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Abstract 19 

1. Composite, multispecies biodiversity indices are increasingly used to report against international 20 

and national environmental commitments and targets, the Wild Bird Index being a prominent 21 

example in Europe, but methods to assess trends, error and species selection for such indices are 22 

poorly developed. 23 

2. In this study, we compare methods to compute multispecies supranational indices and explore 24 

different approaches to trend and error estimation, the presentation of indices, and species 25 

selection. We do so using population trend data on forest and farmland birds from 28 European 26 

countries, 1980 to 2015. 27 

3. We find relative stability in common European forest bird populations over this period, but a 28 

severe decline in farmland bird populations. Altering the benchmark year affects index 29 

characteristics and ease of interpretation. We show that using annual species’ indices and their SEs 30 

to calculate confidence intervals delivers greater precision in index estimates than bootstrapping 31 

across species. The inclusion of individual species within indices has limited leverage on index 32 

characteristics, but subjective selection of species based on specialisation has the potential to 33 

generate bias. 34 

4. Multispecies indices are valuable policy-relevant tools for describing biodiversity health. Their 35 

calculation and presentation need to be tailored to meet specific policy objectives, and they must be 36 

supported by clear interpretative information. We recommend methods for indicator analysis, forms 37 

of presentation, and the adoption of an objective species selection protocol to ensure indicators are 38 

representative and sensitive to environmental change. 39 

1. INTRODUCTION 40 

Multi-species indices (MSIs) of biodiversity change are used increasingly at national and 41 

international scales to report against environmental commitments (Butchart et al. 2010; Tittensor et 42 

al. 2014). The most prominent index of species abundance, the Living Planet Index (LPI), tracks 43 

trends in thousands of populations of vertebrate species (Collen et al. 2009; McRae, Deint & 44 
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Freeman 2017), whilst the related Wild Bird Index (WBI) tracks population trends of hundreds of bird 45 

species across several regions (Gregory & van Strien 2010; Wotton et al. 2017; Hoffmann et al. 46 

2018). Both indices are based on the geometric mean of the relative abundance of species and 47 

several studies have shown this metric to have advantages over traditional indices of biodiversity 48 

change (Buckland et al. 2011; van Strien, Soldaat & Gregory 2012; Santini et al. 2016). Nonetheless, 49 

multi-species biodiversity indices of this kind can potentially suffer from a number of limitations and 50 

need to be interpreted with care (Renwick et al. 2011; Santini et al. 2016; Buckland & Johnston 51 

2017). In this paper, we explore some of these issues, from reporting statistical uncertainty around 52 

the indicators, choosing which year to set as the benchmark year and quantifying associated trends, 53 

to the initial selection of species for inclusion in the indices. We use population trend data on 54 

European birds to demonstrate each point. Gregory et al. (2005) first described methods to calculate 55 

supranational WBIs using population data from breeding bird surveys. This work has been extended 56 

with European and EU versions of the Forest Bird Index and Farmland Bird Index published by the 57 

Pan-European Common Bird Monitoring Scheme (PECBMS) near-annually (see Table S1: Gregory et 58 

al. 2007; Gregory & van Strien 2010). 59 

1.1 Reporting statistical uncertainty 60 

Soldaat et al. (2017) described some of the technical challenges in constructing appropriate 61 

confidence intervals (CIs) around MSIs and their trends, pointing out that many of the options 62 

commonly used were limited. The most robust way to construct CIs around an MSI is to bootstrap 63 

the species*sites data as this fully accounts for sampling error (Buckland et al. 2005). However, 64 

bootstrapping at the site level cannot be applied if sites are not a random sample, as is often the 65 

case, or when site level data are not readily available, for example, when the MSIs are constructed 66 

using data from the literature (e.g. the LPI: Collen et al. 2009) or from national analysis (e.g. the 67 

European WBIs). Gregory et al. (2005) instead used the standard errors (SEs) of individual species’ 68 

trends to estimate SEs for MSIs, but this cannot be used if data for any constituent species are 69 
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missing for any year (Soldaat et al. 2017). A more workable and widely used alternative is to 70 

construct CIs by bootstrapping across species, with the trend of each species considered as a 71 

replicate of the MSI (Buckland et al. 2005; Collen et al. 2009; Eaton et al. 2016). This approach 72 

captures the influence of variation between individual species’ trends on the MSI but assumes that 73 

the set of indicator species is representative of the trends of the community of interest (Buckland & 74 

Johnston 2017) and ignores sampling error in species’ indices (Soldaat et al. 2017). Furthermore, 75 

bootstrapping across species can yield wide CIs if the trend of just one species differs greatly from 76 

the rest, meaning that even large changes in the MSI can remain statistically non-significant.  77 

1.2 Setting the benchmark year and quantifying trends 78 

MSIs tend to be set to a value of 100 (or 1.0) in the first year of a series with a SE of zero in that year, 79 

making the magnitude of change in the index over the time immediately obvious (e.g. halving 80 

index=50, doubling index=200). This also means that the error in subsequent years is related to that 81 

zero benchmark. However, this approach has ramifications for interpretation because change in the 82 

index can only be assessed against the benchmark year (Buckland & Johnstone 2017; Soldaat et al. 83 

2017); statistical change during the most recent and often most policy-relevant period cannot be 84 

assessed. Furthermore, inaccurate estimates of abundance indices in the early years of surveys, a 85 

common feature of recording schemes, can lead to misleading estimates of population trends later 86 

(Buckland & Johnston 2017). Another disadvantage of this convention is that the CIs on the index 87 

flare out through time, which appears anomalous, as one would expect precision in the index to 88 

increase and the CIs to narrow as more data are added.  89 

Methods to quantify index trends include calculation of the difference between the first and last 90 

values from unsmoothed or smoothed trends, to linear regression through indices (Buckland et al. 91 

2005; Gregory et al. 2007; Gregory & van Strien 2010; Fraixedas, Lindén & Lehikoinen 2015), but 92 

statistically smoothed indices are recommended for trend estimation, because they remove short-93 
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term variation and reduce the influence of endpoints (Buckland et al. 2005; Buckland & Johnston 94 

2017; Soldaat et al. 2017).  95 

1.3 Species selection 96 

Species composition is critical to MSI utility and they must be constructed from the trends of a 97 

representative set of species if they are to reflect the community of interest. Thus, robust species 98 

selection should be a key part of indicator development (Gregory & van Strien 2010; Wade et al. 99 

2013, 2014). Methods used to select species for inclusion in MSIs range from expert opinion 100 

(Gregory et al. 2005) to more evidence-led approaches based on measures of species’ habitat 101 

selection or predominant habitat use (Julliard et al. 2006; Renwick et al. 2011; Fraixedas, Lindén & 102 

Lehikoinen 2015; Soldaat et al. 2017). Any influence of either individual species, or the resultant 103 

distribution of included species across functional groups, on index characteristics is rarely tested. For 104 

example, the current Forest (34 species) and Farmland Bird Indices (39 species), whose composition 105 

was dictated largely by expert opinion, comprise 27% and 41% long-distance migrant species 106 

respectively (hereafter LDMs: Table S2). These species winter in sub-Saharan Africa or Asia and many 107 

have declined (Vickery et al. 2014), but these trends may not have been driven by changes in the 108 

European habitats the indices were designed to represent and it is possible that migrant birds might 109 

dominate and drive trends in the WBIs.  110 

Beyond understanding the influence of individual or groups of species on an index, it is important 111 

that initial species selection should be based on ecological principles and that the index has a 112 

defined purpose. Furthermore, specialist species, defined as those where their populations are 113 

strongly concentrated in one habitat for breeding or feeding, are prioritised for selection as they are 114 

assumed to be most sensitive to environmental change. However, these species do not necessarily 115 

fully reflect the wider community (Butler et al 2012; Wade et al 2014). Butler et al. (2012) 116 

introduced a novel method that imposes both representativeness and sensitivity on the index, with 117 

a selection algorithm (SpecSel) published by Wade et al. (2014). The approach builds on a resource-118 
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use risk assessment, that draws on a matrix of species’ ecological requirements covering 119 

components of diet, foraging habitat and nesting habitat to predict the impact of land-use change 120 

(Butler et al. 2007; Butler et al. 2010; Wade et al. 2013). This framework ensures all resource types 121 

used by the bird community are exploited by at least one constituent species and that, within this 122 

constraint, the indicator species have the highest degree of specialism; more specialised species are 123 

taken to be more sensitive to changes in resource availability (Butler et al. 2007). Of course, 124 

resource use may vary across time and space for each species but nonetheless this approach 125 

facilitates objective species selection. 126 

1.4 Scope 127 

Here, we present up-to-date indices for the European Forest and Farmland birds, constructed using 128 

conventional methodologies of setting the first index value to 100 (SE=0) and calculating subsequent 129 

CIs by bootstrapping across species trends. We then construct a series of indices for the same 130 

species’ sets and different base years, using new approaches described by Soldaat et al (2017) to 131 

estimate statistical uncertainty and quantify trend, and examine their influence on indicator 132 

characteristics and interpretation. We test the influence of each constituent bird species and of 133 

migrant birds as a group on indicator characteristics and discuss how species selection for the 134 

indices might be improved.  135 

2. MATERIALS AND METHODS 136 

2.1 Trend estimation 137 

We calculated MSIs for species’ groups as the geometric mean of the supranational species’ indices 138 

in each year with each species weighted equally, taken from the PECBMS (Text S1: 139 

https://pecbms.info/). These MSIs describe the average trend in the relative breeding season 140 

abundance of the constituent bird species. The first index value is set to 100 (SE=0) and CIs 141 

calculated by bootstrapping across species trends, by resampling individual species’ indices with 142 

replacement 10,000 times, re-calculating the index each time (Buckland et al. 2005). Trends are 143 
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reported as the difference between the index values in 1980 and 2015. We then test the influence 144 

on index characteristics of the following approaches to MSI construction. 145 

2.2 Estimating statistical uncertainty 146 

We use Monte Carlo procedures within the MSI-tool (https://www.cbs.nl/en-gb/society/nature-and-147 

environment/indices-and-trends--trim--/msi-tool: Soldaat et al. 2017), to calculate MSIs and 148 

associated CIs from annual species’ indices and their SEs. Each available yearly index for each species 149 

is simulated by drawing from a normal distribution N(μ,σ) with μ=the natural logarithm of the index 150 

and σ=the SE of the index on the log scale. The tool calculates a mean and SE from 1000 simulated 151 

MSIs in each year and back-transforms these to an index scale, and repeats that process, here 152 

10,000 times. Note that, although derived from the same data, index values for a given year 153 

calculated using this approach are likely to be marginally different to those calculated as the 154 

geometric mean of the constituent species’ indices in each year (described above). 155 

2.3 Benchmark year and quantifying trend 156 

Next, we compare the WBIs calculated using the MSI-tool with a baseline year of 1980 with 157 

equivalent indices where a) the last year in the series is set to 100 and b) the average value is set to 158 

100. A benefit of benchmarking the final year in a time series is that statistical change can then be 159 

assessed relative to the latest year, which can be particularly useful to inform actions. Fixing the 160 

average to 100, centres the change around that value and so emphasises relative change rather than 161 

absolute. We then use the MSI-tool to calculate smoothed trends (LOESS-regression, span=0.75, 162 

degree=2) for the WBIs and compare the percentage change between 1980 and 2015 with the 163 

absolute difference in index values from 1980 to 2015. We also test for significant changes in the 164 

trend slopes between 1980 and 2015 (hereafter change points: Soldaat et al. 2017). Finally, we test 165 

for significant differences in trends between MSIs (1980-2015), based on Monte Carlo procedures 166 

(1000 iterations using TREND_DIFF function), reporting the average difference in the multiplicative 167 

trends with SE and the significance of that difference.  168 
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2.3 Species selection 169 

Firstly, we used a jack-knife, leave one-out approach (Freeman, Baillie & Gregory 2001), to examine 170 

the influence of individual species on the value and precision of WBIs, quantified as the difference 171 

between the final index value or width of CIs of the resulting MSIs and those of the full index. 172 

Secondly, we examined whether the trends of LDM species differ from those of the resident and 173 

short-distance migrants (hereafter RSDM) in each indicator set, and whether they disproportionately 174 

affect the indicator. Thirdly, to assess the influence of species’ sensitivity to land-use change, we 175 

examined trends among broader groups of species associated with European forest (Wade et al. 176 

2014) and farmland (Butler et al. 2010) (Table S2). These two studies each constructed resource 177 

requirement matrices detailing species’ summer and winter diets, summer and winter foraging 178 

habitat and nest site location, and their reliance (major=1, moderate=2 or minor=3) on forest or 179 

farmland respectively to deliver those resources. From this, we calculated a measure of species 180 

sensitivity to environmental change in the focal habitat as the number of resources it uses multiplied 181 

by its reliance, with higher scores attributed to less sensitive species (Butler et al. 2010; Wade et al. 182 

2014). Here, we ranked forest and farmland species by their sensitivity scores and calculated MSIs 183 

for the full group of species (forest=60, farmland=54), the top 2/3, and top 1/3 of species. We 184 

compare the MSIs generated from these species’ subsets with i) the average MSI across those 185 

derived from 1000 species sets, generated by randomly sampling with replacement, the equivalent 186 

number of species from the full set, and ii) the current respective WBI. Finally, we applied the 187 

SpecSel algorithm (Wade et al. 2014) to the forest and farmland species’ pools. For sequentially 188 

increasing set sizes, this identifies the set of species with the lowest average sensitivity scores (as 189 

above) that offers full resource coverage from the requirements matrices. First, we present the MSI 190 

for the species set with the lowest average sensitivity score overall across all potential set sizes 191 

(hereafter SENSITIVE: forest=31; farmland=24). Second, we present the MSI for the set identified by 192 

piecewise regression as the optimal breakpoint when relating indicator set size to average sensitivity 193 

(hereafter BREAKPOINT: forest=14; farmland=5). The BREAKPOINT set reflects a trade-off between 194 
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sensitivity and potential redundancy in the index. Whilst average sensitivity initially declines with 195 

increasing indicator set size, as generalist species are replaced by more specialist species, the rate of 196 

change slows at larger set sizes and larger indicator sets have greater redundancy (Wade et al. 197 

2014). Analyses were carried out using statistical software R (version 3.4.2, R Development Core 198 

Team 2017).   199 

3. RESULTS 200 

3.1 Estimating uncertainty 201 

The Forest Bird Index remains relatively stable, showing a non-significant increase between 1980 202 

and 2015 (Fig. 1a,b: +9% using standard methods & +7% using the MSI-tool), while the Farmland Bird 203 

Index showed a significant decline over this period (Fig. 1e,f: -60% using both methods: see 204 

Discussion). The MSI-tool shows trends of the Forest and Farmland Bird Indices to differ significantly 205 

(difference=-0.02, SE=0.002, p<0.05). For both the Forest and Farmland Bird Indices, CIs derived 206 

from the MSI-tool are narrower (Fig. 1b,f) than those derived by bootstrapping across species (Fig. 207 

1a,e). For example, bootstrapping-derived CIs for the 2015 index are 43% and 33% wider than those 208 

derived using the MSI-tool for the forest and farmland birds respectively.   209 

3.2 Setting benchmark year and quantifying trend 210 

Changing the benchmark year from 1980 to 2015, or setting the average Index value to 100, has 211 

little effect on interpretation of the Forest Bird Index because it has remained relatively unchanged 212 

(Fig.1 c,d). However, the influence of the benchmark for the Farmland Bird Index is more 213 

pronounced. When the last year is set to 100, the index shows statistical stability in farmland bird 214 

populations since the early 1990s (CIs overlap 100) and much greater uncertainty around the index 215 

value in the earlier years, as you might expect (Fig. 1g). However, the scale of overall change is less 216 

obvious, although it can be calculated. The same is true when the index is set to an average of 100, 217 

although the magnitude of change is even less clear (Fig.1h). 218 
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The smoothed Forest Bird Index shows a stable trend both over the whole period and over the 219 

last ten years (Fig.2a: change=5.35%, SE=8.5%, NS & change=4.33%, SE=8.3%, NS respectively), with 220 

no significant change points. The Farmland Bird Index shows a major decline over the whole period 221 

but statistical stability over the last ten years, although the trend remains negative (Fig. 2b: change=-222 

56.8%, SE=5.2%, p<0.01 & change=-3.05%, SE=5.6%, NS respectively). Change points were identified 223 

in the Farmland Bird Index in each of the years 1985 to 1998 (Fig. 3, p<0.05 in all cases: e.g. 224 

multiplicative trend <1992=0.96, SE=0.008, >1992=0.98, SE=0.005, p<0.01), signifying a switch from a 225 

relatively steep linear decline in the index (~4% pa), to a lesser rate recently (~2% pa).   226 

3.3 Species selection 227 

Exclusion of individual species affects the resulting Forest Bird Index to varying degrees, but the 228 

leverage of individual species is modest (Table 1a). The mean absolute difference in the 2015 index 229 

value from that of the Forest Bird Index when excluding one constituent species is 3.29%, SE=0.37% 230 

(Table 1a, Fig. 3a). Exclusion of Picus canus pulls the index down most, with the 2015 value excluding 231 

this species 4% lower than that of the full index, whilst the exclusion of Emberiza rustica pushes the 232 

index up most, by 9% by 2015. On average, excluding a species widens the CIs on the MSIs (mean 233 

absolute difference from Forest Bird Index in 2015=5.32%, SE=0.54%) but, at the individual species 234 

level, the direction of change depends on the precision of that species’ index (Table 1a). The 235 

inclusion of Leiopicus medius, P. canus and Coccothraustes coccothraustes adds most imprecision to 236 

the Forest Bird Index (Fig.3a), because their indices are associated with higher sampling error. There 237 

is a strong positive correlation between the extent of impact of excluding an individual species on 238 

Forest Bird Index value and precision (Spearman U=0.85, p<0.0001). 239 

The exclusion of individual species from the Farmland Bird Index has a similar impact overall 240 

(mean absolute difference from it in 2015=2.75%, SE=0.55%; Table 1b, Fig. 3b) but the leverage of 241 

individual species tends to be greater. Exclusion of Corvus frugilegus pushes the index down by 9% 242 

compared to the full index in 2015, whilst the exclusion of Galerida cristata pushes the index up by 243 
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18%. Excluding species has mixed effects on the CIs (mean absolute difference from Farmland Bird 244 

Index in 2015=4.40%, SE=0.97%, Table 1b). Inclusion of Upupa epops, Anthus campestris and C. 245 

frugilegus adds most imprecision to the index because their indices have greater sampling error and 246 

indices for the first two do not cover all years (Table 1b). The impact of excluding each species on 247 

the Farmland Bird Index is positively correlated with the impact on precision (Spearman U=0.62, 248 

P<0.0001). 249 

Exclusion of individual LDM forest species tends to push the trajectory of the MSI upwards 250 

slightly (Table 1a) but the impact of excluding individual LDM species is not significantly different 251 

from excluding individual RSDM (mean difference from 2015 Forest Bird Index value: excluding LDM: 252 

n=9, mean change=3.8%, SE=0.90%; excluding RSDM: n=25, mean change=2.3%, SE=0.58%, t30=1.34, 253 

p=0.20). There is also no significant difference in the change in precision when excluding individual 254 

LDMs or RSDMs (n=9, difference=5.19%, SE =0.88% & n=25, difference=2.75%, SE=1.2% respectively, 255 

t30=1.67, p=0.11). Similarly, the mean difference in 2015 MSI values compared to the Farmland Bird 256 

Index, when excluding either individual LDM or individual RSDM farmland species, is not significantly 257 

different (mean difference from 2015 Farmland Bird Index value: excluding LDM: n=16, mean 258 

change=-0.48%, SE=0.88%; excluding RSDM: n=23, mean change=-0.19%, SE=1.0% respectively, t21=-259 

0.21, p=0.83); excluding LDM individually pushes the index down very slightly. Likewise, the mean 260 

difference in the precision of MSI values compared to the 2015 Farmland Bird Index value, when 261 

excluding either individual LDMs or individual RSDMs, is not significantly different (n=16, 262 

difference=-2.38%, SE=2.4% & n=23, difference=1.05%, SE=1.2% respectively, t21=1.30, p= 0.21). 263 

MSIs for the LDM and RSDM species are similar (Fig. 4). Whilst neither the MSIs for LDM or RSDM 264 

forest species exhibit significant trends (n=9, change -5.13%, SE=11.7%, NS & n=25, change=9.82%, 265 

SE=11.61%, NS respectively), the trend of forest LDMs oscillates and is significantly more negative 266 

than that for forest RSDMs (difference=-0.01, SE=0.003, p<0.05). However, the number of species is 267 

small. MSIs for both groups of farmland birds exhibit steep and significant declines (LDMs: n=16, 268 
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change=-51.18%, SE=13.87%, p<0.01; RSDM: n=23, change=-59.47%, SE=3.33%, both p<0.01), but 269 

again, the trend of LDMs is significantly more negative than that for RSDMs (difference=-0.015, 270 

SE=0.003, p<0.05). There are no significant change points for either group of forest birds (Fig.4a), nor 271 

among LDMs of farmland. In contrast, the MSI-tool identifies significant change points RSDMs of 272 

farmland in the years 1985 to 2005 (as in the Farmland Bird Index above), from a steeper to a less 273 

steep decline.   274 

The MSI for 60 species associated with forests in Europe sits slightly lower than the current Forest 275 

Bird Index (change=-1.8%, SE=5.0%, NS) but there is no significant difference between the two trend 276 

slopes (difference=-0.0003, SE=0.002, NS: Fig.5a). The MSI for the top 2/3 of these species ranked by 277 

decreasing sensitivity to land-use change, shows a slightly stronger decline (n=40, change=-8.2%, 278 

SE=6.6%, NS: Fig.5b) and does not differ from the Forest Bird Index (difference=-0.0038, SE=0.002, 279 

NS). The MSI for the top 1/3 of species in terms of sensitivity shows a steeper but still non-significant 280 

decline (n=20, change=-15%, SE=9%, NS: Fig.5c), but this trend is significantly steeper than that of 281 

the Forest Bird Index (difference=-0.007, SE=0.003, P<0.05). Both the MSIs for the top 2/3 and 1/3 of 282 

species, show a greater decline than MSIs based on the same number of randomly selected species 283 

(Fig.5b,c). This suggests that species identified as being more sensitive to habitat change have 284 

declined more. 285 

The MSI for 54 species associated with farmlands in Europe shows a significant decline (change=-286 

35.3%, SE=5.9%. p<0.01) but is significantly less negative than that of the Farmland Bird Index 287 

(difference=0.010, SE=0.003, p<0.05, Fig.6a). The MSI for the top 2/3 of these species ranked by 288 

decreasing sensitivity, shows a stronger decline (n=36, change=-40.8%, SE=7.1%, p<0.01 Fig. 6b), but 289 

is again significantly less negative than the Farmland Bird Index (difference=0.007, SE=0.003, p<0.05 290 

Fig. 6b). The MSI for the top 1/3 of species in terms of sensitivity shows a large decline (n=18, 291 

trend=-43.2%, SE=10%, p<0.01) that is not significantly different from the Farmland Bird Index 292 

(difference=0.008, SE=0.004, NS, Fig. 7c). Whilst lower, these MSIs do not differ greatly from MSIs 293 
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based on the same number of randomly selected species (Fig. 7b,c). This suggests that while more 294 

sensitive species have declined more, that declines are a generic feature of farmland bird 295 

populations, and further that the species included in the current index have shown strong declines.  296 

Finally, for forest birds the SENSITIVE set MSI shows a non-significant decline (n=31, change=-6.4%, 297 

SE=7.5%, NS) whilst the BREAKPOINT set shows a non-significant increase (n=14, change=35%, SE=19%, 298 

NS), but neither trend differs significantly from the Forest Bird Index (Fig. 7a,b: difference=-0.004, 299 

SE=0.002 & difference=0.004, SE=0.003 respectively, both NS). For farmland birds, both the SENSITIVE and 300 

BREAKPOINT MSIs show significant declines (Fig. 8 c,d, n=24, change=-42%, SE=7.4% & n=5, change=-34%, 301 

SE=7.6% respectively, both p<0.01), but both are significantly less steep than the Farmland Bird Index 302 

(difference=0.007, SE=0.003 & difference=0.011, SE=0.003 respectively, both P<0.05). The wide CIs reflect 303 

the small number of species and some of those species having imprecise trends (see Table 1). 304 

4. DISCUSSION 305 

4.1 Population trends 306 

Our analyses reveal contrasting population trends of abundant breeding birds associated with 307 

forests and agricultural habitats in Europe. On average, common forest bird populations show a 308 

degree of stability in trends, though specialist species seem to be declining (Fig. 6), as reported 309 

previously (Gregory et al. 2007). Common farmland bird populations have declined precipitously, the 310 

Farmland Bird Index falling by nearly 60% between 1980 and 2015. While the decline was steepest 311 

1980-1995, and the trend is statistically stable over the last ten years, the decline continues at a 312 

lesser rate (Fig. 1, e-h, 2b). Comparison with previous studies (Gregory et al. 2005, 2007; Gregory 313 

and van Strien 2010) is complicated by changing timescales, species sets and the number of 314 

countries contributing data. Gregory et al. (2005) reported a sharp decline in widespread farmland 315 

birds, but relative stability in birds of woods, parks and gardens, 1980-2002, using data from 18 316 

countries. Gregory et al. (2007) showed farmland birds in falling in number but also reported a 317 

moderate decline in specialist forest species (>60% of which are in the current Forest Bird Index), 318 
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1980-2003, using data from 18 countries. Whereas, Gregory and van Strien (2010) reported no 319 

obvious trend among forest birds, but a very considerable decline in farmland birds 1980–2007 using 320 

data from 22 countries. Our analysis supports these broad patterns, of extensive decline in common 321 

farmland birds but relatively stability in common forest birds using a larger and extended dataset 322 

(Fig. 1 & 2), and we also find evidence of modest decline among the most specialist forest species 323 

too (Fig. 5c). 324 

4.2 Reporting statistical uncertainty 325 

The MSI-tool computes CIs using the SEs of the annual species’ indices and so error around the MSI 326 

reflects noise in the estimation of the species’ indices (Fig. 1b, f). When bootstrapping across 327 

species’ trends, the CIs reflect differences in the trajectory and variability of the individual species’ 328 

trends (Fig. 1a,e). In our examples, CIs calculated using the MSI-tool are narrower than the 329 

bootstrapped estimates (Fig. 1), however, inference is unchanged as both methods show relative 330 

stability in forest bird populations and declines among farmland birds. Yet it is possible in certain 331 

circumstances for one approach to indicate significant decline or increase, and the other show no 332 

significant change. Such mixed messages could easily undermine the policy use of the metrics. 333 

Therefore, we recommend the use of the MSI-tool, where possible, to test for statistical change in 334 

MSIs. However, given that the two methods convey different but complementary information about 335 

uncertainty around the indices, we see merit in presenting MSIs using a bootstrap method as 336 

supporting information, provided the differences in inference are explained.  337 

4.3 Setting the benchmark year and quantifying trends 338 

Changing the benchmark year has implications for ease of interpretation of MSIs and we 339 

recommend that the default should be to set the starting index value to 100 (or 1) as this 340 

demonstrates change over time most intuitively. Moreover, benchmarking against anything other 341 

than a fixed year, such as the latest year in a time series or setting the average to 100, means that 342 

index values for specific years will change each time the index is updated, which could impact on 343 

ease of understanding and communication (the same being true when new data are added to the 344 
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time series). However, we recognise that fixing the last year to 100 (SE=0) allows recent change in 345 

the index to be interpreted (Fig. 1d,h), and we suggest presenting additional indices in this format, 346 

when practical. We also recommend presenting statistically smoothed indices to best describe the 347 

overall index trend, minimising noise (Buckland & Johnston 2017).  348 

Note that MSIs calculated in a conventional manner, as the geometric mean of the constituent 349 

species indices, will be marginally different from those calculated in the same fashion but using 350 

Monte Carlo procedures. This is perceptible in forest birds (Fig. 1a,b) but arguably not for farmland 351 

birds (Fig. 1e-f), and the differences are extremely small. We did not set out to test the rigour of the 352 

two index methods as that was beyond the scope of our paper. 353 

4.4 Species selection  354 

WBIs appear relatively robust to changes in species selection as the exclusion of individual species 355 

had relatively little influence on index characteristics and should not compromise their policy use, 356 

given recognised levels of variability and tolerances (e.g. UK government use a 5% threshold to 357 

evaluate the significance of change: www.gov.uk/government/statistics/wild-bird-populations-in-358 

the-uk), but regular checks are advisable. The exception was G. cristata, a rapidly declining species 359 

whose inclusion lowers the Farmland Bird Index and reduces overall precision. Whilst smaller sample 360 

sizes for rarer species may increase the imprecision of trend estimates, the estimates themselves are 361 

not necessarily biased. The inclusion of rare species in an MSI needs careful consideration in terms 362 

of the accuracy and precision of the trend estimates, and whether such species are representative of 363 

the community the index describes. We show that species adding most imprecision also tend to 364 

have the greatest impact on the index values, so species selection should consider index precision 365 

alongside other factors. Rarity is also an issue if a species undergoes significant declines over time 366 

and it raises questions over whether it should continue to be included in an MSI. This is the case 367 

when a declining species becomes so rare that it cannot be monitored reliably (partly because one 368 

cannot take a geometric mean of zero). The MSI-tool overcomes this problem by fixing the lowest 369 
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index value to one and other programmes do similar (e.g. Collen et al. 2009). Renwick et al. (2012) 370 

showed WBIs were sensitive to the exclusion of rarer, often declining species, and their exclusion led 371 

to more positive trends. So, excluding a rapidly declining (or increasing) species from an index can be 372 

problematic and create bias, and some rules are needed. In the case of G. cristata, there is no 373 

compelling reason to remove the species, as the index would be more positive if the species was 374 

lost, and independent evidence suggests that its population has collapsed in Europe (BirdLife 375 

International 2017). Note however that its inclusion is likely to reduce the precision of the index.  376 

We show that LDMs do not overly influence the WBIs, although their population trends were slightly 377 

more negative. Somveille et al. (2013) show that the proportion of migratory bird species in 378 

communities follows a strong latitudinal gradient globally, increasing with latitude. Some 37% of 379 

species covered by the PECBMS are LDMs and they represent an important component of breeding 380 

bird communities in Europe, although it is sensible to check that their trends, likely driven by factors 381 

inside and outside Europe, do not drive change in the MSIs. 382 

MSIs containing subsets of species judged to be more sensitive to environmental change showed 383 

slightly greater declines, as you might predict (Clavel, Julliard & Devictor 2011), but differences from 384 

current WBIs were modest (Figs. 5-6). Species selection for current indices was based on expert 385 

opinion that prioritised specialists and Reif, Jiguet & Šťastný (2010) showed that expert assessment 386 

of species’ specialization is highly correlated with independent measures. However, the case for 387 

adopting more objective species selection approaches remains. Renwick et al. (2012) argue against 388 

species selection based on expert opinion and previous research suggests that indices selected in 389 

this manner may not be representative of wider bird communities (Butler et al. 2012; Wade et al. 390 

2014). We therefore recommend approaches that impose the required characteristics of reactivity, 391 

representativeness and predictability of response on MSIs (Gregory et al 2005). For example, the 392 

SpecSel algorithm we applied here prioritises representativeness over maximising the specialisation 393 

of constituent species, with resultant indicator sets including less specialist species where necessary 394 
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to ensure all resource types used by the wider community are also exploited by selected species 395 

(Wade et al 2014). Here the indices with the most sensitive species outperformed the breakpoint 396 

set, which proved to more uncertain (Fig. 7). Although Renwick et al. (2012) showed that trends in 397 

WBIs based upon objective selection were very similar to the existing trends, we suggest adopting 398 

such formal approaches will improve MSI utility for many taxa, makes species selection more 399 

defendable and should ensure a level of future-proofing in terms of reactivity to environmental 400 

change. This may be easier to achieve for well-studied taxa, like birds, but the principle of objective 401 

species selection remains (Butler et al. 2009). 402 

5. CONCLUSIONS 403 

We show relative stability among common and widespread birds of forests in Europe, but a 404 

precipitous and ongoing decline in birds living on farmland. Current WBIs appear relatively robust to 405 

changes in species selection but the inclusion of species with more extreme trends can adversely 406 

affect index precision and the prioritisation of specialist species for inclusion can lead to non-407 

representative indicator sets. We therefore recommend employing objective species selection 408 

frameworks that ensure the critical indicator characteristics of reactivity, representativeness and 409 

predictability are imposed. Once an appropriate set of species has been selected, numerous 410 

approaches to the construction and presentation of indices are available and, given the potential 411 

influence of alternative approaches on index interpretation, each step needs careful consideration. 412 

We recommend anchoring indices (unsmoothed or smoothed) to start at 100 in the first year to aid 413 

communication, but also recommend, when practical, presenting indices anchored to 100 in the last 414 

year of the series to their aid interpretation and policy actions. CIs around the MSIs should ideally 415 

reflect error of the annual species’ indices and we recommend the MSI-tool as a practicable and 416 

effective tool to calculate CIs in this way; particularly given its additional functionality for generating 417 

unsmoothed and smoothed MSIs and testing for differences in indicator trends. Most importantly, 418 
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given the growing influence of MSIs on conservation policy development, the method of calculation 419 

of MSIs and CIs must always be clearly presented to facilitate appropriate interpretation. 420 
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FIGURE 1 MSIs for European forest (a-d: n=34) and farmland bird species (e-h: n=39) with shaded 

95% CIs calculated by bootstrapping (a, e), otherwise using the MSI-tool. Indices set to 100 (SE=0) in 

1980 in a, b, e and f. Indices set to 100 (SE=0) in 2015 in c & g, and to an average of 100 in 1980-2015 

(SE=0 in 1980) in d and h.  
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FIGURE 2 Smoothed MSIs for (a) European forest (n=34) and (b) farmland bird species (n=39) with 

95% CIs shaded. Indices set to 100 in 1980. The arrows in (b) indicate periods when there is a 

significant change detected in the trend. 

  

 

FIGURE 3 MSIs constructed based upon species subsets leaving one species out at a time, (a) 

European forest bird indices constructed based upon 33 species subsets, and (b) farmland bird 



indices constructed based upon 38 species subsets. Species missing from each MSI is given in the 

legend. Indices are set to 100 in 1980.   

 

 

 

FIGURE 4 Smoothed MSIs for long-distance migrants (black) versus residents and short-distance 
migrant birds (blue) for (a) forest (n=9 & 25 species respectively) and (b) farmland species (n=16 & 
23 species respectively). Indices set to 100 in 1980 with shaded 95% CIs. 



 

 

FIGURE 5 MSIs for species associated with forest (a: n=60), the top 2/3 (b: n=40), and the top 1/3 of 

these species (c: n=20) most sensitive to forest alteration. Grey line is the Forest Bird Index. Red lines 

are MSIs constructed by drawing with replacement random samples of 40 or 20 species from the 60 

species to match the number in the respective index. Indices set to 100 (SE=0) in 1980 with shaded 

95% CIs. 

 

 

 



FIGURE 6 MSIs for a group of species associated with farmland (a: n=54), the top 2/3 (b: n=36), and 

the top 1/3 (c: n=18) of these species most sensitive to farmland alteration. Grey line shows the 

Farmland Bird Index. Red lines are MSIs constructed by drawing with replacement random samples 

of 36 or 18 species from the 54 species to match the number of species in the respective index. 

Indices set to 100 (SE=0) in 1980 with shaded 95% CIs. 

  

 

 

FIGURE 7 MSIs for forest (a-b) and farmland birds (c-d) with species selected according to a species' 
selection algorithm. This identifies the species set with the lowest overall sensitivity (a=31 forest 
species & c=23 farmland species), and the optimal breakpoint set covering all resources (b=14 forest 
species & d=5 farmland species). Indices set to 100 (SE=0) in 1980 with shaded 95% CIs. Grey lines 
show the Forest (a-b) and Farmland Bird Indices (c-d).  



  

 

 



Table 1. Analysis of the impact of excluding individual species from (a) the Forest and (b) the 
Farmland Bird Indices. 

a) Species omitted from 
Forest Bird Index 

First 
year 

Last 
year 

Span 
in 
years 

Deviation 
in value 
from index 
in 2015 (%) 

Difference in 
precision 
from index 
in 2015 (%) 

Migratory 
status 

Accipiter nisus 1980 2015 35 2.43 2.08 Non-migrant 
Anthus trivialis 1980 2015 35 5.79 7.00 Migrant 
Bombycilla garrulus 1988 2015 27 -0.36 -1.76 Non-migrant 
Bonasa bonasia 1980 2015 35 5.47 6.35 Non-migrant 
Carduelis citrinella 1999 2015 16 2.38 3.23 Non-migrant 
Certhia brachydactyla 1982 2015 33 2.8 4.80 Non-migrant 
Certhia familiaris 1980 2015 35 3.36 5.62 Non-migrant 
Coccothraustes coccothraustes 1980 2015 35 -1.8 -5.67 Non-migrant 
Columba oenas 1980 2015 35 2.06 5.28 Non-migrant 
Cyanopica cyanus 1998 2015 17 1.09 1.27 Non-migrant 
Dryobates minor 1980 2015 35 6.82 7.32 Non-migrant 
Dryocopus martius 1980 2015 35 0.11 2.04 Non-migrant 
Emberiza rustica 1980 2015 35 8.96 10.17 Migrant 
Ficedula albicollis 1982 2015 33 -0.09 1.44 Migrant 
Ficedula hypoleuca 1980 2015 35 4.61 7.66 Migrant 
Garrulus glandarius 1980 2015 35 2.43 5.14 Non-migrant 
Leiopicus medius 1983 2015 32 -3.37 -17.78 Non-migrant 
Lophophanes cristatus 1980 2015 35 5.62 6.54 Non-migrant 
Nucifraga caryocatactes 1980 2015 35 0.57 0.53 Non-migrant 
Periparus ater 1980 2015 35 3.04 4.92 Non-migrant 
Phoenicurus phoenicurus 1980 2015 35 3.19 4.41 Migrant 
Phylloscopus bonelli 1989 2015 26 3.12 4.37 Migrant 
Phylloscopus collybita 1980 2015 35 0.52 3.18 Migrant 
Phylloscopus sibilatrix 1980 2015 35 4.38 4.31 Migrant 
Picus canus 1982 2015 33 -4.49 -7.92 Non-migrant 
Poecile montanus 1980 2015 35 7.09 8.96 Non-migrant 
Poecile palustris 1980 2015 35 3.91 5.92 Non-migrant 
Pyrrhula pyrrhula 1980 2015 35 4.91 7.13 Non-migrant 
Regulus ignicapilla 1982 2015 33 3.72 5.01 Non-migrant 
Regulus regulus 1980 2015 35 3.89 6.83 Non-migrant 
Sitta europaea 1980 2015 35 0.36 2.93 Non-migrant 
Spinus spinus 1980 2015 35 1.84 3.71 Non-migrant 
Tringa ochropus 1980 2015 35 3.29 4.14 Migrant 
Turdus viscivorus 1980 2015 35 4.03 6.20 Non-migrant 
 

b) Species omitted from 
Farmland Bird Index 

First 
year 

Last 
year 

Span 
in 
years 

Deviation 
in value 
from index 
in 2015 (%) 

Difference in 
precision 
from index 
in 2015 (%) 

Migratory 
status 

Alauda arvensis 1980 2015 35 -1.04 1.2 Non-migrant 
Alectoris rufa 1998 2015 17 0.33 0.13 Non-migrant 
Anthus campestris 1991 2015 24 3.38 -19.47 Migrant 
Anthus pratensis 1980 2015 35 0.1 4.38 Non-migrant 
Bubulcus ibis 1998 2015 17 -0.65 -0.75 Non-migrant 
Burhinus oedicnemus 1998 2015 17 -0.09 0.45 Non-migrant 
Calandrella brachydactyla 1998 2015 17 -1.52 -2.47 Migrant 

Table



Ciconia ciconia 1980 2015 35 -5.95 -3.44 Migrant 
Corvus frugilegus 1980 2015 35 -8.81 -9.96 Non-migrant 
Emberiza calandra 1980 2015 35 0.59 4.74 Non-migrant 
Emberiza cirlus 1989 2015 26 -4.15 -3.73 Non-migrant 
Emberiza citrinella 1980 2015 35 -1.62 0.94 Non-migrant 
Emberiza hortulana 1980 2015 35 3.9 6.07 Migrant 
Emberiza melanocephala 2000 2015 15 -0.01 1.46 Migrant 
Falco tinnunculus 1980 2015 35 -3.21 -1.2 Non-migrant 
Galerida cristata 1982 2015 33 18.16 17.81 Non-migrant 
Galerida theklae 1998 2015 17 -2.44 -1.59 Non-migrant 
Hirundo rustica 1980 2015 35 -3.08 -1.56 Migrant 
Lanius collurio 1980 2015 35 -1.81 -1.65 Migrant 
Lanius minor 1999 2015 16 -0.68 0.26 Migrant 
Lanius senator 1998 2015 17 -0.17 -1.33 Migrant 
Limosa limosa 1984 2015 31 -0.75 2.34 Migrant 
Linaria cannabina 1980 2015 35 -0.3 0.58 Non-migrant 
Lyrurus tetrax 1998 2015 17 2.49 2.27 Non-migrant 
Melanocorypha calandra 1998 2015 17 0.51 -1.1 Non-migrant 
Motacilla flava 1980 2015 35 0.73 4.41 Migrant 
Oenanthe hispanica 1998 2015 17 0.5 -0.65 Migrant 
Passer montanus 1980 2015 35 0.49 4.8 Non-migrant 
Perdix perdix 1980 2015 35 6.92 8.5 Non-migrant 
Petronia petronia 1998 2015 17 -1.54 -1.36 Non-migrant 
Saxicola rubetra 1980 2015 35 6.56 5.97 Migrant 
Saxicola torquatus 1984 2015 31 -6.66 -7.69 Non-migrant 
Serinus serinus 1982 2015 33 -1.29 -0.26 Non-migrant 
Streptopelia turtur 1980 2015 35 2.13 5.06 Migrant 
Sturnus unicolor 1998 2015 17 -1.36 -1.36 Non-migrant 
Sturnus vulgaris 1980 2015 35 0.66 4.25 Non-migrant 
Sylvia communis 1980 2015 35 -4.33 -2.56 Migrant 
Upupa epops 1982 2015 33 -6.63 -30.53 Migrant 
Vanellus vanellus 1980 2015 35 -1.56 3.15 Non-migrant 
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