nature of 

emotion recognition is thought to be a high-level influence on the recognition of 

expression, as it is implied that sensorimotor simulation is fed back to a visual input 

(see Figure 5.88), continuingly regulating the perception of a stimulus (K. N. Kay & 

Yeatman, 2017; Wood, Lupyan, et al., 2016; Wood, Rychlowska, et al., 2016). 
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Figure 5.88. Facial expression recognition, importantly demonstrating the iterative 
loop between visual perception and sensorimotor simulation (B, F), and the 
engagement of visual, sensorimotor, premotor and subcortical cortices, from Wood, 
Rychlowska, et al. (2016).  

 

5.3 Theoretical Implications 

5.3.1 Mechanisms involved in recognising occluded facial expressions. 

The results of Chapters 2 and 3 support the role of the visual processing 

pathway in expression recognition as this research shows the activation of early 

visual and temporal areas in the recognition of expression. Finding similar 

information across conditions missing non-overlapping or complementary feature 

information is in line with predictive coding and recurrent feedback models of object 

completion (O'Reilly et al., 2013; F. W. Smith & Muckli, 2010; Tang et al., 2014; 

Tang et al., 2018; Wyatte et al., 2014), as well as other approaches (addressed in 

more detail below) to help explain ambiguous information processing. This is 

apparent in Chapter 2, with sensitivity in early visual areas to occluded face features, 

suggesting the role of feedback and lateral interactions (F. W. Smith & Muckli, 

2010). Whereas in Chapter 3 the increased ERP amplitudes potentially reflect the 

occurrence of prediction or error signals in predictive coding, or recurrent feedback 

signals in models of object completion, helping predict and fill in the important 
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missing feature information needed for recognition (Greening et al., 2018; Hajcak et 

al., 2010).  

 Evidently the results of Chapters 2 and 3 demonstrate high-level effects in the 

processing of occluded facial expressions; however, there are various possible 

models that could account for and explain these findings. These include predictive 

coding (Clark, 2013; Friston, 2005, 2008; Rao & Ballard, 1999), recurrent feedback 

models of object completion (O'Reilly et al., 2013; Tang et al., 2014; Tang et al., 

2018; Wyatte et al., 2012), Bayesian (Lee & Mumford, 2003) and coherence 

infomax (W. A. Phillips et al., 1995) accounts of processing as well as a hierarchical 

neural network model (Heeger, 2017); these accounts, whilst outlined and addressed 

in Chapter 2, will be considered in turn for the results of Chapters 2 and 3. 

In predictive coding, visual regions may expect certain incoming sensory 

information, such as whole face stimuli, however, when the observed stimuli is 

different from expectation, such that these faces have missing features, there may be 

an overall increased response to the occluded stimuli, and each visual region would 

have to compute the difference between the expected and observed incoming sensory 

information (Clark, 2013). Thus, predictions regarding the content of the missing 

information are likely formed in higher cortical levels and fed back to early visual 

regions; whilst prediction errors are likely transmitted back to higher-level regions in 

an attempt to account for the current sensory information (Rao & Ballard, 1999) (see 

Figure 2.11, Chapter 2). Predictive coding is potentially implicated due to the 

heightened decoding in the XC results of early visual regions, as well as the 

strengthened ERP amplitudes to partial face stimuli.  

 However, neither of these chapters tested the predictive coding account 

directly and the influences from feedback and lateral interactions cannot strictly be 

distinguished. Unfortunately existing models of V1 do not account well for the role 

of such influences (Carandini et al., 2005; Olshausen & Field, 2005; F. W. Smith & 

Muckli, 2010; Tang et al., 2018). Whilst, standard models on the response properties 

of neurons, such as grating response, are well established, it is surprising that a 

substantial amount of information about how V1 works, what it does and its role is 

still unknown (Olshausen & Field, 2005). This uncertainty accounts for up to 85% of 

V1’s function, and arises because research has not investigated the properties of a 

representative sample of neurons in V1 when presented with ecologically complex 

stimuli (Carandini et al., 2005; Olshausen & Field, 2005). Furthermore, it is known 
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that V1 has considerable feedback connections from a number of brain regions, and 

thus V1 cannot be studied on its own (Muckli, 2010; Muckli & Petro, 2013; Muckli 

et al., 2013; Olshausen & Field, 2005).   

In recurrent feedback models of object completion, extra-striate visual 

regions would immediately, following the feedforward process, send recurrent 

feedback signals to weak or non-activated V1 neurons in an attempt to process 

occluded face stimuli (Wyatte et al., 2014). This process continues automatically 

along hierarchically adjacent areas in the visual stream until object completion 

(Wyatte et al., 2012; Wyatte et al., 2014). Commonly, object completion is fully 

achieved after recurrent signals in the inferior temporal cortex are fed back to V1 

(Wyatte et al., 2012); increased responses from the N170 ERP, located along this 

region of the brain, in response to partial stimuli, and the XC results for the EO to 

ME pair in the FG, are supportive of this model.  

Results can also be explained with alternative Bayesian accounts of 

processing; in this account the bottom-up observations of the partial face stimuli 

would be concurrently assimilated with the top-down contextual priors to create 

probabilistic inferences regarding the content of the missing facial feature 

information (Kersten et al., 2004; Lee & Mumford, 2003; Yuille & Kersten, 2006). 

Thus the occluded face stimuli would initially lead to an overall decrease in 

response, but over time processing the occlusion amplifies the early visual response 

signals.  

Finally the results could be explained with the hierarchical neural network 

model, proposed by Heeger (2017). This theory encompasses elements from the 

preceding models of visual processing, as neural activity in each region of the brain 

depends on a contribution from a feedforward, a feedback and a prior drive. Thus, in 

whole face conditions, neural responses are likely to depend on the feedforward 

bottom-up drive, where stimuli can be recognised in a feedforward computational 

model. However, in partial face conditions, neural responses are likely to also 

depend on a contribution from both the feedback and prior drive; whereby sensory 

representations are partially constructed from top-down contextual knowledge, and 

expectation is combined with sensory input to predict, for example, ambiguous 

missing feature stimuli. It is important to note that both of these chapters found 

interesting effects in the occluded eye conditions, these were demonstrated with high 

decoding accuracies in occluded eye conditions (ME and MO) within both tasks in 
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Chapter 2 and early ERP responses (P100 and N170), independent of task, to stimuli 

with occluded eye information in Chapter 3. This response was heightened if the 

emotion (e.g. fear) needed information for recognition from the eye region. Together 

these models help understand the role of bottom-up and top-down processes in early 

visual areas, advancing beyond the standard model of V1, in an attempt to account 

for its unknown function and feedback connections (Olshausen & Field, 2005). 

 Overall various possible models could account for the current findings and it 

is unclear without future research which model provides the best explanation; 

suggestions on how to test the predictive coding account directly are given in the 

future research section. Nonetheless, the current research is able to ascertain the role 

of contextual mechanisms (feedback and lateral interactions); highlighting the 

important role context has in shaping the activity of neurons in early sensory areas 

and the potential influence of top-down computations in expression recognition. The 

XC results found in Chapter 2 demonstrate the contextual mechanisms at work, as 

when there is no shared visual information given between two distinct partial face 

conditions, successful XC cannot just be a result of low-level processing in V1. This 

is further emphasised in the computational low-level modelling analysis where the 

XC results were at chance. Therefore these results together show that decoding 

performance is likely driven by top-down feedback processes or possibly lateral 

interactions in V1, providing contextual information regarding the occluded portion 

of a faces expression. Furthermore, the MVPA results in Chapter 3 (3.2.2.2 and 

3.3.2.2) showed reliable decoding of facial expression from 50ms, in conditions 

missing feature information. In addition to this, the significant decoding in the neural 

time-course of occluded expression processing, appeared to resemble three decoding 

phases, potentially inferring the presence of feedforward and feedback processes 

(Cauchoix et al., 2014; Kaneshiro et al., 2015; Li et al., 2018).  

5.3.2 The role of simulation in recognising facial expressions. 

The results of Chapter 4 are generally supportive of simulation based theories 

of embodiment, where it seems that expression recognition is aided by simulation-

like processes and potentially facial feedback (Niedenthal et al., 2006). This is 

evidenced by the overlapping neural representation trends in pre-motor brain regions 

when perceiving and producing specific facial expressions (Goldman & Sripada, 

2005; Niedenthal, 2007; Saarimäki et al., 2015).  
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This account assumes the involvement of motor, premotor and 

somatosensory cortices in expression recognition. The ventral premotor cortex is 

considered to be part of the HMNS in supporting simulation, thus the reliable 

decoding found in dorsal and ventral premotor regions, within perception and 

production, supports the important role of the ventral premotor cortex in expression 

recognition (Iacoboni & Dapretto, 2006; Kircher et al., 2013; Oberman et al., 2007; 

Wood, Rychlowska, et al., 2016). The MN system is in line with Goldman and 

Sripada (2005)’s unmediated resonance model of expression recognition, which 

suggests that sub-threshold activation occurs in response to viewing an emotive face 

in the motor substrate for that emotion. Whilst this research shows the potential 

involvement of the premotor regions in the recognition of expression, it did not 

reveal overlap in S1/M1 activity. As aforementioned in Chapter 4, this could be a 

fault in the localisation of S1, to fully understand this, a face localiser with tactile 

stimulation, should have been employed to define regions involved in tactile 

somatosensory processing rather than movement. Despite this, results demonstrate 

some support for representational overlap across the sensory perception and motor 

production of expression, and tentatively support a strongly embodied account of 

emotion recognition, whereby we internally simulate another’s expression to aid 

recognition (Goldman & Sripada, 2005). It is important to note that the embodied 

account of emotion recognition also extends to other actions, such as social hand 

gestures (Montgomery & Haxby, 2008). These results support a different approach 

to Chapters 2 and 3; focussed instead on simulation-like processes and not visual 

routes of expression recognition (Goldman & Sripada, 2005).  

5.3.3 Uniting the visual mechanisms and the role of simulation in 

recognising facial expressions. 

The results from Chapters 2 and 3 are disparate from Chapter 4, addressing 

different important questions related to how we recognise facial expressions. It may 

be that the accounts cannot individually provide a full understanding of expression 

recognition, as both the visual and sensorimotor pathways create sources of 

information in constructing a prediction of another’s emotion (Wood, Rychlowska, 

et al., 2016). Therefore, it is important to understand how these two routes are 

combined and interact to work together.  

 The only study to link simulation based accounts of embodiment with the 

visual route of recognition, was carried out by Kragel and LaBar (2016), as they 
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investigated the role of the somatosensory cortex and asked participants to self-

report their own emotional experience to visually presented stimuli. The behavioural 

results on how the participants experienced an emotion, were found to mirror the 

emotional content of the presented expression and were further decodable from 

fMRI activity in the right somatosensory cortex (Kragel & LaBar, 2016). This study 

therefore shows that the somatosensory cortices can link the visual perception of an 

emotion with one’s own sensory experience (Kragel & LaBar, 2016). This element 

was missing in the embodiment study of Chapter 4, but could have been easily 

achieved with the implementation of a somatosensory localiser for the face; this 

localiser defines tactile simulation and these regions of somatosensory cortex may be 

those that are important in emotional experience. The S1/M1 region defined in 

Chapter 4 mainly corresponded to proprioception (or area BA3a), as opposed to most 

of the somatosensory cortex involved in tactile processing (BA3b, BA1 and BA2).   

 Wood, Rychlowska, et al. (2016) detailed the importance of the visual route 

to recognition, whereby an individual relies on diagnostic facial features as well as 

contextual knowledge of an expression for recognition, as emotions likely occur in 

response to specific contexts or events. These regularities develop an individual’s 

conceptual knowledge of each emotion and in turn may be used to assist subsequent 

emotion recognition (Wood, Rychlowska, et al., 2016). However, they also detail 

how an individual may additionally make use of sensorimotor simulation for 

recognition. As aforementioned, this may be particularly apparent in the recognition 

of ambiguous or subtle expressions or during a particularly demanding task, 

especially in judging the genuineness of a smile (Niedenthal et al., 2010; Wood, 

Rychlowska, et al., 2016). Thus, it may be that the visual system is more important 

for recognition of the basic emotions, until a more complex task is introduced, where 

individuals cannot rely on visual diagnostic information or their contextual 

knowledge of an expression pertaining to a particular situation for recognition. 

 Furthermore, Wood, Lupyan, et al. (2016) incorporate both accounts as being 

involved in the recognition of emotion, showing how sensorimotor simulation is fed 

back to shape a current visual percept or input (see Figure 5.88). Whilst Goldman 

and Sripada (2005) outlined several models of embodiment, suggesting that these 

accounts provide a rapid, evolutionally adaptive cue for recognition, they further 

note that the visual route of recognition may be an invaluable compensatory method. 

Thus, these studies further support the importance of both visual and non-visual 
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routes to expression recognition, and how information is likely fed back to the visual 

system. Overall, it is not clear how these different routes are combined to work 

together because there is no single strategy employed in expression recognition, 

highlighting the overarching complexity of processing emotions.  

5.4 Wider Implications 

 The paradigms developed in this thesis could reveal novel insights into how 

expression perception fails in particular conditions. Previous research has shown 

impairments in the recognition of expressions from the upper portion of the face (in 

particular the eyes) in individuals with Autism (Baron-Cohen, Wheelwright, Jolliffe, 

& Therese, 1997; Gross, 2004), but the paradigms employed in Chapters 2 and 3 

could have investigated the involvement of early visual, face and emotion sensitive 

brain areas associated with this impairment. Furthermore, these individuals are 

suggested to compensate their impairments with greater expertise processing 

emotions from the mouth (Gross, 2004), thus it would be interesting to see these 

compensatory methods for expression perception in the brain, using the current 

research’s PF stimuli. Based on the literature this expertise is believed to be a result 

of a highly developed secondary emotion system, a lower face expression 

recognition system that can be learned later in life (Gross, 2004). This contrasts with 

the primary system that focuses on the importance of upper face recognition, whilst 

this is normally present at birth, this system is deficient in autistic individuals (Gross, 

2004). Furthermore, accuracy and speed of expression recognition has been shown to 

be affected when motor imagery, to stimulate and recognise expressions, has not 

been performed (Neal & Chartrand, 2011; Niedenthal et al., 2001); thus training 

individuals (especially clinical populations who have difficulties recognising 

emotions, such as autism, anxiety, depression, schizophrenia and PTSD sufferers) to 

simulate these expressions may be beneficial. Thus the paradigm employed in 

Chapter 4 could have included an aspect of motor imagery training (Tamir et al., 

2007; Zimmermann-Schlatter et al., 2008), to see if post training results are 

associated with greater expression perception. However, research has shown some 

clinical populations to be able to recognise emotions without the use of simulation. 

These populations include autistic (McIntosh, Reichmann-Decker, Winkielman, & 

Wilbarger, 2006) and Moebius Syndrome (bilateral facial paralysis) sufferers (Rives 

Bogart & Matsumoto, 2010) who potentially rely on pattern matching or alternative 
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methods of recognition. Thus, it appears that difficulties in expression perception in 

the current thesis may indicate a number of individual differences. 

5.4.1 Affective computing. 

 The results from these chapters are also relevant for the study of affective 

computing or emotion artificial intelligence (AI). This novel field of research is 

developing intelligent machines that can recognise expressions, through face images, 

vocal intonations and body language. Currently, these systems are being developed 

by a number of companies including Affectiva, CrowdEmotion and eyeris. The AI 

systems that recognise facial expression from face images are based on Action Units 

(AUs) or the FACS (Facial Action Coding System) to classify facial expressions (see 

1.1.4 in Chapter 1 for more detail on these systems for categorising facial units). 

These software development kits (SDK) are based on an abundance of face images 

around the world and the technology can classify numerous spontaneous facial 

expressions with a high level of speed and accuracy. Furthermore, these systems are 

used in an abundance of settings, investigating driver state data to improve road 

safety and aiding market research by investigating consumer emotional engagement 

with advertisements (Affectiva, 2018). However, these deep-learning trained 

expression recognition models are only based on whole face bottom-up models of 

visual processing. Therefore, the models do not account for the role of high-level 

effects when processing partial face stimuli or simulation type mechanisms of 

expression recognition. Thus, these models are missing how occluded feature 

information would be processed, as the absence of FACs or AUs would prevent this 

bottom-up model from recognising an expression. Furthermore, simulation processes 

appear to be more adept at recognising subtle ambiguous expressions, such as the 

genuineness of a smile (Niedenthal et al., 2010; Wood, Rychlowska, et al., 2016); 

thus bottom-up models would likely miss the recognition of these subtleties in 

emotion. Overall, whilst the study of affective computing is especially relevant to 

this thesis, the alternative routes of processing emotional expressions are not 

accounted for but are vitally important in gaining a full understanding of expression 

recognition. 

5.5 Limitations 

Each chapter has demonstrated considerable evidence of high-level 

influences on facial expression recognition, showing the visual areas carrying 

information about hidden parts of a face stimulus, as well as the high-level 
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influences of task and embodiment. However, the decoding of these influences and 

full understanding into the visual recognition of emotion is challenging and 

fundamentally influenced by many factors. It is important to carefully consider the 

statistical power of the studies, as well as the localisation of brain regions and choice 

of stimuli. It is also important to note that eye movements could play a role in these 

studies. Nonetheless participants were explicitly told to fixate on a central cross in 

each of the experiments, which should reduce the effects of eye movements on 

results. Future work would benefit from the use of eye-tracking equipment to make 

sure participants eyes remain on fixation. 

5.5.1 Power. 

 Whilst neuroscientific studies of brain activation and the use of subsequent 

analytical techniques have advanced the understanding into the brains basis of 

expression recognition, there are concerns over the generalisability and statistical 

power of neuroimaging research (Button et al., 2013; Poldrack et al., 2017). These 

problems are generally a result of small sample sizes in MRI research; ideally a 

minimum of 20 participants in one experimental group are needed, but research 

power would benefit from nearer to 30 or more participants (Poldrack et al., 2017). 

Unfortunately the present fMRI research studies were not able to scan more 

participants due to funding and time constraints, with 12 participants in Chapter 2 

and 13 participants in Chapter 4. As also aforementioned, the EEG study in Chapter 

3 would benefit from more participants, in order to run the cross-classification 

analyses.  

However, many existing fMRI decoding studies have tested below 20 

participants (Greening et al., 2018; Harry et al., 2013; Liang et al., 2017; Oosterhof 

et al., 2010; Peelen et al., 2010; Petro et al., 2013; F. W. Smith & Muckli, 2010; 

Wegrzyn et al., 2015) and have found significant results. Thus, the sample sizes in 

this thesis may have been sufficient. Overall, it is important to note that the findings 

in each of these chapters are promising, with strong effect-sizes. 

 In Chapter 2, ANOVAs to investigate task and PF condition, or cross-

classified pair on decoding accuracy were reported with partial eta-squared (p
2) as a 

measure of effect-size. In Cohen (1988), a large effect-size is demonstrated with a 

value greater than 0.14; a medium effect-size greater than 0.06 and a low effect-size 

greater than 0.01. The basic decoding results in V1 and EVC demonstrated 
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considerably high effect-sizes for PF condition and task, with effect-sizes for the PF 

and task interactions greater than p
2 = 0.32. Furthermore, the cross-classification 

decoding results in V1 and EVC demonstrated considerably high effect-sizes for 

cross-classification pair and task, with effect-sizes for the cross-decoding 

interactions between cross-classification pair and task greater than p
2 = 0.69. The 

cross-decoding effect-sizes strengthen results, showing the high-level contextual 

influences on the processing of occluded facial expressions, as well as the high-level 

task effects on expression recognition. The findings of high-level effects within the 

expression decoding analyses of V1 are also bolstered with the large effect-sizes 

shown in the V1 univariate analysis. Weaker results were found in the additional 

ROIs with more varied effect-sizes, however, medium to large effect-sizes were 

shown for some of these ROIs, including the STS and IOG, in the basic and cross-

classification decoding results.  

 In Chapter 3, ANOVAs to investigate task, emotion and PF condition on 

mean amplitude were carried out in the univariate ERP analysis, which also reported 

partial eta-squared. Results in this chapter was also associated with large effect-sizes; 

with the effect of PF condition high (> .14) in both studies for all ROIs (rN170, 

lN170, P100 and P300), with high amplitudes in the MO, for instance, further 

supporting the importance of mouth information and features diagnostic for task 

completion. Furthermore, there are large effect-sizes associated with emotion in both 

studies, particularly in the P300 where amplitudes were greatest for fear and weakest 

for happiness. There was also medium to large effect-sizes associated with task even 

though there was no significance, these are shown in the P300 of study one and 

rN170, lN170 and P100 of study two whereby the amplitudes are greater in the 

gender than the emotion task. These results display some novel supporting effects for 

the task hypothesis as amplitudes were stronger in the implicit task, even though 

these are absent as a result of power. Lastly the significant interactions between 

emotion and PF condition in the N170 (rN170 in study one, lN170 study two) and 

P100 (study two) showed large effect-sizes, as well as an interaction between task, 

emotion and PF condition in the P300 of study one; these further support the 

observed amplitude increases to occluded eye information in fear recognition.  

 In Chapter 3, the t-test results for each time point’s decoding accuracy was 

reported with Cohen’s d as a measure of effect-size, whereby d > 0.80 is thought to 
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be a large effect-size, d > .050 a medium effect-size, and d > .020 a small effect-size. 

In study one, the effect-sizes were greatest for explicit expression decoding in the 

WF condition between 100ms and 700ms (d‘s = 0.58 to 1.09). Medium to large 

effect-sizes were also found in the ME, MO and MM condition. In study two, the 

effect-sizes were greatest in the ME condition between 50ms and 250ms (d‘s = 0.58 

to 0.74), with small to medium effect-sizes in the WF, ME and MO conditions. 

These results bolster the findings of early decoding accuracy for expression and the 

importance of the eyes and mouth in early expression recognition. For implicit 

expression decoding, study one showed medium effect-sizes for trends in the WF 

condition, but a medium effect-size for the EO significance in study two. Overall, 

both in terms of the number of significant time points and larger effect-sizes, explicit 

decoding of expression is greater than implicit decoding of expression in the EEG 

analyses.   

 In Chapter 4, the t-test results for each ROI’s decoding accuracy were again 

reported with Cohen’s d. In the basic decoding results, effect-sizes were d = 0.70 or 

above in both ventral and dorsal premotor regions. There was a large effect-size in 

the cross-classification results for a perceptually defined dorsal premotor region (d = 

0.83); whilst cross-classification results were weaker in the production task, there 

where trends in the dorsal premotor regions, defined from production, associated 

with medium to large effect-sizes (0.51 and 0.79). Overall, all significant effects, 

including those that did not survive FDR correction produced medium to large 

effect-sizes. Therefore, the effect-sizes bolster the representational overlap findings, 

further tentatively supporting a strongly embodied account of emotion recognition.    

5.5.2 Localisation of brain regions. 

 In the present research, the fMRI study of Chapter 2 used retinotopic 

mapping to localise early visual cortex (EVC). This is an invaluable localisation 

method to ascertain the boundaries of V1-V3 and subsequently investigate activation 

and representation occurring in a mapped position of visual space. This localisation 

led to the conclusion that information about facial expression can be read out from 

early visual brain regions, and demonstrated the strong involvement of contextual 

influences in early visual processing when devoid of overlapping feedforward 

information. This retinotopic mapping was based on each individual subject. This 

strengthened the results from Greening et al. (2018) who also found neural 

information in EVC to generalise across independent face parts, but through 
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mapping the cortex less effectively with a cytoarchitectonic map (Eickhoff et al., 

2005). As aforementioned in Chapter 2 (2.1.1.2.1), this method is sub-optimal 

because it applies the same map to all participants and consequently does not 

account for individual differences.  

 Although, the localisation of EVC was well-defined and the main focus was 

to understand the contextual effects in this area for the present research; traditional 

face localiser scans (using a faces > objects contrast) to define the STS and FG, 

would have been beneficial to understand the potential role of these higher-level 

areas to effects observed within the retinotopically defined V1. Instead these regions 

were selected with key words in the meta-analysis from the NeuroSynth database, 

again this method does not account well for individual differences. Nonetheless, 

there were significant results in the STS and FG, with effects corresponding to 

previous research of decoding expression (Harry et al., 2013; Liang et al., 2017; Said 

et al., 2010; Wegrzyn et al., 2015; Zhang et al., 2016), including a recent study by Li 

et al. (2018) which also elucidated two distinct stages of face processing in a clearly 

defined FG. These stages included a rapid feedforward face-selective decoding 

around 180ms in posterior FG, and later decoding of expression between 230ms-

460ms in mid-fusiform regions. This later decoding phase may resemble an 

integration of information, and consequently a possible backwards projection of top-

down information. Furthermore the results correspond with research finding high-

level representations in the STS (Peelen et al., 2010; Skerry & Saxe, 2014). 

However, decoding accuracy was generally lower in the FG and STS of the current 

research and their definition could reflect this. It is also important to mention that the 

complementary EEG study of Chapter 3 cannot supply further information on this 

problem, as ERP’s are only loosely tied to specific brain regions, and in general, the 

neuroscientific technique is associated with low spatial resolution.   

 Adding to this, the fMRI study of Chapter 4 could have also benefitted from 

the application of these face localiser scans, but as aforementioned, this study most 

importantly would have benefitted from a tactile somatosensory face localiser. This 

is because in the present research the sensorimotor cortex was broadly defined as 

S1/M1, which only resembles a specific sub-region of S1 (likely area 3a, the area 

involved in movement) and completely misses the other parts of S1 (e.g. area 3b) 

that deal with tactile simulation. Thus, representational overlap between the sensory 
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perception and motor production of expression may have been present if the 

somatosensory cortex was better defined. 

5.5.3 Choice of stimuli. 

 An abundance of studies are based on the assumption of basic emotions and 

the experimental chapters in the present research are no exception, investigating 

happiness and disgust, with the addition of fear in Chapters 2 and 3, and sadness in 

Chapter 4. These basic emotions are normally depicted as static displays, portrayed 

with full intensity and associated with an easy recognition task. Whilst this 

somewhat enables greater comparison among studies, it is important to remember 

that facial expressions in the real world may be difficult to recognise, as faces are 

often seen for fleeting moments of time, in peripheral vision with constrained 

viewing conditions, whereby subtle expression judgements are required (e.g. smile 

authenticity) (Bayle et al., 2011; Bould, Morris, & Wink, 2008; Calvo, Fernández-

Martín, et al., 2014; Calvo & Nummenmaa, 2015; Korb, With, Niedenthal, Kaiser, & 

Grandjean, 2014; Niedenthal et al., 2010; F. W. Smith & Rossit, 2018). More 

complex tasks or emotions, including the recognition of compound and dynamic 

emotions (Du, Tao, & Martinez, 2014; Gold et al., 2013), will enable the tasks to be 

more akin to real life, increasing their ecological validity. As previously mentioned, 

however, dynamic stimuli are associated with more brain regions activated, such as 

the STS (see 4.1.5 in Chapter 4), and thus the reason for a brain regions activation 

(in response to recognition of expression or movement) needs to be understood. 

Despite this possible difference, Duchaine and Yovel (2015) stated that face areas of 

the brain (FFA and OFA) extract comparable information from both static and 

dynamic faces, and other research has suggested that differences between these 

stimuli, in a participant’s overall ability to recognise an expression, plays a 

surprisingly minor role (Gold et al., 2013).  

 The use of more complex emotions and increasing a tasks difficulty may 

have yielded different results in the present research. It is possible that the EVC 

decoding results may be more significant if subtle or ambiguous expressions are 

used. This is because the decoding of complex emotions could require more 

activation of higher visual areas, to process the stimuli and consequently feed 

information back to EVC (Alink et al., 2010). Furthermore, some basic emotions 

could be associated with increased feedback, as they are expected to be the most 

salient. Thus, the brain would need to process potentially threatening expressions 
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(such as fear and anger) (Pessoa & Adolphs, 2010) that are absent of large easily-

identifiable facial shape deformations from the mouth (Du & Martinez, 2011). 

 Furthermore, research has shown that sensorimotor simulation may be 

particularly important for the recognition of subtle or ambiguous expressions, when a 

task is harder (Hess & Blairy, 2001; Niedenthal et al., 2010; Rychlowska, Cañadas, 

et al., 2014; Wood, Rychlowska, et al., 2016). This is particularly prominent in the 

processing of a smile, considered to be the most complex facial expression (Korb et 

al., 2014; Niedenthal et al., 2010; Rychlowska, Cañadas, et al., 2014). The 

judgement of a genuine, or a Duchenne smile, relies on the recognition of subtle 

structural and temporal information, and disrupting mimicry (and presumably 

embodied simulation) impairs the differentiation of a false from a Duchenne smile 

(Rychlowska, Cañadas, et al., 2014; Wood, Rychlowska, et al., 2016). Furthermore, 

Neal and Chartrand (2011) showed mimicry to enhance subsequent expression 

recognition in the ‘Reading the Mind in the Eyes’ task (RMET), testing secondary 

subtle non-prototypical emotions. Moreover, Wood, Rychlowska, et al. (2016) stated 

that embodied simulation would be more likely to occur in ambiguous situations, 

when an individual does not know what an expresser is feeling. Thus, if more subtle 

or ambiguous emotions were used in this chapter, it is possible that being asked to 

produce these expressions may lead to greater activation in sensorimotor brain 

regions as greater simulation is likely needed for recognition.    

 It is not only important to consider expression choice but also how the partial 

stimuli were created in Chapters 2 and 3. As aforementioned, the recognition of a 

partially occluded object is affected by its nature of occlusion (Johnson & 

Olshausen, 2005), in this thesis an occluder with a different background colour was 

used. With this black occluder on a grey background, the hidden region looked 

occluded rather than simply missing, thus it was possible that amodal completion 

was used to complete the continuation of a face (Johnson & Olshausen, 2005). 

Features would appear to be missing or removed if grey occluders to match the 

background colour were used, as this would prevent amodal completion. Thus, this 

type of occlusion may affect results, whereby missing feature information may not 

have been read out from the early visual brain. It would be interesting to compare the 

current method of occlusion with deletion (e.g. using grey occluders), to see if the 

neural mechanisms underlying expression recognition of partial faces is affected by 

the nature of occlusion and subsequent amodal completion. Whilst deletion would be 
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a good method to investigate, it would be of additional interest to investigate natural 

occlusion; such as having a pair of sunglasses, as opposed to a block shape, 

occluding facial information for expression recognition. However, these stimulus 

changes would present a problem or a trade-off with object processing. Nonetheless, 

the occlusion used in the present research provides interesting results regarding the 

processing of incomplete stimuli. 

5.6 Future Directions 

To reiterate, results of Chapters 2 and 3 are compatible with accounts of 

predictive coding. This is because unpredictable sensory inputs (missing facial 

features) are thought to require more activation of early (V1) and higher visual areas; 

and the present results show increased decoding in early visual areas for the ME 

compared to the WF condition (Chapter 2), or strengthened amplitudes in higher-

level brain regions to faces missing feature information (Chapter 3) (Alink et al., 

2010; Rao & Ballard, 1999). Importantly, the XC results of Chapter 2 also show 

compatibility with accounts of predictive coding, with the suggestion of feedback 

mechanisms beyond low-level processing; finding similar representation-specific 

decoding in the absence of V1 input across non-overlapping samples of face 

information. However, neither Chapters 2 nor 3 differentiate between prediction and 

prediction error activity as they were not set up to directly test the account of 

predictive coding (Kok & de Lange, 2015). As such, the activity found can only 

potentially reflect the occurrence of prediction or prediction error signals. Thus, to 

directly test this account, the experimental design would need to be amended to 

measure prediction and prediction error signals occurring in the occluded face areas.   

Studies that have directly tested predictive coding have taken advantage of 

paired associative learning, by pairing a high or low frequency auditory cue with a 

visual stimulus (den Ouden, Daunizeau, Roiser, Friston, & Stephan, 2010; den 

Ouden, Friston, Daw, McIntosh, & Stephan, 2009; Kok & de Lange, 2015). These 

studies find a greater V1 response to a violation in the pairing; when a target is not 

preceded by its cue or there was no visual stimulus presented (Kok & de Lange, 

2015). This suggests a prediction error indicative of predictive coding, as 

representation-specific activity begins before visual input to make a prediction, and 

any violation leads to an increased response (Kok & de Lange, 2015). It is important 

to note that stimuli with any attentional effects (related to interest and/or surprise) 

are removed as these effects will also lead to an enhanced V1 response (Kok & de 
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Lange, 2015); this is a challenge in research and may be more problematic with the 

use of facial images as attention could be drawn to the eyes and/or mouth (F. W. 

Smith et al., 2008; M. L. Smith et al., 2005). However, this problem can be 

overcome by introducing an irrelevant task where attention to the paired associations 

between stimuli are not focussed on (den Ouden et al., 2010; den Ouden et al., 2009).    

Apparent motion illusion studies have also been used to directly test the 

predictive coding account (Alink et al., 2010; Muckli et al., 2005). These paradigms 

ask participants to fixate at a set point, whilst other bars appear on screen to create a 

predictable or unpredictable illusion of motion (Alink et al., 2010; Muckli et al., 

2005). The predictable illusions of motion are associated with less activity in V1, 

compared to unpredictable stimuli (Alink et al., 2010). However, these studies need 

to consider how predictive coding works in ecologically valid environments, 

particularly in the perception of expressions.  

Paired association and apparent motion illusion studies are hard to implement 

to directly test predictive coding in respect to the current research. Alternatively, 

research has shown that predictive coding can be investigated by looking closer into 

the neural architecture of V1, separating this brain region into its different cortical 

layers (Muckli et al., 2015). This is because each layer differentially contains 

feedforward and feedback connections, and looking at the layers involved in 

feedback can help isolate and investigate these effects. Contextual feedback has been 

found in superficial outer layers of V1, this feedback is likely projecting from extra-

striate visual, cortical and subcortical brain regions (Muckli et al., 2015). However, 

top-down feedback has also been found to activate deep layers of V1 (Kok, Bains, 

van Mourik, Norris, & de Lange, 2016). Therefore, carrying out the same paradigm 

using a 7T fMRI scanner will enable the cortical layers to be mapped, to 

subsequently investigate feedback effects that could be expected in either deep or 

superficial layers of V1. 

Furthermore, research has investigated the influence of task dependent 

feedback on specific sub-regions of V1, conceptualising the role of predictive coding 

in this process (Petro et al., 2013). They did this by mapping the feedforward cortical 

representation of two non-overlapping facial feature locations (the eyes and mouth) 

in V1, presenting contrast-reversing checkerboards where these features would 

appear on face stimuli (Petro et al., 2013). Participants carried out facial expression 

and gender classification tasks, and a classifier was trained to decode expression or 
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gender in the two feature locations, as well as a rest-of-V1 region (Petro et al., 2013). 

Petro et al. (2013) investigated decoding within these V1 regions as a function of 

task, subsequently they found implicit task effects, which may be a result of 

prediction error responses; for example, expression changes occurring when 

participants are asked to judge gender, may be surprising and lead to a prediction 

error. Furthermore, the observed task influences cannot be explained by feedforward 

visual feature processing, as the same images were presented in both tasks. Petro et 

al. (2013) also found V1 to process facial expression and gender in the two 

feedforward feature locations, as well as in the outside rest-of-V1 region, indicative 

of distributed feedback to V1. As this study used whole face images, the effects that 

occur when facial features are occluded cannot be investigated. If the cortical 

representation of the eyes and mouth were localised in the current research, the 

predictive coding account could be tested to further understand how the brain 

processes missing facial feature information, when emotion is perceived in an 

explicit or implicit context. This is because if stimuli with occluded eye or mouth 

information can be respectively decoded in their mapped cortical regions, it is 

suggestive of prediction or prediction error responses, whereby information is being 

transmitted to higher-level regions to account for the current sensory information 

devoid of overlapping feedforward input. Furthermore, akin to Petro et al. (2013), 

the regions of V1 can be tested as a function of task, as the same feedforward 

information is presented in the expression and gender recognition tasks.  

In addition to this, more research needs to be undertaken uniting the two 

routes to the study of visual recognition; visual and non-visual (simulation-based) 

routes to expression recognition. This can be achieved by testing whether 

representation in the sensorimotor cortices is linked to emotion recognition accuracy, 

or by comparing correlations in visual, somatosensory or premotor cortex with 

recognition performance in simple and more complex emotion tasks. Furthermore, 

the relative contribution of visual compared to somatosensory and premotor brain 

regions can be tested by measuring decoding in each of these regions. It would be 

interesting to see how the two routes are combined for recognition of basic and more 

complex expressions.  

Overall, however, a continuation of MVPA research is needed, as 

investigating representational overlap is more insightful than past univariate fMRI 

research. This is because it is more sensitive in recognising cognitive states, as well 
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as distinguishing how these cognitive states are represented or organised within the 

brain (Coutanche et al., 2016; Norman et al., 2006). MVPA allows an investigation 

beyond brain activation, at spatial information contained in fine-grained patterns of 

activity, in order to investigate specific representational content within an individual 

region (Haynes, 2015; Mur et al., 2009). This approach also allows a consideration 

into patterns of response for content based brain processing, which can be combined 

with patterns in computational models (Haynes, 2015). Unfortunately, data from the 

past univariate research lacks sensitivity, as it is spatially smoothed and activation is 

averaged across voxels in ROIs (Haynes & Rees, 2006; Mur et al., 2009; Norman et 

al., 2006). Consequently, this analysis restricts the understanding of cognitive states, 

while MVPA can potentially discriminate patterns of activation in separate 

conditions, even if at a univariate level, activation is the same among the conditions 

(Norman et al., 2006; Tong & Pratte, 2012). Todd, Nystrom and Cohen (2013) 

highlight that reaction time could be a potential factor confounding MVPA, but a 

follow-up comment and controversies paper by Woolgar, Golland and Bode (2014), 

propose that the value and sensitivity of MVPA outweighs the reduced specificity of 

these analyses, that discard the direction of neural effects. They further state that 

whilst alternative univariate analyses specify the direction of underlying neural 

effects, these analyses are also susceptible to confounds (Woolgar, Golland & Bode, 

2014).  It is also important to further use a combination of fMRI and EEG brain 

imaging techniques, as this provides a comprehensive picture at both a high spatial 

and a high temporal brain resolution (Fusar-Poli et al., 2009).  

5.7 General Conclusion  

In conclusion, this thesis demonstrates several high-level influences on facial 

expression perception that can be decoded in the brain: contextual information 

arising from occluded faces, task goals and embodiment. Many effective strategies 

are seemingly adopted to aid the visual recognition of emotion, including top-down 

contextual mechanisms to the visual system and sensorimotor simulations in sensory 

and motor regions of the brain. This follows on the two main strands outlined in 

Chapter 1, as it is evident that both visual and non-visual (simulation-based) routes 

are involved in expression recognition. As such, results are in keeping with models 

such as predictive coding (and other approaches such as recurrent feedback models 

of object completion, Bayesian and coherent infomax accounts of processing and 

Heeger (2017)’s hierarchical neural network model) emphasising the use of top-
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down information to aid current visual processing, as well as embodied theories of 

emotion recognition, including the unmediated resonance model and the role of the 

premotor cortices. It appears that the two routes of visual information can be 

combined to work together but there is no single strategy employed in expression 

recognition, showing the complexity of processing emotions. It may be that the 

visual route is more important until a task is harder and embodied simulation is 

needed. Overall the results of the present experiments extend understanding and 

knowledge of how the brain visually recognises emotion, and enables further 

research directions in this field. 
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Appendix A. Stimulus Sheets 

Chapter 2 and Chapter 3 (Study 1): 
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Chapter 3 (Study 2): 
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Chapter 4: 
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Appendix B. Univariate Whole Brain Analysis (WBA) 

Chapter 2:  

 Firstly a univariate analysis was run to contrast between explicit and implicit 

expression recognition. This analysis was run to study the involvement of task, 

providing a complement to the MVPA results and hypothesis (H3) investigating the 

decoding effects in task context for emotion processing. Here, explicit expression 

recognition refers to when a participant is performing an emotion perception task, 

whereas implicit expression recognition refers to when a participant is performing a 

gender perception task. An explicit vs implicit contrast reveals the following 

activated brain regions in recognition: rIFG, rIOG, SFG, anterior cingulate, 

precuneus, lMFG, lIPL, lS2. The rIFG is the only region that has stronger activation 

in the explicit case, all other regions are more active during the implicit case, see 

Figure B-1. This is potentially an interesting finding for the involvement of implicit 

perception in expression recognition, but it is important to note that these results 

could be due to the explicit task being more difficult than the implicit task (see 

behavioural results in Table 2.2).  

A further univariate analysis was run to contrast between brain regions 

activated for WF against the ME and MM partial face conditions across both tasks. 

This analysis was carried out to investigate the differences in brain activation 

between viewing a whole face, devoid of occlusion, to viewing a face with an 

important facial feature for recognition occluded, such as the eyes or mouth. The 

contrast is related to the central premise of this study, investigating how the brain 

deals with occlusion in expression recognition. This contrast reveals the following 

peak activated brain regions for WF against ME and MM: bilateral FG, SPOC, 

middle occipital gyrus, superior parietal lobule (SPL), left insula, lIFG, lpSTS, left 

post central sulcus and the rIOG. Most regions were higher for the ME and MM 

conditions, with the left precuneus being the only region higher for WF. This 

analysis shows there to be stronger activation in the brain to missing feature 

conditions, see Figure B-2. 
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Figure B-1. Surface maps showing the regions activated for explicit vs implicit. Red 
clusters: more active during the implicit task; Blue clusters: more active for explicit; 
from left to right hemisphere.  
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Figure B-2. Surface maps showing the regions activated for WF vs ME/MM. Red 
clusters: more activation for WF condition; Blue clusters: more active for ME/MM 
conditions; from left to right hemisphere. 
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Appendix C. Other Visual Regions  

Chapter 2:  

Basic decoding. 

One-tailed one-sample t-tests were also carried out for decoding expression 

in V2, V3 and 1000 voxels in V1; akin to V1, these regions showed higher 

significance in all PF conditions for implicit decoding. However, in the explicit 

expression condition, where V1 showed significance in the WF, ME and MO 

conditions; V2 only showed significance in the WF and MO condition, and V3 

showed no significance for these conditions but significance in the MM condition. 

Nonetheless for 1000 voxels in V1 we get the same results as 100 voxels in V1, with 

significance in the WF, ME and MO explicit decoding conditions. A repeated 

measures ANOVA showed a highly significant main effect of PF condition on 

decoding accuracy (p < .001), as well as main effect of task (p < .001) and a 

significant interaction (p < .001) in each of these regions. These results are the same, 

albeit more significant, than the results from V1 100 voxels.    

For decoding of gender, one-sample t-test results between the visual regions 

differ. In V2 and for 1000 voxels in V1, implicit decoding in the MM condition was 

significant; there was also additional significance for 1000 voxels in V1 for the 

implicit WF condition. For V3, there was significant implicit decoding in the EO, 

but unlike all other regions there was significance in explicit decoding, namely the 

MO condition. A repeated measures ANOVA showed results to differ in each of the 

visual regions tested. Similar to V1 (100 voxels) (Appendix G), no main effect of PF 

condition was found for V2 and 1000 voxels in V1, however, unlike V1, there was 

no main effect of task on decoding accuracy in these regions. For V3, there was a 

main effect of PF condition and task on decoding accuracy, as well as a significant 

interaction (p = .049).   

Cross classification. 

 One-sample t-tests were also carried out for decoding expression in 1000 

voxels in V1; akin to V1 and EVC, there was significance in implicit conditions (for 

EO vs ME and the MO vs MM cross classification pairs). For explicit decoding there 

was additional significance in the EO vs ME pair. A repeated measures ANOVA was 

also conducted on 1000 voxels in V1, similar to 100 voxels in V1 and 1000 voxels in 

EVC, this showed a significant main effect of task and cross-classification 

comparison on decoding accuracy, as well as a significant interaction.   
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Appendix D: Statistics (ANOVA and t-test results) 

 

Chapter 2: 

 

Table D1.  

Simple effects ANOVA for the emotion accuracy behavioural results; significance 

shows main effect of emotion (Chapter 2). 

PF  Result, significance shows main effect of 

emotion  

WF  F(2,22) = 22.719, p < .001, p
2 = .674 

EO  F(1.376, 15.134) = 9.869, p = .004, p
2 = 

.473 (greenhouse-geisser corrected) 

ME  F(1.289, 14.178) = 23.194, p < .001, p
2 = 

.678 (greenhouse-geisser corrected) 

MO  F(1.185, 13.038) = 31.590, p < .001, p
2 = 

.742 (greenhouse-geisser corrected) 

MM  F(2, 22) = 3.737, p = .040, p
2 = .254 

 

Table D2.  

Simple-effects ANOVA for the emotion accuracy behavioural results; significance 

shows main effect of PF condition (Chapter 2). 

 

 

 

 
 
 
 
 
 
 
 

Emotion Result, significance shows main effect of PF 

Disgust F(4,44) = 13.635, p < .001, p
2 = .553 

Fear F(4,44) = 10.030, p < .001, p
2 = .477 

Happy F(1.851, 20.359) = 3.847, p = .041, p
2 = .259 (greenhouse-geisser corrected) 
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Table D3.  

Paired sample t-tests comparing the differences between the emotions for each PF 

condition (Chapter 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

PF Comparison t df p 

WF D vs F 3.618 11 .004 

D vs H -2.419 11 .034 

F vs H -7.864 11 >.001 
 

EO D vs F -2.104 11 .059 

D vs H -4.190 11 .002 

F vs H -3.011 11 .012 
 

ME D vs F 3.548 11 .005 

D vs H -3.622 11 .004 

F vs H -6.603 11 >.001 
 

MO D vs F 4.062 11 .002 

D vs H -4.581 11 .001 

F vs H -7.793 11 >.001 
 

MM D vs F .857 11 .410 

D vs H -1.735 11 .111 

F vs H -3.347 11 .007 
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Table D4.  

Paired sample t-tests comparing the differences between the PF conditions for each 

emotion (Chapter 2). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Emotion Comparison t df p 

 

 

 

 

Disgust 

WF_D - EO_D 4.612 11 0.001 

WF_D - ME_D 0.567 11 0.582 

WF_D - MO_D 2.188 11 0.051 

WF_D - MM_D 1.452 11 0.175 

EO_D - ME_D -7.924 11 <0.001 

EO_D - MO_D -4.802 11 0.001 

EO_D - MM_D -4.173 11 0.002 

ME_D - MO_D 1.326 11 0.212 

ME_D - MM_D 1.174 11 0.265 

MO_D - MM_D 0.136 11 0.895 
 

 

 

 

 

Fear 

WF_F - EO_F -2.369 11 0.037 

WF_F - ME_F 1.337 11 0.208 

WF_F - MO_F 3.080 11 0.010 

WF_F - MM_F -2.545 11 0.027 

EO_F - ME_F 3.938 11 0.002 

EO_F - MO_F 4.466 11 0.001 

EO_F - MM_F 0.527 11 0.609 

ME_F - MO_F 2.964 11 0.013 

ME_F - MM_F -2.973 11 0.013 

MO_F - MM_F -3.960 11 0.002 
 

Happy 

WF_H - EO_H 2.373 11 0.037 

WF_H - ME_H -0.093 11 0.928 

WF_H - MO_H 0.857 11 0.410 

WF_H - MM_H 1.765 11 0.105 

EO_H - ME_H -2.933 11 0.014 

EO_H - MO_H -2.170 11 0.053 

EO_H - MM_H 0.089 11 0.931 

ME_H - MO_H 1.773 11 0.104 

ME_H - MM_H 2.356 11 0.038 

MO_H - MM_H 1.772 11 0.104 



Appendices 

256 
 

Table D5.  

Simple-effects ANOVA for the gender accuracy behavioural results; significance 

shows main effect of gender (Chapter 2). 

 

 

Table D6.  

Simple-effects ANOVA for the gender accuracy behavioural results; significance 

shows main effect of PF condition (Chapter 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PF Result, significance shows main effect of gender  

WF F(1,11) = .186, p = .674, p
2 =.017 

EO F(1,11) =19.809, p = .001, p
2 =.643 

ME F(1,11) = 1.941, p = .191, p
2 = .150 

MO F(1,11) = 1.443, p = .255, p
2 = .116 

MM F(1,11)=.560, p = .470, p
2 = .048 

Gender Result, significance shows main effect of PF 

Male F(4,44) = 4.183, p = .006, p
2 = .275 

Female F(1.650, 18.145) = 17.471, p < .001, p
2 = .614 (greenhouse geisser corrected) 
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Table D7.  

Paired sample t-tests comparing the differences between the PF conditions for male 

and female faces (Chapter 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gender Comparison t df p 

 

 

 

 

Male 

WF_M - EO_M 2.017 11 0.069 

WF_M - ME_M 2.419 11 0.034 

WF_M - MO_M 3.317 11 0.007 

WF_M - MM_M 1.449 11 0.175 

EO_M - ME_M 0.185 11 0.857 

EO_M - MO_M 2.017 11 0.069 

EO_M - MM_M -0.804 11 0.438 

ME_M - MO_M 1.685 11 0.120 

ME_M - MM_M -1.239 11 0.241 

MO_M - MM_M -2.862 11 0.015 
 

Female 

WF_F - EO_F 5.842 11 <0.001 

WF_F - ME_F 1.393 11 0.191 

WF_F - MO_F 1.170 11 0.267 

WF_F - MM_F 2.462 11 0.032 

EO_F - ME_F -5.167 11 <0.001 

EO_F - MO_F -3.694 11 0.004 

EO_F - MM_F -5.062 11 <0.001 

ME_F - MO_F 0.944 11 0.365 

ME_F - MM_F 1.198 11 0.256 

MO_F - MM_F 0.000 11 1.000 
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Table D8.  

One-tailed one sample t-test results for basic decoding in primary visual cortex (V1). 

 

 

Table D9.  

Paired sample t-tests to explore the effect of task for each PF condition (V1). 

 

 

 

 

 

 

 

 

 

 

 

 

Task PF Result 

Explicit expression decoding WF t(11)= 1.823, p = .048, d = 0.526 (medium effect-size) 

EO t(11)= 0.752, p = .234, d = 0.217 (small effect-size) 

ME t(11)= 1.847, p = .046, d = 0.533 (medium effect-size) 

MO t(11)= 6.111, p <.001, d = 1.764 (large effect-size) 

MM t(11)= 1.060, p = .156, d = 0.3059 (small effect-size) 

 

Implicit expression decoding WF t(11)= 8.726, p <.001, d = 2.519 (large effect-size) 

EO t(11)= 3.776, p = .002, d = 1.090 (large effect-size) 

ME t(11)= 9.680, p <.001, d = 2.794 (large effect-size) 

MO t(11)= 3.918, p = .001, d = 1.131 (large effect-size) 

MM t(11)= 7.215, p <.001, d = 2.083 (large effect-size) 

 t df p 

WF Explicit - WF Implicit -3.306 11 .007 

EO Explicit - EO Implicit -2.905 11 .014 

ME Explicit - ME Implicit -6.130 11 <.001 

MO Explicit - MO Implicit -1.717 11 .114 

MM Explicit - MM Implicit -5.377 11 <.001 
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Table D10.  

One-tailed one sample t-test results for basic decoding in early visual cortex (EVC). 

Task PF Result 

Explicit expression decoding WF t(11)= 4.154, p <.001, d = 1.199  (large effect-size) 

EO t(11)= 0.987, p =.172, d = 0.285 (small effect-size) 

ME t(11)= 1.787, p =.051, d = 0.516 (medium effect-size) 

MO t(11)= 6.351, p <.001, d = 1.833 (large effect-size) 

MM t(11)= 2.449, p =.016, d = 0.707 (medium effect-size) 

 

Implicit expression decoding WF t(11)= 12.964, p <.001, d = 3.742 (large effect-size) 

EO t(11)= 8.605, p <.001, d = 2.484 (large effect-size) 

ME t(11)= 17.908, p <.001, d = 5.169 (large effect-size) 

MO t(11)= 11.524, p <.001, d = 3.327 (large effect-size) 

MM t(11)= 15.236, p <.001, d = 4.398 (large effect-size) 

 

Table D11. 

Paired sample t-tests to explore the effect of task for each PF condition (EVC). 

 t df p 

WF Explicit - WF Implicit -11.827 11 <.001 

EO Explicit - EO Implicit -5.278 11 <.001 

ME Explicit - ME Implicit -11.222 11 <.001 

MO Explicit - MO Implicit -5.734 11 <.001 

MM Explicit - MM Implicit -8.493 11 <.001 

 

Table D12.  

One-tailed one sample t-test results for cross-classification analyses in primary 

visual cortex (V1). 

Task XC Result 

Explicit expression decoding EO - ME t(11)= 0.322, p =.377, d = 0.093  

MO - MM t(11)= 0.047, p =.482, d = 0.014 

EO - MO t(11)= 2.107, p =.029, d = 0.608 (medium effect-size) 

   

Implicit expression decoding EO - ME t(11)= 5.033, p <.001, d =1.453 (large effect-size) 

MO - MM t(11)= 6.031, p <.001, d = 1.741 (large effect-size) 

EO - MO t(11)= -3.226, p =.996, d = -0.931  
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Table D13.  

Paired sample t-tests to explore the effect of task for each condition pair (V1). 

 t df p 

EO-ME Explicit – EO-ME Implicit -4.531 11 .001 

MO-MM Explicit – MO-MM Implicit -3.749 11 .003 

EO-MO Explicit – EO-MO Implicit 3.419 11 .006 

 

Table D14.  

One-tailed one sample t-test results for cross-classification analyses in early visual 

cortex (EVC). 

Task XC Result 

Explicit expression decoding EO - ME t(11)= 1.346, p =.103, d = 0.389 (small effect-size) 

MO - MM t(11)= 2.964, p =.006, d = 0.856 (large effect-size) 

EO - MO t(11)= 5.065, p <.001, d = 1.462 (large effect-size) 

   

Implicit expression decoding EO - ME t(11)= 12.718, p <.001, d = 3.671 (large effect-size) 

MO - MM t(11)= 4.918, p <.001, d = 1.420 (large effect-size) 

EO - MO t(11)= -5.145, p =.999, d = -1.485  

 
Table D15.  

Paired sample t-tests to explore the effect of task for each condition pair (EVC). 

 t df p 

EO-ME Explicit – EO-ME Implicit -13.452 11 <.001 

MO-MM Explicit – MO-MM Implicit -1.762 11 .106 

EO-MO Explicit – EO-MO Implicit 6.598 11 <.001 
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Table D16.  

One-tailed one sample t-test results for basic decoding in the fusiform gyrus (FG). 

Task PF Result 

Explicit expression decoding WF t(59)= 3.802, p <.001, d = 0.491 (small effect-size) 

EO t(59)= 2.279, p =.013, d = 0.294 (small effect-size) 

ME t(59)= 2.407, p =.001, d = 0.311 (small effect-size) 

MO t(59)= 6.253, p <.001, d = 0.807 (large effect-size) 

MM t(59)= 0.745, p =.230, d = 0.096  

 

Implicit expression decoding WF t(59)= 2.584, p =.006, d = 0.334 (small effect-size) 

EO t(59)= 1.161, p =.125, d = 0.150  

ME t(59)= 7.080, p <.001, d = 0.914 (large effect-size) 

MO t(59)= 3.125, p =.001,  d = 0.403 (small effect-size) 

MM t(59)= 4.225, p <.001, d = 0.545 (medium effect-size) 

 

Table D17.  

Paired sample t-tests to explore the effect of task for each PF condition (FG). 

 t df p 

WF Explicit - WF Implicit .080 59 .937 

EO Explicit - EO Implicit .817 59 .417 

ME Explicit - ME Implicit -3.350 59 .001 

MO Explicit - MO Implicit 1.336 59 .187 

MM Explicit - MM Implicit -3.185 59 .002 
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Table D18.  

One-tailed one sample t-test results for basic decoding in the superior temporal 

sulcus (STS). 

Task PF Result 

Explicit expression decoding WF t(59)= 4.039, p <.001, d = 0.521 (medium effect-size) 

EO t(59)= 3.676, p <.001, d = 0.475 (small effect-size) 

ME t(59)= 5.598, p <.001, d = 0.723 (medium effect-size) 

MO t(59)= 5.792, p <.001, d = 0.748 (medium effect-size) 

MM t(59)= 1.652, p =.052, d = 0.213 (small effect-size) 

 

Implicit expression decoding WF t(59)= -0.470, p =.680, d = -0.061 

EO t(59)= -0.619, p =.731, d = -0.080 

ME t(59)= 0.061, p =.476, d =0.008 

MO t(59)= 2.872, p =.003, d = 0.371 (small effect-size) 

MM t(59)= 0.700, p =.244, d = 0.090 

 
Table D19.  

Paired sample t-tests to explore the effect of task for each PF condition (STS). 

 t df p 

WF Explicit - WF Implicit 3.536 59 .001 

EO Explicit - EO Implicit 3.253 59 .002 

ME Explicit - ME Implicit 4.402 59 <.001 

MO Explicit - MO Implicit 2.847 59 .006 

MM Explicit - MM Implicit .711 59 .480 
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Table D20.  

One-tailed one sample t-test results for basic decoding in the inferior occipital gyrus 

(IOG). 

Task PF Result 

Explicit expression decoding WF t(59)= 0.740, p =.231, d = 0.096  

EO t(59)= 0.198, p =.422, d = 0.026  

ME t(59)= -1.34, p =.907, d = -0.173 

MO t(59)= 2.905, p =.003, d = 0.375 (small effect-size) 

MM t(59)= 2.106, p =.020, d = 0.272 (small effect-size) 

 

Implicit expression decoding WF t(59)= 4.777, p <.001, d = 0.617 (medium effect-size) 

EO t(59)= 2.950, p =.002, d = 0.381 (small effect-size) 

ME t(59)= 8.582, p <.001, d = 1.108 (large effect-size) 

MO t(59)= 2.530, p =.007, d = 0.327 (small effect-size) 

MM t(59)= 7.448, p <.001, d = 0.962 (large effect-size) 

 
Table D21.  

Paired sample t-tests to explore the effect of task for each PF condition (IOG). 

 t df p 

WF Explicit - WF Implicit -3.040 59 .004 

EO Explicit - EO Implicit -2.112 59 .039 

ME Explicit - ME Implicit -8.474 59 <.001 

MO Explicit - MO Implicit .185 59 .854 

MM Explicit - MM Implicit -4.590 59 <.001 
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Table D22.  

One-tailed one sample t-test results for basic decoding in the amygdala (AMY).  

Task PF Result 

Explicit expression decoding WF t(59)= 0.100, p =.460, d = 0.013 

EO t(59)= -0.804, p =.788, d = -0.104 

ME t(59)= 2.356, p =.011, d = 0.304 (small effect-size) 

MO t(59)= 0.269, p =.394, d = 0.035  

MM t(59)= -1.159, p =.874, d = -0.150 

  

Implicit expression decoding WF t(59)= -1.025, p =.845, d = -0.132 

EO t(59)= 3.808, p <.001, d = 0.492 (small effect-size) 

ME t(59)= -1.136, p =.870, d = -0.147  

MO t(59)= 1.474, p =.073, d = 0.190 

MM t(59)= -2.449, p =.991, d = -0.316 

 
Table D23.  

Paired sample t-tests to explore the effect of task for each PF condition (AMY). 

 t df p 

WF Explicit - WF Implicit .838 59 .406 

EO Explicit - EO Implicit -2.886 59 .005 

ME Explicit - ME Implicit 2.383 59 .020 

MO Explicit - MO Implicit -1.035 59 .305 

MM Explicit - MM Implicit 1.055 59 .296 
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Table D24.  

One-tailed one sample t-test results for basic decoding in the insula (INS).  

Task PF Result 

Explicit expression decoding WF t(59)= 0.761, p =.225, d = 0.098 

EO t(59)= -1.041, p =.849, d = -0.134 

ME t(59)= 3.163, p =.001, d = 0.408 (small effect-size) 

MO t(59)= 3.706, p <.001, d = 0.478 (small effect-size) 

MM t(59)= -2.229, p =.985, d = -0.288 

  

Implicit expression decoding WF t(59)= -0.442, p =.670, d = -0.057 

EO t(59)= -0.497, p =.689, d = -0.064 

ME t(59)= -0.954, p =.828, d = -0.123 

MO t(59)= -1.570, p =.939, d = -0.203  

MM t(59)= 0.091, p =.464, d = 0.012  

 
Table D25.  

Paired sample t-tests to explore the effect of task for each PF condition (INS). 

 t df p 

WF Explicit - WF Implicit .826 59 .412 

EO Explicit - EO Implicit -.451 59 .653 

ME Explicit - ME Implicit 2.583 59 .012 

MO Explicit - MO Implicit 3.744 59 <.001 

MM Explicit - MM Implicit -2.085 59 .041 
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Table D26.  

One-tailed one sample t-test results for cross-classification analyses in the fusiform 

gyrus (FG). 

Task XC Result 

Explicit expression decoding EO - ME t(59)= 2.435, p =.009, d = 0.314 (small effect-size) 

MO - MM t(59)= 0.563, p =.288, d = 0.073  

EO - MO t(59)= 1.378, p =.087, d = 0.178  

 

Implicit expression decoding EO - ME t(59)=2.731, p =.004, d = 0.353 (small effect-size) 

MO - MM t(59)= 2.456, p =.009, d = 0.317 (small effect-size) 

EO - MO t(59)= -0.003, p =.501, d = -0.0004  

 

Table D27.  

One-tailed one sample t-test results for cross-classification analyses in the superior 

temporal sulcus (STS). 

Task XC Result 

Explicit expression decoding EO - ME t(59)= 3.050, p =.002, d = 0.394 (small effect-size) 

MO - MM t(59)= 1.256, p =.107, d = 0.162 

EO - MO t(59)= 4.837, p <.001, d = 0.625 (medium effect-size) 

 

Implicit expression decoding EO - ME t(59)= 2.234, p =.015, d = 0.288 (small effect-size) 

MO - MM t(59)= 0.423, p =.337, d = 0.055 

EO - MO t(59)= 2.210, p =.016, d = 0.285 (small effect-size) 

 

Table D28.  

One-tailed one sample t-test results for cross-classification analyses in the inferior 

occipital gyrus (IOG). 

Task XC Result 

Explicit expression decoding EO - ME t(59)= -2.998, p =.998, d = -0.387  

MO - MM t(59)= 0.773, p =.221, d = 0.100 

EO - MO t(59)= 2.432, p =.009, d = 0.314 (small effect-size) 

 

Implicit expression decoding EO - ME t(59)= 5.789, p <.001, d = 0.747 (medium effect-size) 

MO - MM t(59)= 5.650, p <.001, d = 0.729 (medium effect-size) 

EO - MO t(59)= -0.149, p =.559, d = -0.019  
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Table D29.  

Paired sample t-tests to explore the effect of task for each condition pair (IOG).  

 t df p 

EO-ME Explicit – EO-ME Implicit -6.598 59 <.001 

MO-MM Explicit – MO-MM Implicit -3.666 59 .001 

EO-MO Explicit – EO-MO Implicit 1.495 59 .140 

 

Table D30.  

One-tailed one sample t-test results for cross-classification analyses in the amygdala 

(AMY).  

Task XC Result 

Explicit expression decoding EO - ME t(59)= 0.633, p =.265, d = 0.0817 

MO - MM t(59)= -0.297, p =.616, d = -0.038 

EO - MO t(59)= 1.842, p =.035, d = 0.238 (small effect-size) 

  

Implicit expression decoding EO - ME t(59)= 0.210, p =.417, d = 0.027 

MO - MM t(59)= 1.029, p =.154, d = 0.133 

EO - MO t(59)= -1.391, p =.915, d = -0.180 

 

Table D31.  

One-tailed one sample t-test results for cross-classification analyses in the insula 

(INS). 

Task XC Result 

Explicit expression decoding EO - ME t(59)= 0.497, p =.311, d = 0.064 

MO - MM t(59)= 1.539, p =.065, d = 0.199 

EO - MO t(59)= 1.952, p =.028, d = 0.252 (small effect-size) 

 

Implicit expression decoding EO - ME t(59)= -1.407, p =.918, d = -0.182  

MO - MM t(59)= 0.935, p =.177, d = 0.121 

EO - MO t(59)= 0.914, p =.182, d = 0.118 
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Table D32.  

Univariate analysis in V1: Paired sample t-tests to explore the effect of task for each 

PF condition. 

PF Result 

WF t(11) = .861, p = .408  

EO t(11) = 1.184, p = .261  

ME t(11) = 1.947, p = .077 

MO t(11) = .313, p = .760  

MM t(11) = 2.972, p = .013 
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Chapter 3: 

 

Table D33.  

Simple-effects ANOVA for the emotion accuracy behavioural results (Chapter 3, 

Study 1); significance shows main effect of emotion. 

PF Result, significance shows main effect of emotion  

WF F(2, 26) = 15.801, p < .001, p
2 = .549 

EO F(2, 26) = 12.126, p < .001, p
2 = .483 

ME F(1.234, 16.045) = 15.857, p = .001, p
2 = .550 (greenhouse-geisser corrected) 

MO F(2, 26) = 29.897, p < .001, p
2 = .697 

MM F(2, 26) = 3.398, p = .049, p
2 = .207 

 

Table D34.  

Simple-effects ANOVA for the emotion accuracy behavioural results (Chapter 3. 

Study 1); significance shows main effect of PF condition. 

Emotion Result, significance shows main effect of PF 

Disgust F(1.961, 25.490) = 6.541, p = .005, p
2 = .335 (greenhouse-geisser corrected) 

Fear F(2.024, 26.306) = 22.122, p <.001, p
2 = .630 (greenhouse-geisser corrected) 

Happy F(4, 52) = 6.230, p <.001, p
2 = .324 
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Table D35.  

Paired sample t-tests comparing the differences between the emotions for each PF 

condition (Chapter 3, Study 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PF Comparison t df p 

WF D vs F 2.075 13 .058 

D vs H -3.718 13 .003 

F vs H -5.980 13 <.001 

EO D vs F -3.211 13 .007 

D vs H -4.319 13 .001 

F vs H -1.619 13 .129 

ME D vs F 2.577 13 .023 

D vs H -2.727 13 .017 

F vs H -7.208 13 <.001 

MO D vs F 3.545 13 .004 

D vs H -4.607 13 <.001 

F vs H -7.926 13 <.001 

MM D vs F -.856 13 .407 

D vs H -2.233 13 .044 

F vs H -2.414 13 .031 
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Table D36.  

Paired sample t-tests comparing the differences between the PF conditions for each 

emotion (Chapter 3, Study 1). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Emotion Comparison t df p 

 

 

 

 

Disgust 

WF_D - EO_D 4.225 13 .001 

WF_D - ME_D 1.135 13 .277 

WF_D - MO_D 2.745 13 .017 

WF_D - MM_D 1.395 13 .186 

EO_D - ME_D -3.344 13 .005 

EO_D - MO_D -3.836 13 .002 

EO_D - MM_D -3.733 13 .003 

ME_D - MO_D 1.000 13 .336 

ME_D - MM_D .580 13 .572 

MO_D - MM_D .132 13 .897 

 

 

 

 

Fear 

WF_F - EO_F -2.270 13 .041 

WF_F - ME_F 4.258 13 .001 

WF_F - MO_F 4.988 13 <.001 

WF_F - MM_F -2.349 13 .035 

EO_F - ME_F 4.639 13 <.001 

EO_F - MO_F 5.986 13 <.001 

EO_F - MM_F -.105 13 .918 

ME_F - MO_F 2.963 13 .011 

ME_F - MM_F -4.556 13 .001 

MO_F - MM_F -5.453 13 <.001 

Happy 

WF_H - EO_H 4.020 13 .001 

WF_H - ME_H 1.108 13 .288 

WF_H - MO_H -.586 13 .568 

WF_H - MM_H 2.914 13 .012 

EO_H - ME_H -2.539 13 .025 

EO_H - MO_H -3.294 13 .006 

EO_H - MM_H -.790 13 .444 

ME_H - MO_H -1.125 13 .281 

ME_H - MM_H 2.232 13 .044 

MO_H - MM_H 2.754 13 .016 
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Table D37. 

 Simple-effects ANOVA for the gender accuracy behavioural results (Chapter 3, 

Study 1); significance shows main effect of gender. 

PF Result, significance shows main effect of gender  

WF F(1, 13) = .650, p = .435, p
2 = .048 

EO F(1, 13) = 18.539, p = .001, p
2 = .588 

ME F(1, 13) = 6.707, p = .022 , p
2 = .340 

MO F(1, 13) = .068, p = .799, p
2 = .005 

MM F(1, 13) = .650, p = .435, p
2 = .048 

 

Table D38.  

Simple-effects ANOVA for the gender accuracy behavioural results (Chapter 3, 

Study 1); significance shows main effect of PF condition. 

Gender Result, significance shows main effect of PF 

Male F(1.926, 25.036) = 24.182, p < .001, p
2 = .650 (greenhouse-geisser corrected)  

Female F(4, 52) = 3.069, p = .024, p
2 = .191  
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Table D39.  

Paired sample t-tests comparing the differences between the PF conditions for male 

and female faces (Chapter 3, Study 1). 

Gender Comparison t df p 

 

 

 

 

Male 

WF_M - EO_M 2.687 13 .019 

WF_M - ME_M 4.048 13 .001 

WF_M - MO_M 2.806 13 .015 

WF_M - MM_M 2.820 13 .014 

EO_M - ME_M -.283 13 .782 

EO_M - MO_M .091 13 .928 

EO_M - MM_M -.520 13 .612 

ME_M - MO_M .563 13 .583 

ME_M - MM_M -.120 13 .907 

MO_M - MM_M -.583 13 .583 

Female 

WF_F - EO_F 5.593 13 <.001 

WF_F - ME_F .000 13 1.000 

WF_F - MO_F 2.290 13 .039 

WF_F - MM_F 1.461 13 .168 

EO_F - ME_F -6.183 13 <.001 

EO_F - MO_F -5.096 13 <.001 

EO_F - MM_F -5.751 13 <.001 

ME_F - MO_F 2.309 13 .038 

ME_F - MM_F 1.091 13 .295 

MO_F - MM_F -1.446 13 .172 
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Table D40.  

Simple-effects ANOVA for the rN170 (Chapter 3, Study 1); significance shows main 

effect of emotion. 

PF Result, significance shows main effect of emotion  

WF F(2, 26) = 4.278, p = .025, p
2 = .248  

EO F(2, 26) = 4.219, p = .026, p
2 = .245  

ME F(2, 26) = .760, p = .478, p
2 = .055  

MO F(2, 26) = 6.844, p = .004, p
2 = .345  

MM F(2, 26) = .793, p = .463, p
2 = .058  

 

Table D41.  

Simple-effects ANOVA for the rN170 (Chapter 3, Study 1); significance shows main 

effect of PF condition.  

Emotion Result, significance shows main effect of PF 

Disgust F(4, 52) = 4.767, p = .002, p
2 =.268  

Fear F(4, 52) = 11.950, p < .001, p
2 = .479  

Happy F(4, 52) = 21.022, p < .001, p
2 = .618  

 

Table D42.  

Paired sample t-tests comparing the differences between the emotions for the 

significant PF conditions in the rN170 (Chapter 3, Study 1). 

 

 

 

 

 

 

 

 

 

 

 

 

PF Comparison t df p 

WF D vs F -1.561 13 .143 

D vs H -2.890 13 .013 

F vs H -1.366 13 .195 

EO D vs F .355 13 .728 

D vs H 2.491 13 .027 

F vs H 2.053 13 .061 

MO D vs F -1.071 13 .303 

D vs H 2.624 13 .021 

F vs H 3.256 13 .006 



Appendices 

275 
 

Table D43.  

Paired sample t-tests comparing the differences between the PF conditions for each 

emotion in the rN170 (Chapter 3, Study 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Emotion Comparison t df p 

 

 

 

 

Disgust 

WF_D - EO_D 1.937 13 .075 

WF_D - ME_D 3.353 13 .005 

WF_D - MO_D 2.701 13 .018 

WF_D - MM_D 1.625 13 .128 

EO_D - ME_D 1.348 13 .201 

EO_D - MO_D .600 13 .559 

EO_D - MM_D -1.022 13 .325 

ME_D - MO_D -1.157 13 .268 

ME_D - MM_D -2.719 13 .018 

MO_D - MM_D -2.466 13 .028 

 

 

 

 

Fear 

WF_F - EO_F 3.416 13 .005 

WF_F - ME_F 8.513 13 <.001 

WF_F - MO_F 4.000 13 .002 

WF_F - MM_F 2.416 13 .031 

EO_F - ME_F 1.772 13 .100 

EO_F - MO_F -.212 13 .835 

EO_F - MM_F -2.054 13 .061 

ME_F - MO_F -2.670 13 .019 

ME_F - MM_F -4.415 13 .001 

MO_F - MM_F -2.038 13 .062 

Happy 

WF_H - EO_H 4.932 13 <.001 

WF_H - ME_H 7.045 13 <.001 

WF_H - MO_H 6.473 13 <.001 

WF_H - MM_H 4.326 13 .001 

EO_H - ME_H .169 13 .868 

EO_H - MO_H .588 13 .567 

EO_H - MM_H -3.259 13 .006 

ME_H - MO_H .486 13 .635 

ME_H - MM_H -3.995 13 .002 

MO_H - MM_H -4.633 13 <.001 
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Table D44.  

Simple-effects ANOVA for the P300 gender task (Chapter 3, Study 1); significance 

shows main effect of emotion. 

PF Result, significance shows main effect of emotion  

WF F(2, 26) = 5.503, p = .010, p
2 = .297  

EO F(2, 26) = .234, p = .793, p
2 = .018  

ME F(2, 26) = 1.161, p = .329, p
2 = .082  

MO F(2, 26) = 2.104, p = .142, p
2 = .139  

MM F(2, 26) = 2.356, p = .115, p
2 = .153  

 

Table D45.  

Simple-effects ANOVA for the P300 gender task (Chapter 3, Study 1); significance 

shows main effect of PF condition. 

Emotion Result, significance shows main effect of PF 

Disgust F(4, 52) = 2.708, p = .040, p
2 = .172  

Fear F(4, 52) = 2.712, p = .040, p
2 = .173  

Happy F(4, 52) = 1.824, p = .138, p
2 = .123 

 

Table D46.  

Paired sample t-tests comparing the differences between the emotions for the 

significant WF condition in the P300 (Chapter 3, Study 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

PF Comparison t df p 

WF D vs F -2.548 13 .024 

D vs H .283 13 .781 

F vs H 2.998 13 .010 
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Table D47.  

Paired sample t-tests comparing the differences between the PF conditions for the 

significant emotions in the P300 (Chapter 3, Study 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Emotion Comparison t df p 

 

 

 

 

Disgust 

WF_D - EO_D 1.607 13 .132 

WF_D - ME_D .391 13 .702 

WF_D - MO_D -1.080 13 .300 

WF_D - MM_D 2.650 13 .020 

EO_D - ME_D -.493 13 .630 

EO_D - MO_D -2.715 13 .018 

EO_D - MM_D 1.260 13 .230 

ME_D - MO_D -1.737 13 .106 

ME_D - MM_D 1.222 13 .244 

MO_D - MM_D 3.372 13 .005 

 

 

 

 

Fear 

WF_F - EO_F 3.786 13 .002 

WF_F - ME_F 1.230 13 .241 

WF_F - MO_F 1.442 13 .173 

WF_F - MM_F 3.518 13 .004 

EO_F - ME_F -1.608 13 .132 

EO_F - MO_F -1.388 13 .189 

EO_F - MM_F -.746 13 .469 

ME_F - MO_F .158 13 .877 

ME_F - MM_F .938 13 .365 

MO_F - MM_F .825 13 .424 
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Table D48.  

Simple-effects ANOVA for the emotion accuracy behavioural results (Chapter 3, 

Study 2); significance shows main effect of gender. 

PF Result, significance shows main effect of emotion  

WF F(1, 19) = 2.416, p = .137, p
2 = .113  

EO F(1, 19) = .060, p = .809, p
2 = .003  

ME F(1, 19) = .083, p = .777, p
2 = .004  

MO F(1, 19) = .315, p = .581, p
2 = .016  

MM F(1, 19) = 8.855, p = .008 , p
2 = .318  

 

Table D49.  

Simple-effects ANOVA for the emotion accuracy behavioural results (Chapter 3, 

Study 2); significance shows main effect of PF condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Emotion Result, significance shows main effect of PF 

Fear F(2.600, 49.393) = 12.003, p < .001 , p
2 = .387 (greenhouse-geisser corrected)  

Happy F(4, 76) = 10.611, p < .001, p
2 = .358  
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Table D50.  

Paired sample t-tests comparing the differences between the PF conditions for the 

significant emotions (Chapter 3, Study 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Emotion Comparison t df p 

 

 

 

 

Fear 

WF_F - EO_F 3.359 19 .003 

WF_F - ME_F -2.128 19 .047 

WF_F - MO_F -2.703 19 .014 

WF_F - MM_F -.463 19 .649 

EO_F - ME_F -4.712 19 <.001 

EO_F - MO_F -5.409 19 <.001 

EO_F - MM_F -3.922 19 .001 

ME_F - MO_F .089 19 .930 

ME_F - MM_F 2.305 19 .033 

MO_F - MM_F 1.608 19 .124 

Happy 

WF_H - EO_H 3.737 19 .001 

WF_H - ME_H -.167 19 .869 

WF_H - MO_H .137 19 .892 

WF_H - MM_H 4.607 19 <.001 

EO_H - ME_H -3.344 19 .003 

EO_H - MO_H -3.520 19 .002 

EO_H - MM_H -.542 19 .594 

ME_H - MO_H .231 19 .820 

ME_H - MM_H 4.222 19 <.001 

MO_H - MM_H 4.614 19 <.001 
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Table D51.  

Simple-effects ANOVA for the gender accuracy behavioural results (Chapter 3, 

Study 2); significance shows main effect of gender. 

PF Result, significance shows main effect of gender  

WF F(1, 19) = .140 , p = .712, p
2 = .007  

EO F(1, 19) = 19.919 , p <.001, p
2 = .512 

ME F(1, 19) = 1.638, p = .216, p
2 = .079 

MO F(1, 19) = 2.531, p = .128, p
2 = .118 

MM F(1, 19) = .205, p = .656, p
2 = .011 

 

Table D52.  

Simple-effects ANOVA for the gender accuracy behavioural results (Chapter 3, 

Study 2); significance shows main effect PF condition. 

Gender Result, significance shows main effect of PF 

Male F(4, 76) = .872, p = .485, p
2 = .044 

Female F(2.047, 38.893) = 17.034, p < .001, p
2 = .473 (greenhouse-geisser corrected) 

 

Table D53. 

 Paired sample t-tests for PF condition in female stimuli (Chapter 3, Study 2). 

Gender Comparison t df p 

Female 

WF_F - EO_F 4.916 19 <.001 

WF_F - ME_F -.170 19 .867 

WF_F - MO_F 1.914 19 .071 

WF_F - MM_F 1.921 19 .070 

EO_F - ME_F -5.708 19 <.001 

EO_F - MO_F .3.860 19 .001 

EO_F - MM_F -4.449 19 .001 

ME_F - MO_F 3.120 19 .006 

ME_F - MM_F 2.123 19 .047 

MO_F - MM_F -.622 19 .542 
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Table D54.  

Simple-effects ANOVA for the lN170 (Chapter 3, Study 2); significance shows main 

effect of emotion. 

PF Result, significance shows main effect of emotion  

WF F(1, 19) = 1.564, p = .226, p
2 = .076  

EO F(1, 19) = 2.771, p = .112, p
2 = .127  

ME F(1, 19) = 1.883, p = .186, p
2 = .090  

MO F(1, 19) = 1.157, p = .296, p
2 = .057  

MM F(1, 19) = 13.435, p = .002, p
2 = .414  

 

Table D55. 

 Simple-effects ANOVA for the lN170 (Chapter 3, Study 2); significance shows main 

effect of PF condition. 

Emotion Result, significance shows main effect of PF 

Fear F(2.502, 47.547) = 6.295, p = .002, p
2 = .249 (greenhouse-geisser corrected)  

Happy F(2.673, 50.780) = 2.807, p = .055, p
2 = .129 (greenhouse-geisser corrected)  
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Table D56.  

Paired sample t-tests comparing the differences between the PF conditions for each 

emotion in the lN170 (Chapter 3, Study 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Emotion Comparison t df p 

 

 

 

 

Fear 

WF_F - EO_F -.296 19 .770 

WF_F - ME_F .497 19 .625 

WF_F - MO_F 1.062 19 .302 

WF_F - MM_F -2.444 19 .024 

EO_F - ME_F 1.021 19 .320 

EO_F - MO_F 1.610 19 .124 

EO_F - MM_F -4.434 19 <.001 

ME_F - MO_F .543 19 .593 

ME_F - MM_F -3.961 19 .001 

MO_F - MM_F -4.486 19 <.001 

Happy 

WF_H - EO_H -.375 19 .712 

WF_H - ME_H 1.399 19 .178 

WF_H - MO_H 1.401 19 .177 

WF_H - MM_H -.981 19 .339 

EO_H - ME_H 1.909 19 .071 

EO_H - MO_H 1.917 19 .070 

EO_H - MM_H -1.201 19 .245 

ME_H - MO_H -.457 19 .653 

ME_H - MM_H -3.366 19 .003 

MO_H - MM_H -2.912 19 .009 
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Table D57.  

Simple-effects ANOVA for the P100 (Chapter 3, Study 2); significance shows main 

effect of emotion. 

PF Result, significance shows main effect of emotion  

WF F(1, 19) = 1.313, p = .266, p
2 = .065  

EO F(1, 19) = 4.367, p = .050, p
2 = .187  

ME F(1, 19) = 2.825, p = .109, p
2 = .129  

MO F(1, 19) = 4.532, p = .047, p
2 = .193  

MM F(1, 19) = 1.886, p = .186, p
2 = .090  

 

Table D58.  

Simple-effects ANOVA for the P100 (Chapter 3, Study 2); significance shows main 

effect of PF condition. 

Emotion Result, significance shows main effect of PF 

Fear F(2.539, 48.237) = 5.781, p = .003 , p
2 = .233 (greenhouse-geisser corrected)  

Happy F(2.765, 52.527) = 1.826, p = .158, p
2 = .088 (greenhouse-geisser corrected)  

 

Table D59.  

Paired sample t-tests comparing the differences between the PF conditions for fear 

in the P100 (Chapter 3, Study 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Emotion Comparison t df p 

 

 

 

 

Fear 

WF_F - EO_F .181 19 .858 

WF_F - ME_F -3.919 19 .001 

WF_F - MO_F -.583 19 .567 

WF_F - MM_F -1.787 19 .090 

EO_F - ME_F -3.499 19 .002 

EO_F - MO_F -.984 19 .338 

EO_F - MM_F -2.475 19 .023 

ME_F - MO_F 3.668 19 .002 

ME_F - MM_F 2.473 19 .023 

MO_F - MM_F -1.655 19 .114 
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Appendix E. Confusion Matrices 

 

Chapter 2:  

Figure E-1. Confusion matrices for V1 and EVC. a. Cross-classification confusion 
matrices between emotion for each cross-classification pair (EO and ME; MO and 
MM; EO and MO) in the emotion and gender task. b. Basic decoding confusion 
matrices between emotion for each PF condition in the emotion and gender task.  
 

b. 

a. 
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Appendix F. Full results from Task x ROI x Voxel Size Repeated Measures 

ANOVA 

 

Chapter 2:  

Basic decoding. 

A 2 (task) x 5 (ROI) x 5 (voxel size) x 5 (PF) repeated measures ANOVA 

was carried out. ROI and voxel size were included in the analysis for comparability 

to Wegrzyn et al. (2015). Wegrzyn et al. (2015) found no interaction of ROI by 

voxel size and subsequently averaged across the voxel sizes. This method will also 

be applied in this study if no interactions are found. The ANOVA showed no main 

effect of task, F(1, 11) = .121, p = .735 or PF condition, F(4, 44) = 2.313, p = .072, 

but a significant main effect of ROI, F(4, 44) = 6.171, p < .001, p
2 = .359 and voxel 

size on decoding accuracy, F(4, 44) = 3.542, p = .014, p
2 = .244. Further 

investigation into the ROI main effect shows the greatest decoding accuracy in the 

FG and the IOG, followed by the STS, and the lowest decoding accuracies in the 

AMY and INS. Pairwise comparisons reveal significant differences between the 

AMY and FG, AMY and IOG, as well as the INS and IOG. In respect to voxel size, 

there appears to be a trend between higher amounts of voxels and greater decoding 

(see Figure 2.27), however, there was no significance within pairwise comparisons. 

Furthermore this ANOVA showed significant interactions between task and ROI, 

F(4, 44) = 7.058, p < .001, p
2 = .391, as well as a three-way interaction between 

task, ROI and PF condition, F(16, 176) = 2.302, p = .004, p
2 = .173. However, there 

were no significant interactions with voxel size; further analyses will thus average 

across this variable akin to Wegrzyn et al. (2015). 
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Appendix G. Gender Decoding Results 

Chapter 2:  

Basic decoding.  

Explicit gender decoding refers to when a participant is performing the 

gender recognition task and the classifier is decoding gender in their brain, whereas 

implicit gender decoding refers to when a participant is asked to judge emotion but 

the classifier is again decoding gender in their brain.  

Primary visual cortex (V1). 

For decoding of gender, one sample t-tests showed implicit decoding only 

significantly above chance in the WF condition (p = .003), see Figure G-1. A 

repeated measures ANOVA did not show a main effect of PF condition on decoding 

accuracy, F(4, 44) = 1.844, p = .138, p
2 = .144, but a significant main effect of task, 

F(1, 11) = 6.692, p = .025, p
2 = .378 with decoding accuracy significantly higher in 

the implicit task (M = 52.1%) compared to the explicit task (M = 48.8%). There was 

no significant interaction, F(4, 44) = 1.017, p = .409, p
2 = .085.  

Figure G-1. Explicit and implicit gender decoding accuracy of the PF conditions. 
Results from one-sample t-tests included with stars representing significance above 
chance.  
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Early visual cortex. 

For decoding of gender, one sample t-tests show implicit decoding 

significantly above chance in the WF (p = .005), ME (p = .039) and MM condition 

(p = .023) of EVC, see Figure G-2. A repeated measures ANOVA showed no main 

effect of PF condition F(4, 44) = .517, p = .724, p
2 = .045 but an effect of task F(1, 

11) = 6.924, p = .023, p
2 = .386 on decoding accuracy, with higher decoding 

accuracy in the implicit task (53%) compared to the explicit task (50.8%). There was 

no significant interaction, F(4, 44) = 1.376, p = .258, p
2 = .111. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure G-2. Explicit and implicit gender decoding accuracy of the PF conditions for 
1000 voxels in EVC, significant results from one-sample t-tests represented with 
stars. 

 

Due to the low decoding accuracies in the gender task, only the expression 

decoding data was cross classified. 

 

 

 

/ 

/ 



Appendices 

288 
 

Appendix H. Computational Modelling 

Chapter 2:  

 Whilst the strong cross decoding results imply that they are not a result of 

low-level confounds in V1, further research using computational modelling was 

conducted within the laboratory (Maloret & Smith, 2017, Unpublished Raw Data). 

This aimed to investigate the extent to which expression recognition across the PF 

conditions relied on higher or lower level processes. A linear SVM was trained to 

learn the mapping between each image as a set of pixels and expression label, to test 

whether information within different pixels was able to discriminate emotions for 

each PF condition. One-sample t-tests show decoding in all PF conditions 

significantly above chance (p < .05). A repeated measures ANOVA was conducted 

to investigate PF condition on decoding accuracy, these basic decoding results 

demonstrate no significant main effect of PF condition (see Figure H-1). There were 

no significant differences between the PF conditions and WF condition in the 

standard model of V1, but significant differences between the PF conditions in the 

MVPA analysis (with better decoding in the ME and MM conditions than the WF 

condition).  

Figure H-1. Expression decoding accuracy from the computational pixel value 
model of the PF conditions for V1.  
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 Cross-classification results reveal decoding accuracy at chance level for each 

condition pair of PF conditions, see Figure H-2. Thus significance observed in the 

MVPA analysis support the idea that decoding performance in this study may be 

driven by top-down feedback processes in V1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure H-2. Expression decoding accuracy from the computational pixel value 
model of the condition pairs of PF conditions for V1. 
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Appendix I. Correlates with Empathy 

Chapter 3: 

 It is also important to consider interplay between expression recognition and 

individual differences, in particular ones level of empathy and ability to describe 

their own emotions. This is because high levels of empathy have been associated 

with an increase in ratings of emotional intensity (Allen-Walker & Beaton, 2015), as 

well as face detection, increased mimicry and ERP amplitudes among individuals 

(Balconi & Canavesio, 2016). It is thus suggested that greater levels of empathy will 

facilitate greater emotion recognition (Balconi & Canavesio, 2016). 

One particular study found individuals with high empathy to recognise a 

change in facial expression, from a series of 100 images morphing into a new 

emotion, earlier than those with low empathy; thus they were better able to detect 

subtle expressions (Kosonogov, Titova, & Vorobyeva, 2015). Empathy was 

measured with The Empathy Quotient (EQ), results from this also tend to find males 

score lower than females, and a low score associated with Asperger’s syndrome (AS) 

or high-functioning autism (HFA) (Baron-Cohen & Wheelwright, 2004). Whilst 

empathy has not been directly tested with partial face stimuli, an abundance of 

research has tested the effects of partial face recognition in the Autistic population; 

because of the association between the EQ and the Autism Quotient (AQ), these 

results can inform how occlusion and one’s level of empathy affects recognition.  

Results have found individuals with Autism to be significantly impaired at 

recognising expressions in the upper face (Gross, 2004), in particular complex 

expressions from the eyes only (Baron-Cohen, Wheelwright, Jolliffe, & Therese, 

1997) and the recognition of fear and sadness (Tell, Davidson, & Camras, 2014). 

Moreover, literature occluding face parts has found Autistic populations to perform 

reliably better in recognising expressions from another’s mouth (Spezio, Adolphs, 

Hurley, & Piven, 2007). Therefore those with low levels of empathy may have 

greater difficulty recognising partial eyes only stimuli. In addition, the personality 

trait, Alexithymia, has been shown to contribute to impaired emotion recognition 

(Bagby et al., 1994). With evidence that empathy is related to recognition, it was 

hypothesised that individuals higher in empathy (& lower in Alexithymia) will be 

more accurate at recognising expressions.  
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Materials. 

The Empathy Quotient (EQ). 

The 60-item Empathy quotient (EQ) (Baron-Cohen & Wheelwright, 2004) 

was used; this provides a self-reported measure of empathy in adults that is both high 

in test-retest reliability (r = .97) and internal consistency (Cronbach’s a = .92). This 

questionnaire consists of 40 Likert scale questions designed to measure empathy and 

20 control questions; participants select the most relevant response on a four point 

scale from ‘strongly agree’ to ‘strongly disagree’ (Baron-Cohen, 2004; Baron-Cohen 

& Wheelwright, 2004). Participant’s responses to the empathy questions are scored 

out of 80, with each item scoring zero, one or two points. The test identifies 

variations in empathy among the general population and also provides a form of 

assessment into disorders associated with social impairment such as Autism. 

Accordingly participants with scores less than or equal to 30 points are classed low 

in empathy, and more likely to have Asperger Syndrome (AS) or high-functioning 

autism (HFA) than participants who score greater than 30 points.  

 In study one, the EQ score ranged from 15 to 60 points (M score = 39.07, SD 

= 13.3), with four participants (M age = 27, SD = 6.16; all male) categorised low in 

empathy (M score = 20.5, SD = 4.15) and 12 participants (age M = 24.75, SD = 

2.77; 8 females, 4 males) categorised high in empathy (M score = 45.25, SD = 8.78). 

Whereas in study two, the EQ score ranged from 23 to 66 points (M score = 46.3, 

SD = 10.81), with only one participant (male, aged 28) classified as low in empathy, 

with a score of 23. A total of 19 participants (M age 23.58, SD = 4.25; 10 females, 9 

males) were classified high in empathy (M score = 47.53, SD = 9.64).  

Toronto Alexithymia Scale (TAS). 

The Toronto Alexithymia Scale (TAS) (Bagby et al., 1994) was also used. 

This 20-item scale provides a measure of Alexithymia, a personality trait associated 

with difficulties identifying and describing one’s own emotion, as well as subsequent 

difficulties in recognising others emotions and being empathetic (Bird & Cook, 

2013; Jongen et al., 2014; Sifneos, 1973). This self-report measure is also high in 

both test-retest reliability (r = .77) and internal consistency (Cronbach’s a = .81) 

(Bagby et al., 1994). Each item requires participants to select the most relevant 

response on a five point likert scale from ‘I strongly disagree’ to ‘I strongly 

agree’; participants responses are scored out of 100, with each item scoring one to 

five points (Bagby et al., 1994). Accordingly participants with scores greater than 
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or equal to 61 were classed high in alexithymia, scores between 52-60 with 

possible-alexithymia and less than or equal to 51 as non-alexithymia (Bagby et al., 

1994). 

In study one, the TAS score ranged from 31 to 59 points (M score = 43.44, 

SD = 8.06), with no participants categorised as high alexithymia, three participants 

(M age = 26, SD = 1.73; one female, two males) categorised as having possible-

alexithymia (M score = 57, SD = 1.41) and 13 participants (M age = 25.15, SD = 

4.14; seven females, six males) with no alexithymia (M score = 40.31, SD = 5.22). 

The two questionnaires correlate significantly, r(14) = -.719, p = .004 (two-tailed). In 

study two, the TAS score ranged from 29 to 69 points (M score = 45.25, SD = 9.93), 

with one male participant (aged 28) placed in the high alexithymia group scoring 69 

points, three participants (M age = 21.33, SD = 2.52; one female, two males) having 

possible-alexithymia (M score = 55.67, SD = 3.3) and 16 participants (M age = 24, 

SD = 4.43; 9 females, 7 males) with no alexithymia (M score = 41.81, SD = 7.34). 

Interestingly, the participant who scored highest in alexithymia was the same 

participant who scored lowest in empathy. Furthermore, there is a significantly 

strong correlation between these two measures, r(20) = -.703, p = .001 (two-tailed).  

Empathy Results.  

In study one, both the EQ r(14) = -.004, p = .989 (two-tailed), and the TAS 

r(14) = .141, p = .630 (two-tailed), showed no significant correlations with accuracy 

on the emotion task. Furthermore, both the EQ r(14) = .180, p = .538 (two-tailed), 

and the TAS r(14) = -.133, p = .649 (two-tailed), showed no significant correlations 

with accuracy on the gender task. In addition to this, in study two, both the EQ r(20) 

= -.260, p = .268 (two-tailed), and the TAS r(20) = .116, p = .627 (two-tailed), 

showed no significant correlations with accuracy on the emotion task. Lastly, in 

study two, both the r(20) = -.245, p = .298 (two-tailed), and the TAS r(20) = -.023, p 

= .922, showed no significant correlations with accuracy on the gender task.  

Overall, in both studies no effects of empathy (from the EQ and alexithymia 

scale) on emotion recognition were revealed. These results were against 

expectations, individuals higher in empathy (& lower in Alexithymia) were not more 

accurate at recognising expressions. This is surprising given evidence that empathy 

is related to recognition (Allen-Walker & Beaton, 2015; Balconi & Canavesio, 2016; 

Kosonogov et al., 2015). These results may be a result of the small samples used in 

these two studies, and the subsequent distribution of scores (with only four 
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participants showing low in empathy in study one and only one participant showing 

low in empathy and high in alexithymia in study two). Ideally future research should 

gather a greater distribution of scores and also use the AQ. It would be interesting to 

see if the previous partial stimuli effects within the autistic population, including 

greater expression recognition ability with mouth only stimuli, and impairments in 

recognising expression, particularly fear and sadness, in eyes only or upper face 

stimuli, are replicated with this stimulus set (Baron-Cohen et al., 1997; Gross, 2004; 

Spezio et al., 2007; Tell et al., 2014). 
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Appendix J. Study 1: Artefact Correction Results  

Chapter 3: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure J-1. Decoding Expression, Expression Task.  
 

 

 

 

 

 

 

 

 

 

 

 

Figure J-2. Decoding Expression, Gender Task.  
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Appendix K. Study 1: Expression Analysis of Gender Data 

 

Chapter 3: 

An ANOVA (akin to the emotion task) exploring the effects of PF and 

emotion was conducted. There was a significant main effect of PF condition, 

F(2.141, 27.831) = 24.396, p < .001, p
2 = .652 (greenhouse-geisser corrected) and 

emotion on accuracy, F(2, 26) = 5.440, p = .011, p
2 = .295, whereby gender was 

better recognised when happiness was shown (M = 95.99%), than disgust (M = 

94.56%) or fear (M = 94.25%) (Figure K-1). Furthermore there was a significant 

interaction between PF and emotion, F(3.517, 45.721) = 2.966, p = .035, p
2 = .186 

(greenhouse-geisser corrected). 

Again a simple effects analysis was undertaken: EO and MM were the only 

significant ANOVAs testing the effect of emotion (p < .05) where happiness was the 

most accurately recognised expression in these PF conditions. All three ANOVAs 

testing the effect of PF condition for each emotion were significant (p < .05), with 

gender most accurately recognised when shown WF stimuli and least accurately 

recognised when shown EO stimuli. Additional post-hoc tests were carried out, see 

Figure K-2. These tests revealed differences in the EO condition between disgust and 

happiness as well as fear and happiness (p’s = .037); showing that gender could be 

recognised better when happiness was shown (see Figure K-1). There were no 

significant post-hoc tests in the MM condition. 
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Figure K-1. Overall recognition accuracy (%) in each PF condition for each emotion.  
 

A. Disgust      

 
 
  

  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only           

Minus Eyes           

Mouth Only          

Minus Mouth           

B. Fear      
  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only           

Minus Eyes           

Mouth Only           

Minus Mouth           
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C. Happy  

  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only           

Minus Eyes           

Mouth Only          

Minus Mouth           

      
p < .05 corrected (bonferroni)    
p < .05 uncorrected     
p > .05      

Figure K-2. Paired sample t-test results comparing the differences between the PF 
conditions for each emotion. 

 

Overall, in disgust, fear and happiness there were differences between the EO 

and other PF conditions, where performance was worse in the EO condition (Figure 

K-1 & K-2). Even for gender recognition, results support the importance of the nose 

and mouth when participants are shown a disgust expression, and the importance of 

the mouth when participants are shown a happy expression, however, the importance 

of the eyes when shown fear was less pronounced in gender recognition (F. W. 

Smith & Schyns, 2009; M. L. Smith et al., 2005). 
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Appendix L. Study 1: Reaction Time Data 

Chapter 3: 

Emotion RT.  

A two-way repeated measures ANOVA was employed to explore the effects 

of PF condition and emotion on RT in the expression task. There was a significant 

main effect of PF condition, F(2.217, 28.816) = 15.521, p < .001, p
2 = .544 

(greenhouse-geisser corrected) and emotion on RT, F(2, 26) = 52.721, p < .001, p
2 

= .802, whereby happiness was recognised quickest (M = 719.77ms) followed by 

disgust (M = 813.58ms) and fear (M = 854.65ms) (Figure L-1). Furthermore there 

was a significant interaction between PF and emotion, F(3.646, 47.404) = 11.284, p 

< .001, p
2 = .465 (greenhouse-geisser corrected).  

Again a simple effects analysis was undertaken, all five ANOVAs testing the 

effect of emotion at each PF condition were significant (p < .05, with happiness 

fastest RT, disgust slowest when eyes present, fear slowest when mouth information 

present), as well as all three of those testing the effect of PF condition on disgust and 

happiness at p < .001 as the EO and MM conditions had slower RTs (fear was not 

significant at p = .165). Additional post-hoc tests were carried out, see Figures L-2 

and L-3. 
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Figure L-1. Overall RT (ms) in each PF condition for each emotion.  
 

Overall, participants showed greater RT differences between all the emotions 

when there was mouth information present (Figure L-2). In disgust there were no 

significant differences between EO and MM, as well as WF and ME, respectively 

reflecting the slowest and quickest RTs, whereas in happiness, significance between 

the EO and MM to the other PF conditions reflect the slowest RTs in happiness 

(Figure L-3 & L-1). These results correspond to the accuracy results, with high 

accuracy associated with faster RTs, and low accuracy with slower RTs. Again, this 

supports the importance of the nose and mouth in disgust and the mouth in happiness 

recognition (F. W. Smith & Schyns, 2009; M. L. Smith et al., 2005). 

A.  WF      D. MO    
  Disgust Fear Happy    Disgust Fear Happy 

Disgust        Disgust       

Fear         Fear        

Happy        Happy       
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B. EO      E. MM    
  Disgust Fear Happy    Disgust Fear Happy 

Disgust        Disgust       

Fear        Fear        

Happy        Happy       

         
C. ME     p < .05 corrected (bonferroni)  

  Disgust Fear Happy  p < .05 uncorrected   
Disgust        p > .05    
Fear             
Happy            

 

Figure L-2. Paired sample t-test results comparing the differences between the 
emotions for each PF condition.  
 

A. Disgust       
  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only           

Minus Eyes           

Mouth Only          

Minus Mouth           

B. Happy       
  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only           

Minus Eyes           

Mouth Only          

Minus Mouth           

      
p < .05 corrected (bonferroni)    
p < .05 uncorrected     
p > .05      

 

Figure L-3. Paired sample t-test results comparing the differences between the PF 
conditions for each emotion.  
 

Gender RT. 

A two-way repeated measures ANOVA was employed to explore the effects 

of PF condition and gender on RT (Figure L-4). There was no significant main effect 

of gender F(1, 13) = 1.132, p = .307, p
2 = .080, but a significant main effect of PF, 

F(2.395, 31.140) = 28.220, p < .001, p
2 = .685 (greenhouse-geisser corrected), as 
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well as a significant interaction, F(1.898, 24.677) = 3.489, p = .048, p
2 = 212 

(greenhouse-geisser corrected).  

 

Figure L-4. Overall RT (ms) in each PF condition between male and female stimuli.  
 

As a result of the significant interaction, a simple effects analysis was 

undertaken. ANOVAs testing the effect of gender at each PF condition only found 

significance in the EO condition (p = .032). Testing the effect of PF condition on 

gender found significance for both male and female faces (p < .001). The significant 

differences seen in the male faces between the WF and PF conditions, show WF 

male stimuli to be recognised quicker (see also Figure L-5). Nonetheless, reaction 

times for male faces are similar across all PF conditions. However, the differences 

seen in the female faces between the EO and other PF conditions show EO female 

stimuli to be recognised slower. It is unclear why it this is. Again, these results 



Appendices 

302 
 

correspond to the accuracy results, with high accuracy associated with faster RTs, 

and low accuracy with slower RTs.  

A. Male       
  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only           

Minus Eyes           

Mouth Only          

Minus Mouth           

B. Female       
  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only           

Minus Eyes p = .058         

Mouth Only          

Minus Mouth           

      
p < .05 corrected (bonferroni)     
p < .05 uncorrected     
p > .05      

Figure L-5. Paired sample t-test results comparing the differences between the PF 
conditions for male and female faces.  
 

An ANOVA (akin to the emotion task) exploring the effect of PF condition 

and emotion was conducted (Figure L-6). There was a significant main effect of PF 

condition, F(2.448, 31.827) = 26.903, p < .001, p
2 = .674 (greenhouse-geisser 

corrected) but no significant main effect of emotion on RT, F(2, 26) = 1.891, p = 

.171, p
2 = .127 or significant interaction, F(3.808, 49.502) = .627, p = .638, p

2 = 

.046 (greenhouse-geisser corrected). 
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Figure L-6. Overall RT (ms) in each PF condition for each emotion.  
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Appendix M. Study 2: Expression Analysis of Gender Data 

 

Chapter 3: 

A two-way repeated measures ANOVA was also employed to explore the 

effects of PF condition and emotion on accuracy in the gender task. There was a 

significant main effect of PF condition, F(2, 76) = 11.233, p < .001, p
2 = .372 and 

emotion on accuracy, F(1, 19) = 8.305, p = .010, p
2 = .304, whereby gender was 

better recognised when happiness (M = 88.39%), rather than fear was shown (M = 

86.80%) (Figure M-1). There was no significant interaction between PF and emotion 

on accuracy, F(2, 76) = 1.979, p = .106, p
2 = .094. 

Figure M-1. Overall recognition accuracy (%) in each PF condition between the 
emotions.  
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Appendix N. Study 2: Reaction Time Data 

Chapter 3: 

Emotion RT. 

A two-way repeated measures ANOVA was employed to explore the effects 

of PF condition and emotion on RT in the expression task. There was a significant 

main effect of PF condition, F(2.701, 51.328) = 46.718, p < .001, p
2 = .711 

(greenhouse-geisser corrected), and emotion on RT, F(1, 19) = 6.370, p = .021, p
2 = 

.251 with RT faster for happiness (M = 755.66ms) than fear (M = 775.96ms) (Figure 

N-1). Furthermore there was a significant interaction between PF and emotion, F(4, 

76) = 4.697, p = .002, p
2 = .198, showing the importance of different face regions in 

this task. 

 

Figure N-1. Overall RT (ms) in each PF condition for each emotion.  
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Again a simple effects analysis was undertaken. ANOVAs testing the effect 

of emotion found significance in WF, ME and MO (p < .05), with quicker RTs for 

happiness than fear in all three conditions. Testing the effect of PF condition on 

emotion found significance for both fear and happy (p < .001). Further post-hoc tests 

were carried out (see Figure N-2). In fear and happiness there are more differences 

between the EO and MM conditions in relation to all other conditions (Figure N-2), 

this is because RTs are longer in these conditions (Figure N-1). This is against the 

importance of the eyes in fear but corroborates the importance of the mouth in 

happiness; it could be that the mouth is important for fear when only two emotions 

are investigated (Neath-Tavares & Itier, 2016). 

A. Fear 
     

  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only           

Minus Eyes           

Mouth Only           

Minus Mouth           

B. Happy       
  Whole Face Eyes Only Minus Eyes Mouth Only Minus Mouth 

Whole Face           

Eyes Only           

Minus Eyes           

Mouth Only          

Minus Mouth           
      
p < .05 corrected (bonferroni) 

   
p < .05 uncorrected 

    
p > .05 

     
Figure N-2. Paired sample t-test results comparing the differences between the PF 
conditions for each emotion.  
 
Gender RT. 

A two-way repeated measures ANOVA was employed to explore the effects 

of PF condition and gender on RT in the gender task (Figure N-3). There was a 

significant main effect of PF condition, F(2.086, 39.641) = 27.828, p < .001, p
2 = 

.594 (greenhouse-geisser corrected) but no significant main effect of gender on RT, 

F(1, 19) = .222, p = .643, p
2 = .012. There was no significant interaction between 

PF and gender, F(2.106, 40.012) = 2.599, p = .084, p
2 = .120 (greenhouse-geisser 

corrected).  
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Figure N-3. Overall RT (ms) in each PF condition for each gender.  
 

A two-way repeated measures ANOVA was also employed to explore the 

effects of PF condition and emotion on RT. In the gender task, there was a 

significant main effect of PF condition, F(2.033, 38.626) = 26.465, p < .001, p
2 = 

.582 (greenhouse-geisser corrected), and emotion on RT, F(1, 19) = 9.526, p = .006, 

p
2 = 334, with RT faster for happiness (M = 670.84ms) than fear (M = 680.36ms) 

(Figure N-4). There was no significant interaction between PF and emotion, F(4, 76) 

= .596, p = .666, p
2 = .030. 
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Figure N-4. Overall RT (ms) in each PF condition for each emotion.  
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Appendix O. Decoding Results for 9mm Radius Spheres 

Chapter 4: 

Decoding within Perception and Production. 

Results for decoding of expression in the perception task are presented first, 

followed by decoding in the production task. ROI results are given for each 

hemisphere in turn (right then left), before the result of the combined bilateral ROI is 

given. The bars on the graph are either displayed in blue or grey: blue bars represent 

premotor regions of the brain, whereas grey bars represent either the face network or 

sensorimotor regions of the brain, depending on whether the results are from the 

perception or production task respectively. Furthermore, the result graph axis begins 

at 30% in both tasks; however, please note that this scale is set to 40% in the 

perception task and 80% in the production task, to account for variability in decoding 

accuracy between the tasks. This 30-40% scaling in the perception task was deemed 

necessary to clearly portray the differences in accuracy among the ROI’s (this 

difference in scaling is used throughout the decoding results). 

Although there were no significant FDR effects in the perception task, one-

sample t-tests showed decoding trends in the r-PM1 (t(12) = 1.837, p = .046, d = 

0.51 (medium effect-size)), PM1 (t(12) = 3.021, p = .005, d = 0.84 (large effect-

size)), FG (t(8) = 2.706, p = .013, d = 0.90 (large effect-size)) and EVC (t(12) = 

2.208, p = .024, d = 0.61 (medium effect-size)) ROIs, see Figure O-1.  
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Figure O-1. Expression decoding accuracy of 9mm radius spheres in the perception 
task, one-sample t-test results represented with stars. Blue bars represent premotor 
regions of the brain; grey bars represent the face network of brain regions. 
 

One-sample t-tests showed significant decoding in all ROIs (FDR p < .05; 

large effect sizes, d’s > 1.6) for the production task, see Figure O-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          p < .05 

        FDR p < .05 

 

Chance 33.3% 
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Figure O-2. Expression decoding accuracy of 9mm radius spheres in the production 
task, one-sample t-test results represented with stars. Blue bars represent premotor 
regions of the brain; grey bars represent sensorimotor regions of the brain. 
 

Cross classification.  

The cross-classification results, based on ROIs defined in the perception task, are 

presented first; followed by cross classification results based on ROIs defined in the 

production task. 

Although there were no significant FDR effects in cross-decoding based on the 

perceptual ROIs, one-sample t-tests showed decoding trends in the l-PM1 (t(12) = 

2.491, p = .014, d = 0.69 (medium effect-size)), PM1 (t(12) = 2.095, p = .029, d = 

0.58 (medium effect-size)), l-PM2 (t(11) = 2.271, p = .022, d = 0.66 (medium effect-

size)) and STS (t(11) = 1.816, p = .048, d = 0.52 (medium effect-size)) ROIs, see 

Figure O-3.  
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         FDR p < .05 

 

Chance 33.3% 
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Figure O-3. Cross-classification: expression decoding accuracy of 9mm radius 
spheres defined in the perception task, one-sample t-test results represented with 
stars. Blue bars represent premotor regions of the brain; grey bars represent the face 
network of brain regions. 
 

Although there were no significant FDR effects in cross-decoding based on the 

production ROIs, one-sample t-tests showed decoding trends in PM1, t(10) = 1.876, 

p = .045, d = 0.57 (medium effect-size) see Figure O-4.  
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Figure O-4. Cross-classification: expression decoding accuracy of 9mm radius 
spheres defined in the production task, one-sample t-test results represented with 
stars. Blue bars represent premotor regions of the brain; grey bars represent 
sensorimotor regions of the brain. 
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Appendix P. Consistency between ROIs from single subjects and group level analysis. 

Perception (ROI probability map with RFX emotion vs phase noise) 

Chapter 4: 

Figure P-1. PM1: probability map (displayed in blue), RFX analysis (in orange). 

Figure P-2. PM2: probability map (displayed in blue), RFX analysis (in orange).  
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Figure P-3. STS: probability map (displayed in blue), RFX analysis (in orange). 
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Production (ROI probability map ROI with RFX face movement vs finger movement) 

Figure P-4. SMA: probability map (displayed in blue), RFX analysis (in orange). 

Figure P-5. S1/M1: probability map (displayed in blue), RFX analysis (in orange). 
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Figure P-6. S2: probability map (displayed in blue), RFX analysis (in orange). 
 

 

Figure P-7. PM1: probability map (displayed in blue), RFX analysis (in orange). 
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Figure P-8. r-PM2: probability map (displayed in blue), RFX analysis (in orange). 
 

Figure P-9. l-PM2: probability map (displayed in blue), RFX analysis (in orange). 


