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ABSTRACT 

 

Plants employ cell-surface localized receptor-like kinase (RLK) and receptor-like protein (RLP)-type 

pattern recognition receptors to monitor their surroundings for the presence of infectious pathogens. 

RLPs interact with the SUPPRESSOR OF BIR1-1 (SOBIR1) RLK for stability and signaling, but it is 

unclear how signaling is activated. Here, I reveal that the SERK3 RLK is recruited to the tomato Cf-4 RLP 

upon activation by the Cladosporium fulvum effector Avr4, followed by Cf-4-SOBIR1 co-internalization 

into late endosomes/multivesicular bodies (LE/MVBs). This extends known RLK-type early activation 

mechanisms and subcellular localization changes to RLP-SOBIR1-based detection systems, pointing at a 

widely generalisable mechanism for receptor turnover. Secretory and endocytic membrane trafficking 

pathways underlie the potentiation and execution of defence. Membrane-associated Rab GTPases are 

critical regulators of specific pathways, and accumulate at pathogen infection sites, yet their roles in 

immunity are poorly understood. Here, proteomic analysis of the secretory ARA5/RABD2a complex upon 

elicitation with bacterial flagellin revealed increased secretion of several uncharacterized RLKs and 

modules of cell-surface based chemical defences. Comparison between proteomic changes on 

ARA5/RABD2a and the endocytic ARA7/RABF2b points at flagellin-induced turnover of cell-surface 

proteins that monitor cell wall integrity and function in processes involving reactive oxygen species. 

ARA7/RABF2b concentrated under bacterial infection sites, and upon flagellin elicitation recruited the 

atypical resistance proteins TIR-NBS3 (TN3) and HOMOLOG OF RPW8 4 (HR4). TN3 and HR4 were 

required for immunity against non-adapted powdery mildew and could be monitoring Rab GTPase-

mediated endosomal activity in plant defence. 
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CHAPTER 1 

GENERAL INTRODUCTION 

 

This chapter contains edited portions from the following published works to which I contributed: 

(1) “Avr4 promotes Cf-4 receptor-like protein association with the BAK1/SERK3 receptor-

like kinase to initiate receptor endocytosis and plant immunity” 

Jelle Postma, Thomas W. H. Liebrand, Guozhi Bi, Alexandre Evrard, Ruby R. Bye, Malick 

Mbengue, Hannah Kuhn, Matthieu H. A. J. Joosten, Silke Robatzek  

New Phytologist (2016) doi: 10.1111/nph.13802 

(2) “A Moving View: Subcellular Trafficking Processes in Pattern Recognition Receptor-

Triggered Plant Immunity” 

Sara Ben Khaled, Jelle Postma, Silke Robatzek.  

Annual Review of Phytopathology (2015) doi: 10.1146/annurev-phyto-080614-120347 

 

1.1 - Plants and microbes 

Plants exist in ecosystems shared with a diversity of other organisms, with which they 

continuously interact (Austin and Ballaré, 2014). Microbes populate the phyllosphere and 

rhizosphere, and can engage in mutualistic, commensal, or pathogenic interactions with the plant 

host (Rosado et al., 2018). Most agronomically important microbial plant symbionts are found to 

be filamentous fungi, oomycetes, or bacteria (Dean et al., 2012; Mansfield et al., 2012; Kamoun 

et al., 2015). Besides engaging in crucial mutualistic symbioses with arbuscular mycorrhizal fungi 

or rhizobacteria, plants are under constant threat of microbial pathogens which depend on plants 

for access to nutrients in order to complete their life cycle, at the expense of plant biological 

fitness. Plants are resistant to most pathogens, but can be infected by lineages that have adapted 

to particular hosts through co-evolution, or by pathogens that have developed strategies to 

circumvent defenses of a broad range of hosts (Garcia-Guzman and Morales, 2007). 

Upon coming into physcial  contact with the host epidermis, pathogens encounter pre-formed 

structural defenses, such as the waxy cuticle and the cell wall, which consists of a rigid, highly 

interlinked polysaccharide matrix (Serrano et al., 2014; Underwood, 2012).  Spores of filamentous 

fungal and oomycete pathogens germinate and produce an initial germ tube which may grow into 
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an appressorium, or may form hyphae that grow across the surface and invade natural openings 

such as stomata or wounds. The appressorium is a structurally reinforced hyphal bulb, which 

builds up to high fluid pressures and projects a penetration peg that breaches the host cell wall, 

upon which an intimate interaction between fungal invasion structures and the host plasma 

membrane (PM) is established (Szabo and Bushnell, 2001; Whisson et al., 2016). At this site, an 

elaborate molecular exchange takes place, where pathogen effectors accumulate in the 

extracellular space and translocate into the host cell to modify its physiology and suppress 

defenses. 

Foliar bacterial pathogens broadly seek to access the intracellular space of the host apoplast, and 

can enter through natural openings such as stomata or wounds. Like filamentous pathogens, 

bacteria concentrate their efforts on specific locations at the host cell surface. Instead of 

breaching the cell wall and establishing close membrane contact, they extend needle-like 

modified pili that reach the host cell membrane and pierce it, forming a channel through which 

effector molecules are inserted into the host cytoplasm, where they modulate host processes in 

order to facilitate bacterial infection (Melotto and Kunkel, 2013). Recent studies have shown that 

the bacterial pathogens Pseudomonas syringae pv. tomato (Pto) DC3000 which is the causative 

agent of bacterial speck disease, as well as Agrobacterium tumefaciens which causes crown gall 

disease, translocate effectors into the host cell in a non-homogenous manner. Using small 

fluorescent probes that allow tagged effector molecules to pass through secretion systems, 

effectors were shown to accumulate in the host cytoplasm coinciding with bacterial positions at 

the cell surface (Li et al., 2014; Li and Pan, 2017; Park et al., 2017). 

1.2 - Cell-surface based surveillance by pattern recognition receptors 

In addition to pre-formed structural defenses, the plasma membrane of host cells is decorated 

with pattern recognition receptors (PRRs), that have specific binding affinity to a broad range of 

extracellular microbe-associated molecular patterns (MAMPs) that signify the presence of ―non-

self‖ microbial intruders, or danger-associated molecular patterns (DAMPs) that are ―self‖ or 

―modified-self‖ molecules which are formed extracellularly, or are secreted in response to stress 

(Choi and Klessig, 2016; Monaghan and Zipfel, 2012). Most PRRs consist of transmembrane 

(TM) proteins that present an extracellular leucine-rich repeat (LRR) containing domain that 

confers recognition specificity, but can also contain extracellular carbohydrate-binding LysM or 

lectin domains that mediate pattern detection instead (Boutrot and Zipfel, 2017).  
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1.3 - Receptor-like kinases in immunity 

Broadly, two classes of PRRs are distinguished, based on the presence of an intracellular kinase 

domain on receptor-like kinases (RLKs), or a short cytosolic non-kinase tail present in receptor-

like proteins (RLPs (Wu and Zhou, 2013). Known RLK-type PRRs include CHITIN-ELICITOR 

RECEPTOR KINASE 1 (CERK1) and LYSM-CONTAINING RECEPTOR-LIKE KINASE 5 (LYK5), 

which cooperatively bind the fungal MAMP chitin, LIPOOLIGOSACCHARIDE-SPECIFIC 

REDUCED ELICITATION (LORE) mediating recognition of bacterial lipopolysaccharides, 

FLAGELLIN-SENSING 2 (FLS2) that binds the bacterial flagellin-derived 22 amino acid epitope 

flg22, and EF-TU RECEPTOR (EFR) that binds the bacterial Elongation Factor-Tu (EF-Tu)-

derived 18 amino acid epitope elf18 (Cao et al., 2014; Ranf et al., 2015; Boller and Felix, 2009). 

In addition, RLK-type PRRs can function in perceiving DAMPs, such as the PEP1 RECEPTOR 1 

and 2 (PEPR1, PEPR2) which bind the secreted peptide pep1, and WALL-ASSOCIATED 

KINASE 1 (WAK1) which detects cell-wall derived oligogalacturonide DAMPs (Kohorn and 

Kohorn, 2012; Tang and Zhou, 2016). 

FLS2 serves as a model PRR, of which the events following flg22 perception and receptor 

activation are well characterized. Upon binding flg22, FLS2 recruits the co-receptor 

BRASSINOSTEROID INSENSITIVE 1 (BRI1)-ASSOCIATED RECEPTOR KINASE/SOMATIC 

EMBRYOGENESIS RECEPTOR KINASE 3 (BAK1/SERK3) and engages in transphosphorylation 

events. SERK-member engagement is shared with the developmental brassinosteroid receptor 

BRI1, but results in different outputs (Roux et al., 2011; Schwessinger et al., 2011; Chinchilla et 

al., 2009). The receptor-like cytoplasmic kinase (RLCK) BOTRYTIS-INDUCED KINASE (BIK1) 

that interacts with FLS2 pre-activation, is phosphorylated and released from the receptor 

complex, and subsequently phosphorylates the membrane-localized NADPH-oxidase 

RESPIRATORY BURST OXIDASE HOMOLOGUE D (RBOHD) which results in the production of 

extracellular reactive oxygen species (ROS; (Kadota et al., 2014). Additionally, FLS2 activation 

results in the sequential phosphorylation of MITOGEN-ASSOCIATED PROTEIN KINASES 

(MAPKs) in a MAPK cascade, that positively regulates the expression of defense-related genes 

and confers resistance to pathogens (Rasmussen et al., 2012). Furthermore, FLS2 activation is 

coupled to the production and downstream signaling of the phytohormones salicylic acid (SA) and 

ethylene, which is a hallmark of defense activation in response to biotrophic pathogens (Zipfel et 

al., 2004). FLS2 activation can be regulated at the receptor complex level by BAK1-

INTERACTING RECEPTOR-LIKE KINASE 2 and 3 (BIR2, BIR3), which bind to BAK1/SERK3 

and inhibit its interaction with FLS2 (Halter et al., 2014; Imkampe et al., 2017). Additionally, 

heterotrimeric G-proteins and protein phosphatases interact with BIK1 and control its 

phosphorylation status (Liang et al., 2016). 
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1.4 - Receptor-like proteins in immunity 

LRR-RLP-type PRRs perceive highly diverse extracellular patterns, including MAMPs that are not 

associated with specialized virulence factors, such as Phytophthora elicitins detected by the 

solanaceous ELICITIN RESPONSE (ELR), bacterial cold-shock protein epitope csp22 detected 

by both Nicotiana benthamiana RECEPTOR-LIKE PROTEIN REQUIRED FOR CSP22 

RESPONSIVENESS (CSPR) and Arabidopsis RLP23, and Cuscuta factor secreted by the 

parasitic plant Cuscuta reflexa, which is detected by tomato CUSCUTA RECEPTOR 1 (CuRe1; 

(Domazakis et al., 2018; Du et al., 2015; Saur et al., 2016; Hegenauer et al., 2016). 

RLPs also perceive apoplastic enzymatic virulence factors such as the P. sojae glycosyl hydrolse 

XEG1 detected by N. benthamiana Response to XEG1 (RXEG1), ethylene-inducing fungal 

xylanases detected by tomato EIX-RESPONDING 2 (EIX2), and fungal endopolygalacturonases 

detected by Arabidopsis RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1 

(RBPG1)/RLP42 (Wang et al., 2018; Ron, 2004). In addition, RLPs function in detecting pathogen 

secreted effectors, such as tomato Ve1 that detects Verticillium dahliae Avirulence on Ve1 tomato 

(Ave1), as well as RLPs from the well-studied model pathosystem Cladosporium fulvum/tomato, 

with tomato Cf-2 that detects effects of the Avr2 effector on the apoplastic protease Required for 

C. fulvum Resistance 3 (RCR3), Cf-9 that detects the Avr9 effector which requires the presence 

of a yet-unidentified high-affinity binding site (HABS) at the cell surface, and Cf-4 that detects the 

apoplastic effector Avr4 which protects fungal chitin against the activity of apoplastic chitinases 

(Jonge et al., 2012; Dixon et al., 1996; Van der Hoorn, 2001; Takken et al., 1999). 

RLPs interact with the RLK SUPPRESSOR OF BIR1-1 (SOBIR1), which is necessary for 

accumulation and signaling of the majority of tested RLPs (Liebrand et al., 2014). SOBIR1 was 

previously identified in a screen for suppressors of the spurious cell death phenotype in bir1-1 

mutants, and was recently found to engage with BAK1/SERK3 to trigger cell death (Gao et al., 

2009; Domínguez-Ferreras et al., 2015). Based on biochemical studies, SOBIR1-BAK1/SERK3 

heterodimerization and cell death activation can be inhibited by the RLK BIR1, which reminisces 

of the role for BIR2 and BIR3 in preventing heterodimerization and signal activation of FLS2 with 

BAK1/SERK3 (Liu et al., 2016). 

Evidence is mounting that RLP-SOBIR1 pairs also depend on recruitment of SERK members in 

order to initiate signaling. Genetically, SERK1 has previously been implicated in Cf-4 mediated 

resistance, as well as SERK3 for Ve1 and RLP30 resistance (Fradin et al., 2011). Recent 

biochemical studies show that RLP-SOBIR1 two-component-receptor modules that contain for 

example ELR, RLP23, NBRXEG1, Cf-4 or Cf-9 physically recruit SERK members in order to 

activate down stream signaling, converging the RLP pathway onto known RLK signal acivation 

pathways at the PM (Chapter 3; (Du et al., 2015; Albert et al., 2015; Wang et al., 2018; Postma et 
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al., 2016). The outputs of RLP-based receptor systems are similar to known RLK outputs, but 

often include the induction of a hypersensitive response (HR), which manifests as cell death in 

expressing tissue. Additionally, MAPK activation, ethylene and SA production, as well as ROS 

production are coupled to RLP activation (Stulemeijer et al., 2007; Thomas et al., 2000; Brading 

et al., 2000). 

1.5 - Intracellular surveillance by NLRs 

In addition to cell-surface perception of extracellular MAMPs, plants employ intracellular detection 

platforms that recognize the presence of pathogen-borne effectors. These consist of nucleotide-

binding (NB) domain and LRR-containing (NLR) proteins, which are among the most rapidly 

evolving gene families in plants (Wu et al., 2017). Broadly, two classes of NLRs are defined, that 

are distinguished based on the presence of an N-terminal TOLL/INTERLEUKIN1 RECEPTOR 

(TIR) or coiled coil (CC) domain, grouping them in TIR-NLRs (TNLs) and CC-NLRs (CNLs) (El 

Kasmi and Nishimura, 2016). They can directly bind effectors, or bind to effector targets 

(guardees) and monitor their integrity, triggering immune signaling upon effector modification of 

self molecules. In addition, they can contain non-canonical integrated domains that replicate 

patterns found on bona fide effector targets. Thus, NLRs can probe for the presence of effectors 

without physically associating to the effector target (Sarris et al., 2016; Ellis, 2016). 

NLR activation is coupled with a conformational change from the ADP-bound ―off-state‖ to the 

ATP-bound ―on-state‖, and can require homodimerization through TIR or CC domains. Activation 

is further hallmarked by signaling through the major determinants ENHANCED DISEASE 

SUSCEPTIBILITY 1 (EDS1), commonly associated with TNL signaling, and NON-RACE-

SPECIFIC DISEASE RESISTANCE 1 (NDR1), which is associated with CNL signaling. EDS1 

furthermore interacts with and PHYTOALEXIN DEFICIENT 4 (PAD4) and SENESCENCE-

ASSOCIATED GENE 101 (SAG101), both necessary for defense activation which is coupled to 

the production of SA (El Kasmi and Nishimura, 2016; Li et al., 2015). Often, NLR-activation 

results in cell death, but this does not fully correlate with their capacity to mediate resistance 

(Greenberg et al., 2000). 

TNLs can be truncated, and exist as functional TIR, TIR-NBS (TN) or TIR-unknown (TX) proteins. 

Arabidopsis encodes 21 TN genes, which are spread throughout the genome and cluster together 

with genes encoding full-length NLRs, with which they are thought to function in heteromultimeric 

complexes as a general mechanism (Nandety et al., 2013). TN proteins have the capacity to 

induce cell death and resistance through canonical EDS1/PAD4 defense activation modules. 
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NLRs can function together in multimeric complexes, as exemplified by Arabidopsis RESISTANT 

TO P. SYRINGAE 4 (RPS4) and RESISTANT TO RALSTONIA SOLANACEARUM 1 (RRS1), 

which form heteromultimers that include NLR homodimers and EDS1 and PAD4 (Cesari et al., 

2014; Williams et al., 2014). More extremely, the recently emerging ―sensor-helper‖ model, 

present in asterids, reveals the functional dependency of multiple sensor-NLRs, that detect 

unrelated effectors, on a limited number of helper-NLRs. Sensor-NLR clades are highly 

diversified, while helper-NLR clades are conserved, which points at an evolutionary flexible 

system that allows for rapid adaptation to novel effectors while maintaining common signaling 

output (Wu et al., 2017, 2018). 

1.6 - RPW8-type resistance proteins 

In Arabidopsis, such a network may be echoed. A small number of ACTIVATED DISEASE 

RESISTANCE 1 (ADR1) family of CNLs is required for the defense activation of multiple sensor-

TNLs, that detect functionally unrelated effectors. ADR1 encodes an atypical CNL, in which the 

CC-domain in its entirety is homologous to full-length RESISTANCE TO POWDERY MILDEW 8 

(RPW8) (Bonardi et al., 2011; Collier et al., 2011; Dong et al., 2016). The RPW8 locus is present 

in Arabidopsis ecotype Col-0 (Colombia), but was originally identified in ecotype Ms-0 (Moscow), 

where it encodes the homologs RPW8.1 and RPW8.2, of which both confer broad-spectrum 

resistance to adapted powdery mildews when expressed in Col-0 (Xiao et al., 2005). So-defined 

CC-RPW8 (CCR) domains are additionally found in the family of tobacco helper-NLR N-

REQUIREMENT GENE 1 (NRG1), and overexpression of individual CCR-domains of ADR1-like 

and NRG1-like proteins is associated with the induction of cell death (Collier et al., 2011; Peart et 

al., 2005). 

In Ms-0, RPW8.2 encodes a TM-CC protein, which is membrane associated, carried on secretory 

vesicles to the haustoria of powdery mildews, and there promotes cell wall apposition, localized 

ROS production, the initiation of cell death and associated resistance (Kim et al., 2014). RPW8.2 

membrane targeting is required for its function in promoting cell death and in conferring post-

penetration resistance against all tested powdery mildew strains (Wang et al., 2013). Initiation of 

RPW8-based defense signaling is dependent on EDS1, PAD4 and NDR1, and is dependent on 

SA signaling (Xiao et al., 2005). 

Col-0 encodes four genes on the RPW8 locus which consist of HOMOLOG OF RPW8.2 1 

through 4 (HR1-4). HR3 is most similar to RPW8.2 and RPW8.1, and all RPW8 homologs in Col-

0 and Ms-0 are thought to derive from a HR3-like ancestral gene (Zhong and Cheng, 2016). Out 

of HR1-4, it was recently found that upon p35S-driven overexpression in Arabidopsis, only HR3 

triggered necrotic cell death at resting state, but HR1-3 conferred resistance to the adapted 

powdery mildew Golovinomyces cichoracearum (Berkey et al., 2017). C-terminally fluorescently 
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tagged HR1 and HR3 localized to the PM, HR2 surrounded chloroplasts, and HR4 could not be 

detected in Arabidopsis, but localized to punctae and the cytoplasm in N. benthamiana transient 

expression. Upon G. cichoracearum infection, only HR3 accumulated under the attempted 

penetration site, but at later time points, all homologs enriched around haustoria. Specifically, 

HR4 was found to localize to punctate structures at G. cichoracearum haustoria in transiently 

expressing N. benthamiana epidermal cells (Berkey et al., 2017). 

1.7 - Plant subcellular trafficking and Rab GTPases 

The ability for spatial reorganisation of cellular components provides an essential platform 

through which to prepare and execute defences. Pre-formed cell walls are produced by cellulose 

synthases, which are translocated from inside the cell to the cell surface where they deposit cell 

wall polymers to build initial barriers (Kumar and Turner, 2015; Zhang et al., 2016). Upon infection 

by pathogens that concentrate their efforts at small regions on the cell surface, induced structural 

defenses such as the location-specific formation of callose-rich cell wall appositions in the form of 

papillae, depend on the focal accumulation of callose synthases, which are retrieved from their 

default location and concentrate at the pathogen contact site (Ellinger and Voigt, 2014). 

Plant cells achieve spatial reorganisation through employing membrane trafficking (fig. 1.1). 

Bounding membranes of, among others, the endoplasmic reticulum (ER), Golgi or PM can 

produce membrane vesicles that carry membrane-associated and soluble cytosolic or lumenal 

cargoes through the cytoplasm to deliver them at other subcellular locales. This process starts by 

the induction of membrane curvature at the donor membrane through the recruitment of coat 

proteins such as COPI functioning in the Golgi, and clathrin, which performs this function at the 

PM. This is coupled to cargo sorting mediated by adaptor-proteins. Further membrane 

invagination, up to the point where scission is induced by proteins such as dynamin, and 

subsequent vesicle release into the cytoplasm. Upon trafficking through the cytosol, often 

mediated by interaction with actin or microtubule filaments, tethering factors link vesicles to the 

acceptor membrane, and upon closer approach, soluble N-ethylmaleimide-sensitive-factor 

attachment receptors (SNAREs) present on both membranes form multimeric complexes, and 

mediate membrane fusion which results in cargo delivery at the acceptor membrane (Bonifacino 

and Glick, 2004). 
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Figure 1.1. Schematic overview of membrane trafficking mechanisms, and association with Rab GTPases. At the cytosolic 

side of the donor membrane (top left), membrane invagination, recruitment of coat proteins and membrane scission generate a 

vesicle. Trafficking regulators such as SNARE proteins and Rab GTPases are present on the vesicle (middle), which associates 

with, and travels along the cytoskeleton. Rab GTPases cycle through a GDP-bound cytosolic state, and a GTP-bound membrane-

associated state. At the membrane, upon GTP hydrolysis by the Rab GTPase, Rab effectors are activated and perform diverse 

downstream functions. Vesicles then tether and fuse with acceptor membranes, upon which their cargo is delivered (lower right). 

 

Distinct subcellular trafficking pathways exist, which define specific routes between donor and 

acceptor membranes. Pathway-specific membrane-associated proteins govern the biochemical 

processes occurring on these membrane compartments, and can influence their fate. Among 

these are small membrane-associated G-proteins belonging to the Rab GTPase family . 

Arabidopsis encodes 57 Rab GTPases, which fall within 8 clades (RABA-H) that are grouped 

based on homology to mammalian clades (Woollard and Moore, 2008). Rab GTPases are small, 

lipid-modified molecular switches that shuttle between a membrane-associated, active GTP-

bound state, and a cytosolic, inactive GDP-bound state. Cytosolic Rab GTPases interact with 
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GDP-dissociation inhibitors (GDIs) which cover the lipid group, thus preventing membrane 

association and nucleotide exchange (Saito and Ueda, 2009a). Rab GTPases engage with GDI-

dissociation factors (GDFs) which remove GDIs and allow membrane association. In Arabidopsis, 

GDIs are represented by Prenylated Rab Acceptor (PRA)/Ypt-Interacting Proteins (Yip) (Alvim 

Kamei et al., 2008). Membrane-associated, GDP-bound Rab GTPases interact with Rab Guanine 

Exchange Factors (Rab GEFs), which promote GTP association. In their GTP-bound state, Rab 

GTPases are considered active, and engage with a diversity of associated proteins which are 

Rab effectors, and of which the activity can be regulated by their interacting Rab GTPases 

(Grosshans et al., 2006). Activity is ceased upon GTP hydrolysis, promoted by Rab GTPase-

Activating Proteins (Rab GAPs), which leads to subsequent removal from the membrane (Saito 

and Ueda, 2009a). 

1.8 - Secretory and endocytic pathways 

The default secretory pathway (fig. 1.2) describes the membrane trafficking route taken by newly 

biosynthesized proteins, starting at the endoplasmic reticulum (ER), transitioning through cis-, 

medial and trans-Golgi cisternae, the trans-Golgi Network (TGN) which in plants also functions as 

the early endosome (EE), before being secreted to the PM (Rojo and Denecke, 2008; Foresti and 

Denecke, 2008). Rab GTPases in functioning in the early secretory pathway localize to the Golgi 

and TGN/EE, and fall within the subclades RabD1 (RABD1) and RabD2 (ARA5/RABD2a, 

RABD2b, and RABD2c (Pinheiro et al., 2009; Woollard and Moore, 2008). Constitutively GDP-

bound mutants of ARA5/RABD2a exerted a dominant negative effect on traffic between the ER 

and Golgi, but in loss-of function mutations, showed considerable functional overlap with other 

RabD2 members (Pinheiro et al., 2009). Post-Golgi secretory processes occur between the 

TGN/EE and PM, function downstream of RabD, and are mediated by Rab GTPases in the RabA 

and RabE clades. While knowledge on the function of RabE proteins is limited, they localized to 

the Golgi, and dominant-negative fusions accumulated secretory markers in the Golgi (Speth et 

al., 2009; Mayers et al., 2017). The RabA clade is highly diversified in plants, with members that 

localize to the TGN/EE and mediate secretory traffic between the TGN/EE and PM, as well as 

between TGN/EE and the forming cell plate upon cytokinesis (Lunn et al., 2013; Asaoka et al., 

2013; Feraru et al., 2012). 
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Figure 1.2. Schematic overview of membrane trafficking pathways in plants. Newly synthesized secreted proteins originate at 

the endoplasmatic reticulum (ER, lower left), and travel through the Golgi apparatus, encountering cis-, medial- and trans-Golgi 

compartments successively. Mediated by RabD and RabA/E-type GTPases, they are transferred into the trans-Golgi network/early 

endosome (TGN/EE, middle), from where they are delivered to the plasma membrane (PM) by secretory vesicles (SV). The 

TGN/EE consists of a domain, or population, that is VAMP721 and RabA-positive and has secretory activity, as well as a domain or 

population that is SYP43, SYP61 and VHA-a1 positive, which exhibits both endocytic and secretory activity. Retrieval of PM-

localized cargoes occurs through clathrin-dependent endocytosis (top right) by means of clathrin-coated vesicles (CCVs), or by 

clathrin-independent endocytosis. Endocytosed cargoes traffic through the TGN/EE which, under control of the ESCRT complex, 

generates late endosomes/multivesicular bodies (LE/MVB) containing cargo-carrying intraluminal vesicles (ILVs). LE/MVBs 

associate with RabF and RabG-type GTPases, which govern its maturation and delivery to the vacuole (lower right), into which ILVs 

and their cargoes are released. Arrows indicate trafficking directionality of secreted and endocytosed cargoes. 
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The endocytic pathway (fig. 1.2) originates at the PM, where T-PLATE/clathrin-dependent and 

clathrin-independent endocytosis internalize membrane localized cargoes which then accumulate 

in the TGN/EE (Paez Valencia et al., 2016). From here, cargoes can recycle back to the PM, or 

be targeted to late endosomes (LE)/multivesicular bodies (MVBs), which are thought to mature 

from the TGN/EE (Scheuring et al., 2011; Dettmer et al., 2006). LE/MVB maturation is coupled to 

the formation of intraluminal vesicles (ILVs) through the action of multimeric ENDOSOMAL 

SORTING COMPLEX REQUIRED FOR TRANSPORT (ESCRT) components, which are required 

for the endosomal sorting of endocytic cargoes that are targeted to the vacuole for degradation 

(Gao et al., 2017; Buono et al., 2017). Known Rab GTPases functioning along the endocytic 

pathway belong to the RabF clade with the close homologs RHA1/RABF2a and ARA7/RABF2b 

localizing to TGN/EE as well as LE/MVBs (Ueda et al., 2004), the plant-unique RabF protein 

ARA6/RABF1 localizing to LE/MVBs (Ueda et al., 2001), and RabG proteins that localize to the 

vacuolar membrane (Geldner et al., 2009). During endosomal maturation, LE/MVBs undergo 

RabF to RabG conversion, through the action of the LE/MVB localized RabF effectors 

SAND/MONENSIN SENSITIVITY 1 (SAND/MON1) and CALCIUM CAFFEINE ZINC 

SENSITIVITY 1 (CCZ1), which are bona-fide ARA7 effectors and function in complex as the GEF 

for RabG proteins (Cui et al., 2014a; Singh et al., 2014a). Interestingly, it has recently been 

shown that the ER actively participates in facilitating endocytic processes. ER-PM-contact site-

localized VAMP-ASSOCIATED PROTEIN 27 (VAP27) proteins associated with clathrin and 

endocytic membranes, and positively regulated endocytic activity (Stefano et al., 2018). 

Furthermore, LE/MVBs physically associate with the ER, which influences their distribution and 

streaming, with overexpression of ER-localized structural proteins that affect ER morphology also 

leading to abberant localizations of LE/MVB-dependent endosomal cargoes (Stefano et al., 

2015). 

1.9 - Trafficking pathways share the trans-Golgi network/early endosome 

Both secretory and endocytic traffic pass through the TGN/EE, yet cargoes of these pathways 

can be transported to their destinations in a pathway-specific manner. The TGN/EE is not one 

homogenous compartment, but can be subdivided into separate populations based on multiple 

criteria (Gendre et al., 2015). Firstly, TGN/EE compartments can mature from trans-Golgi 

cisternae, which is supported by the observation of Golgi-associated (GA) and Golgi-independent 

(GI) populations of TGN/EE, when marked by the TGN/EE-resident SNARE SYNTAXIN OF 

PLANTS 43 (SYP43; (Uemura et al., 2014). In agreement with this, upon chemical disruption, 

some TGN/EE compartments recover in a partially Golgi-independent manner, pointing at partialy 

Golgi-independent origins, potentially of endocytic origin (Ito et al., 2017). Secondly, two 

populations of TGN/EE can be distinguished, based on the presence of RABA2a, RABA1b and 

VAMP721 and high amounts of clathrin, which mark a population with secretion and PM-
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recycling, or the presence of SYP61, SYP43 and VHA-a1, and secretory vesicle clusters, which 

mark a populations that is associated with both secretory and endocytic traffic (Gendre et al., 

2015; LaMontagne and Heese, 2017). The precise compartmentalization and dynamics of 

TGN/EE are as of yet poorly understood, but recent advances in subcellular fractionation, 

proteomics and lipidomics have begun to shed light on mechanisms of cargo sorting at this major 

trafficking hub (Wattelet-Boyer et al., 2016). 

1.10 - Functions of the secretory pathway in immunity 

The secretory pathway plays an important role in delivering PRRs to the cell surface, potentiating 

cells for the detection of extracellular patterns. Newly synthesized PRRs first localize to the ER, 

where they are processed and folded into their correct structures. This requires the ER quality 

control (ERQC) machinery that, when impaired, cause the accumulation of EFR in this organelle 

(Farid et al., 2013; Häweker et al., 2010; Li et al., 2009; Lu et al., 2009; Nekrasov et al., 2009). 

Consequently, loss-of-function mutants in ERQC components are insensitive to elf18 and show 

enhanced susceptibility to bacterial infection (Häweker et al., 2010). PRRs carry a typical N-

terminal signal peptide that directs the receptors for ER export to enter the secretory pathway. 

FLS2 associates with ER-resident RETICULON-LIKE PROTEINS GROUP B (RTNLB) 1 and 2, 

which in loss-of-function mutants caused FLS2 accumulation at the ER (Lee et al., 2011). 

Similarly, Cf-4 interacts with ERQC machinery, and upon genetic interference with the ERQC 

components CALRETICULIN 3a (CRT3a) and HSP70-interacting BiP chaperones, Cf-4 

accumulated, but was incorrectly glycosylated and affected in its capacity to mount HR upon Avr4 

treatment (Liebrand et al., 2012). 

A distinct member of the RabA clade, RABA1b has been implicated in transport of FLS2 to the 

PM (Choi et al., 2013). Co-expression of dominant-negative (DN) RABA1b and FLS2 in N. 

benthamiana significantly reduced FLS2 PM localization, while FLS2 accumulated in small 

cytosolic vesicles. As DN-RABA1b expression caused morphological changes to SYP61-marked 

TGN/EE, this suggests that RABA1b is involved in transport of FLS2 from the TGN/EE to the PM. 

The secretory pathway also responds to activation of immunity. Upon treatment with the MAMPs 

flg22 or fungal xylanase, the PM-localized secretory pathway SNARE proteins PEN1/SYP121, 

SYP122 and SYP132 are rapidly phosphorylated (Kalde et al., 2007; Benschop et al., 2007). 

Furthermore, treatment with the central defense hormone SA leads to transcriptional changes 

that depend on the SA-receptor NON-EXPRESSOR OF PATHOGENESIS-RELATED (PR) 

GENES 1 (NPR1), and include upregulation of PR-genes which encode for secreted antimicrobial 

proteins (Wang et al., 2005). SA and NPR1-dependent transcriptional reprogramming also 

includes the upregulation of ERQC components and secretory pathway genes that are required 

for the secretion of PR proteins (Wang et al., 2005). SA-induced secretory trafficking also seems 
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to be engaged in PRR delivery to the PM. SA upregulates expression and PM-accumulation of 

the PRRs FLS2, EFR and CERK1, as well as BAK1/SERK3 (Tateda et al., 2015). This is 

dependent on the ER-localized ACCELERATED CELL DEATH 6 (ACD6), a membrane-

associated protein involved in positive feedback regulation with SA. ACD6 forms complexes with 

FLS2 and ER-chaperones, possibly to facilitate the folding and delivery of FLS2 under SA-

inducing conditions (Zhang et al., 2014b). 

A client of upregulated secretion upon SA-signaling is PR-1, which is a cysteine-rich protein that 

accumulates in the extracellular space to high levels upon pathogen challenge (van Loon, 1975; 

Van Loon and Van Strien, 1999). It exerts antimicrobial effects through binding and sequestering 

sterols from pathogen membranes (Gamir et al., 2017). Upon fluorescent tagging, it localizes to 

ER and Golgi, and is dependent on canonical secretory processes to be exported (Watanabe et 

al., 2013; Pečenková et al., 2017). PR-1 secretion is negatively affected by the Golgi-resident 

SNARE MEMBRIN-12 (MEMB12), which promotes retrograde Golgi-ER traffic, and is itself 

negatively regulated by RNA-interference upon infection by Pto DC3000, supporting a role for the 

Golgi in PR-1 secretion and immunity (Zhang et al., 2011b). Post-Golgi secretion of PR-1 requires 

the TGN/EE localized ubiquitin E3 ligase KEEP ON GOING (KEG) which when mutated causes 

PR-1 to accumulate in the vacuole (Gu and Innes, 2012), and requires the PM-localized SNARE 

SYP132, which forms complexes with the TGN/EE-localized secretory SNAREs VESICLE-

ASSOCIATED MEMBRANE PROTEIN 721 (VAMP721) and VAMP722 that are involved in 

TGN/EE-PM transport (Kalde et al., 2007). 

In addition to potentiating the PM with detection capacity and facilitating the secretion of 

antimicrobial proteins, the secretory pathway is involved in the execution of cell-surface based 

immune responses. The PM-localized SNARE PEN1/SYP121 engages with VAMP721/722 and 

the cytosolic SNARE SNAP33, which have resting state functions in default secretion, to promote 

pre-penetration resistance and formation of the callose-rich papilla upon pathogen challenge 

(Kwon et al., 2008; Assaad et al., 2004). Furthermore, upon powdery mildew attempted 

penetration, formation of the papilla co-incides with focal accumulation of the callose synthase 

POWDERY MILDEW RESISTANT 4 (PMR4)/GLUCAN SYNTHASE-LIKE 5 (GSL5), which is 

necessary for pathogen-induced callose deposition (Ellinger et al., 2013). Interestingly, 

overexpression of the secretory Rab GTPase RABA4c results in enhanced PMR4-dependent 

callose deposition and resistance to the adapted powdery mildew Golovinomyces oronti (Ellinger 

et al., 2014a). RABA4c and PMR4 interact in vivo, and because PMR4-dependent enhanced 

callose deposition depends on the activation status of RABA4c, PMR4 is considered to be its Rab 

effector. Upon infection with Pto DC3000, Golgi and PM-localized RABE1d focally accumulated at 

the cell periphery, suggesting the plant engages in the cell-surface concentration of secretory 

processes also in response to bacteria (Speth et al., 2009). Indeed, expression of a permanently 
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GTP-bound constitutive-active (CA) RABE1d conferred increased resistance against Pto 

DC3000, coupled with enhanced secretion of PR-1.  

1.11 - Functions of the endocytic pathway in immunity 

Internalization and late endosomal sorting, which pass cargoes from the PM through the TGN/EE 

and LE/MVB, also contribute to plant immunity. Mutants affected in genes coding for the 

endocytic coat protein CLATHRIN HEAVY CHAIN (CHC) and dynamin-related proteins (DRPs), 

which are homologs of mammalian dynamins that mediate vesicle scission, are impaired in 

endocytic uptake, and show enhanced susceptibility to Pto DC3000 (Collings et al., 2008; Smith 

et al., 2014; Mbengue et al., 2016). Similarly, infection success of Pto DC3000, as well as the 

adapted oomycete pathogen Hyaloperonospora arabidopsidis (Hpa) is enhanced in vps28-2 and 

vps37-1, which are loss-of function mutants in ESCRT subunits that mediate cargo sorting into 

LE/MVBs (Lu et al., 2012; Spallek et al., 2013; Scheuring et al., 2011). Thus, endocytic uptake 

and correct endosomal cargo sorting are required to mount a successful defense response. 

Upon ligand stimulation, cell-surface lcoalized PRRs such as FLS2, EFR and PEPR1 translocate 

into endosomes in a clathrin-dependent manner (Ortiz-Morea et al., 2016; Mbengue et al., 2016; 

Robatzek et al., 2006). At resting state, FLS2 recycles between the PM and TGN/EE as 

evidenced by chemical inhibition of TGN/EE-PM transport using Brefeldin-A (Beck et al., 2012b). 

Upon activation, FLS2 is sorted into LE/MVBs in a BAK1/SERK3-dependent manner, as 

evidenced by co-localization with FM4-64 and endosomal Rab GTPases ARA7 and ARA6 (Beck 

et al., 2012b). Endosomal accumulation of FLS2 occurs in a transient manner, with a maximum of 

FLS2 endosomes at ca. 1 h after activation, and is thought to underlie its vacuolar delivery and 

subsequent degradation (Beck et al., 2012b; Choi et al., 2013). 

Similarly, the tomato RLP EIX2 resides at the PM, and after activation with xylanase, it shows 

increased localization at endosomes that are marked by the LE/MVB marker FYVE (Sharfman et 

al., 2011). In agreement, chemical interference of late endosomal trafficking and disruption of the 

actin cytoskeleton reduces EIX2 endocytosis (Bar and Avni, 2009a). EPS15 homology domain 2 

(EHD2) has been implicated in decreasing the bundling of actin filaments and impairs 

endocytosis of EIX2 upon overexpression (Bar and Avni, 2009a, 2009b). This correlates with a 

reduction in xylanase-triggered HR, ethylene production and PR1 gene expression, and is 

consistent with reduced xylanase-induced HR upon chemical disruption of actin (Bar and Avni, 

2009a). Interestingly, although actin is required for endocytosis of activated FLS2, EHD2 does not 

seem to affect flg22-induced PR1 gene expression, but can interfere with Cf-4 and Cf-9 mediated 

HR (Bar and Avni, 2009b). However, whether EHD2 also inhibits Cf-4 endocytosis, and not FLS2 

endocytosis, remains to be demonstrated. This could be related to EHD2 associating with RLPs 

but not RLKs, as there is evidence that EHD2 interacts with SlEix2 through its coiled-coil domain. 
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1.12 - Connections between the endocytic pathway and cell-surface delivery  

Initial contact between the pathogen and the plant cell is associated with the recruitment and 

focal accumulation of diverse subcellular components. These responses are especially well-

studied in the context of infection by filamentous pathogens, and include the formation to a 

callose-rich papilla (Voigt, 2014), local immobilization of mitochondria, peroxisomes, clustering of 

ER and accumulation of endomembrane compartments of endocytic nature (Nielsen et al., 2012; 

Griffis et al., 2014; Fuchs et al., 2015b; Nielsen et al., 2017b). Indeed, in electron microscopy 

studies, LE/MVBs have been shown to fuse with the PM under pathogen contact sites, which is 

thought to be coupled to the release of ILVs which are then considered extracellular vesicles 

(EVs; (An et al., 2006). 

In concert with this, upon attempted penetration, the plant upregulates the local production of 

toxic metabolites, among which those derived from indole-3-glucosinolate precursors (Bednarek 

et al., 2009; Clay et al., 2009). Enzymes functioning early in the pathway that converts indole-3-

glucosinolates such as those belonging to the CYTOCHROME P81 (CYP81) family have been 

observed at the ER, while final conversion steps are mediated by myrosinases among which is 

PENETRATION 2 (PEN2) that localizes to mitochondria and peroxisomes (Fuchs et al., 2015b). 

The PM-localized ABC-transporter PEN3 focally accumulates at the site of attempted penetration, 

and is thought to export the toxic metabolites thus produced, concentrating chemical defenses at 

the biologically relevant location (Stein et al., 2006; Underwood and Somerville, 2008, 2013). 

PEN3 focal accumulation is thought to be mediated by endocytic uptake from the PM, and fusion 

of LE/MVBs at the cell surface in an unconventional secretion process, but conclusive evidence 

for this is lacking (Underwood et al., 2017). In addition, the PM-localized SNARE PEN1/SYP121 

focally accumulates, and is found in the extracellular space at fungal invasion sites, possibly 

mediated by LE/MVB redirection as well (Assaad et al., 2004; Nielsen et al., 2012). Yet, LE/MVB-

dependent extracellular accumulation of PEN1 is not thought to be required for its biological 

function. While a PEN1 function in regulating the dynamics of callose deposition, which is 

underpinned by default secretory processes, has been demonstrated (Assaad et al., 2004), it can 

form complexes with the LE/MVB-localized snare VAMP727, suggesting potential involvement in 

unconventional secretion (Ebine et al., 2012). 

PEN3 focal accumulation is insensitive to chemical disruption of TGN/EE-dependent recycling 

and default secretory processes (Underwood and Somerville, 2013), providing further evidence 

for its intermediary translocation into LE/MVBs before arriving at the PM. This echoes the 

LE/MVB sorting of FLS2 upon activation, which also did not depend on TGN/EE-based secretion 

or recycling as tested upon chemical disruption (Beck et al., 2012b). Interestingly, PEN3 focal 

accumulation can be triggered in the absence of pathogens upon MAMP treatment with flg22 and 

chitin, independent of protein biosynthesis (Underwood and Somerville, 2013). Using fluorescent 
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fusions, PEN3 can be observed to accumulate at endosomal compartments at time points 

preceding its cell-surface accumulation (Underwood et al., 2017). 

1.13 - Involvement of Rab GTPases in pathogen-targeted traffic 

While both secretory and endocytic traffic can participate in the delivery of defence components 

to the PM and extracellular space, the roles for Rab GTPases on these trafficking pathways are 

poorly understood. Yet, Rab GTPases accumulate at the pathogen interface, suggesting their 

involvement. ARA6-positive LE/MVBs accumulate under attempted penetration sites, and around 

haustoria of the powdery mildew Blumeria graminis f.sp. hordei (Bgh; (Nielsen et al., 2012). 

Interestingly, at resting state, ARA6 has been shown to induce SNARE-complex formation 

between the LE/MVB-localized VAMP727 and PM-localized SYP121/PEN1, pointing at a non-

canonical role for this plant-unique Rab GTPase (Ebine et al., 2011b). 

Upon penetration, haustoria of fungal G. orontii  and the oomycete pathogen Phytophthora 

infestans are surrounded by both ARA7 and ARA6, and LE/MVB-dependent cargoes such as 

activated FLS2 accumulate in the extrahaustorial matrix of P. infestans (Inada et al., 2016; 

Bozkurt et al., 2015). Furthermore, RABG3c localized around P. infestans haustoria (Bozkurt et 

al., 2015). RabG clade proteins are normally localized to the vacuolar membrane, and are 

involved in vacuolar delivery of RabF compartments (Geldner et al., 2009; Singh et al., 2014b). 

Taken together, these data suggest that Rab-GTPase dependent cargo delivery occurs at 

pathogen interfaces. 

All RabF GTPases, RHA1, ARA7 and ARA6, share a common activator in the Rab GEF 

VACUOLAR PROTEIN SORTING 9a (VPS9a; (Goh et al., 2007). ARA7 and ARA6 localize to the 

host-derived extrahaustorial membrane (EHM) of the adapted mildew G. orontii, but VPS9a is 

conspicuously excluded from this location (Inada et al., 2016). This suggests pathogen-mediated 

manipulation of EHM composition, and could suggest active interference with Rab GTPase-

mediated processes through targeting their regulatory complex. Indeed, G. orontii effector 

candidates have been predicted to interact with PRA1 Rab GTPase-regulatory proteins (Mukhtar 

et al., 2011; Weßling et al., 2014). In studies using the nonadapted Bgh on Arabidopsis, VPS9a 

mutants showed an increased penetration success, as well as decreased callose apposition at 

pathogen interfaces (Nielsen et al., 2017b). It is therefore thought that VPS9a/RabF pathways 

contribute to both pre- and postpenetration resistance to nonadapted pathogens. 

LE/MVBs have been proposed to generate EVs through cell-surface delivery and secretion of 

ILVs, based on electron microscopy studies (An et al., 2006). This hypothesis is further supported 

by the observation that Pto DC3000-infection stimulates the biogenesis of LE/MVBs and the 

occurrence of EV-like vesicles in the paramural space, which was dependent on regulators of 

LE/MVB biosynthesis (Wang et al., 2014, 2015). Correspondingly, apoplastic purifications of 
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Arabidopsis contained EVs which share high proteomic identity to published LE/MVB proteomes 

(Rutter and Innes, 2017b). Their occurrence is upregulated upon both SA treatment and infection 

with Pto DC3000, and they carry biotic-stress related proteins such as PEN1/SYP121, PEN3 and 

indole-3-glucosinolate metabolic enzymes (Rutter and Innes, 2017b). More recently, in studies 

using the necrotrophic fungus Botrytis cinerea, ARA6 clusters were observed under attempted 

penetration sites, coupled to the increased delivery of EVs that were shown to carry micro-RNAs 

with fungal targets, pointing at a role for EVs in trans-kingdom delivery of plant-borne defense 

components which thus accumulate inside the pathogen (Cai et al., 2018). While taken together, 

the above observations point at critical roles for endosomal Rab GTPase-regulated trafficking 

pathways in executing defense, it remains to be shown how changes in Rab GTPase activation 

status and subsequent activation of their downstream Rab-effectors contribute to immunity. 

1.14 - Trafficking is subject to effector manipulation and host surveillance 

Because trafficking processes are of fundamental importance to the preparation and execution of 

plant immunity, to pathogens that seek to circumvent host defenses they would make great 

effector targets. Indeed, large scale yeast-2-hybrid (Y2H) screens that probed Arabidopsis host 

protein interactions with a panel of G. orontii, Hpa and Pto DC3000 effectors have yielded 

predicted interactions between pathogen effectors and trafficking regulators that include coat 

proteins, Rab GTPase regulatory proteins, motor proteins and cytoskeletal elements in both 

secretory and endocytic traffic (Mukhtar et al., 2011; Weßling et al., 2014). Furthermore, 

individual effectors have been specifically shown to target trafficking components during infection, 

such as Phytophthora AVR3a which targets dynamin-dependent endocytic processes and can 

accumulate at host endosomes (Chaparro-Garcia et al., 2015; Engelhardt et al., 2012), AVR1 

which targets secretory EXOCYST tethering factors (Du et al., 2015), and AvrBlb2, which inhibits 

the secretion of host-borne proteases and thus confers increased virulence (Bozkurt et al., 2011). 

Similarly, Pseudomonas effectors of unknown composition suppress PEN3 focal accumulation, 

and HopM1 targets the TGN/EE localized trafficking regulator HOPM1 INTERACTOR 

7/BREFELDIN-A VISUALISED ENDOCYTIC TRAFFICKING DEFECTIVE 1 (MIN7/BEN1), 

suppresses secretion of PR-1 and callose deposition, and thus confers enhanced bacterial 

virulence (Nomura et al., 2006, 2011). 

Conversely, in plants, connections between trafficking processes and NLR-mediated immunity 

exist. Interference with subcellular trafficking processes can result in cell-death associated 

defences. Firstly, the pen1/syp121 syp122 double mutant of closely homologous SNAREs 

exhibits a lesion-mimic phenotype with programmed cell death (Zhang et al., 2008). This can be 

rescued by mutations in NLR genes. Secondly, the HR-like cell death in the accelerated cell 

death 11 (acd11) mutant, and HR induced by NLR-mediated immunity, are suppressed by loss-

of-function in LAZARUS 1 (LAZ1), whose protein partially localizes to endosomes (Malinovsky et 
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al., 2010). Thirdly, NLR-associated immunity prevents degradation of MIN7/BEN1 by HopM1. 

Finally, the secretory tethering factor EXO70B1, interacts with SNARE-protein SNAP33 and the 

TN-type NLR TIR-NBS2 (TN2) in planta. Exo70b1 mutants exhibit a sponteneous HR-like cell 

death, and an increased resistance to powdery mildews, both phenotypes fully dependent on TN2 

(Zhao et al., 2015; Liu et al., 2017). This suggests that EXO70B1 or a dependent pathway is 

guarded by TN2. These observations support the concept that molecular components that 

regulate subcellular transport are monitored by NLRs and thus, when absent, trigger the induction 

of strong defense responses. It is noteworthy that NLR signaling increases SA levels, and SA in 

turn exerts regulation on secretory and endocytic trafficking processes (Du et al., 2013; Wang et 

al., 2005). 

1.15 - Concluding remarks 

Taken together, plant subcellular trafficking is interlinked with the immune system, and 

contributes to host defenses at multiple stages of pathogen infection. This includes building pre-

existing cell surface barriers, maintaining cell surface-based detection capacity, and employing 

transport pathways to recruit defense components to regions of pathogen contact in a timely 

manner. Pathogens deliver effectors to manipulate the underlying trafficking pathways, and plants 

employ sensors to monitor their integrity. Rab GTPases localize and function on these pathways, 

and are required for full immunity, yet their precise contributions to defense are poorly 

understood, which warrants further investigation. 

1.16 - Thesis aims 

Signal initiation of RLK-type PRRs that detect MAMPs in Arabidopsis is well understood, and 

involves ligand-induced heterodimerization with BAK1/SERK3, activation of the PM-localized 

receptor complex, and subsequent ligand-induced internalization of the PRR which is then sorted 

for degradation through RabF-positive compartments (Ben Khaled et al., 2015). Cf-4 represents 

an RLP-type PRR that functions in effector-detection in tomato, and unlike RLK-type PRRs, 

besides genetic evidence for a role of SERK1, no direct involvement in Cf-mediated immunity of 

SERK members has been reported to date (Fradin et al., 2011). Instead, Cf-RLPs interact with 

the RLK SOBIR1 for stability and signaling capacity, independent of the presence of their ligands 

(Liebrand et al., 2013). C. fulvum infection is confined to the apoplast, and correspondingly, 

secretes effectors that accumulate there (Joosten and de Wit, 1999; Stergiopoulos and de Wit, 

2009). This suggests that Cf proteins function at the PM, but their exact subcellular localization 

has remained unclear. 
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In order to elucidate the subcellular localization and signal activation mechanisms of SOBIR1-

dependent RLPs, I aimed to: 

 Reveal the subcellular localization of Cf-4 

 Reveal the subcellular localization of constitutively interacting Cf-4-SOBIR1 complexes 

 Probe for ligand-induced subcellular localization dynamics of Cf-4 upon activation by 

Avr4 

 Investigate the requirements for SERK members in Cf-dependent receptor outputs and 

immunity 

 

Secondly, besides carrying ligand-activated PRRs, endosomal Rab GTPases and associated 

compartments dynamically respond to pathogen infection and contribute to the delivery of 

defense cargoes at pathogen contact sites (Cai et al., 2018; Nielsen et al., 2017b). Equally, Rab 

GTPases along the secretory pathway have been shown to govern delivery and activation of cell-

surface localized defense cargoes (Ellinger et al., 2014b; Choi et al., 2013). Yet, most studies 

have been performed in the context of infection by filamentous pathogens, and defence-induced 

cargo changes along Rab GTPase mediated pathways, or changes in proteins associating with 

the Rab GTPases themselves have not been mapped in a comprehensive way. 

In order to gain insight into the dynamics of the secretory pathway marked by ARA5 and the 

endocytic pathway marked by ARA7 upon bacterial infection, as well as into MAMP-induced 

proteomic changes in the proteomes interacting with these Rab GTPases, I sought to: 

 Investigate localization changes of ARA7 and ARA5 upon bacterial infection 

 Reveal changes in ARA7 and ARA5-associated proteins after flg22-stimulus 

 Identify flg22-responsive ARA7-interacting proteins which are defence-related 

 Further characterize a subset of flg22-responsive ARA7 interacting defence-

related proteins for roles in immunity 
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CHAPTER 2 

EXPERIMENTAL PROCEDURES 

 

2.1 - Plant materials 

2.1.1 - Plant lines used in this study 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.2 - Growth of Arabidopsis on soil 

Arabidopsis thaliana seeds were germinated on soil (Levington F2 peat, 4 mm grit, 

Exemptor insecticide) and grown under 80 % humidity and 20 °C. Seedlings were 

transplanted to individual 4 cm x 4 cm pots. For plants used in experiments, a short-day 

regime of 10 hours light / 14 hours dark was used. For propagation and crossings, a long-

day regime of 16 hours light / 8 hours dark was used. (Dettmer et al., 2006) 

  

Species   Genotype Source 

 Arabidopsis thaliana Col-0     

  Col-0 pUB::YFP-ARA5 Geldner et al., 2009 

  Col-0 pUB::YFP-ARA7 Geldner et al., 2009 

  Col-0 pUB::RFP-ARA7 Dettmer et al., 2006 

  
Col-0 

pUB::YFP-ARA5  x 
pUB::RFP-ARA7 

Generated, cross 

  Col-0 fls2 Zipfel et al., 2004 

  Col-0 tn3 SALK_018440.56.00 

  Col-0 hr4 SALK_208828 

  Col-0 tn3 / pUB::TN3-GFP Generated, transformation 

  Col-0 hr4 / pUB::HR4-GFP Generated, transformation 

  Col-0 pUB::TN3-GFP Generated, transformation 

  Col-0 pUB::HR4-GFP Generated, transformation 

 Nicotiana tabacum Samsun     

 Nicotiana benthamiana Domin.     

  Domin. p35S::Cf-4 Liebrand et al., 2013 

  Domin. p35S::Cf-4-GFP Postma et al., 2016 

 Solanum lycopersicum Moneymaker Cf-0 Dixon et al., 1996 

  Moneymaker Cf-4 Wulff et al., 2004 
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2.1.3 - Growth of Nicotiana benthamiana on soil 

Nicotiana benthamiana Domin. seeds were germinated on soil (Levington F2 peat, 4 mm 

grit) and kept under plastic foil at high humidity for 1 week. Seedlings were transplanted 

to individual 9 cm x 9 cm pots and grown under 80% humidity with a regime of 16 hours 

light / 8 hours dark. Plants were used at 2 weeks for virus-induced gene silencing, or 4-5 

weeks for all other purposes. 

2.1.4 - Growth of Arabidopsis in liquid media 

For gas sterilisation, ca. 50 mg of Arabidopsis seeds in a paper bag were placed in a 

sealable chamber with a volume of ca. 10 L, alongside a beaker containing 200 mL 

commercial thick bleach (Parozone) to which 8 mL hydrochloric acid was added. The 

chamber was sealed and left in a fume hood overnight, after which the seed bag was 

retrieved and placed in a laminar flow hood to dry. 

Under laminar flow, seeds were sown in resealable conical flasks containing 200 mL 

liquid MS medium supplemented with 1% (w/v) sucrose, without antibiotic selection. 

Flasks with seeds were stored at 4 °C overnight for vernalization, and then placed in a 

120 rpm shaker for an incubation time of 8 days, growing at 22 °C under a light regime of 

16 hours light / 8 hours dark. (Dixon et al., 1996; Wulff et al., 2004; Zipfel et al., 2004) 

2.1.5 - Generation of Arabidopsis protoplasts 

Protoplasts were obtained from soil-grown plants at ca. 4-5 weeks of age using the tape 

sandwich method based on Sheen et al., 2002 . Fully grown leaves were sandwiched in 

between strips of masking tape, and the lower epidermis was removed by separating the 

tape. Tape strips containing the leaves were then placed face-down into a petri dish 

containing enzyme solution (1.5% cellulase (Onuzuka R10, Yakult BIC2224), 0.4% 

macerozyme (R10, Apollo Scientific cat. BIM0481), 0.1% BSA (Sigma cat. A-6793), 0.4 

M mannitol, 20 mM KCl, 20 mM MES pH 5.7, 10 mM CaCl2) and the digestion was 

allowed to continue for 1.5 hours at room temperature. Protoplasts were recovered by 

filtration through 40 mm nylon mesh, centrifugation at 100 x g for 2 min at 4 °C and 

resuspension in W5 buffer (154 mM NaCl, 125 mM CaCl2, 5 mM KCl, 2 mM MES pH 

5.7). 

2.1.6 - Crossing of Arabidopsis 

Arabidopsis plants were grown in long-day conditions for 5-8 weeks until inflorescences 

started appearing. Mature flowers with fully developed anthers on donor inflorescences of 

both parents were opened using tweezers. Closed buds on recipient inflorescences of 
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both parents were also opened using tweezers. Cross-pollination was achieved by 

separating the donor flower from the inflorescence using tweezers, and physically 

rubbing it onto the opened recipient flower for several seconds. Pollinated buds were 

marked using colored tape and plants were returned to long-day conditions. Seeds were 

harvested from pollinated siliques, and selected by germination on MS media with 

appropriate antibiotics. 

2.2 - Transformation and transfection systems 

2.2.1 - Generation of Arabidopsis transgenic plants 

Arabidopsis was transformed using the floral dipping method (Bent, 2006) using 

Agrobacterium tumefaciens strain GV3101. Transformations were performed by Matthew 

Smoker and Jodie Pike (The Sainsbury Laboratory, Norwich, UK). Transformants were 

selected by germination on soil, growing for 1 week under short day conditions and spray 

application of phosphinothricin (PPT)/BASTA herbicide (Melford cat. P0159). At 2 weeks 

of age, survivors were transplanted into invidual 4 cm x 4 cm pots and recovered for 1 

additional week. Confocal microscopy was used to confirm expression of fluorescent 

proteins, and T1 plants were used for experiments and propagation. 

2.2.2 - Transfection of Arabidopsis by particle bombardment 

Adult leaf tissue was subjected to particle bombardment for transient expression of 

fluorescent tagged proteins. Purified plasmid DNA (2 µg) was coated onto 125 µg gold 

particles (⌀ = 1.0 µm) using 1 M CaCl2 and 20 mM spermidine, and washed with 100 % 

ethanol. Three separated Arabidopsis leaves were placed on solid Murashige and Skoog 

(MS) medium adaxial side up, and petioles making contact with the medium. A 

pressurized helium-based particle delivery system (Bio-Rad Biolistics PDS-1000) was 

used to deliver gold particles into distal leaf tissue at optimized pressure (1100 or 900 

psi) and height. Transfected leaves on MS were incubated on a bench top at room 

temperature overnight, and a scalpel was used to prepare tissue for microscopic 

analysis. 

2.2.3 - Arabidopsis protoplast transfection 

Protoplasts were transfected using poly-ethylene glycol (PEG). Briefly, 100-150 µg 

plasmid DNA was added to a 2 mL suspension of ca. 5 x 10
5
 protoplasts mL

-1
 in MMg 

buffer (4 mM MES pH 5.7, 0.4 M mannitol, 15 mM MgCl2). Then, 2 mL PEG buffer (40% 

v/v PEG4000 (Sigma cat. 81240), 0.4 M mannitol, 0.2 M CaCl2) was mixed in, and the 

transfection was allowed to continue for 10 minutes at room temperature. After one wash 
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with excess W5 buffer, pellets were resuspended in 2 mL W5 buffer and kept at room 

temperature overnight. On day 2, protoplasts were used for confocal microscopy or 

excess liquid was removed and protoplasts were flash-frozen in liquid nitrogen in 

preparation for protein extraction. 

2.2.4 - Agrobacterium tumefaciens mediated transformation of N. benthamiana 

A. tumefaciens strains GV3101 and GV3101 carrying the helper plasmid PMP90RK were 

grown for 2-3 days under appropriate selection at 28 °C in 10 mL liquid L-medium 

shaking at 120 rpm, or on solid L-medium 1 % agarose plates without shaking. Liquid 

cultures were spun down at 3000 x g for 5 minutes, and pellets were resuspended in 

dH2O. From plates, bacteria were harvested using a spatula and resuspended in distilled 

water (dH2O). Bacteria were washed 1 x with dH2O and dilutions were adjusted to OD600 

= 0.3 for each strain, in preparation for (co-)infiltration. Acetosyringone was added to a 

final dilution of 250 µM, and bacterial suspensions were syringe-infiltrated in N. 

benthamiana leaves. 

2.2.5 - Virus-induced gene silencing in N. benthamiana 

Tobacco rattle virus (TRV)-mediated VIGS in N. benthamiana was performed as follows. 

A. tumefaciens GV3101 carrying TRV-RNA1 (pYL155) at OD600 = 0.4 and GV3101 

carrying TRV-RNA2 (pYL279) containing the respective target sequence at OD600 = 0.2 

were co-infiltrated in leaves of 2-week old N. benthamiana plants. TRV-RNA1 alone, or 

TRV-RNA2::GUS (Tameling and Baulcombe, 2007) was used as a control. At 4-5 weeks 

of age, plants were used for further analysis. 
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2.3 - DNA techniques and molecular cloning 

2.3.1 - Primers used in this study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.2 – Plasmids used in this study 

 (see next page) 

  

Name Sequence nt Purpose 

Cf-9-TOPO-F CACCATGGATTGTGTAAAACTTGTA 25 Cf-9 TOPO cloning 

Cf-9-nostop-R ATATCTTTTCTTGTGCTTTTTC 22   

BAK1-TOPO-F CACCATGGAACGAAGATTAATGATC 25 BAK1 TOPO cloning 

BAK1-TOPO-R TTATCTTGGACCCGAGGGGTATTC 24   

        

TN3-Ftopo CACCATGGCTGCATCTACTTCTTCT 25 AT1G66090 / TIR-NBS 3 cloning 

TN3-Rnostop TACAAAATCAGCCAGAGACAC 21   

HR4-Ftopo CACCATGCCGATTGCTGAGCTTGCT 25 AT3G50480 / HR4 cloning 

HR4-Rnostop TTTATTATGCTTTTCAGATAT 21   

FLOT1a-CDNA-F TTGGGCGAAAAGTCCAAATTAAATCAAA 28 FLOT1 cDNA-specific amplification 

FLOT1a-CDNA-R CACAAGTAAACGACCAAACCATGCCACT 28   

FLOT-Ftopo CACCATGTTCAAAGTTGCAAGAGCG 25 AT5G25250 / FLOT1 cloning 

FLOT-Rstop TTAGCTGCGAGTCACTTGCTTC 22   

        

PUB-GW-F TGATTACGAATTCGAGCTCGG 21 amplify cassette from pUB-DEST 

PUB-GW-R GGCCCGACGTCGCATGCCTGC 21   

        

F-LP GAAACTTCGATTGGGGAAGAC   23 SALK_018440.56.00.x (tn3) g.typing 

F-RP GTGGCAAAGCTTATGGTGAAG   23   

J-LP2 GGGATCGAATCGGTAAGCTC 20 SALK_208828 (hr4) g.typing 

J-RP2 GGCTTAGATGATGGGCCTTA 20   

        

YFPn-F GTGACCACCCTGGGCTACGG 20 sequencing pAM-PAT YFPc/n fusion 

YFPc-F CATTTGGAGAAGGACCTCGAG 21   

YFPn-R GGCGGACTTGAAGAAGTCGT 20   

YFPc-R GTCACGAACTCCAGCAGGAC 20   

M13-F GTAAAACGACGGCCAG 16 sequencing pENTR and pGEM-T 

M13-R CAGGAAACAGCTATGAC 17 
 GFP-R CGAGGGTGGGCCAGGGCACGGG 22 sequencing binary vectors 

RFP-R CAGCTTGATGTCGGTCTTGTAGGCG 25 sequencing binary vectors 

 



35 

 

 

 

  

Name Vector Origin 

p35S:Cf-4-eGFP pBIN-KS Liebrand et al., 2012 

p35S:SlSOBIR1-eGFP pBIN-KS Liebrand et al., 2013 

p35S:SlSOBIR1-like-eGFP pBIN-KS Liebrand et al., 2013 

p35S:AtSOBIR1-eGFP pBIN-KS Liebrand et al., 2013 

p35S:SlSOBIR1-mCherry pAM-PAT Postma et al., 2016 

p35S:AtSOBIR1-mCherry pAM-PAT Postma 2016 NPhyt 

p35S:SlSOBIR1-HA pGWB14 Postma 2016 NPhyt 

p35S:AtSOBIR1-10Myc pGWB20 Liebrand et al., 2013 

p35S:AtSOBIR1-RD/N-10Myc pGWB20 Liebrand et al., 2013 

p35S:SlSERK3-10Myc pGWB20 Postma et al., 2016 

pFLS2:FLS2-GFP pCAMBIA2300 Robatezek et al., 2006 

pUB:BAK1-KD pUB-GW Postma et al., 2016 

pUB:TN3-eGFP pUB-GW-eGFP Present study 

pUB:TN3-mRFP pUB-GW-mRFP Present study 

pGEM-T-pUB:TN3-eGFP pGEM-T Easy Present study 

pUB:HR4-eGFP pUB-GW-eGFP Present study 

pUB:eGFP-FLOT1 pUB-eGFP-GW Present study 

p35S:Avr4 pMOG1048 van der Hoorn et al. 2000 

      

p35S:YFPc-ARA7/RABF2b pAM-PAT Present study 

p35S:YFPn-ARA7/RABF2b pAM-PAT Present study 

p35S:TN3-YFPc pAM-PAT Present study 

p35S:TN3-YFPn pAM-PAT Present study 

p35S:ARA6/RabF1-YFPc pAM-PAT Present study 

p35S:YFPc-ARA5/RABD2a pAM-PAT Michaela Kopischke 

p35S:YFPc-RABG3b pAM-PAT Michaela Kopischke 

p35S:Cf-4-YFPc pAM-PAT Postma et al., 2016 

p35S:Cf-4-YFPn pAM-PAT Postma et al., 2016 

p35S:SlSOBIR1-YFPc pAM-PAT Postma et al., 2016 

p35S:SlSOBIR1-YFPn pAM-PAT Postma et al., 2016 

p35S:SlSOBIR1-like-YFPc pAM-PAT Postma et al., 2016 

p35S:SlSOBIR1-like-YFPn pAM-PAT Postma et al., 2016 

p35S:AtSOBIR1-YFPc pAM-PAT Postma et al., 2016 

p35S:AtSOBIR1-YFPn pAM-PAT Postma et al., 2016 

p35S:FLS2-YFPc pAM-PAT Frei dit Frey et al.,  2012 

p35S:FLS2-YFPn pAM-PAT Frei dit Frey et al.,  2012 

      

pUB:mCherry-ARA7/RabF2b pNIGEL Geldner et al., 2009 

pUB:mCherry-MEMB12 pNIGEL Geldner et al., 2009 

pUB:mCherry-ARA5/RABD2a pNIGEL Geldner et al., 2009 

pUB:eYFP-ARA5/RABD2a pNIGEL Geldner et al., 2009 

p35S:ARA6/RABF1-RFP pHTS13 Ueda et al., 2004 

pUB:VHAa1-RFP pUBQ10 Dettmer et al., 2006 

p35S:ACA8-mCherry   Postma et al., 2016 

Px-RK (peroxisome) pBIN20 Nelson et al., 2007 

Mt-RK (mitochondrion) pBIN20 Nelson et al., 2007 

      

RxD460V pB1 Bendahmane et al., 2002 

BAX p30B-TMV Lacombe et al., 1999 

TRV-RNA2:GUS pyl156-TRV2 Temeling et al., 2007 

TRV-RNA2:Cf-4 pyl156-TRV2 Liebrand et al., 2013 

TRV-RNA2:NbSOBIR1/NbSOBIR1-like pyl156-TRV2 Liebrand et al., 2012 

TRV-RNA1 pyl156-TRV1 Liu et al., 2007 

TRV-RNA2:NbSERK3a/b pyl156-TRV2 Heese et al., 2007 
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2.3.3 - DNA extraction for Arabidopsis genotyping 

Genomic DNA (gDNA) extractions were performed using a rough preparation method. 

From each plant at ca. 2-3 weeks of age, a leaf disc of ca. 0.25 cm
2
 was obtained using 

cork borer. Tissue was submerged in 400 µL pre-heated extraction buffer (200 mM Tris 

pH 7.5, 250 mM NaCl, 25 mM EDTA, 0.5% SDS) and incubated at 65 °C for 20-30 

minutes. Debris was removed by centrifugation at 16.000 x g for 10 minutes, and 

supernatant was transferred to a new tube. Equal volumes of pre-cooled isopropanol 

were added and incubated for 5 minutes at room temperature. Precipitated gDNA was 

pelleted by centrifugation at 16.000 x g for 15 minutes. gDNA was washed once with 70% 

EtOH and resuspended in water. 

2.3.4 - Polymerase Chain Reaction for Arabidopsis genotyping 

Polymerase chain reactions (PCR) were performed on newly acquired SALK mutant lines 

to test for the presence and homozygosity of T-DNA insertions. 20 µL Taq polymerase 

reactions were set up, containing 2 µL of gDNA samples prepared as above. Per mutant 

plant, two reactions were set up. Forward and reverse primers flanking the predicted T-

DNA insertion site were used to test for the presence of the wildtype sequence. To test 

for the presence of the SALK pBIN-pROK2 T-DNA insertion, insertion-specific primer 

LBb1.3 was used in combination with a forward or reverse flanking primer, depending on 

the predicted orientation of the T-DNA insertion. PCRs were ran for 32 cycles with an 

elongation time of 2 minutes, and 10 µL of the samples was used for ethidium bromide 

agarose gel electrophoresis. 

2.3.5 - RNA extraction and cDNA-preparation 

Arabidopsis and N. benthamiana RNA was extracted using the RNeasy Plant Mini kit 

(QiaGen cat. 74904) and eluted in 50 µL RNAse-free water. In both cases, ca. 1 cm
2
 

tissue was used, and Arabidopsis was treated with flg22 by leaf infiltration 3 hours prior to 

extraction. DNA was digested using a Turbo DNA-free kit (Ambion cat. AM1907), and 

RNA concentrations were measured using a NanoDrop 8000 spectrophotometer 

(ThermoFisher cat. ND-8000-GL) and up to 2 µg per reaction was used for cDNA 

synthesis using SuperScript III reverse transcriptase (ThermoFisher cat. 18080093) in the 

presence of RNAse Out (ThermoFisher cat. 10777019). cDNA was stored at -20 °C. 

2.3.6 - Cloning and colony PCR 

PCR was used to clone gene fragments using Phusion High Fidelity polymerase (New 

England Biolabs cat. M0530S), or to test the presence or absence of sequences using 
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Taq polymerase produced in the lab by heterologous expression in E. coli. Reactions 

contained 1x Phusion Buffer or Taq buffer (New England Biolabs cat. M0273S), 0.5 mM 

dNTP, 5 U/µL Phusion polymerase, 0.1 volume of lab-produced Taq polymerase, 10 µM 

primer DNA, and a variable concentration of input DNA. Reactions were performed in 200 

µL PCR strips in a thermal cycler (G-Storm cat. GS4) with a default cycle number of 30 

and annealing temperature of 56 °C, both subject to optimization for each experiment. 

Cloning (Phusion) and genotyping (Taq) reactions were set up to run 5 initial cycles with 

a lower annealing temperature of 50 °C. Colony PCRs (cPCR), on bacterial cells picked 

from colonies with a pipette tip, were preceded by a 5 minutes 90 °C melting step to 

release template DNA into the reaction. 

2.3.7 - Gateway entry cloning 

Desired gene fragments were amplified using Phusion PCR from either cDNA, existing 

expression vectors, or bacterial cells carrying the template DNA. Forward primers were 

extended with the CACC sequence at the 5‘ end to allow directional cloning. Reverse 

primers omitted the stop codon when amplifying fragments for C-terminal fluorescent 

protein tagging. 50 µL Phusion PCRs were performed and 20-30 µL of the product was 

used for gel electrophoresis. Bands of the expected size were identified, excised using a 

scalpel and purified using a NucleoSpin gel and PCR clean-up kit (Macherey Nagel cat. 

740609.50).  

1-4 µL of pure PCR product was mixed with 1 µL pENTR/d-TOPO vector (Invitrogen 

K2400-20) and incubated for 1 hour at room temperature. The full ligation reaction was 

added to 30 µL chemocompetent E. coli DH5α cells, and heat-shock transformation was 

performed for 1 min at 42 °C. cPCR-identified positive colonies were grown in liquid 

culture, plasmids were purified using a NucleoSpin Plasmid Miniprep kit (Macherey Nagel 

cat. 740588.50) and sent for sequencing (GATC Biotech) with the universal M13F/R 

primers. Detected sequences were compared to expected sequences using web-hosted 

Clustal Omega Multiple Sequence Alignment (EMBL-EBI). 

2.3.8 - Gateway binary vector generation 

To transfer coding sequences from pENTR/d-TOPO into destination vectors, Gateway LR 

reactions were performed with LR Clonase II Enzyme mix (ThermoFisher cat. 11791020). 

Enzyme mix was thawed on ice from -80 °C, spun down briefly at 10.000 x g, and used in 

a downscaled LR reaction with 50-100 ng entry vector and 200-300 ng binary destination 

vector. The reaction was incubated overnight at room temperature, and transfected into 

chemocompetent E. coli cells. 



38 

 

Coding sequences were transferred into binary destination vectors containing the 

Arabidopsis ubiquitin-10 (UB) promoter (untagged, GFP, RFP; Grefen et al. 2010), pAM-

PAT-based vectors with the Cauliflower Mosaic Virus 35S promoter (mCherry; 

unpublished, GenBank AY436765, provided by Ralph Panstruga), or pAM-PAT-based 

35S vectors for bimolecular fluorescence complementation (BiFC, split-YFP) encoding 

fusions with the YFP N- and C-termini (YFPn, YFPc; Bernoux et al. 2008). 

2.3.9 - Generation of protoplast expression vectors 

In order to generate short backbone expression vectors for use in protoplast transfection, 

the pGEM-T Easy vector system (Promega cat. A1360) was used. pUB-driven binary 

vectors containing the desired expression cassettes were used as a template. Vector 

backbone-universal primers were designed to amplify the expression cassette including 

promoter, coding sequence, fluorescent protein sequence and terminator. The PCR 

products were ran on gel, and fragments of expected size were excised and purified. In 

preparation for mounting into pGEM-T Easy, a single-nucleotide adenine extension was 

added to the fragments in a 30 minute 80 °C reaction using Taq polymerase in the 

presence of MgCl2 and dATP. 3 µL of the reaction product was supplemented with rapid 

ligation buffer, pGEM-T Easy linearized vector (Promega) and T4 DNA ligase (New 

England Biolabs cat. M0202S), and incubated for 1 hour at room temperature. The 

resulting ligation was mixed with 30 µL chemocompetent E. coli DH5α cells for 

transformation and selection. Colonies were selected based on IPTG/X-Gal blue-white 

selection, and successful ligation was confirmed by sequencing with universal M13 F/R 

primers. 

2.3.10 - DNA gel electrophoresis 

Gel electrophoresis was performed on 1 % agarose Tris/Borate/EDTA (TBE) gels. 

Samples were mixed with 0.1 volume of loading dye (50% glycerol, bromophenol blue) 

before loading 10 µL into gel slots, alongside a 2-log DNA size marker (New England 

Biolabs cat. N3200S). Electrophoresis was ran at 100 V for 30 minutes or until desired 

separation of ladder and/or fragments. Gel pictures were obtained using a Gel-Doc XR 

with UV-illumination (Bio-Rad cat. 1708195) and printed for documentation. 

2.3.11 - Escherichia coli transformation 

DNA plasmids were introduced into chemocompetent Escherichia coli DH5α cells using 

heat shock. Briefly, a 50 µL aliquot of cells was defrosted from -80 °C on ice and mixed 

with 0.5 µL purified plasmid (50-100 ng) in water. After 20 minutes incubation on ice, cells 

were subjected to heat shock at 42 °C for 1.5 minutes in a thermomixer (Eppendorf cat. 
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5355000038). Cells were cooled on ice for 1 minute, and 500 µL L-media was added, 

and allowed to recover for at least 1 hour at 37 °C and 120 rpm shaking. 50 µL and 450 

µL were plated on L-agar plates with appropriate selection. 1 day after transformation, 

positive colonies were tested with cPCR. 

2.3.12 - Agrobacterium tumefaciens transformation 

Binary vectors were introduced into electrocompetent Agrobacterium tumefaciens 

GV3101 cells carrying helper plasmids pMP90 or pMP90RK (for PAM-PAT-based vectors 

and mCherry vector). 30 µL aliquots of cells were thawed on ice and mixed with 50-100 

ng plasmid DNA. The mixture was transferred to a cuvette and transfected at 2.4 kV / 200 

Ω using a Gene Pulser Xcell electroporation system (Bio-Rad cat. 1652666). Cells were 

recovered in 500 µL L-media for at least 2 hours at 28 °C and 120 rpm shaking. 50 µL 

and 450 µL were plated on L-agar plates with appropriate selection. 2-3 days after 

transformation, positive colonies were tested with cPCR. 

2.4 - Protein biochemistry 

2.4.1 - Protein purification from N. benthamiana 

Samples from fully expanded mature leaves of N. benthamiana plants were obtained 

using a cork borer no. 3 (⌀ = 1 cm) and added to tubes with 2 steel beads (⌀ = 3.2 mm) 

and crude total protein extraction buffer (40 mM TRIS pH 7.5, 6 % SDS, 50 mM DTT, 0.5 

mM PMSF, 50 % glycerol, bromophenol blue, 1 % plant protease inhibitor cocktail (Sigma 

cat. P9599)). Tissue was homogenized in a TissueLyser (MM200, Retsch) for 1 minute at 

30 Hz. Tubes were centrifuged at 16000 x g for 20 minutes to pellet debris, and 

supernatant was transferred to a new tube, heated at 70 °C for 10 minutes and used in 

SDS-PAGE. 

2.4.2 - Co-immunoprecipitation from N. benthamiana 

Immunoprecipitation (IP) and co-IP experiments from N. benthamiana were performed 

with GFP-trap beads (ChromoTek cat. GFP-Trap_A) or Myc-trap beads (ChromoTek cat. 

Myc-trap_A). Briefly, tissue was flash-frozen in liquid nitrogen and homogenized with 

steel beads in a TissueLyser. 0.5 g powder was measured in tubes and suspended in 2 

mL IP-buffer B (50 mM Tris pH 7.5, 150 mM NaCl, 5 % glycerol, 1 mM EDTA, 1 % 

IGEPAL/NP-40, 5 mM DTT, 1 % plant protease inhibitor cocktail (Sigma cat. P9599), 1 % 

phosphatase inhibitor cocktail 2 (Sigma cat. P5726), 1% phosphatase inhibitor cocktail 3 

(Sigma cat. P0044) and 0.5 mM PMSF). Samples were gently mixed, filtered through 

miracloth (Merck Millipore cat. 475855), and centrifuged at 16000 x g for 30 min. 1.5 mL 
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cleared lysate was transferred to a Protein LoBind 1.5 mL tube and 20 µL IP bead slurry 

was added. IP was performed at 4 °C for 2.5 h rotating, and beads were washed three 

times with IP buffer B. Immunoprecipitated proteins were released in Laemmli buffer (50 

mM Tris, 50% glycerol, 4% SDS, 1% plant protease inhibitor cocktail (Sigma cat. P9599), 

1 M DTT, 0.5 mM PMSF, bromophenol blue) by heating for 10 min at 70 °C, and used for 

SDS-PAGE. 

2.4.3 - Ligand treatment of Arabidopsis seedlings 

Arabidopsis thaliana seedlings were flask-grown in 200 mL liquid medium for 8 days as 

described above, and treated with flg22 peptide or water control. For treatments, 1 mL of 

liquid medium was removed from the flask and used to resuspend a 30 µl stock of 10 mM 

flg22 peptide (aiming for a final treatment at a concentration of 1.5 µM) or 30 µL water as 

a control, upon which the resulting mixture was returned to the flask. Flasks were swirled 

by hand and placed in a vacuum chamber. Vacuum was created using a pump for 90 

seconds, and released over the course of 3 minutes. Flasks were then returned to the 

growth chamber to shake at 120 rpm for 3 hours. Liquid media was poured off, seedlings 

were then rinsed with an excess of dH2O once and retrieved from the flask onto tissue 

paper using a metal spoon. Seedlings were dabbed with tissue paper to remove excess 

liquid, wrapped in aluminium foil, flash-frozen in liquid nitrogen and either used 

immediately or stored at -80 °C for later use. 

2.4.4 - Protein purification from Arabidopsis seedlings 

Flash-frozen seedlings were ground into a powder by pestle and mortar, and 15 grams of 

powder was mixed with 70 mL IP-buffer A (HEPES-NaOH 100 mM pH 7.5, 10 mM EDTA, 

10 mM EGTA, 7.5 mM KCl, 17.5 % Sucrose, 0.01 % NP40/IGEPAL, 10 mM DTT, 1 % 

plant protease inhibitor cocktail (Sigma cat. P9599)). The mixture was agitated for ca. 5-

10 minutes at 4 °C, filtered through miracloth, and distributed equally across two 50 mL 

tubes (2 x ca. 35 mL). Filtrate was centrifuged at 5000 x g for 20 minutes at 4 °C to pellet 

remaining debris, and the clear lysate was transferred to 2 clean 50 mL tubes. 

2.4.5 - Immunoprecipitation from Arabidopsis seedlings 

To a total of 70 mL clear lysate, after removing 500 µL to use as ‗input‘ sample, 60 µL of 

GFP-Trap bead slurry was added. The precipitation was allowed to continue for 2.5 hours 

under roll-shaking at 4 °C, and beads were recovered by centrifugation at 500 x g for 5 

minutes. Beads were transferred to 1.5 mL Protein LoBind Tubes (Eppendorf cat. 

0030108116) and sequentially washed with 5 x 1 mL IP buffer A, allowing equilibration of 
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3 minutes after each addition of fresh IP buffer A. Excess liquid was removed using a 

needled syringe, and samples were stored at -80 °C for later use. 

2.4.6 – Protein extraction and immunoprecipitation from Arabidopsis protoplasts 

Protoplasts were transfected overnight and harvested by centrifugation, removal of 

excess liquid and flash-freezing in liquid nitrogen. To a pellet of frozen protoplasts, 1.5 

mL of pre-cooled complete IP buffer A (as used for Arabidopsis seedlings) was added, 

and tubes were gently inverted several times at 4 °C until completely resuspended. The 

homogenate was then centrifuged at 5000 x g for 20 minutes at 4 °C to pellet debris, and 

1 mL of clear supernatant was transferred to a Protein LoBind tube. To the clear lysate, 

20 µL of GFP-trap bead slurry was added, and the immunoprecipitation was performed 

as described above for Arabidopsis seedlings. 

2.4.7 - SDS-PAGE/Western blot with pre-cast gradient and home made gels 

In preparation for SDS-PAGE, clear lysates from protein extractions were mixed with 

equal volumes of 2x extraction buffer (100 mM Tris, 60% glycerol, 8 % SDS, 2 % plant 

protease inhibitors (Sigma cat. P9599), 1M DTT, 2% PMSF, bromophenol blue). To 

samples containing IP beads, 100 µL 1X Laemmli buffer  was added. In both cases, 

samples were heated at 70 °C for 10 minutes, centrifuged at 500 x g for 1 minute, and 

loaded onto acrylamide gels. 

For loading of IP samples used in mass spectrometry, 1 mm 4–20% acrylamide gradient 

Mini-PROTEAN TGX Precast Protein Gels (BioRad) were used. For all other samples, 

gels were prepared in two parts: stacking gel (4.5 % acrylamide, 0.15 M Tris, 0.1 % SDS, 

0.5% APS, 0.5% TEMED) and running gel (10 % acrylamide, 0.35 M Tris, 0.1 % SDS, 

0.5% APS, 0.5% TEMED). 20 µL of each sample was loaded onto 15-slots gels, 30-40 

µL was loaded onto 10-slots gels. 

Electrophoresis was performed at 80 V for 10 minutes, followed by 100-120 V until the 

green front escaped the gel and molecluar weight markers (PageRuler Plus prestained 

protein ladder, ThermoFisher cat. 26619) were sufficiently expanded. Proteins were then 

transferred to a PVDF membrane using semi-dry transfer (TransBlot transfer cell, Bio-

Rad cat. 1703940) for 1 hour at 25 V, and blocked for at least 1 hour and up to 1 day 

using Tris-buffered saline (TBS, 50 mM Tris-Cl, pH 7.5. 150 mM NaCl) containing 0.1 % 

surfactant (Tween, polysorbate-20, Sigma cat. P1379) and 5% milk powder (Marvel UK, 

dried skimmed milk) at 4 °C. 
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2.4.8 - Antibody treatment of PVDF membranes 

The PVDF membrane containing proteins was rinsed once in TBS-Tween 0.1% (TBST). 

Antibodies were premixed with TBST / 5% milk  in the appropriate dilution factor, and 

applied to the membrane in a square petri dish. Antibody treatments proceeded for at 

least 1 hour subject to optimization. For primary/secondary antibody systems, the 

membrane was washed 3 x 10 minutes in TBST between antibodies. In all cases, after 

the final antibody treatment the membrane was washed 2 x 10 minutes with TBST and 1 

x 10 minutes with TBS.  

2.4.9 - Conjugated antibody signal detection 

The membrane was transferred to a transparent plastic sheet and 500 µL substrate was 

applied. For horse radish peroxidase (HRP)-conjugated antibodies, Pierce ECL Western 

Blotting Substrate (ThermoFisher cat. 32106) or SuperSignal West Femto Maximum 

Sensitivity Substrate (ThermoFisher cat. 34095) was used, covered with a second plastic 

sheet, and incubated in the dark for 5 minutes. For alkaline-phosphatase (AP)-conjugated 

antibodies, CDP-Star substrate (ThermoFisher cat. T2304) was diluted 1:100 in AP-buffer 

(100 mM NaCl, 100 mM Tris, 50 mM MgCl2, 1% Tween).  

Excess substrate was dripped off the membrane, which was then sandwiched between 

clean plastic sheets, and signal was captured using light sensitive X-ray film (Fujifilm cat. 

Super RX) by incubation for variable, optimized periods of time. Light sensitive films were 

developed in a dark room, and digitized using an office USB scanner at 300 dots per 

inch. Finally, total proteins were stained using Ponceau S (Ponceau S 0.1% w/v, acetic 

acid 5%) and destained with dH2O, or stained with InstantBlue (Expedeon cat. ISB1L) 

coommassie blue and destained in 20% methanol, 5 % acetic acid until bands of interest 

were clearly discernible. 

2.5 - Mass spectrometry 

2.5.1 - Tryptic digest from gradient gel fragments 

Protein samples obtained by immunoprecipitation from Arabidopsis seedlings were run 

on pre-cast 4-20% gradient SDS-PAGE gels, allowing one free lane between samples to 

prevent cross-contamination. Gels were then stained using InstantBlue (Expedeon) 

Coomassie staining until a band at ca. 55 kDa, corresponding to the expected molecular 

weight of YFP-ARA5 / YFP-ARA7, was visible, and then destained using dH2O. Using a 

scalpel, each lane containing proteins was excised and further cut into five individual 

samples: one narrow segment around the intense band at ca. 55 kDa, and four more 
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segments resulting from cutting the remaining gel material above and below ca. 55 kDa 

in halves. The five samples were assigned to 1.5 mL Eppendorf Protein LoBind tubes, 

then further mashed with a scalpel and stored at -20 °C or used immediately. 

Gel samples were washed/destained twice with acetonitrile (AcN)/ammonium 

bicarbonate (ABC), and dried with 100% AcN for ca. 15 minutes. Disulfide bonds were 

reduced using 10 mM dithiotriol (DTT) in ABC for 30 min at 56 °C shaking. Cysteines 

were alkalized using 55 mM chloroacetamide in ABC for 30 minutes in the dark. Samples 

were washed (AcN/ABC) and dried (AcN), and 100 ng Trypsin (Promega) in 40 µL 

AcN/ABC was added to initiate tryptic digest. After ca. 5 min, 60 µL dH2O was added to 

fully submerge samples, and the reaction was incubated overnight at 37 °C. Peptides 

were retrieved with three washes of 100 µL 5% formic acid / 50% AcN with 10 min 

sonication, and transferred to a new Protein LoBind tube. 

2.5.2 - OrbiTrap Fusion run and spectral matching  

LC-MS/MS analysis was performed using a hybrid Orbitrap Fusion mass spectrometer, 

fed by nanoflow UHPLC (ThermoScientific). Tryptic peptides were injected onto a reverse 

phase trap column connected to an analytical column (Acclaim Pepmap 100, 

ThermoScientific). They were eluted with a 9-50% gradient of acetonitrile across 50 

minutes, followed by a 50-60% gradient over 30 min at a flow rate of 300 nL/min. MS 

events consisted of an initial full scan using the Orbitrap analyser, followed by a collision-

induced dissociation and higher-energy collisional dissociation maximizing the chance to 

acquire ions. Orbitrap Fusion software settings were as follows: resolution = 120000, m/z 

range = 300-1800, maximal infusion time = 50 ms, and automatic gain control was set for 

target 200000 ions. The precursor dissociation events were driven by the data dependent 

algorithm function with dynamic exclusion 30 s after the collision is triggered. Only 

precursor ions with positive charge states 2-7 and intensity threshold greater than 10000 

were selected for fragmentation. 

Peak lists in the form of Mascot generic files (mgf files) were prepared from raw data 

using MS Convert (Proteowizard project) and sent to peptide match search on Mascot 

server v2.4.1 using Mascot Daemon (Matrix Science Ltd.). Peak lists were searched 

against protein databases including typical protomics contaminants such as keratin. 

Tryptic peptides with up to two possible miscleavages and charge states +2 to +4 were 

allowed in the search. Data were searched with a monoisotopic precursor and fragment 

ion mass tolerance of 10 ppm and 0.6 Da respectively. Mascot results were combined in 

Scaffold 4.4.0 (Proteome Software Inc.), filtered to retain proteins with PeptideProphet 

lower limit of 95% confidence, and ProteinProphet lower limit of 99% confidence. At least 
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2 identified peptides per protein were required. Results were exported to MS Excel 

(Microsoft Office). 

2.5.3 - Filtering criteria to define proteomes 

A Microsoft Excel table was exported from Scaffold 4 (version 4.3.4 20140611, 

ProteomeSoftware), listing all Arabidopsis proteins and their detected number of spectra 

in any replicate of any treatment or genotype (pUB::YFP-ARA5 (ARA5), pUB::YFP-ARA7 

(ARA7), pUB::YFP (YFP); water, flg22; replicates 1,2,3), with a minimum ProteinProphet 

confidence score of 99% and with 2 or more associated detected spectra.  

A base proteome for ARA7 under water treatment was defined as follows. 1) Quality 

control: a protein must be detected in >1 replicates of ARA7-water, and the total of 

combined spectra found across all 3 replicates must be >5. 2) Comparison to YFP 

control: The total of combined spectra of a protein in Y7-water must be >4 fold greater 

than the total of combined spectra in YFP-water. A base proteome for ARA5-water was 

defined in the same way. 

A list of proteins upregulated in ARA7 purifications under flg22-treated conditions was 

defined by applying the above quality control and YFP-control comparisons, now to 

spectral counts in flg22-treated samples only. Then, for each protein, the total of 

combined spectra in ARA7-flg22 must be >2 fold greater than the total in ARA7-water. 

ARA5 was analyzed in the same way. 

In order to allow the above calculations with total spectral values across all three 

replicates that are 0, an arbitrary value of 0.000001 was added to all total spectral values. 

Enrichment factors, eg. log10 (ARA7-water / YFP-water), were calculated to capture bait 

specificity and fold change ratio between treatments. 
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2.6 - Bioassays and bacteria 

2.6.1 - Bacterial strains used in this study 

(Whalen, 1991; Melotto et al., 2006; Boch et al., 2002; Gasson, 1980) 

2.6.2 - Pseudomonas spray inoculation 

Soil-grown Arabidopsis plants at 4-5 weeks of age were covered with transparent lids one 

day in advance. Pseudomonas syringae was grown on a plate with rifampicin and further 

appropriate selection at 2 days in advance, harvested using a spatula, spun down at 

3000 x g for 10 minutes, washed once in 10 mM MgCl2 and diluted to OD600=0.2 (1 x 10
8
 

CFU mL
-1

) in 10 mM MgCl2. Prior to spray application, 0.04 % Silwet L77 (De Sangosse 

UK) was added to the bacterial suspension, and the mixture was transferred to a spray 

bottle. Bacteria were then inoculated onto Arabidopsis leaves by spraying the top and 

bottom of the leaves evenly. Plants were covered with transparent lids and grown for 3 

days under normal conditions.(Mudgett and Staskawicz, 1999; Holsters et al., 1980) 

  

Species Genotype Source 

Agrobacterium tumefaciens:     

GV3101 PMP90 Holsters et al., 1980 

GV3101 PMP90 RK Holsters et al., 1980 

      

Pseudomonas syringae:     

pv. tomato DC3000   Whalen et al., 1991 

pv. tomato DC3000 cor Melotto et al., 2006 

pv. tomato DC3000 hrcC Boch et al., 2002 

pv. tomato DC3000 hrcC / pTac::mCherry Sebastian Pfeilmeier 

pv. tomato DC3000 pTac::mCherry Sebastian Pfeilmeier 

pv. tomato DC3000 AvrRpt2 Mudgett et al., 1999 

pv. tabaci   Gasson, 1980 
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2.6.3 - Pseudomonas inoculation by infiltration and induced resistance pretreatment 

Soil-grown Arabidopsis plants at 4-5 weeks of age were covered with transparent lids one 

day before inoculation. For induced resistance assays, on the same day three fully 

expanded leaves per plant were marked and infiltrated with 10 µM flg22 peptide 

(QRLSTGSRINSAKDDAAGLQIA, EzBiolabs) or a water control. Pseudomonas syringae 

was pregrown on plate with rifampicin and appropriate selection 2 days before 

inoculation, harvested using a spatula, washed once in water and diluted to OD600 = 

0.0002 (1 x 10
5
 cfu mL

-1
). Bacteria were then syringe-infiltrated into the abaxial side of 

marked Arabidopsis leaves. Plants were covered with transparent lids and grown for 3 

days under normal conditions. 

2.6.4 - Quantifying bacterial proliferation in dilution series 

Using a cork borer, ca. 0.75 cm
2 

tissue was harvested from three leaves per plant and 

placed into 200 µL of MgCl2 10 mM together with two steel beads (⌀ = 3.2 mm). Tissue 

was homogenized at 30 Hz for 2 minutes using a TissueLyser (MM200, Retsch) and 

transferred into 96-wells plates. A dilution series using MgCl2 10 mM was set up, and 10 

µL of dilution factors 10
-1

, 10
-2

, 10
-3

 and 10
-4 

were plated on square L-media plates 

supplemented with rifampicin and nystatin. After 24-48 hours of incubation at 28 °C, 

colony numbers in all dilution spots were counted by hand and data was analyzed in 

Microsoft Excel. Using data from the lowest dilution factor with individually discernible 

colonies, the number of colony forming units (CFU) per cm
2
 of originally harvested leaf 

tissue was calculated and averaged over the number of plants used. Means were 

compared to each other using one-way ANOVA and labeled in significance grouping 

using a post-hoc Tukey‘s HSD test. 

2.6.5 - Hypersensitive response assays in N. benthamiana 

Cladosporium fulvum Avr4 and Avr2 were heterologously produced in Pichia pastoris and 

purified using the His-affinity tag (Dirk-Jan Valkenburg, Laboratory of Phytopathology, 

Wageningen UR, The Netherlands). N. benthamiana plants were subjected to VIGS at 2 

weeks of age, and were used for hypersensitive response assays at 4-5 weeks of age. 

Purified effector proteins were infiltrated at 300 µM, or expressed through A. tumefaciens 

mediated transformation alongside positive controls RxD460V (Bendahmane et al., 2002) 

and BAX (Lacomme and Santa Cruz, 1999). HR phenotypes were recorded 3-6 days 

after infiltration. 
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2.7 - Light microscopy 

2.7.1 - Confocal laser scanning microscopy 

Confocal laser scanning microscopy (CLSM) was performed using a Leica SP5 upright 

microscope fitted with hybrid (HyD) detectors. Objectives used in this study are: 63 × 

1.20 NA water immersion; 40 × 0.85 NA air; 20 × NA 0.50 air. For multi channel image 

acquisition, line sequential scanning and 3x line averaging was used. Z-stacks were 

acquired over 10 µm, in steps of 1 µm. Excitation and detection wavelengths were 

adjusted for each fluorophore. 

The Leica Image Format (LIF) files were exported from the Leica Application Suite 

Advanced Fluorescence (LAS-AF, version 1.6.3 build 1163, Leica), processed in FIJI 

(FIJI Is Just ImageJ, versions from 2013-2018) and annotated in Microsoft Powerpoint. 

2.7.2 – Fluorescent probes used in this study 

 

2.7.3 - Automated high throughput spinning disc microscopy 

Sample preparation and ligand treatment 

Arabidopsis seedlings were grown on F2 soil for 14 days in a controlled 

environment chamber (CentiForce Fitotron SGC 120) at 22 °C and a regime of 

12 hours light / 12 hours dark. Cotyledons were picked using tweezers and 

transferred adaxial side-up to the central 60 pins of a custom 96-pin rubber 

stamp (made by Simon Foster) using high-vacuum silicone grease as an 

adhesive (Sigma cat. Z273554-1EA). 

An optical 96-wells plate (Greiner Bio-One cat. 655892) was prepared, adding 

200 µL dH2O to 30 wells left of centre, and 200 µL flg22 (10 µM) to 30 wells right 

of centre. The custom stamp with cotyledons was lowered into the optical plate, 

incubated bench-top at room temperature and used for high throughput confocal 

imaging at indicated time points (30, 90, 150 min). 

Probe Excitation (nm) Detection (nm) 

eGFP 488 495-540 

eYFP 514 520-570 

mRFP 561 570-630 

mCherry 561 600-630 

autofluorescence - 700-800 
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 Laser and acquisition settings 

The Opera High Content Screening System (PerkinElmer) with a 40 × 0.90 NA 

water immersion objective was used for rapid image acquisition. For both GFP 

and YFP imaging, a solid state 488 nm laser at 4000 µW was used for excitation, 

and emission was captured between 502-577 nm. Images were captured with a 

CCD camera and an exposure time of 40 ms. For each cotyledon, z-stacks of 21 

images were acquired at 5 locations successively. Cotyledons were scanned 

row-by-row, measuring 5 water treated wells and 5 flg22 treated wells in an 

alternating manner. Total acquisition time per optical plate was ca. 30 minutes. 

  Post processing 

For automated spot detection, the resulting FLEX image files were processed 

using Single Channel Spot Detection v. 4.1 (by Ji Zhou, The Sainsbury 

Laboratory, Norwich, UK) for Acapella Studio (PerkinElmer, version 2.2.2.7338). 

Analysis was configured to require at least 70 % valid image area (less than 30 

% dark area), a spot roundness of greater than 0.125 and a spot width-to-length 

ratio of greater than 0.425. The resulting annotations were visually inspected by 

taking an arbitrary sample of output images. Data was further processed in 

Microsoft Excel. 

2.7.4 - Confocal microscopy in N. benthamiana tissues 

Magnifications and focus stacking 

For GFP localizations, GFP-RFP/mCherry colocalizations, and for GFP vesicle 

quantitation, the 63 × objective was used and z-stacks of 10 µm were obtained. 

For BiFC/split-YFP of vesicle localized signals, the 63 × objective was used and 

single images were obtained. For BiFC/split-YFP of plasma membrane localized 

reconstituted signal, pictures were taken with the 40 × objective to capture 

numerous cells per field of view. 

Ligand treatments for receptor mediated endocytosis 

100 µM of purified C. fulvum Avr4 or Avr2 dissolved in water were syringe-

infiltrated into fully expanded mature N. benthamiana leaves. After 1 hour, 1 cm 

diameter leaf discs were obtained by cork borer and used for microscopic 

analysis. Stable expressing plants were treated at 4-5 weeks of age, and 

transiently expressing plants at 4-5 weeks of age were treated at 2 days after 

agroinfiltration. 
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  Vesicle quantification 

Images were acquired using 63 × magnification. The resulting LIF-files were 

processed using FIJI, and maximum projections of the combined GFP and 

autofluorescence channels were automatically generated using a custom macro 

(FileIO, by Ji Zhou). Spot quantification in z-projections was automated using 

adaptive intensity and color thresholding in EndoQuant v. 1.075 (by Ji Zhou) for 

Acapella Studio. The resulting annotations were visually inspected and data  

were processed in Microsoft Excel. 

2.7.5 - Confocal microscopy in Arabidopsis tissues 

Transgenic Arabidopsis plants were observed using the 63 × objective. Seedling 

cotyledons were picked using tweezers, and adult leaf tissue was obtained using 

a biopsy punch (⌀ = 2 mm). In both cases, abaxial sides were imaged. 

Transiently expressing protoplasts were transferred in a volume of 1 µL onto a 

microscope slide with reaction wells (Marienfeld cat. 1216521) and directly used 

for imaging. For particle bombardment, transfected cells were located through 

the binocular using a GFP filter cube at 20 × magnification, and images were 

acquired at 63 × magnification. 

2.7.6 - Confocal imaging of focal accumulations 

Introduction of bacteria 

Pto DC3000 or Pto DC3000 cor, carrying a genomic insertion with constitutive 

promoter driven pTac::mCherry (generated by Sebastian Pfeilmeier) were grown 

on plate at 28 °C for 2 days, and incubated on bench top at room temperature for 

1 day. Bacteria were harvested using a spatula, washed once with dH2O, and 

resuspended at OD600 = 0.2. Bacterial suspensions were syringe-infiltrated into 

mature Arabidopsis leaves. Infiltrated plants were kept on bench top at room 

temperature for 5-6 hours, and samples were taken with a biopsy punch. 

Image acquisition 

For detailed, qualitative imaging of abaxial mesophyll, the Leica SP5 confocal 

microscope and 63 × magnification was used. Z-stacks were acquired starting 

from the epidermal equatorial plane up to 10-20 µm into the tissue, in steps of 1 

µm. For image acquisition in preparation for quantification, single images of the 

first adaxial mesophyll layer at lower magnification of 20 × were acquired. 
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Quantification of focal accumulations with FIJI (script) 

In order to quantify the number of focal accumulations per field of view, a custom 

macro for FIJI was written that applies the following functions to a series of 8-bit 

greyscale images: Gaussian blur (σ = 2 px), global threshold (grey value min. = 

40, max. = 255), create mask, analyze particles (min. area = 20 px.), list number 

of particles. The results were further processed in Microsoft Excel. Mean values 

within experiments were statistically analysed using a Student‘s t-test comparing 

treatment to water. 
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CHAPTER 3 

AVR4 PROMOTES CF-4 RECEPTOR-LIKE PROTEIN ASSOCIATION WITH THE 

BAK1/SERK3 RECEPTOR-LIKE KINASE TO INITIATE RECEPTOR ENDOCYTOSIS 

AND PLANT IMMUNITY 

 

This chapter consists of an edited and expanded version of the following publication: 

“Avr4 promotes Cf-4 receptor-like protein association with the BAK1/SERK3 receptor-like 

kinase to initiate receptor endocytosis and plant immunity” 

Jelle Postma, Thomas W. H. Liebrand, Guozhi Bi, Alexandre Evrard, Ruby R. Bye, Malick 

Mbengue, Hannah Kuhn, Matthieu H. A. J. Joosten, Silke Robatzek  

New Phytologist (2016) vol. 210, issue 2, p. 627-42, doi: 10.1111/nph.13802 

The majority of the data are based on experiments performed by myself. Specific experimental 

contributions of co-authors are acknowledged in the main text as well as in figure legends. 

 

RESULTS 

3.1 - CF-4 AND SOBIR1 CO-INTERNALIZE UPON CF-4 ACTIVATION 

3.1.1 - Cf-4 interacts with SOBIR1 at the plasma membrane 

In order to study the dynamic subcellular localization of Cf-4 in antifungal immunity, I used the 

fluorescently tagged Cf-4-GFP construct which triggers a hypersensitive response in N. 

benthamiana upon perception of the Cladosporium fulvum effector Avr4 (fig. S1; Liebrand et al., 

2012). I transiently expressed Cf-4-GFP with the plasma membrane marker Autoinhibitory 

Calcium ATPase 8 (ACA8, Frei dit Frey et al., 2012), and revealed by co-localization that Cf-4-

GFP is present at the plasma membrane (figs. 3.1, S2), which corresponds to its predicted site of 

biological function in perceiving Avr4, which has been shown to be present in the apoplast 

(Joosten et al., 1994; van den Burg et al., 2006). In addition, the constitutive Cf-4-interacting RLK 

SlSOBIR1 and its homologs SlSOBIR1-like and AtSOBIR1 also localized to the plasma 

membrane (figs. 3.1-2, S2-4), raising the possibility that Cf-4-SOBIR1 dimers are present at this 

location. To test for presence of Cf-4-SOBIR1 dimers, I co-expressed bimolecular fluorescence 

complementation (BiFC) fusion constructs of both, and revealed that Cf-4 and SOBIR1 
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reconstituted a signal at the PM as confirmed by colocalization with ACA8 (fig. 3.1). As a 

negative control, I co-expressed BiFC fusion constructs of SlSOBIR1 and FLS2, and while both 

proteins could be expressed, they did not reconstitute a signal (fig. S5), corresponding to 

published data that SOBIR1 does not interact with RLK-type PRRs (Liebrand et al., 2013). Taken 

together, I conclude that Cf-4 and SlSOBIR1 interact at the PM. 

 

 

 

Fig. 3.1. Cf-4 and SlSOBIR1 are present at the plasma membrane. Single z-plane confocal micrographs show N. benthamiana 

leaf epidermal cells transiently co-expressing the indicated Cf-4 and SlSOBIR1 fusion proteins and plasma membrane-localized 

ACA8-mCherry. The first column of panels show GFP/YFP fluorescence, the second panels show mCherry fluorescence and the 

third column of panels depict the overlay images of the two fluorescence signals shown in the first and second panels. Overlay 

images indicate co-localization of the proteins fused to GFP or YFP and mCherry, as a yellow color is produced. Dashed squares in 

these images are shown as detailed pictures (magnified in the fourth column of panels). White lines in the detailed pictures indicate 

the regions of interest (ROIs) that correspond to the intensity profiles in the last column of panels. Intensity profiles indicate the grey-

value of pixels across the ROI in the green and red channels, on a scale of 1-300. Images were taken at three days post infiltration 

(dpi) for Cf-4-GFP and SlSOBIR1-GFP and at two dpi for BiFC of Cf-4, C-terminally fused to the C-terminal half of YFP (YFPc), with 

SlSOBIR1 C-terminally fused to the N-terminal half of YFP (YFPn); scale bars = 10 μm. 
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3.1.2 - Avr4 triggers endocytosis of the Cf-4-SOBIR1 complex 

Previously, AtSOBIR1 has been shown to localize to FM4-64-positive vesicles, suggesting 

endosomal localization (Leslie et al., 2010b). To further probe the identify of SOBIR1-positive 

vesicles, I co-expressed the GFP-tagged tomato and Arabidopsis SOBIR1 homologs with a panel 

of RFP-tagged known endomembrane markers, which localize to Golgi (MEMB12), TGN/EE 

(VHA-a1), TGN/EE-LE/MVB (ARA7) and LE/MVB (ARA6). SOBIR1 punctae did not overlap with 

MEMB12 or VHA-a1, but did overlap with ARA7 and ARA6, confirming constitutive SOBIR1 

localization to endosomes (figs. 3.2, S3-4). 

Endosomal localization of cell surface receptors can be triggered by ligand perception (Mbengue 

et al., 2016; Ortiz-Morea et al., 2016; Beck et al., 2012b). Because Cf-4 interacted with SOBIR1 

at the PM as shown in BiFC, and SOBIR1 constitutively localized to endosomes, I was prompted 

to test whether Cf-4 could also localize to endosomes upon activation by Avr4. To address this, I 

co-expressed Cf-4-GFP and SlSOBIR1-mCherry in N. benthamiana and infiltrated the purified C. 

fulvum effector protein Avr4. I also infiltrated Avr2, which is not recognized by Cf-4, as a negative 

control. In untreated leaves, Cf-4-GFP localized to the PM, while SlSOBIR1-mCherry localized to 

the PM and endosomes (figs. 3.1, 3.3A). Interestingly, Avr4 treatment triggered Cf-4-GFP 

localization to SlSOBIR1-mCherry-positive vesicles, pointing at ligand-induced endocytosis (figs. 

3.3A, S6). I could confirm the endosomal nature of Avr4-induced Cf-4-GFP compartments  by co-

localization with the LE/MVB-marker ARA6 (fig. 3.3A). Because Avr2 did not trigger 

internalization of Cf-4-GFP (fig. 3.3A, S6), I conclude that Cf-4 endocytosis is ligand-specific and 

dependent on receptor activation. 

Because upon Avr4 treatment, Cf-4 and SOBIR1 localized at late endosomes, I hypothesized that 

they may be internalized in complex with each other. To investigate this, I co-expressed Cf-4 and 

SOBIR1 BiFC constructs, which reconstituted signal at the PM (fig. 3.1). Upon activation of Cf-4 

by Avr4 treatment, but not upon Avr2 treatment, BiFC signal was also reconstituted at ARA6-

positive LE/MVBs (fig. 3.3B), confirming ligand-induced endocytosis of the Cf-4-SOBIR1 

heterodimer, which corresponds to Avr4-induced endosomal colocalization of Cf-4 and SOBIR1 

(fig. 3.3A). Ligand-induced internalization of receptor heterodimers has been shown before for 

BRI1-BAK1/SERK3 in Arabidopsis protoplasts (Russinova, 2004). In contrast, upon co-

expression of BiFC fusion constructs of FLS2 which revealed localization of homodimers to the 

PM, flg22-treatment could not induce internalization, suggesting the complex may be impaired in 

recruiting the BAK1/SERK3 co-receptor, which is required for ligand-induced FLS2 endocytosis 

(Chinchilla et al., 2007; Beck et al., 2012b). 
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Fig. 3.2. SlSOBIR1 constitutively localizes to endosomes. Maximum projections of confocal micrograph z-stacks show N. 

benthamiana leaf epidermal cells transiently expressing SlSOBIR1-GFP or Cf-4-GFP (left panels), either without or with co-

expression of the indicated organelle markers fused to mCherry/RFP (middle, left panels). Co-localization in the overlay images is 

depicted by the development of a yellow color (middle, right panels). Dashed squares in these images are shown as detail pictures 

(magnified in the right panels). Arrowheads in the detail pictures point at mobile vesicles in the upper right panel and indicate 

SlSOBIR1 localization at endosomes in the two lower right panels. Images were taken at three dpi; scale bars = 10 μm. 

 

3.1.3 - Cf-4 endocytosis requires functional BAK1/SERK3 and SOBIR1 

Ligand-induced activation and endocytosis of FLS2 depends on BAK1/SERK3 (Beck et al., 

2012b; Choi et al., 2013). Therefore, I hypothesized that ligand-induced endocytosis of Cf-4 

shares the same requirement. To address this, in collaboration with Alexandre Evrard (The 

Sainsbury Laboratory, Norwich, UK), I used tobacco rattle virus (TRV)-based virus-induced gene 

silencing (VIGS) and knocked down the two endogenous tobacco BAK1/SERK3 homologs 

NbSERK3a/b (Heese et al., 2007) and tested for the capacity for Avr4 to induce Cf-4-GFP 

endocytosis. Interstingly, upon Avr4 treatment, Cf-4-GFP endocytosis was reduced in 

TRV::NbSERK3a/b leaves as compared to TRV-control leaves (figs. 3.4, S7), while Cf-4-GFP 

accumulation levels were unaffected by NbSERK3a/b silencing (fig. S7). Upon NbSERK3a/b 

silencing, which did not affect the total number of ARA6 endosomes (fig. 3.4), transient co-

expression of Arabidopsis BAK1/SERK3, could restore the capacity for Cf-4-GFP to internalize 

upon Avr4 treatment (figs. 3.4, S7). Cf-4-GFP internalization was dependent on the full 

functionality of BAK1/SERK3, as co-expression with the kinase-dead  AtBAK1-KD could not 

restore Avr4-induced Cf-4-GFP accumulation at endosomes (figs. 3.4, S7). These data together 

provide evidence that both RLK and RLP-type cell-surface immune receptors share the functional 

requirement for the RLK BAK1/SERK3. Upon analysis by qRT-PCR, performed in collaboration 

with Ruby Bye (Laboratory of Phytopathology, Wageningen UR, The Netherlands), we could 

show that TRV::NbSERK3a/b silencing additionally co-silences a NbSERK1 homolog, which 

indicates that Cf-4 endocytosis might additionally require SERK1. 
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Fig. 3.3. Cf-4 localizes to endosomes in a ligand-dependent manner and together with SlSOBIR1. (A) Confocal micrographs 

show N. benthamiana leaf epidermal cells transiently expressing Cf-4-GFP without and with co-expression of ARA6-RFP and 

SlSOBIR1-mCherry, treated with Avr4 or Avr2 (both at 100 µM), as indicated. The left panels show GFP fluorescence, middle left 

panels show autofluorescence and RFP/mCherry fluorescence, middle right panels depict the overlay images of the two 

fluorescence signals shown in the left and middle left panels, and the right panels show detail pictures of the dashed squares. 

Arrowheads point at mobile vesicles positive for Cf-4-GFP and ARA6-RFP and indicate co-localization of Cf-4-GFP with ARA6-RFP 

and SlSOBIR1-mCherry at endosomes. Images were taken at three dpi and 90 min after elicitation; scale bars = 10 μm. (B) 

Confocal micrographs show N. benthamiana leaf epidermal cells transiently expressing Cf-4, C-terminally fused to the C-terminal 

half of YFP (YFPc) and SlSOBIR1, C-terminally fused to the N-terminal half of YFP (YFPn, left panels), without or with co-

expression of ARA6-RFP (middle left panels) and treated with Avr4 or Avr2 (both at 100 µM), as indicated. Co-localization between 

reconstituted YFP and RFP in the overlay images is depicted by the development of a yellow colour (middle, right panels). Dashed 

squares in these panels are shown as detail pictures (right panels). Arrowheads point at mobile vesicles in the upper right panel and 

indicate co-localization at endosomes in the middle right panel. Images were taken at three dpi and 90 min after elicitation; scale 

bars = 10 μm. 

 

Because SOBIR1 is required for Cf-4-mediated HR and immunity (Liebrand et al., 2013), and I 

could show that it internalized from the PM in complex with Cf-4 upon Avr4 treatment, I 

hypothesized that it may be required for Cf-4 endocytosis. It has been shown that SOBIR1 is 

required for the tissue-level accumulation of Cf-4 (Liebrand et al., 2013), and indeed upon TRV-

mediated silencing of the N. benthamiana homologs NbSOBIR1 and NbSOBIR1-like, I observe a 

reduction in fluorescent signal of Cf-4-GFP, which can be restored upon complementation by 

affinity tagged AtSOBIR1-Myc or the kinase dead variant AtSOBIR1-KD-Myc (fig. S8A,C). 

Interestingly, only co-expression with AtSOBIR1-Myc, and not AtSOBIR1-KD-Myc, could restore 

Avr4-induced Cf-4-GFP internalization, indicating that this requires fully functional SOBIR1 (fig. 

S8A,B). 
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Fig. 3.4. Cf-4 endocytosis requires BAK1/SERK3. Leaves of Cf-4-GFP-N. benthamiana stable and wild type N. benthamiana 

plants were TRV-silenced for NbSERK3a/b and GUS as a control for three weeks and subsequently used to transiently express 

AtBAK1, AtBAK1-KD, and ARA6/RabF1-RFP as indicated for three days. Confocal micrographs show Cf-4-GFP localisation upon 

treatment with Avr4 (100 µM, left panels) and ARA6/RabF1-RFP-labelled endosomes (left panels), and detail pictures from dashed 

squares (middle panels). Arrowheads point at Cf-4-GFP- and ARA6/RabF1-RFP-positive vesicles. Quantification of Cf-4-GFP- and 

ARA6/RabF1-RFP-positive vesicles was done with EndoQUANT (right panels, bars depict means ± 2 SE; n = 6; p < 0.05; statistical 

significant differences are indicated by asterisks). Note that much fewer Cf-4-GFP-positive vesicles are observed in NbSERK3a/b-

silenced leaves compared to the TRV-silenced control. The amount of Cf-4-GFP-positive vesicles increased upon transient co-

expression of AtBAK1/SERK3 but not when its kinase-inactive variant AtBAK1-KD was co-expressed. No difference in the amount 

of ARA6/RabF1-RFP-positive endosomes was observed when NbSERK3a/b was silenced. Images were taken 90 min after Avr4 

elicitation; scale bars = 10 μm. See Fig. S.7 for transcript abundance of silenced genes and protein levels of Cf-4. The above 

microscopy experiments were performed in collaboration with Alexandre Evrard. 

 

3.2 - CF RLPS RECRUIT SERK FAMILY RLKS UPON ACTIVATION 

3.2.1 - Cf-4 recruits BAK1/SERK3 and SERK1 upon activation 

Well-studied RLK-type PRRs such as FLS2 and EFR recruit BAK1/SERK3 upon ligand 

perception (Roux et al., 2011). Having established that both Cf-4 and FLS2 endocytosis share the 

requirement for BAK1/SERK3 in endocytosis, I addressed a possible role for BAK1/SERK3 in Cf-

4-mediated immunity using biochemical interaction studies, performed in collaboration with 

Thomas Liebrand and Guozhi Bi (Laboratory of Phytopathology, Wageningen UR, The 

Netherlands). We performed transient co-expression of Cf-4-GFP, SlSOBIR1-HA and SlSERK3a-

Myc in N. benthamiana, treated the leaves with Avr4, Avr2 or flg22, and purified either Cf-4-GFP 

or SlSERK3a-Myc using immunoprecipitation. In all conditions, SlSOBIR1-HA co-purified with Cf-

4-GFP as revealed by western blot (figs. 3.5, S9), corresponding to their known constitutive 

interaction and the reconstitution of signal in BiFC experiments (fig. 1; Liebrand et al., 2013). In 

addition, upon pulldown of SlSERK3a-Myc, SlSOBIR1-HA co-purified under all conditions, which 

contrasts with the findings of Liebrand et al., 2013, who did not detect SlSERK3a-GFP in 

SlSOBIR1-Myc purifications. This may be explained by the use of biochemical methods with 

different sensitivities, but it is conceivable that SlSOBIR1 and SlSERK3a interact through another 

RLP. 
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Fig. 3.5. SlSERK3a interacts with Cf-4. (A) Co-immunoprecipitation from GFP-trap bead pull-downs on N. benthamiana co-

expressing Cf-4-GFP, SlSOBIR1-HA and SlSERK3a-Myc. Leaf samples were taken at two dpi, after 60 min treatments without or 

with 10 µM flg22 or 100 µM Avr4, as indicated. Total proteins (input) and immunoprecipitated proteins (IP) were subjected to 

SDS/PAGE and blotted. Blots were incubated with αGFP, αHA or αMyc antibodies for the detection of immunoprecipitated Cf-4-GFP 

and co-purifying SlSOBIR1-HA and SlSERK3a-Myc, respectively. Note that differences in the amount of immunoprecipitated Cf-4-

GFP in the mock treatment, as compared to Avr4 and flg22 treatments, were not observed across replicates (Fig. S.14). These 

GFP-trap immunoprecipitation experiments were performed by Thomas Liebrand (B) Co-immunoprecipitation from Myc-trap bead 

pull-downs on N. benthamiana co-expressing Cf-4-GFP, SlSOBIR1-HA and SlSERK3a-Myc. Leaf samples were taken at two dpi, 

after 15 min treatments without or with water (H2O) or 100 µM Avr4, as indicated. Total proteins (input) and immunoprecipitated 

proteins (IP) were subjected to SDS/PAGE and blotted. Blots were incubated with αMyc, αHA or αGFP antibodies for the detection 

of immunoprecipitated SlSERK3a-Myc and co-purifying SlSOBIR1-HA and Cf-4-GFP, respectively, and proteins were detected 

using a method with increased sensitivity as compared to panel (A). 

 

Interestingly, only upon Avr4 treatment, and not Avr2 or flg22 control treatments, did SlSERK3a-

Myc co-purify with Cf-4-GFP (figs. 3.5A, S9). Conversely, SlSERK3a-Myc purifications were 

enriched in Cf-4-GFP in Avr4 treated samples compared to water treatment (fig. 3.5B). Taken 

together, these data point at ligand-induced heterodimerization as is observed for RLK-type 

PRRs (Monaghan and Zipfel, 2012). Interestingly, upon purification of SlSERK3a-Myc from Avr4 
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treated samples, we observed a ―smear‖ pattern migrating at higher molecular weights of co-

purifying SlSOBIR1-HA, providing evidence of Avr4-induced posttranslational modifications on 

the SlSERK3a-interacting pool of SlSOBIR1-HA. 

3.2.2 - Cf-4 and Cf-9 both recruit SERK members upon activation 

It has previously been shown that another SERK member, SlSERK1, is genetically required for 

Cf-4 mediated resistance in tomato (Fradin et al., 2011). Therefore, we addressed whether Cf-4 

similarly recruits SERK1 upon activation. Upon purification of Cf-4-GFP, we could reveal 

SlSERK1-Myc already interacting under Avr2 control treated conditions, but observed a marked 

enhancement of co-purifying SlSERK1-Myc in Avr4 treated leaves (fig. S9). While in this 

expression system SlSERK1-Myc accumulated to higher levels than SlSERK3-Myc, possibly 

explaining ectopic interactions with Cf-4-GFP, it is also possible that Cf-4 exists in a preformed 

complex with SlSOBIR1 and SlSERK1, which upon activation of Cf-4 becomes stabilized and 

recruits additional SlSERK3a. 

Cf-4 is highly homologous to Cf-9, which detects C. fulvum Avr9 (Thomas et al., 1997). To 

investigate whether SERK recruitment might be a more generalized mechanism by which RLPs 

initiate immune signaling, we purified Cf-9-GFP from leaves additionally co-expressing 

SlSOBIR1-HA and either SlSERK3a-Myc or SlSERK1-Myc, under Avr9 treatment or Avr4 control 

treatments. As a result, we observed that similar to Cf-4, SlSERK3a-Myc and SlSERK1-Myc 

strongly co-purified with Cf-9-GFP only upon activation by Avr9 (fig. S10). Taken together, these 

data suggest that other SOBIR1-dependent RLPs may similarly recruit SERK family members to 

initiate signaling, as has recently been shown for ELICITIN RESPONSE (ELR) and RLP23 (Albert 

et al., 2015; Du et al., 2015). 

3.3 - SERK MEMBERS MEDIATE AVR4-TRIGGERED IMMUNITY 

3.3.1 - Cf-4 hypersensitive response requires SERK members 

Upon activation by Avr4, Cf-4 triggers HR in N. benthmiana which could be suppressed upon 

silencing of NbSOBIR1 and NbSOBIR1-like (fig. 3.6A; Liebrand et al., 2013). Because 

SlSERK3a was recruited to Cf-4 upon activation by Avr4, and was required for Cf-4 endocytosis, I 

hypothesized that NbSERK3a might also be involved in immune signaling of Cf-4. To address 

this, in collaboration with Thomas Liebrand and Ruby Bye, we silenced NbSERK3a/b using VIGS, 

and revealed that this significantly reduced Avr4-triggered HR in N. benthamiana stably 

expressing Cf-4, whereas Avr4 could consistenly induce HR in TRV control inoculated Cf-4 plants 

(figs. 3.6A, S7). The capacity for NbSERK3a/b-silenced plants to initiate HR was not generally 

affected, as this was still induced by the autoactive NLR RxD460V and pro-apoptotic factor BCL2-

ASSOCIATED PROTEIN X (BAX; Lacomme and Santa Cruz, 1999; Bendahmane et al., 2002). 
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Because TRV::NbSERK3a/b inoculation also affected transcript abundance of NbSERK1 as 

measured in qRT-PCR (fig. S7), it is conceivable that Avr4-triggered HR may require NbSERK1, 

which would be in line with the published finding that full Cf-4 mediated immunity to C. fulvum in 

tomato required SlSERK1 (Fradin et al., 2011). 

 

Fig. 3.6. SlSERK3a is required for Avr4-triggered HR and immunity against C. fulvum. (A) Leaves of transgenic N. 

benthamiana plants stably expressing Cf-4-GFP that had been TRV-silenced for either Cf-4, NbSOBIR1, NbSERK3a/b or for GUS 

as control, and were subsequently A. tumefaciens-infiltrated with Avr4 (OD600 = 0.03), RxD460V (OD600 = 0.1) and BAX (OD600 = 

0.5) as indicated. Images were taken three days after A. tumefaciens infiltration. HR is observed as brownish cell death. The 

numbers below the panels indicate the occurrence of full HR, intermediate or no symptoms out of 36 Avr4 A. tumefaciens 

infiltrations that were performed. (B) Leaves two weeks after inoculation with an Avr4-secreting, GUS-transgenic strain of C. fulvum 

of MM-Cf-0 tomato as a control, and Cf-4 tomato that had been inoculated with recombinant TRV constructs targeting Cf-4, 

SlSERK3, SlSERK1 or GUS three weeks earlier. To visualize C. fulvum colonization, leaves were stained for GUS activity. The 

amount of successful colonization attempts (blue spots) versus the total amount of Cf-4 leaves that were sampled is indicated 

between parentheses. The above infection and HR assays were performed by Ruby Bye, Thomas Liebrand and Guozhi Bi. 
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3.3.2 - Cf-4-mediated resistance in tomato requires SlSERK3 

To investigate whether BAK1/SERK3 is required for Cf-4-mediated resistance in tomato, 

collaborating with with Thomas Liebrand and Ruby Bye, we silenced SlSERK3 individually, or 

SlSERK3a together with SlSERK1 using VIGS, and tested for colonization success of C. fulvum 

carrying Avr4 and the GUS reporter gene. In both cases, C. fulvum colonized leaves more 

strongly than in TRV control leaves, as evidenced by increased GUS staining and subsequent 

quantification (fig. 3.6B). Because silencing of Cf-4 itself even further increased C. fulvum 

colonization success (fig. 3.6B), it is possible that VIGS only partially knocks down the 

expression of SlSERK3 and SlSERK1 allowing for some Cf-4 activation, and/or that there is 

functional redundancy between thes two SERKs. These data together show that BAK1/SERK3 is 

a key positive regulator of full Cf-4-mediated immunity upon Avr4 perception. 

 

DISCUSSION 

3.4 - Cf-4 and SOBIR1 work with SERKs to initiate immunity and receptor endocytosis 

The Cf signaling pathway is essential for the immune response of tomato to C. fulvum 

(Stergiopoulos and de Wit, 2009; Rivas and Thomas, 2005). A number of Cf signaling 

components were identified through genetic and proteomic approaches, but the mechanism by 

which Cf-4 initiates downstream signaling remained unclear (Liebrand et al., 2014). In the present 

study, I show that both SERK1 and SERK3 are recruited to the Cf-4 receptor in an Avr4-

responsive manner, a mechanism that was additionally confirmed for Avr9-induced activation of 

Cf-9. 

Consistently, I show that Cf- 4 requires these RLKs for its function in order to initiate HR and 

restrict fungal colonization as silencing of the respective genes in N. benthamiana and tomato 

suppresses Avr4-induced HR symptom formation and facilitates fungal penetration, respectively. 

My observations imply that Avr4 enhances the formation of a complex of Cf-4 and SlSERK1/3 to 

induce Cf-4 signaling. Furthermore, I confirm that Cf-4 interacts with SOBIR1 at the plasma 

membrane and, could demonstrate ligand-induced SERK3-dependent late endocytic trafficking of 

the Cf-4 RLP together with SlSOBIR1 as a novel pathway in Cf-mediated downstream events. 

3.5 - Ternary receptor complexes form 

The finding that Cf-4 and SOBIR1 are present in complex and recruit additional RLKs to form 

multimeric complexes upon activation is in agreement with existing data on RLP-SOBIR1 

systems. Solanum microdontum (wild tomato) ELICITIN RESPONSE (ELR) is an RLP that 

detects the MAMP elicitin, and recruits SERK3 upon activation, while ELR maintains interaction 
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with SOBIR1 independent of activation status (Domazakis et al., 2018; Du et al., 2015). 

Furthermore, Arabidopsis RLP23, which activates upon binding of the MAMP Nep1-like protein 

(NLP)-derived peptide nlp20, interacts with SOBIR1 independent of activation status, and recruits 

BAK1/SERK3 upon activation (Albert et al., 2015). However, the above data, including from the 

present study, were obtained from tissue-level biochemical analyses, and cannot fully exclude 

that separate pair-wise interactions between RLP-SOBIR1 and RLP-SERK3 may exist. It would 

be interesting to more precisely address this question through RLP-purification and subsequent 

non-denaturing gel electrophoresis, or with in vivo fluorescence-based association assays. 

3.6 - Different SERKs may do the job 

In my experiments, Cf-4 associated with SERK1 before activation, and more strongly upon Avr4 

treatment (fig. S9). In addition, SERK1 has been shown to be required for full Cf-4 immunity in 

tomato (Fradin et al., 2011). The recruitment and requirement of multiple SERK members has 

been shown in existing studies on RLPs dependent on SOBIR1. Arabidopsis RLP23 interacted 

with SOBIR1 and SERK4 before activation, and recruited increased amounts of SERK1, SERK2, 

SERK3 and SERK4 upon activation by nlp20 (Albert et al., 2015). Additionally, SERK members 

showed functional redundancy in mediating RLP23 associated outputs (Albert et al., 2015). On 

the other hand, Arabidopsis RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES 1 

(RBPG1)/RLP42, which interacts with SOBIR1 and triggers HR upon detection of fungal 

endopolygalacturonase, did not recruit SERK3 and did not depend on SERK3 for HR (Zhang et 

al., 2014a). 

The well-characterized RLK-type PRRs FLS2 and EFR also recruit multiple SERKs upon 

activation, or interact with SERK members at steady state. FLS2 interacted with Arabidopsis 

SERK1, SERK2, BAK1/SERK3 and BKK1/SERK4 upon expression in N. benthamiana before 

activation, and upon activation FLS2 most strongly recruited BAK1/SERK3, but also recruited 

additional SERK1 and SERK2 (Roux et al., 2011). Similarly, EFR recruited equal amounts 

SERK1, SERK2, BAK1/SERK3 and BKK1/SERK4 upon activation (Roux et al., 2011), but for 

most FLS2 and EFR outputs, BAK1/SERK3 is the major contributor (Schwessinger et al., 2011). 

As observed for RLPs, there are SERK3-independent outputs, as evidenced by the capacity for 

bak1 mutants to trigger elevated SA-levels and PEN3 cell-surface focal accumulation upon 

activation of FLS2 by flg22 (Underwood and Somerville, 2013; Yamada et al., 2016). 

These data taken together, for both RLP-SOBIR1 activation, as well as PRR-based cell-surface 

immune activation, the requirements for specific SERK members can vary. Since I could restore 

Avr4-induced Cf-4 endocytosis in NbSERK3a/b and partial NbSERK1-silenced plants through 

expression of the singular Arabidopsis BAK1/SERK3, I hypothesize that this member is the major 
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determinant for Cf-4 triggered outputs, but its ability to complement Cf-4 HR and full tomato 

immunity to C. fulvum remains to be demonstrated. 

3.7 - Cf-4-SOBIR1 as a two-component PRR 

The requirement of SERK members hints at clear similarities between the Cf-4/Cf-9 effector 

receptors and FLS2 MAMP receptor pathways, further evidenced by overlapping transcriptional 

reprogramming upon activating FLS2- and Cf-mediated immune responses (Navarro et al., 2004). 

This overlap potentially involves the regulation of downstream responses through similar 

components which, in addition to the SERK family members, include the receptor-like cytoplasmic 

kinases BOTRYTIS- INDUCED KINASE 1 (BIK1), and AVRPPHB SUSCEPTIBLE 1-LIKE 1 

(PBL1) kinases downstream of FLS2, and the AVR9/CF-9 INDUCED KINASE 1 (ACIK1) 

regulating Cf-4 immunity, as well as the CAST AWAY kinase involved in SOBIR1/EVR signaling 

(Burr et al., 2011; Monaghan and Zipfel, 2012; Liebrand et al., 2014).  

Given these similarities, it is conceivable that the constitutive association between the RLP Cf-4 

and the RLK SlSOBIR1 represents a PRR complex, in which the Cf-4 ectodomain mediates 

specific ligand recognition and the SlSOBIR1 kinase domain is regarded as the signaling part. 

This is in contrast to PRRs exemplified by FLS2, in which both functions are present within the 

same molecule. Ligand-enhanced interaction of PRRs with SERK member RLKs is subsequently 

required to trigger receptor endocytosis and further downstream signaling by both RLP- and RLK-

type PRRs (fig. 3.7). 

3.8 - Shared mechanisms of receptor endocytosis 

Receptor-mediated endocytosis is part of the eukaryotic immune response and in addition to 

FLS2 and Cf-4, for example, is also found for the EFR and PEPR1 RLKs (Husebye et al., 2006; 

Robatzek et al., 2006; Spallek et al., 2013; Mbengue et al., 2016; Ortiz-Morea et al., 2016). An 

important role of receptor-mediated endocytosis is to control the abundance of receptor 

(complexes) at the plasma membrane, a process that is well established in animals and involves 

lysosomal/vacuolar degradation (Lemmon and Schlessinger, 2010). Activated FLS2 traffics into 

the late endosomal pathway and is a cargo of multivesicular bodies localizing to the lumen of 

these late endosomes for delivery to the vacuole (Beck et al., 2012a; Spallek et al., 2013; 

Mbengue et al., 2016). This pathway could be responsible for the flg22-induced FLS2 

degradation, because chemicals affecting endosomal trafficking inhibit the degradation of this 

receptor (Smith et al., 2014). Our colocalization data strongly suggest that activated Cf-4 is also 

targeted for vacuolar degradation through the late endosomal pathway, consistent with the 

observation that Cf-4-GFP protein levels are reduced upon Avr4 elicitation (fig. S1; Choi et al., 

2013). 
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Fig. 3.7. Model of the Cf-4, SOBIR1 and SERK3 subcellular trafficking pathways. (A) Un-elicited: Following its folding and 

maturation in the endoplasmic reticulum (ER), Cf-4 is predominantly trafficked to the plasma membrane, where it constitutively 

interacts with SOBIR1, which itself is constitutively endocytosed. SOBIR1 can interact with BAK1/SERK3, a co-receptor known to 

recycle between the plasma membrane and the trans-Golgi network/early endosome. (B) Elicited: Upon colonization of Cf-4 tomato 

leaves, C. fulvum secretes Avr4 into the apoplast, which is recognized by Cf-4 and promotes interaction of Cf-4 with BAK1/SERK3. 

This complex is required for Cf-4-mediated immunity (not shown) and endocytosis into ARA7- and ARA6-positive compartments of 

the late endosomal pathway, destined for vacuolar degradation. Subcellular localization of markers (ACA8, MEMB12, VHA-a1, 

ARA6 and ARA7) used in this study is depicted in brown lettering. TGN, trans-Golgi network; EE, early endosome; LE, late 

endosome; MVB, multivesicular body. 

 

Endosomal sorting for vacuolar degradation requires the transfer of ubiquitin to the plasma 

membrane cargo, and subsequent deubiquitination of the cargo at multivesicular bodies (Beck et 

al., 2012b). In line with this, the Pto DC3000 effector AvrPtoB ubiquitinates the kinase domain of 

FLS2, promoting its degradation (Göhre et al., 2008), and upon activation by flg22, ubiquitin-
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ligases PLANT U-BOX 12 (PUB12) and PUB13 ubiquitinate FLS2, resulting in its degradation (Lu 

et al., 2011). Ubiquitination processes have also been implicated in Cf downstream signaling 

pathways upon activation (Navarro et al., 2004). Is there any evidence for ubiquitination on RLP 

receptor complexes? The ubiquitin ligase CYS, MET, PRO, AND GLY PROTEIN  CMPG1 is 

required for Cf-4 and Cf-9 HR (Gilroy et al., 2011). Phytophthora effector Avr3a targets CMPG1 

and suppresses the immune response to elicitin, which is mediated by ELR, an RLP that interacts 

with SOBIR1 and recruits SERK3 (Domazakis et al., 2018; Du et al., 2015). However, based on 

localization and functional studies, CMPG1 is likely to function in the nucleus (Bos et al., 2010). 

Tobacco Avr9/Cf-9-Rapidly-Elicited 189 (ACRE189)/ Avr9/Cf-9–INDUCED F-BOX1 (ACIF1) and 

ACRE276/PUB17 are required for Cf-4 and Cf-9 mediated HR, but both most likely function in the 

nucleus (van den Burg et al., 2008; He et al., 2015; Yang et al., 2006). Finally, Suppressor of G2 

Allele of SKP1 (SGT1) which is homologous to ubiquitin-ligase complex interacting proteins in 

yeast, is required for Cf-4 and Cf-9 HR, but also for intracellular NLR-mediated immunity, and 

most likely functions further downstream of both types of immune receptors (Peart et al., 2002). 

Taken together, these data point at positive roles for ubiquitination in Cf-triggered outputs. Unlike 

the direct ubiquitination of the FLS2 cytosolic domain, the abovementioned Cf-associated 

ubiquitination proteins are not thought to function at the PM themselves, but predominantly in the 

nucleus or further downstream of initial Cf activation. That makes them unlikely to have a role in 

direct modification of the ubiquitination status of the RLP-SOBIR1 receptor complexes. However, 

I observe increased molecular weight ―smear‖ patterns in SOBIR1 co-purifying with SERK3 upon 

activation of Cf-4 (fig. 3.5), suggesting posttranslational modifications of SOBIR1 in active 

complexes. In agreement with this, the de-ubiquitinating tobacco enzyme UBIQUITIN-SPECIFIC 

PROTEASE 12 (UBP12) modulates Cf-4 and Cf-9-mediated HR (Ewan et al., 2011), and the 

Arabidopsis homolog AtUBP12 localizes to the nucleus and cytosol, which leaves the possibility 

that it mediates cytosolic ubiquitination processes such as those on cell-surface receptors (Cui et 

al., 2013). 

3.9 - Cf-4 as a pattern recognition receptor 

C. fulvum Avr4 is considered an effector, which makes Cf-4 a receptor functioning in effector-

triggered immunity (ETI), in line with its historic classification as an R-protein (Thomas et al., 

1997; Hammond-Kosack and Kanyuka, 2007). However, I could demonstrate that it shares 

similar requirements for signal initiation at the cell surface with RLK-type PRRs such as FLS2, 

which functions as MAMP detector and confers MAMP-triggered immunity. This points at early 

convergence of ETI and PTI. Besides my data that suggest both perception systems at the cell 

surface converge early on the shared module SERK3, other findings support the notion that Cf-4 

can be considered a PRR. 
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Cf-4 not only recognizes the Avr4 protein secreted by C. fulvum, but is also activated by Avr4 

orthologs produced by the banana pathogen Mycosphaerella fijiensis and the pine-infecting 

fungus Dothistroma septosporum (Stergiopoulos et al., 2010; de Wit et al., 2012). CfAvr4, MfAvr4 

and DsAvr4 bind to chitin and consequently protect the fungal cell wall against hydrolysis by 

secreted host chitinases (Van den Burg et al., 2003; van den Burg et al., 2006; van Esse et al., 

2007; Stergiopoulos et al., 2010; Mesarich et al., 2016). It has been suggested that, reminiscent 

of MAMP recognition, the chitin-binding motif of Avr4 is the pattern that is recognized through 

interaction with the LRRs of Cf-4 (Thomma et al., 2011). However, natural allelic variants of C. 

fulvum Avr4 that avoid detection by Cf-4 were mutated in cysteine residues that affect protein 

folding and thus susceptibility to cleavage by apoplastic proteases (Van den Burg et al., 2003). 

While the resulting lower accumulation of Avr4 can thus limit activation of Cf-4, it is remarkable 

that detection avoidance by wild Avr4 alleles did not seem to occur through mutations in the chitin 

binding effector domain. 

Recently, a conserved Avr4 proline residue necessary for Cf-4 HR elicitation was identified within 

all three abovementioned Avr4 homologs (P87 of C. fulvum Avr4), and is dispensable for chitin 

binding but hypothesized to provide protein stability in the apoplast (Van Den Burg et al., 2004; 

Mesarich et al., 2016). Conversely, on tomato pathogen Pseudocercospora fuligena Avr4, which 

also binds chitin, protects against chitinases, and triggers Cf-4 HR, the chitin binding pocket is not 

the pattern detected by Cf-4, as the mutations (N89A, D69A) that reduced chitin affinity still 

triggered Cf-4 HR (Kohler et al., 2016). Furthermore, PfAvr4 mutations that did not alter chitin 

binding, but showed a reduced capacity to trigger Cf-4 HR (W88A, N89A, D96A), were rendered 

sensitive to proteolytic degradation in N. benthmiana apoplasts (Kohler et al., 2016). 

Taken together, the above data support the hypothesis that Cf-4 detects a conserved fold on Avr4 

orthologs across distantly related pathogens, which protects the effector from proteolytic 

cleavage. The detection capacity of Cf-4 for such a conserved pattern provides further reason to 

consider it a PRR. Similarly, the N. benthamiana SOBIR1-dependent RLP RESPONSE TO XEG1 

(RXEG1) recognizes the apoplastic Phytophthora sojae virulence factor XEG1 independent of 

XEG1 mutations or allelic variations which disrupt its virulence function, and the tomato RLP Eix2 

recognizes fungal ETHYLENE-INDUCING XYLANASE (EIX) despite mutations that abolish its 

enzymatic β-1-4-xylanase activity (Wang et al., 2018; Furman-Matarasso et al., 1999). 

3.10 – RLP-SOBIR1 as a cell-surface sensor-helper platform 

Cf RLPs are encoded by highly duplicated genes, generating allelic diversity thought to be driven 

by host-pathogen co-evolution, especially at the LRR sensor domain. The Cf-4 gene itself is 

neighboured by several homologs originating from duplication events, leading to novel 

specialization such as detection capacity for variations of the same effector, such as Avr4E which 
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is detected by the Cf-4 homolog Hcr9-4E (Takken et al., 1999). Cf-9, also present on the same 

locus, shares near full identity with Cf-4 in the cytosolic domain, but is divergent in its LRR 

domains, suggesting diversifying selection to adapt to novel pathogen effectors such as Avr9 

(Wulff et al., 2009). Similar clustering and duplication patterns are observed for Arabidopsis RLP 

genes (Mondragon-Palomino and Gaut, 2005). Yet, Arabidopsis encodes only one SOBIR1, and 

tomato encodes only SOBIR1 and SOBIR1-like, and current knowledge suggests RLPs depend 

on SOBIR1 for stability and signaling capacity (Liebrand et al., 2013). 

The current data on diverse RLP-type PRRs converging on SOBIR1 at the plasma membrane for 

signal transduction upon activation bring to mind the recently emerging ―sensor-helper‖ model of 

intracellular NLRs. There, many sensor-NLRs confer recognition specificity to novel patterns, and 

converge upon a limited number of helper-NLRs for signal transduction and initiation of immunity 

(Wu et al., 2017, 2018). Thus, the RLP-SOBIR1 system may provide a similar, but cell-surface 

based sensor-helper platform, freeing up RLP-encoding genes to generate variation, but 

maintaining common downstream components, allowing for flexible evolutionary adaptation to 

changing invasion patterns in the apoplast. 
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CHAPTER 4 

IMMUNE SIGNALING-INDUCED CHANGES IN THE LOCALIZATION OF 

ARA7/RABF2B AND ITS CO-PURIFYING PROTEOME 

 

RESULTS 

4.1 – THE LOCALIZATION PATTERN OF ARA7/RABF2B CHANGES UPON IMMUNE STIMULUS 

4.1.1 - ARA7 focally accumulates at the cell periphery upon MAMP and pathogen stimulus 

Rab GTPases have previously been shown to accumulate at pathogen interfaces. Late 

endosomal functioning Rab GTPases ARA7 and RABG3c accumulate around Phytophthora 

infestans haustoria (Bozkurt et al., 2015), and ARA7 and ARA6 both accumulate around 

haustoria of Golovinomyces orontii (Inada et al., 2016). Furthermore, ARA6-positive endosomes 

accumulate around attempted penetration sites of Blumeria graminis f.sp. hordei (Nielsen et al., 

2012, 2017b). Finally, RABE1d focal accumulations were observed at the cell surface upon 

bacterial infiltration (Speth et al., 2009). This prompted me to investigate whether ARA7 responds 

in a similar way when challenged with bacterial presence. 

I challenged plants expressing YFP-ARA7 under the ubiquitin-10 promoter (Geldner et al., 2009) 

by injecting water, 10 µM flg22, or the compatible bacterial pathogen Pseudomonas syringae pv. 

tomato DC3000 (Pto DC3000) at an OD600 of 0.2 and I observed the infiltrated tissue using 

confocal microscopy at 6 h post-infiltration. Strikingly, both upon flg22 and Pto DC3000 infiltration, 

ARA7 vesicles strongly concentrated at the cell periphery in both mesophyll and epidermal cells 

(fig. 4.1). This response peaked between 6-7 h after both treatments, and subsided below 

observable levels at >8 hpi. The ARA7 concentration at the cell periphery was also observed in 

water treatments, but in a small minority of cells. The accumulations did not move throughout the 

cell but remained in one location, and showed a high motility of vesicles within the cluster. 

Multiple accumulations per cell were observed, but were always adjacent to the cell periphery. 

Accumulations were observed at positions that did not correspond to the presence of bacteria at 

the cell surface. This could be a result of the bacteria detaching from the cell surface, perhaps 

upon sample preparation which involves infusing the apoplast with water, or because of the 

unnaturally high bacterial titers infiltrated into the apoplast, excess free-floating MAMPs such as 

flagellin are detected by the host cells at other positions. Taken together, results suggest that 

ARA7 concentration at the cell surface is a previously unidentified part of the antibacterial 

immune response.  
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Figure 4.1. YFP-ARA7-positive compartments focally accumulate in response to flg22 and bacterial infection independent 

of host tissue types. Confocal micrographs show cross-sections of 4 weeks-old Arabidopsis epidermal (top panels) and mesophyll 

(bottom panels) leaf cells from transgenic YFP-ARA7 lines, represented as z-projections. Leaves were inoculated with Pto DC3000 

bacteria (OD600 = 0.2) and flg22 (1 µM) as indicated and incubated for 6 hours before confocal microscopy; 63 × objective; scale 

bars = 10 µm. Blue colouring indicates YFP-ARA7-positive fluorescence signals. Arrowheads point at clusters of ARA7 vesicles. 

Images are representative of three experimental replicates. 

 

4.1.2 - ARA7 focal accumulations occur under bacterial infection sites 

It is known that Pto DC3000 attaches to the cell surface in order to secrete effectors into the host 

cytosol, I therefore tested whether ARA7 concentrations at the cell periphery correspond to the 

attachment site of Pto DC3000. In order to do this, I used an mCherry-expressing Pto DC3000-

strain kindly provided by Sebastian Pfeilmeier (Jacob Malone laboratory, John Innes Centre, 

Norwich, UK). I infiltrated a suspension of these bacteria into YFP-ARA7-expressing plants as 

described above, and observed mesophyll tissue at 6-7 hpi using confocal microscopy. Strikingly, 

ARA7 focal accumulations frequently occurred at the cell periphery in locations where Pto 

DC3000-mCherry bacteria were also found (fig. 4.2A). On some occasions, two bacteria were 

found in a head-to-tail pairwise manner, as shown in fig. 4.2A. When observed at 3 hpi or earlier, 

no cell-surface localized immobile bacteria were observed. The observation of ARA7 focal 

accumulations occurring where bacteria were attached to the cell surface, suggests that these 

accumulations may play a role in defense specifically at this location.   
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Figure 4.2. Focal accumulation of YFP-ARA7-positive compartments is targeted to bacterial infection sites. (A) Confocal 

micrographs (z-projections) show YFP-ARA7 and Pto DC3000-mCherry in 4 wk-old Arabidopsis mesophyll tissue, 6 hours after 

syringe infiltration of bacterial suspensions. Bacterial OD600 = 0.2 upon infiltration. Lower right panel shows bright field + Pto 

DC3000-mCherry. 63 × objective; scale bars = 10 µm. (B) Confocal micrographs (single focal plane) show YFP-ARA7 and FM4-64 

(1 µM) at 7 hours after infiltration of Pto DC3000 bacteria without mCherry fluorophores at OD600 = 0.2, and at 30 minutes after 

infiltration of FM4-64. 63 × objective; scale bars = 10 µm. (C) Confocal micrographs (single focal plane) show YFP-ARA7 and FM4-

64 (1 µM) at 3 hours after infiltration of Pto DC3000 bacteria without mCherry fluorophores at OD600 = 0.2, and at 5 minutes after 

infiltration of FM4-64. 63 × objective; scale bars = 10 µm. 

 

In order to test whether the observed ARA7 concentrations at the cell periphery reflect a locally 

increased endocytic activity, I performed uptake experiments with the lipophilic endocytic tracer 

dye FM4-64. FM4-64 associates with the lipid bilayer at the PM, is internalized, and starts 

accumulating at late endosomes when measured ca. 30 minutes after application but not at 

earlier time points (Beck et al., 2012b). FM4-64 also associates with membranes of Pto DC3000 
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shortly after application, allowing for visualisation of bacterial cells (see fig. 4.2C). I applied FM4-

64 to leaves that exhibited ARA7 focal accumulation as confirmed using confocal microscopy at 

6-7 h after infiltration of Pto DC3000, and then evaluated the co-localization of YFP-ARA7 and 

FM4-64. Interestingly, only a small pool of YFP-ARA7-positive endosomes that were 

concentrated at infection sites were stained by FM4-64 (fig. 4.2B). Bacterial cells could be 

visualised by intense FM4-64 staining (fig. 4.2B). While it remains possible that local endocytic 

activity was upregulated before application of FM4-64, the observation that few endosomes in 

ARA7 concentrations were stained within 30 minutes of dye application would suggest that either 

existing endosomes are concentrating, or endosomes resulting from increased endocytic activity 

do not spread throughout the cell but remain concentrated. 

4.1.3 - A panel of different bacteria and MAMPs trigger ARA7 focal accumulation 

The pathogen-induced focal accumulation of RABE1d has been shown to increase upon 

infiltration of Pto DC3000 AvrRpt2, which secretes the effector AvrRpt2 that triggers ETI (Speth et 

al., 2009). Conversely, a role for Pto DC3000 effectors has been identified in suppressing the 

occurrence of PEN3 cell-surface focal accumulations (Xin et al., 2013). To test whether disabled 

or ETI-triggering Pseudomonas bacteria affected the ARA7 polarized immune response, I 

infiltrated YFP-ARA7-expressing leaves with (i) Pto DC3000 COR-, which is deficient in the 

secretion of Coronatine, an agent that induces stomatal opening and contributes to virulence in 

the mesophyll; (ii) Pto DC3000 HrcC-, which does not form a type-3-secretion system to inject 

effectors; (iii) Pto DC3000 AvrRpt2 which triggers ETI; and (iv) the non-adapted Pseudomonas 

syringae pv. tabaci (P. s. pv. tabaci). In addition, I infiltrated mCherry-expressing strains of Pto 

DC3000 and Pto DC3000 HrcC- to test whether the presence of the mCherry molecule affected 

the ability to elicit focal accumulations. For comparison, I also infiltrated the MAMPs flg22 (10 µM)  

and chitin (ca. 10 mg/mL).  

I observed the tissue at 6-7 hpi using confocal microscopy, taking lower magnification pictures of 

the mesophyll to capture numerous cells per field of view to allow for subsequent quantifications. 

Interestingly, all tested stimuli, including a water control, triggered focal accumulations of ARA7 at 

6-7 hpi to various extent (fig. 4.3). The response is observed at a lower magnification of 20 × as 

strong YFP-ARA7 fluorescent maxima at the cell periphery of adaxial mesophyll cells. These 

results show that bacterial stimulus can trigger ARA7 focal accumulation despite the bacteria 

lacking Coronatine or HrcC, and independent of the presence or absence of a constitutively 

expressed mCherry fluorophore. Furthermore, focal accumulations were also observed upon 

infiltration with Pto DC3000 AvrRpt2, suggesting that the response occurs despite the activation 

of ETI signaling. Finally, both flg22 and chitin treatments triggered ARA7 focal accumulation in 

the mesophyll (fig. 4.3).   
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Figure 4.3. Focal accumulation of YFP-ARA7-positive compartments is conserved across different bacterial strains and 

MAMP stimuli. Representative confocal micrographs (single focal planes) of acquisition series of YFP-ARA7 in 4 wk-old 

Arabidopsis upper mesophyll tissue, 6-7 h after syringe infiltration of the indicated treatments. Upon application, bacterial OD600 = 

0.2, flg22 = 1 µM and chitin = ca. 10 mg/mL. 63 × objective, scale bars = 100 µm. 
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Water treatments also induced ARA7 focal accumulation. Indeed, a ―flooding response‖ has been 

described before, where re-injection of wildtype intracellular fluid extractions into the apoplast 

leads to MAPK activation, indicative of stress signaling (Romeis et al., 2001). PEN1/SYP121 and 

PEN3 accumulation at endosomes, thought to underlie their subsequent delivery at the cell 

surface, was also triggered to a minor extent under water treatments (Underwood et al., 2017). 

This raises the possibility that the clustering of endosomes, and resulting cargo accumulations to 

the cell surface, are part of a general stress response but can be targeted to pathogen positions. 

Because of this, I was interested in quantifying the response to see if any particular treatment 

induced accumulations at a level significantly above that of water treatment. To do this, I 

developed a short macro in the image analysis software FIJI (ImageJ) which is described in fig. 

4.4A. Briefly, the software applies gaussian blur, intensity thresholding and area thresholding to 

separate bright, relatively large spots from the background. Finally, the number of resulting spots 

is extracted.  

Analysing a series of images in this way revealed that flg22 treatment significantly and strongly 

induced focal accumulation (69 ± 16.10 foci / field of view (FOV); fig. 4.4B,D) in comparison to 

water (4.20 ± 2.22 foci / FOV). In a second replicate, flg22 also significantly induced focal 

accumulation compared to water (fig. 4.4C,D). Pto DC3000, which was tested in one 

experimental replicate, induced ARA7 focal accumulations significantly compared to water 

control. Pto DC3000-mCherry triggered significantly more ARA7 focal accumulations compared to 

water in only one experimental replicate (9.67 ± 3.28; fig. 4.4C,D). Similarly, Pto DC3000 HrcC- 

(6.14 ± 0.88 vs. 0  ± 0; fig. 4.4C,D) and Pto AvrRpt2 (29.00 ± 5.51 vs. 4.20 ± 2.22; fig. 4.4B,D) 

induced focal accumulations in only one experimental replicate. Interestingly, P. syringae pv. 

tabaci did not significantly trigger more ARA7 focal accumulations than water in both 

experimental replicates. P. s. pv. tabaci has been shown to elicit HR-like cell death in Arabidopsis 

Col-0, which is abolished in mutants lacking flagellin (Ishiga et al., 2005). In contrast, Pto 

DC3000-AvrRpt2 triggers NLR-mediated cell death, yet retained the capacity to elicit ARA7 

concentrations beyond levels observed in water treatment. Knowing that P. s. pv. tabaci 

successfully colonizes Arabidopsis Col-0 in the absence of flagellin, and without eliciting cell 

death, it is conceivable that it secretes effectors that suppress trafficking responses in Col-0. 
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Figure 4.4. Quantitative analysis reveals significant differences in focal accumulation of YFP-ARA7-positive compartments. 

(A) Workflow as encoded in a custom FIJI script, showing individual image modifications performed to obtain final number of focal 

accumulations per image as used in B-D. 20 × objective, scale bars = 100 µm. (B,C) Graphical representations of number of focal 

accumulations detected using the workflow in (A), showing individual measurements and mean (bars) ± SE (error bars) for indicated 

treatments corresponding to replicates shown in (D). (D) Overview listing the means ± SE of the number of YFP-ARA7 focal 

accumulations per field-of view, and n = number of images, for two replicates. Quantifications were performed in an automated way 

using confocal micrographs acquired as in Figure 2.3 at 6 hours after syringe infiltration of indicated treatments. 

 

As is evident from visual inspection of the results (eg. fig. 4.4A), the FIJI macro does not pick up 

on all focal accumulations that would be identified by eye. There are focal accumulations of which 

the fluorescent signal locally contrast with the surrounding environment, but on a global level fall 

within the background. This is a limitation of using global filtering and thresholding to extract 

features. Furthermore, the macro was developed and optimized by using water treated and flg22-

treated samples as the input, which might cause a bias toward being able to distinguish between 

those treatments, although the expectation is that the response looks the same independent of 

stimulus. Further optimization, employing local thresholding analysis, as well as using multiple 

stimuli to calibrate the script, would likely yield further improvements. 

4.1.4 - ARA7 does not change in vesicle number upon immune stimulus (0-3 h) 

In order to test whether increased trafficking requirements could be reflected by an upregulation 

in the number of ARA7 endosomes, I quantified them using high throughput confocal imaging of 

cotyledons under flagellin elicitation. Cotyledons of the pUB::YFP-ARA7 genotype, alongside 

pFLS2::FLS2-GFP as a positive control, were submerged in liquid Murashige and Skoog medium 

(MS), or liquid MS + flg22 in a 96-wells optical plate. 

Although no significant ARA7 focal accumulation was observed before ca. 6 h of flg22 or bacterial 

treatments, immune-related trafficking events are induced, such as the ligand-induced 

endocytosis of FLS2 which peaks between 1-1.5 h after addition of flg22 (Beck et al., 2012). In 

addition, cell-surface cargoes involved in defence such as PEN1 and PEN3 can be observed to 

accumulate at endomembrane compartments at 4 h after triggering immune signaling using flg22 

(Underwood et al., 2017). I therefore examined the number of YFP-ARA7-positive endosomes. At 

0.5, 1.5 and 2.5 h, measurements were started and performed across an acquisition window of 

30 minutes, and the average numbers of detected endosomes for YFP-ARA7 and FLS2-GFP 

under control and flg22 treatments were calculated. Interestingly, no statistically significant 

differences in the number of YFP-ARA7 spots per field-of-view between control or flg22 

treatments were detected in any time point (fig. 4.5). By contrast, the number of FLS2-GFP 

endosomes was significantly increased at 2 and 3 h after flg22 treatment compared to control 

treatment, with a maximum at 2 hpi, indicating that flg22 treatment could successfully induce 
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immune signaling (Beck et al., 2012b). The absence of statistically significant differences in the 

number of ARA7 vesicles upon flg22 treatment compared to control suggests that any differential 

requirements for endocytic traffic upon immune signaling are not met by a increase or decrease 

in the total number of vesicles within 3 hpi. 

 

Figure 4.5. Quantitative analysis reveals no differences in the abundance patterns of YFP-ARA7-positive compartments. 

Graphs represent the number of detected YFP-ARA7- and FLS2-GFP-positive fluorescing spots (mean ± SE) per field-of-view from 

merged confocal micrograph epidermal cross-sections of 2 weeks-old Arabidopsis cotyledons. Transgenic pUB::YFP-ARA7 or 

pFLS2::FLS2-GFP cotyledons were imaged using the Opera high-throughput confocal microscope at 1, 2 or 3 hours after water or 

1.5 µM flg22 treatment. Asterisks indicate significant result compared to water treatments at p<0.05 (Student‘s t-test). n = number of 

images analyzed across 24 cotyledons (YFP-ARA7) or 6 cotyledons (FLS2-GFP). Graphs show data of one experiment, 

representative of three independent replications. 

 

I used a constitutively expressing, Ubiquitin-10 promoter driven YFP-ARA7 line (Geldner et al., 

2009), so any changes in endogenous ARA7 transcription, and resulting vesicle phenotypes, may 

be masked by this. However, ARA7 mRNAs did not evidently respond to flg22 treatment, as 

observed in GeneVestigator publicly available datasets (fig. 4.8). At later time points of 24 hpi 

with Pto DC3000, using endogenous promoter-driven RFP-ARA6 lines, Wang et al., 2014, could 

detect an increased number of LE/MVBs, which was corroborated by increased FM4-64 staining 

at endosomes. Rab GTPases can be highly regulated through modulation of their GTP hydrolysis 

activity and membrane association, by interacting regulatory proteins (Nielsen et al., 2008). It is 

currently unknown whether the ratio of membrane-associated to cytosolic ARA7 changes upon 

immune stimulus. 
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4.2 - THE ARA7 CO-PURIFYING PROTEOME CHANGES UPON IMMUNE STIMULUS 

4.2.1 - Purifying ARA7 from seedlings under water and flagellin conditions 

The polarized immune response of YFP-ARA7-positive vesicles suggests that ARA7 plays a role 

in the cell-surface delivery of defense components. To investigate this, I set out to identify ARA7-

interacting proteins, and cargoes of ARA7 endosomes, with the goal to compare resting-state and 

immune stimulated conditions. For this, I used a method of immunoprecipitation and mass 

spectrometry from Arabidopsis seedlings that was previously developed in our laboratory and 

shown to identify endosomal enriched proteins in a trafficking pathway-specific manner (Heard et 

al., 2015). To allow for substantial transcriptional reprogramming upon flg22 treatment (Denoux et 

al., 2008; Jiménez-Góngora et al., 2015), and anticipating to immunoprecipitate ARA7 from tissue 

where endosomes are accumulating defence-related cargoes (Underwood et al., 2017) yet do not 

markedly change in localization (fig. 4.5), I selected a time point of 3 h flg22 treatment. 

I grew Arabidopsis seedlings of the genotypes pUB::YFP-ARA7 and pUB::YFP in liquid MS 

medium for 8 days, and subjected both to 3 h of water or 1.5 µM flg22 treatment, starting the 

timer after 1.5 minutes of vacuum application (fig. 4.6A). I included YFP as a control, as proteins 

may unspecifically bind to the affinity beads, the bead-bound nanobody, or the YFP domain used 

to purify ARA7. I then performed immunoprecipitation using YFP affinity beads, separated 

proteins using 1D gel electrophoresis, and subjected the resulting samples to mass spectrometry 

analysis performed by Jan Sklenar (Proteomics Support Team, The Sainsbury Laboratory, 

Norwich, UK; fig. 4.6A). The above experiment was performed a total of three times 

independently. 

As a result, 882 proteins co-purified with YFP-ARA7 under water treatment, and 1101 proteins 

co-purified with YFP under water treatment (fig. 4.6B). In order to determine a specific YFP-

ARA7 co-purifying proteome, I decided the total number of detected peptides for a given protein 

in the YFP-ARA7 purification should be more than 4x greater than the total number of peptides in 

the YFP purification. Using this criterion, 723 proteins in the YFP-ARA7 purification were deemed 

unspecific, and 159 proteins remained, which I define as the YFP-ARA7 co-purifying proteome 

(table 4.1). 
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Figure 4.6. Identification of proteins associated with YFP-ARA7-positive compartments in a flg22-responsive manner. (A) 

Schematic overview shows experimental setup. Confocal micrographs show YFP fluorescent signal in z-projections of 8 days-old 

Arabidopsis seedlings expressing pUB::YFP-ARA7 or pUB::YFP;  scale bars = 10 µm. Seedlings were grown in liquid culture and 

treated with 1.5 µM flg22 and water for 3 hours before extraction (text box). (B) Venn-diagram shows groups of proteins co-purifying 

with the indicated bait proteins, as revealed by immunoprecipitation and mass spectrometry. Across three replicates, co-purifying 

proteins with YFP-ARA7-positive compartments were compared to YFP co-purifying proteins. The YFP-ARA7 co-purifying proteome 

was defined based on quality control criteria (present in >1 replicates, peptides = >5) and fold-change ratio of >4 in YFP-ARA7 

compared to YFP. Details available in Table 4.1. (C) Venn-diagram shows YFP-ARA7 co-purifying proteins as compared with known 

trafficking regulators (source: Heard et al. 2015). Abundant trafficking regulators co-purifying with YFP-ARA7 listed. (D) Venn-

diagram shows YFP-ARA7 co-purifying proteins without and with flg22 treatment, as compared with each other. Prominent proteins 

associating with YFP-ARA7-positive compartments in a flg22-responsive manner are shown in the call-out. Details available in table 

4.3. 
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Table 4.1: ARA7 co-purifying proteome. Listed here is the ARA7 co-purifying proteome under water treated conditions. 8-day old 

seedlings of genotypes pUB::YFP-ARA7 and pUB::YFP were treated with water or 1.5 µM flg22 for three hours, and subjected to 

immunoprecipitation using YFP affinity beads. Mass spectrometry was performed in collaboration with Jan Sklenar, Paul Derbyshire 

and Frank Menke (The Sainsbury Laboratory, Norwich, UK). To determine co-purifying proteomes, Scaffold software was used to 

retain proteins with a ProteinProphet score of 99% based on a minimum of 2 spectra with a PeptideProphet score of 95%. MS Excel 

was then used to retain proteins with at least 5 spectra across all three replicates in the YFP-ARA7 water-treated samples, with an 

occurence in more than 1 of these replicates, and an abundance increase of at least 4x compared to matching YFP controls. 

(Columns 1-8) Observed in # of replicates, and Spectra in combined replicates: Numbers and associated green cell-shading 

intensities indicate in how many experimental replicates the protein was detected, or how many spectra for that protein were 

identified in all three replicates combined, separated for water or flagellin treatment. (Columns 9-10) Enrichment factors: For each 

protein, the number of total spectra across three replicates of the green-labeled (rightmost) pulldown was divided by the number of 

total spectra in red-labeled (left-most) pulldown. Log10 values that correspond to these ratios are displayed in this table. Green or 

red bars are graphical representations of magnitude and direction of positive (green) or negative (red) values, centered at 0. 

(Columns 11-12) Locus ID and associated names. Source: TAIR10, accessed through www.genevestigator.org. The table is sorted 

for total spectral numbers in ―YFP-ARA7 water‖, in descending order. 
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4.2.2 - The ARA7 co-purifying proteome contains expected TGN/EE and LE/MVB proteins  

In order to gather further confidence that the so-defined YFP-ARA7 co-purifying proteome is 

specific to ARA7, I filtered the proteome to retain only endomembrane trafficking regulators, by 

using a comprehensive manually curated list of regulators from (Heard et al., 2015). 49 trafficking 

regulators were found in the dataset (fig. 4.6C), which are listed in table 4.2. Besides ARA7 itself, 

the most abundant proteins in this resulting list are TGN/EE and LE/MVB-associated proteins, 

which correspond to the endomembrane compartments to which ARA7 localizes.  

Vacular Sorting Receptors 

I found proteins of the vacuolar sorting receptor (VSR) group, with VSR1/ELP/BP80, 

VSR4/MTV4, and VSR7 at high abundance (table 4.2). VSRs are present in the endomembrane 

system along the endocytic route. They localize to the PM, clathrin-coated vesicles and TGN/EE, 

as well as LE/MVBs (Robinson and Neuhaus, 2016). VSR4 cycles between TGN/EE and PM 

(Saint-Jean et al., 2010). VSR1/ELP/BP80 is strongly TGN/EE and MVB localized (Li et al., 

2002). After performing their vacuolar sorting function, which does not occur at the LE/MVB, 

VSRs are themselves recycled to their original location by the membrane-associated retromer 

complex (Künzl et al., 2016). The core retromer complex contains subunits VPS26, 29 and 35 

(Zelazny et al., 2013), and is found in its entirety in my ARA7 purifications (table 4.2). This 

complex has previously been demonstrated to be present at the LE/MVB (Heucken and Ivanov, 

2017). 

 

 

 

 

 

 

 

 

Table 4.2: Trafficking regulators in the ARA7 co-purifying proteome. Listed here is the ARA7 co-purifying proteome under 

water treated conditions, copied from Table 4.1, and filtered to retain only endomembrane trafficking regulators as defined in Heard 

et al. 2015. 
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SNAREs 

Soluble N-ethylmaleimide-sensitive factor Attachment Protein Receptors (SNAREs) are 

endomembrane pathway-specific, predominantly transmembrane proteins with cytosolic coiled-

coil domains that mediate membrane fusion (Uemura et al., 2004; Lipka et al., 2007). In ARA7 

purifications, I identified PEN1/SYP121 (table 4.2), which is a PM and TGN/EE-localized SNARE 

that cycles between these compartments (Nielsen et al., 2012; Nielsen and Thordal-Christensen, 

2012; Assaad et al., 2004). Furthermore, I identified the TGN/EE-localized SNAREs SYP43 

(Uemura et al., 2012) and SYP61, which functions in complex with VTI12 (Drakakaki et al., 2012), 

which itself is also identified in my ARA7 purifications (table 4.1). Further identified VPS45 is a 

regulatory protein of this SNARE complex, which also localizes to the TGN/EE (Zouhar et al., 

2009). Curiously, the known SYP61 interaction partner SYP41 was not found (Zouhar et al., 

2009). SNAREs further along the endocytic route that were identified are VAMP722, which co-

localizes to the TGN/EE marker VHA-a1 which is also found in my dataset (tables 4.1, 4.2, 

(Zhang et al., 2011a)), and finally VAMP727 which localizes to the LE/MVB (Ebine et al., 2008). 

Rab-GTPase associated proteins 

In addition to these membrane-associated proteins, Rab GTPase-associated proteins such as 

VPS9a and PRA1 family proteins were identified. Importantly, VPS9a is the only gunanine 

nucleotide exchange factor (GEF) that is known to interact with and facilitate GTP-binding of all 

three Arabidopsis Rab5 proteins including ARA7 (Goh et al., 2007). PRA1 family proteins interact 

with Rab GTPases and allow the Rab to bind to the membrane (Alvim Kamei et al., 2008; Gendre 

et al., 2014). Most abundantly, I found PRA1.B4 and PRA1.B1, which were identified in previous 

ARA7 purifications (Heard et al., 2015), upon which colocalization of PRA1.B1 with ARA7 in leaf 

tissue was further confirmed (Heard et al., 2015). Finally, PUF2, mediates competition for 

activation between ARA7 and ARA6 on the same endosome and localizes to the LE/MVB 

compartment (Ito et al., 2018). 

Novel proteins 

Some proteins were found that are not known to localize to TGN/EE or LE/MVB compartments. 

The most abundant protein in ARA7 purifications, besides ARA7 itself, is SUPPRESSOR OF 

ACAULIS 56 (SAC56), which is an L4/L1 family integral subunit of ribosomes. Furthermore, both 

SEC22 and coatomer proteins function at the interface between ER and Golgi, with a role for 

SEC22 in anterograde traffic, and for a heptameric complex of coatomer subunits in retrograde 

traffic (Chatre, 2005; Brandizzi and Barlowe, 2013). Finally, PRA1.B6 localizes to the Golgi (Jung 

et al., 2011). Mostly, the above ER/Golgi associated proteins were found with low abundance. 
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4.2.3 - The ARA7 co-purifying proteome changes upon 3-h flagellin treatment 

Having established that I can obtain a specific ARA7 proteome, I applied the technique to 

flagellin-treated Arabidopsis seedlings. I treated seedlings with 1.5 µM flg22 for three h, allowing 

for PTI-induced transcriptional upregulation and the accumulation of potential immune-related 

cargoes in endosomes. Then, I defined an ARA7 co-purifying proteome in the same way as I did 

for the above-described water treated conditions, and filtered the list to retain only proteins of 

which the associated spectral counts were upregulated at least twice in the flg22-treated 

conditions compared to water control. The flg22-upregulated ARA7 co-purifying proteome 

contains 70 proteins, of which 13 were also found under water control treatment, and 57 that 

were not. (fig. 4.6D, table 4.3). 

GO-analysis shows enrichment for inorganic acid chemistry-related terms 

In order to obtain a global picture of the biological processes in which the flg22-induced ARA7 

interactors are involved, I performed a GO-term analysis querying for terms in the ―biological 

process‖ category (table S2). Interestingly, there is a strong overrepresentation of metabolic 

processes such as organic and carboxylic acid metabolism as well as drug/small molecule 

metabolism, indicating that the purified compartment is chemically active, or contributes to 

changed metabolic processes at its location. In correspondence with the GO-term enrichment for 

general organic acid metabolism, among the flg22-induced ARA7 interactors (table 4.3) I find 

Indole Glucosinolate O-Methyl Transferase 4 (IGMT4).  

 

 

Table 4.3: ARA7 co-purifying proteins that are more abundant upon flagellin treatment. Listed here is the ARA7 co-purifying 

proteome under flagellin treated conditions. 8-day old seedlings of genotypes pUB::YFP-ARA7 and pUB::YFP were treated with 

water or 1.5 µM flg22 for three hours, and subjected to immunoprecipitation using YFP affinity beads. Mass spectrometry was 

performed in collaboration with Jan Sklenar, Paul Derbyshire and Frank Menke (The Sainsbury Laboratory, Norwich, UK). To 

determine co-purifying proteomes, Scaffold software was used to retain proteins with a ProteinProphet score of 99% based on a 

minimum of 2 spectra with a PeptideProphet score of 95%. MS Excel was then used to retain proteins with at least 5 spectra across 

all three replicates in the YFP-ARA7 flg22-treated samples, with an occurence in more than 1 of these replicates, an abundance 

increase of at least 4x compared to matching YFP controls, and an abundance increase of at least 2x compared to matching water 

treated controls. (Columns 1-8) Observed in # of replicates, and Spectra in combined replicates: Numbers and associated green 

cell-shading intensities indicate in how many experimental replicates the protein was detected, or how many spectra for that protein 

were identified in all three replicates combined, separated for water or flagellin treatment. (Columns 9-10) Enrichment factors: For 

each protein, the number of total spectra across three replicates of the green-labeled (rightmost) pulldown was divided by the 

number of total spectra in red-labeled (left-most) pulldown. Log10 values that correspond to these ratios are displayed in this table. 

Green or red bars are graphical representations of magnitude and direction of positive (green) or negative (red) values, centered at 

0. (Columns 11-12) Locus ID and associated names. Source: TAIR10, accessed through www.genevestigator.org. The table is 

sorted for total spectral numbers in ―YFP-ARA7 flg22‖, in descending order. 
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Indole-3-glucosinolate pathway enzymes 

IGMT4 is highly similar to its three homologs and clustered genes IGMT1-3 (Pfalz et al., 2016), of 

which IGMT1 and IGMT2 have been characterized to function as final catalyzers in the indole-3-

glucosinolate based antimicrobial secretion pathway which involves PEN2 and PEN3 (Birkenbihl 

et al., 2017). IGMT1 and IGMT2 convert indole-3-methylglucosinolates (I3M) into 4-

methodxyindole-3-methylglucosinolate (4MOI3M), in preparation for conversion into toxic end 

products by the atypical myrosinase PEN2 (Pfalz et al., 2011; Birkenbihl et al., 2017; Xu et al., 

2016; Lu et al., 2015). Based on sequence homology, IGMT4 is likely to also be able to catalyze 

the I3M – 4MOI3M reaction, but this has not been conclusively shown. End products of this 

pathway, predominantly toxic indole-3-ylmethylamine (I3A) and indole-3-carboxylic acid (ICA) 

accumulate in Pto DC3000-infected tissue (Stahl et al., 2016) and have been previously 

described to accumulate and function in defense against filamentous fungi (Lipka et al., 2005; 

Bednarek et al., 2010; Oa et al., 2010). 

It must be noted that, PENETRATION 3/PLEIOTROPIC DRUG RESISTANCE 8 (PEN3/PDR8), 

while not picked up by my filtering criteria, has the following spectral counts: YFP-ARA7 + water: 

222, + flg22: 409, YFP + water: 84, + flg22: 37. It highly specifically associated with YFP-ARA7 

under flg22 treated conditions, but only enriched with a factor of ca. 1.8 compared to water 

treatment, which is below the minimum factor of 2 that is required to be considered flg22-

responsive under my filtering criteria. The spectral increase of PEN3 under flg22 conditions is 

noteworthy in the context of IGMT4 and indole glucosinolate metabolism 

PEN3 is a PM-localized transmembrane ATP-binding cassette transporter which is thought to 

transport antimicrobial compounds generated by PEN2 (Stein et al., 2006). It has been shown to 

focally accumulate at the cell surface under fungal attempted penetration sites, and upon 

bacterial and flagellin or chitin MAMP challenge (Underwood and Somerville, 2008, 2013; 

Underwood et al., 2017; Xin et al., 2013). Finding it specifically associating with ARA7 upon flg22-

treatment is interesting, because in microscopic analysis, PEN3 has been shown to accumulate 

at endosomes when measured at 4 h after MAMP-stimulus, and is proposed to traffic through the 

endocytic pathway to focal accumulations at the cell-surface (Underwood and Somerville, 2013; 

Underwood et al., 2017). The above finding provides evidence for a role in ARA7 endosomes in 

this redirection process. 

The clathrin-independent endocytic protein FLOTILLIN 

FLOTILLIN 1 (FLOT1) belongs to the family of membrane-bound flotillin/reggie-like proteins, 

which in animals have been well characterized to associate with the cytosolic leaflet of lipid 

bilayers, and function in bending membranes such as invagination of the plasma membrane in 

clathrin-independent endocytic processes (Glebov et al., 2006; Frick et al., 2007; Langhorst et al., 
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2007). Flotillins interact with receptors and can organise them into a signaling platform in distinct 

lipid microenvironments (Otto and Nichols, 2011). In plants, FLOT1 has been described to be PM 

microdomain-associated (Jarsch et al., 2014; Jarsch and Ott, 2011), present in addition on 

endosomes, and functioning in clathrin-independent endocytosis (Li et al., 2012a). Furthermore, 

in the context of bacterial symbiosis with legumes, cell-surface symbiosis-pattern recognizing 

receptor LYK3 co-localizes with FLOT4, which is thought to reflect the assembly of a signaling 

platform to initiate bacterial infection (Downie, 2014; Haney et al., 2011). 

Arabidopsis FLOT1 was found to accumulate at late endosomes in an increased manner upon 

flagellin immune stimulus (Yu et al., 2017). In animals, flotillins are considered good membrane 

microdomain markers, present in lipid environments high in saturated sphingolipids and 

cholesterol (Langhorst et al., 2007). Finding FLOT1 in ARA7 purifications upon flagellin treatment 

points at the possibility for a change in lipid composition on TGN/EE or LE/MVB compartments 

during immunity. Interestingly, in mammals, flotillins that are present at endosomes are 

associated with MVB targeting to the plasma membrane (Meister and Tikkanen, 2014). 

Receptors, oxidative stress, and the cell wall 

Several receptor kinases (CRK10, IOS1, MIK2) were found to be upregulated in ARA7 

purifications upon flg22 treatment. Cysteine-rich receptor-like kinase 10 (CRK10) belongs to the 

RLK subfamily of cysteine-rich receptor-like kinases (CRKs), which have a wide range of 

functionality in abiotic and biotic stresses, pathogen defense and cell death (Chen et al., 2003; 

Ederli et al., 2011). A subset of CRKs, including CRK10, are implicated in regulating the 

dynamics of MAMP-induced stomatal closure, an intermediate response that occurs at a time 

scale of several hours post elicitation, potentially through sensing of ROS as a secondary 

messenger (Bourdais et al., 2015; Kimura et al., 2017). Functionally distinct cell-surface receptors 

undergo ligand-induced endocytosis, and accumulate in LE/MVBs upon perception of 

extracellular patterns, a response generally observed to peak between 1-1.5 h after treatment 

(Ben Khaled et al., 2015; Mbengue et al., 2016; Ortiz-morea et al., 2016). Although not 

demonstrated for CRKs, finding CRK10 in ARA7 purifications at 3 h after perception of immune 

stimulus could point at secondary messenger-induced endocytosis, potentially through perception 

of extracellular reactive oxygen species. Finally, I find proteins that could function in the 

protection against oxidative stress, such as two peroxidases (PEROXIDASE 4 (PER4) and 

AT4G08770), and Glutathione Transferase 10 (GSTF10, (Sappl et al., 2009)). 

IMPAIRED OOMYCETE SUSCEPTIBILITY 1 (IOS1) is a broad regulator of antifungal and 

antibacterial cell-surface perception, and interacts with and regulates complex formation of 

various other transmembrane receptors such as FLS2, EFR and CERK1 (Yeh et al., 2016). 

MALE DISCOVERER 1-INTERACTING RECEPTOR LIKE KINASE 2 (MIK2) is a cell-wall 
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integrity sensing RLK with various functions in response to abiotic and biotic stress, including 

antifungal defense (Van der Does et al., 2017). Finding these receptors at the endocytic pathway 

suggests that they are undergoing increased turnover in response to a stimulus. Since ligand-

induced endocytosis of well-studied receptors peaks between 1-1.5 h (Ben Khaled et al., 2015), if 

IOS1 and MIK2 also undergo ligand-induced endocytosis, it could be in response to a secondary 

messenger in response to MAMP treatment. Considering the broad involvement of IOS1 in 

receptor complexes, and the involvement of MIK2 in cell wall integrity sensing, potentially these 

modules are engaged in response to cell wall modifications performed by the plant cell itself upon 

immune stimulus. This could be coupled to the modification of cell-wall polymers which are 

increasingly cross-linked in the presence of reactive oxygen species (Tenhaken, 2015). 

Atypical immune receptors TN3 and HR4 

Peptides of the two atypical intracellular immune receptors TIR-NBS3 (TN3) and Homolog of 

RPW8-4 (HR4) were found in ARA7 purifications, specifically upon flg22 treatment (table 4.3).  

TN3 is a truncated member of the NOD-like receptor (NLR) type, which typically contain a coiled-

coil (CC) or Toll-Interleukin Receptor (TIR) domain, a nucleotide binding site (NBS) and a leucine-

rich repeat domain (LRR). TN3 lacks the typical LRR domain, and has been previously shown to 

be localized to the nucleo-cytosol, and to trigger a hypersensitive response when overexpressed 

in N. benthamiana (Nandety et al., 2013).  

HR4 is a short transmembrane (TM) CC-domain-containing atypical resistance protein. In 

Arabidopsis ecotype Col-0, there are four homologs (HR1-4), named after the ortholog RPW8.2 

which is found in ecotype Ms-0 (Xiao et al., 2001). RPW8.2 is the most extensively characterized 

orthologue, and has been shown to be carried on VAMP721/VAMP722-positive vesicles to the 

pathogen interface upon G. orontii infection, which requires a short targeting motif (Kim et al., 

2014). On-site, RPW8.2 promotes encasement formation, accumulation of ROS and can trigger a 

hypersensitive response (Gao et al., 2009). Recently, it was shown that HR3, the closest RPW8.2 

orthologue in Col-0, accumulates at the extrahaustorial interface upon infection with 

Golovinomyces cichoracearum, and the same work showed fluorescently tagged HR4 

accumulating there when transiently expressed in N. benthamiana (Berkey et al., 2017).  

Because of its high specificity to ARA7 upon flagellin treatment (table 4.3), and the well described 

direct roles for NLRs in plant immunity, I selected TN3 for further characterization. NLRs mediate 

the recognition and signal transduction at the earliest events in the intracellular detection of 

pathogen-effector mediated immunomodulatory effects, suggesting that these processes could 

also be occurring near to ARA7, or an ARA7-involving process. Previously, TN2 has been shown 

to interact biochemically with another trafficking regulator, the exocyst tethering complex subunit 

Exo70B1, and was shown to be required for previously unexplained constitutive defense 
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responses in the exo70b1 mutant background (Zhao et al., 2015). In addition, RPW8-type 

proteins have been shown to be central regulators of NLR-mediated defense, and exhibited 

pathogen-targeting subcellular trafficking behavior, which was required for full immunity. Knowing 

that ARA7 vesicles accumulate under bacterial pathogens, and ARA7 seems to recruit HR4 upon 

MAMP-stimulus, I selected HR4 for further characterization. 

4.3 – TIR-NBS 3 INTERACTS WITH ARA7 AND LOCALIZES TO THE NUCLEUS, CYTOSOL AND 

MOBILE PUNCTAE 

4.3.1 - Confirming the identification of TN3 in flagellin-treated ARA7 purifications 

I obtained the amino acid sequences of the two most abundant TN3 peptides detected across 

three replicates of YFP-ARA7 purifications upon flagellin treatment, and used Protein BLAST 

(NCBI web interface) to match the peptides against the known Arabidopsis protein database 

(TAIR10). As a result, the only protein with a 100% identity score to each peptide was TN3 

(AT1G66090), with the exception of the peptide VMTIFYGVNPSDVRK, which also fully aligned 

with a predicted protein encoded by a transposable element (OAP18409.1; fig. 4.7A). 

Furthermore, I graphically mapped which peptides were found across all MS analyses on flg22-

induced ARA7-purifications, together with their position in the TN3 amino acid sequence (fig. 

4.7B). Thus, I could confirm that both TIR and NBS domains of the same protein were detected in 

all three replicates of the experiment (fig. 4.7B). 

Next, based on data from the only publication characterizing TN3 to date (Nandety et al., 2013), I 

obtained a list of all TIR-NBS proteins. The authors defined and phylogenetically aligned 21 

Arabidopsis TIR-NBS genes alongside 30 TIR-X proteins; lacking NBS and LRR domains, but 

including a variable C-terminal domain. I excerpted from their work the TN and TX genes most 

closely related to TN3, re-aligned them using Clustal Omega (EMBL web suite), and reproduced 

the encoded domain structure schematically (fig. 4.7C). The closest homolog of TN3 is the 

pseudogenized TIR-X 4  (TX4, AT1G56470), encoding for parts of a TIR-only protein, and the 

closest homolog of TN3 sharing the TIR-NBS domain organisation is TIR-NBS13 (TN13, 

AT3G04210) with a genomic sequence identity of 50% and a protein sequence identity of 45%. In 

the phylogenetic alignment of close TN3 homologs, I included more distantly related TN1 

(genomic identity = 46%, protein identity = 28%) as an outgroup (fig. 4.7C). 
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Figure 4.7. TN3 associates with YFP-ARA7-positive compartments in a flg22-responsive manner. (A) Overview shows top-10 

search results using NCBI protein BLAST (Organism: Arabidopsis thaliana) of two most abundant TN3 peptides identified by mass 

spectrometry analysis of immunopurified YFP-ARA7-positive compartments upon flg22 treatment. (B) Schematic overview shows 

the primary TN3 amino acid sequence indicating annotated domains and individually labelled detected peptides identified by mass 

spectrometry analysis of immunopurified YFP-ARA7-positive compartments upon flg22 treatment. (C) A phylogenetic tree of TN3-

related family members was generated using genomic sequences of TN/TX genes most closely related to TN3 (source: Nandety et 

al. 2013, and graphical representation of domain organisations therein). Alignments and phylogenies were obtained using online 

available EMBL-EBI Clustal Omega and Simple Phylogeny bioinformatics tools. Legend = 0.2 substitutions / base pair. (D) 

Phylogenetic tree of flg22-responsive TN3-related family members was generated using genomic sequences of TN/TX genes 

(source: Nandety et al. 2013) exhibiting flg22-responsive expression as determined by AffyMetrix chip data, GeneVestigator dataset 

AT-00107 (F. Brunner and B. Schildknecht). GeneVestigator heatmap shows abundance of indicated transcripts upon flg22 

treatments for 1 or 4 hours.  

 

Finally, of all TN genes (Nandety et al., 2013), I obtained data on transcriptional changes upon 

flg22 treatment as available through GeneVestigator-linked affymetrix data, extracted those 

genes whose transcripts were upregulated upon flg22 treatment, and aligned them using Clustal 

Omega based on genomic sequences, including TN1 which is not strongly flagellin-responsive as 

an outgroup (fig. 4.7D). Interestingly, of all tested transcripts, TN3 responded strongest to flg22 

treatment, peaking at 1 hpi, followed by TX14 transcripts also peaking at 1 hpi, of which the 

protein was not detected in any of my ARA7 purifications. TX26, TX24 and TN15 responded 

moderately to flagellin, at a time point of 4 hpi.  

In conclusion, I identified TN3 specifically in flg22-treated ARA7 purifications, found that it has a 

closest homolog in TN13 which shares its TIR-NBS domain organisation, and found that it is one 

of few strongly flg22-induced TN/TX transcripts. 

4.3.2 - TN3 interacts with ARA7 in a flg22 independent manner 

In order to confirm the TN3-ARA7 interaction with an independent method, I cloned the coding 

sequence from cDNA, and generated binary vectors encoding C-terminal GFP and RFP 

fluorescent protein fusions under the control of the Arabidopsis UBIQUITIN-10 promoter (pUB). I 

delivered pUB::TN3-RFP transiently into pUB::YFP-ARA7 leaf protoplasts using PEG-mediated 

transfection, and included a vector encoding p35S::FLS2-FLAG to enhance the capacity for 

flagellin recognition. I then treated protoplasts with water or flagellin, and at 3 hpi I performed 

YFP-ARA7 immunoprecipitations using the same method as used to prepare mass spectrometry 

samples as described above. Interestingly, upon western blot analysis of purified samples, I could 

show that TN3-RFP co-purified with YFP-ARA7 upon both water and flg22 treatment (fig. 4.8A). 

This suggests that TN3 interacts with ARA7 independently of immune stimulus. Importantly, TN3 

transcription is known to be strongly upregulated at 1 hour after flg22-stimulus (fig. 4.7D, fig. 

4.8C), so it is possible that in mass spectrometry analysis, natively expressed TN3 was not 
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detected in ARA7 purifications under water treatment because the gene was significanly less 

expressed compared to flg22-treated conditions. 

Confocal microscopy analysis of a sample of the protoplast samples revealed that TN3-RFP 

localizes to the nucleus and the cytosol, whereas YFP-ARA7 localizes to the cytosol and mobile 

vesicles (fig. 4.8B, upper panels). This localization pattern did not change at three h post flg22 

treatment (fig. 2.8B, lower panels). I conclude that here, TN3 is nucleocytosolic, consistent with 

data on Agrobacterium-mediated transiently overexpressed 35S::TN3-GFP in Nicotiana 

benthamiana leaves (Nandety et al., 2013).  

 

Figure 4.8. Constitutively expressed TN3-RFP associates with YFP-ARA7 independent of flg22 stimulation in Arabidopsis 

protoplasts. (A) Immunoblot of anti-GFP-immunoprecipitated YFP-ARA7 reveals association with TN3-RFP. Protoplasts from 4 

weeks-old leaves were transiently transfected with pUB::YFP-ARA7, pUB::TN3-mCherry and pUB::FLS2-FLAG, incubated for 16 

hours for co-expression, and then subjected to flg22 treatment for 3 hours. YFP- and FLAG-tagged proteins were revealed using 

anti-GFP-HRP and anti-FLAG-HRP conjugated antibodies, respectively. RFP-tagged TN3 and Bip2 were revealed using primary 

anti-RFP and anti-Bip2 antibodies, then secondary alkaline phosphatase-conjugated antibodies. Ponceau staining was performed 

on input membranes after antibody treatments for loading control. (B) Confocal micrographs of protoplasts as prepared in (A), 

showing YFP signal (left panels), RFP signal (middle panels) and overlay (right panels) in z-projections, at 3 hours after indicated 

treatments. 63 × objective, scale bars = 10 µm. (C) GeneVestigator heatmap shows relative abundance of indicated Arabidopsis 

transcripts upon flagellin treatment of 1 or 4 hours (AffyMetrix chip data, GeneVestigator dataset AT-00107, F. Brunner and B. 

Schildknecht) 



100 

 

The interaction of TN3 and ARA7 is now corroborated by two independent experimental methods, 

and microscopic analysis suggests TN3 and ARA7 co-localize in the cytosol, and TN3 is not 

enriched at vesicle structures. This could indicate that the interaction takes place in the cytosol 

preferentially, or involves only a small subpool of TN3. However, constitutively driven expression 

of TN3 may lead to ectopic localization of TN3 as compared to the endogenous situation, and it is 

unknown whether TN3 has an interaction preference for subpools of ARA7. 

4.3.3 - TN3 interacts with ARA7 on ARA7 vesicles in bimolecular fluorescence complementation 

experiments 

To further probe the interaction between TN3 and ARA7 with an independent method, and aiming 

to investigate whether TN3 interacts specifically with ARA7 or could also interact with secretory 

RABs (ARA5/RABD2a), homologous endocytic RABs (ARA6/RABF2a), or RABs further along the 

endocytic pathway (RABG3b), I employed bimolecular fluorescence complementation (BiFC; 

split-YFP). I generated binary vectors encoding TN3 C-terminal fusions with the YFP C- and N-

termini (p35S::TN3-YFPc, p35S::TN3-YFPn), and performed Agrobacterium-mediated transient 

co-expressions with BiFC fusions of other RAB-GTPases in N. benthamiana leaves. Transient 

expression of individual RAB-GTPases tagged with YFPc/n in the absence of the complementary 

YFPn/c terminus does not result in fluorescent YFP signal (fig. 4.9A, top and left peripheral 

panels). 

Co-expression of TN3-YFPc and YFPn-ARA7, or the reverse combination of TN3-YFPn and 

YFPc-ARA7 exhibited clear reconstitution of fluorescent signal was observed on punctae (fig. 

4.9A,B). The fluorescent YFP signal co-localized with mCherry-ARA7-labeled endocytic vesicles, 

but not with mCherry-ARA5 labeled secretory vesicles (fig. 4.9B). No evident fluorescent signal 

was observed in the cytosol. Upon co-expression of TN3-YFPn and YFPc-ARA5, no significant 

reconstitution of fluorescent signal was observed (fig. 4.9A). YFPc-ARA5 could be successfully 

expressed in N. benthamiana leaves using this method, as evidenced by the reconstitution of 

signal in co-expression with YFPn-ARA7 (fig. 4.9A). ARA5 and ARA7 are expected to occur in 

proximity to one another, as both partially localize to the TGN/EE compartment. 
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Figure 4.9. Constitutively expressed TN3-RFP colocalizes and associates with YFP-ARA7-positive compartments in N. 

benthamiana. (A) Bimolecular flurorescence complementation (BiFC). Confocal micrographs showing signal of reconstituted YFP 

molecules in Nicotiana benthamiana adult leaves at 2 days after infiltration of Agrobacterium tumefaciens strain GV3101 carrying 

the indicated bimolecular fluorescence complementation constructs. Combinations of infiltrated constructs are indicated in panels. 

63 × objective, scale bars = 10 µm. (B) As in (A), but bimolecular complementations were co-infiltrated with A. tumefaciens carrying 

indicated mCherry-tagged constructs. 63 × objective, scale bars = 10 µm. 

 

Co-expression of TN3-YFPn with LE/MVB-localized RAB-GTPase ARA6-YFPc also reconstituted 

strong fluorescent signal on punctae, suggesting association of TN3 and ARA6 on 

endomembrane compartments (fig. 4.9A). Fluorescently tagged ARA6 and ARA7 were shown to 

substantially overlap on the same compartment in earlier studies (Ueda et al., 2004), and indeed 

upon co-expression of YFPn-ARA7 and ARA6-YFPc, fluorescent signal was observed on 

punctae, which are likely LE/MVB compartments. Due to the substantial co-localization of ARA6 

and ARA7 on endosomes, it is possible that ARA7-associated TN3-YFPn is present on LE/MVBs, 

where as a consequence it is brought in close proximity to locally present ARA6-YFPc molecules, 

leading to reconstitution of YFP signal. 

TN3-YFPn in combination with tonoplast-localized RAB7-GTPase YFPc-RABG3b did not result in 

a reconstituted signal (fig. 4.9A), together with the absence of fluorescent signal upon co-

expression of TN3-YFPn and YFPc-ARA5, suggesting that TN3 specifically associates with RAB-

GTPases at the LE/MVB, and not with secretory or vacuolar RAB-GTPases. Co-expression of 

YFPn-ARA7 and YFPc-RABG3b also did not lead to substantial recovery of fluorescent signal. 

This confirms specificity, since ARA7 induces its own dissociation and subsequent recruitment of 

RAB7 proteins to compartments through interaction with, and activation of, intermediate 

endosomal-localized regulators (Singh et al., 2014b; Cui et al., 2014b), and from localization 

studies, ARA7 is present at LE/MVBs but not tonoplast. Another RAB7 member RABG3f was 

shown to be present at the tonoplast but not LE/MVBs. Preliminary data suggests that RABG3b 

localizes to the tonoplast (Kopischke et al., submitted). 

Co-expresion of TN3-YFPn and TN3-YFPc resulted in the reconstitution of flurorescent signal in 

the cytosol, and not the nucleus (fig. 4.9A), which is notably different from the nucleocytosolic 

localization of TN3-RFP as observed in transient expression in Arabidopsis protoplasts (fig. 

4.8A). It is possible that the reconstituted molecule TN3-YFP-TN3 with a predicted molecular 

weight of 122 kDa exceeds the maximum size of passive diffusion through nuclear pores, or 

alternatively, the reconstituted dimer could fail to recruit the necessary interaction partners for 

active transport into the nucleus. It remains to be demonstrated whether TN3 molecules dimerize 

in the absence of forced dimerization using YFP fragments. 
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In conclusion, using BiFC I could show that TN3 exists in close proximity to the LE/MVB-localized 

RAB5-GTPases ARA7 and ARA6, but not with secretory ARA5 or late endocytic/tonoplastic 

RAB7 member RABG3b. It is interesting to find the irreversibly bound ARA7-TN3 dimer at ARA7-

positive endosomes, because when separately tagged, TN3 did not enrich at vesicles but co-

localized with ARA7 predominantly in the cytosol. TN3 in combination with ARA6 reconstituted 

YFP fluorescent signals, raising the hypothesis that TN3 may interact with other endosomal Rab 

GTPases in addition to ARA7. 

4.3.4 - TN3 localizes to the nucleus, cytosol and mobile punctae in Arabidopsis leaves 

Transient expression by particle delivery 

Next, I was interested in probing the localization of TN3 in intact Arabidopsis leaves. In a previous 

study, novel mass-spectrometry-identified ARA7-interactors of the PRA1 family of RAB-regulator 

proteins have been confirmed to co-localize with ARA7 on endosomes upon transient expression 

using particle bombardment (Heard et al., 2015). 

In order to achieve this, I generated constructs in the small pGEM-T vector backbone, using the 

Ubiquitin-promoter-driven fluorescently tagged TN3-RFP expression cassette that I generated for 

transient expression in Arabidopsis protoplasts and N. benthamiana leaves. I used gold-particle 

based tissue bombardment on separated Arabidopsis leaves to deliver the construct into the 

pUB::YFP-ARA7 background, and analysed cells using confocal microscopy one day after 

particle delivery. 

In successfully transformed cells, TN3-RFP exhibited a nucleocytosolic and punctate localization 

pattern, where YFP-ARA7 located to endosomes and the cytosol (fig. 4.10A). TN3 puncate were 

less numerous than ARA7 punctae (data not shown). The mobility of TN3 punctae becomes 

evident in confocal micrographs where the path of mobile punctae corresponds to the direction of 

confocal laser scanning acquisition, as shown in fig. 4.10A, right panels. Secondly, in time-

course acquisitions of cells expressing TN3-RFP, the mobility of both YFP-ARA7 vesicles and 

TN3-RFP punctae can be observed as punctate signals observed at t = 0 s were not found in 

later acquisitions at t = 5 s or 10 s (fig. 4.10B). TN3-RFP punctate signals did not overlap with 

YFP-ARA7-positive vesicles, but TN3-RFP cytosolic signal overlapped with YFP-ARA7 cytosolic 

signal. 
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Figure 4.10 Constitutively expressed TN3-GFP localizes to vesicles, the cytosol and the nucleus in transiently expressing 

Arabidopsis leaf pavement cells. (A) Confocal micrographs of leaf epidermal cells of genotype pUB::YFP-ARA7 at ca. 16 h after 

tissue-bombardment using gold particles coated with the binary vector carrying pUB::TN3-mRFP. Left panels: z-projection of co-

expressing cell. Right panels: single focal acquisition of co-expressing cell. Label and arrow indicate laser scanning direction during 

image acquisition. (B) As in (A), but showing three time points of an acquisition time-series. Arrowheads in t = 0, 5, 10 s point at the 

location of an RFP-positive puncta at t = 0 s. 63 × objective, scale bars = 10 µm. 

 

Stable transgenic expression 

In order to investigate TN3 localization patterns in non-transiently expressing tissue, in 

collaboration with Matthew Smoker and Jodie Taylor (Tissue Culture & Transformation Support 

Team, The Sainsbury Laboratory, Norwich, UK) I generated Arabidopsis lines expressing 

pUB::TN3-GFP in a Col-0, pUB::RFP-ARA7 (source: Karin Schumacher, Heidelberg, Germany) 

and tn3 (SALK_018440.56.00) mutant background. tn3 lines contain a T-DNA insertion in the 

TN3 promoter, and homozygosity for the insertion was confirmed by genomic DNA extraction and 

PCR using insert- and gene-specific primers. 
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In all backgrounds, confocal microscopic analysis revealed that TN3-GFP was predominantly 

localized to the nucleus and cytosol (fig. 4.11A, B), matching patterns found in Arabidopsis and 

N. benthamiana transient systems, and in addition TN3-GFP signal showed a weakly labeled 

punctate pattern, which in some cases could reflect cytosolic strands oriented in the z-direction 

(fig. 4.11B, lower panels). These punctae did not overlap with RFP-ARA7 vesicles. 

In conclusion, the nucleocytosolic and punctate localization patterns of TN3-GFP corresponded to 

the nucleocytosolic pattern in protoplasts, and the nucleocytosolic and punctate localization found 

upon transient expression in Arabidopsis using particle delivery. The identity of TN3 mobile 

punctae remains to be demonstrated, as well as any potential TN3 localization pattern changes 

upon MAMP-stimulus. 

 

 

Figure 4.11. Constitutively expressed TN3-GFP localizes to vesicles, the cytosol and the nucleus in transgenic Arabidopsis 

plants. (A,B) Confocal micrographs showing GFP (A, B) and RFP (B) signals of 4 wk-old Arabidopsis leaf epidermis of indicated 

genotypes. pUB::TN3-GFP was introduced into (A) Col-0 or tn3 and (B) pUB::RFP-ARA7 using Agrobacterium tumefaciens and 

floral dipping. Microscopic analysis was performed T1 plants selected at 2 weeks using BASTA/PPT. 63 × objective, scale bars = 10 

µm. 
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4.3.5 - The TN3 localization pattern does not change upon bacterial stimulus 

It is possible that TN3 may show the same pathogen-induced focal accumulation pattern as 

ARA7 in the same time frame. To test this, I syringe-infiltrated Pto DC3000 wildtype, and Pto 

DC3000-mCherry fluorescently tagged bacteria into fully developed leaves of 4-week old tn3 / 

pUB::TN3-GFP Arabidopsis plants, and analysed cells using confocal microscopy. 

Between 6-7 h after infiltration of Pto DC3000, the time point at which ARA7 showed focal 

accumulations, I did not observe a change in the predominantly nucleocytosolic localization of 

TN3-GFP (fig. 4.12A). While cell-periphery-localized structures were observed, these are nuclei, 

as evidenced by the visible decrease in TN3-GFP-intensity in the nucleolus. To be able to 

visualise bacterial contact sites, I infiltrated Pto DC3000-mCherry bacteria. However, when 

observing multiple bacterial contact sites with immobilized Pto DC3000-mCherry bacteria, no 

obvious localization pattern changes, or accumulations, of TN3-GFP were observed (fig. 4.12A, 

lower panels, B). For nearly all bacterial contact sites that were analysed in earlier experiments, 

YFP-ARA7 concentration was observed at infection sites. 

I conclude that TN3 does not focally accumulate like ARA7 upon bacterial infection, but shows no 

evident changes in its predominantly nucleocytosolic localization pattern. This raises further 

questions on the nature of the interaction between TN3 and ARA7, because the predominant 

localization of ARA7 at these time points is at clearly observable vesicle clusters. TN3 may be 

involved in guarding many host processes, including those that are ARA7 dependent. 
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Figure 4.12. TN3-GFP does not show focal accumulation in response to bacterial infection. (A) Confocal micrographs 

showing GFP (A, B) and autofluorescence (A) or mCherry signals (A,B) in leaf epidermal cells of 4 wk-old T1 Arabidopsis plants 

expressing pUB::TN3-GFP in a tn3 background, 6 hours after syringe infiltration with wildtype Pto DC3000 bacteria  (A, top panels) 

or at 6 hours after syringe infiltration of Pto DC3000-mCherry (A, bottom panels; B, all panels). Arrowheads point at nuclei. 63 × 

objective, scale bars = 10 µm. (B) Additional observations of immobile Pto DC3000-mCherry bacteria at plant cell surfaces, as in (A) 

lower panels. 

 

4.4 – HOMOLOG OF RPW8 4 LOCALIZES TO MITOCHONDRIA 

4.4.1 - Confirming the identification of HR4 in flagellin-treated ARA7 purifications 

As a second candidate that was identified in ARA7 purifications upon flg22 treatment only, I 

selected Homolog of RPW8 4 (HR4) for follow-up investigation. RPW8 homologs, and the well-

studied orthologue in Ms-0 RPW8.2, have been shown to exhibit accumulation around pathogen 

interfaces of powdery mildews in Arabidopsis and N. benthamiana (Berkey et al., 2017; Wang et 

al., 2013; Kim et al., 2014), and confer broad-spectrum resistance to infectious powdery mildews 

(Xiao et al., 2001). It is possible that ARA7 could play a role in directing the localization of HR4, 

potentially contributing to its functioning in immunity. 

I obtained amino acid sequences of the two peptides identified in mass spectrometry, and used 

Protein BLAST (NCBI web interface) to match the peptides against the known Arabidopsis protein 

database (TAIR10). Both peptides returned predominantly 100 % sequence identity to HR4, with 

the exception of peptide ―TMESISPVRDR‖, identified in two experimental replicates, which also 

matched against the transcription factor bHLH147, but with only 63% coverage of the HR4 

peptide sequence (fig. 4.13A). Next, I graphically mapped the identified HR4 peptides to its 

amino acid sequence, with annotated transmembrane (TM) and coiled-coil (CC) domains. One 

detected peptide covers the N-terminus of HR4, with a 4-amino acid overlap into the N-terminal 

TM-domain (fig. 4.13B).  

While the coiled-coil domain of HR4 was not detected in my experiments, two peptides were 

found in separate experimental replicates that match between the TM and CC domains (fig. 

4.13B). In addition to using SCAFFOLD PeptideProphet and ProteinProphet confidence 

treshholds during mass-spectrometry data analysis in preparation for defining ARA7-co-purifying 

proteomes, I also intended to confirm that the peptides I found for HR4 were specific to HR4, and 

not to other HR family members. Indeed, the N-terminal peptide ―MPIAELAVIK‖ matched with a 

highly HR4-specific inserted stretch of amino acids at the N-terminus, as can be observed when 

aligning HR1-4 and plotting the location of this peptide in the multiple sequence alignment (fig. 

S14). In addition, the second peptide ―TMESISPVRDR‖ fully matched with a sequence that aligns 

with all HR homologs, but is specific to HR4 on amino acid level, and not to HR1,2 or 3 (fig. S14). 
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Figure 4.13. HR4 associates with YFP-ARA7-positive compartments in a flg22-responsive manner. (A) Overview shows top-

10 search results using NCBI protein BLAST (Organism: Arabidopsis thaliana) of two most abundant HR4 peptides identified in 

mass spectrometry analysis of immunopurified YFP-ARA7 upon flg22 treatment. (B) Schematic overview shows the primary HR4 

amino acid sequence indicating annotated domains and individually labelled detected peptides identified by mass spectrometry 

analysis of immunopurified YFP-ARA7 upon flg22 treatment. (C) Phylogenetic tree of all four Homologs of RPW8.2 (HR1-4) was 

generated using genomic sequences of all four HR genes (source: The Arabidopsis Information Resource (TAIR)-10). Alignments 

and phylogenies were obtained using online available EMBL-EBI Clustal Omega and Simple Phylogeny bioinformatics tools. Legend 

= 0.2 substitutions / base pair. 
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In a multiple sequence alignment based on genomic sequences of all four Col-0 Homolog of 

RPW8 genes using Clustal Omega (EMBL web suite), HR4 aligns most closely to HR3 (fig. 

4.13C). In a recent study that further analysed the function of HR1, HR2, HR3 and HR4 from Col-

0, HR3 was found to have the most pronounced effects on powdery mildew resistance (Berkey et 

al., 2017). In addition, HR3 has been previously suggested to be most similar to the ancestral 

gene that gave rise to RPW8.1 and RPW8.2 in Ms-0, as well as HR1-4 in Col-0 (Xiao et al., 

2005). Interestingly, HR3 was found a the papilla under Golovinomyces cichoracearum attempted 

penetration sites in the leaf epidermis, in addition to subsequently formed encasements around 

the haustorial neck (Berkey et al., 2017). In addition, upon transient expression in N. 

benthamiana, HR4 was found to accumulate around G. cichoracearum encasements (Berkey et 

al., 2017). In my studies, finding HR4 interacting with ARA7 upon MAMP-stimulus is consistent 

with ARA7 accumulating around haustoria of Golovinomyces orontii and Phytophthora infestans 

(Bozkurt et al., 2015; Inada et al., 2016), and specifically at encasements in the interaction with 

Blumeria graminis f.sp. hordei (Nielsen et al., 2017b), but at this point it is unknown whether HR4 

also accumulates at bacterial infection sites. 

4.4.2 - HR4 localizes to the periphery of mitochondria 

Next, I sought to reveal HR4 subcellular localization using fluorescent tagging and confocal 

microscopy. To probe for colocalization with ARA7, and potential other subcellular localizations, I 

generated binary expression vectors that encode pUB::HR4-GFP and pUB::HR4-RFP, which are 

ubiquitin-promoter driven C-terminally GFP and RFP-tagged versions of HR4, based on its coding 

sequence obtained through reverse-transcription from mRNA.  

Upon transient Agrobacterium-mediated expression in N. benthamiana leaves, HR4-GFP 

localized to punctae that did not overlap with co-expressed mCherry-ARA7 under untreated 

conditions, or after syringe-infiltration of flg22 at 3 h, matching flg22 treatment time points at 

which HR4 was originally found in mass spectrometry of ARA7 purifications (fig. 4.14A). In order 

to probe the identity of these mobile HR4-GFP-positive punctae, I co-expressed HR4-GFP with 

published mitochondrial (fig. 4.14B) and peroxisomal (fig. 4.14C) RFP-tagged markers (Nelson 

et al., 2007) in N. benthamiana. HR4-GFP fully co-localized with the mitochondrial marker, and 

upon closer inspection, can be seen to localize more strongly to the periphery of these 

mitochondria (fig. 4.14B), pointing at a potential outer membrane association. HR4-GFP did not 

colocalize with the peroxisomal marker (fig. 4.14C). Syringe infiltration of flg22 into HR4-GFP and 

mitochondrial marker co-expressing N. benthamiana leaves did not change the co-localization 

pattern of HR4 with mitochondria (fig. 4.14B, lower panels). 
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Figure 4.14. HR4-GFP does not colocalize with mCherry-ARA7-positive compartments. (A-C) Confocal micrographs showing 

GFP and RFP/mCherry channels in Nicotiana benthamiana adult leaves transiently co-expressing the indicated constructs through 

Agrobacterium tumefaciens mediated transformation at 2 dpi. Images were acquired without treatments, or after 3 hours flg22 (10 

µM) treatments where indicated. (A) HR4-GFP In colocalization with ARA7, (B) in colocalization with Mito.-RFP mitochondrial 

marker (Nelson et al. 2007) Dotted boxes in (B) indicate region of interest shown in detail below. 63 × objective, scale bars = 10 µm. 

(D) Confocal micrographs of leaf epidermal cells of 4 wk-old T1 Arabidopsis plants expressing pUB::HR4-GFP in a Col-0 

background. Dotted boxes in (B) indicate region of interest shown in detail below. 63 × objective, scale bars = 10 µm. 

 

In collaboration with Matt Smoker and Jodie Taylor (Tissue Culture & Transformation Support 

Team, The Sainsbury Laboratory, Norwich, UK), I generated Arabidopsis plants transgenically 

expressing pUB::HR4-GFP in the Col-0 background, and upon confocal analysis could confirm 

that HR4-GFP localizes to mobile structures that are strongly reminiscent of mitochondria (fig. 

4.14D). It remains to be conclusively demonstrated that these structures are indeed mitochondria. 
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In conclusion, the evidence I gathered using fluorescent tagging and confocal microscopy 

suggests that HR4 localizes to the periphery of mitochondria, and does not localize to ARA7-

positive vesicles. Since mitochondria have been described to accumulate and immobilize under 

attempted penetration sites of powdery mildew (Fuchs et al., 2015a), it could be that the local 

high abundance of mitochondria, in concert with local accumulation of ARA7, may lead to their 

close proximity and potentially their association. 

4.5 - TN3 AND HR4 ARE REQUIRED FOR PLANT IMMUNITY 

4.5.1 TN3 and HR4 are not required for basal and flagellin-induced antibacterial immunity 

Flagellin-induced resistance to Pto DC3000 

TN3 and HR4 proteins have a role in immunity. I therefore tested the infection success of a panel 

of bacterial, fungal and oomycete pathogens on Arabidopsis T-DNA insertion mutants or SALK 

lines, generated by the Salk Institute for Biological Studies, affected in TN3 (tn3, 

SALK_018440.56.00, insertion in promoter of AT1G66090) and HR4 (hr4, SALK_208828, 

insertion in first intron of AT3G50480). The T-DNA insertion lines were confirmed for homozygous 

insertion using PCR with insert- and gene-specific primers on genomic DNA extractions. 

The association of native TN3 and HR4 with ARA7 was dependent on flg22 stimulation. I 

therefore tested whether tn3 and hr4 are affected in their ability to induce resistance to syringe-

infiltrated Pto DC3000 bacteria upon 1-day pre-treatment with flg22. I performed the experiment 

with water infiltration as a control, to also reveal potential basal resistance defects in either 

mutant. Upon measuring in planta bacterial proliferation after three days of incubation in water 

pre-treated plants, I observed no statistically significant differences between Col-0, fls2, tn3, or 

hr4 (fig. 4.15A). The lack of difference in bacterial infection success between Col-0 and fls2 in 

this type of assay has been described before (Nekrasov et al., 2009). Interestingly, flg22 

treatment successfully induced bacterial resistance in Col-0, tn3 and hr4, indicating that neither 

mutant is affected in mounting flg22-induced defenses. Mutant fls2 plants did not show 

statistically significant differences in bacterial colonization between water or flg22-pretreatments 

(fig. 4.15A, left panel). 
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Figure 4.15. TN3 and HR4 are required for plant immunity. (A) Bar graphs represent growth of Pto DC3000 and cor bacteria as 

number of bacterial colony-forming units (CFU) per cm
2
. 4 weeks-old Arabidopsis leaves of Col-0, fls2, tn3 and hr4 genotypes. 

Plants were infected with the indicated bacteria by syringe-infiltration without and with 1 µM flg22 induction 1 day prior bacterial 

infection, or spray inoculation, and harvested at 3 dpi. Experiments show results (bars = mean, error bars = SE, n = 8 plants per 

treatment) of one experiment, representative of a set of three replicates. (B) Bar graphs represent penetration success (% spores 

forming cell-penetrating structures) of Golovinomyces orontii or Erisyphe pisi after spore application on the surface of 6 weeks-old 

Arabidopsis leaves of the indicated genotypes. Coommassie staining and microscopic analysis to visualise fungal structures were 

performed at 48 hpi. Experiments show combined data of four independent experimental replicates. Between 400-600 total spores 

per treatment per experiment were examined. (A,B) Letters indicate significance grouping after one-way ANOVA analysis and post-

hoc Tukey significance testing (p < 0.05). (C) Macroscopic images show symptoms of disease progression on abaxial and adaxial 

sides of 5 wk-old Arabidopsis leaves inoculated with Albugo candida Ex1 and imaged at 21 dpi. Images show symptoms 

representative of ca. 10 plants per treatment, experiment was performed once. Infection assays in (B) were performed in 

collaboration with Dr. Hannah Kuhn, laboratory of Prof. Ralph Panstruga, RWTH Aachen University, Aachen DE. Infection assays in 

(C) were performed in collaboration with Baptiste Castel MSc., laboratory of Prof. Jonathan Jones, The Sainsbury Laboratory, 

Norwich UK. 
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Resistance to Pto DC3000 cor 

Work from our laboratory revealed that ara7 mutants are more susceptible to Pto DC3000 cor 

bacteria (Bourdais et al., 2018, submitted). Because it is possible that TN3 and HR4 may function 

in the same pathway as ARA7 during immune responses, I tested the infection success of Pto 

DC3000 cor on tn3 and hr4. 

I chose to perform infections for both syringe-infiltrated bacteria and surface-spray inoculated 

bacteria. Upon syringe infiltration, I observe no statistical differences in bacterial proliferation of 

Pto DC3000 cor between Col-0, fls2, tn3 and hr4 (fig. 4.15A, middle panel). Spray-inoculation 

also did not reveal statistically significant differences when comparing Col-0 to tn3 and hr4, but 

Pto DC3000 cor bacteria were more successful on fls2c, consistent with the inability to close 

stomata in response to flg22 (Spallek et al., 2013; Bourdais et al. 2018., submitted). 

I conclude that tn3 and hr4 are not impaired in basal or flg22-induced resistance against Pto 

DC3000, or basal resistance against virulence-impaired Pto DC3000 cor bacteria. While Pto 

DC3000 is an adapted pathogen of Arabidopsis, potential more subtle resistance effects of TN3 

or HR4 that might have been masked by the action of coronatine at both stomatal or post-

stomatal defenses, are not revealed in this assay. 

4.5.2 - TN3 and HR4 are required for immunity against nonadapted powdery mildew 

Filamentous pathogens that project infection structures into plant cells elicit the delivery of host 

membranes, including from endocytic origin, to extrahaustorial membranes. LE/MVBs fuse with 

the EHM of G. orontii and deliver cell wall materials there (Micali et al., 2011), LE/MVB-

associated RABG3c targets P. infestans haustoria (Bozkurt et al., 2015), and the presence of 

both secretory and endocytic vesicles around Hyaloperonospora arabidopsidis haustoria 

suggests the direction of a variety of vesicle trafficking pathways to infection structures (Lu et al., 

2012). ARA7 itself accumulates at haustoria of powdery mildews, and is involved in resistance 

against Bgh (Nielsen et al., 2017b; Inada et al., 2016). Homologs of RPW8 were shown to 

function in antifungal resistance (Berkey et al., 2017), and NLRs in general can function in the 

detection of fungal effectors (Stotz et al., 2014; Selin et al., 2016). For these reasons, I was 

interested to test whether tn3 and hr4 may be affected in resistance against powdery mildew. 

These experiments were performed in collaboration by Hannah Kuhn (RWTH Aachen University, 

Aachen, Germany). 

Upon application of spore suspensions to the leaf surface of Col-0, tn3 and hr4, and subsequent 

quantification of the percentage of spores successfully forming secondary hyphae, we found that 

compared to Col-0, tn3 and hr4 were equally susceptible to the adapted powdery mildew G. 

orontii (fig. 4.15B, left panel). However, both tn3 and hr4 were more susceptible to the non-
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adapted powdery mildew Erisyphe pisi (fig. 4.15B, middle and right panels). This prompted us 

to test whether the phenotype could be reversed upon constitutive expression of TN3 and HR4 in 

their respective mutant backgrounds. In addition to the tn3 / pUB::TN3-GFP plants used in 

localization studies described elsewhere in this work, I generated hr4 / pUB::HR4-GFP lines in 

collaboration with Matt Smoker and Jodie Taylor (Tissue Culture & Transformation Support 

Team, The Sainsbury Laboratory, Norwich, UK). Upon testing for E. pisi resistance, we found that 

both tn3 / pUB::TN3-GFP and hr4 / pUB::HR4-GFP complementation lines were significantly 

more resistant than Col-0 or their respective mutant backgrounds (fig. 4.15B, right panels). This 

indicates that the fluorescent fusion proteins TN3-GFP and HR4-GFP are functional. 

4.5.3 - TN3 and HR4 are not required for resistance against the downy mildew Albugo candida Ex1 

In collaboration with Baptiste Castel (Jonathan Jones group, The Sainsbury Laboratory, Norwich, 

UK), we tested for altered resistance of tn3 and hr4 to the adapted oomycete pathogen Albugo 

candida isolate Exeter1 (Prince et al., 2017). Upon inspection of disease symptoms 21 days after 

spray inoculation of spore suspensions, we found that Col-0, tn3 and hr4 generally exhibited 

similar levels of yellowing and A. candida sporulation, whereas susceptible genotype Col-0 / wrr4 

(Borhan et al., 2008) showed higher levels of sporulation, and resistant Arbidopsis ecotype Oy-0 

(Baptiste Castel, PhD thesis) showed no signs of sporulation or yellowing (fig. 4.15C). 

Taken together, these results point at a role for both TN3 and HR4 in defence against 

nonadapted powdery mildew. This result raises questions on the mechanisms by which both 

proteins achieve this, of subject to further study. 

4.5.4 - Constitutive expresion of TN3-GFP and HR4-GFP does not provoke a cell death response in 

Nicotiana species. 

TN3 has been previously described to trigger a hypersensitive response in N. benthamiana upon 

35S-driven overexpression of untagged versions (Nandety et al., 2013), a response which was 

exacerbated by co-infiltration of a flg22 solution. To test for potential autoactivity of TN3-GFP, I 

used Agrobacterium-mediated transient expression in N. tabacum of pUB::TN3-GFP from the 

binary vector used for the generation of Arabidopsis transgenic lines. I performed the assay 

initially in N. tabacum due to its general predisposition to reveal NLR-mediated auto-HR in a more 

evident manner than N. benthamiana (Amey Redkar, Jonathan Jones lab, personal 

communication). 

Upon transient expression of TN3-GFP in N. tabacum, and macroscopic observation at four days 

post infiltration, no cell death symptoms were observed (fig. 4.16, top left panel). In order to 

match the original finding of 35S::TN3-induced cell death (Nandety et al., 2013), I performed the 

same analysis in N. benthamiana, which also did not trigger cell death (fig. 4.16, lower left 
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panel). The construct can be successfully transiently expressed using Agrobacterium, as evident 

from further localization studies in N. benthamiana (fig. 4.17A,B,C). 

 

 

Figure 4.16. Constitutive expression of TN3-GFP and HR4-GFP does not provoke a cell death response in Nicotiana 

species. Representative macroscopic images show no obvious cell death symptoms upon constitutive expression of GFP-tagged 

TN3 and HR4 in Nicotiana. Nicotiana tabacum or Nicotiana benthamiana leaf regions were transiently transformed with 

Agrobacterium tumefaciens using the indicated combinations of constructs without and with infiltration of 10 µM flg22. Images were 

taken at 4 dpi. 

 



117 

 

Since flg22 treatment was shown to exacerbate the cell death response of 35S::TN3 (Nandety et 

al., 2013), I co-infiltrated Agrobacterium tumefaciens carrying pUB::TN3-GFP with a solution of 

flg22, and as a control I co-infiltrated the bacterial Elongation Factor-Tu (EF-Tu) immunogenic 

epitope elf18, which is not recognized by Nicotiana spp. which lack the cognate PRR EFR 

(Lacombe et al., 2010). However, in neither case, cell death symptoms were observed (fig. 4.16, 

top and bottom panels). 

In parallel, I tested transient expression of pUB::HR4-GFP, which was functional in recovering 

mildew resistance defects of the hr4 genotype, and reveal that in N. tabacum, no cell death 

symptoms were observed, in untreated and flg22 or elf18 co-treated leaves (fig. 4.16, third row 

panels). Flagellin can be perceived by N. tabacum, which endogenously expresses a homolog of 

FLS2 (Wei et al., 2012). 

Based on the biochemical interaction studies of ARA7 and TN3, I hypothesized that TN3 may 

interact with, and potentially monitor the integrity of, ARA7 or a component of the ARA7 greater 

complex. Therefore, co-expression with ARA7 may alter the capacity of TN3 to induce cell death 

upon constitutive expression. To tes tthis, I performed Agrobacterium-mediated co-expression of 

pUB::TN3::GFP with pUB::mCherry-ARA7 and as a control included pUB::mCherry-ARA5. 

However, in neither N. benthamiana or N. tabacum this lead to an induction of cell death at 4 dpi 

(fig. 4.16, middle and lower rows). 

The above results suggest that transient ubiquitin-promoter-driven expression of fluorescently 

tagged TN3 and HR4, which functioned in mildew resistance, does not trigger cell death 

responses in Nicotiana spp., independent of MAMP-signaling. It is possible that the fluorescent 

tag interferes with the induction of cell death by TN3-overexpression as was previously found for 

35S::TN3 untagged overexpression in N. benthamiana (Nandety et al., 2013). In addition, 

potentially the accumulation levels of TN3 when driven by the weaker ubiquitin promoter are 

below the threshold needed to trigger cell death, which may not be the case upon 35S-driven 

overexpression. One experimental replicate testing untagged pUB::TN3 expression in N. tabacum 

did not result in cell death. 

4.5.5 - Constitutively expressed TN3-GFP exhibits localization patterns non-responsive to flg22 in 

Nicotiana benthamiana. 

In order to verify whether ubiquitin-promoter-driven fluorescently tagged versions of TN3 and HR4 

could be successfully expressed using Agrobacterium-mediated expression, I performed confocal 

microscopy localization studies in N. benthamiana leaves using pUB::TN3-GFP, pUB::TN3-RFP 

and HR4-GFP, and included co-expression of pUB::mCherry-ARA7 and pUB::mCherry-ARA5. I 

found that TN3-GFP and TN3-RFP localized to the nucleus and cytosol (fig. 4.17A), largely 

matching the localization pattern found in Arabidopsis leaves. 
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Figure 4.17. Constitutively expressed TN3-GFP exhibits localization patterns non-responsive to flg22 in Nicotiana 

benthamiana. (A-C) Confocal micrographs of Nicotiana benthamiana adult leaves transiently co-expressing the indicated constructs 

through Agrobacterium tumefaciens mediated transformation at 2 dpi. Images acquired after 3 hours flg22 (10 µM) treatments in 

lower panels of (B). (A) Expressing single TN3-GFP or TN3-RFP constructs, (B) co-expressing TN3-GFP and mCherry-ARA7, (C) 

co-expressing TN3-GFP and  mCherry-ARA5, (D) co-expressing HR4-GFP and TN3-RFP. 63 × objective, scale bars = 10 µm. 

 

Co-expression with fluorescently tagged ARA7 or ARA5 did not induce a localization change of 

TN3-GFP, and overlapping signals were only found in the cytosol (fig. 4.17B). This pattern did 

not change upon 3 h flg22 treatment (fig. 4.17B), timed to match the ligand treatments performed 

in Arabidopsis seedlings in preparation for immunoprecipitation/mass-spectrometry experiments. 

It is noteworthy that upon TN3-GFP co-expression with mCherry-ARA5, the fluorescent signals 

overlapped in the cytosol (fig. 4.17C), but in BiFC/split-YFP experiments (fig. 4.9), and 

immunoprecipitation/mass-spectrometry experiments described in chapter 3 of this thesis, ARA5 

did not interact with TN3 upon untreated, water control or flagellin-induced conditions. This 

provides further evidence that cytosolic TN3 does not unspecifically associate with Rab GTPases 

due to possible ectopic localization. The localization pattern of TN3-GFP in N. benthamiana is 

predominantly the same as found for Arabidopsis, with the exception that in Arabidopsis, a minor 

amount of mobile TN3-GFP punctae were found. 

Since both HR4 and TN3 interacted with ARA7 upon flg22 treatment as identified in mass 

spectrometry experiments, I tested whether co-expression of fluorescently tagged TN3 and HR4 

could influence their localizaton (fig. 4.17D), which was not the case. HR4-GFP still localized to 

punctae likely to represent mitochondria, and TN3-RFP remained nucleocytosolic. In summary, 

co-expression of functional TN3-GFP and HR4-GFP with tested RAB-GTPases, or with each 

other, does not change the localization pattern of these proteins in N. benthamiana, independent 

of flg22 treatment. 
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DISCUSSION 

4.6 - ARA7 exhibits dynamic localization patterns 

I found that, between 6-7 hours after infiltration of Pto DC3000 or the bacterial MAMP flg22, 

ARA7-positive vesicles tend to cluster at the cell periphery. These clusters coincided with the 

position of bacteria attached to the cell surface (fig. 4.1). The focal accumulations of ARA7 also 

occurred to a lower extent in water treatments, but upon quantification using a FIJI macro, I could 

show that in some experimental replicates, they could be triggered significantly more by Pto 

DC3000 wildtype, or expressing mCherry, as well as by effector disarmed Pto DC3000 HrcC- and 

the ETI-triggering Pto DC3000 AvrRpt2 (fig. 4.3-4). Qualitatively, it was striking that whenever a 

cell-surface localized Pto DC3000-mCherry bacterium was observed, most often an ARA7 vesicle 

cluster was found beneath it. There were many occasions of ARA7 vesicle clusters that did not 

coincide with bacterial presence.  

Notably, the response came up at ca. 6 hpi, and subsided quickly after ca. 7 hpi, with no obvious 

localization changes before. Why not cluster immediately? While it is possible that concentration 

of ARA7 at the cell periphery starts at earlier time points, I could not visualise this using confocal 

microscopy before ca. 6 hpi, but found numerous accumulations rapidly appearing subsequently. 

I hypothesize that at earlier time points, plants load endosomes with defense related cargoes, 

await the position of pathogen attack, and then mass-deliver endosomal contents in a focused 

manner, thus achieving high concentrations of defensive components delivered in the pathogen-

defined location. This is corroborated by the existing finding that the cell-surface defense module 

PEN3 increased in abundance at endosomal compartments at 4 hours of flg22 treatment, 

whereas PEN3 cell-surface focal accumulations were measurable at >6 hpi (Underwood and 

Somerville, 2013). 

It is known that default secretory Rab GTPases such as RabE1d cluster at the cell surface at 

these time points, upon bacterial presence (Speth et al., 2009). Therefore, it is possible that, 

coupled to an increased local secretory activity, endocytosis may need to be upregulated locally 

to maintain membrane integrity. Using the lipophilic tracer dye FM4-64, I could show that the 

majority of ARA7 vesicles present in clusters under bacteria are pre-existing, as the majority of 

them are not marked with FM4-64 at 30 minutes of staining (fig. 4.2), whereas at this time point 

the externally applied dye reaches LE/MVBs (Beck et al., 2012b). This indicates that most of the 

ARA7 vesicles in the observed clusters do not derive from locally increased endocytic activity. 

However, bacteria-induced changes along membrane trafficking pathways might alter the rate of 

FM4-64 uptake and distribution throughout the endomembrane network, which I did not test at 

earlier time points. 
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The phenomenon of pathogen-induced endosomal concentration at the cell surface has been well 

described in response to attempted fungal penetration, where endosomal Rab GTPases are 

thought to contribute to the formation of defensive structures, and the delivery of intraluminal 

vesicles by fusing with the plasma membrane, which then become extracellular vesicles (EVs, 

(Boevink, 2017)).  

The endosomal ARA7 and vacuolar RABG3c accumulate around Phytophthora infestans 

haustoria (Bozkurt et al., 2015), and ARA7 and ARA6 both accumulate around Golovinomyces 

orontii haustoria (Inada et al., 2016). ARA6 endosomes also accumulate under attempted 

penetration sites of Blumeria graminis f.sp. hordei (Nielsen et al., 2012, 2017a; An et al., 2006). 

More recently, the LE/MVB localized ARA6 was further implicated in the delivery of endosomes 

upon infection with Botrytis cinerea. LE/MVBs fused with the PM at host-pathogen contact sites 

as evidenced from electron microscopy studies, and confocal analysis showed strong clustering 

of ARA6 vesicles at this location (Cai et al., 2018). Similar to my FM4-64 analyses, the authors 

use the endocytic tracer dye FM4-64 on B. cinerea infected tissue and show that upon 30 

minutes staining, ARA6 vesicle clusters were not co-stained by FM4-64, providing evidence that 

they are existing, relocalizing vesicles (Cai et al., 2018). Interestingly, the authors identify 

Tetraspanin 8 (TET8) as a bona fide EV cargo, which I do not identify in any of my proteomic 

analysis of ARA7, suggesting a more specialized role for ARA6 in this process. While I have not 

demonstrated that bacterial-induced ARA7 concentration at the cell surface is coupled to their 

fusion to the PM, the previously known accumulation around pathogen interfaces of RabF 

GTPases and their incorporation to the EHM suggests that ARA7 can fuse and deliver contents at 

the plasma membrane during immune responses. I suggest that this response is at least partially 

conserved in response to host detection of bacteria at specific extracellular positions. 

ARA7 has been implicated in the delivery of defence molecules to the plant-pathogen interface 

before. GTP-locked ARA7-QL, which cannot complete its activation cycle and normally forms 

enlarged ARA7-positive LE/MVBs (Jia et al., 2013), accumulated in the haustorial encasement in 

response to the non-adapted pathogen Blumeria graminis f.sp. hordei (Bgh, (Nielsen et al., 

2017b)). Encasements are callose-rich structures that are formed secondary to the initial callose-

rich cell-surface papillae (Nielsen et al., 2017b). Interestingly, the authors conclude that while 

ARA6 vesicles accumulate near Bgh infection structures (Nielsen et al., 2012), it is not ARA6, but 

activation of ARA7 through its interacting ARF-GEF VPS9a thus confers pre-invasive immunity to 

Bgh. Upon infection with the adapted fungal pathogen G. orontii, it has been shown that ARA7 

does accumulate around the haustorium, but with the conspicuous absence of its activator 

VPS9a, leading to the hypothesis that the EHM of adapted pathogens adopts a modified 

endosomal identity, likely through the modulation of host processes by pathogen secreted 
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effectors (Inada et al., 2016). Possibly, the targeting of Rab regulatory proteins is guarded by 

NLRs such as the ARA7-interacting TN3 described in this thesis. 

There are existing data that support that upon bacterial infection, endosomes fuse in an 

increased manner with the PM, thus releasing intraluminal vesicles which are then considered 

EVs (Rutter and Innes, 2017). Pto infection promoted the amount of EVs secreted by 

Arabidopsis, as revealed by quantifying membrane amounts in purifications of apoplastic fluid 

(Rutter and Innes, 2017). In fact, the EV proteome derived from those purifications was most 

similar to the published ARA7 proteome (Rutter and Innes, 2017; Heard et al., 2015). This 

supports a role for ARA7 LE/MVBs in secreting EVs in response to pathogens. Based on my 

data, I would suggest that this occurs in a targeted manner, thus I propose that EVs are secreted 

from LE/MVBs that fuse to bacterial infection sites. However, Rutter and Innes (2017) found 

Patellin1 to be a bona fide marker of EVs, which I do not find in my ARA7 purifications (tables 

4.1, 4.3). In addition, they use PEN1 as an EV marker, which is found in my ARA7 purifications, 

but does not evidently respond in quantity upon immune stimulus (table 4.1) 

While the above studies point at different roles for both ARA6 and ARA7 in the delivery of 

defence components to different pathogens, as of yet, it is not clear how they contribute to post-

stomatal antibacterial immunity. It would therefore be interesting to test also ARA6 for clustering 

at the 6-7 hpi time point in response to bacterial infiltration, in combination with bacterial 

apoplastic infection assays in both ara7 and ara6, to further probe their involvement.  

4.7 - ARA7 purifications likely represent a Rab-associated complex 

In order to reveal proteomic changes along the endocytic pathway upon immune stimulus at time 

points preceding the clustering of ARA7 under bacterial infection sites, I purified ARA7 from 3-

hours water or flg22 treated seedlings, and performed mass spectrometry analysis (tables 4.1-3, 

fig. 4.6). I used a previously published method, where the authors could successfully categorise 

proteins in separate membrane trafficking pathways using purifications of a panel of membrane-

associated baits (Heard et al., 2015). However, my purifications lead to substantially different co-

purifying proteomes than were published, yet overlapping to some extent (fig. S.5). There are 

several underlying causes that could lead to this. Firstly, for ARA7, I used YFP affinity purification, 

whereas Heard et al. (2015) used RFP purifications. Secondly, a different model of mass 

spectrometer was used for my experiments. Finally, the way in which I define my YFP-ARA7 

proteome, comparing it to YFP purifications and requiring a 4-fold spectral count increase, differs 

from the method used in Heard et al. (2015), who applied a statistical analysis method ―SAINT‖ in 

order to separate the different endomembrane compartment proteomes based on confidence 

scores for each protein (Choi et al., 2011). I inspected the ARA7 co-purifying proteomes that 

resulted from my pulldown/mass-spec experiments and conclude that the majority of abundant 
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proteins correspond to the known subcellular localization and function of ARA7, making the co-

purifying proteome suitable for discovering novel interactors of the ARA7 complex upon flg22 

treatment, which was my goal. 

It is uncertain whether complete endomembrane compartments are purified using the method I 

employ. Heard et al. (2015) point out that ca. 30% of cargoes identified in ARA7 purifications 

contain transmembrane domains, suggesting that at least part of the vesicle membrane was co-

purified. However, my proteomes differed considerably (fig. S.5). When inspecting my ARA7 co-

purifying proteome (tables 4.1-2), it is evident that the majority of co-purifying proteins are known 

to associate with membranes on the cytosolic side (SNAREs, coatomer, SCAMPs) or are Rab 

GTPase-associated (PRA1 members, PUF2, VPS9a). However, I do find cargoes of the pathway 

such as CESAs, glucan synthases and PEN3, but they all contain transmembrane domains. A 

minority of proteins, such as CER8 and ubiquitin-like proteins do not contain transmembrane 

domains. From these co-purifying proteins, I conclude that I purify the greater Rab GTPase-

interacting complex at minimum, and from TM-domain containing proteins, I speculate that at 

least membrane fragments originating from TGN/EE-LE/MVB co-purified with ARA7. Taking all 

evidence together, this suggests that I purified membrane-associated ARA7, because the 

cytosolic phase interacts with a limited amount of proteins, mostly belonging to the Rab regulatory 

complex (Saito and Ueda, 2009b), and co-purifying proteins that I found such as SNAREs are 

membrane-integral and do not cycle between cytosolic and membrane-associated states. 

A number of Golgi proteins passed my criteria of defining an ARA7 co-purifying proteome, as they 

were associated with YFP-ARA7 with a factor of more than four-fold compared to YFP controls. 

When comparing my ARA7 proteome to the published Golgi proteome obtained using the same 

affinity purification method (Heard et al., 2015), I observe that ca. 7% (11 out of 159) ARA7 

proteins were found in the Golgi proteome. This is comparable to the amount of Golgi proteins 

that were found in the ARA7 proteome from the same publication, where ca. 10% (29 out of 280) 

of ARA7 proteins were also identified in Golgi. Yet, my ARA7 ―Golgi contaminants‖ overlapped 

with the published ARA7 ―Golgi contaminants‖ with only 4 out of 11 proteins. Overlap included 

VAMP722, PRA1.B1 and two Endomembrane Protein 70 members.  

It is possible that the purification method is inaccurate to some extent, and purifies unspecific 

proteins or contaminants. However, they could also reflect constitutive biogenesis of the YFP-

ARA7 fusion protein, the transcription of which is driven by the constitutively active Ubiquitin-10 

promoter (Geldner et al., 2009). Co-localization analysis of Golgi-TGN/EE-localized ARA5 with 

ARA7 showed no punctate overlap (chapter 5, figure 5.5), so it is unlikely that a high abundance 

of YFP-ARA7 is present at the Golgi. However, fluorescent signal can only occur when the newly 

synthesized YFP chromophore is fully matured, so a subpool of ―dark‖ YFP-ARA7 may be 

present at the Golgi. Alternatively, TGN/EE and Golgi may be linked to some extent, and difficult 
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to separate. Indeed, the TGN/EE partially originates from the Golgi (Ito et al., 2017), and there is 

a closely Golgi-Associated (GA) pool of TGN/EE, separate from Golgi-Independent (GI) TGN/EE 

(Uemura et al., 2014).  

Strikingly, CONSERVED OLIGOMERIC GOLGI 2 (COG2, AT4G24840), a Golgi-functioning 

tethering factor, which was low abundant, but upregulated in ARA7 upon flg22 treatments in my 

purifications (table 4.3), was predicted to be the target of H. arabidopsidis HaRxL60, HaRxL73, 

HaRxLL518 and ATR13, as well as G. orontii effector candidate OEC25 (Mukhtar et al., 2011; 

Weßling et al., 2014). COG2 has been detected in a vacuolar proteomic study (Carter, 2004), 

pointing at its likely trafficking from the Golgi to vacuole, which could occur through ARA7 

TGN/EE and LE/MVBs. With COG known to function in intra-Golgi trafficking processes, ARA7 is 

unlikely to be its biologically relevant localization, or the location at which effectors target it. 

However, it would be interesting to confirm this using bimolecular fluorescence complementation 

with predicted interacting effectors, pinpointing the location of their interaction in relation to ARA7. 

In addition to some Golgi proteins, at higher abundances I find ER localized proteins such as 

ribosomal proteins, ribosomal-associated signal-particle proteins, and SEC22 which functions in 

ER-Golgi export (table 4.1). While ARA7 is a broad endocytic marker localizing to TGN/EE and 

LE/MVB, it has not been described to localize to the ER. Potentially, above-described 

biosynthesis of YFP-ARA7 could lead to some purification of ER proteins, but the high abundance 

of the ribosomal protein SUPPRESSOR OF ACAULIS 56 gives pause. An explanation may be 

found in the observations that LE/MVBs physically associate with ER, which facilitates endosomal 

streaming, and that ER-localized VAP27 proteins physically participate in early clathrin-mediated 

endocytosis as well as bridge the ER to TGN/EE, where ARA7 also localizes (Stefano et al., 

2018, 2015). Seeing the critical role for the ER in physically guiding endocytic processes involving 

TGN/EE and LE/MVB, it would be interesting to see whether the described ER-localized modules 

responsible for this are also involved in guiding ARA7 vesicles to the pathogen interface. Indeed, 

ER itself was found to focally accumulated under fungal attempted penetration sites (Fuchs et al., 

2015). While ribosomal proteins in my ARA7 purifications could simply reflect close physical 

association, it is also conceivable that proteins newly synthesized in response to pathogen 

detection hitch-hike on LE/MVBs en-route to the cell-surface or to the vacuole, thus bypassing 

extra translocation and posttranslational modification steps in the Golgi. 

In animal systems, bacteria have been well described to employ effectors to target both endocytic 

and secretory Rab GTPases and their regulatory complexes, modulating host trafficking to their 

benefot (Brumell and Scidmore, 2007; Stein et al., 2012; Spanò and Galán, 2017). In plants, 

fungal effectors from G. orontii and H. arabidopsidis have been predicted to interact with PRA1 

proteins, which are regulators of Rab GTPases, using large scale yeast-2-hybrid (Y2H) screens 

(Mukhtar et al., 2011; Weßling et al., 2014), but these interactions have not been subject to 
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further study. Interestingly, upon ARA7 purifications, I identified PRA1.F2 in water treated 

samples, which interacted with G. orontii effector candidate OEC65 in the abovementioned Y2H 

screen. Secondly, upon flg22 treatments, ARA7 purifications identified PRA1.F3, which was 

predicted to interact with G. orontii OEC65 and H. arabidopsidis HaRxL74. Neither interacted with 

the library of Pto DC3000 effectors in the same study (Mukhtar et al., 2011; Weßling et al., 2014). 

This points at a role for pathogen effectors in modulating Rab activity in plants. 

While I could find Rab regulatory proteins such as PRA1 family proteins, and VPS9a, I also 

identify at least one Rab effector, as reflected by PLANT UNIQUE RAB EFFECTOR 2 (PUF2; Ito 

et al. 2018). However, other known ARA7 effectors such as SAND/MONENSIN SENSITIVITY 1 

(SAND/MON1), CALCIUM CAFFEINE ZINC SENSITIVITY 1 (CCZ1) and ENDOSOMAL RAB 

EFFECTOR WITH PX-DOMAIN (EREX) proteins were not identified (Singh et al., 2014a; Sakurai 

et al., 2016). Of EREX, it is known to function in endosomal delivery to the protein storage 

vacuole in seed maturation, which is a process that does not occur in seedlings. The absence of 

SAND/MON1 and CCZ1 is puzzling, as they are involved in the conversion of Rab5, to which 

ARA7 belongs, into Rab7-identity of membrane compartments in default vacuolar targeted 

trafficking (Singh et al., 2014b). It could be that the pool of ARA7 interacting with these effectors 

at the last stages of vacuolar targeted LE/MVB traffic is small, preventing MON1/CCZ1 peptide 

counts to reach the detection threshold. 

4.8 - The ARA7 proteome contains defence-related proteins 

Major players in the production of indole-3-glucosonolate based antimicrobials are Indole 

Glucosinolate O-Methyl Transferase (IGMT) proteins, of which I identify IGMT4 upregulated in 

ARA7 upon flg22 treatment. The subcellular localization of IGMT proteins is as of yet unclear, but 

they function in an enzymatic pathway of which other components have known localizations 

(Pfalz et al., 2011; Xu et al., 2016). What could be the relevance for IGMT4 appearance on 

endosomes in this context? Before export into the apoplastic space, indole-3-glucosinolate-

derived antimicrobial metabolites need to be catalyzed in sequence by CYTOCHROME P 81 

(CYP81) family enzymes, IGMT enzymes, and finally myrosinases, among which PEN2, and the 

full functioning of enzymatic chain is also necessary for antibacterial resistance (Clay et al., 2009; 

Burow and Halkier, 2017; Birkenbihl et al., 2017). PEN2, which I did not identify, is known to 

localize to mitochondria, which immobilize under attempted penetration sites, and is there 

involved in the last step of antimicrobial production (Fuchs et al., 2015b). We also know that 

IGMT proteins produce metabolites which are substrates for PEN2, but it is unknown where 

IGMTs are localized (Birkenbihl et al., 2017). The conversion step before is mediated by CYP81 

proteins (Fuchs et al., 2015b), which are ER resident, and of which I find no members in my 

purifications. Therefore, finding IGMT4 in ARA7 purifications upon flg22 only could point at a 

mechanism to bring these intermediate enzymes to the biologically relevant location at the 
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pathogen infection site. ER and LE/MVB can physically associate, and both ER and LE/MVB 

concentrate under pathogen infection sites (Fuchs et al., 2015b). Seeing as the final metabolites 

of this completed enzymatic pathway are toxic, it would make sense to keep the components 

separate until the end products are necessary. My proteomic studies don‘t answer where the 

metabolites themselves are located, but they are said to be exported by transmembrane 

transporters such as PEN3, which also make use of the redirected endocytic pathway to focally 

accumulate. Knowing that the full functionality of this enzymatic pathway is required for 

antibacterial immunity (Clay et al., 2009), I hypothesize that the ER also focally reorganises at the 

site of bacterial attack, but this remains to be demonstrated. 

Finding PEN3 associating with ARA7 upon flg22 treated conditions is interesting, because it 

matches the endocytic accumulation of this protein at membrane compartments as previously 

observed at 4 h of flg22 treatment (Underwood et al., 2017), and provides more evidence for a 

role of the LE/MVB in focal accumulation of PEN3 upon immune stimulus. The observed timings 

of 6-7 hours flg22 treatment leading to ARA7 vesicle clustering in my experiments, matches 

existing observations that PEN3 cell-surface focal accumulations can be observed from ca. 6 

hours onward (Underwood and Somerville, 2013). These data together support the notion that the 

time upon which I chose to analyze flg22-induced changes along endomembrane compartments 

is suitable for revealing the loading of endosomes with defence cargoes. In this context, it would 

be interesting to test for PEN3 focal accumulations in ara7 and ara6 mutants upon pathogen and 

MAMP stimulation. 

It has been shown that upon leaf infiltration with Pto DC3000, PEN3 accumulations at the cell 

surface subside rapidly after ca. 7 hours, which is thought to be an effector-mediated process 

(Xin et al., 2013). If the endosomal clustering I observe underlies the targeting of PEN3 to the cell 

surface there, the effector-mediated removal of such focal accumulations is unlikely to be a result 

of interfering with the continuous endosomal delivery of PEN3, because I could not observe the 

ARA7 clustering response after ca. 7 hpi, even upon flg22-only treatments. This is also supported 

by published fluorescence recovery after photobleaching (FRAP) experiments on PEN3 

(Underwood and Somerville, 2013). Rather, it is likely that effectors affect the stability of PEN3 in 

the plasma membrane. 

The protein with the strongest increase in spectral counts in ARA7 purifications upon flg22 

treatment compared to water treatment was FLOTILLIN 1 (FLOT1). FLOT1 is a membrane-

associated protein, which associates with high-sterol and sphingolipid membrane regions also 

known as detergent-resistant membranes (DRMs). In plants, it functions in clathrin-independent 

endocytosis (Li et al., 2012b), and in both plants and animals is thought to participate in 

modulating the spatial organisation of cell-surface localized transmembrane receptors (Otto and 

Nichols, 2011; Haney et al., 2011; Downie, 2014). 
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In addition, in animals, flotillins have been shown to function on the endosome, where they 

localize to sphingolipid/sterol-rich membrane regions as well, and there participate in targeting 

endocytosed cargoes for recycling back to the PM (Langhorst et al., 2007; Meister and Tikkanen, 

2014). ARA7 and FLOT1 partially overlapped on FM4-64 and VHA-a1 positive endosomes in an 

increased manner upon flg22 treatment at 1 hour of flg22 treatment (Yu et al., 2017). DRM 

enrichment has conversely revealed the co-purification of the well studied TGN/EE marker VHA-

a1, thus providing further evidence that the TGN/EE contains such domains where FLOT1 is 

present - noting that VHA-a1 marked TGN/EE overlaped with ARA7 in microscopy studies and 

VHA-a1 is found in my ARA7 proteome (Borner et al., 2005; Dettmer et al., 2006). Finding FLOT1 

in ARA7 purifications could signify a change in lipid composition along the endocytic pathway. 

Since pathogen infection induces the focal accumulation of known defence cargoes, which is 

thought to be mediated by redirection of LE/MVB-dependent traffic, and sterol/sphingolipid-

associating FLOT1 in animals has been implicated in mediating the return of endocytosed 

cargoes to the PM, these findings together could point at a flg22-induced upregulation of PM-

directed secretory capacity on the ARA7 pathway which is normally targeted to the vacuole. 

High sterol/sphingolipid subdomains on TGN/EE, where FLOT1 could preferentially accumulate, 

have recently been show to overlap with the SYP61 -marked domain, which I also co-purified with 

ARA7, but independent of flg22 stimulus (Wattelet-Boyer et al., 2016). The authors demonstrate 

that the SYP61 domain is involved in default secretion and not recycling, whereas the low-

sphingolipid/sterol domain marked by RABA2a, which I do not co-purify with ARA7, was shown to 

mediate PM-TGN/EE recycling and not default secretion. This would seem to conflict with the 

hypothesis that appearance of FLOT1 on ARA7 signifies a more recycling identity on this 

compartment, but is in line with a role for PM-targeting, as default secretory compartments also 

mediate PM delivery. 

Other data suggest that LE/MVB-localized ARA6 is the endosomal Rab that mediates endosome-

to-PM delivery at resting conditions, and in host-microbe associated processes (Ebine et al., 

2011a; Cai et al., 2018). To further elucidate the potential endosomal-localized functions of 

FLOT1 in the context of immunity, and whether this underlies an increased secretory role for 

normally endocytic compartments, it would therefore be interesting to test for flg22-induced 

colocalization changes of FLOT1 with both ARA7 and ARA6 upon pathogen and MAMP stimulus, 

in combination with pathogen infection trials in published FLOT1 knockdown lines (Li et al., 

2012b). 

4.9 - The atypical NLRs TN3 and HR4 mediate plant immunity 

Using mass spectrometry and biochemical methods, I could show that TN3 and ARA7 interact, 

yet in endogenous conditions, this is likely underpinned by induced transcription of TN3 in 
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repsonse to flg22 (fig. 4.7). In bimolecular fluorescence complementation (BiFC) studies, I could 

show that TN3 and ARA7 reconstituted a fluorescent signal on ARA7 endosomes (fig. 4.9). Upon 

interaction in this type of experiment, the interaction partners are irreversibly linked by the 

fluorophore. This could mean that normally, TN3 interacts with ARA7 in a dynamic reversible 

way, or with only a subpool of ARA7, but this transient or partial interaction be fully captured by 

irreversible binding through BiFC, with ARA7 now ―sequestering‖ TN3 molecules and 

accumulating them at endosomes. I hypothesize that I purify a greater Rab-associated complex 

at minimum, which probably includes the cytosolic and membrane bound pool. Perhaps TN3 has 

an interaction preference for cytosolic localized, GDP-bound inactive pools of ARA7, rather than 

all ARA7, or for membrane-associated GTP-bound ARA7, and as a result in BiFC would follow 

ARA7 throughout its activation cycle. Notably, TN3 also reconstituted a signal with the  LE/MVB-

localized ARA6, which could point at TN3 interacting with Rab5 GTPases in general, or with a 

common interactor of Rab5 GTPases, out of which their activator VPS9a or their shared 

endosomal localized effector PUF2 could be candidates. This would be interesting to further 

confirm using biochemical interaction studies, and could point at host NLR surveillance of Rab 

GTPase activity. 

I tested Arabidopsis Col-0 T-DNA insertion lines tn3 and hr4 for their capacity to mount resistance 

against bacterial pathogens. Because of the flg22-induced appearance of these proteins in my 

purifications, I included a flg22-induced resistance test to Pto DC3000 bacteria. However, neither 

mutant line was affected in flg22-induced or basal resistance to Pto DC3000, nor in basal 

resistance to Pto DC3000 cor (fig. 4.15). By contrast, single mutants of other TN genes, such as 

tn2 and tn13, have been shown to be affected in bacterial resistance (Zhao et al., 2015; Roth et 

al., 2017). The absence of resistance phenotypes in tn3 and hr4 in my bacterial infection assays 

could be explained by the fact that Pto DC3000 is well adapted to Arabidopsis, and Pto DC3000 

cor, although lacking coronatine, can still secrete type-3 effectors. Alternatively, Pto DC3000 may 

not secrete the effectors that would trigger TN3 or RPW8-based resistance. 

Upon challenge with filamentous pathogens, out of G. orontii, Albugo candida Ex1 and E. pisi, 

only the latter, non-adapted pathogen showed increased infection success on both tn3 and hr4 

plants (fig. 4.15). Importantly, expression of TN3-GFP and HR4-GFP in their respective mutants 

could rescue resistance above wildtype levels, demonstrating that both are required for anti-

fungal immunity and are functional as GFP-tagged fusion protein. Since ectopic expression of R-

proteins can lead to constitutive activation of defences, the constitutive expression of both genes 

driven by the Ubiquitin-10 promoter could explain the heightened resistance to E. pisi. By 

contrast, 35S overexpression lines of HR4 mediate resistance against G. cichoracearum 

comparable to Col-0 wildtype plants (Berkey et al., 2017). However, G. cichoracearum is an 
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adapted pathogen on Arabidopsis. I conclude that both TN3 and HR4 function in non-host 

resistance to powdery mildew.  

HR4 is a homolog of the relatively well-studied atypical immune receptor RPW8.2 and associates 

to ARA7 upon flg22 trigger.  Surprisingly, HR4-GFP, which is functionally complementing the hr4 

mutant phenotype, localized to the periphery of mitochondria in N. benthamiana and similarly in 

Arabidopsis independent of flg22 stimulus (fig. 4.14). This is surprising, because I identified HR4 

in ARA7 purifications, which does not localize to mitochondria. While the co-localization pattern of 

ARA7 and HR4 did not change upon 3 hours flg22 treatment in N. benthamiana, it remains 

possible that HR4 more closely associates with ARA7 in Arabidopsis upon immune stimulation, or 

has broader targeting specificity dependent on pathogen infection, perhaps directed by NLR 

association or activation. It is also possible that fluorescent tagging of HR4 alters its subcellular 

localization, but I could show that it does not affect its function in antifungal resistance (fig. 4.15). 

To my knowledge, I do not identify any other mitochondrial localized proteins in ARA7 

purifications. 

HR4 and its homologs HR1-3 in Col-0 have been shown to all accumulate around G. orontii 

haustoria (Berkey et al., 2017). Interestingly, HR2-YFP was found in ring structures surrounding 

chloroplasts, and in a different study, a subset of C-terminally truncated mutants of RPW8.2 

localized to stromule-like membranes that surrounded and connected chloroplasts ((Berkey et al., 

2017; Wang et al., 2013)). While RPW8 proteins are membrane targeted through their N-terminal 

TM domain (Wang et al., 2013), this points at a role for membrane specificity determination of the 

C-terminus, which is divergent between RPW8 homologs in Col-0 (fig. S14). Yet, upon alignment 

of HR1-4 amino acid sequences, I observe a N-terminal extension for HR4 which is not present in 

HR1-3 (fig. S.4), which could confer differential localization compared to other HR members 

(Berkey et al., 2017). 

RPW8.2 is a homologue of HR4, and was shown to be carried on secretory VAMP721/VAMP722-

positive vesicles to the pathogen interface, and in EM-studies was shown to localize to the EHM 

proper (Kim et al., 2014). While VAMP721 and ARA7 in fluorescent colocalization studies showed 

considerably different punctate localizations in stable transgenic Arabidopsis root cells (Zhang et 

al., 2011a), both VAMP721 and VAMP722 were present in the ARA7 proteome (table 4.1-4.2), 

which could reflect close association of ARA7 and VAMP721/722 at the TGN/EE, and which 

could lead to association of ARA7 with HR proteins that might be carried on these vesicles. 

RPW8-type proteins are potent inducers of cell death, and are required for signal activation of 

entire NLR subfamilies (Collier et al., 2011; Bonardi et al., 2011). Although the mechanism by 

which RPW8-type proteins activates resistance remains poorly characterized, there is a potential 

lead. The so called RPW8-domain describes full-length RPW8 and its homologs, and is present 
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as an N-terminal domain in tobacco NRG1 and homologs (Peart et al., 2005) and Arabidopsis 

ADR1 (Collier et al., 2011). Expression of the RPW8 part of various ADR1/NRG1 variants 

resulted in cell death, and it is known that RPW8 is membrane targeted (Collier et al., 2011; 

Wang et al., 2007). Interestingly, RPW8 domains are homologous to HELL domains present on 

fungal NLRs (Daskalov et al., 2016). HELL domains and RPW8 domains both have membrane 

targeting functions in cell death processes (Daskalov et al., 2016). The authors point out that it is 

likely that the HELL domain itself achieves this through inducing membrane pore formation on 

location. The above data, in line with the observation that HR4 contributes to defence against a 

biotrophic fungus (fig. 4.15), which is commonly associated with hypersensitive cell death, it is 

conceivable that HR4 plays a membrane-localized role in activating NLR-mediated cell death. 

TN3 interacted with ARA7, which was induced upon initiation of immune signaling in endogenous 

conditions, and we found that TN3 is required for full immunity against non-host powdery mildew. 

How could TN3 work? Limited information is available on the mechanism of TN3 signaling. Upon 

35S overexpression in N. benthamiana, (Nandety et al., 2013) found that TN3 induced a 

hypersensitive response, which was exacerbated by flg22 co-infiltration, and which was 

dependent on the typical NLR signaling module EDS1. Additionally, 35S overexpression lines in 

Arabidopsis could only be retrieved in an eds1 background (Nandety et al., 2013). In my hands, 

transient expression of pUB::TN3-GFP in Nicotiana spp. did not trigger any symptoms of HR (fig. 

4.16), whereas p35S::TN3 has been shown to trigger the strongest HR symptoms in N. 

benthamiana out of all tested TN genes (Nandety et al., 2013). My fluorescently tagged construct 

is functional in resistance, as evident from pathogen infection assays (fig. 4.15), and is expressed 

in N. benthamiana (fig. 4.17). It is conceivable that my Ubiquitin-10 promoter-driven pUB::TN3-

GFP construct does not accumulate enough TN3 protein compared to the higher expressed 

p35S::TN3.  

Other TN proteins have been reported to engage immune signaling through unconventional 

means. TN2 interacts with the trafficking regulators Exo70B1 and SNAP33, and triggers 

autoimmunity in an exo70b1 background, implicating it in the guarding of Exocyst components, or 

an Exocyst-dependent process (Zhao et al., 2015). Interestingly, TN2 interacted also with 

CALCIUM-DEPENDENT PROTEIN KINASE 5 (CPK5), and CPK5 was required for the 

autoimmune response in exo70b1 (Liu et al., 2017). CPK5 is a known component of early PTI 

signaling, and required for full resistance against Pto DC3000 (Dubiella et al., 2013). I did not 

identify any CPKs in ARA7 purifications upon flg22 (table 4.3). 

TN proteins are thought to function in complex with full-length NLRs. A single amino-acid 

substitution near the TIR-domain of TN1/CHILLING SENSITIVE 1 (CHS1) lead to an autoimmune 

phenotype upon exposure of plants to low temperatures, which was dependent on the presence 

of the full-length TNL SUPPRESSOR OF CHL1-2 3 (SOC3), and on the typical NLR signaling 
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components EDS1 and PAD4 (Zbierzak et al., 2013; Zhang et al., 2017). The CHS1 autoactive 

variant also physically interacted with SOC3. The SOC3 gene is genomically in close proximity to 

CHS1, and interestingly, also TN2, raising the possibilty that TN2 is also dependent on this full-

length NLR. While TN3 does not cluster with these genes, or full-length NLRs in the Arabidopsis 

genome, from Y2H screens it has been predicted to interact with the full-length NLR RPP13-LIKE 

PROTEIN 1 (RPPL1), which would be a prime candidate for further study in the context of TN3-

mediated immune signaling. 

To my knowledge, the only NLR to be detected at endosomes is potato (Solanum tuberosum) 

R3a, which confers resistance to the late-blight causative agent Phytophthora infestans, carrying 

the effector Avr3a (Engelhardt et al., 2012). Avr3a interacts with dynamin, and interferes with 

dynamin-mediated endocytic processes (Chaparro-Garcia et al., 2015). Interestingly, StR3a 

localized to the cytosol in resting conditions, and only accumulated at endosomes upon co-

expression of Avr3a (Engelhardt et al., 2012). In the case of TN3 however, I could not observe a 

change in its nucleocytosolic localization upon leaf infiltration with Pto DC3000 bacteria, which 

inject a range of type-3 effectors (fig. 4.12). From existing Y2H studies, TN3 is predicted to 

interact with the type-3 effector HopY1 (Nandety et al., 2013), which is present in Pto DC3000. It 

would be interesting to co-express fluorescent TN3 fusions together with HopY1 in the absence of 

virulent Pto DC3000, or together with an unbiased panel of type-3 effectors, and follow TN3 

localization over time. Seeing as tn3 mutants showed enhanced susceptibility upon infection with 

the nonadapted fungal pathogen Erisyphe pisi (fig. 4.15), we are further investigating TN3 

localization upon infection with E. pisi. 

Upon broader phylogenetic analysis of TN genes compared to plant protein databases, it was 

found that TN3 aligns closely to the tobacco NLR N (Nandety et al., 2013). N requires the helper-

NLR N-Requirement gene 1 (NRG1) to function in antiviral immunity (Peart et al., 2005). NRG1 

encodes a CC-NLR, of which the CC domain is homologous to RPW8 proteins (Collier et al., 

2011). Since I found both TN3 and the RPW8 homolog HR4 in the same ARA7 purification upon 

flg22 treatment, this could implicate TN3 and HR4 functioning together. 
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CHAPTER 5: 

IMMUNE SIGNALING-INDUCED CHANGES IN THE LOCALIZATION OF THE 

SECRETORY RAB GTPASE ARA5/RABD2A AND ITS CO-PURIFYING PROTEOME 

IN COMPARISON TO THE ENDOCYTIC ARA7/RABF2B 

 

RESULTS 

5.1 – THE LOCALIZATION PATTERN OF ARA5/RABD2A CHANGES UPON IMMUNE STIMULUS 

5.1.1 - ARA5 focally accumulates at the cell periphery upon pathogen stimulus 

The default secretory pathway is involved in the targeting of defense components to pathogen 

contact sites at the cell periphery upon pathogen or MAMP-stimulus (Kwon et al., 2008; Assaad 

et al., 2004; Kalde et al., 2007), and regulators of this pathway such as the SNARE 

PEN1/SYP121 accumulate under pathogen attack sites and around pathogen invasion structures 

(Kwon et al., 2008; Nielsen and Thordal-Christensen, 2013). ARA5/RabF2b is a Rab GTPase that 

localizes to the Golgi and the TGN/EE (Pinheiro et al., 2009), and functions in default secretion. 

To examine whether regulators of the default secretory pathway were targeted to pathogen 

contact sites, I syringe-infiltrated leaves of 4-weeks old pUB::YFP-ARA5 plants with a suspension 

of fluorescently labelled Pto DC3000-mCherry (described in chapter 4 of this thesis), and 

observed the localization pattern of ARA5 using confocal microscopy. 

No evident localization pattern changes in YFP-ARA5 occurred before 6 h of measurement, but 

between 6-7 h after bacterial inoculation, strong clustering of ARA5 vesicles was observed at the 

cell periphery, at locations where apoplastic Pto DC3000-mCherry were also observed (fig. 

5.1A). These focal accumulations occurred in mesophyll cells (fig. 5.1A,B) and epidermal cells. 

6-7 h water control treatments did not provoke ARA5 focal accumulations to a similar extent when 

compared to infection with wildtype Pto DC3000 (fig. 5.1B). Bacterial infection triggered focal 

accumulations that could also be observed at lower magnifications in the adaxial mesophyll of 

infiltrated leaves (fig. 5.1B). 
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Figure 5.1. YFP-ARA5-positive compartments focally accumulate at bacterial infection sites. (A) Confocal micgrographs (z-

projections) of YFP-ARA5 and Pto DC3000-mCherry in 4 wk-old Arabidopsis mesophyll tissue, 6 hours after syringe infiltration of 

bacterial suspensions. Bacterial OD600 = 0.2 upon infiltration. Top panels show maximum z-projection and bottom panels show 

single focal plane. Bacterial OD600 = 0.2 upon application. 63 × objective, scale bars = 10 µm. (B) Confocal micrographs of upper 

leaf mesophyll as in (A) but in the presence of Pto DC3000 and now using the 20 × objective, scale bars = 100 µm. 
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To quantify differences in the number of focal accumulations between water and bacterial 

treatment, I acquired images using the 20x magnification as used in figure 3.1B, and applied the 

custom written FIJI macro that counts the number of fluorescent maxima per field of view, 

described in chapter 4. As a result, I could find no statistically significant differences between 

water and Pto DC3000 treatments, when applying a student‘s t-test (fig. 5.2A,B). However, 

bacteria on average showed a tendency to induce more ARA5 focal accumulations per field of 

view in both replicate 1 (15.67 ± 3.51 vs. 9.4 ± 1.98) and replicate 2 (4.67 ± 0.88 vs. 1.00 ± 1.00). 

Considering the qualitative observation that ARA5 focal accumulations were targeted to bacterial 

contact sites (fig. 5.1) and the trend for bacteria to induce more focal accumulations than water 

treatments (fig. 5.2), it is possible that secretory vesicles cluster in an enhanced manner at 

bacterial contact sites. The analysis could be improved by increasing the number of observations 

and experimental replications, and modifying the FIJI script to use local thresholding to improve 

accuracy of spot detection. 

 

 

Figure 5.2. Quantitative analysis reveals no significant differences in focal accumulation of YFP-ARA5-positive 

compartments. (A) Overview listing mean ± SE and n = number of images for individual replicates, summarizing the number of 

YFP-ARA5 focal accumulations per field of view, for two replicates. Focal accumulations were quantified in an automated way using 

confocal micrographs acquired as in Figure 3.1B, at 6 hours after syringe infiltration of indicated treatments. (B) Graphical 

representations of data presented in (A). Dots show individual measurements and bars show mean ± SE (error bars) for indicated 

treatments corresponding to replicates shown in (B). 
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5.1.2 - ARA5 does not change in vesicle number upon immune stimulus (0-3 h) 

Components of the secretory pathway are upregulated upon treatment with salicylic acid (SA), 

and are responsible for secretion of defense molecules such as PR1 (Wang et al., 2005; Kalde et 

al., 2007). Treatment with bacterial flg22 induces the accumulation of SA, and SA-mediated 

downstream responses (Tsuda et al., 2008). The upregulation of secretory pathway components 

could correlate with an increase in the number of secretory vesicles in the cell. To address this, I 

treated cotyledons of 2-week old pUB::YFP-ARA5 seedlings with flg22 or water, and used high-

throughput spinning disc confocal microscopy to obtain a large number of images over 3 h 

treatment, and quantified the number of vesicles per field of view using a custom-written script for 

the image analysis studio Acapella (PerkinElmer). I included water and flg22-treated cotyledons 

of genotype pFLS2::FLS2-GFP as a positive control. At 2 and 3 h after flg22 treatment, FLS2-

GFP vesicle numbers were significantly upregulated compared to water treatment, consistent with 

previous observations (Beck et al., 2012b). By contrast, YFP-ARA5 vesicle numbers did not 

significantly change (fig. 5.3). While default secretory pathway components such as SYP121, 

SYP122 and SNAP33 are already activated within 10 minutes of flg22-treatment (Benschop et al., 

2007; Pajonk et al., 2008). Constitutive expression of ARA5 results in a membrane-associated 

GTP-bound pool, and a cytosolic GDP-bound pool; in my analysis the upregulation of the 

secretory pathway is not reflected by an increased pool of membrane-associated ARA5-marked 

default secretory vesicles within 3 h of flg22-treatment.  

 

 

Figure 5.3. Quantitative analysis reveals no differences in the abundance patterns of YFP-ARA5-positive compartments. 

Graphical representation of number of detected spots (mean ± SE) per field-of-view in 2-wk old Arabidopsis cotyledon upper 

epidermal tissue expressing pUB::YFP-ARA5 or pFLS2::FLS2-GFP and imaged using the Opera high-throughput confocal 

microscope at 1, 2 or 3 hours after water or 1.5 µM flagellin treatment. Asterisks indicate significant result compared to water 
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treatments at p<0.05 (Student‘s t-test). n = number of images analyzed across 24 cotyledons (YFP-ARA5) or 6 cotyledons (FLS2-

GFP). Graphs show data of one experiment, representative of three independent replications. 
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5.2 - THE ARA5 CO-PURIFYING PROTEOME CHANGES UPON IMMUNE STIMULUS 

5.2.1 - Purifying ARA5 from seedlings under water and flg22 conditions 

Because I showed that ARA5 vesicles can cluster under bacterial contact sites, I was interested 

in revealing changes in the cargoes of these vesicles, which could be delivered to the location of 

pathogen attack. To investigate this, I applied the same technique as I used for analysis of ARA7 

cargoes described in chapter 4. Briefly, I cultivated 8-day old Arabidopsis seedlings of genotype 

pUB::YFP-ARA5 in liquid MS, alongside pUB::YFP as a negative control. I then treated the 

seedlings of both genotypes by applying the bacterial MAMP flg22 to the growth medium to a final 

concentration of 1.5 µM, and subsequently applied a vacuum to infiltrate the seedlings. I used 

water treatment as a negative control. Since SA induced the upregulation of defence-related 

secretory pathway genes, and SA is produced within hours of flg22 treatment (Tsuda et al., 

2008), after 3 h of flg22 treament, I used immunoprecipitation as described before (Heard et al., 

2015); Chapter 4 in this thesis), and subjected the samples to SDS-PAGE and mass 

spectrometry in collaboration with Jan Sklenar, Frank Menke and Paul Derbyshire (Proteomics 

Support Team, The Sainsbury Laboratory, Norwich UK). 

After filtering the resulting proteomics data using Scaffold, I revealed 228 proteins in the YFP-

ARA5 co-purifying proteome and 1101 proteins in the YFP co-purifying proteome (fig. 5.4A). In 

the same way as performed in Chapter 4 of this thesis, to select proteins that interacted 

specifically with ARA5, and not with affinity beads or the YFP fluorescent tags, for each protein I 

compared the spectral counts (number of peptides detected) across all three replications of YFP-

ARA5 purifications and YFP purifications. I required the combined number of peptides in YFP-

ARA5 purifications to be greater than 4x those in YFP purifications, and obtained a set of 77 

proteins that I named the ARA5 co-purifying proteome (fig. 5.4A, table 5.1).  

Table 5.1: ARA5 co-purifying proteome. Listed here is the ARA5 co-purifying proteome under water treated conditions. 8-day old 

seedlings of genotypes pUB::YFP-ARA5 and pUB::YFP were treated with water or 1.5 µM flg22 for three hours, and subjected to 

immunoprecipitation using YFP affinity beads. Mass spectrometry was performed in collaboration with Jan Sklenar, Paul Derbyshire 

and Frank Menke (The Sainsbury Laboratory, Norwich, UK). To determine co-purifying proteomes, Scaffold software was used to 

retain proteins with a ProteinProphet score of 99% based on a minimum of 2 spectra with a PeptideProphet score of 95%. MS Excel 

was then used to retain proteins with at least 5 spectra across all three replicates in the YFP-ARA5 water-treated samples, with an 

occurence in more than 1 of these replicates, and an abundance increase of at least 4x compared to matching YFP controls. 

(Columns 1-8) Observed in # of replicates, and Spectra in combined replicates: Numbers and associated green cell-shading 

intensities indicate in how many experimental replicates the protein was detected, or how many spectra for that protein were 

identified in all three replicates combined, separated for water or flagellin treatment. (Columns 9-10) Enrichment factors: For each 

protein, the number of total spectra across three replicates of the green-labeled (rightmost) pulldown was divided by the number of 

total spectra in red-labeled (left-most) pulldown. Log10 values that correspond to these ratios are displayed in this table. Green or 

red bars are graphical representations of magnitude and direction of positive (green) or negative (red) values, centered at 0. 

(Columns 11-12) Locus ID and associated names. Source: TAIR10, accessed through www.genevestigator.org. The table is sorted 

for total spectral numbers in ―YFP-ARA5 water‖, in descending order. 
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Figure 5.4. Identification of proteins associated with YFP-ARA5 in a flg22-responsive manner. (A) Venn-diagram shows 

proteins co-purifying with YFP-ARA5 from Arabidopsis seedlings, compared to proteins co-purifying with a YFP control, as revealed 

by immunoprecipitation and mass spectrometry. The YFP-ARA5 co-purifying proteome was defined based on quality control criteria 

(present in >1 replicates, peptides = >5) and fold-change ratio of >4 in YFP-ARA5 compared to YFP control. Details available in 

Table  5.1. (B) Venn-diagram showing YFP-ARA5 co-purifying proteins as revealed by immunoprecipitation and mass spectrometry, 

overlaid with known trafficking regulators (source: Heard et al. 2015). Call-out indicates prominent trafficking regulators found in 

YFP-ARA5. (C) Venn-diagram showing YFP-ARA5 co-purifying proteins as above, comparing before and after 3 hours of flagellin 

treatment. Call-outs indicate proteins present in both groups (top) or in the flagellin-treated group (bottom). Details available in Table 

5.3. (D) Venn-diagram showing YFP-ARA5 co-purifying proteins as above, overlaid with YFP-ARA7 co-purifying proteins, both in the 

absence of flg22 treatment. Call-out indicates proteins present in both groups. Details available in table 5.4. (E) Venn-diagram 

showing YFP-ARA5 co-purifying proteins after 3 hours flagellin treatment, overlaid with YFP-ARA7 co-purifying proteins after 3 

hours flagellin treatment. Call-out indicates proteins present in both groups. Details available in table 5.5. 
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5.2.2 - The ARA5 proteome contains known secretory pathway-associated proteins 

In order to further verify the quality of the so-defined ARA5 co-purifying proteome, I compared the 

proteome to a comprehensive manually curated list of known Arabidopsis trafficking regulators 

(Heard 2015) and listed the results in table 5.2. 19 out of 77 proteins classified as trafficking 

regulators in this way (fig. 5.4B, table 5.2). Upon inspection, I observed that a majority of 

trafficking regulators found interacting with ARA5 were also identified in the water-treated ARA7 

co-purifying proteome as defined in chapter 4. However, several regulators were unique to ARA5 

and, based on existing knowledge, corresponded to the known Golgi and TGN/EE localization of 

ARA5. 

Signature proteins identified in purifications of ARA5 specifically 

RABA1d is a member of the Arabidopsis RAB11/RABA group, which consist of predominantly 

TGN/EE-to-PM secretory functioning RAB GTPases (Asaoka et al., 2013). RabA1 members were 

found to localize at TGN/EE, partially overlapping with TGN/EE-markers SYP43 and VHA-a1 

(Asaoka et al., 2013). RABA members have different roles contributing to the cell wall 

composition, with single mutants affecting pectin, cellulose and hemicellulose (Lunn et al., 2013). 

In immunity, RABA1b, which is a close homolog of RABA1d, governs the secretion of newly 

synthesized cell-surface receptor FLS2 (Choi et al., 2013). More distant homologs of RABA1, 

such as RABA6a, are thought to have a function in endocytic traffic at the TGN/EE (Choi et al., 

2013). Finding RABA1d in the ARA5 proteome corresponds to the partial TGN/EE localization of 

ARA5. 

Tubulin 7 (TUB7), is protein found at high abundance interacting specifically with ARA5, and the 

only cytoskeletal component found in my ARA5 and ARA7 purifications. Golgi bodies attach to 

microtubules, and their motility along the cytoskeleton regulates the dynamics of the delivery and 

removal of cell-surface cargoes such as cellulose synthase complexes (CESA, (Crowell et al., 

2009). 

Coatomer (subunit AT4G31490) localizes to the Golgi, where multimeric complexes regulate 

retrograde traffic (Brandizzi and Barlowe, 2013). The ARA5 partial Golgi-localization leads me to 

expect Golgi-components in the purification. While this subunit was specific to ARA5, other 

coatomer subunits were identified in ARA7 purifications (chapter 4, tables 4.2, 4.3; AT1G62020, 

AT3G15980).  

 

Table 5.2: Trafficking regulators in the ARA5 co-purifying proteome. Listed here is the ARA5 co-purifying proteome under 

water treated conditions, copied from Table 5.1, and filtered to retain only endomembrane trafficking regulators as defined in Heard 

et al. 2015. 
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The protein with the highest abundance in non-elicited ARA5 purifications is PEN3. Briefly, PEN3 

is a PM-localized transporter, thought to function in the export of antimicrobial compounds 

produced by PEN2 which is localized on mitochondria (Stein et al., 2006; Fuchs et al., 2015b). In 

chapter 4, I discussed the tendency for PEN3 to accumulate higher in ARA7 purifications under 

flg22 treatment when compared to water treatment (chapter 4), but in ARA5 purifications, PEN3 

accumulates to similar levels as in flg22-elicited conditions (519 vs. 594 spectra, table 5.1). PEN3 

shuttles between the PM-TGN/EE, but is also consitutively secreted. Both the secretory pathway 

as well as the endocytic pathway were shown to contribute to PEN3-accumulations in chemically-

induced Golgi-TGN/EE aggregates (Mao et al., 2016). In un-elicited states, PEN3 furthermore 

localized to the PM, but also to mobile punctae adjacent to SYP32-marked Golgi (Underwood and 

Somerville, 2013; Mao et al., 2016). In flg22-elicited conditions, PEN3 accumulated at endosomal 

compartments (Underwood et al., 2017), but this is not reflected in a marked increase of spectra 

co-purifying with ARA5. 

Novel proteins identified in ARA5 purifications 

Unexpectedly abundant in ARA5 purifications, BiP1/Heat Shock Protein70 (HSP70) is a major 

ER-localized and functioning protein (Srivastava et al., 2013). This could reflect a contamination, 

or an interaction partner of ARA5 during its constitutive biosynthesis. However, since dominant 

negative studies showed that ARA5 functioned in the early secretory trafficking step between ER 

and Golgi, it could also reflect a previously unknown functional interactor in the ARA5 complex at 

early secretory steps. 

5.2.3 - Proteins that are abundant in ARA5 purifications which also occur in ARA7 

The following proteins identified in ARA5 purifications (table 5.1) were found for ARA7 as well 

(tables 4.1, 5.4). Here, I describe these proteins in the context of the secretory pathway 

localization and functionality of ARA5. In this section, I selected abundant proteins as found in 

ARA5 purifications, and in further sections where I describe the common proteome of ARA5 and 

ARA7, I prioritize proteins that are of most similar abundance in both. 

Trafficking regulators 

PEN1/SYP121 has been shown to be PM-localized, and recycle between the PM and TGN/EE 

compartment (Nielsen and Thordal-Christensen, 2012; Collins et al., 2003; Uemura et al., 2004). 

PEN1 engages the default secretory complex consisting of other SNAREs VAMP721, VAMP722 

and SNAP33 in order to confer immunity against powdery mildew (Kwon et al., 2008). However, 

besides PEN1, members of this complex were not identified in my ARA5 purifications. PEN1 

functions in the formation of the callose-rich extracellular papilla that is formed at sites of 

penetration attempts by filamentous pathogens, and contributes to the timely formation of these 
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structures (Collins et al., 2003; Assaad et al., 2004). Separate from its functioning in regulating 

membrane traffic, PEN1/SYP121 interacts with the potassium channel KC1 and positively affects 

its inward potassium permeability, thus regulating guard cell dynamics in stomatal opening 

(Grefen et al., 2010; Honsbein et al., 2009; Eisenach et al., 2012). 

Two tetratricopeptide-repeat (TPR)-containing proteins (AT5G16280, AT4G39820) were identified 

with relatively high abundance in ARA5 purifications. While these proteins have yet to be 

characterized, a different TPR-containing protein HYPERSENSITIVE TO LATRUNCILIN B1 

(HLB1) has recently been shown to localize to the TGN/EE, and regulates both secretory and 

endocytic traffic passing through this compartment (Sparks et al., 2016). Interestingly, HLB1 was 

found to interact and colocalize with and actin filaments, raising the TPR proteins I identified as 

interacting with ARA5 as possible candidates linking ARA5 compartments to the cytoskeleton. 

Secretory Carrier Membrane Protein 3 (SC3) is part of a bigger family of Secretory Carrier 

Membrane Proteins (SCAMPs). In eukaryotes, SCAMPs are transmembrane proteins regulating 

post-Golgi traffic, and are associated with endocytic uptake and recycling to the PM, and localize 

to PM and endomembrane compartments (Fernández-Chacón and Südhof, 2000). While SC3 in 

Arabidopsis is uncharacterized, in rice, OsSCAMP1 localized to the PM and early endocytic 

compartments (Lam et al., 2007). Functionally, based on RNAi studies of SCAMPs in poplar 

(Populus tremula), they are implicated in the control of secondary cell-wall precursors and 

proteins involved in their trafficking (Obudulu et al., 2018). 

VAMP714 is a member of the VAMP71 subgroup of Arabidopsis SNAREs, of which members are 

predominantly tonoplast-localized (Uemura et al., 2004). VAMP714 localizes to the tonoplast in 

localization and proteomic analysis studies, but it was also found on Golgi membranes (Uemura 

et al., 2004; Szponarski et al., 2004). The precise function of VAMP714 has yet to be determined, 

but its localization suggests a putative role in Golgi-vacuole trafficking (Leshem et al., 2006). 

Finally, Vacuolar Sorting Receptor 4/Modified Transport to the Vacuole 4 (VSR4/MTV4) is 

involved in vacuolar delivery of vacuolar storage proteins (Zouhar et al., 2009), predominantly 

localized to the PM but also to SYP61-positive TGN/EE punctae (Nishimura et al., 2016). It must 

be noted that the SYP61 proteome contained ARA5 (Drakakaki et al., 2012), and my ARA5 

proteome contained SYP61 (tables 5.1, 5.2). 

Non-trafficking regulators 

Glucan Synthase-Like (GSL) 8 and 10 are callose synthases that function in normal plant growth, 

with knockdown or knockout of the genes causing severe plant defects already at seedling stages 

(Töller et al., 2008; Chen et al., 2009). Additionally, GSL10 has been shown to function in male 



145 

 

gametogenesis, regulating asymmetric cell division at the microspore stage (Huang et al., 2009). 

Importantly, PMR4/GSL5 was found in ARA5 and ARA7 purifications. 

PMR4 is a callose synthase involved in callose production in response to wounding and pathogen 

detection (Dong et al., 2005; Jacobs et al., 2003; Ellinger et al., 2013). PMR4 contributes to the 

formation of the callose-rich papilla upon pathogen attack, and accumulates in encasements 

surrounding Golovinomyces orontii haustoria (Meyer et al., 2009). PMR4 is also required for 

flg22-induced callose deposition (Clay et al., 2009). While bacterial infection, or treatment with the 

bacterial MAMP flagellin, trigger a significant extracellular accumulation of callose, the number of 

detected PMR4-associated spectra did not markedly increase or decrease in ARA5 or ARA7 

purifications at 3 h after flagellin treatment. 

Cation-Chloride Cotransporter 1 (CCC1) is member of a group of co-transporters that are thought 

to mediate the transmembrane exchange of potassium and sodium with chloride (Henderson et 

al., 2015). CCCs have been consistently found in earlier proteomic studies of the TGN/EE 

(Drakakaki et al., 2012; Groen et al., 2014), and localized to the Golgi and TGN/EE (Henderson 

et al., 2015), corresponding to the known localization of ARA5. 

5.2.4 - The ARA5 co-purifying proteome changes upon 3-h flg22 treatment 

Upon flg22 treatment for 3 h, the ARA5 co-purifying proteome changes (fig. 5.4C). 20 proteins 

absent from water treated samples were found to interact with ARA5 (table 5.3). Of two proteins 

(CRK10 and a lectin protein) identified under water treated conditions, associated spectra 

increased more than 2-fold in flg22 treated conditions. 

Phosphorus metabolism and multi-organism-processes are overrepresented in the ARA5 co-

purifying proteome upon flg22-stimulus 

To obtain an impression of the global pattern of functional changes in the ARA5 co-purifying 

proteome, I performed an overrepresentation analysis of GO-terms listing biological functions 

(table S4) using the PANTHER Classification System (pantherdb.org). Most notably, processes 

including terms such as ―phosphorylation‖ and ―phosphorus metabolic process‖ are 

overrepresented. Looking at the details of the ARA5 co-purifying proteome under flg22 conditions 

(table 5.3), the list is enriched in protein kinases, receptor kinases and LRR-RLKs. Since these 

proteins can phosphorylate interaction partners, an overrepresentation of GO-processes including 

phosphorus can be explained. Finally, terms such as ―defense to other organism‖ and ―multi-

organism process‖ appear, which makes sense in the context of studying proteomic changes 

upon application of a bacterial MAMP. 
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Proteins co-purifying with ARA5 upon flg22 stimulus that are not found in ARA7 

Notable changes in the ARA5 co-purifying proteome upon 3 h flagellin treatment include INDOLE-

GLUCOSINOLATE O-METHYLTRANSFERASE 2 (IGMT2) and MILDEW RESISTANCE LOCUS 

12 (MLO12). IGMT2 is an enzyme that plays a catalytic role in the final steps of indole-

glucosinolate derived antimicrobial production (Pfalz et al., 2011). It has been shown to convert 

indole-3-methylglucosinolate (I3M) into 4-methoxyindole-3-methylglucosinolate (4MOI3M),  which 

in turn is converted by the mitochondrial-localized atypical myrosinase PEN2 (Fuchs et al., 

2015b) into derivaties with broad antimicrobial activity (Stahl et al., 2016; Lipka et al., 2005; Oa et 

al., 2010). Interestingly, out of both ARA5 and ARA7 purifications, IGMT2 was only identified in 

flg22-treated ARA5 samples. In comparison, I identified the less well-characterized homolog 

IGMT4 specifically in the ARA7 proteome as strongly positively responsive to flg22 treatment 

(table 4.3). Previously, indole glucosinolate-related antimicrobial metabolism was shown to be 

required for flg22-induced callose deposition (Clay et al., 2009), which in turn is dependent on the 

glucan synthase PMR4 that was detected in ARA5 before flg22 elicitation (table 5.1). 

 

 

 

 

 

 

Table 5.3: ARA5 co-purifying proteins that are more abundant upon flagellin treatment. Listed here is the ARA5 co-purifying 

proteome under flagellin treated conditions. 8-day old seedlings of genotypes pUB::YFP-ARA5 and pUB::YFP were treated with 

water or 1.5 µM flg22 for three hours, and subjected to immunoprecipitation using YFP affinity beads. Mass spectrometry was 

performed in collaboration with Jan Sklenar, Paul Derbyshire and Frank Menke (The Sainsbury Laboratory, Norwich, UK). To 

determine co-purifying proteomes, Scaffold software was used to retain proteins with a ProteinProphet score of 99% based on a 

minimum of 2 spectra with a PeptideProphet score of 95%. MS Excel was then used to retain proteins with at least 5 spectra across 

all three replicates in the YFP-ARA5 flg22-treated samples, with an occurence in more than 1 of these replicates, an abundance 

increase of at least 4x compared to matching YFP controls, and an abundance increase of at least 2x compared to matching water 

treated controls. (Columns 1-8) Observed in # of replicates, and Spectra in combined replicates: Numbers and associated green 

cell-shading intensities indicate in how many experimental replicates the protein was detected, or how many spectra for that protein 

were identified in all three replicates combined, separated for water or flagellin treatment. (Columns 9-10) Enrichment factors: For 

each protein, the number of total spectra across three replicates of the green-labeled (rightmost) pulldown was divided by the 

number of total spectra in red-labeled (left-most) pulldown. Log10 values that correspond to these ratios are displayed in this table. 

Green or red bars are graphical representations of magnitude and direction of positive (green) or negative (red) values, centered at 

0. (Columns 11-12) Locus ID and associated names. Source: TAIR10, accessed through www.genevestigator.org. The table is 

sorted for total spectral numbers in ―YFP-ARA5 flg22‖, in descending order. 
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Mildew Resistance Locus O 12 (MLO12) is a member of the MLO family of susceptibility factors, 

of which Arabidopsis MLO2 has been best characterized (Consonni et al., 2006; Panstruga, 

2005; Kusch and Panstruga, 2017). They contain 7 transmembrane domains, and Arabidopsis 

MLO2 has been shown to be PM-localized (Bhat et al., 2005). In barley (Hordeum vulgare), 

where MLO was originally identified as a susceptibility locus to powdery mildew infection 

(Blumeria graminis f.sp. hordei, Bgh, (Büschges et al., 1997), MLO accumulates at the PM and 

enriched under pathogen penetration sites (Bhat et al., 2005). In my proteomic analysis, I identify 

MLO12 as positively responsive to flg22, which combined with data on ARA5 vesicles focally 

accumulating under bacterial attack sites (fig. 5.1) could indicate MLO12 also focally 

accumulates upon pathogen challenge.  

Loss of MLO genes increases resistance to powdery mildews, but little is known about functions 

in antibacterial resistance. Loss of function mutations in pepper (Capsicum annuum) MLO2, of 

which the product localizes to the PM, enhanced resistance to bacterial pathogens, while 

introduction of CaMLO2 into Arabidopsis enhanced its susceptibility to Pto DC3000 (Kim and 

Hwang, 2012). Mlo2-based resistance requires trafficking processes involving PEN1/SYP121, 

and the production of glucosinolate-derived antimicrobials in the PEN2/PEN3 pathway, of which 

components were also found in my proteomic studies (Assaad et al., 2004; Consonni et al., 2006; 

Dittgen et al., 2006; Bednarek et al., 2009). Little is known about the localization and function of 

MLO12, but enhanced mildew resistance in mlo2/6/12 triple mutants did not have the trafficking 

and antimicrobial requirements as described for mlo2 (Kuhn et al., 2017). 

Aminophospholipid ATPase 1 (ALA1) is a lipid flippase. Flippases are generally involved in 

translocating lipids between leaflets of the lipid bilayer, thus achieving lipid asymmetry. For 

previously characterized lipid flippases, this process can contribute to the budding of vesicles by 

overcoming energetically unfavorable intermediate stages in membrane bending (Pomorski and 

Menon, 2006). ALA1 was found to be PM-localized, and together with ALA2 has a function in 

RNAi-based antiviral immunity, where it works in the same pathway as RNA-dependent DNA-

polymerases (López-Marqués et al., 2012; Zhu et al., 2017). The precise functions of ALA1 are 

unclear, but its known PM-localization suggests it does not function at the TGN/EE. It could be 

that upon immune stimulus, ALA1 traffics to the cell surface to support membrane trafficking 

events there. 

From GO-analysis showing a strong overrepresentation of terms involving phosphorus 

metabolism, and from inspection of the proteomic results, it becomes evident that proteins 

upregulated in ARA5 purifications upon flg22 treatment contain a number of receptor kinases 

(table 5.3, table S4). In fact, four LRR-RLKs were found in ARA5 upon flg22 treatment, which 

were not found in ARA7 purifications (AT5G49760, AT1G06840, AT3G14840 and LRR XI-23). 

Engagement of default secretion to support the MAMP-induced delivery of defence compounds to 
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the cell surface has been described before, with roles for PEN1/SYP121 in callose deposition and 

SYP132 in antimicrobial PR-1 secretion (Assaad et al., 2004; Kalde et al., 2007).  

5.3 - THE ARA7 AND ARA5 CO-PURYFING PROTEOMES SHOW DIFFERENTIAL OVERLAP IN 

RESTING AND IMMUNE ACTIVATED CONDITIONS 

5.3.1 - The shared ARA7 and ARA5 co-purifying proteome contains TGN/EE, cell wall, and membrane 

trafficking-associated proteins 

In order to gain insight into the shared proteins interacting with both the secretory ARA5 and the 

endocytic ARA7, I combined both water-treated co-puryfing proteomes, and filtered the list to only 

retain proteins present in both purifications (table 5.4, figure 3.4D). Upon inspection, the list 

reveals the presence of typical TGN/EE markers such as VHA-a1, SYP43, SYP61 and VTI12, 

which is in accordance with the partial localization of both ARA7 and ARA5 to the TGN/EE 

(Gendre et al., 2014). Furthermore, when analyzing the shared proteome for overrepresentation 

of  GO-terms in the classification of ―biological function‖ (table S5), two themes appear, which 

broadly consist of (A) cell wall metabolism: callose and cellulose metabolism, primary cell wall 

formation, polysaccharide localization and biosynthesis, cell shape and cytokinesis; and (B) 

membrane trafficking: secretion, vacuolar targeting, vesicle tethering, docking and fusion, vesicle 

organisation and exocytosis. The appearance of these themes is in line with the expectation 

when considering the purifications were performed from rapidly developing 8-day old seedlings, 

with immunoprecipitation baits that both partially localize to the TGN/EE sorting hub. When 

studying the list of specific proteins present in both proteomes, prominent interactors with 

implications in both trafficking and immunity occur. 

 

 

Table 5.4: ARA7 and ARA5 common co-purifying proteome. Listed here is the common ARA7- and ARA5 co-purifying proteome 

under water treated conditions. Proteomes were defined as described in legends of Tables 1 and 3 (water-treated YFP-ARA7 and 

YFP-ARA5 purifications), and associated values were listed in this table. (Columns 1-8) Observed in # of replicates, and Spectra in 

combined replicates: Numbers and associated green cell-shading intensities indicate in how many experimental replicates the 

protein was detected, or how many spectra for that protein were identified in all three replicates combined, separated for water or 

flagellin treatment. (Column 9) Enrichment factors: For each protein, the number of total spectra across three replicates of the 

green-labeled (rightmost) pulldown was divided by the number of total spectra in red-labeled (left-most) pulldown. Log10 values that 

correspond to these ratios are displayed in this table. Green or red bars are graphical representations of magnitude and direction of 

positive (green) or negative (red) values, centered at 0. (Columns 10-11) Locus ID and associated names. Source: TAIR10, 

accessed through www.genevestigator.org. The table is sorted for absolute differences in protein spectral counts between YFP-

ARA5 and YFP-ARA7 in ascending order. 
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5.3.2 - Trafficking regulators identified in the shared ARA7 and ARA5 co-purifying proteome 

The protein which occurred in both purifications with the most equal number of detected peptides 

was Trafficking Protein Particle Complex subunit 31 (TRS31). TRS31 belongs to the Trafficking 

Protein Particle complex I (TRAPP-I), which is a multimeric complex of tethering factors that in 

yeast mediates vesicle fusion events in the ER-Golgi step of the secretory pathway, and is 

thought to fulfil the same role in Arabidopsis (Vukašinović and Žárský, 2016; Cai et al., 2007). 

TRS120 and TRS13/CLUB, both TRAPP-II components, were also found in both proteomes. 

TRAPP-II functions in concert with the Exocyst tethering complex in secretion (Vukašinović and 

Žárský, 2016). TRAPP-II was shown to be functionally linked to RABA-class secretory Rab 

GTPases, where it is thought to act as the Guanine Exchange Factor, or activator, of these Rabs 

(Qi and Zheng, 2011). Notably, TRAPP-II did not show interaction or functional relationships with 

RABD-class RAB GTPases, to which ARA5/RABD2a belongs, with regard to the role for TRAPP-

II in polar secretion of cell-surface localized PIN2 (Qi and Zheng, 2011; Pinheiro et al., 2009). 

Previous proteomic studies that looked at TGN/EE marked by SYP61 and VHA-a1, which occur 

in my ARA7-ARA5 shared proteome, have identified both TRAPPI and TRAPPII subunits 

(Drakakaki et al., 2012; Groen et al., 2014). In yeast, TRAPPI works with coatomer COPII as a 

tethering factor in ER-to-Golgi delivery (Cai et al., 2007). While separate coatomer (COPI, COPII) 

subunits were identified in both ARA7 and ARA5, none of them were identified in my ARA7/ARA5 

shared proteome. 

Brefeldin-A-Inhibited Guanine nucleotide-exchange protein 3 (BIG3) is an Adenosine diphosphate 

Ribosylation Factor-Guanine Exchange Factor (ARF-GEF), or an activator of ARF proteins which 

recruit coat proteins to budding vesicles (Donaldson and Jackson, 2000). The family of BIG 

proteins in Arabidopsis consist of five members, which localize to the TGN/EE (Tanaka et al., 

2009; Richter et al., 2014). Unlike the name suggests, BIG3 is Brefeldin-A (BFA)-insensitive and 

does not accumulate in the Golgi-TGN/EE clusters formed upon BFA treatment (Tanaka et al., 

2009). BIG1-4, including BIG3, mediate default secretion, and not PM-TGN/EE-recycling, as 

tested using the recycling marker PIN1 (Richter et al., 2014). While BIG3 does not have a 

described role in immunity, the TGN/EE-localized BIG5/HopM1-interactor 7(MIN7) is required for 

full PTI and ETI to the bacterial pathogen Pto DC3000, and is targeted by the Pto DC3000 type-3 

secreted effector HopM1 for proteolytic degradation (Nomura et al., 2011; Lozano-Durán et al., 

2014). 

Finding Aminophospholipid ATPase 3 (ALA3) in both ARA5 and ARA7 is interesting, as it is an 

established, Golgi-localized lipid flippase (Poulsen et al., 2008). ALA3 has been genetically 

shown to function in trichome development (Zhang and Oppenheimer, 2009), and in functional 

and localizatino studies shown to operate at the TGN/EE in mediating the TGN/EE-exit of the cell-
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surface defense module PEN3, which then focally accumulates at pathogen attack sites 

(Underwood et al., 2017). While ALA3 has not been conclusively shown to localize to the TGN/EE 

before, identifying ALA3 in both Golgi-TGN/EE-localizing ARA5 and TGN/EE-LE/MVB-localizing 

ARA7 in my purifications supports a population of ALA3 existing at the TGN/EE. PEN3 normally 

recycles between the TGN/EE and PM under unelicited conditions, potentially implicating ARA5-

marked TGN/EE in the endocytic recycling of PM cargoes. While ALA3 has an important role in 

facilitating the flg22-induced dynamic trafficking of PEN3 (Underwood et al., 2017), its peptide 

numbers associated with ARA7 and ARA5 pulldowns in my studies did not dramatically change 

upon flg22-treatment (table 5.4). 

5.3.3 - Cell wall metabolism and biotic stress related proteins in the shared ARA7 and ARA5 co-purifyng 

proteome 

COBRA-like protein 7 (CBL7) belongs to the larger group of cell-surface localized COBRA 

proteins, which are involved in cellulose biosynthesis, and which bind to cellulose (Sorek et al., 

2014). CBL7 contains a cellulose-binding domain (Roudier, 2002), and COBRA proteins are 

thought to function as ―polysaccharide chaperones‖, facilitating the synthesis of cellulose (Sorek 

et al., 2014). The founding member of the family, COBRA itself, is GPI-anchored and necessary 

for cell expansion (Schindelman et al., 2001). In tomato (Solanum lycopersicum), knockdown of 

SlCOBRA-like leads to cell wall integrity problems and degradation in the tomato fruit, and 

overexpression resulted in thicker cell walls (Cao et al., 2012). 

CELLULOSE SYNTHASE 1 (CESA1), CESA3 and CESA6, all present in both resting ARA7 and 

ARA5 co-purifying proteomes, comprise the full primary cell wall synthesis complex that is highly 

active at the seedling stage (Endler and Persson, 2011). Cellulose synthase complexes are 

delivered through canonical secretion to the PM, where they then deposit extracellular cellulose 

fibrils, guided by the orientation of cortical microtubules, and are removed from the PM through 

clathrin-mediated endocytosis (Paredez et al., 2006; Bringmann et al., 2012; Bashline et al., 

2013). CESA secretion is Golgi-dependent, and regulated by the dynamics of individual Golgi 

stacks tracking microtubules (Crowell et al., 2009) – of which Tubulin 7 was found in my ARA5 

purifications (table 5.1). In fact, CESA3 colocalized in fluorescent studies with Golgi and TGN/EE 

markers (Crowell et al., 2009), corresponding to my proteomic findings. CESA1,3 and 6 were also 

shown to be cargoes of the early clathrin-mediated endocytosis multimeric adaptor TPLATE 

complex (Sánchez-Rodríguez et al., 2018), although no clathrin or TPLATE complex components 

were identified in any of my purifications. 

The protein that was second-to-most equally abundant in both ARA7 and ARA5 purifications is 

NON RACE-SPECIFIC DISEASE RESISTANCE 1(NDR1)/HAIRPIN INDUCED GENE 1(HIN1)-

LIKE PROTEIN 3 (NHL3). NHL3 is predominantly PM-localized, and overexpression conferred 
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immunity to Pto DC3000 (Varet et al., 2003). The abundance of its mRNA was shown to increase 

upon bacterial infection, but only when ETI was activated by effector detection (Varet et al., 

2003). In my proteomic studies, NHL3 is moderately positively responsive in detected peptides 

associating with both ARA7 and ARA5, but does not increase with a fold-ratio of greater than 2 to 

be considered flagellin responsive. While the role of NHL3 in immunity is not clarified, the PM-

localized homolog NDR1 shows similarity to integrins, which in mammals are involved in cell-

adhesion, and NDR1 is responsible for carrying out a subset of downstream responses of the 

NLRs RPS2 and RPS5 (Century et al., 1997). NDR1 has a role in cell membrane-cell wall 

adhesion, and interacts with RIN4, a PM-localized defense regulator, which is guarded by the 

NLRs RPS2 and RPM1 (Mackey et al., 2002; Axtell and Staskawicz, 2003). This raises the 

question of whether NHL3 could fulfil a similar cell-wall adhesive role. 

5.3.3 - The shared ARA7 and ARA5 co-purifying proteome changes upon 3-h flg22 stimulus 

In order to gain insight into cargoes that were upregulated in both the secretory and endocytic 

pathway upon immunity, I combined the ARA7 and ARA5 co-purifying proteomes under 3 h flg22-

elicitation, and filtered the list to retain only proteins of which the number of peptides were 

upregulated with a factor of 2 or greater in both purifications (table 5.5). Out of 22 responding 

proteins in ARA5, and 70 in ARA7, 9 were shared between both baits (figure 3.4E, table 5.5). In 

line with ARA7 upon flg22 treatment, also the shared flg22-treated ARA7/ARA5 proteome 

conspicuously presents cell-wall integrity and oxidative stress themes, and contains receptor 

kinases. 

 

 

Table 5.5: Proteins interacting with ARA7 and ARA5 that are more abundant upon flagellin treatment. Listed here are co-

purifying proteins that are both upregulated upon flagellin treatment in ARA7- and ARA5 immunopurifications. Proteomes were 

defined as described in legends of Tables 2 and 4 (flg22-treated YFP-ARA7 and YFP-ARA5 purifications), and associated values 

were listed in this table. (Columns 1-8) Observed in # of replicates, and Spectra in combined replicates: Numbers and associated 

green cell-shading intensities indicate in how many experimental replicates the protein was detected, or how many spectra for that 

protein were identified in all three replicates combined, separated for water or flagellin treatment. (Column 9) Enrichment factors: 

For each protein, the number of total spectra across three replicates of the green-labeled (rightmost) pulldown was divided by the 

number of total spectra in red-labeled (left-most) pulldown. Log10 values that correspond to these ratios are displayed in this table. 

Green or red bars are graphical representations of magnitude and direction of positive (green) or negative (red) values, centered at 

0. (Columns 10-11) Locus ID and associated names. Source: TAIR10, accessed through www.genevestigator.org. The table is 

sorted for absolute differences in protein spectral counts between YFP-ARA5 and YFP-ARA7 in ascending order. 
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Some proteins, especially the receptor kinases MIK2 and IOS1, identified in this flg22-responsive 

shared proteome are already discussed in the endocytic context of ARA7 in chapter 4. Finding 

cell-surface receptors upregulated in the endocytic pathway upon immune stimulus suggests they 

are internalized through endocytosis in an increased manner. Coupled to this, it is interesting to 

find IOS1 which works together with a range of other cell-surface receptors, also upregulated in 

the secretory pathway, while several RLKs upregulated in secretory ARA5 (table 5.3) were not 

found upregulated in endocytic ARA7 (table 4.3). Potentially, IOS1 traffics together with its 

interacting receptor kinases, a concept which is reminiscent of the ligand-induced co-

internalization of the receptor-like protein (RLP) Cf-4 and its interacting RLK (Postma et al., 

2016). 

OLIGALACTURONIDE OXIDASE 1 (OGOX1) is a flavin adenine dinucleotide (FAD)-binding 

berberine protein family of oxidoreductases that operates in cell wall metabolism (Daniel et al., 

2015). Specifically, OGOX proteins are thought to control the spurious activation of DAMP-

signaling activated by oligogalacturonides (OGs), which are pectin fragments that normally 

originate from plant cell wall damage (Benedetti et al., 2018). Indeed, OGOX1 has a high affinity 

for OGs, and oxidizes them through local production of H2O2 (Benedetti et al., 2018). 

Interestingly, the FAD-binding berberine proteins to which OGOX1 belongs are largely apoplastic, 

but OGOX1 contains a predicted GPI-anchoring site and can be released from membranes using 

phospholipase treatment (Elortza et al., 2006). OGOX1 contributes to the resistance to the 

necrotrophic pathogen Botrytis cinerea (Benedetti et al., 2018). The increase in spectral counts 

for OGOX1 in flg22-treated ARA7 and ARA5 purifications suggests this protein undergoes 

increased turnover at the cell surface, perhaps in preparation for the buffering of DAMP signaling 

normally triggered by pathogen-induced cell wall damage. 

AT1G52200, a Placenta-specific-gene 8 (PLAC8) family protein, is a cysteine-rich, predicted 

transmembrane domain-containing protein with a yet uncharacterized function (Song et al., 

2011). Homologous PLAC8 proteins in Arabidopsis have been better studied, with PLANT 

CADMIUM RESISTANCE 1 (PCR1) and PCR2 conferring tolerance to heavy metals such as zinc 

and cadmium, likely through multimeric complexes that produce a heavy metal transporting effect 

(Song et al., 2010, 2011). While not much is known about the role of heavy metals in plant 

immunity, they can be toxic themselves, or rate-limiting enzymatic co-factors. In the interaction 

between bacterial pathogens and their hosts, it has been shown that iron scavenging is an 

important strategy: Arabidopsis IRT-mediated iron uptake was involved in immune-signaling 

triggered by the presence of the bacterial siderophore deferroxiamine (Aznar et al., 2014). 

Bacteria require siderophores to compete with the host for iron, which is necessary for virulence, 

and bacterial overexpression of infection-upregulated Pto DC3000 iron metabolism-related genes 
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conferred enhanced virulence (Aznar et al., 2014; Nobori et al., 2018). Potentially, the cysteine-

rich PLAC8 protein fulfils a metal-competing role in the apoplast. 

Finally, the predicted protein kinase AT3G17410, upregulated in both ARA5 and ARA7 upon 

flg22, has been identified in Y2H studies as an interactor of the Pseudomonas type-3 effector 

AvrB (Weßling et al., 2014; Mukhtar et al., 2011). AvrB has been shown to trigger necrosis 

dependent on the host NLR RPM1, which localizes to the PM, and AT3G17410 has previously 

been identified in a proteomic analysis of the PM (El Kasmi et al., 2017; Marmagne et al., 2007). 

While AvrB triggers RPM1-dependent necrosis through modification of the host guardee RIN4 

(Mackey et al., 2002), protein kinases have been shown to be required for these modifications 

(Liu et al., 2011; Xu et al., 2017). AT3G17410 could be an additional player in this complex, 

increasing in turnover at the PM upon engagement of PTI signaling. 

5.4 - ARA7 AND ARA5 LOCALIZE TO DISTINCT VESICLE POPULATIONS IN RESTING AND 

IMMUNE ACTIVATED CONDITIONS 

5.4.1 - ARA7 and ARA5 do not co-localize at resting state 

ARA7 and ARA5 function in endocytic and secretory processes respectively, but both partially 

localize to the TGN/EE (Pinheiro et al., 2009; Scheuring et al., 2011), and in my proteomic 

analysis of ARA7 and ARA5 purifications, showed partial overlap in their co-purifying proteomes 

(table 5.4). While Rab GTPases generally function and localize in distinct populations of vesicles, 

they can also overlap, as evidenced by the co-localization of ARA7 and ARA6/RABF2a on 

LE/MVBs (Ueda et al., 2004). In order to address whether ARA7 and ARA5 might also partially 

localize to the same compartment, I co-expressed fluorescently tagged versions under control of 

the Arabidopsis Ubiquitin-10 promoter in a transient manner in N. benthamiana. In addition, I 

crossed published Arabidopsis lines stably expressing fluorescently tagged versions of ARA7 and 

ARA5 also driven by the Ubiquitin-10 promoter (Geldner et al., 2009; Dettmer et al., 2006), and 

analyzed leaf epidermal cells of both systems using confocal microscopy (fig. 5.5). As a result, at 

resting state, YFP-ARA5 and mCherry-ARA7 localized to distinct populations of vesicles (fig. 

5.5A,B top panels), corresponding to their known localization when expressed individually 

(Geldner et al., 2009; Dettmer et al., 2006). Since a subset of vesicles marked by both fluorescent 

proteins consists of TGN/EE, I conclude that they mark different subpopulations, or alternatively, 

different subdomains of TGN/EE. 

5.4.2 - ARA7 and ARA5 do not co-localize upon 3 h flg22-treated conditions 

Having established earlier that both ARA7 and ARA5 did not change in total vesicle numbers 

upon immune stimulus within 3 h flg22 treatment, in both purifications co-purifying proteins 

responsive to flg22 did show overlap (table 5.5). Therefore, I was interested in testing whether 
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this could be partially explained by a change in ARA7/ARA5 co-localization. In order to test this, I 

treated both N. benthamiana and Arabidopsis co-expressing fluorescently marked ARA7 and 

ARA5 with flg22, and observed leaf epidermal cells at 3 hpi to match timings used in vesicle 

quantification as well as proteomic analysis. In both systems, the co-localization pattern of ARA7 

and ARA5 did not markedly change, as both still localized to distinct vesicle populations (fig. 

5.5A,B bottom panels). While TGN/EE that is not marked by either ARA7 or ARA5 may exist, 

the above data taken together provide evidence that proteins co-purifying with both Rab GTPases 

are present at physically separate endocytic and secretory trafficking pathways at the same time. 
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Figure 5.5. YFP-ARA5 and YFP-ARA7 are present at distinct compartments in Nicotiana benthamiana and Arabidopsis. (A) 

Confocal micrographs of Nicotiana benthamiana adult leaves transiently co-expressing YFP-ARA5 and mCherry-ARA7 through 

Agrobacterium tumefaciens mediated transformation at 2 dpi and at 3 hours after syringe-infiltration of water or flg22 (10 µM). (B) 

Confocal micrographs of leaf epidermal cells of 4 wk-old F1 Arabidopsis plants co-expressing pUB::YFP-ARA5 and pUB::mCherry-

ARA7, 3 hours after syringe-infiltration of water or flg22 (10 µM). (A,B) 63 × objective and scale bars = 10 µm. 
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DISCUSSION 

5.5 - ARA5 vesicles concentrate at the cell surface 

ARA5 vesicles were observed to concentrate under bacterial contact sites after ca. 6 h of 

infiltration with Pto DC3000 (figs. 5.1-2), although upon quantification, no significant differences 

in number of ARA5 concentrations were observed between water treatment and Pto DC3000 

infiltrations, which both triggered the response. It could be that Pto DC3000 partially suppresses 

the response, so it would be interesting to test flg22-only treatments too. In chapter 4, I could 

show that water also triggers ARA7 clustering to some extent, but for both ARA7 and ARA5, 

clusters were observed at bacterial infection sites. Concentration of ARA5-marked secretory 

pathway compartments that could be Golgi and/or TGN/EE, is in line with existing data that 

describe the secretory Rab GTPase RABE1d to focally accumulate upon bacterial challenge. 

Furthermore, expression of a constitutive active version fo RABE1d increased resistance against 

Pto DC3000 (Speth et al., 2009). While it has not been shown that RabE1d clusters are 

positioned under bacterial infection sites, secretory Rab GTPases can be themselves involved in 

defining spatially distinct locations at the cell surface, as evidenced by RABA5c, which located at 

the geometric cell edges and functioned in cell wall homeostasis there (Kirchhelle et al., 2016). 

The factors defining the precise locations of clustering of secretory Rab GTPases are unknown, 

but it is conceivable that in both pathogen and developmental context, the spatial cues could be 

conferred by physical stimuli. 

The number of ARA5 vesicles did not change up to 3 hours after flg22 treatment in my high 

throughput confocal experiments. ARA5 vesicle clustering also was not observed before ca. 6 hpi 

upon bacterial infection. These findings together indicate that at up to 3 h of immune stimulus, 

while proteomic cargoes do change, the ARA5 vesicles do not respond by changing their 

dynamics. Genes functioning in the secretory pathway were upregulated upon application of SA 

to support PR1-secretion (Wang et al., 2005), and flg22-treatment has been shown to induce SA 

accumulation already at early time points (Tateda et al., 2015). However, the described gene 

upregulation response was measured at 1 dpi, instead of earlier time points at which I observed 

ARA5. This corresponds to the absence of the SA-induced secretory cargo PR1 in my ARA5 

purifications, which might be identified upon purification at 1 dpi (Wang et al., 2005). Based on my 

data, I cannot exclude that at earlier time points, ARA5 compartment motility and/or turnover 

rates are altered, which may underlie an early increased secretory activity. 
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5.6 - The ARA5-specific proteome contains defence-related proteins and changes upon flg22 

stimulus 

In order to reveal proteomic changes along the default secretory pathway upon immune stimulus, 

I purified YFP-ARA5 from flg22-treated cells at 3 hrs, and performed mass spectrometry analysis. 

In addition, to gain insight in commonalities and differences between the endocytic and secretory 

pathways under these conditions, I compared the ARA5 resting and immune stimulated co-

purifying proteomes to those of ARA7. 

Proteins that exclusively fell within the ARA5 co-purifying proteome corresponded to its known 

localization and function, such as the secretory TGN/EE-localized Rab GTPase RABA1d (Asaoka 

et al., 2013), Tubulin, which guides Golgi dynamic localization (Crowell et al., 2009) and 

Coatomer, which functions in intra-Golgi trafficking. While a small pool of YFP-ARA5 may localize 

to the Golgi during its constitutive biosynthesis as driven by the Ubiquitin-10 promoter, the 

majority of ARA5 is likely to localize to its site of functioning on trans-Golgi and TGN/EE (Pinheiro 

et al., 2009; Geldner et al., 2009).  

A highly abundant protein identified in ARA5, at similar abundance under water and flg22-treated 

conditions, is PEN3, which is known to predominantly localize to the PM (Underwood and 

Somerville, 2013). Its non-responsiveness to flg22 treatment is consistent with published data 

that de novo synthesis does not contribute to PEN3 focal accumulations at the cell surface 

(Underwood and Somerville, 2013), which together with my data suggests that ARA5 

compartments and ARA5 TGN/EE does not contribute to this response. Conversely, in ARA7 

purifications, PEN3 passed my criteria for co-purifying only upon flg22 treatment, in line with 

LE/MVBs underlying the focal accumulation response. 

At steady state, PEN3 was found to traffic in a polar way. In roots, PEN3 localized to the outer 

lateral membrane, and was found to traffic through VHA-a1/SYP61/VTI12-positive typical 

TGN/EE compartments to do this (Mao et al., 2016) – all TGN/EE markers which were found in 

both my ARA5 and ARA7 purifications. Both secretory and endocytic traffic contributed to PEN3 

localization at the TGN/EE (Mao et al., 2016), but in water treated conditions, I identified PEN3 

only in ARA5, implicating ARA5-positive TGN/EE, rather than ARA7, in the steady state polar 

trafficking of PEN3. Its absence in ARA7 under my criteria suggests that its route to the cell 

surface at resting state does not depend on redirected LE/MVBs as it does under pathogen 

stimulated conditions. 

Specifically upon flg22 treatment, and only in ARA5 purifications, MLO12 was identified (table 

5.3, fig. 5.4). Little is known about the function of MLO12 in immunity, but together with MLO2 

and MLO6 it belongs to the clade which is co-orthologous with barley Mlo, in which broad 

spectrum mlo-based resistance was originally identified (Panstruga, 2005). Out of this clade, 
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mlo2-based resistance is best studied. MLO2 localized to the PM, and polarly accumulates under 

pathogen attack sites (Panstruga, 2005; Consonni et al., 2006; Kusch and Panstruga, 2017; Bhat 

et al., 2005). While MLO12 subcellular localization has not been studied, the MLO homolog 

NORTIA was found to localize to the Golgi in ovules, functioning in pollen tube reception – a 

process that does not occur in the seedlings from which I purified ARA5. 

Mlo2 mutants require components of indolic acid metabolism (PEN2, PEN3), and membrane 

trafficking (PEN1/SYP121) for full resistance against powdery mildew (Kuhn et al., 2017). Mlo2, 

mlo6 and mlo12 cooperatively contribute to mildew resistance, with mlo2 resistance evident in 

single mutants, but mlo6 and mlo12 effects only visible as additive effects when in double 

mutants with mlo2 or in the mlo2/6/12 triple mutant (Consonni et al., 2006). Interestingly, 

mlo2/6/12 triple mutants did not have the same requirements for indole glucosinolate metabolism 

or subcellular trafficking as compared to mlo2 single mutants (Kuhn et al., 2017). This could 

mean that the function of MLO12 does not involve these components.In line with this, I do not find 

flg22-induced upregulation of PEN2, PEN3 or PEN1/SYP121 in ARA5 purifications, but IGMT2, a 

major player in the indole glucosinolate defense pathway is strongly upregulated. 

While the above data describe the role of MLOs in immunity against fungal pathogens, MLOs 

may have different roles in modulating antibacterial immunity. Evidence for MLOs contributing to 

susceptibility comes from effector studies, as Pseudomonas HopZ2 targets MLO2 and requires it 

for full virulence (Lewis et al., 2012). In addition, loss-of-function mutations in pepper CaMLO2 

enhanced resistance to bacterial pathogens, and CaMLO2 expression in Arabidopsis conferred 

enhanced susceptibility to Pto DC3000 (Kim and Hwang, 2012). On the other hand, mlo2/6/12 

triple mutants, which were more resistant to powdery mildew, were more susceptible to the non-

adapted bacterial pathogen P. syringae pv. maculicola (Kusch and Panstruga, 2017), and mlo2 

and mlo2/6/12 were not differentially affected in their resistance to P. syringae pv. maculicola, 

while the triple mutant was more susceptible to powdery mildew (Gruner et al., 2018). Taken 

together, MLOs can have ambiguous effects on antibacterial immunity, and it is yet unclear if 

MLO12 plays a role therein.This provides evidence that flg22-induced changes in the ARA5 co-

puryfing proteome may be nonspecific to the type of MAMP used, but represent a more general 

status change independent of trigger. This could be consistent with the finding that mutants in 

flg22-upregulated ARA7-interacting proteins are susceptible to powdery mildew, and not bacterial 

pathogens. 

MLOs have been implicated in modulating ROS signaling (Cui et al., 2018). I identified CRK10, 

PER4, and OGOX1 in ARA5 purifications upregulated upon flg22 treatment, all of which are 

implicated in processes involving ROS. CRK10 has a potential role in extracellular ROS 

perception (Bourdais et al., 2015), and MLO2 was recently found to be a negative regulator of 

extracellular ROS sensing, with all MLO proteins hypothesized to exert a similar role (Cui et al., 
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2018). Their co-occurrence in my flg22-treated ARA5 purifications could point at a functional 

relationship, although the regulatory MLO2 role in ROS perception was shown to be partially 

uncoupled from its elevated resistance against mildew (Cui et al., 2018). 

Barley MLO contains a calmodulin-binding domain, and its interaction with calmodulin is 

necessary for its function in downregulating immunity (Kim et al., 2002). MLO12 also contains a 

predicted calmodulin-binding domain (UniProt, accessed July 2018). Interestingly, PEN3, present 

in the ARA5-associated proteome at high abundance both under water and flg22 treated 

conditions, has been shown to interact with calmodulin, which, like PEN3 itself, is required for 

non-host resistance (Campe et al., 2016). PEN3 focally accumulates in response to bacteria and 

flg22, and is also required for full mlo-based resistance (Consonni et al., 2006; Underwood and 

Somerville, 2013; Xin et al., 2013). I find that both ARA7 and ARA5 cluster at the cell surface, 

which could mean that they both target the same location and delivering cargoes that otherwise 

would not co-accumulate. With MLOs functioning as susceptibility factors, and my data showing 

that PEN3 and MLO12 may be co-delivered at the cell surface, it is conceivable that MLO12 may 

downregulate calmodulin-involving processes on co-accumulating cell-surface defense 

components such as PEN3.  

Taken together, while a function for MLO12 in antibacterial resistance has not been described, 

my proteomic results show that MLO12 co-purified with secretory ARA5 upon treatment with with 

a bacterial MAMP, and provide potential leads to further investigation of the modulation of 

immunity by MLOs in general. 

5.7 - The shared ARA7 and ARA5 proteome contains TGN/EE proteins  

Upon comparison of the resting state co-purifying proteomes of ARA7 and ARA5, their contents 

suggest that I purified TGN/EE-associated pools of both. Common TGN/EE markers such as 

SYP61, SYP43 and VHA-a1 are found (table 5.4), in addition to cargoes previously identified in 

TGN/EE-proteomic studies, such as SCAMP3, CESA1 and CCC1 (Groen et al., 2014; Drakakaki 

et al., 2012). In ARA7 purifications, ARA5 was identified, although at low abundance, which could 

explain why a majority of ARA5 interacting proteins were also captured by ARA7 purifications 

(fig. 5.4D). While upon microscopic analysis I did not find punctate overlap of ARA7 and ARA5 in 

Arabidopsis or N. benthamiana (fig. 5.5), upon co-expression in BiFC (split-YFP) experiments in 

N. benthamiana, ARA7 and ARA5 together reconstituted a punctate signal (fig. 4.9), indicating 

that they exist in close proximity, likely on separate domains of TGN/EE.  

In ARA7 purifications I also identified ARA6, which reconstituted a BiFC signal with ARA7, and 

which has been described to largely localize to a subpopulation of ARA7 endosomes (Ueda et al., 

2001). Because of their large overlap in published microscopic studies, I expected a high 

abundance of ARA6 in ARA7 purifications. However, it was recently shown that these two Rab5 
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GTPases compete for activation by VPS9a through their common effector PUF2 (Ito et al., 2018), 

and since Rab GTPase activation status governs their capacity for membrane association, this 

could indicate that they do not preferably exist in the same protein complex in a stable manner, 

thus leading to low levels of co-purification of ARA6 with ARA7.Additionally, seeing as the 

purification method used likely yields greater Rab complexes and not intact membrane 

compartments, it could be that despite their localization to the same membrane vesicles, ARA7 

and ARA6 do not interact with each other.  

Based on co-localization analyses from various publications, broadly two populations of TGN/EE 

can be distinguished, either marked by RabA1b, RabA2a and VAMP721 with known secretory 

functionality, or marked by SYP61, SYP43 and VHA-a1, with roles in both secretion and also 

endocytosis (Gendre et al., 2015). In the shared ARA5 and ARA7 co-purfying proteome, I did not 

capture RabA1b, RabA2a and VAMP721, but consistently identified SYP61, SYP43 and VHA-a1, 

independent of flg22 treatment (table 5.4). Since ARA5 and ARA7 did not overlap on punctae in 

confocal microscopy (fig. 5.5), I conclude that they can further divide this population of TGN/EE 

into subpopulations with secretory and endocytic functions respectively. 

The shared ARA5 and ARA7 co-purifying proteome was rich in cell wall metabolism proteins, with 

cargoes such as CESA1, 3 and 6, comprising the full primary cell wall cellulose synthesis 

complex, glucan synthases including PMR4, CBL7 which facilitates cellulose biosynthesis, and 

NHL3, which is implicated in PM-cell wall adhesion. The callose synthase PMR4 has a positive 

role in defense against some pathogens, such as Bgh (Ellinger et al., 2013), but pmr4 mutants 

show constitutively elevated SA levels, defense gene expression coupled with increased 

resistance to pathogens such as G. cichoracearum, providing challenges to studies that probe the 

role of PMR4-dependent callose deposition in immunity (Nishimura et al., 2003; Jacobs et al., 

2003). PMR4 itself localizes predominantly to the PM, with increased vesicle localization and 

focal accumulation under the site of attempted penetration by powdery mildew at ca. 6 h after 

spore application (Ellinger et al., 2013). 

While the PMR4 focal accumulation response has not been tested under flg22 treatment, this 

stimulus triggers cell-surface localized callose depositions fully dependent on PMR4 (Luna et al., 

2011). Contrary to PEN3 found in ARA7 purifications upon flg22 treatment, PMR4 did not 

markedly change in abundance in my ARA7 or ARA5 purifications. Therefore, the defence-

associated focal accumulation of PMR4 is unlikely to be underpinned by redirected endosomal 

traffic. A role for the secretory pathway is more likely, as PMR4 co-purified with ARA5 at higher 

abundance than with ARA7 (table 5.4). Here, PMR4 could be delivered from the secretory 

pathway, and undergo turnover and degradation through endocytosis. In line with PMR4 

dependency on default secretory processes, overexpression of the secretory RabA4c has been 
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shown to enhance callose deposition and resistance to adapted G. cichoracearum, both 

dependent on PMR4 (Ellinger et al., 2014b). 

5.8 - Upon flg22 treatment, the shared ARA7 and ARA5 proteome enriches with proteins 

functioning at the cell surface 

Upon 3 h flg22 treatment, a small group of 9 proteins was upregulated in abundance in both 

ARA5 and ARA7 purifications. Due to the common TGN/EE localization of ARA5 and ARA7, 

proteins identified in both purifications are also likely to localize to this compartment, but do not 

necessarily function there. Shared interactors can function at other locations, as especially 

evidenced by the identification of resting state cargoes which have PM localizations and functions 

such as NHL3, CBL7, PEN1 and CESAs. Knowing that ARA5 and ARA7 maintain separate 

localization upon flg22 treatment, and that the majority of flg22-upregulated shared proteins have 

a cell surface localization (table 5.5), I interpret their upregulation in both purifications as a sign of 

an increased turnover at the cell surface, and discuss them in that context. 

Three cell-surface receptor-like kinases (MIK2, CRK10, IOS1) were identified. While IOS1 has 

been shown to be a common interactor of many immune receptors (Yeh et al., 2016), MIK2 is a 

cell wall integrity sensor (Van der Does et al., 2017) and CRKs have been functionally implicated 

in ROS-perception upon host-microbe interactions, either directly or through spatial organization 

of ROS-perception modules (Bourdais et al., 2015; Kimura et al., 2017). The increased turnover 

of these receptors 3 h after flg22 treatment could point at ligand-induced endocytosis to achieve 

receptor degradation, as is observed for FLS2 (Beck et al., 2012b), coupled to upregulated 

secretion to replenish the PM-localized signaling capable pool. While these receptors have not 

been previously shown to undergo this process, cell surface receptors are capable of undergoing 

ligand-induced endocytosis upon perception of endogenous signals, such as BRI1 upon 

brassinolide steroid hormones in growth, (Martins et al., 2015), ERECTA-LIKE 2 upon epf 

peptides in stomatal development (Ho et al., 2016) and PEPR1 upon pep1 peptides as DAMP 

signals (Ortiz-Morea et al., 2016). ROS themselves can function as extracellular second 

messengers, and can induce antibacterial resistance (Sharma et al., 1996; Sewelam et al., 2016). 

For the cysteine-rich GPI-anchored enzyme OGOX1, which neutralizes oligogalacturonide 

DAMPs in the apoplast, increased turnover could be necessary to maintain an enzymatically 

active pool of receptors. For all the above membrane-associated candidates, it would be 

interesting to use fluorescence microscopy to study the subcellular dynamics at the 3 h flg22 

treated time point, upon chemical disturbance of the cell wall, or external application of ROS, to 

confirm their ligand-induced endocytosis. 

The above data taken together, I hypothesize that upon perception of flg22 stimulus, the plant is 

anticipating defense-related ROS-signaling processes and cell wall modifications. Why anticipate 
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cell wall damage in the interaction with bacterial pathogens? Pto DC3000 inserts type-3-secretion 

needles, but is not known to grossly modify the cell wall. However, infection with some bacteria, 

such as the opportunistic pathogen Pseudomonas aeruginosa, causes cavities in the cell wall at 

bacterial positions as seen in electron microscopy studies (Plotnikova et al., 2000). 

Coincidentally, while all flagellin perception in Col-0 is initiated by the singular flagellin receptor 

FLS2, the elicitor peptide flg22 corresponds to the immunogenic epitope on flagellin of P. 

aeruginosa (Felix et al., 1999). I hypothesize that the upregulation of cell wall integrity and ROS-

sensing capacity upon flg22 elicitation is a generalized response, that prepares for a range of 

potential modifications by incoming pathogens, or function in sensing endogenous, potentially 

ROS-mediated cell wall modifications and ensure integrity is maintained even upon ―false alarms‖ 

in the absence of continued infection. 

Some LRR-RLKs upregulated in ARA5 upon flg22 were not identified in ARA7. While their ligands 

are yet unknown, this could provide evidence for increasing detection capacity at the cell surface 

in response to pathogen stimulus. It has been described that treatment with SA potentiates cells 

for the detection of flagellin and chitin, which is mediated through cell-surface receptors FLS2 and 

CERK1 (Tateda et al., 2015). There, increased potentiation is thought to be achieved through 

increased secretion of cell-surface receptors mediated through interaction with the ER-localized 

protein ACCELERATED CELL DEATH 6 (ACD6, (Zhang et al., 2014b). SA treatment increased 

the PM-resident pool of FLS2 in an ACD6-dependent manner, but when measured at 24 and 48 

hpi, which does not match the timing of my flagellin treatments (Zhang et al., 2014b). However, 

treatment with flg22 has been shown to induce endogenous SA-signaling, detectable as early as 

3 hours (Tsuda et al., 2008).  

Determining the cognate ligands for the uncharacterized secreted, but not internalized receptors 

would be interesting, as they could be on the lookout for various anticipated MAMPs or DAMPs 

that associate with infection in a non-pathogen specific manner, making these receptors 

interesting in the context of engineering broad-spectrum resistance. Finally, to gain further insight 

in the specificity of upregulated proteins in my ARA5 and ARA7 purifications to various types of 

pathogens, it would be interesting to perform the same purifications upon treatment with a panel 

of additional MAMPs, such as chitin, lipopolysaccharides or elicitins. 

5.9 - Expanding on the method 

While the majority of co-purfying proteins in ARA5 and ARA7 purifications were not considered to 

be upregulated in response flg22 treatment (figs. 4.6, 5.4), they could still fulfil important 

functions in immunity. To address this, it would be relevant to perform my purifications under 

inhibition of dephosphorylation, and subject samples to phosphoproteomic analysis using mass 

spectrometry. This could reveal activity status changes on proteins such as receptor kinases 
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along the trafficking pathways, thus providing an extra layer of information that is not revealed by 

looking at abundance changes only. 

Finally, my current data reveal proteomic changes between 3 h water and flg22 treatment, but it is 

possible that various suites of secretory and endocytic cargoes change in abundance at different 

time points after immune stimulus, perhaps relating in function to earlier occurring responses 

such as MAMP-induced endocytosis, apoplastic alkalinization and ROS burst, or later responses 

such as callose deposition, stomatal closure and systemic acquired resistance (Khaled et al., 

2015). In combination with more precise methods of peptide quantitation, correlating protein 

abundance changes in secretory and endocytic pathways at different time points after immune 

stimulus may reveal novel functional relationships between groups of proteins that have not been 

implicated to work together before (Thul et al., 2017). 
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CHAPTER 6 

GENERAL DISCUSSION 

In the first stage of my PhD project, I set myself the following goals: 

 Reveal the subcellular localization of Cf-4 

 Reveal the subcellular localization of constitutively interacting Cf-4-SOBIR1 complexes 

 Probe for ligand-induced subcellular localization dynamics of Cf-4 upon activation by Avr4 

 Investigate the requirements for SERK members in Cf-dependent receptor outputs and immunity 

Using microscopic analysis, I could successfully show that the tomato RLP-type PRR Cf-4 is localized to 

the plasma membrane, which confirms its long standing expected localization, in line with its function in 

detecting apoplastic Avr4 secreted by C. fulvum upon infection (Joosten et al., 1994; van den Burg et al., 

2006). I could also show that it interacts there with its constitutive interaction partner SOBIR1, an RLK 

that is required for Cf-4 function (Liebrand et al., 2013). Upon activation, Cf-4 and SOBIR1 co-internalize, 

in a SOBIR1-kinase-activity dependent manner. This supports the notion of Cf-4-SOBIR1 functioning as a 

two-component PRR (Liebrand et al., 2014; Gust and Felix, 2014), as this response is shared by the well-

characterized one-component RLK-type PRRs FLS2 (Robatzek et al., 2006; Khaled et al., 2015). These 

observations expand our view and reveal that the mechanism that underlies PRR turnover at the PM is 

generalisable to diverse classes of receptors. 

I confirmed that Cf-4-SOBIR1 recruits the same early activation module BAK1/SERK3 and depend on it 

for outputs, which shows that RLP-SOBIR1-type PRR and RLK-type PRR activation converge at early 

steps. In the time since this discovery, several other RLP-SOBIR1 systems have been shown to engage 

with SERK members upon activation, further supporting the notion that this is a broadly generalisable 

PRR activation mechanism (Albert et al., 2015; Domazakis et al., 2018; Du et al., 2015; Wang et al., 

2018).  

My finding that Cf-4-SOBIR1 activation upon detection of the race-specific Avr4 effector shares 

components with detectors of broadly conserved MAMPs. This, combined with mounting evidence that 

Cf-4 detects conserved patterns on Avr4 orthologues from distantly related fungi independent of their 

ability to exert their main chitin binding effector function (Kohler et al., 2016; Mesarich et al., 2016), 

supports the increasingly blurring classic distinction between effector-triggered immunity and MAMP-

triggered immunity (Thomma et al., 2011; Cook et al., 2015). 

My data in combination with related recent discoveries on RLP activation broaden our understanding of 

cell-surface PRR dependent immune activation, but leaves the question: which SERKs specify which 

outputs? I could show that multiple SERKs were recruited to Cf-SOBIR1 complexes, and it has previously 
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been shown that one SERK can engage with RLKs that function in both defense and development 

(Chinchilla et al., 2009). Does the same apply to RLPs? 

SOBIR1 affects developmental pathways too. Specifically, it downregulates the outputs of the RLK-type 

HAESA (HAE) and HAESA-LIKE 2 (HSL2), which form a cell-surface based developmental peptide 

receptor platform (Leslie et al., 2010a; Gubert and Liljegren, 2014). It is thought that SOBIR1 engages 

with HAE/HSL2 to target them for degradation, which in the light of my findings, could be through the 

endocytic vacuolar-targeted pathway. Indeed, subcellular trafficking components seem to be required for 

SOBIR1 effects on HAE/HSL2 (Liljegren et al., 2009). 

Some RLPs in development seem to avoid SOBIR1 altogether, but engage with other scaffolding RLKs, 

such as the RLP CLAVATA 2 which depends on the RLK CORYNE for accumulation at the PM and 

signaling (Somssich et al., 2016). Interestingly, they too engage with poised PM-localized RLKs, as 

evidenced by their interaction with the RLK CLAVATA 1 (Muller et al., 2008; Bleckmann et al., 2010). No 

evidence for the involvement of SERK members in this system is reported, pointing at potential limits for 

the generalisability of the role of SOBIR1 and SERK in RLP-mediated signaling. 

In the second stage of my PhD, I wanted to further clarify the role of Rab GTPases in immunity, and set 

myself the following goals: 

 Investigate localization changes of ARA7 and ARA5 upon bacterial infection 

 Reveal changes in ARA7 and ARA5-associated proteins after flg22-stimulus 

 Identify flg22-responsive ARA7-interacting proteins which are defence-related 

 Further characterize a subset of flg22-responsive ARA7 interacting defence-related proteins for 

roles in immunity 

I revealed that especially the endocytic Rab GTPase ARA7 has the tendency to intensely concentrate 

under bacterial contact sites upon infection, which is shared by the secretory Rab GTPase ARA5 to a 

lower extent. This matches known endosomal responses in well-established fungal and oomyecete 

pathosystems (Inada et al., 2016; Nielsen et al., 2012; Cai et al., 2018), and expands the concept of 

LE/MVB spatial reorganisation to antibacterial immunity. Indeed, bacterial infection has been shown to 

upregulate extracellular vesicle secretion, a process which is thought to be underpinned by LE/MVB-

dependent secretion (Wang et al., 2014, 2015; Rutter and Innes, 2017b). 

I mapped proteomic changes along endocytic and secretory processes by performing mass spectrometry 

on purifications of ARA7 and ARA5 after the activation of the immune response to bacterial flagellin, and 

reveal that I most likely purified the greater complex associating with these Rab GTPases. Associating in 

an increased manner with ARA5 upon flagellin elicitation, I find several uncharacterized RLKs that may 

potentiate the cell surface with detection capacity for yet unknown ligands that may not be bacteria-

specific. Additionally, I find a member of the MLO family, which are negative regulators of immunity 



169 

 

(Kusch and Panstruga, 2017). Based on its co-upregulation on ARA5 complexes with proteins that work 

in processes which have previously been suggested to be the client of MLO activity, I provide avenues for 

further study of MLO-based susceptibility (Kim et al., 2002; Campe et al., 2016; Cui et al., 2018). 

Comparative proteomics in combination with co-localization studies between ARA7 and ARA5, provided 

evidence for these Rab GTPases further dividing a main TGN/EE sorting hub into secretory and 

endocytic domains respectively (Gendre et al., 2015; Wattelet-Boyer et al., 2016). In response to immune 

stimulus, shared proteins were upregulated, which points at increased secretion and endocytosis, and 

thus cell-surface turnover. These include proteins associated with ROS-metabolism and signaling, as well 

as cell-wall integrity sensing. These are known processes associated with host-activated modifications to 

the extracellular space upon MAMP perception. 

Specifically associating with the endocytic Rab GTPase ARA7 upon immune stimulus, I find atypical 

resistance proteins TN3 and HR4, which I could show function in resistance to nonadapted powdery 

mildew, further supporting a generalized defense programme to be upregulated in the ARA7 complex. In 

parallel to TN3, I found the upregulation of a PRA1 Rab GTPase regulatory protein, which is a predicted 

target of both fungal and oomycete effectors (Weßling et al., 2014), together pointing at potential host 

guarding of the regulation of RabF-dependent processes. Further research should elucidate whether TN3 

is the NLR responsible for monitoring endocytic traffic, and potentially unconventional endosomal 

secretion in plant immunity. 
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SUPPLEMENTAL MATERIALS 

FIGURES 

 

 

Fig. S.1. GFP-tagged Cf-4 migrates with the predicted molecular weight and is functional. (A) Western blot analysis of Cf-4-

GFP transiently and stably expressed in N. benthamiana, without and with Avr4 (100 µM) treatment, as indicated. For transient 

expression, leaf samples were harvested at three days post infiltration (dpi) and Avr4 elicitation was done for 90 min. Blots were 

incubated with anti-GFP antibodies for the detection of Cf-4-GFP. CBB, Coomassie Brilliant Blue staining. (B) Images of N. 

benthamiana wild type (WT) leaves (top panel) and leaves transiently expressing Cf-4-GFP (bottom panel), treated with either Avr2 

or Avr4 (300 µM), as indicated. Images were taken at five dpi and at four days after treatment with the Avrs. 
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Fig. S.2. Subcellular localization of Cf-4, SlSOBIR1-like and AtSOBIR1. Confocal micrographs show N. benthamiana leaf 

epidermal cells stably expressing Cf-4-GFP and transiently expressing SlSOBIR1-like-GFP and AtSOBIR1-GFP as indicated (left 

panels), and co-expressing plasma membrane-localized ACA8-mCherry (middle panels). Overlay images indicate co-localization of 

the proteins fused to GFP and mCherry, as a yellow colour is produced (right panels). Images were taken at three dpi; scale bars = 

10 μm. 
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Fig. S.3. SlSOBIR1-like-GFP and AtSOBIR1-GFP co-localize with endosomal markers. Confocal micrographs show N. 

benthamiana leaf epidermal cells transiently expressing SlSOBIR1-like-GFP or AtSOBIR1-GFP (left panels), and co-expressed 

mCherry/RFP-tagged organelle markers (middle, left panels). Overlay images indicate co-localization through generation of a yellow 

colour (middle, right panels). Dashed boxes indicated in the middle right panels are depicted as detail pictures on the right (right 

panels). Arrowheads point at co-localizing endosomes. Images were taken at three dpi; scale bars = 10 μm. (A) Co-expression of 

SlSOBIR1-like-GFP/AtSOBIR1-GFP with Golgi marker MEMB12-mCherry. (B) Co-expression of SlSOBIR1-like-GFP/AtSOBIR1-

GFP with trans-Golgi network marker VHA-a1-RFP. (C) Co-expression of SlSOBIR1-like-GFP/AtSOBIR1-GFP with endosome 

marker RFP-ARA7/RabF2b. (D) Co-expression of SlSOBIR1-like-GFP/AtSOBIR1-GFP with late endosome marker ARA6/RabF1-

RFP. 
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Fig. S.4. Line intensity profiles of Cf-4, SlSOBIR1 and membrane markers. Confocal micrographs show transient co-expression 

of Cf-4-GFP, SlSOBIR1-GFP or Cf-4-YFPc/SlSOBIR1-YFPn with indicated membrane markers and effector treatments. Left column 

of panels correspond to confocal micrographs displayed in (A) Fig. 3.1, (B) Fig. 3.2A, (C) Fig. 3.2b. Dashed squares in these panels 

are shown as detailed pictures (magnified in middle column of panels). White lines in detailed pictures indicate the regions of 

interest (ROIs) that correspond to intensity profiles in the last panels. Intensity profiles indicate grey-value of pixels across the ROI in 

the green and red channels on a scale of 1-300. 
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Fig. S.5. SlSOBIR1 does not interact with FLS2 in BiFC experiments. (A) Confocal micrographs show N. benthamiana leaf 

epidermal cells transiently co-expressing FLS2 and SlSOBIR1 C-terminally fused to the C- or N-terminal halves of YFP (YFPc and 

YFPn, respectively), as indicated. Left panels show absence or presence of YFP fluorescence, the middle panels show 

autofluorescence, and the right panels show the overlay of the fluorescence signals. Images were taken at two dpi, scale bars = 100 

μm. (B) Confocal micrographs of N. benthamiana leaf epidermal cells transiently co-expressing FLS2-YFPc and FLS2-YFPn, either 

without or with flg22 treatment (10 µM) for 90 min, as indicated. Left panels show absence or presence of YFP fluorescence, the 

middle panels show autofluorescence, and the right panels show the overlay of the fluorescence signals. Images were taken at two 

dpi, scale bars = 10 μm. 
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Fig. S.6.  Cf-4-GFP undergoes Avr4-triggered endocytosis in stable transgenic plants. Confocal micrographs of Cf-4-GFP-

transgenic N. benthamiana plants show leaf epidermal cells expressing Cf-4-GFP, either treated with Avr4 or Avr2 (both at 100 µM), 

as indicated. Left panels show GFP fluorescence, middle left panels show autofluorescence, and middle right panels show the 

overlay of the fluorescence signals shown in the left and middle left panels. Micrographs in rows 1 and 3 display maximum projected 

z-stacks to reveal vesicles, and rows 2 and 4 display their selected single focal plane outtakes to capture plasma membrane signal. 

Arrowheads in the detail pictures (right panels) point at mobile vesicles (top right panel). Images were taken at 90 minutes after 

elicitation; scale bars = 10 μm.  
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Fig. S.7. SlSERK3 is required for Avr4-induced HR. (A) Leaves of Cf-4-GFP-N. benthamiana stable plants were TRV-silenced for 

NbSERK3a/b for three weeks and subsequently used to transiently express AtBAK1 and AtBAK1-KD, without treatment of Avr4. 

Images are representative of vesicle quantification data presented in Fig. 3.4. (B) qRT-PCR analysis showing NbSERK1, 

NbSERK3a/b and NbSOBIR1 expression in N. benthamiana inoculated with the indicated TRV VIGS constructs. Expression of 

query genes was normalized to endogenous NbActin expression levels. Data presented have been combined from twelve 

(NbSOBIR1 expression) or 24 (NbSERK1 and NbSERK3 expression) individual qRT-PCRs, based on three independent biological 

replicates, for each gene of which the expression was studied. Statistical differences (α=0.05) between groups were calculated by a 

one-way ANOVA and different groupings are indicated. Error bars represent the standard deviation. These qRT-PCR experiments 

were performed by Ruby Bye (C) Immunoblots from total protein extracts of Cf-4-GFP-transgenic N. benthamiana plants that were 

TRV-silenced for NbSERK3a/b and subsequently transiently transformed with AtBAK1 and AtBAK1-KD. Cf-4-GFP was revealed 

with αGFP. Ponceau staining is shown for equal loading. (D) RT-PCR on cDNA obtained from total RNA extracts of Cf-4-GFP-

transgenic N. benthamiana plants that were TRV-silenced for NbSERK3a/b and subsequently transiently transformed with AtBAK1 

and AtBAK1-KD. (E) Images show N. benthamiana leaves from TRV::NbSERK3a/b-inoculated plants and TRV-inoculated controls, 

transiently expressing Cf-4-GFP and treated with Avr4 protein (300 µM). Cf-4-GFP was agro-infiltrated at 3 weeks post inoculation 

with the recombinant TRV constructs and one day later the Avr4 protein was infiltrated. Images were taken at six days after Avr4 

infiltration. HR is observed as brownish cell death.  
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Fig. S.8. Cf-4 endocytosis requires SOBIR1 kinase activity. Leaves of Cf-4-GFP transgenic N. benthamiana plants that had 

been TRV-silenced for NbSOBIR1/-like were used for transient expression of AtSOBIR1-Myc and its kinase-inactive variant 

AtSOBIR1-KD-Myc. (A) Confocal micrographs show Cf-4-GFP localisation upon treatment with Avr4 (100µM, left panels) and detail 

pictures from dashed squares (middle panels). Arrowheads point at Cf-4-GFP-positive vesicles. Images were taken at three weeks 

after inoculation with TRV, at three dpi for transient expression, and at 90 min after elicitation; scale bars = 10 μm. (B) Quantification 

of Cf-4-GFP-positive vesicles was done with EndoQuant (bars depict means ± 2 SE; n = 6; p < 0.05; statistical significant 

differences are indicated by asterisks). Transient co-expression of AtBAK1, but not its kinase-inactive variant AtBAK1-KD, increased 

Cf-4-GFP-positive vesicles in NbSOBIR1/-like-silenced leaves. (C) Immunoblots from extracted total proteins of Cf-4-GFP-

transgenic N. benthamiana plants that were TRV-silenced for NbSOBIR1/-like and subsequently transiently transformed with 

AtSOBIR1-Myc or AtSOBIR1-KD-Myc. Cf-4-GFP, AtSOBIR1-Myc and AtSOBIR1-KD-Myc were revealed with αGFP and αMyc 

antibodies as indicated. Ponceau staining is shown for equal loading. 
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Fig. S.9. Both SlSERK1 and SlSERK3a interact with Cf-4. Co-immunoprecipitation from GFP-trap bead pull-downs on N. 

benthamiana co-expressing Cf-4-GFP and SlSOBIR1-HA, and either SlSERK3a-Myc or SlSERK1-Myc. Leaf samples were taken at 

two dpi, after 60 min treatment with Avr2 or Avr4 (100 µM), as indicated. Total proteins (Input) and immunoprecipitated proteins (IP) 

were subjected to SDS/PAGE and blotted. Blots were incubated with αGFP, αHA or αMyc antibodies for the detection of 

immunoprecipitated Cf-4-GFP and co-purifying SlSOBIR1-HA and SlSERK3a-Myc or SlSERK1-Myc, respectively. These 

immunoprecipitations and western blot experiments were performed by Thomas Liebrand and Guozhi Bi. 

 

Fig. S.10. Avr9 induces interaction of Cf-9 with both SlSERK1 and SlSERK3a. Co-immunoprecipitation from GFP-trap bead 

pull-downs on N. benthamiana co-expressing Cf-9-GFP and SlSOBIR1-HA, and either SlSERK1-Myc or SlSERK3a-Myc. Leaf 

samples were taken at two dpi, after 60 min treatment with Avr9 or Avr4 (100 µM), as indicated. Total proteins (input) and 

immunoprecipitated proteins (IP) were subjected to SDS/PAGE and blotted. Blots were incubated with αGFP, αHA or αMyc 

antibodies for the detection of immunoprecipitated Cf-9-GFP and co-purifying SlSOBIR1-HA and SlSERK1-Myc or SlSERK3a-Myc, 

respectively. These immunoprecipitations and western blot experiments were performed by Thomas Liebrand and Guozhi Bi. 
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Fig. S.11. Immunoprecipitation and gel-staining of YFP-ARA7 and YFP in preparation for mass spectrometry. (A,B) 

Coommassie-stained gel pictures show individual replicates of anti-GFP immunoprecipitations from pUB::YFP-ARA7 or pUB::YFP 

seedlings after running in SDS-PAGE on 4-20% agarose gradient gels. Boxes indicate incisions made to obtain separate gel 

samples for mass spectrometry analysis. Numbers (left) indicate molecular weight of individual ladder bands (Page Ruler Plus). (C) 

Immunoblot shows samples used in (A,B), probed with anti-YFP with anti-GFP-HRP conjugated antibodies. Numbers (right) indicate 

molecular weight of ladder bands (not shown). 
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Fig. S.12. Immunoprecipitation and gel-staining of YFP-ARA5 in preparation for mass spectrometry. (A) Coommassie-

stained gel pictures of individual replicates of GFP-antibody immunoprecipitations from pUB::YFP-ARA7 seedlings after running in 

SDS-PAGE on 4-20% agarose gradient gels. Boxes indicate incisions made to obtain separate gel samples for mass spectrometry 

analysis. Numbers (left) indicate molecular weight of individual ladder bands (Page Ruler Plus). (B) Western blot image of samples 

used in (A), probing for YFP with a GFP-HRP conjugated antibody. Numbers (right) indicate molecular weight of ladder bands (not 

shown). 
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Figure S.13. Number of peptides and proteins detected by MS/MS in individual immunoprecipitations. Green bars indicate 

the number of peptides with a Scaffold PeptideProphet score of >95% identified in individual replicates of YFP-immunoprecipitations 

(values correspond to left axis). Blue bars indicate number of proteins detected with a Scaffold ProteinProphet score of >99% 

(values correspond to right axis). Immunoprecipitations were done from Arabidopsis seedlings expressing pUB-driven YFP-ARA7, 

YFP-ARA5, and YFP upon 3-hour water or 3-hour 1.5 µM flagellin infiltrations by vacuum, and analysis using mass-spectrometry. 

Spectra were obtained using an Orbitrap Fusion machine (Thermo) and matched to the MASCOT Arabidopsis protein database. 

SCAFFOLD was used to filter for 95% confidence spectra and proteins were detected when 2 unique spectra were found. 
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Figure. S.14. Clustal Omega multiple sequence alignment of all four “Homolog of RPW8” proteins in Arabidopsis thaliana 

ecotype Col-0. Protein sequences were retrieved from TAIR10 (Arabidopsis.org) and aligned using Clustal Omega Multiple 

Sequence Alignment (EMBL-EBI). Bold letters indicate peptides identified in MS/MS after YFP-ARA7 purifications upon flg22 

treatment (Fig. 4.13). ―*‖ indicates 100% amino acid identity across homologs. ―:‖ indicates conservation of amino acid with similar 

properties. ―.‖ indicates conservation of amino acids with weakly similar properties. 

 

Figure. S.15 Venn diagram showing overlap in number of proteins between published endocytic/secretory associated 

proteomes from Heard et al. 2015. Protein lists were obtained from Heard et al. 2015, and the present study tables 4.1 (YFP-

ARA7) and 5.1 (YFP-ARA5). Overlap between the datasets in number of proteins was calculated in MS Excel, and plotted in Venn-

diagrams, and number of proteins in each group are displayed. 
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Table S1: GO-term enrichment in the ARA7 co-purifying proteome. Listed here are the Gene Ontology (GO) terms (GO-

database of 04-04-2018, ―cellular component‖ group) associated with proteins in the ARA7 co-purifying proteome as defined in 

Table 4.1. To capture over- or underrepresentation of a GO-term in the dataset, an enrichment factor is listed, comparing the term‗s 

occurrence in the ARA7 co-purifying proteome to its occurrence in the TAIR10 reference genome. For this, the PANTHER 

classification system (version 20171205) and Fisher‘s exact test (p < 0.05) were used. Finally, the number of proteins in the ARA7 

co-purifying proteome associated with the GO classification is listed. Dots indicate GO terms that correspond to the known 

localization and function of ARA7. Bars indicate relative values. 
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Table S1: GO-term enrichment in the ARA7 co-purifying proteome

Fold enrichment Number of proteins Associated GO term (cellular component)

>100 2 • TRAPPIII protein complex 

>100 2 TRAPPII protein complex 

98.22 4 TRAPP complex 

95.49 5 retromer complex 

85.94 3 GARP complex 

57.3 5 Golgi transport complex 

49.11 2 • multivesicular body membrane 

45.84 4 • multivesicular body 

45.84 4 • early endosome membrane 

42.97 3 1,3-beta-D-glucan synthase complex 

42.97 2 • trans-Golgi network membrane 

40.93 15 • late endosome membrane 

39.67 3 • endocytic vesicle 

33.86 13 tethering complex 

33.21 17 • late endosome 

32.23 6 clathrin-coated vesicle membrane 

32.23 3 • trans-Golgi network transport vesicle 

31.25 6 • early endosome 

31.25 2 COPI vesicle coat 

28.44 46 • trans-Golgi network 

27.79 27 • endosomal part 

26.86 10 SNARE complex 

26.36 25 • endosome membrane 

24.66 35 • cytoplasmic vesicle part 

24.56 2 COPI-coated vesicle membrane 

23.11 57 • endosome 

22.92 12 • cytoplasmic vesicle membrane 

22.67 12 • vesicle membrane 

22.42 9 coated vesicle membrane 

20.22 6 • transport vesicle 

19.93 8 clathrin-coated vesicle 

19.07 65 cytoplasmic vesicle 

18.97 65 • intracellular vesicle 

18.09 4 • transport vesicle membrane 

17.3 65 • vesicle 

16.45 58 Golgi apparatus part 

15.92 54 Golgi subcompartment 

15.5 11 coated vesicle 

14.16 7 Golgi-associated vesicle 

12.73 4 Golgi-associated vesicle membrane 

11.46 3 • vesicle coat 

11.16 79 Golgi apparatus 

10.93 25 Golgi membrane 

6.89 52 bounding membrane of organelle 
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6.89 52 bounding membrane of organelle 

6.69 89 • endomembrane system 

6.64 58 organelle subcompartment 

6.52 37 • whole membrane 

6.19 24 • membrane protein complex 

5.06 55 organelle membrane 

4.59 7 integral component of plasma membrane 

3.5 12 plasma membrane part 

3.49 9 intrinsic component of plasma membrane 

3.35 20 endoplasmic reticulum 

3.19 20 plasmodesma 

3.19 20 symplast 

3.18 20 cell-cell junction 

3.18 20 cell junction 

2.96 92 • intracellular organelle part 

2.96 52 • protein-containing complex 

2.95 92 • organelle part 

2.8 18 vacuole 

2.52 33 • cytosol 

2.22 74 • membrane part 

2.19 108 • membrane 

2.11 132 • cytoplasmic part 

2.11 48 plasma membrane 

2.07 60 • integral component of membrane 

2 61 • intrinsic component of membrane 

1.92 51 cell periphery 

1.8 139 • cytoplasm 

1.29 135 organelle 

1.29 135 intracellular organelle 

1.27 131 membrane-bounded organelle 

1.25 145 • intracellular part 

1.24 145 • intracellular 

1.24 127 intracellular membrane-bounded organelle 

1.15 148 • cell 

1.15 148 • cell part 

0.58 33 nucleus 

0.4 8 mitochondrion 

0.29 5 extracellular region 
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Table S2: GO-term enrichment in the ARA7 co-purifying proteome upon flagellin treatment. Listed here are the Gene 

Ontology (GO) terms (GO-database of 04-04-2018, ―biological function‖ group) associated with proteins in the ARA7 co-purifying 

proteome as defined in Table 4.3. To capture over- or underrepresentation of a GO-term in the dataset, an enrichment factor is 

listed, comparing the term‗s occurrence in the ARA7 co-purifying proteome to its occurrence in the TAIR10 reference genome. For 

this, the PANTHER classification system (version 20171205) and Fisher‘s exact test (p < 0.05) were used. Finally, the number of 

proteins in the ARA7 co-purifying proteome associated with the GO classification is listed. Dots indicate GO terms that correspond 

to the known localization and function of ARA7. Bars indicate relative values. 

 

 

 

 

 

 

 

Table S3: GO-term enrichment in the ARA5 co-purifying proteome. Listed here are the Gene Ontology (GO) terms (GO-

database of 04-04-2018, ―cellular component‖ group) associated with proteins in the ARA5 co-purifying proteome as defined in 

Table 5.1. To capture over- or underrepresentation of a GO-term in the dataset, an enrichment factor is listed, comparing the term‗s 

occurrence in the ARA5 co-purifying proteome to its occurrence in the TAIR10 reference genome. For this, the PANTHER 

classification system (version 20171205) and Fisher‘s exact test (p < 0.05) were used. Finally, the number of proteins in the ARA5 

co-purifying proteome associated with the GO classification is listed. Dots indicate GO terms that correspond to the known 

localization and function of ARA5. Bars indicate relative values. 

  

Table S2: GO-term enrichment in ARA7 co-purifying proteins upregulated by flagellin treatment

Fold enrichment Number of proteins Associated GO term (biological process)

12.09 5 Golgi vesicle transport

7.72 10 vesicle-mediated transport 

7.19 8 cellular amino acid metabolic process

6.39 8 monocarboxylic acid metabolic process

6.15 16 carboxylic acid metabolic process 

5.93 9 carboxylic acid biosynthetic process

5.93 9 organic acid biosynthetic process 

5.76 17 oxoacid metabolic process 

5.74 17 organic acid metabolic process 

5.56 11 small molecule biosynthetic process 

4.84 9 drug metabolic process

4.02 18 small molecule metabolic process 

3.84 11 macromolecule localization

2.52 20 response to chemical

1.97 33 response to stimulus 
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Table S3: GO-term enrichment in the ARA5 co-purifying proteome

Fold enrichment Number of proteins Associated GO term (cellular component)

 >100 2 • TRAPPIII protein complex 

 >100 2 • TRAPPII protein complex 

 >100 4 • trans-Golgi network membrane 

 >100 3 TRAPP complex 

94.02 4 • Golgi transport complex 

88.15 3 1,3-beta-D-glucan synthase complex 

78.35 2 vacuolar proton-transporting V-type ATPase complex 

54.24 2 proton-transporting V-type ATPase, V0 domain 

47.01 2 • early endosome membrane 

44.07 4 • clathrin-coated vesicle membrane 

44.07 2 • trans-Golgi network transport vesicle 

42.74 4 • early endosome 

40.59 32 • trans-Golgi network 

39.18 7 late endosome membrane 

37.4 7 tethering complex 

37.11 4 • transport vesicle membrane 

34.57 5 • transport vesicle 

33.58 2 proton-transporting V-type ATPase complex 

31.34 8 • cytoplasmic vesicle membrane 

31 8 • vesicle membrane 

30.66 6 • coated vesicle membrane 

28.05 7 late endosome 

27.55 5 SNARE complex 

25.78 31 • endosome 

25.55 5 • clathrin-coated vesicle 

22.11 38 • Golgi apparatus part 

21.17 35 • Golgi subcompartment 

21.11 10 • endosomal part 

20.46 34 • cytoplasmic vesicle 

20.35 34 • intracellular vesicle 

20.23 14 • cytoplasmic vesicle part 

20.23 7 • coated vesicle 

19.59 3 • Golgi-associated vesicle membrane 

18.56 34 • vesicle 

17.31 8 • endosome membrane 

16.59 4 • Golgi-associated vesicle 

14.2 49 • Golgi apparatus 

13.46 15 • Golgi membrane 

8.46 36 • organelle subcompartment 

8.25 4 plant-type vacuole 

7.71 50 • endomembrane system 

7.34 27 • bounding membrane of organelle 

7.23 20 whole membrane 

6.73 5 integral component of plasma membrane 
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6.57 11 plasma membrane part 

6.35 12 • membrane protein complex 

5.88 18 plasmodesma 

5.88 18 symplast 

5.87 18 cell-cell junction 

5.87 18 cell junction 

5.57 7 intrinsic component of plasma membrane 

5.28 28 • organelle membrane 

4.92 9 vacuolar membrane 

4.89 9 vacuolar part 

4.46 14 vacuole 

3.88 43 plasma membrane 

3.4 44 cell periphery 

3.3 50 intracellular organelle part 

3.29 50 • organelle part 

2.92 25 • protein-containing complex 

2.89 43 • intrinsic component of membrane 

2.83 46 • membrane part 

2.82 40 • integral component of membrane 

2.58 62 • membrane 

2 61 • cytoplasmic part 

1.7 64 • cytoplasm 

1.28 65 • intracellular organelle 

1.27 65 • organelle 

1.25 63 • membrane-bounded organelle 

1.18 74 • cell part 

1.18 74 • cell 

0.43 12 nucleus 
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Table S4: GO-term enrichment in the ARA5 co-purifying proteome upon flagellin treatment. Listed here are the Gene 

Ontology (GO) terms (GO-database of 04-04-2018, ―biological function‖ group) associated with proteins in the ARA5 co-purifying 

proteome as defined in Table 5.3. To capture over- or underrepresentation of a GO-term in the dataset, an enrichment factor is 

listed, comparing the term‗s occurrence in the ARA7 co-purifying proteome to its occurrence in the TAIR10 reference genome. For 

this, the PANTHER classification system (version 20171205) and Fisher‘s exact test (p < 0.05) were used. Finally, the number of 

proteins in the ARA7 co-purifying proteome associated with the GO classification is listed. Dots indicate GO terms that correspond 

to the known localization and function of ARA7. Bars indicate relative values. 

 

 

 

 

 

 

 

 

 

 

 

 

Table S5: GO-term enrichment in the shared ARA7 and ARA5 co-puryfing proteome. Listed here are the Gene Ontology (GO) 

terms (GO-database of 04-04-2018, ―biological function‖ group) associated with proteins in the shared ARA7 and ARA5 co-purifying 

proteome as defined in Table 5.4. To capture over- or underrepresentation of a GO-term in the dataset, an enrichment factor is 

listed, comparing the term‗s occurrence in the shared ARA7 and ARA5 co-purifying proteome to its occurrence in the TAIR10 

reference genome. For this, the PANTHER classification system (version 20171205) and Fisher‘s exact test (p < 0.05) were used. 

Finally, the number of proteins in the shared ARA7 and ARA5 co-purifying proteome associated with the GO classification is listed. 

Bars indicate relative values. 

  

Table S4: GO-term enrichment in ARA5 co-purifying proteins upregulated by flagellin treatment

Fold enrichment Number of proteins Associated GO term (biological process)

20.56 5 protein autophosphorylation

10.05 8 protein phosphorylation 

8.31 6 defense response to other organism

7.53 8 phosphorylation 

6.04 9 phosphate-containing compound metabolic process 

5.82 8 multi-organism process 

5.81 9 phosphorus metabolic process 

3.86 11 response to stress 
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Table S4: GO-term enrichment in the shared ARA7 and ARA5 co-purifying proteome

Fold enrichment Number of proteins Associated GO term (biological process)

 > 100 3 (1->3)-beta-D-glucan biosynthetic process

 > 100 3 (1->3)-beta-D-glucan metabolic process

 > 100 5 Golgi to vacuole transport

89.29 5 post-Golgi vesicle-mediated transport

83.34 2 cell plate assembly

78.13 5 protein targeting to vacuole

78.13 6 protein localization to vacuole

75.44 7 beta-glucan biosynthetic process

72.12 3 plant-type primary cell wall biogenesis

66.49 5 establishment of protein localization to vacuole

64.66 3 regulation of cell shape

62.5 3 protein secretion

62.5 3 peptide secretion

58.97 5 vesicle fusion

54.83 5 organelle membrane fusion

54.35 4 cellulose biosynthetic process

52.09 3 polysaccharide localization

50.88 7 beta-glucan metabolic process

44.65 5 vesicle docking

44.02 5 organelle localization by membrane tethering

44.02 5 membrane docking

42.81 5 membrane fusion

42.62 6 vacuolar transport

39.07 7 glucan biosynthetic process

38.66 6 vesicle organization

36.77 11 Golgi vesicle transport

34.34 5 organelle fusion

34.25 4 exocytosis

33.79 4 cellulose metabolic process

33.25 5 mitotic cytokinesis

32.22 5 cytoskeleton-dependent cytokinesis

32.22 5 cytokinesis

31.89 5 secretion by cell

29.94 8 cellular polysaccharide biosynthetic process

29.21 5 secretion

25.38 8 polysaccharide biosynthetic process

24.04 4 ER to Golgi vesicle-mediated transport

23.59 8 cellular carbohydrate biosynthetic process

23.15 3 monovalent inorganic cation homeostasis

21.51 17 vesicle-mediated transport

21.14 7 cellular glucan metabolic process

20.97 5 plant-type cell wall biogenesis

20.83 3 regulation of cell morphogenesis

20.35 7 glucan metabolic process
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19.63 6 mitotic cell cycle process

19.41 5 organelle localization

18.75 6 membrane organization

18.66 8 cellular polysaccharide metabolic process

17.86 6 protein targeting

15.11 8 carbohydrate biosynthetic process

14.6 5 cell wall biogenesis

14.42 6 mitotic cell cycle

13.83 15 cellular macromolecule localization

12.86 5 establishment of protein localization to organelle

12.84 6 protein localization to organelle

12.61 14 intracellular transport

12.58 13 cellular protein localization

12.56 8 cellular carbohydrate metabolic process

12.39 11 intracellular protein transport

11.95 7 cell cycle process

11.91 14 establishment of localization in cell

11.89 16 protein localization

11.75 5 plant-type cell wall organization or biogenesis

11.7 17 cellular localization

11.54 14 protein transport

11.42 14 establishment of protein localization

11.09 20 macromolecule localization

10.71 14 peptide transport

10.55 8 polysaccharide metabolic process

10.52 14 amide transport

9.33 5 cell division

9.33 8 cell wall organization

8.74 8 external encapsulating structure organization

8.42 14 nitrogen compound transport

8.15 9 cell wall organization or biogenesis

7.81 5 growth

7.8 7 cell cycle

7.4 16 organic substance transport

6.04 25 localization

5.71 22 transport

5.61 22 establishment of localization

4.74 8 carbohydrate metabolic process

4.44 9 cellular component biogenesis

4.32 19 cellular component organization

4.26 8 regulation of biological quality

4.03 20 cellular component organization or biogenesis

3.87 10 organelle organization

0.08 1 nitrogen compound metabolic process

 < 0.01 0 cellular nitrogen compound metabolic process
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