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Highlights 
 The MWDG2 hydrodynamic solver combines multiwavelet (MW) adaptivity with a 

second-order discontinuous Galerkin (DG2) method 

 A first-order HFV1 solver combines Haar wavelets with first-order finite volume (FV1) 

 HFV1 and MWDG2 produce dynamically adaptive solutions by compressing flow and 

topography data 

 HFV1 and MWDG2 preserve the robust properties of the underlying FV1 and DG2 solvers 

 MWDG2 achieves the accuracy of DG2 but with efficiency exceeding FV1 and HFV1 

solvers 
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Abstract  

This paper presents a scaled reformulation of a robust second-order Discontinuous Galerkin (DG2) solver 

for the Shallow Water Equations (SWE), with guiding principles on how it can be naturally extended to fit 

into the multiresolution analysis of multiwavelets (MW). Multiresolution analysis applied to the flow and 

topography data enables the creation of an adaptive MWDG2 solution on a non-uniform grid. The 

multiresolution analysis also permits control of the adaptive model error by a single user-prescribed 

parameter. This results in an adaptive MWDG2 solver that can fully exploit the local (de)compression of 

piecewise-linear modelled data, and from which a first-order finite volume version (FV1) is directly 

obtainable based on the Haar wavelet (HFV1) for local (de)compression of piecewise-constant modelled 

data. The behaviour of the adaptive HFV1 and MWDG2 solvers is systematically studied on a number of 

well-known hydraulic tests that cover all elementary aspects relevant to accurate, efficient and robust 

modelling. The adaptive solvers are run starting from a baseline mesh with a single element, and their 

accuracy and efficiency are measured referring to standard FV1 and DG2 simulations on the uniform grid 

involving the finest resolution accessible by the adaptive solvers. Our findings reveal that the MWDG2 

solver can achieve the same accuracy as the DG2 solver but with a greater efficiency than the FV1 solver 

due to the smoothness of its piecewise-linear basis, which enables more aggressive coarsening than with 

the piecewise-constant basis in the HFV1 solver. This suggests a great potential for the MWDG2 solver to 

efficiently handle the depth and breadth in resolution variability, while also being a multiresolution mesh 

generator. Accompanying model software and simulation data are openly available online.  

 

Key words: Adaptive multiresolution schemes, scaled discontinuous Galerkin and finite volume hydraulic 

models, (multi)wavelet data (de)compression, performance comparisons. 
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1. Introduction  

Explicit Godunov-type finite volume schemes [1] have become standard in hydraulic models [2]. In 

essence, the Finite Volume (FV) foundation uses a piecewise-constant representation of flow 

variables over a local mesh element in a first-order accurate framework (FV1). Piecewise-constant 

data can be evolved element-wise driven by spatial flux exchange through element boundaries, 

while only needing data from adjacent neighbours to complete Riemann flux calculations. This 

locality in storage and evolution of piecewise constant data offers practical advantages such as 

suitability for parallelisation [3, 4] and makes wetting and drying a lot easier to handle [5, 6]. 

However, the FV1 approach suffers from excessive numerical diffusion, which can only be alleviated 

by using fine resolution meshes, often leading to unacceptable computational costs and meshing 

inflexibilities over large spatial domains. Attempts to incorporate classical adaptive mesh refinement 

strategies within the FV1 approach are shown to cause adverse effects, such as keeping a coarsest 

mesh resolution that is fine enough, increasing model sensitivity to tuning many adaptivity 

parameters, and impacting overall conservativeness [7-10]. These adverse effects are not alleviated 

with higher-order FV methods that involve non-local interpolation of piecewise-constant data [11, 

12]. A numerical modelling strategy is still desired that can inherently automate and initialise mesh 

resolution and improve runtime efficiency within the FV1 approach. 

The Discontinuous Galerkin (DG) method extends the foundation of the FV1 approach by 

shaping local piecewise-polynomial solutions from a discrete (element-wise) formulation of the 

conservative model equation(s). DG methods significantly reduce numerical diffusion even on very 

coarse meshes (e.g. at a grid resolution exceeding 10 m2) and have excellent conservation properties 

[13-16]. Compared to a FV counterpart, the DG method has a much larger cost per mesh element in 

terms of data storage and computing time, and such cost is proportional to the desired order-of-

accuracy. Even with a simplified second-order DG (DG2) method for practical conveniences [17], 

runtime costs on uniform meshes are 7-15 times greater than with first- and second-order accurate 

FV alternatives [14, 15]. Classical adaptive mesh refinement strategies with DG methods do not 
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seem a practical way forward because they still suffer from many of the adverse effects reported for 

the FV1 method [8, 18]. A sparse numerical modelling strategy, which can make DG2 as efficient as 

FV1, is thus highly desired to increase accuracy and coverage in handling high-resolution modelled 

data. 

Adaptive wavelet-based schemes offer an attractive route to overcome many of the adverse 

effects observed in classical adaptive mesh refinement methods [9-12, 18, 19]. When applied to the 

reformulation of FV1 models, these schemes introduce a multiresolution analysis to (de)compress 

piecewise-constant modelled data mapped by the Haar wavelet from within the local basis of the 

FV1 method [20-25]. We term this Haar-wavelet variant of FV1 the HFV1 method. Haleem et al. [26] 

were the first to propose an HFV1 approach for solving the shallow water equations (SWE) with 

irregular topography and wet-dry fronts, demonstrating that HFV1 directly inherits the robustness 

properties of the underlying FV1 scheme. However, Haleem et al. [26] did not fully leverage the local 

(de)compressibility property of wavelets. Instead, their HFV1 approach retained some of the 

aforementioned adverse effects, by still relying on an extrinsic gradient sensor alongside its extra 

user-specified parameter and use of relatively fine initial meshes with very few resolution levels [26].  

More recently, adaptive multiwavelet-based schemes have been devised based on a 

multiresolution analysis implemented using multiwavelets (MW) within the local basis of DG 

methods [27-30]. Adaptive MWDG schemes have also been proposed for the solution of the SWE in 

the works of [28, 31, 32] , who have highlighted the ability of these approaches to:  

 Achieve resolution refinement and coarsening driven by a single user-prescribed parameter;  

 Rigorously transfer and recover data between disparate resolution levels, thereby allowing 

arbitrarily large resolution gaps and any degree of mesh coarsening; and,  

 Readily preserve accuracy, conservation and robustness properties of the underlying DG 

scheme.  

Starting with a robust DG2 hydrodynamic model, MW can be introduced subject to 

appropriate scaling of the DG2 local basis functions to form an MWDG2 scheme in which piecewise-
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linear modelled data can be analysed, scaled and assembled into an adaptive solution. Compared to 

the HFV1 adaptive solver, which relies on piecewise-constant modelled data, MW allow greater 

compression rates. However, the strength of this property relating to standard FV1 and DG2 models 

is not yet identified from consistent MWDG2 and HFV1 schemes that fully exploit local 

(multi)wavelet compression of data. 

This paper studies the behaviour of (multi)wavelets integrated within robust FV1 and DG2 

solvers, and identifies the extent of their benefits and limitations for hydraulic modelling. In Sec. 2, a 

practical implementation of an MWDG2 solver is presented that fully exploits local MW compression 

of data, and in which an HFV1 solver is obtained by direct simplification from the MWDG2 

formulation (Sec. 2.4). Sec. 2 includes also the formulation of a scaled DG2 solver (Sec. 2.1) with 

guiding principles on how it readily fits into the multiresolution analysis of MW (Sec. 2.2) to form the 

so-called adaptive MWDG2 scheme (Sec. 2.3). In Sec. 3, the adaptive HFV1 and MWDG2 solvers are 

systematically tested and compared in the simulation of well-known hydraulic tests that cover 

elementary aspects relevant to accurate, efficient and robust hydraulic modelling. The adaptive 

solvers are run starting from an initial mesh with a single element spanning the entire domain, and 

the accuracy and efficiency of the adaptive solvers are quantified in relation to standard FV1 and 

DG2 simulations on the uniform grid involving the finest resolution accessible to the adaptive 

solvers. In Sec. 4, key findings and conclusions of this work are summarised. Numerical simulation 

data [33] and a Fortran 2003 implementation of the HFV1/MWDG2 shallow flow models [34] are 

available to download from Zenodo. Instructions for running the models and interpreting the data 

are provided in Appendix 1. 

 

2. Adaptive MWDG2 scheme 

This section outlines the implementation details of an MWDG2 solver for the conservative form of 

the standard SWE with source terms over a 1D domain  , written as: 

       ( )   ( )       Eq 1 
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where    and    represent partial derivatives with respect to   and  ,  (   ) is the vector of the 

state variables at a location   and time  ,  ( ) is the spatial flux vector and  ( ) is a vector 

including bed and friction slope terms. These vectors are given by: 

  [
 
 
],   6

 
  

 
  

  

 

7 and   [
 

     
]   Eq 2 

where   (    ) is gravity,   ( ) is the water height,      (    ) is the flow discharge per unit 

width with   (   ) being the velocity, and  ( ) is the topography function in the bed slope source 

term           . The term         | | represents the energy loss due to friction effects with 

       
       in which    is the Manning’s bed roughness coefficient. 

 

2.1 Scaled DG2 formulation 

The 1D domain   is divided into a set of   elements *  +         by means of     interface points 

,      -          such that    ,             - is a segment with   ⋃   
 
    and         

*      +. An element    has the centre    
 

 
(             ) and size                 .    can 

be mapped into a reference element ,    - by the following change of variable  ( )   (  

  )   ; therefore  ( ), such that  ( )           , can be used to position    onto ,    -. 

 

2.1.1 Finite element weak form 

By multiplying Eq. (1) by a test function  ( ), integrating by parts to remove    on the flux term, and 

moving the flux terms to the RHS, the following weak form can be obtained [35]: 

∫    (   ) 
  ( )    2[ ( (   ))  ( )]

  
 ∫  ( (   ))    ( )   

 ∫  ( (   ))
 

 ( )  3 Eq 3 

It is worth noting that, in Eq. (3), the incorporation of appropriate local bases functions 

(orthonormal, compactly-supported and discontinuous) as choices for the test function  ( ) and for 

expanding an approximate solution    ,      -
  to   are key ingredients to designing an adaptive 

MWDG scheme [27, 29]. These choices are needed in order to: 
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(i) Embed local resolution variability into the basis functions shaping the DG spatial 

operators via a dual basis;  

(ii) Expand a local DG approximate solution that is compatible with multi-scale 

decomposition offered by MW via a primal basis; and,  

(iii) Get the identity matrix as the only multiplier of the time derivative term     in the LHS 

of Eq. (3) via deploying bi-orthonormal primal and dual bases. 

The key concepts relevant to these basis functions are introduced next as appropriate. 

 

2.1.2 Choice of bi-orthonormal bases 

The starting point is to consider the Legendre basis of polynomials up to first-order within the scope 

of designing a DG2 scheme [35]. This basis is denoted by    ,     -   with   ( )    and 

  ( )   . As such, it is compactly-supported on ,    ], inherently discontinuous at     , and 

orthogonal for the   -norm defined by the following inner product: 

〈   〉  ∫  ( ) ( )  
 

      Eq 4 

The basis   is normalised for the   -norm to produce the   -orthonormal basis  ̂   [ ̂   ̂ ]
 

, such 

that 〈 ̂   ̂  
〉       where        for      and        otherwise. The components of the 

orthonormal basis  ̂ are [36]: 

 ̂ ( )  √
    

 
  ( )  (      and   ,    -)  Eq 5 

From the orthonormal basis components  ̂  and   ̂ , the local primal and dual bases can be defined 

over   , which are denoted as    [  
 ( )    

 ( )]
 

 and  ̃  [ ̃ 
 ( )   ̃ 

 ( )]
 

 with: 

  
 ( )  √   ̂ ( ( ))  (       and     )   Eq 6 

 ̃ 
 ( )  

  
 ( )

  
   (       and     )   Eq 7 
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Each of the primal and the dual bases is compactly-supported, orthogonal and discontinuous at the 

interfaces        of the element   . These bases are bi-orthonormal since the following relationship 

holds: 

〈  
   ̃  

  
〉                Eq 8 

 

2.1.3 DG2 operators 

By choosing the test function  ( ) as the components of the dual basis  ̃ 
 ( ) in Eq. (7) and 

exploiting their orthogonality and compact-support properties, the weak form in Eq. (3) becomes: 

∫    
      

      
  ̃ 

 ( )      
 ( )   (      )  Eq 9 

where   
 ( ) are operators involving spatial evaluations of flux and source terms, given by: 

  
   {[ ( )  ̃ 

 ( )]
      

      

 
 ∫  ( )    ̃ 

 ( )  
      

      
 ∫  ( )

      

      
 ̃ 

 ( )  } Eq 10 

  is replaced by an approximate solution    expressed in terms of the primal basis as: 

  (   )|   ∑   
 ( ) 

     
 ( )    

 ( )  √   ( )   
 ( )    Eq 11 

in which   
 ( ) and   

 ( ) are expansion coefficients, or modes, representing an average and a slope 

characterising the local linear approximation of    over   . The initial state of the coefficients at the 

RHS of Eq. (11),   
 ( ), is obtained by projecting a given initial condition   ( )   (   ) onto the 

dual basis as follows: 

  
 ( )  〈    ̃ 

 〉  ∫   ( )  ̃ 
 ( )   

      

      
   Eq 12 

which, once mapped into the reference element ,    - for applying (  + 1) Gauss–Legendre 

quadrature rules and then manipulated to involve interface evaluations [37], yield the following 

expressions for initialising the initial average and slope coefficients: 

  
 ( )  

 

 
[  (      )    (      )]    Eq 13 

  
 ( )  

 

 √ 
[  (      )    (      )]   Eq 14 
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Now, considering Eqs. (9-10) with    instead of  , and exploiting the bi-orthonormality property, via 

Eq. (8), the system of PDEs is locally decoupled to solve for two independent ODEs over   : 

    
 ( )    

 (  )  (      )   Eq 15 

The time derivative in Eq. (15) is solved using an explicit two-stage Runge-Kutta (RK2) time-stepping 

scheme (e.g. as described in [37]), which requires evaluation of the spatial DG2 operators   
 (  ) to 

evolve   
 ( ) over    over each RK2 stage. For simplicity, the local DG2 operators   

 (  ) is denoted 

hereafter by   
 , which can be expressed as: 

  
  

 2 (  (        ))  ̃ 
 (      )   (  (        ))  ̃ 

 (      )  

∫  (  (   ))    ̃ 
 ( )  

      

      
 ∫  (  (   ))

      

      
 ̃ 

 ( )  3  Eq 16 

Adopting discontinuous basis functions allows    to be discontinuous at the element interfaces 

      . To incorporate both limits,   
 (        ) and   

 (        ) in the flux evaluation therein, a 

numerical flux function  ̃ (   ) is introduced as is usually done in Godunov-type finite volume 

methods [1, 38]. By further mapping   
  onto the reference element where (     ) Gauss–

Legendre quadrature rules can be applied to approximate volume integral terms of the flux and 

source terms, and by considering only the bed slope source term    ,     -
 , Eq. (16) becomes: 

  
   

 

  
2 ̃         ̃      

      (  
      )3   Eq 17 

  
   

√ 

  
{
 ̃        ̃      

 [ (  
    

 )   (  
    

 )]

 
  

 √ 
[  (  

    
      )    (  

    
      )]

}  Eq 18 

In Eq. (18),  ̃       ̃ (      
        

 ) represents a flux evaluation at        via a two-argument 

numerical flux function  ̃ based on the Harten, Lax and van Leer approximate Riemann solver [38]. 

      
    (        )|   and       

    (        )|    
 denote the limits of    at both sides from 

      , which are known as Riemann states, at which wetting and drying considerations occur (as 

outlined later in Sec. 2.3.3). These limits can obtained from Eq. (11) as follows:  

      
    

 ( )  √    
 ( )   and        

      
 ( )  √      

 ( ) Eq 19 
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The bed slope discretisation in    is performed by expanding    locally over    onto the primal basis, 

consistently with the shaping of the local approximate solution (Eqs.11-14):  

  ( )|     
  √   ( )   

        Eq 20 

with   
  and   

  being time-independent modes for the topography term approximation, which can 

be initialised as in Eqs. (13-14), by: 

  
  

 

 
[ (      )   (      )]     Eq 21 

  
  

 

 √ 
[ (      )   (      )]    Eq 22 

The discretisation is then completed by extracting an approximate partial derivative while mapping 

from the reference element: 

    |   
 √ 

  
   

       Eq 23 

Therefore, the expressions of the bed slope source terms involved in Eqs. (17) and (18) become: 

  (  (   )     )  
 √ 

   
[

 
     (   )   

 ]    Eq 24 

Substituting Eq. (24) into Eqs. (17) and (18), the DG2 operators can be further simplified to: 

  
   

 

  
{ ̃         ̃       

 [
 

  √   
    

 ]}     Eq 25 

  
   

√ 

  
{ ̃        ̃       

  (  
    

 )   (  
    

 )  [
 

    
   

 ]}  Eq 26 

 

2.1.4 Extension to multiresolution bases 

From the same  2-orthonormal basis  ̂, a series of child bases * ̂( )+   can be defined given its 

property of being a refinable function [36, 39, 40] – where   is a positive integer indicating the 

refinement level, which will hereafter be used as a bracketed superscript to avoid notation confusion 

with other indexes. These child bases arise from the father basis  ̂( )   ̂ and preserve its 

properties. The supports of these child bases at any refinement level ( ) can be associated with a 

grid  ( ) based on   dyadic sub-divisions of the support ,    - of  ̂. Hence,  ( ) spans ,    - such 
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that  ( )   ⋃   
( )    

   , where  *  
( )

+             is a set of non-overlapping sub-divisions of ,    -. 

Moreover, a sub-division   
( )

 can be regarded as a sub-element of ,    -, taking the following form: 

  
( )

 [             ]     Eq 27 

with            

  
   are interface points forming sub-elements *  

( )
+            , and the index 

             representing the position of   
( )

 in  ( ), on which the components  ̂ 
( )

 of the 

basis  ̂( )  , ̂ 
( )-   can be obtained by translation and dilatation of  ̂, as follows: 

 ̂ 
( )( )  (√ )

 
  ̂(  (   )      ) .    

( )/  Eq 28 

From the compact-support and  2-orthonormality properties of * ̂( )+ , the grids * ( )+   form a 

hierarchy spanning ,    -, i.e. ⋃  ( )
  ,    -, and are globally nested across all refinement 

levels while having local and non-overlapping support at each level ( ). 

 Similarly, on a mesh element    ,             - a hierarchy of nested grids  *  
( )

+  can be 

defined such that   
( )

 ⋃     
( )    

    with  *    
( )

+             now denoting sub-divisions of   , with 

    
( )

 representing a sub-element of    at a position   relative to refinement level ( ), namely: 

    
( )

 0        
( )

          
( ) 1    Eq 29 

In Eq. (29),         
( )

          ( )  are interface points forming sub-elements *    
( )

+             

and   ( )        is the grid spacing relative to grid   
( )

 with positions   such that    

          . For convenience of presentation, sub-elements     
( )

 will hereafter be denoted by   
( )

 

where index “ ” is shorthand for “   ” to position sub-elements in   . Thereby, sub-elements   
( )

 can 

be linked to   
( )

 by translation into ,    -. This also makes it easy to keep consistent with the 

notation associated with the DG2 method presented previously (Secs. 2.1.1-2.1.3) for application at 

sub-elements   
( )

, which take the following form: 

  
( )

 0      
( )

       
( ) 1     Eq 30 
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with   
( )

 and    
( )

 being the centre position and the size of a sub-element   
( )

, respectively. On 

  
( )

   
( )

 bi-orthonormal dual and primal bases, denoted by    and  ̃ , can be defined via the 

refined bases , ̂ 
( )-  by analogy (recall Eqs. 6-7), and take the form: 

  
( )( )  √   ̂ 

( )( )  .    
( )

   /   Eq 31 

 ̃ 
( )

( )  
  

( )
( )

  ( )   .    
( )

   /   Eq 32 

where  ( )   (    
( ))    

( )
 is a change of variable used to map the position     

( )
 into   

( ) . 

Adopting the local basis functions in Eqs. (31-32), and reworking the steps in Sec. 1.1.3, yield similar 

DG2 operators for any sub-element   
( )

   
( )

, which are similar to Eqs. (25-26) but with index   

instead of   and the grid spacing   ( ) of   
( )

 instead of   . Such DG2 operators can be applied to 

evolve DG2 modes   
 ( ) and   

 ( ), spanning local flow solutions   (   )|  
( ) over any sub-

element   
( )

 *  
( )+ , starting from initial flow modes as described in Eqs. (13-14) with index   

instead of  . Similarly, topography modes,   
  and   

  on   
( )

, can be initialised as in Eqs. (21-22) for 

use in the DG2 operators on   
( )

.  

To ease the presentation in the following sections, DG2 flow and topography modes (  
 ( ), 

  
 ( ),   

  and   
 ) will be considered component-wise, and the scalar variable   *     + will be 

used to represent any physical quantities in   ,    -  and  . Since each   has DG2 modes, which 

are actually its spectral components in terms of average and slope coefficients, DG2 modes of any 

physical quantity   on sub-elements   
( )

 *  
( )+  will be denoted as   

( )
 ,  

  ( )    
  ( )

-.  

 

2.2 Multiresolution analysis 

From the same  2-orthonormal basis  ̂, child bases * ̂( )+  and multiwavelet bases * ( )+  can be 

defined. This allows multiresolution analysis to be performed, which is summarised in this section 

with a view to presenting how it is directly applicable to analysing the behaviour of the DG2 modes 

on multiresolution bases. 
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2.2.1 Relationship between the scaling bases * ̂( )+  

From the properties of the scaling bases * ̂( )+  defined on the hierarchy of grids  * ( )+ , it is 

possible to produce a recurrence relationship for binary merging of two adjacent components of the 

bases belonging to  (   ) to form the components of the bases in  ( ). Without loss of generality, it 

suffices to outline the relationship linking an elementary father basis , ̂ 
( )

- and its child bases 

, ̂  
(   )  ̂    

(   )-, in particular for the case between  ( )and  ( ) where        . This relationship 

between the scaling bases can be achieved by involving the so-called low-pass filter matrices    and 

   [36, 40], which allow  ̂ 
( ) to be expressed as linear combination of  ̂  

(   ) and  ̂    
(   ): 

 ̂ 
( )

     ̂  
(   )

     ̂    
(   )

     Eq 33 

   0〈 ̂ 
( )  ̂  

(   )〉1  6
  √  

 √   √   
7    Eq 34 

   0〈 ̂ 
( )  ̂    

(   )〉1  6
  √  

√   √   
7    Eq 35 

 

2.2.2 Multiwavelet bases and their relationship to the scaling bases 

Now reconsidering the father basis  ̂, a mother basis of wavelets  , or multiwavelets [36], can be 

defined on  ( )  ,    -, which represents the encoded ( 2-orthonormal) difference between 

 ̂   ̂ 
( ) and the components of its two child bases , ̂ 

( )  ̂ 
( )- supported on  ( )  ,    -⋃ ,   -. 

In essence,   represents the ( 2-orthonormal) complement of  ̂ 
( )   ̂ in  ( ). Therefore,   is one 

refinement level higher than  ̂ 
( ) and spans  ( )   ( ), taking the form [36]: 

 ( )  ,  
( )( )   

( )( )-        Eq 36 

  
( )( )  

{
 

  √
 

 
(    )          

( )

 √
 

 
(    )           

( )
   and   

( )( )  

{
 

 √
 

 
(    )           

( )

√
 

 
(    )            

( )
 Eq 37 
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with   
( )

 ,    - and   
( )

 ,   - denoting the two shifts forming  ( ), for generality relating to 

Eq. (27). Note that   admits a discontinuity at    , which offers an advantage for the analysis of 

signals with discontinuities. Moreover,   and  ̂ are bi-orthonormal with the former inheriting the 

properties of the latter. Hence, a series of child multiwavelets * ( )+  can be defined on the 

hierarchy of grids  * ( )+  by translation and dilatation of  , such that on a grid  ( )   ⋃   
( )    

   , 

 ( )  ,  
( )

-               where each   
( )

 takes the following form:  

  
( )( )  (√ )

 
  (  (   )      ) .    

( )
/   Eq 38 

From the scaling bases, binary merging of two adjacent components belonging to  (   ) can be 

achieved to produce the components of the multiwavelet bases in  ( ). Again, it suffices to outline 

the relationship linking an elementary multiwavelet basis ,  
( )- in  ( ) to the scaling bases 

, ̂  
(   )  ̂    

(   )- in  (   ) for        . This relationship can be expressed by using the so-called 

high-pass filter matrices    and   , which allow   
( )

 to be derived as linear combination of  ̂  
(   )

 

and  ̂    
(   ):  

  
( )      ̂  

(   )      ̂    
(   )      Eq 39 

   0〈  
( )  ̂  

(   )〉1  6
    √ 

√   √   
7      Eq 40 

   0〈  
( )  ̂    

(   )〉1  6
   √ 

 √   √   
7     Eq 41 

 

2.2.3 Single-scale vs. multi-scale expansions 

The definition of scaling and multiwavelet bases on the hierarchy of grids * ( )+  allows for two 

interchangeable ways to approximate a given scalar signal  ( ) defined on ,    -. Given a grid 

 ( )   ⋃   
( )    

    associated with the scaling bases  ̂( )  , ̂ 
( )-             , an approximation 

  ( ) of the signal  ( ) can be obtained by expanding it onto the bases  ̂( ) as follows [36]:  
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  ( )  ∑    ( )|  
( )

    
        Eq 42 

in which   ( )|  
( ) is a piecewise-linear expansions onto each basis  ̂ 

( )
 that is compactly-supported 

on the sub-element   
( ). The signal approximation can therefore be expressed as: 

  |  
( )  〈  

( )  ̂ 
( )〉    

  ( )  ̂ 
  ( )    

  ( )  ̂ 
  ( )  Eq 43 

where   
( )

 ,  
  ( )   

  ( )
- denotes local scale coefficients expanding   ( )|  

( ) onto the basis  ̂ 
( ), 

which can be initialised as   
  ( )

 〈   ̂ 
  ( )〉 with        . This type of description, i.e. in Eqs. (42) 

and (43), is called single-scale expansion as it only involves scale coefficicents from the grid  ( ), at a 

single-scale refinement level ( ).  

 Another way to expand   ( ) is to involve the multiwavelet bases. By doing so, the single-

scale description of in Eqs. (42-43) can be recursively decomposed to produce a so-called multi-scale 

expansion. This form of description sums up the features of   ( ), via wavelet coefficients, 

throughout grids  ( )    (   ) to its background information at its coarsest level (i.e. the scale 

coefficients on  ( )). Hence, the multi-scale expansion takes the form [36]: 

  ( )    ( )|  
( )  ∑ .∑  〈  

( )
( )   

( )( )〉    
   /   

      Eq 44 

〈  
( )
  

 
( )〉    

  ( )
  

 
  ( )    

  ( )
  

 
  ( )    Eq 45 

with   
( )

 ,  
  ( )   

  ( )
- denoting the local details also known as detail coefficients or wavelet 

coefficients. They can be initialised as   
  ( )

 〈    
  ( )〉 with        . The multi-scale expansion in 

Eqs. (44-45) clearly distinguishes the details of   ( ) between successively higher resolution, which 

become increasingly significant with increasing levels of non-smoothness in   ( ) while remaining 

negligible where   ( ) is smooth. Therefore, it provides a mechanism to analyse, decompose and 

reconstruct the approximate signal   ( ) across the grids in the hierarchy * ( )+ .  

 

2.2.4 Two-scale transformations between coefficients 
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From the link between the high- and low-pass filter matrices [36] outlined previously in Eqs. (34-35) 

and (40-41), relationships for scaling up or down (recurrently) relevant coefficients between 

subsequent resolution levels ( ) and (   ) can be produced, namely: 

{
  
( )        

(   )          
(   )

  
( )        

(   )          
(   )

    Eq 46 

{
   
(   )  ,  -    

( )  ,  -    
( )    

     
(   )  ,  -    

( )  ,  -    
( )    

   Eq 47 

Eq. (46) is useful to encode (or extract) the scale and detail coefficients   
( ) and   

( ) at a sub-

element   
( )   ( ) from the scale coefficients    

(   ) and      
(   ) of its two child sub-elements 

*   
(   )

      
(   )

+    (   ). It applies in a descending order across refinement levels starting from sub-

elements on the finest grid  ( ) with ( ) being a maximum refinement level prescribed by a user. 

This results in a multi-scale expansion, as in Eq. (44), compressing the details across the whole 

hierarchy * ( )+         . Eq. (47) is used in the opposite sense to decode (or combine) scale and 

wavelet coefficients at any   
( ) (           ) to generate their scale coefficients located one 

resolution higher, i.e. the scale coefficients on the two sub-elements    
(   ) and      

(   ). Given a 

multi-scale expansion, Eq. (47) can successively be applied in an ascending order, starting from the 

information available at the coarsest grid  ( ), to retrieve a single-scale expansion, as in Eq. (42), up 

to any refinement level ( ),       . 

 

2.2.5 Extension of the analysis for the DG2 modes on multiresolution bases  

To extend the validlity of the analysis in Secs. 2.2.1-2.2.4 from bases * ̂( )+ , spanning ,    -, to the 

multiresolution bases *  
( )+ , spanning   , it suffices to consider Eq. (31) and the notation adopted 

in Sec. 2.1.4. Now, Eqs. (42-45) can be reused for any physical component  , with   |   being its 

expansion on    by coefficients ,  
( )

-   , as in Eq. (42). Each   
( )

 contains the expansion coefficients 
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of a local linear DG2 solution on sub-elements   
( )

   , as in Eq. (43), or DG2 modes as   
( )

 

,  
  ( )

    
  ( )

-. 

Over a selected grid   
( )

 ⋃   
( )    

    of the hierarchy of grids *  
( )

+ , DG2 modes 

,  
( )

-             can be initialised for the single-scale expansion   |  , which actually represents an 

assembled DG2 solution on grid   
( )

. Alternatively, a multi-scale expansion is also possible as in Eqs. 

(44-45), which is actually a compressed MWDG2 solution allowing to access the details ,  
( )-    , with 

  
( )

 ,  
  ( )    

  ( )
-, living on lower resolution grids *  

( )
+           . These details can be initialised 

from the DG2 modes on   
( )

 for the physical components   *       + as explained later in Sec. 

2.3.1. With this change of bases and variable, the two-scale transformation formulae in Eqs. (46-47) 

should be re-scaled by √  to make them relevant to the DG2 modes and their associated details, 

leading to modified formulae: 

{
  
( )  

 

√ 
.      

(   )          
(   )/

  
( )  

 

√ 
.      

(   )          
(   )/

    Eq 48 

{
   
(   )  √ .,  -    

( )  ,  -    
( )/    

     
(   )  √ .,  -    

( )  ,  -    
( )/  

   Eq 49 

As detailed later in Sec. 2.3, Eqs. (48-49) can be directly deployed within the scaled DG2 method, as 

needed, to encode information via Eq. (48), i.e. binary merging of DG2 modes on   
(   )

 to generate 

coarser modes and/or their details on   
( )

, or decode information via Eq. (49), i.e. adding up the 

details and modes on   
( )

 to generate the DG2 modes on   
(   )

. Encoding is key to produce, scan 

and distinguish the details across successive refinement levels from within the compressed MWDG2 

solution, whereas decoding is key to generate an assembled DG2 solution from a set of carefully-

selected DG2 modes relative to sub-elements with non-uniform size   ( ).  

 

2.3 Multiresolution scaled DG2 adaptive solution 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

This section describes how multiresolution analysis (Sec. 2.2) can be used directly within the scaled 

DG2 formulation (Sec. 2.1) to produce the so-called adaptive MWDG2 numerical solution. The 

starting point is to set a desired maximum refinement level ( ) and thereby refine the coarsest 

discretisation of the domain   ⋃   
 
    to be at the finest uniform resolution allowable (a uniform 

mesh with     sub-elements). Now, each element    has    sub-elements *  
( )

+             such 

that      
( )

 ⋃   
( )    

   . Given that the combined MWDG2 functioning can be applied element-

wise, we hereafter assume that the coarsest grid spanning   is made by a single element, hence we 

take       without loss of generality. Now   
( )

 represents the finest uniform discretisation for  , 

which is made of sub-elements *  
( )

+            . On each sub-element   
( )

, DG2 modes,   
( )

 

,  
  ( )    

  ( )
- with   *     + can be initialised in terms of flow and topography data (Sec. 2.1.4), 

forming an assembled DG2 solution on the finest grid   
( )

 for initial pre-processing (Sec. 2.3.1). 

 

2.3.1 Pre-processing: generation of initial detail coefficients (  = 0 s) 

Initially, DG2 modes ,  
( )

-              of the flow and topography are only available on   
( )

. From 

these modes, details ,  
( )

-    living on the lower resolution grids *  
( )

+            can be encoded. 

This is achieved by successive application of Eq. (48) in a descending order, starting from refinement 

level (   ) until reaching the coarsest level ( ) where both the coarsest modes   
( )

 and details 

  
( ) become available. Moreover, details representing the water height   were encoded based on 

the DG2 modes representing the free-surface elevation    , which was found necessary to avoid 

producing misinformative details for   when the topography is very steep. In what follows, the 

details ,  
( )-    will be actually associated with components   *       +. 

From the details ,  
( )-   , an alternative set of normalised detail magnitudes, denoted by 

, ̌ 
( )-   , can be generated. This set is needed to enable measuring the significance of all detail 
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coefficents combined, regardless of which physical quantity   they represent. Namely, a normalised 

detail magnitude  ̌ 
( ) is a scalar evaluated from from its detail   

( ) as [29]: 

 ̌ 
( )

 
   .|  

  ( )
| |  

  ( )
|/

   (  |    (,  
  ( )

- )|)
      Eq 50 

where     (,  
  ( )- ) is the maximum of the average coefficients of the DG2 modes on   

( )
 – also 

across the hierarchy *  
( )

+          due to variational boundness across refinement levels. 

Note that, at the starting time, all details ,  
( )-    for all variables   *       + are fully 

accessible on *  
( )

+           . They can be ascendingly summed upon the coarsest DG2 modes, 

  
( )

, on    to form a compressed MWDG2 solution on *  
( )

+         , which is as accurate as the 

assembled DG2 solution on   
( )

. Later, when   > 0, details ,  
( )-    of the flow variables   *  

   + are subjected to constant change given the time-dependent nature of     and   (Sec. 2.3.4), 

while the details of   do not change with time. 

 

2.3.2 Prediction, regularisation and decoding: adaptive solution generation (  ≥ 0 s) 

By analysing the magnitude of the normalised details in the hierarchy *  
( )+         , an adaptive 

grid at a present time  , denoted by   
 ( ), can be formed by selecting certain sub-elements: 

  
 ( )  2  

( )  *  
( )+                        ⋃   

( )
   3  Eq 51 

The act of measuring normalised detail magnitudes is here refered to as prediction and involves four 

subsequent steps for deciding the sub-elements forming   
 ( ).  

Firstly, an error threshold   needs to be prescribed such that      , which is a 

parameter chosen by the user to decide which details can be ignored. While there is no unique 

choice for  , an optimal range of choices exists to keep the accuracy of assembled DG2 solution on 

  
 ( ) at the same level as the finest resolution accessible on   

( )
 at time   – via the compressed 

MWDG2 solution [27]. An optimal choice for   is expected to be somewhere between      and 

    . Arguably, the choice of   is rather heuristic, context-specific and seemigly dependent on the 
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order-of-accuracy of the DG scheme [20, 21, 29]. An analysis on the choice of   for the adaptive 

HFV1 and MWDG2 solvers used in the present work is carried out later in Sec. 3.1.1. 

Secondly, normalised details , ̌ 
( )-    living on *  

( )+            are compared to   for 

indentifying the significant details. In doing so, their magnitudes are scanned, level-wise (in an 

ascending order            ), and compared to level-depedent error thresholds  ( ) such that 

 ( )       . Within this process, a detail   
( ) is classified as significant if: 

 ̌ 
( )

  ( )     Eq 52 

Meanwhile, sub-elements   
( )

 with significant details are flagged as active, meaning they are 

plausible candidates for inclusion in   
 ( ). 

Thirdly, re-flagging of active sub-elements   
( ) is needed for regularisation, to ensure that 

significant details can be re-accessed within a tree structure. In fact, across   
(   )

     
( )

 and   
( )

, 

whenever any child details    
( )

 or      
( )

 is significant on   
( )

 its parent detail   
(   )

 on   
(   )

 can 

only be significant and should be made accessible for possible use – later in the generation of an 

assembled DG2 solution on   
 ( ). Thus, regularisation is the act of ensuring that such sub-elements 

  
(   ) are also flagged as active. When many mother elements are used (  > 1), regularisation 

should also consider activating those sub-elements located at the boundaries across the elements, 

which is necessary to ensure that the modelling information can propagate across different 

elements. 

Fourthly, all significant details   
( ), at a present time  , are revisited to also predict whether 

their significance is likely to remain or increase at time       , with    denoting the simulation 

time-step. Such a detail is here referred to as extra-significant and can be identified by: 

 ̌ 
( )    ̅    ( )     Eq 53 

In Eq. (53),  ̅ is the order-of-accuracy of the prediction operator [21], which is chosen such that 

      ̅        , with      being the polynomial-order of the DG solution. In this work,  ̅ is 

taken equal to 1.5, though it may be useful to note that any other choice within this range was found 
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appropriate. When a detail   
( )

 is extra-significant, the set of active sub-elements is enlarged to 

include, in addition to   
( )

, its child sub-elements    
(   )

 and      
(   )

. This step is necessary to ensure 

that no significant features in the adaptive flow solution,   *     +, on   
 ( ) are overlooked on 

  
 (      ) when generating future details (Sec. 2.3.4). 

Finally, a DG2 solution on   
 ( ) can be decided by ascendingly inspecting the tree of details, 

starting from the coarsest details   
( ) and DG2 modes   

( ), while decoding. That is, while climbing 

the details tree (          and      ), Eq. (49) is successively applied to decode local DG2 

modes   
( ) on active sub-elements   

( ). Inspection of details is aborted under two circumstances:  

(i) When a detail   
( ) switches status to becoming insignificant for the first time, with its local 

DG2 modes   
( ) selected for generating the assembled DG2 solution on   

 ( ), or otherwise 

(ii) Inspection and decoding reached   
(   )

 with certain details   
(   )  remaining significant, 

and their local DG2 modes   
(   ) are already decoded. Then, a last round of decoding is 

applied to yield the child modes    
( ) and      

( )  on   
( )

 for inclusion while generating the 

assembled DG2 solution on   
 ( ). 

The adaptive DG2 solution can now be viewed as a series of carefully-selected DG2 modes forming 

an assembled DG2 solution on the non-uniform grid   
 ( ). Each local DG2 mode should then be 

updated by applying the scaled DG2 formulation as described in Sec. 2.3.3. Prior to this, the DG2 

modes representing the water height   should be restored, by subtracting the modes representing 

the topography   from those of the free-surface elevation    . Then, the scaled DG2 formulation 

can be applied to update the DG2 modes of the main flow data   *   + as previously described 

(Secs. 2.1.3 and 2.1.4). 

 

2.3.3 RK2-DG2 update: elevating the modes of the assembled DG2 solution to time      

By applying the scaled DG2 formulation described in Sec. 2.1.4, each local mode in   
( ), relevant to 

the main flow data   *   +, is updated within a standard RK2 time stepping. While doing so, key  
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treatments are incorporated in the RK2-DG2 update to ensure stability around sharp solution 

gradients, together with conservative incorporation of source terms with wetting and drying. These 

treatments are well-reported for the unscaled RK2-DG2 method [41]. Herein, they are re-applied 

with few modifications to accommodate the scaling introduced to the present DG2 method and the 

changes related to using the standard SWE model instead of the pre-balanced model [19], and to 

further exploit the details ensuring the generation of a robust (assembled) DG2 solution. These 

treatments are summarised in the rest of this section. 

Double localisation and slope limiting: Local slope limiting is needed for certain slope 

coefficients   
  ( )

 of the flow variables   *   +. Slope limiting is a necessary process prior to each 

RK stage to prevent development of Gibbs phenomena around sharp solution gradients. It should 

only be triggered at such portions in the solution, otherwise it can degrade the conservative 

character of DG2 modes in any other portions of the DG2 solution, or even affect robustness (e.g. 

see examples within [41, 42]). Therefore, double localisation is applied to cautiously restrict the 

application of the slope limiter to the portions of the assembled DG2 solution at which sharp 

gradients are about to form. The first localisation step consists of only considering the active slope 

coefficients at the maximum refinement level ( ),   
  ( )

, for possible limiting. In fact, DG2 modes, 

  
( )

, at refinement level ( ) can only be active whenever sustained by a tree of significant details, as 

previously described in Sec. 2.3.2 and also proved in [43]. When this happens,   
( )

 should be 

representative of a local feature occurring in the assembled DG2 solution. Such a local feature can 

either be a sharp discontinuity, i.e. a shock wave, or shockless representing a solution kink (e.g. a 

front of a rarefaction wave) or a rapidly changing state (e.g. due to a wetting and/or a drying 

process). Therefore, a second localisation step is needed to avoid slope limiting around any 

shockless feature within the assembled DG2 solution. This can be achieved by further subjecting 

those active slope coefficients   
  ( )

 to Krivodonova’s shock detector [44], which is here used with a 

detection threshold ≥ 9, instead of 1 [44], to ensure it only detects slope coefficients associated with 
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the presence of a sharp solution discontinuity. After double localisation, the relevant slope 

coefficients can then be limited by a slope limiter function such as the Generalised minmod (i.e. Eq. 

2.9 in [35]),which is here used. Moreover, shock detection and limiting is applied component-wise 

on   *     +, with the component     used instead of   to ensure that the presence of sharp 

terrain gradients will not mistakenly trigger any slope limiting on the slope coefficients representing 

the water height  . After double localisation and limiting, limited slope coefficients for   can be 

deduced from the limited slope coefficents of    , by subtracting the slope coefficients of  . 

It may be useful to note that without double localisation the quality of the assembled DG2 

solution – compared to the DG2 solution on a uniform grid – might undergo more significant 

deterioration as a result of unnecessary calls of the Generalised minmod limiter. In effect, the limiter 

tends to either zero or unnecessarily substitute the true DG2 slope coefficients. In any case, this 

leads to false slope coefficients being used during encoding (Eq. 48) resulting in false details in the 

compressed MWDG2 solution, which would manifest themselves in a deteriorated assembled DG2 

solution after decoding (Eq. 49).  

Well-balanced and depth-positivity-preserving DG2 modes: The selected DG2 modes forming 

the assembled DG2 solution on   
 ( ) are revised based on the wetting and drying condition 

described in [41], which is applied here with the following changes. Firstly, Eq. (19) is used to 

generate the original Riemann states for the components   *       +, instead of Eq. (12) in 

[41]. Secondly, revised states for the components   *       + are reconstructed from original 

states under conditions ensuring both depth-positivity and well-balancedness (i.e. using Eqs. (14-16) 

in [41]). These revised states should be used to calculate Riemann fluxes across the sub-elements 

forming   
 ( ). Thirdly, Eqs. (13-14) and (21-22) are reused to reconstruct DG2 modes based on the 

revised Riemann states. Fourthly, revised DG2 modes of the   variable are deduced from those of 

the     variable by subtracting the revised DG2 modes of the   variable. Finally, revised DG2 

modes of   *     + and Riemann fluxes become availabe to evaluate the DG2 operators (Eqs. 25-

26). 
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When applying the present wetting and drying condition, it may be useful to note two key 

aspects. The first is about the continuity property of the DG2 topography projection in Eq. (20). 

Although Eqs. (21-22) ensure that the continuity of the DG2 topography projection holds on a static 

uniform grid [14], this property does not necessarily hold for the assembled DG2 topography 

projection on   
 ( ). In fact, this topography projection is subject to constant decoding (Eq. 49) from 

the compressed MWDG2 solution based on coefficients (Eqs. 34-35 and 40-41) associated with 

decompositions from essentially discontinuous functions (Eqs. 31-32 and 36-37). Hence, involving 

the free-surface elevation     as an intermediate variable (as in [41]) is found necessary to achieve 

wetting and drying without relying on the continuity property for the assembled DG2 topography 

projection on   
 ( ). 

The second aspect is about a specific time-step restriction criterion to ensure depth-positivity for 

the average coefficients with time evolution. By denoting (  
 )  and (  

 )     the average 

coefficients of the water height variable at times   and     , respectively, the following formula 

can be obtained (using a similar reasoning as in [41]):  

(  
 )     ,      - (  

 )     Eq 54 

In Eq. (54),    stands for the Courant number relative to the Courant–Friedrichs–Lewy condition, 

which restricts the time-step size    within explicit time integration schemes. From Eq. (54), it is 

clear that, whenever (  
 )   ,    must be      to also ensure that (  

 )      . While condition 

(54) may be irrelevant for the RK2-DG2 method for which        [35], it is found critical to 

preserve the stability of its first-order finite volume variant for which     , as described later (Sec. 

2.4). 

Scaled implicit friction term discretisation: Prior to the double localisation and limiting process, 

the DG2 modes of the discharge are modified to add friction contribution as done for the unscaled 

DG2 formulation (i.e. see Sec. 2.5 within [41]). The same approach is applied for the scaled DG2 

method used in this work, leading to similar expressions as in [41] (i.e. Eq. 36 in Sec. 2.5 of [41]) for 
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adding friction into the discharge slope coefficients, but without having any of the √ s due to to the 

use of rescaled basis functions. 

 

2.3.4 Truncation and encoding: forming a new compressed MWDG2 solution 

To create new details, the updated DG2 modes, which form the assembled DG2 solution on   
 ( ), 

should be used to reform a compressed MWDG2 solution on *  
( )

+           . DG2 flow modes for 

the components   *   + are only defined for the sub-elements in *  
( )+            that spanned 

  
 ( ). The other sub-elements remained inactive, hence have non-existent DG2 flow modes. In this 

work, truncation is the process of initialising zero details throughout *  
( )+           , in particular 

at the inactive sub-elements to keep them subject to potential activation in the next round (i.e. 

while redoing the process described in Sec. 2.3.2). Over the active sub-elements, belonging also to 

  
 ( ), encoding is done by successively applying Eq. (48), level-wise in decending order. This 

generates new flow details from the updated DG2 modes and thereby addresses any irrelevant 

zeroing introduced previously by truncation. As in the pre-processing step (Sec. 2.3.1), encoding 

should be applied on the components   *     +. After truncation and encoding, a full set of 

new details ,  
( )-    is available, for which an alternative set of normalised details , ̌ 

( )-    can be 

produced via Eq. 50 (see Sec. 2.3.1). With new sets of details in place, the process (Secs. 2.3.2-2.3.4) 

can be repeated to evolve the adaptive solution up to a specific simulation time. 

 

2.4 First-order variant: adaptive Haar Finite Volume (HFV1) scheme  

The HFV1 adaptive solution is effectively an MWDG1 method formulated upon the same scaling and 

wavelet basis described in Secs. 2.1-2.3, but only considering the the zeroth component of the 

Legendre basis, i.e.   ( )   , hence neglecting the slope coefficents. Now the local approximate 

solution    in Eq. (11) becomes piecewise-constant, which can be initialised by Eq. (13) and updated 

by the operator (17). The filter matrices are thus made of a single scalar, given by: 

               √        Eq 55 
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with which Eqs. (48-49) are applied to encode and/or decode coefficents   
( )

 and/or   
( )

. These 

coefficients now include only one component representing the piecewise-constant averaged data. 

The adaptive HFV1 solution is processed as described in Sec. 2.3, while omitting all the routines 

involving slope coefficents (e.g. double localisation and limiting). Explicit first-order time marching is 

applied for time integration, but with Courant number not exceeding 0.5 to ensure depth-posivity 

(see Sec. 2.3.3). For comparison purposes, the highest permissible Courant number shared by the 

MWDG2 and HFV1 adaptive solutions, i.e.         , is chosen to run all the simulations in Sec. 3. 

 

Figure 1. Variation of (a) normalised ℓ
2
 water height error at   = 2.5 s and (b) total CPU time for the 40-second 

long simulation of a frictionless dam-break on a wet domain, using adaptivity thresholds from   = 10-6 to   = 

10
-
1. Adaptive HFV1 and MWDG2 results are obtained using a baseline mesh with a single mother element (  

= 1) and a maximum refinement level      . Adaptive solutions are compared with FV1 and DG2 solutions on 

uniform meshes with 27 = 128 elements (marked by horizontal dotted lines) and 29 = 512 elements (marked by 

horizontal dashed lines). 
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3. Numerical tests 

Seven diagnostic tests are conducted to identify and compare the behaviour of the adaptive HFV1 

and MWDG2 solution schemes with reference to the standard first-order finite volume (FV1) and 

second-order discontinuous Galerkin (DG2) schemes on uniform grids. The first test considers a dam-

break flow on a wet and flat domain with a shock wave, on which wavelet-adaptivity related issues 

and choices are thoroughly analysed to find a setting where the adaptive solvers are as numerically 

accurate as their uniform grid counterparts at the finest resolution available, while remaining 

computationally more efficient. In the second test, the predictive accuracy of the adaptive solvers is 

re-explored for dam-breaks over a dry bed to assess their sensibility in tracking dynamic flow 

evolution with wet-dry front propagation over frictionless and frictional beds. Shockless dam-break 

flows over a dry domain are examined in the third test, to further inspect the properties of the HFV1 

and MWDG2 solvers in capturing a wet-dry front accelerating downhill and decelerating uphill. The 

fourth test introduces topography with discontinuities and kinks partially submerged below a lake-

at-rest. The test is used to examine the automated mesh generation capability of the adaptive HFV1 

and MWDG2 solvers, and to assess their ability to preserve well-balanced adaptive solutions with 

zero flow. In the fifth test, steady-state flows are explored to study the convergence property of the 

adaptive solvers to steady-state, and to verify further their well-balancedness for non-zero flows. 

The sixth test uses an oscillatory flow in a parabolic bowl to measure the numerical conservation of 

mass and energy in a frictionless and physically closed domain, where the solvers are subjected to a 

perpetually moving wet-dry fronts with periodically vanishing velocities. The final test simulates a 

laboratory flume experiment of a frictional dam-break flow over a trapezoidal hump, including an 

analysis of the trade-off between maximum refinement level and computational efficiency. 

 Except when clearly stated for a specific test, the following setting is used as a standard. 

Adaptive HFV1 and MWDG2 solution runs start from a single mother element (  = 1) with nine 

refinement levels (     ), hence yielding an adaptive grid   
  with number of sub-elements 
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between 20 = 1 and 29 = 512. Uniform FV1 and DG2 solution runs are made at the finest resolution 

accessible to the adaptive solvers, hence on grid   
( )

 with 512 elements. All solution runs are carried 

out using the same basic parameters, namely    = 0.3 for the time-step selection, 10-4 for dry (sub-

)element detection, and 9 for Krivodonova’s shock detector [44] with the MWDG2/DG2 solvers. All 

the simulation results presented here are made available for access as supplementary materials [33]. 

The Fortran 2003 code used to run these tests is available for download on Zenodo [34]. Instructions 

for running the models and interpreting the data are provided in Appendix 1. 

 

Figure 2. Solutions of the frictionless dam-break on a wet domain at   = 2.5 s obtained using a baseline mesh 

with a single mother element (  = 1) and a maximum refinement level   =  9.  Solutions obtained with the 
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adaptive HFV1 and MWDG2 solvers are compared with the analytical solution for (a) water height  , and (c) 

discharge  . (b) The refinement levels used by the adaptive solvers. 

 

3.1 Dam-break flow on a wet domain with shock 

Shock wave transients are characteristic of hydrodynamic flows, which are typically short-lived 

during a long time simulation. In reality, they could well represent an impact event perturbing the 

flow over the whole simulation domain. Fine mesh spacing is typically desired over a relatively short 

period of time when the shock occurs and propagates, but such resolution may no longer be 

required as the shock dissipates. To explore the characteristics of wavelet-based adaptivity within 

the HFV1/MWDG2 solutions with discontinuities including shocks, the classical dam-break test with 

a flat topography is considered. Therefore, a one dimensional frictionless and wet domain is 

assumed of length between   = 0 and   = 50 m with a hypothetical dam located at      m. The 

dam separates two water bodies with different initial values of the water height  . The initial 

conditions are a zero discharge and a discontinuous water profile given by: 

 (   )  {
             
             

    Eq 56 

This results in a flow profile including a shock wave and rarefaction wave which propagate away 

from the initial dam position in opposite directions separated by a constant state [38]. Assuming 

open domain boundaries, both waves are expected to be present by   = 3 s before entirely exiting 

the domain by   = 10 s. Five series of runs are performed using different solver configurations with 

the same initial conditions, each with a specific purpose as detailed in the following. 

 

3.1.1 Optimal choice for the error threshold driving wavelet-adaptivity 

In this first series of tests, the adaptive HFV1/MWDG2 solvers are employed to identify the error 

threshold (Sec. 2.3.2) that ensures a fair balance between the numerical accuracy and the 

computational efficiency of the adaptive solvers. Adaptive and uniform solution schemes are run for 

the standard setting, which yields a uniform grid with 512 elements for the FV1/DG2 solutions (Δ  = 
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0.098 m) and an adaptive grid that can allow up to 512 sub-elements (Δx(9) = 0.098 m) for the 

HFV1/MWDG2 solutions. To measure accuracy, the normalised    error is calculated while varying 

the additivity error threshold from   = 10-6 to   = 10-1 (Figure 1a). The    errors are evaluated for the 

water height variable at   = 2.5 s, when both shock and rarefaction waves are still present in the 

domain (see Figure 2). A normalised    error is calculated as: 

   √.  
  ( )

   /
 
  ( )

(  )
    ( )        Eq 57 

where    is the analytical water height as described in [45]. The ℓ2 error for the adaptive solutions is 

always evaluated on the finest uniform grid available, namely   
( )

 – by prior conversion from a 

compressed solution on   
  into an assembled solution on   

( )
 (Sec. 2.2.5). In Figure 1a, the    

errors of the adaptive HFV1/MWDG2 solvers for various error threshold values are compared to the 

   errors relative to their uniform FV1/DG2 counterparts on the finest grid. These results show that 

both adaptive HFV1/MWDG2 solvers can preserve the    accuracy of the underlying uniform 

FV1/DG2 solvers, respectively, up to an error threshold value of   = 10-2. Particularly, for   ≤ 10-2, the 

errors of the MWDG2 solution remain lower than the errors of the uniform FV1 solution on the 

finest grid, as expected due to the second-order accurate nature of the MWDG2 solver. With   = 10-

1, the    errors of HFV1/MWDG2 exceed the    errors of uniform FV1/DG2 counterparts on the 

finest grid (with 29 elements), although they remain bounded by the uniform FV1/DG2’s errors that 

are two order of resolution coarser (on the grid with 27 elements). Nonetheless, with ε = 10-1, the    

error of MWDG2 is noted to exceed the    error of FV1 on the finest grid, making it a less compelling 

choice to further benefit from the DG2 accuracy. Hence, the error threshold ε = 10-3 is found to be a 

rational choice to keep the predictive accuracy of the adaptive solvers at the same level as their 

uniform counterparts on the finest grid available, and to achieve second-order accuracy with the 

MWDG2 solver. 

 Computational efficiency is measured as the CPU time needed to complete a 40-second long 

simulation and including the pre-processing step (Sec. 2.3.1). Figure 1b shows the CPU times for the 
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adaptive HFV1/MWDG2 solvers evaluated for all the error thresholds used in the accuracy analysis 

(Figure 1a), along with the CPU times for the uniform FV1 and DG2 simulations on the finest grid 

(512 elements). As the threshold error increases, the CPU time of the adaptive HFV1/MWDG2 

solvers decreases initially and becomes practically constant for ε ≥ 10-3. For the considered threshold 

errors, the MWDG2 solver results in 2.3 to 140 times faster simulations than the uniform DG2 solver 

on the finest grid. In contrast, the adaptive HFV1 solver could only be faster than the uniform FV1 

solver on the finest grid for   ≥ 10-4, most likely due to dominance of the wavelet-adaptivity 

overhead (Sec. 3.1.5). On the finest uniform grid, the DG2 solver is found to be around 8 times more 

expensive than the FV1 solver, although the MWDG2 solver with   = 10-3 exhibits a better 

performance that the FV1. 

These tests indicate that an error threshold of   = 10-3 is an optimal choice for the adaptive 

MWDG2 solver to preserve the accuracy of the uniform DG2 solver without exceeding the runtime 

of the uniform FV1 solver. This choice is also suitable for the adaptive HFV1 solver to deliver 

simulations that are as accurate as the uniform FV1 solver but computationally more efficient. 

Unless stated otherwise, in the remainder of Sec. 3, ε = 10-3 is adopted as a default choice for the 

error threshold value. 

 
Figure 3. CPU time to complete the 40-second long simulation of a frictionless dam-break on a wet domain. 

The number of mother elements and the maximum refinement level are varied together so that the adaptive 

grid allows maximum of 512 sub-elements. 
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3.1.2 Adaptive solution predictability of relevant flow features (t = 2.5 s) 

The second series of tests compares adaptive solutions of water height and discharge, and mainly 

examines the grid prediction ability relevant to the HFV1 and MWDG2 solvers. The adaptive 

solutions are analysed at   = 2.5 s, when both shock and rarefaction waves still exist. The adaptive 

solutions are illustrated in Figure 2, which shows a good agreement with the analytical solutions. The 

HFV1 predictions (Figure 2a,c) show more pronounced numerical diffusion than the MWDG2 

predictions, which is in fact expected given the first-order nature of the HFV1 scheme. 

In terms of resolution predictability, as shown in Figure 2b, both HFV1 and MWDG2 correctly 

predict the finest resolution around the shock, i.e. refinement level (9), further showing ability to 

allow large gaps in resolution levels without failing. In regions of uniform flow, at the contact wave 

and downstream of the shock, the HFV1 and MWDG2 solutions predicted the coarsest resolutions at 

refinement level (5) and (4), respectively. It is not surprising that MWDG2 yields coarser refinement 

levels than HFV1 as the former always have smaller errors than the latter for ε = 10-3  (Sec. 3.1.1). 

Nonetheless, both HFV1 and MWDG2 solvers seem able to sensibly select suitable refinement levels 

for their adaptive solution in the locality of a shock and throughout the contact wave (Figure 2 for 

        ). However, in prediction of the rarefaction wave, MWDG2 presents a remarkable 

behaviour as compared to HFV1. There, the MWDG2 solution uses refinement level (8) around the 

rarefaction’s head and tail, preserves level (7) in between them, and allows a sharp drop to level (5) 

downstream of the head. Also, the MWDG2 solution does not even access the maximum refinement 

level (9), as opposed to the HFV1 solution that deploys it to indistinguishably compute the extent of 

the rarefaction. These results suggest that the wavelet-adaptivity combined with the MWDG2 solver 

can produce an adaptive solution that is more accurate and economical on grid resolution demands. 
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Figure 4. Evolution of (a) element counts and (b) time-steps over the 40-second long simulation of a 

frictionless dam-break on a wet domain using the adaptive HFV1 and MWDG2 solvers.  The baseline mesh has 

a single mother element (  = 1) with a maximum refinement level   = 9, hence meshes have a maximum of 2
9
 

= 512 sub-elements. The inset of panel (a) plots the final 30s of the simulation when the shock and rarefaction 

waves have exited the domain. 

 

3.1.3 Size of coarse baseline grid vs. maximum refinement level 

This third series of runs aims to analyse the trade-off between coarseness of the initial grid versus 

depth in maximum refinement level. A known adverse effect of conventional adaptive mesh 

refinement methods is the need of an initial coarse mesh that is yet fine enough for the flow solver 

to sense the triggering features of the initial flow conditions [10, 26], among many other adverse 

effects [7-9, 11, 12, 46]. Wavelet-based adaptivity can overcome this drawback, permitting the 

initialisation of simulations from a very coarse initial mesh as small as two elements [32] or even a 

single element (Secs. 3.1.1-3.1.2). To study this characteristic for the adaptive HFV1 and MWDG2 

solutions, they are here reconsidered with different settings based on doubling the baseline grid size 

in conjunction with systematic lowering of the maximum refinement level, but on the basis of fixing 
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the maximum allowed number of sub-elements to 512. The parameters { ,  } are varied as { ,  } = 

{{1,9}, {2,8}, {4,7}, {8,6}, {16,5}, {32,4}, {64,3}, {128,2}, {256,1}}, and runs are made with   = 10-3. As in 

Secs. 3.1.1, the accuracy of the adaptive solvers is evaluated at   = 2.5 s according to Eq. (57), and 

their computational efficiency is assessed based on the CPU runtime taken to complete a 40-second 

simulation. 

 In terms of accuracy, the same qualitative predictions are noted for HFV1 and MWDG2 

solvers, respectively, under the different setting for { ,  }. Each of the solvers show identical depth 

and discharge predictions, which are quite similar to those illustrated in Figure 2a,c, and for this 

reason not presented here. They also yield the same number and size for the sub-element forming 

their assembled solutions, consistent with the profile shown in Figure 2b. This observation is also 

reinforced by the fact that the same normalised ℓ2 error magnitude (plotted in Figure 1 for ε = 10-3) 

is retrieved for all the settings.  

As for the runtime efficiency, it is found to be different for each solver under the different 

settings. Figure 3 shows the CPU time cost for each solver relative to each setting { ,  }. As the 

number of mother elements exceeds 32 (Figure 3), the adaptive solvers experience an increase in 

CPU times, as expected. In fact, by   > 10 s, the flow domain contains very smooth profiles, for which 

the adaptive solvers can at best select an adaptive grid at the coarsest resolution allowable, with   

elements, prior to completing the 40-second simulation (Sec. 3.1.4). In particular, the runtime of 

MWDG2 becomes significantly more costly with increasing number of mother elements, to an extent 

that the underlying DG2 operational costs are overwhelming (Figure 3 for   ≥ 128). However, as 

long as the baseline grids do not exceed 32 mother elements, the adaptive HFV1 and MWDG2 

solvers required similar runtime costs. These findings indicate that the accuracy of the adaptive 

solvers is not affected by severe coarsening in the baseline grid, but such an action is necessary to 

fully exploit wavelet-adaptivity traits to boost efficiency – in particular with MWDG2. 
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Figure 5. CPU times for the simulation of a frictionless dam-break on a wet domain using (a) FV1 on a uniform 

mesh and adaptive HFV1, (b) DG2 on a uniform mesh and adaptive MWDG2.  Filled circles mark the end of the 

simulation at   = 40s.  Inset plots show the first 0.6s of CPU time during which the adaptive HFV1 and MWDG2 

simulations have completed. 

 

3.1.4 Coarsening ability and time-step size over long time evolution 

The fourth series of runs investigates the dynamic behaviour of the adaptive solutions as the 

transient dam-break evolves and dissipates in the open computational domain during the 40-second 

simulation. The standard setting is used to re-run the HFV1/MWDG2 solvers together with the 

default error threshold, while inspecting their coarsening ability and the size of their time-step as 

time evolved. Figure 4 shows the time history for the number of sub-elements and of the time-step 

size. During the presence of the rarefaction wave in the domain,   < 10 s, Figure 4a reveals that the 

HFV1 solver requires 3 times more sub-elements than the MWDG2 solver. In line with the results in 

Sec. 3.1.2 (see Figure 2), Figure 4a shows that HFV1 – with its piecewise-constant basis – involved a 
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maximum of 233 sub-elements to represent the sloping rarefaction wave, whereas MWDG2 – with 

its piecewise-linear basis – uses just 83 sub-elements for representing the same rarefaction wave 

and does that more accurately than HFV1. Beyond   = 10 s, the maximum number of sub-elements 

with MWDG2 shows much faster decrease than with HFV1 and reaches the single mother element 

about 10 s earlier (see zoom-in portion in Figure 4a). This behaviour is expected with both solvers as 

by   > 10 s the waves exited the domain and only small solution perturbations remain. Relatedly, the 

time histories of the adaptive time-step size are illustrated in Figure 4b, showing predominantly 

larger time-steps with MWDG2 than with HFV1. The first noticeable increase in time-step size for the 

MWDG2 solver is achieved by   = 3.5 s when the shock wave exits the domain. More increase in 

time-step size is seen by   = 10 s when both waves have exited the domain. This increase becomes 

more significant from   > 23 s, when MWDG2 uses less than four sub-elements. From   > 27 s, the 

MWDG2 solver uses a time-step around Δ  = 1.5 s, which is roughly twice the time-step used by 

HFV1 over this period. This analysis supports the findings highlighted at the end of Sec. 3.1.2, 

suggesting that the MWDG2 solver is more accurate and less CPU intensive for simulations over 

large spatial domains and long-time scales. 

 

Figure 6. Normalised ℓ2 water depth error at   = 1.3 s for the simulation of a frictionless dam-break on a dry 

domain, using adaptivity thresholds from   = 10-6 to   = 10-1. Adaptive HFV1 and MWDG2 results are compared 

with those of the FV1 and DG2 solvers on uniform meshes with 128 elements (dotted lines) and 512 elements 

(dashed lines). 
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3.1.5 Computational overhead due to wavelet adaptivity 

The final series of tests examines the computational overhead associated with wavelet-adaptivity in 

the HFV1 and MWDG2 solutions. Wavelet-adaptivity reduces the number of sub-elements, 

producing coarser solutions that allow longer time-steps (Sec. 3.1.4). Fewer sub-elements and bigger 

time-steps reduce the overall computational cost (Secs. 3.1.1 and 3.1.4), but the compression and 

assembly mechanisms (via transformations (48) and (49) as detailed in Sec. 2.3) involved in the 

adaptivity calculations introduce some computational overhead that may dominate the overall 

computational cost (Figure 1b). To identify the extent of this overhead, the computational trade-off 

between the adaptive calculations and the uniform ones is analysed considering their cumulative 

CPU runtimes, respectively, throughout the 40-second simulations (Figure 5). The adaptive and 

uniform solvers are run based on the standard setting. 

In Figure 5a, the evolution of the cumulative runtimes generated by the FV1 and HFV1 are 

compared. For the first 15 s, the adaptive HFV1 solver is found to be slower than the uniform FV1 

solver due to the computational overhead associated with wavelet-adaptivity. Later, after the shock 

and rarefaction waves exit the domain, the adaptive HFV1 solution is coarsened aggressively (Figure 

4) and the associated gain in computational efficiency is seen to outweigh the adaptivity overhead. 

Nonetheless, the entire 40-second long HFV1 simulation is noted to complete in less than half the 

CPU time of the uniform FV1 simulation on the finest grid. This indicates that adaptive HFV1 

modelling is more practical when simulating flows with smooth profiles. With the adaptive MWDG2 

solver, as shown in Figure 2b, the computational overhead due to wavelet-adaptivity remains 

insignificant relative to the uniform DG2 simulation. Also, this overhead is found to be lower than 

the wavelet-adaptivity overhead experienced in the HFV1 simulation (compare the zoom-in portions 

in Figure 5a and Figure 5b) – at least for   < 15 s when the rarefaction did not leave the domain. 

Most strikingly, the adaptive MWDG2 solver is found to complete the 40-second simulation almost 

as quickly as the adaptive HFV1 solver. 
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In summary, when simulating a dam-break flow with a shock occurring on a wet domain, the 

adaptive HFV1/MWDG2 solvers with ε = 10-3 preserve the numerical accuracy of their corresponding 

uniform FV1/DG2 solvers. HFV1/MWDG2 are most effective on very coarse baseline grids down to a 

single mother element; once the waves have left the domain, both solvers are able to represent the 

spatially uniform solution with just one element. HFV1 is about twice as fast as FV1, and MWDG2 is 

about 20 times faster than DG2, with MWDG2 achieving greater accuracy than HFV1 at the same 

speed. 

 

 

Figure 7. Water height at   = 1.3 s for the simulation of a frictionless dam-break on a dry domain, comparing 

the analytic solution with numerical solutions for the adaptive HFV1 and MWDG2 solvers with an adaptivity 

threshold (a)   = 10-3 and (b)   = 10-2. (c, d) Refinement levels for the corresponding solutions.  Simulations are 

performed on a baseline mesh with a single mother element and a maximum refinement level   = 9 marked by 

a horizontal dotted line. 

 

3.2 Dam-break flow on a dry domain without shock 

As shown in Sec. 3.1, wavelet-adaptivity can easily refine the solution in the locality of a shock wave 

because wavelets act as a kind of jump detector [43]. However, a dam-break wave usually happens 

over a dry domain, without experiencing shock formation when topographic effects are neglected. In 
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this case, a wetting front propagation occurs downstream. When friction effects are also neglected 

the wave-front shape is smooth, including a wet-dry front that should be modelled with enough 

resolution to properly track arrival time. Friction retards the arrival of the wet-dry front and 

steepens the wave-front, which must also be captured with fine resolution to represent the wave 

tip. In this test, some key properties of the adaptive HFV1 and MWDG2 solvers are re-explored when 

simulating dam-break flows over a dry and flat bed, considering frictionless and frictional cases for 

which analytical or semi-analytical solutions exist [45]. 

 

3.2.1 Frictionless case 

The test configuration is the same as the dam-break on a wet domain (Sec. 3.1.1), except for the 

initial water height  , which is given by: 

 (   )  {
             
             

    Eq 58 

The adaptive HV1/MWDG2 solutions are considered with the standard setting. Tests are run for   = 

1.3 s and normalised ℓ2 errors are calculated, using Eq. (57) by differencing numerical solutions with 

the analytical solution for the same range of choices for the error threshold (between   = 10-6 and   

= 10-1). Figure 6 illustrates the respective normalised ℓ2 errors for the HFV1/MWDG2 solvers. The 

figure also includes the ℓ2 errors of the FV1/DG2 solvers on two uniform grids with 27 = 128 

elements and 29 = 512 elements, showing lesser magnitudes with DG2 as expected. For all the error 

thresholds, the HFV1 and MWDG2 solution remained more accurate than the corresponding uniform 

FV1 and DG2 solutions on the grid with 128 elements (Figure 6). The MWDG2 solver is always more 

accurate than FV1, as opposed to the previous test (compare Figure 6 with Figure 1a). With ε ≤ 10-2, 

the HFV1 and MWDG2 solutions become almost as accurate as their corresponding uniform 

solutions on the finest grid, although they are somewhat less accurate. This behaviour is not 

observed in the previous test (compare Figure 6 with Figure 1a), where the ℓ2 errors of the 

HFV1/MWDG2 solvers overlap with the ℓ2 errors of the uniform FV1/DG2 solvers on the finest grid. 
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Possibly, in this test, the water height and flow profiles are largely curved, which is the case where 

the FV1/DG2 solvers benefit more from an increase in the resolution of the uniform grid. Also, the 

flow states in the previous test remain unchanged over a significant portion in the domain (Figure 2), 

which causes less loss of relevant information within the HFV1/MWDG2 solvers – during 

(de)compression due to propagation of round-off errors in Eqs. (48-49). Here, DG2 and MWDG2 

achieved lower ℓ2 errors than in the previous test, most likely owing to the double localisation 

process that switched off the slope limiter given the shockless nature of this dam-break flow. The 

results in Figure 6 indicate that   = 10-3 and   = 10-2 seem to be good choices to maximise the 

efficiency for HFV1/MWDG2 runs and deliver comparable accuracy to the uniform FV1/DG2 runs on 

the finest grid. 

 A qualitative analysis of the adaptive HFV1 and MWDG2 solutions at   = 1.3 s is presented in 

Figure 7a and Figure 7b, which includes a comparison between the water height profiles predicted 

by HFV1 and MWDG2 for the aforementioned error thresholds and the analytical solution. HFV1 and 

MWDG2 predictions are noted to be in good agreement with the analytical solution. However, the 

HFV1 solution is seen to experience numerical diffusion at the wet-dry front and at the tail of the 

wave, slightly overestimating the region upstream of the initial dam position and underestimating 

the position of the wave-front (see magnified portions within Figures 7a and 7b). These effects do 

not seem to improve when lowering the error threshold from   = 10-2 to   = 10-3 and are not visible 

in the MWDG2 solution, which provides better overall alignment with analytical solution as expected 

from a second-order accurate numerical model. 

In terms of resolution demand, as illustrated in Figures 7c and 7d, MWDG2 allows coarser 

refinement levels than HFV1 and chooses more sensibly where to use the finest levels. With   = 10-2 

and   = 10-3, the HFV1 solution involved the two finest refinement levels, namely still accessing levels 

(8) and (9) to represent the full extent of the sloping water surface (Figures 7c and 7d). The MWDG2 

solution does not exceed levels (7) to represent this zone except where it should, namely at the kink 

and wet-dry front. Notably, with   = 10-2, MWDG2 uses level (6) and below along the smoothing 
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wave, level (7) at the kink, but without accessing any higher refinement levels despite being 

available. Considering also that MWDG2 predictions are nearly similar at   = 10-2 and   = 10-3 (see 

Figure 6b and compare Figures 7a vs. 7b), lowering   can reduce model accessibility to the finest 

refinement levels, as desired for some simulations that do not demand high resolution, while 

keeping these finest levels re-accessible as needed for other simulations (see also Sec. 3.7). 

 

Figure 8. Water height at   = 1.3s for the simulation of a frictional dam-break on a dry domain, comparing the 

semi-analytical solution with numerical solutions using the adaptive HFV1 and MWDG2 solvers with an 

adaptivity threshold (a)   = 10
-3

 and (b)   = 10
-2

. (c, d) Refinement levels for the corresponding solutions. 

Simulations are performed on a baseline mesh with a single mother element and a maximum refinement level 

  = 9 marked by a horizontal dotted line. 

 

3.2.2 Frictional case 

For the frictional dam-break case, the configuration is identical, except that the Manning coefficient 

   = 0.016 m1/3 s-1, which is selected by calibration to fit the semi-analytical solution available in 

terms of the Chézy factor [45]. Adaptive HFV1 and MWDG2 solutions are produced for the same 

error thresholds   = 10-3 and   = 10-2, which are illustrated in Figures 8a and 8b, respectively, 

together with the semi-analytical solution at   = 1.3 s. Outside of the wave tip region upstream of 
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the wet-dry front, HFV1/MWDG2 solutions perform very similarly to those in the corresponding 

frictionless test (Sec. 3.2.1). At the wave tip region, the semi-analytical solution is actually based on 

interpolation assuming a parabola [45]. As such, no exact comparisons can be made therein. 

Nevertheless, HFV1/MWDG2 solutions are found to agree well with the semi-analytical solution in 

the wave tip region, with MWDG2 producing a steeper wave-front profile. Figures 8c and 8d 

illustrate the corresponding refinement levels used by the adaptive solvers with   = 10-3 and   = 10-2, 

respectively. The adaptive HFV1/MWDG2 solutions show almost the same behaviour for the 

refinement levels as the frictionless case (compare Figures 7c and 7d with Figures 8c and 8d, 

respectively). However, at the wet-dry front, MWDG2 retains the maximum refinement level, even 

with   = 10-2, due to the steeper wave-front induced by friction. 
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Figure 9. Numerical solutions of (a, b) water elevation and (e, f) discharge for dam-breaks ascending upslope 

(left-hand panels) and descending downslope (right-hand panels) over a bed with a constant slope. Tests are 

performed using FV1 and DG2 solvers on a uniform mesh, and adaptive HFV1 and MWDG2 solvers.  For the 

adaptive solvers, (c, d) illustrate the refinement levels associated with the corresponding numerical solutions. 

 

The frictional and frictionless dam-break tests demonstrate further the ability of the 

adaptive HFV1 and MWDG2 solvers to simulate the propagation of dynamic waves over a dry 

domain. MWDG2 alleviates the numerical diffusion errors expected in the FV1 or HFV1 solutions 

with much lower refinement levels. With a threshold error of   = 10-2, MWDG2 does not need to 

access the maximum refinement level, apart at the wet-dry front when the wave-front is steepened 

by friction. This suggests that the error threshold can be further relied on to reduce model access to 

the finest resolutions available as relevant for certain simulations, even when they are set to 

perform at very high resolution. 

 

3.3 Dam-break flow descending and ascending sloping and dry beds 

In this test, the performance of the adaptive HFV1/MWDG2 solvers is further examined for dam-

break flows featuring a wet-dry front that accelerates or decelerates as it descends or ascends a 

sloping bed. A dam-break wave upsloping is initially used in [47]. A more challenging variant is 

considered here, as proposed in [42], including a case where the wave downslopes. The initial dam is 

assumed centred at   = 0 m in a [-15 m, 15 m] domain. Upstream of the dam (  < 0), the initial water 

elevation      is equal to 8 m and the water height is assumed to be zero downstream of the dam 

(  ≥ 0). A wall is assumed to exist at the upstream end (  = -15 m), which can be accounted for by 

reflective boundary conditions. Free outflow is assumed at the downstream end (  = 15 m) by 

transmissive boundary conditions. The topography is linear with a slope angle  , namely: 

 ( )              ( )     Eq 59 

Two cases are considered with α values in Eq. (59). First, a dam-break ascending with α = π/6 and, 

second, a dam-break descending with α = -π/6. The upslope dam-break is simulated for   = 1 s 
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whereas the downslope dam-break is simulated for   = 0.75 s. Both cases are assumed frictionless. 

Simulations are performed using the standard setting with the uniform FV1 and DG2 solvers (on a 

grid with 512 elements) and with the adaptive HFV1 and MWDG2 solvers taken with the default 

error threshold (  = 1,   = 9 and   = 10-3). 

In Figures 9a and 9b, the water depth predictions made by the adaptive HFV1/MWDG2 and 

uniform FV1/MWDG2 solvers are illustrated, showing comparable profiles that also match existing 

results [42]. The difference between the predictions is more noticeable for the discharge profiles as 

shown in Figures 9e and 9f. Compared to MWDG2/DG2, FV1/HFV1 predictions exhibit numerical 

diffusion at the start of the wave, as expected given the difference in the accuracy orders between 

the corresponding numerical formulations. Despite this, these discrepancies are more prominent for 

the upslope dam-break case (see   = -11 m in Figure 9e vs. at   = -6 m in Figure 9f) suggesting that 

the second-order variants provide better predictions with increased level of vigour in the wave 

propagation. At the wave-front, the discrepancies become more noticeable in both the upslope and 

downslope dam-break cases (see   > 10 m in Figure 9e vs. at   = 12 m in Figure 9f). Therein, 

informed further by the results in Figure 7a, MWDG2/DG2 are expected to more accurately follow 

the evolution of the wet-dry front as they both deploy piecewise-linear solutions to integrate 

topography and wetting and drying, as opposed to HFV1/FV1 that use piecewise-constant solutions. 

 In terms of refinement level predictions, which are illustrated in Figures 9c and 9d, the HFV1 

solution only used the maximum level (9), hence yielding identical results to those delivered by the 

FV1 solution in both upslope and downslope dam-break case. This over-prediction is associated with 

the use of a piecewise-constant basis in HFV1 that yields a staircase pattern for the linear 

topography approximation, making the solver trigger the maximum refinement level at   = 10-3. 

Note that the proposed wavelet-adaptivity formulations indistinguishably use the details of the flow 

and topography variables to generate the adaptive solution. In contrast, the MWDG2 solver, in both 

cases, predicted refinement level (8) to track the start of the wave, and levels (6) and (7) thereafter 

upstream of the wave-front. For the upslope dam-break case, MWDG2 does not access the 
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maximum refinement level (9) at the wave-front but uses refinement level (8) instead. This is in 

contrast with the downslope case where level (9) is retained therein, and level (4) is selected before 

upstream of the depression wave. Such differences in refinement level predictions are expected 

given the different flow physics involved in the upslope and downslope dam-break cases; namely, 

the wet-dry front advance is slower in the former case, whereas wave recession at the start is 

delayed in the latter case. 

 

Figure 10. Evolution of the wet-dry front for dam-breaks (a) ascending upslope and (b) descending downslope 

over topography with a constant slope. 

 

 The propagation of the wet-dry front in the numerical simulations can be compared to the 

analytical position of the wet-dry front   ( ) given by: 

  ( )       √      ( )                ( )  Eq 60 

The numerical position of the wet-dry front is calculated based on the first (sub-)element at which 

the water height is bigger than 10-2 m scanning (sub-)elements from left to right. Figures 10a and 

10b show the time evolution of wet-dry front positions for the upslope and downslope dam-break 

cases, respectively. As seen in Figure 10, FV1 calculates a slower front advance consistently under-

predicting the analytical solution. By the end of the simulations, FV1 (and identically HFV1) positions 

the front about 2 m and 1 m below the true position for the upslope and downslope dam-break 

cases, respectively. The DG2 solver tracks the upslope and downslope wet-dry fronts more 
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accurately than the FV1 solver, however showing an over-predictive tendency. The adaptive 

MWDG2 solver is seen to preserve the accurate solution of the underlying DG2 solver. The frontal 

evolution obtained with the DG2 and adaptive MWDG2 solvers compares favourably with results 

using the RKDG2-LFT solver presented in Kesserwani and Liang [42]1. In summary, the adaptive HFV1 

solver is not found as effective as in the previous dam-break tests on flat beds because of its 

piecewise-constant basis that can yield over-refinement when approximating a sloping topography 

profile. The adaptive MWDG2 solver uses a piecewise-linear basis that can exactly represent the 

sloping topography at any refinement level, so the MWDG2 solver is able to coarsen more effectively 

than HFV1 while proving more accurate and economical. 

 

Figure 11. Discharge after   = 100 s for the simulation of the lake-at-rest using (a) the FV1 solver on a uniform 

mesh and the adaptive HFV1 solver, (b) the DG2 solver on a uniform mesh and the adaptive MWDG2 solver. 

The analytical solution remains at rest with zero discharge while the numerical discharge is close to machine 

precision in all cases. 

                                                             
1 In their Figure 4b, the analytical front evolution plot for the downslope case is incorrect. Their numerical 

results are more closely aligned with the correct analytical front evolution presented here in Figure 10b.  
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3.4 Well-balanced property and mesh generation ability 

This test examines the initial mesh generation ability of the adaptive solvers and their well-balanced 

property in reproducing a lake-at-rest. Unlike the idealised sloping topography in the previous test, 

real terrain is fractally multi-scale, non-smooth, and often discontinuous, as in the presence of 

buildings. Preserving quiescent flow over an irregular topography is challenging for numerical 

shallow water models, in particular at partially wet zones located at bed discontinuities [14, 17]. To 

assess the full extent of well-balancedness, a lake-at-rest test has been proposed [48] based on an 

idealised topography with smooth, sloping and discontinuous regions (see Figure 12). 

 

Figure 12. Topography profiles for the simulation of the lake-at-rest using (a) the adaptive HFV1 solver, (b) the 

adaptive MWDG2 solver. The idealised topography has a smooth, curved hump (left), triangular hump (centre) 

and discontinuous, rectangular hump (right). The water elevation, topography profile and corresponding 

refinement levels are plotted on the same axis. Solutions are obtained using a baseline mesh with a single 
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mother element and a maximum refinement level   = 9.  Markers show cell centre positions, and the full, 

piecewise representation of topography is plotted. 

 

The lake-at-rest is defined on [0 m, 50 m] with an initial water elevation   +   = 2 m such that three 

scenarios occur: exactly dry at a peak (  = 0 m at the curved hump), submerged portion (  > 0 m at 

the triangular hump) and unsubmerged portion with two wet-dry fronts (  < 0 m at the rectangular 

hump). The adaptive and uniform solvers are applied to compute the lake-at-rest conditions with 

zero initial discharge (  = 0 m2 s-1). Simulations are executed for a relatively long time evolution, 

namely   = 100 s corresponding to about 16,000 time-steps, considering two error thresholds   = 10-1 

and   = 10-3 with the standard setting (  = 1 and   = 9). A robust and well-balanced solver should 

preserve the initial water state and the initial zero discharge unperturbed as time evolves. 

 Figure 11 shows the discharges computed by the adaptive and uniform solvers. All the 

numerical discharges are observed to be very close to machine precision (Figure 11) and the initial 

water elevation remains unchanged (Figure 12) for all the solvers throughout the simulation. Slightly 

larger discharge predictions are noted with MWDG2 at   = 10-3 than with MWDG2 at   = 10-1 (Figure 

11b) and with HFV1 (Figure 11a). This behaviour is expected as the smaller the  , the more MWDG2 

will access Eqs. (48-49), causing more knock-on effects due to rounding of the irrational numbers 

involved in the filter banks. Nonetheless, this increase in error is negligible even after very long time 

evolution. Figure 11b also shows two spikes in the discharge predictions occurring around the 

discontinuities of the rectangular hump for DG2 and MWDG2 at   = 10-3. These spikes, however, do 

not grow over the 100-second long simulation, and their magnitude is noted to be smaller with grid 

coarsening (e.g. compare with the MWDG2 predictions at   = 10-1). These results confirm that the 

adaptive HFV1/MWDG2 solvers are well-balanced. Noting also that the negative water height below 

the rectangular hump remains unmodified with time evolution (Figure 12), the sharp-edges of the 

rectangular hump effectively become (internal) boundaries, which there is no need to manually 

recognise since the initial water elevation can intersect the topography without affecting the well-
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balancedness of the solution. This property seems therefore to be instrumental to deal with the 

presence of buildings during the mesh generation process. 

Since     and   are unvarying in this test, the assembled initial (adaptive) solution is solely 

selected driven by the topographic features. The well-balanced HFV1/MWDG2 solvers can therefore 

be used as mesh generators subject to choosing an error threshold. The mesh generation ability of 

these solvers is particularly explored by further analysing their refinement level predictions. Figures 

12a and 12b include the refinement levels predicted by the HFV1 and MWDG2 solvers, respectively. 

At the rectangular hump, both HFV1 and MWDG2 solvers are seen to select the maximum level (9) 

at the sharp edges, and to coarsen effectively in-between them where the topography is smooth. 

For this hump, the smooth portion is flat and the sharp-edged portions are strongly discontinuous. 

The former portion is readily represented by coarse piecewise-constant and piecewise-linear data, 

while the latter portion can easily be detected by both representations. The choice of the error 

threshold seems to have little effect on representing this obstacle, as very similar refinement levels 

are predicted therein by both HFV1 and MWDG2 solvers at   = 10-3 and at   = 10-1. 

The curved and triangular humps are less easily represented by the HFV1 piecewise-constant 

basis: at   = 10-3, HFV1 used the maximum refinement level (9) in these two regions (Figure 12a). 

More effective coarsening at these two humps is noted by choosing   = 10-1 where HFV1 uses only 

refinement levels (8) or below. MWDG2 coarsens the triangular hump much more sensibly than 

HFV1 at   = 10-3: it uses the maximum refinement level only at the kinks at the base of the triangle 

(Figure 12b), and much coarser levels at the tip that is positioned exactly at the centre of the 

domain. At the curved hump, MWDG2 still predicts the maximum refinement level (9), even at   = 

10-3, which could be signalling that more resolution is needed to cover curved terrain shapes. With   

= 10-1, the triangular and curved hump are relatively less-resolved with MWDG2 than with HFV1, 

with MWDG2 predicting level (7) and below. However, taking   ≥ 10-1 is likely to make the HFV1 or 

the MWDG2 solvers unable to preserve enough accuracy (recall Secs. 3.1.1 and 3.2.1). 
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Figure 13. Adaptive MWDG2 topography profile and corresponding refinement levels for the three humps 

used in the lake-at-rest simulation. The profile is obtained using a baseline mesh with a single mother element 

(  = 1) and a maximum refinement level   = 14. 

 

With a maximum refinement level   = 9 and an error threshold   = 10-3, MWDG2 used the 

maximum refinement level at the discontinuities of the rectangular hump and the kinks of the 

triangular hump as expected, but also throughout the curved hump. To explore whether the usage 

of level (9) throughout the curved hump is an over-refinement or a requirement, the MWDG2 solver 

is re-run by increasing the maximum refinement level to   = 14 under the same error threshold. 

Figure 13 shows the profile of the corresponding refinement levels. Remarkably, now the MWDG2 

solver only accesses the maximum refinement level (14) at the strong discontinuities of the 

rectangular hump. At the kinks, MWDG2 predicts level (12) for the triangular hump and level (13) for 

the curved hump that has steeper kinks. Moreover, analysis of the MWDG2 solution provides 

information on the necessary refinement levels required to represent the smooth humps, i.e. 

suggesting the need for level (6) and (10) to discretise the slope and curvature involved in the 

triangular and curved humps, respectively. These results imply that MWDG2 can effectively be used 

to initialise mesh resolution in a localised manner as needed. This property could potentially be 

useful towards making more effective use of very high resolution Lidar data without overloading the 

simulation, and gives the user direct control over the extent of resolution deepness at which 

topography is represented within the model (via choosing  ). 
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Figure 14. Convergence to a steady-state solution for (a) subcritical (b) supercritical and (c) transcritical flows. 

Water height convergence is measured by calculating the ℓ2 difference between the current and previous 

time-steps. 

 

3.5 Convergence to well-balanced steady states with non-zero flows over a hump  

In this series of tests, the adaptive HFV1 and MWDG2 solvers are given steady boundary conditions 

to study their convergence ability in reaching steady states with flows over a hump. Following 

Delestre et al. [45], the one-dimensional domain is [0 m, 25 m] with a topographic hump given by:  

 ( )    {         (    )                     
                                                                       

  Eq 61 

 
Table 1. Initial water depth and boundary conditions for the subcritical, supercritical and transcritical steady-

state tests. All steady-state tests have an initial discharge   = 0 m2 s-1 

Steady flow test Initial water 
height (m) 

Upstream 
discharge (m2 s-1) 

Upstream water 
height (m) 

Downstream water 
height (m) 

Subcritical  2.0 4.42 –  2.0 

Supercritical  2.0 25.0567 2.0 – 

Transcritical with shock 0.33 0.18 – 0.33 

 

Tests are performed to assess the rate of convergence upon three steady flow regimes: subcritical, 

supercritical and transcritical with a stationary shock. The initial and boundary conditions used in 

each tests are available in Table 1. Simulations are performed with the uniform FV1 and DG2 solvers 

and the adaptive HFV1 and MWDG2 solvers both taken with the standard setting and   = 10-3. A 

simulation is set to stop whenever the ℓ2 difference in water height between the current and 

previous time-steps becomes in the range of machine precision. The time history of the ℓ2 difference 

for all three tests are shown in Figure 14.  
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Figure 15. Steady state solutions of (a, b, c) water elevation and (g, h, i) discharge for subcritical flow (left), 

supercritical flow (centre) and transcritical flow with a stationary shock (right). For the adaptive HFV1 and 

MWDG2 solvers, (d, e, f) show the corresponding refinement levels. All adaptive solutions are plotted using an 

adaptivity threshold   = 10
-3

.  For the transcritical case, an additional solution is plotted using the adaptive 

MWDG2 solver with   = 10-5. 

 

The FV1, DG2, HFV1 and MWDG2 solvers all converge to machine precision in the subcritical 

test (Figure 14a) and supercritical test (Figure 14b). For the subcritical test, all solvers converge to 

machine precision within about 300 s to 500 s, with the HFV1 and MWDG2 solvers being slightly 

faster than their FV1 and DG2 counterparts (Figure 14a). In the supercritical test, the FV1 and DG2 

solvers converge after about 10 s, with the adaptive solvers converging slightly later (Figure 14b). 

Compared to the supercritical case, converging to steady subcritical flow takes longer because the 

flow is relatively weak and adjustment towards balance is consequently slower. The transcritical case 
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involves a transition from subcritical to supercritical flow, with another transition back to subcritical 

flow downstream of a stationary shock. Unsurprisingly, convergence to this transcritical steady-state 

is the slowest of all three cases (Figure 14c): FV1 and DG2 solvers on a uniform mesh converge to 

machine precision after about 800 s, and the adaptive HFV1 solver after about 450 s. The adaptive 

MWDG2 solver does not converge beyond 10-4 with   = 10-3. This stagnation in ℓ2 difference with 

MWDG2 at   = 10-3 is likely due to the intrusion of the slope limiter triggered by noise eventually 

accumulating from rounding of irrational numbers at the same location (see also the related 

discussion in the next paragraph). Regardless, when   is reduced to 10-5 the MWDG2 solver 

converges to machine precision at a faster rate than the DG2 solver (Figure 14c). Overall, 

convergence rates for all solvers are of the same order of magnitude for a given flow regime, and all 

solvers are able to converge to machine precision. 

The steady-state solutions of water elevation and discharge are included in Figures 15. For 

all three flow regimes, the numerical solutions of water height are in close agreement, all showing 

no visual difference with their corresponding analytical profiles [45], which were not illustrated for 

clarity. As can be seen in Figures 15g-15i, anomalies in discharge predictions are apparent in the FV1 

and HFV1 solutions. These anomalies are usually expected to reduce with an improved FV-based 

topography discretisation technique apart where a shock develops [14, 26, 49]. However, all these 

types of anomaly do not appear when using DG2 and MWDG2 solvers. Compared to the DG2 

uniform solver, the MWDG2 solver presents some tiny anomalies in the discharge predictions. These 

anomalies are different to those induced by the HFV1 and FV1 solvers and are comparatively 

negligible. They are seen to occur at locations where there are gaps in refinement levels (see also 

Figures 15d-15f). Most likely, these tiny anomalies are caused by constant (de)compression of the 

MWDG2 solution at the same location when the adaptive grid and solution become static in time. 

This can eventually lead to low levels of noise due to accumulation of round-off errors, which can 

generate knock-on effects such as triggering the slope limiter as discussed in the previous paragraph. 

Such tiny noises can be avoided by either increasing the convergence tolerance, or lessening  . 
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Figure 16. Solution of (a, b) water elevation and (e, f) flow velocity for the simulation of the frictionless 

parabolic bowl. The analytical solution is compared to numerical solutions using the FV1 and DG2 solvers on a 

uniform mesh, and adaptive HFV1 and MWDG2 solvers are compared with  are shown after 9 periods (left-

hand panels) and 9.5 periods (right-hand panels). For the adaptive HFV1 and MWDG2 solvers, (c, d) shows the 

refinement levels for the corresponding solutions. 

 

In Figure 15, the corresponding refinement levels predicted by the adaptive HFV1 and 

MWDG2 solutions are shown for the subcritical case (Figure 15d), supercritical case (Figure 15e), and 

transcritical case (Figure 15f). Both solvers require higher refinement levels only in the locality of the 
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hump, with very few sub-elements involving the maximum refinement level (9), corresponding with 

  (9) = 0.049 m. Elsewhere, the solution is coarsened aggressively down to refinement level (2) 

corresponding with   (2) = 6.25 m. Using an adaptivity threshold of   = 10-3, the adaptive MWDG2 

solver coarsens the solution more effectively than HFV1 in the locality of the hump. For the 

transcritical solution to converge to machine precision, MWDG2 required an adaptivity threshold   = 

10-5 and, with this choice, MWDG2 behaves similarly to HFV1, using the maximum refinement level 

for the entire region of the hump (Figure 15f). In summary, with a suitable choice of adaptivity 

threshold, all HFV1 and MWDG2 solvers converge to steady state solutions down to machine 

precision at about the same rate as the FV1 and DG2 solvers on a uniform mesh. They are also found 

to be as well-balanced as the underlying FV1 and DG2 uniform solvers. Adaptive HFV1 and MWDG2 

solutions are coarsened down to refinement level (2), using elements that are 128 times coarser 

than the finest elements. 

 

3.6 Conservation of integral properties for an oscillatory flow in a parabolic bowl 

To analyse conservation properties over a long time evolution, the uniform and adaptive solvers are 

applied to simulate an oscillatory flow over topography. As shown in Lhomme et al. [50], excessive 

numerical diffusion in shallow water models acts to dissipate energy and damp oscillatory flows. 

Assuming a frictionless topography, there are no sources or sinks of energy, which makes this test 

suitable to challenge the ability of a shallow water model to conserve mass and energy in the 

presence of moving wet-dry fronts. As in [45], an initially sloping water elevation is contained in a 

parabolic bowl defined on a one-dimensional domain in the interval [0 m, 4 m], given by: 

 ( )    .
 

  
(   )   /     Eq 62 

The exact solutions of the water height and the velocity are: 
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     Eq 64 

where   ( ) and   ( ) are the locations of the wet-dry interfaces at time t,    = 0.5 m, and   = 1 m 

[45]. The initial water height and flow velocity conditions can be obtained from Eqs. (63-64). 

Transmissive boundary conditions are imposed at both boundaries, but the parabolic bowl restricts 

the water to the domain interior. The uniform and adaptive solvers are applied considering the 

standard setting with the default error threshold (512 elements with the uniform solvers vs.   = 9,   

= 1 and   = 10-3 with the adaptive solvers). Tests are integrated for 36.11 s, corresponding to 18 

periods of oscillation. The period to complete one oscillatory cycle is         √    . The solution 

of the parabolic bowl behaves like a pendulum, with turning points occurring every half period, 0 , 

0.5 , 1 , 1.5 , …, when the flow velocity is zero. At each period 0 , 1 , 2 , …, the analytical water 

elevation is equal to the initial water elevation and at each intermediate period 0.5 , 1.5 , 2.5 , …, 

the analytical water elevation is a mirror image of the initial water elevation. 

 

Figure 17. Evolution of (a) change in mass and (b) normalised total energy for the simulation of the frictionless 

parabolic bowl. The 36.11 second-long simulation corresponds to 18 periods of oscillation. 

 

3.6.1 Qualitative comparisons after 9 periods 

Numerical solutions using the FV1, DG2, adaptive HFV1 and MWDG2 solvers are compared with the 

analytical solution in Figure 16. The DG2 and MWDG2 solutions of water elevation closely agree with 
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the analytical solution after 9 periods (Figure 16a) and 9.5 periods (Figure 16b). In contrast, 

oscillations are damped by the first-order accurate FV1 and HFV1 solvers, and the water elevation 

after 9 periods no longer reaches the maximum initial water elevation. For the velocity predictions, 

the DG2 solver obtains calculations that are consistently close to the analytical solution of   = 0 m s-1 

after 9 periods (Figure 16e) and 9.5 periods (Figure 16f). The adaptive MWDG2 solver also achieves 

small flow velocities except around the wet-dry fronts. The FV1 and HFV1 solutions have flow 

velocity errors of about 0.4 m s-1 with larger error magnitudes in the locality of the wet-dry fronts. 

The refinement levels predicted by the adaptive HFV1 and MWDG2 solvers are presented 

corresponding to the solution after 9 periods (Figure 16c) and 9.5 periods (Figure 16d). The HFV1 

solver uses the maximum refinement level (9) throughout the domain, as expected given the curved 

shape of the parabolic topography (recall the analysis in Sec. 3.4). The adaptive MWDG2 solver uses 

the maximum refinement level just at the wet-dry fronts, and temporarily in some dry regions where 

small-scale noise occurs in the solutions. Such noise can be reduced by slightly increasing the error 

threshold. Apart from these isolated regions, MWDG2 uses only refinement level (7), resulting in 

almost four times fewer elements than the uniform solvers with 512 elements. 

 

3.6.2 Mass conservation and energy conservation 

The frictionless parabolic bowl is a closed system with no sources or sinks of mass or energy. As the 

water oscillates within the bowl, there is an exchange between kinetic and potential energy, but the 

total energy is conserved. The time evolution of total mass and total energy is measured in order to 

assess the conservation properties of the numerical solvers. Only the average coefficients are used 

in both mass and energy calculations, which were evaluated for the assembled solution on   
 . That 

is, the total mass produced by the adaptive solvers on   
  is calculated as: 

  ∑ .  
  ( )   

( )/    
     Eq 65 

From Eq. (65), the mass difference    is evaluated as   ( )     ( )      , with     (  ) 

being the initial mass at   = 0 s. The mass difference is normalised relative to the initial mass as: 
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  ̂( )      ( )       Eq 66 

The total energy is calculated as the sum of kinetic and potential energy [51]: 

  ∑ {[
 

 
  
  ( ) .  

  ( )/
 

 .  
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]   

( )}    
   Eq 67 

which is normalised relative to the initial total energy     ( ) such that: 

 ( )     ( )           Eq 68 

For the uniform solvers, Eqs. (65-68) are applied for their assembled solution on   
  instead of   

 .  

The time histories of the normalised mass difference are illustrated in Figure 17a for the FV1 

and DG2 solvers on a uniform mesh, and the adaptive HFV1 and MWDG2 solvers. The FV1, HFV1 and 

DG2 solvers conserve mass to machine precision (Figure 17a). The HFV1 solver retains refinement 

level (9) yielding simulations on an equivalent grid as the FV1 solver, but at a higher cost: here, HFV1 

does not zero any detail coefficient and so gets unnecessarily overloaded with overhead cost due to 

Haar-wavelet adaptivity (recall the analysis in Sec. 3.1.5). Unsurprisingly, HFV1 delivers the same 

level of conservativeness as the uniform FV1 solver for both mass and energy quantities (Figure 17). 

The MWDG2 solver constantly altered refinement levels between (7) and (9), resulting in a loss of 

information due to zeroing of detail coefficients. Given also that the multi-wavelet adaptivity of the 

MWDG2 solver must filter both average and slope coefficients – via constant rounding of the 

irrational numbers involved in the filters – these effects result in a very small, linear growth in mass 

(Figure 17a). Nonetheless, MWDG2 mass conservation errors are still close to machine precision, 

even after 18 periods of oscillation. The normalised total energy is also measured at each time-step 

for the FV1, DG2, HFV1 and MWDG2 solvers (Figure 17b). As expected for a first-order solver, FV1 

and HFV1 dissipate energy quite rapidly, losing about 13% of the initial energy after 18 periods of 

oscillation. In contrast, the DG2 solver on a uniform mesh achieves excellent energy conservation, 

losing less than 1% of the initial energy after 18 periods. Despite the adaptive MWDG2 solver 

coarsening the solution to refinement level (7), it is only slightly more dissipative than the DG2 

solver, with MWDG2 losing less than 2% of the initial energy. 
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For such a dynamic oscillatory flow over a curved topography with wet-dry fronts, HFV1 with 

  = 10-3, delivers the same predictive accuracy as the uniform FV1 solver on the finest grid, but is 

expected to be more costly to run (Sec. 3.1.5). Employing HFV1 with bigger   gives an under-

performance relative to the present accuracy of FV1 and so may not be a feasible option for this 

type of simulation. The DG2 solver on the finest uniform grid shows excellent conservation 

properties for both mass and energy quantities. The adaptive MWDG2 is likely to be more efficient 

than HFV1 for this type of simulation, and preserves the conservation properties of the DG2 solver 

with inconsequential effects. 

 
Figure 18. Initial configuration of the dam-break over a trapezoidal hump following Ozmen-Cagatay and 

Kocaman [52]. Nondimensionalised scales are used in subsequent figures. Illustrated aspect ratio is 5:1. 

 

3.7 Numerical simulation of a laboratory dam-break over a trapezoidal hump  

Ozmen-Cagatay and Kocaman [52] conducted a laboratory flume experiment of a dam-break flow 

over a trapezoidal hump. This test involves a wet-dry front advancing over a frictional topography, 

wave overtopping on a building-like hump and a topographically-reflected shock wave. In particular, 

it is an ideal benchmark to validate the practicality of the HFV1 and MWDG2 solvers in modelling 

realistic aspects of shallow water flows in a multi-scale setting and in relation to the increase in 

maximum refinement level. The physical experiment [52] was conducted in an 8.9 m long acrylic 

glass flume, with the configuration illustrated in Figure 18. The topography and initial water 

elevation profile are the same for the numerical tests presented here, with an initial zero discharge. 

A reflective boundary condition is imposed at the upstream boundary and a transmissive boundary 

condition is imposed downstream. The Manning coefficient for acrylic glass is 0.01 m1/3 s-1. The water 
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in the flume was photographed at regular time intervals and the water elevation profile was 

measured to an accuracy of about ±1 mm. Experimental measurements of water elevation are 

compared with numerical solutions at time   = 11.9,   = 23.05 and   = 41.84, where   is a 

nondimensionalised time   √      with    = 0.25 m denoting the initial height behind the gate 

located at    = 4.65 m. 

 

Figure 19. Snapshots of water elevation for the dam-break over a trapezoidal hump with friction at 

nondimensionalised times (a, d)   = 11.9 (b, e)   = 23.05 and (c, f)   = 41.84, where   is a nondimensionalised 

measure of time given by equation. Numerical solutions are obtained using FV1 and DG2 solvers on a uniform 

mesh with    elements, and adaptive HFV1 and MWDG2 solvers on a baseline mesh with a single mother 

element and a maximum refinement level  , with (a, b, c)   = 9, and (d, e, f)   = 7. The nondimensionalised 

elevation is      and the nondimensionalised length is (    )   , with the plotted origin being the gate 

position    = 4.65m. 

 

 Numerical solutions are obtained using the FV1 and DG2 solvers on a uniform mesh with    

elements, and adaptive HFV1 and MWDG2 solvers on a baseline grid with a single mother element, a 

maximum refinement level   and with the default error threshold (  = 10-3). Tests are performed 

with   = 7, 9 and 11 corresponding to a finest grid spacing of   ( ) = 0.070 m,   ( ) = 0.017 m and 

  (  ) = 0.0043 m, or respectively to 128, 512 and 2048 elements for the finest uniform grid.  
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Figure 20. Cumulative CPU times to compete a 30-second numerical simulations (corresponding to T = 188 

s) for the uniform FV1 and DG2 solvers on a uniform mesh with    elements, and the adaptive HFV1 and 

MWDG2 solvers on a baseline mesh with a single mother element and a maximum refinement level  : upper 

part   = 7, medium part   = 9 and upper part   = 11. 

  

As shown in Figures 19a-19c, at   = 9, the adaptive and uniform solutions closely agree with the 

experimental observations at   = 11.9,   = 23.05 and   = 41.84, since the topography and fine-scale 

flows are well-resolved at   ( ) = 0.017m. While a similar behaviour for the adaptive and uniform 

solutions is expected at   = 11 as   (  )      ( ), with   = 7, the topography and fine-scale flow 

cannot be sufficiently resolved by the FV1 and HFV1 solvers using a piecewise-constant basis 

(Figures 19d and 19e). At   = 11.9, FV1 and HFV1 simulations produce insufficient overtopping on 

the lee side of the obstacle (Figure 19d) and, at   = 11.9 and   = 23.05 (Figure 19e), the reflected 
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wave is positioned far upstream compared to the experimental observations. Numerical diffusion is 

particularly evident in the FV1 and HFV1 solutions at   = 23.05 which is not present in the same 

solutions on the finer mesh using   = 9. In contrast, since the DG2 and MWDG2 solvers use a 

piecewise-linear basis, the fine-scale features are still well-resolved even at   = 7 with   ( ) = 0.070 

m. Using the same test, Kesserwani and Wang [15] achieved accurate DG2 solutions using a 

significantly coarser mesh of    = 0.22 m, and obtained second-order MUSCL-FV solutions with 

errors similar to those obtained with the FV1 and HFV1 solvers. In terms of refinement level 

predictions, both adaptive HFV1 and MWDG2 solvers are observed to fully refine around the 

trapezoidal obstacle given the sloping character of its sides and the dynamic nature of the flow. To 

realistically analyse efficiency benefits of the adaptive solvers, their cumulative CPU time costs are 

further recorded for completing 30-second numerical simulations (corresponding to   = 188 s). 

The elapsed CPU time is measured at every time-step, and these time series are illustrated for   

= 7 (Figure 20 – upper part),   = 9 (Figure 20 – middle part) and   = 11 (Figure 20 – lower part). At   

= 7 with   ( ) = 0.070 m, the FV1 and adaptive HFV1 solvers complete the simulation the fastest 

(Figure 20 – upper part), but produce somewhat inaccurate solutions since the grid is relatively 

coarse (Figure 19 – lower parts). Accurate solutions are achieved using the DG2 and MWDG2 solvers, 

but the adaptive MWDG2 solver completes the simulation in about half the time of DG2 on a grid 

with 27 = 128 uniform elements. At   = 9 with   ( ) = 0.017 m, the HFV1 and MWDG2 solvers 

complete the simulation around the same time (Figure 20 – middle part). The DG2 solver is about 

five times more computationally expensive and completes the simulation after 10.3 s of CPU time. 

At this grid resolution, the FV1 solver remains the most computationally efficient choice, and 

produces a solution with similar accuracy to the other solvers (Figure 19 – upper parts). At   = 11 

with   (  ) = 0.0043 m, no improvement in solution accuracy is expected since the flow in the 8.9 

m-long flume is already well-resolved with coarser meshes. However, at   = 11, the adaptive 

MWDG2 solver is, surprisingly, the first to finish the simulation, followed by the FV1 and adaptive 

HFV1 solvers (Figure 20 – lower part) and, compared to the DG2 solver on a uniform mesh, the 
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MWDG2 solver is 27 times faster. Clearly, with increased maximum refinement level, MWDG2 tends 

to become faster than the uniform FV1 solver on the finest grid and, ultimately than the HFV1 

solver. In terms of resolution accuracy, taking   = 11 is unnecessary for this test, as   = 9 provide 

sufficient resolution, but does still pay off with an increase in MWDG2 solver’s efficiency. Given also 

that MWDG2 provides superior accuracy with   = 7 (i.e. up to a resolution of 0.070 m), the MWDG2 

solver could be even more beneficial, in favour of accuracy, when the finest resolution involved in 

the adaptive grid is roughly ≥ 0.1 m. Hence, the MWDG2 solver seems to be a promising alternative 

for simulations over a large domain (10 km and more in horizontal length scale) allowing multi-scale 

features that are as small as 0.1 m, nonetheless at a lower runtime cost than the uniform FV1 solver 

on the finest grid available and at nearly the same accuracy as the expensive uniform DG2 solver on 

the finest grid. 

 

4. Summary and conclusions 

A scaled second-order Discontinuous Galerkin (DG2) solver of the Shallow Water Equations (SWE) 

was presented (Sec. 2.1), with guiding principles on how it extends to incorporate multiresolution 

analysis (Sec. 2.2) based on multiwavelets (MW) to form the so-called adaptive MWDG2 solver (Sec. 

2.3). Our aim has been to explain this framework in a way that is understandable by water engineers 

and modellers, and to unravel its relevant benefits for improving the accuracy, efficiency and 

autonomy of Godunov-type hydrodynamic models. In the adaptive MWDG2 solver, flow and 

topography data at various resolution levels are compressed in a single dataset of details, or wavelet 

coefficients (Sec. 2.3.1). From these details, a multiresolution DG2 solution can be created and 

assembled on a non-uniform grid by retaining the significant details and adding them to the coarsest 

solution discretisation. Significant details were identified by comparing their magnitude to an error 

threshold   (Sec. 2.3.2). The scaled DG2 solver can directly be applied to evolve the multiresolution 

DG2 solution on an adaptive non-uniform grid (Sec. 2.3.3). Zero-valued detail coefficients were 

imposed to complete the dataset of details as time evolved (Sec. 2.3.4). A first-order version was 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

produced based on the Haar wavelet within the Finite Volume (HFV1) method (Sec. 2.4). The 

behaviour of the adaptive HFV1 and MWDG2 solvers was studied systematically and compared 

against the standard first-order Finite Volume (FV1) and second-order Discontinuous Galerkin (DG2) 

solvers on a uniform grid. Seven tests were used to diagnostically explore the performance of the 

adaptive (multi)wavelet-based solvers, which covered all the elementary aspects relevant to 

accurate, efficient and robust hydraulic modelling (Sec. 3). Adaptive solver simulations started from 

a coarsest grid discretisation with   mother elements, with each allowing a maximum of    sub-

elements (a maximum refinement level   yielding   ≤ number of sub-elements ≤     ). The 

uniform solver simulations considered the grid at the finest resolution available (with      

elements). The numerical results consistently reinforced the conclusion that the (multi)wavelet-

based solvers offer many attractive properties including the ability to: (i) automate the formulation 

of an initial multiresolution mesh, (ii) use very few, or a single, mother element(s) as a baseline grid, 

(iii) allow large gaps across resolution levels, (iv) preserve robustness, accuracy and conservation 

properties of the standard uniform solvers, and (v) adapt modelling resolution and data simply with 

reference to the user-prescribed error threshold  .  

More strikingly, findings from this study newly identify a range for the error threshold   

where the adaptive MWDG2 solver can deliver simulations that are not only as accurate as the 

uniform DG2 simulations but also faster than the simulations delivered by both the adaptive HFV1 

solver and the uniform FV1 solver. Mainly, MWDG2 outperformed HFV1 as a result of the sloping 

nature of its local piecewise-linear solutions, which allowed much more aggressive coarsening at the 

zones in the flow solution and topographic data involving different levels of smoothness. At these 

zones, the adaptive HFV1 solver consistently over-refined up to becoming even more expensive than 

the uniform FV1 solver since HFV1 was dominated by a wavelet-adaptivity overhead. In contrast, the 

adaptive MWDG2 solver more sensibly predicted coarser solutions and did not access the finest 

resolution level unless necessary around very steep solution gradients. The efficiency of the adaptive 

MWDG2 solver was found to increase by increasing the maximum refinement level  , though its 
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predictive accuracy remained visually close to the first-order solver predictions at a very fine 

resolution, namely around   ( ) ≤ 0.07 m. Our results therefore offer new evidence that an MWDG2 

modelling approach has the potential to increase the accuracy, runtime efficiency and spatial 

coverage for hydraulic modelling applications for which the maximum refinement level is associated 

with an urban resolution grid (approx. around 0.1 m in horizontal length-scale). A robust two 

dimensional (2D) extension of the MWDG2 approach on quadrilateral elements is under 

development and testing to enable a more realistic assessments of the true potential of 

(multi)wavelet-based approaches for 2D hydraulic modelling applications. 
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Appendix 1: Instructions for running the FV1, DG2, HFV1 and MWDG2 solvers 

Compilation 
The seamless-wave numerical solvers are implemented in Fortran 2003 and can be compiled using a 
recent version of GFortran and CMake.  Other fortran compilers have not been tested.  To compile 
the code from the root directory of the unzipped Zenodo download: 

mkdir build && cd build 

cmake .. 

make -j 

Running the numerical solvers 
The FV1, DG2, HFV1 and MWDG2 solvers are all implemented in a single executable, 
run_simulation.  To display usage information about required and optional command line 

switches: 
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./run_simulation --help 

 

All the test cases that appear in this article are preconfigured.  To run one of the test cases: 

 

./run_simulation <testCase> <maxRefinementLevel> --solver <solver> -

-writer <writer> 

where <testCase> is one of 

dambreakwet       section 3.1 

dambreakdry (frictionless), dambreakmanning (frictional) section 3.2 

dambreakupslope, dambreakdownslope   section 3.3 

lakeatrest        section 3.4 

steadysubcritical, steadysupercritical, steadytranscriticalshock

 section 3.5 

parabolicbowlswashes      section 3.6 

dambreakonehump       section 3.7 

 

To solve on a uniform mesh, use <maxRefinementLevel> to create a mesh with 2L elements, 

and choose <solver> to be either fv1 or dg2.  To calculate an adaptive solution, include the 
switch --epsilon <value> with <value> being a double precision number between 0 and 1.  

When --epsilon is specified, adaptive refinement is allowed up to the given 
<maxRefinementLevel>.  <solver> is still either fv1 or dg2 for an adaptive solution. 

 

The solver will write space-delimited plain text data depending on the choice of <writer>.  The 
following writers output data corresponding to the end of the simulation: 

cellCentreSolution topography, water depth, discharge and refinement level data 

piecewiseSolution as cellCentreSolution, but data is at the interface limits 

l2error   calculate the ℓ2 error between numerical and analytic solutions 

 

The following writers output data at every timestep: 

cpu    elapsed CPU time 

timestep   size of Δt 

elementCount  total element count 

convergence  ℓ2 convergence in water depth 

energy   domain integrals of mass and energy 

wetDryFront  the position of the wet-dry front 
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sample   sample data at a specified --sample-position 

 

Additional, optional switches are documented by using ./run_simulation --help. 
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