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Abstract  

Objectives: 

To develop a risk classifier using urine-derived extracellular vesicle RNA (UEV-RNA) capable of 

providing diagnostic information of disease status prior to biopsy, and prognostic information for men 

on active surveillance (AS).  

Patients and Methods: 

Post-digital rectal examination UEV-RNA expression profiles from urine (n = 535, multiple centres) 

were interrogated with a curated NanoString panel. A LASSO-based Continuation-Ratio model was 

built to generate four Prostate-Urine-Risk (PUR) signatures for predicting the probability of normal 

tissue (PUR-1), D’Amico Low-risk (PUR-2), Intermediate-risk (PUR-3), and High-risk (PUR-4) PCa. 

This model was applied to a test cohort (n = 177) for diagnostic evaluation, and to an AS sub-cohort 

(n = 87) for prognostic evaluation. 

Results: 

Each PUR signature was significantly associated with its corresponding clinical category (p<0.001). 

PUR-4 status predicted the presence of clinically significant Intermediate or High-risk disease, 

AUC = 0.77 (95% CI: 0.70–0.84). Application of PUR provided a net benefit over current clinical 

practice. In an AS sub-cohort (n=87), groups defined by PUR status and proportion of PUR-4 had a 

significant association with time to progression (p<0.001; IQR HR = 2.86, 95% CI:1.83–4.47). PUR-

4, when utilised continuously, dichotomised patient groups with differential progression rates of 10% 

and 60% five years post-urine collection (p<0.001, HR = 8.23, 95% CI:3.26–20.81).  

Conclusion: 

UEV-RNA can provide diagnostic information of aggressive PCa prior to biopsy, and prognostic 

information for men on AS. PUR represents a new & versatile biomarker that could result in 

substantial alterations to current treatment of PCa patients. 
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Introduction 

The progression of prostate cancer is highly heterogeneous(1), and risk assessment at the time of 

diagnosis is a critical step in the management of the disease. Based on the information obtained prior 

to treatment, key decisions are made about the likelihood of disease progression and the best course of 

treatment for localised disease. D’Amico stratification(2), which classifies patients as Low-, 

Intermediate-, or High-risk of PSA-failure post-radical therapy, is based on Gleason score (Gs)(3), 

PSA and clinical stage, and has been used as a framework for guidelines issued in the UK, Europe and 

USA(4–6). Low-, and some favourable Intermediate-risk, patients are generally offered active 

surveillance(4,7) (AS) while unfavourable Intermediate-, and High-risk patients are considered for 

radical therapy(7). Other classification systems, such as CAPRA score(8), use additional clinical 

information, assigning simple numeric values based on age, pre-treatment PSA, Gleason score, 

percentage of biopsy cores positive for cancer and clinical stage for an overall 0-10 CAPRA score. 

The CAPRA score has shown favourable prediction of PSA-free survival, development of metastasis 

and prostate cancer-specific survival(9). 

Prostate cancer is often multifocal(10), with disease state often underestimated by TRUS biopsy 

alone(11) and overestimated by multiparametric-MRI (MP-MRI), most often in the case of Prostate 

Imaging Reporting and Data System (PI-RADS) 3 lesions(12). Sampling issues associated with 

needle biopsy of the prostate have prompted the development of non-invasive urine tests for 

aggressive disease, which examine prostate-derived material, harvested within urine(13–15). Recent 

successes in this field are illustrated by three studies carried out on whole urine for predicting the 

presence of Gs ≥ 7 on initial biopsy: Tomlins et al. (2016), and McKiernan et al. (2016) used PCA3 

and TMPRSS2-ERG transcript expression levels, whilst Van Neste et al. (2016) used HOXC6 and 

DLX1 in combination with traditional clinical markers(14,16,17). The objectives of the current study 

were to develop a urine classifier that can predict D’Amico & CAPRA risk group, and additionally 

test its utility as a predictor of disease progression, triggering the requirement for therapeutic 



intervention, within an AS cohort with five years of clinical follow-up. As a starting point we used 

167 gene probes, many previously associated with prostate cancer progression, leading to the 

development of a 36 gene classifier, deemed Prostate Urine Risk (PUR).  

Methods: 

Patient samples and clinical criteria: 

The Movember cohort comprised of first-catch post-digital rectal examination (DRE) urine samples 

collected at diagnosis between 2009 and 2015 from urology clinics at the Norfolk and Norwich 

University Hospital (NNUH, Norwich, UK), Royal Marsden Hospital (RMH, London, UK), St. 

James’s Hospital (Dublin, Republic of Ireland) and from primary care and urology clinics of Emory 

Healthcare (Atlanta, USA). Within the Movember cohort, 87 patients were enrolled on an AS 

programme at the RMH(7). AS eligibility criteria for this programme included histologically proven 

prostate cancer, age 50–80, clinical stage T1/T2, PSA < 15 ng/mL, Gs ≤ 3+3 (Gs ≤ 3+4 if age > 65), 

and < 50% percent positive biopsy cores.  Progression was defined as the detection of disease by 

clinical criteria that typically triggers the requirement for therapeutic intervention. Clinical criteria of 

progression were either: PSA velocity >1 ng/mL per year or adverse histology on repeat biopsy, 

defined as primary Gs ≥ 4 or ≥ 50% biopsy cores positive for cancer. MP-MRI criteria for progression 

were either: detection of >1 cm3 prostate tumour, an increase in volume >100% for lesions between 

0.5-1 cm3, or T3/4 disease(7).  

D’Amico classification used Gleason and PSA criteria as per D’Amico et al. (1998)(2). CAPRA 

classification used the criteria as described by Cooperberg et al.(2006)(8). Sample collections and 

processing were ethically approved in their country of origin: NNUH samples by the East of England 

REC, Dublin samples by St. James’s Hospital. iii) RMH by the local ethics committee, iv) Emory 

Healthcare samples by the Institutional Review board of Emory University. Trans-rectal ultrasound 

(TRUS) guided biopsy was used to provide biopsy information. Where multiple biopsies were taken 

the results from the closest biopsy to initial urine sample collection were used. Men were defined to 

have no evidence of cancer (NEC) with a PSA normal for their age or lower(18) and as such, were not 



subjected to biopsy. Metastatic disease was defined by a PSA >100 ng/mL and were excluded from 

analyses. 

Sample processing: 

For the full Movember protocol see Supplementary Methods. Briefly, urine was centrifuged (1200 g 

10 min, 6°C) within 30 min of collection to pellet cellular material. Supernatant extracellular vesicles 

(EVs) were then harvested by microfiltration as Miranda et al. (2010)(19) and RNA extracted 

(RNeasy micro kit, #74004, Qiagen). RNA was amplified as cDNA with an Ovation PicoSL WTA 

system V2 (Nugen #3312-48). 5-20 ng of total RNA was amplified where possible, down to 1 ng 

input in 10 samples. cDNA yields were mean 3.83 µg (1-6 µg). 

Expression analyses: 

NanoString expression analysis (167 probes, 164 genes, Supplementary Data) of 100 ng cDNA was 

performed at the Human Dendritic Cell Laboratory, Newcastle University, UK. 137 probes were 

selected based on previously proposed controls plus prostate cancer diagnostic and prognostic 

biomarkers within tissue and control probes (Supplementary Data). 30 additional probes were selected 

as overexpressed in prostate cancer samples when next generation sequence data generated from 20 

urine derived EV RNA (UEV-RNA) samples were analysed (unpublished). Target gene sequences 

were provided to NanoString, who designed the probes according to their protocols(20). Data were 

adjusted relative to internal positive control probes as stated in NanoString’s protocols. The ComBat 

algorithm was used to adjust for inter-batch and inter-cohort bias(21).  Data were adjusted by means 

of a correction factor (CF) for input amount by normalisation to two invariant and highly expressed 

housekeeping gene-probes, GAPDH and RPLP2. The CF for a given sample i, was calculated as the 

mean sum of average GAPDH and RPLP2 expression, divided by the sample-specific mean of 

GAPDH and RPLP2: 

𝐶𝐹# = 	
∑ 𝑥̅)*+,-.,0+1+2.3

𝑛 × 𝑥̅)*+,-6,0+1+26
 

All data were expressed relative to KLK2 as follows: samples with low KLK2 (counts <100) were 

removed, and data log2 transformed. Data were further normalised by adjusting the median of each 



probe across all samples to 1, with the interquartile range adjusted to that of KLK2. More formally, for 

each sample i and gene-probe j, the KLK2 normalised value, 𝑦8#,3was calculated as: 

𝑦8#,3 = 	
9:
𝑦#,3 	−	𝑚𝑒𝑑𝑖𝑎𝑛3

𝐼𝑄𝑅3
D	×	𝐼𝑄𝑅E1E2F +	𝑀𝑒𝑑𝑖𝑎𝑛E1E2

𝑦#,E1E2
 

No correlation was seen with respect to patient’s drugs, cohort site, urine pH, colour or sample 

volume (p > 0.05; Chi-square and Spearman’s Rank tests, data not shown).  

Model production and statistical analysis: 

All statistical analyses and model construction were undertaken in R version 3.4.1(22), and unless 

otherwise stated utilised base R and default parameters.  

The Prostate Urine Risk (PUR) signatures were constructed from the training dataset as follows: for 

each probe, a univariate cumulative link model was fitted using the R package clm with risk group as 

the outcome and NanoString expression as inputs. Each probe that had a significant association with 

risk group (p < 0.05) was used as input to the final multivariate model. A constrained continuation 

ratio model with an L1 penalisation was fitted to the training dataset using the glmnetcr library(23), an 

adaption of the LASSO method(24). Default parameters were applied using the LASSO penalty and 

values from all probes selected by the univariate analysis used as input. The model with the minimum 

Akaike information criterion was selected.  Ordinal logistic regression was undertaken using the 

ordinal library(25).  

Bootstrap resampling of ROC analyses used the pROC library(26) for calculation, statistical tests and 

production of figures, with 2,000 resamples used. Random predictors were generated by randomly 

sampling from a uniform distribution between 0 and 1. 

The costs of missing significant cancer are far higher than an unnecessary biopsy or investigation. 

With this considered, where multiple samples were analysed from the same AS patient, the sample 

with the highest PUR-4 signature was used in survival analyses and Kaplan-Meier (KM) plots. No 

multiple samples from AS patients appeared simultaneously in both training and test datasets, 

minimising overfitting and bias of the model. 



Decision curve analysis (DCA)(27) examined the potential net benefit of using PUR-signatures in the 

clinic. Standardised net benefit was calculated with the rmda library(28) and presented throughout our 

decision curve analyses, as it is more interpretable when compared to net benefit(29). In order to 

ensure DCA was representative of a more general population, the prevalence of Gleason grades 

within the Movember cohort were adjusted via bootstrap resampling to match that observed in a 

population of 219,439 men that were in the control arm of the Cluster Randomised Trial of PSA 

Testing for Prostate Cancer (CAP) Trial(30). For the biopsied men within this CAP cohort, 23.6% 

were Gs 6, 8.7% Gs 7 and 7.1% Gs 8 or greater, with 60.6% of biopsies being PCa negative.  This 

was used to perform stratified random sampling with replacement of the Movember cohort to produce 

a “new” dataset of 300 samples. Standardised net benefit was calculated on the resampled dataset, and 

the process repeated for a total of 1,000 resamples. The mean standardised net benefit for PUR-4 and 

the “treat-all” options over all iterations were used to produce the presented figures to account for 

variance in sampling.  

Results: 

The Clinical Cohort 

The Movember cohort comprised of 535 post-DRE urine samples collected from four centres 

(NNUH, n = 312; RMH, n = 87; Atlanta, n = 85; Dublin, n = 17). Multiple, longitudinal samples 

within the Movember cohort were provided by 20 of the 87 men enrolled on an AS program at the 

RMH. The median time between collection of multiple samples was 185 days (IQR: 122-252 days) 

and were treated independently from one another. Samples originated from men categorised as having 

either No Evidence of Cancer (NEC, n = 92) or localised prostate cancer at time of urine collection, 

as detected by TRUS biopsy (n = 443), that were further subdivided into three risk categories using 

D’Amico criteria: Low (L), n = 134; Intermediate (I), n = 208; and High-risk (H), n = 101. Patients 

with metastatic cancer at collection were excluded from analyses. Further characteristics of the 

Movember cohort are available in Table 1. 



Selection of EV fractions and RNA yields 

Prostate markers KLK2 and KLK3, were up to 28-fold higher in the EV fraction when compared to 

sediment (TaqMan RT-PCR, paired samples Welch t-test p < 0.001, data not shown). Based on these 

analyses and previously published results by Pellegrini et al.(31), EVs were selected for further study.  

Median UEV-RNA yields for the NNUH cohort were similar for NEC (204 ng), Low- (180 ng) and 

Intermediate-risk (221 ng) patients, and lower in High-risk (108 ng) (Supplementary Figure 1). Yields 

from three patients post-radical prostatectomy were 0.8-2 ng, suggesting that most UEV-RNA 

originates from the prostate.   

Development of the Prostate Urine Risk Signatures 

Samples in D’Amico categories Low, Intermediate and High-risk, together with NEC samples were 

divided into the Movember Training dataset (two-thirds of samples; n = 358) and the Movember Test 

dataset (one-third of samples; n = 177) by random assignment, stratified by risk category. Age, Stage, 

PSA, and Gleason scores were not significantly different across the two sets (p > 0.05; Wilcoxon rank 

sum test/Fisher’s Exact Test; Table 1). 

The optimal model, as defined by the LASSO criteria in a constrained continuation ratio model, (see 

methods for full details) incorporated information from 36 probes (Table 2, for model coefficients see 

Supplementary Table 1) and was applied to both training and test datasets (Figure 1A, B). For each 

sample the 4-signature PUR-model defined the probability of containing NEC (PUR-1), L (PUR-2), I 

(PUR-3) and H (PUR-4) material within samples (Figure 1A, B). The sum of all four PUR-signatures 

in any individual sample was 1 (PUR1 + PUR2 + PUR3 + PUR4 = 1). The strongest PUR-signature 

for a sample was termed the primary (1°) signature while the second highest was called the secondary 

(2°) signature (Figure 1C, D).  

Pre-biopsy Prediction of D’Amico risk, CAPRA score and Gleason: 

Primary PUR-signatures (PUR-1 to 4) were found to significantly associate with clinical category 

(NEC, L, I, H respectively) in both training and test sets (p < 0.001, Wald test for ordinal logistic 

regression in both Training and Test datasets, Figure 2A, B). A similar association was observed with 



CAPRA score (p < 0.001, Wald test for ordinal logistic regression in both Training and Test datasets; 

Supplementary Figure 2). 

Based on recommended guidelines(4–6), the distinction between D’Amico low and intermediate risk 

is considered critical because radical therapy is commonly recommended for patients with high and 

intermediate-risk cancer.  We therefore initially tested the ability of the PUR-model to predict the 

presence of H or I disease from L or NEC upon initial biopsy. Each of the four PUR-signatures alone 

were able to predict the presence of significant disease (Risk category ≥ Intermediate, Area Under the 

Curve (AUC) ≥ 0.68 for each PUR signature, Test dataset; Supplementary Figure 3), and were 

significantly better than a random predictor (p < 0.001, bootstrap test, 2,000 resamples). However, 

PUR-1 and PUR-4 were best at discerning significant disease and were equally effective; AUCs for 

both PUR-4 and for PUR-1 in the Training and Test cohorts were respectively 0.81 (95% CI: 0.77 - 

0.85) and 0.77 (95% CI: 0.70 - 0.84), (Figure 2C & D).   

When Gleason score alone was considered we found that PUR-4 predicted Gs ≥ 3+4 with AUCs of 

0.78 (95% CI: 0.73 - 0.82) (Training) and 0.76 (95% CI: 0.69 - 0.83) (Test) and Gs ≥ 4+3 with AUCs 

of 0.76 (95% CI: 0.70 - 0.81) (Training) and 0.72 (95% CI: 0.63 - 0.81) (Test) (Figure 3). The ability 

to predict Gs ≥ 3+4 was particularly relevant because this was previously chosen as an endpoint for 

aggressive disease in other urine biomarker studies, where  AUCs of 0.77, 0.78 and 0.74 were 

reported by McKiernan et al., 2016; Tomlins et al., 2016 and Van Neste et al., 2016, respectively. 

Decision curve analysis (DCA)(27) examined the potential net benefit of using PUR-signatures in a 

non-PSA screened population. Biopsy of men based upon their PUR-4 score provided a net benefit 

over biopsy of men based on current clinical practice across all thresholds (Figure 4). When DCA was 

also undertaken within the context of a PSA-screened population, PUR continued to provide a net 

benefit (Supplementary Figure 4). 

Active surveillance cohort: 

Within the Movember cohort were 87 men enrolled in AS at the Royal Marsden Hospital, UK. The 

median follow-up time from initial urine sample collection was 5.7 years (range 5.1 – 7.0 years) 

(Supplementary Table 2). The median time from initial urine sample collection to progression or final 



follow up was 503 days (range 0.1 – 7.4 years). The PUR profiles from these men were used to 

investigate the prognostic utility of PUR beyond categorising D’Amico Risk. The PUR profiles were 

significantly different between the 23 men who progressed within five years of urine sample 

collection, and the 49 men who did not progress (p < 0.001, Wilcoxon rank sum test; Figure 5A). 

Twenty-two men progressed by the criteria detailed above, with an additional nine men progressing 

based solely on MP-MRI criteria. Further AS cohort characteristics are available in Supplementary 

Table 2. 

Calculation of the Kaplan-Meier plots with samples divided on the basis of 1°, 2° and 3°  PUR-1 and 

PUR-4 signatures showed significant differences in clinical outcome (p < 0.001, log-rank test, Figure 

5B) and was robust (log-rank test p < 0.05 in 93.6% of 100,000 cohort resamples with replacement, 

see Methods for full details). Proportion of PUR-4, a continuous variable, had a significant 

association with clinical outcome (p < 0.001; IQR HR = 5.87, 95% CI: 1.68 – 20.46); Cox 

Proportional hazards model). A robust optimal threshold of PUR-4 was determined to dichotomise AS 

patients (PUR-4 = 0.174, based on the median optimal threshold to minimise Log-rank test p-value 

from 10,000 resamples of the cohort with replacement). The two groups had a large difference in time 

to progression: 60% progression within 5 years of urine sample collection in the poor prognosis group 

compared to 10% in the good prognosis group (p < 0.001, log-rank test, Figure 5C, HR = 8.23; 95% 

CI: 3.26 – 20.81). This result is robust (p < 0.05 in 99.8% of 100,000 cohort resamples with 

replacement, see Methods for full details). 

When MP-MRI criteria for progression was also included, both primary PUR-status and dichotomised 

PUR threshold remained a significant predictor of progression (p < 0.001 log–rank test, 

Supplementary Figure 5). When the AS cohort were split by D’Amico risk category at initial urine 

collection PUR-4 remained a significant predictor of progression in men with Low-risk disease, but 

not for men with Intermediate-risk disease (p < 0.001 log–rank test, Supplementary Figure 6). 

Multiple urine specimens had been collected for 20 of the men entered into the AS trial, allowing us 

to assess the stability of urine profiles over time (Supplementary Figure 7). In patients that had not 

progressed, samples were found to be stable compared to a null model generated by randomly 



selected samples from the whole Movember Cohort (p = 0.011; bootstrap analysis with 100,000 

iterations). Samples from men deemed to have progressed failed this stability test (p = 0.059). 

Discussion: 

The variation in clinical outcome for prostate cancer, even within risk stratified groups such as 

D’Amico, is well established. Many attempts have been made to address this problem including the 

subcategorisation of intermediate risk disease into favourable and unfavourable groups(32) and the 

development of the CAPRA classification system(8). Other approaches include the development of an 

unsupervised classification framework(33) and of biomarkers of aggressive disease, as illustrated by 

Cuzick et al. (2012), Knezevic et al. (2013) and Robert et al. (2013)(34,36,37). In each of the 

examples given above, analyses are performed on cancerous tissue, usually taken at the time of 

diagnosis via needle biopsy.   

Urine biomarkers offer the prospect of a more holistic assessment of cancer status prior to invasive 

tissue biopsy and may also be used to supplement standard clinical stratification. Previous urine 

biomarker models have been designed specifically for single purposes such as the detection of 

prostate cancer on re-biopsy (PCA3 test), or to detect Gs ≥ 3+4(13,14,17,38). Here we have 

constructed the four PUR signatures to provide a non-invasive and simultaneous assessment of non-

cancerous tissue and D’Amico Low-, Intermediate- and High-risk prostate cancer in individual 

prostates. The use of individual signatures for the three D’Amico risk types is unique and could 

significantly aid the deconvolution of complex cancerous states into more readily identifiable forms 

for monitoring the development of high-risk disease in, for example AS men. 

For the detection of significant prostate cancer, PUR compares favourably to other published 

biomarkers which have used simpler transcript expression systems involving low numbers of 

probes(13,14,17,38). Here we show that the PUR classifier, based on the RNA expression levels of 36 

gene-probes, can be used as a versatile predictor of cancer aggression. Notably PCA3, TMPRSS2-

ERG and HOXC6 were all included within the optimal PUR model defined by the LASSO criteria, 

while DLX1 was not.  We first showed that the ability of PUR-4 status to predict TRUS detected 



Gs ≥ 3+4 was similar (AUC = 0.76; 95% CI = 0.69 – 0.83, Test) to these published models using 

PCA3/TMPRSS2-ERG (AUC, 0.74 - 0.78)(13,14) and HOXC6/DLX1 (AUC, 0.77)(17). 

Current clinical practice assesses patient’s disease using PSA, needle biopsy of the prostate and MP-

MRI. However, up to 75% of men with a raised PSA (≥3 ng/ml) are negative for prostate cancer on 

biopsy(6,39), whilst in absence of a raised PSA, 15% of men are found to have prostate cancer, with a 

further 15% of these cancers being high-grade(40). This illustrates the considerable need for 

additional biomarkers that can make pre-biopsy assessment of prostate cancer more accurate. In this 

respect we show that both PUR-4 and PUR-1 are each equally good at predicting the presence of 

intermediate or high-risk prostate cancer as defined by D’Amico criteria or by CAPRA status, while 

in DCA analysis we found that PUR provided a net benefit in both a PSA screened and non-PSA 

screened population of men. With the increased adoption of MP-MRI it would be useful in future 

studies to correlate PUR, and other urine-based markers, with MRI findings and radical prostatectomy 

outcomes. 

Variation in clinical outcomes are also well recognised for patients entered onto AS surveillance(41). 

We found that the PUR framework worked well when applied to men on AS monitored by PSA and 

biopsy, and also in patients monitored by MP-MRI. A potential limitation of this study is that we have 

not been able to test the PUR stratification in an independent and more conservatively managed active 

surveillance cohort. However, based on our observations approximately 13% of the RMH AS cohort 

could have been safely removed from AS monitoring for a minimum of five years. An interesting 

feature is that in some patients the PUR urine signature predicted disease progression up to five years 

before it was detected by standard clinical methods. This prognostic information could potentially 

also aid the reduction of patient-elected radical intervention in active surveillance men which in some 

cohorts can be as high as 75% within three years of enrolment(41). Indeed, we would view the use of 

PUR within the context of active surveillance as its major potential clinical application. Repeated 

longitudinal measurements of PUR status could help correctly assess and track a patient’s risk over 

time in a non-invasive manner. A future priority is to further validate the utility of PUR within active 

surveillance using other previously described longitudinal cohorts. 



In conclusion, we have shown that PUR represents a new & versatile urine biomarker system capable 

of detecting aggressive prostate cancer and predicting the need for therapeutic intervention in AS 

men. The dramatic differences in RNA expression profiles across the spectrum from high risk cancer 

to patients with no evidence of cancer, confirmed in a test cohort, can leave no doubt that the presence 

of cancer is substantially influencing the RNA transcripts found in urine EVs. We also provide 

evidence that the majority of post-DRE urine-derived EVs are derived from the prostate and that urine 

signatures are longitudinally stable.  
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Figures & Tables: 

 

Figure 1. A) PUR profiles (PUR-1 – green, PUR-2 – blue, PUR-3 – yellow, PUR-4 – red) for the Training 

cohort, grouped by D’Amico risk group and ordered by ascending PUR-4 score. Horizontal lines indicate where 

the PUR thresholds lie for: 1° PUR-1 (Green, 0.342), 2° PUR-1 (Purple, 0.297), 1° PUR-4 (Red, 0.476), 2° 
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PUR-4 (Orange, 0.219) and the crossover point between PUR-1 and PUR-4 (black, 0.123 both PUR-1 and 4). 

B) PUR profiles in the Test cohort. C) Examples of samples with primary PUR signatures, where coloured 

circles indicate the primary PUR signal for that sample; 1° PUR-1 (green), 1° PUR-2 (blue), 1° PUR-3 (yellow), 

2° PUR-4 (orange) and 1° PUR-4 (red). The sum of all four PUR-signatures in any individual sample is 1, i.e., 

PUR-1+PUR-2+PUR-3+PUR-4=1. D) The outline of the four PUR signatures for all samples ordered in 

ascending PUR-4 (red) to illustrate where 1°, 2° and the 3° crossover point of PUR-1 and PUR-4 lie. 

 

 

 

 

 

 

 



 

Figure 2. A & B) Boxplots of PUR signatures in samples categorised as no evidence of cancer (NEC, n = 62 

(Training), n = 30 (Test)) and D’Amico risk categories; (L – Low, n = 89 (Training), n = 45 (Test), I – 

Intermediate, n = 131 (Training), n = 69 (Test) and H – High risk, n = 61 (Training), n = 27 (Test)) in A) the 

Training and B) Test cohorts. Horizontal lines indicate where the PUR thresholds lie for: 1° PUR-1 (Green), 2° 

PUR-1 (Purple), 1° PUR-4 (Red), 2° PUR-4 (Orange). C & D) Receiver operating characteristic (ROC) curves 

of PUR-4 and PUR-1 predicting the presence of significant (D’Amico Intermediate or High risk) prostate cancer 

prior to initial biopsy in C) Training and D) Test cohorts. Coloured circles indicate the specificity and 

sensitivity, respectively, of thresholds along the ROC curve that correspond to the indicated PUR-4 thresholds, 

equivalent to: red - 1° PUR-4, orange - 2° PUR-4, purple – equivalent to 2° PUR-1, green – equivalent to 1° 

PUR-1  



 

Figure 3. AUC curves for PUR-4 predicting the presence/absence of Gleason ≥ 7 on initial biopsy in Training 

and Test cohorts (A and B, respectively) and Gleason ≥ 4+3 in Training and Test cohorts (C and D, 

respectively). Coloured circles indicate the specificity and sensitivity, respectively, of thresholds along the ROC 

curve that correspond to the indicated PUR-4 thresholds, equivalent to: red - 1° PUR-4, orange - 2° PUR-4, 

purple – equivalent to 2° PUR-1, green – equivalent to 1° PUR-1  

 



 

Figure 4. DCA plot depicting the standardised net benefit of adopting PUR-4 as a continuous predictor for 

detecting significant cancer on initial biopsy, when significant is defined as: D’Amico risk group of 

Intermediate or greater (teal), Gs ≥ 3+4 (orange) or Gs ≥ 4+3 (red). To assess benefit in the context of cancer 

arising in a non-PSA screened population of men we used data from the control arm of the CAP study(30). 

Bootstrap analysis with 100,000 resamples was used to adjust the distribution of Gleason grades in the 

Movember cohort to match that of the CAP population.  For full details see Methods. 
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Figure 5. A) PUR profiles of patients on active surveillance that had met the clinical criteria, not including MP-

MRI criteria, for progression (n = 23) or not (n = 49) at five years post urine sample collection. Progression 

criteria were either: PSA velocity >1 ng/ml per year or Gs ≥ 4+3 or ≥ 50% cores positive for cancer on repeat 

biopsy. PUR signatures for progressed vs non-progressed samples were significantly different for all PUR 

signature (p < 0.001, Wilcoxon rank sum test). Horizontal line colour indicates the thresholds for PUR 

categories described in: B) Kaplan-Meier plot of progression in active surveillance patients with respect to PUR 

categories described by the corresponding colours; Green - 1° and 2° PUR-1, Blue - 3° PUR-1, Yellow - 3° 

PUR-4, Orange - 2° PUR-4, Red - 1° PUR-4 and the number of patients within each PUR category at the given 

time intervals in months from urine collection. C) Kaplan-Meier plot of progression with respect to the 

dichotomised PUR thresholds described by the corresponding colours Green – PUR-4 < 0.174, Red – PUR-4 ≥ 

0.174 and the number of patients within each group at the given time intervals in months from urine collection. 
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Tables: 

Table 1. Characteristics of the Training and Test cohorts. 
Characteristic Training Test p-value 

Total, n (%) 358 (67.0) 177 (33.0) - 

Collection centre:    

NNUH 203 109 - 

RMH 83 38 - 

Dublin 9 8 - 

Atlanta 63 22 - 

PSA, ng/ml, mean (median; IQR) 10.6 (6.9, 6.4) 10.9 (6.9, 7) 0.85 

Age, yr, mean (median; IQR) 65.8 (67, 11) 67.2 (67, 11) 0.71 

Family history of PCa, %; no, yes, NA 3.0, 6.1, 90.8 0.6, 6.2, 93.3 1 

First biopsy, n (%) 298 (82.78) 145 (81.46) 1 

Prostate volume, ml; mean (median; IQR) 59.2 (49.8, 30.4) 61.1 (49.2, 32.8) 0.95 

PSAD, ng/ml; ml, mean (median; IQR) 0.29 (0.19, 0.16) 0.29 (0.18, 0.17) 0.95 

Suspicious DRE, n 107 52 1 

Diagnosis, n: 358 177 0.9 

NEC, n (%) 62 (17.3) 30 (17.0) - 

D'Amico Low n (%) 89 (24.9) 45 (25.4) - 

D'Amico Intermediate n (%) 139 (38.8) 69 (39.0) - 

D'Amico High n (%) 61 (17.0) 27 (15.3) - 

Metastatic (bone scan) n (%)* 7 (2.0) 6 (3.3) - 

CAPRA, n: 288 145 1 

Low (0-2) n (%) 97 (33.7) 49 (33.7) - 

Intermediate (3-5) n (%) 108 (37.5) 53 (36.6) - 

High (≥6) n (%) 83 (28.8) 43 (29.7) - 

Gleason, n: 292 144 0.5 

Gs = 6, n (%) 119 (40.8) 64 (44.4) - 

Gs = 7, n (%) 131 (44.9) 56 (38.9) - 

Gs ≥ 8 n (%) 42 (14.4) 24 (16.7) - 

DRE = digital rectal examination; Gs = Gleason score; IQR = interquartile range; NA = not available; PCa = 

prostate cancer; PSA = prostate-specific antigen; PSAD = prostate-specific antigen density; TRUS = 

transrectal ultrasound. NEC=No Evidence of Cancer/PSA normal for age or <1ng/ml. *Metastatic men were 

diagnosed as High risk at time of urine collection. Percentages reported for CAPRA and Gleason headings 

are calculated with the data available for that heading; out of the 535 samples, only 467 data available for 



CAPRA groupings and 436 Gleason scores available, where no biopsy took place, was refused or information 

was incomplete. 



Table 2. Gene probes incorporated by LASSO regularisation in the optimal model. 

Gene targets of nanoString probes in PUR model: 

AMACR MEX3A 

AMH MEMO1 

ANKRD34B MME 

APOC1 MMP11 

AR (exons 4-8) MMP26 

DPP4 NKAIN1 

ERG (exons 4-5) PALM3 

GABARAPL2 PCA3 

GAPDH PPFIA2 

GDF15 SIM2 (short) 

HOXC6 SMIM1 

HPN SSPO 

IGFBP3 SULT1A1 

IMPDH2 TDRD 

ITGBL1 TMPRSS2/ERG fusion 

KLK4 TRPM4 

MARCH5 TWIST1 

MED4 UPK2 

 


