SaaS: A Situational Awareness and Analysis System for
Massive Android Malware Detection

Yaocheng Zhang?®, Wei Ren®P%*, Tianqing Zhu®, Yi Ren®

@School of Computer Science, China University of Geosciences, Wuhan, P.R. China
b Hubei Key Laboratory of Intelligent Geo-Information Processing
China University of Geosciences (Wuhan), Wuhan, P.R. China
¢ School of Software, University of Technology Sydney, Ultimo, NSW 2007, Australia
4 Guizhou Provincial Key Laboratory of Public Big Data
GuiZhou University, Guizhou, P.R. China
€School of Computing Science, University of Fast Anglia, Norwich, UK

Abstract

A large amount of mobile applications (Apps) are uploaded, distributed and
updated in various Android markets, e.g., Google Play and Huawei App-
Gallery every day. One of the ongoing challenges is to detect malicious Apps
(also known as malware) among those massive newcomers accurately and effi-
ciently in the daily security management of Android App markets. Customers
rely on those detection results in the selection of Apps upon downloading,
and undetected malware may result in great damages. In this paper, we pro-
pose a cloud-based malware detection system called SaaS by leveraging and
marrying multiple approaches from diverse domains such as natural language
processing (n-gram), image processing (GLCM), cryptography (fuzzy hash),
machine learning (random forest) and complex networks. We firstly extract
n-gram features and GLCM features from an App’s smali code and DEX file,
respectively. We next feed those features into training data set, to create a
machine learning detect model. The model is further enhanced by fuzzy hash
to detect whether inspected App is repackaged or not. Extensive experiments
(involving 1495 samples) demonstrates that the detecting accuracy is more
than 98.5%, and support a large-scale detecting and monitoring. Besides,
our proposed system can be deployed as a service in clouds and customers
can access cloud services on demand.

*weirencs@cug.edu.cn

Preprint submitted to Elsevier August 21, 2018

Keywords: N-GRAM; Machine Learning; Fuzzy Hash; GLCM; Cloud

1. Introduction

In recent years, smart phones have become increasingly popular. In An-
droid market, a large number of Apps are uploaded or updated by hundreds
or thousands of individual developers for App distribution everyday. A re-
cent report shows that the number of Apps in Google play has increased
nearly 30% since 2017 [1]. While various Apps bring convenience and enter-
tainment to our daily life, Apps with malevolent intentions (e.g. malicious
deductions) also inflict troubles and risks to customers. Indeed, the growing
amount of malware has become an urgent problem. According to a report
released by the QIHU 360 security center, the number of malware samples in
the Android platform had surged to nearly 18.74 million by December 2015,
which was 27.9 times and 5.7 times higher than that in 2013 and 2014, re-
spectively [2]. The report also points out that over 370 million devices were
infected. The above results give us an intuitive emergence on the severity of
malware rampant on the Android platform.

Recently, detecting Android malware has been intensively studied [3, 4,
5, 6, 7, 8, 9], which are divided into two major categories: dynamic anal-
ysis [8, 9] and static analysis [3, 4, 5, 6, 7]. The former refers to obtain
dynamic behavior features of Apps when executing Apps in real devices over
sandbox environment. However, it usually time costly to find malicious be-
haviors, and may lose some harmful behaviors in a limited scope. Thus,
dynamic analysis is not not suitable for detecting malware among massive
Apps. In other words, the desired solution should be able to detect malware
automatically, efficiently and accurately. In contrast, static analysis affords
higher efficiency, fast processing, and full code coverage without relying on
the compiler or execution environment, thus it is more scalable for massive
malware detection. Nevertheless, static analysis may not be able to detect
harmful dynamic behaviors, and possibly results in relatively lower accuracy
when extracted features are not sufficient.

To tackle these limitations, we propose to obtain dynamic behavior fea-
tures by using some methods that can be conducted automatically and scal-
ably, e.g., n-gram sequences, GLCM features, and so on, to extract sufficient
features in detection to improve the accuracy.

Our design goal is to build a malware detection system for processing
massive Apps, with high processing throughput and high accuracy. This

paper makes following contributions: We propose a machine learning based
Android malware detection system. The system can automatically crawl new
samples from App markets, which guarantees the training set is fresh and
realistic. Even the most recently upcoming malware can thus be detected.
To further improve detection accuracy, we employ comprehensive methods
including n-gram, fuzzy hash, GLCM (Gray-level Co-occurrence Matrix) and
complex networks. Furthermore, we conduct extensive experiments to evalu-
ate system performance. The experimental results show that the system can
achieve 98.5% detection accuracy. For repackaged Apps, our system achieves
96% detection accuracy.

The rest of the paper is organized as follows. Previous works are reviewed
in Section 2. We present the pre-processing methods in Section 3 and propose
the scheme design in Section 4. Evaluation is conducted in Section 5, and
the paper is concluded in Section 6.

2. Related Work

Android App malware detection methods fall into two categories: dy-
namic analysis [8, 9], and static analysis [3, 4, 5, 6, 7]. As intensive compu-
tation resources are required, some detection systems are deployed in clouds
(10, 11, 12, 13, 14, 15], in which both static analysis and dynamic analysis
methods are used.

The basic idea of dynamic analysis methods [8, 9] is to obtain runtime
features of Apps and to rely those features in detection. M. Apel et al.[§]
proposed a dynamic analysis scheme to optimize distance measurement for
grouping malware samples. Their scheme can gain satisfactory results, but
its long analyzing time (over 2 minutes) may not be acceptable for a large
scale malware analysis. L. Zeng et al. [9] proposed to encode a matrix with
a low rank into a watermark graph and to embed the graph statements into
smali code.

Static analysis methods [3, 4, 5, 6, 7] leverage specific information from
inspected App, such as information from AndroiManifest.xml file or some
special API calls. The syntactic approach can be used for detecting mal-
ware. M. Karim et al. [3] investigated the frequency of n-gram from the
Opcode of instruction in the binary code, which can distinguish standard
vector based distance. The n-perm are utilized as features to differentiate
two malware samples, which, however, is unavailable due to the existence of
many morphing techniques beyond instruction permutation. Similarly, based

on Kolmogorov Complexity of malware, S. Wehner [4] leverages normalized
compression distance (NCD) to assess the similarity of malware samples,
where the complexity is approximated by the compressibility of malware
samples. Nevertheless, such clustering approach is vulnerable to the morph-
ing techniques due to its syntactic nature.

Apart from the syntactic-based approach, P. Faruki et al. [5] proposed a
malware detection system based on improbable feature signature database
of known malicious Apps. Regardless of their given positive results, their
scheme may not be preferable for the large scale data analysis, and may
not be able to find out newest malware. The malware detection system
proposed by Y. Zhang et al. is based on the vetting permission in Apps [6],
and their scheme could effectively examine the internal sensitive behaviors
of Apps by monitoring permission behaviors. K. Rieck et al. developed an
automatic classification system for malware samples, where classifier labels
samples by using anti-virus products [7]. In the scheme, samples unknown
to the anti-virus products are classified as unknown. On the other hand, it
also renders their scheme to be applied for categorizing malwares. V. Keles;j
et al. proposed a method for authorship attribution based on character-level
“n-gram” author profiles [16]. Their method is based on byte-level “n-gram”
and thus the generated author profiles are subjected to size limitation. The
internal connection are lost in their scheme and thus it may result in failing
to detect malwares. The study proposed by Patodkar Vaibhavi et al. uses
information from Twitter as a corpus for sentiment analysis [17]. The “n-
gram” is also used to analyze the messages together with some classifiers to
sort out the message type.

S. Yerima et al [12] employed Bayesian classification to characterize App’s
type with 58 features. The training set included 1000 malware samples from
49 families and 1000 benign samples. They further improved their work by
using static method with ensemble machine learning [13]. They extracted 179
features from APPs which include API calls, commands, and permissions.
They tested 6863 applications (2925 malware and 3938 benign samples) with
multiple methods such as naive Bayes, simple logistic, and random tree. The
experiment results showed a detection rate up to 97-99%.

F. Narudin et al. used public dataset and private dataset to evaluate
malware detection with machine learning classifier [14]. Based on the eval-
uation results, Bayes network and random forest classifier both have more
accuracy readings with a 99.97% true-positive rate, and multi-layer percep-
tion with only 93.03% on MalGenome dataset. Besides this, they found that

4

k-nearest neighbor classifier efficiently detected the latest Android malware
with 84.57% true positive rate, which is higher than other classifiers.

Overall, above schemes [8, 9, 3, 4, 5, 6, 7] suffer from some problems
in processing massive Apps with high accuracy, so in this paper, we use
comprehensive static analysis methods together with machine learning to
detecting malware. Besides, we deploy the system in clouds to accelerate the
speed of processing massive data.

3. Preliminaries

In our system, inspected App is pre-processed by three algorithms in the
preparation stage:

e Fuzzy hash algorithm: We use fuzzy hash algorithm to distinguish
whether the evaluated App is repackaged.

o N-gram: We extract App’s n-gram features from App’s smali code and
feed features to train models to detect App’s characteristics.

o GLCM: We extract App’s GLCM-6 features from the graph created
from App’s Dex file as model to detect App’s characteristics.

3.1. Fuzzy Hash Algorithm

Fuzzy hash algorithm, also known as Context Triggered Piecewise Hash-
ing (CTPH), firstly are used as a weak hash algorithm to calculate content,
and the hash value of each piece is calculated by a strong hash algorithm
again. Afterwards, the pieces of hash values are combined together to form
a fuzzy hash string. The similarity comparison algorithms can be used to
assess the similarity of two objects, i.e., documents, by comparing the fuzzy
hash values. We employ it to evaluate the similarity of files (e.g. the differ-
ences among files with content addition or content deletion). In our system,
we compare the data extracted from related Apps to evaluate their similarity
for determining whether those Apps are repackaged.

3.2. Smali and N-gram

Smali is a tool for studying bytecodes in Dalvik Virtual Machine (DVM).
Note that, although Smali language is not an official standard, almost all
statements in Apps follow this syntax specifications. As there are over 200
types of instructions in Dalvik Opcode, we need to classify and streamline

the instructions. Thus, we remove the non-essential instructions. There are
only 7 core instructions (i.e., M, R, G, I, T, P, V) left and they represent
the operations of “move”, “return”, “goto”, “if”, “get data”, “put data” and
“invoke”, respectively.

Table 1: Different n-gram features from an assembly file in Smali format
Smali Format Instruction Classify and Describe
iput-object p1,p0... P(input-object)

Invoke-direct {p0}... V(invoke-direct)

Return-void.... R(return-void)

T(

V(

iget-object V0,P0.... iget-object)
Invoke-static{V0}... invoke-static)

Return-void... R(return-void)
Opcode 1-gram Opcode 2-gram Opcode 3-gram Opcode 4-gram
P PV PVR PVRT
\Y% VR VRT VRTV
R RT RTV RTVR
T TV TVR
\Y% VR
R

N-gram is used in natural language processing and it assumes that the
probability of a word showing only relies on its previous n — 1 words. This
probability can be obtained by a sufficient amount of sentences in a corpus.
For example, the word of “apple” or “pizza” is more likely to appear after
“eating” than the word of “road”. We could perceive that n-gram remains
some linguistic features. Therefore, n-gram can be exploited for analyz-
ing malicious code [18], whose method was based on the bytecodes. But,
it is supposed that Opcode-based method was better than bytecode-based
method [19]. We incorporate the Opcode-based method in our scheme. The
Opcode n-gram can be extracted from instruction Opcode and n can be as-
signed as 2, 3 or 4. Tab. 1 gives an example of Opcode n-gram from an
assembly file.

In the system, we extract features from DVM Opcode to constitute a
training set, relying which machine learning is conducted to create a detection
model for a large scale malware detection.

3.3. Gray-scale image and GLCM

For a binary file, each byte is ranged from 00"FF, it corresponds to gray
values from 0 to 255 (0 represents black pixel and 255 denotes white pixel).

6

We can convert a binary file into a matrix, whose elements are corresponded
with bytecodes in the file and the size can be adjusted accordingly. The
matrix can then be easily transformed into a gray-scale image composed by
pixels.

Gray-scale image of an App can show features on code execution, which
can be used to explore code similarity and related patterns. Fig. 1 shows
two gray-scale images in the same malware family. Both are created from
DEX file, and we can see the similarity in image patterns by vision intuitively.
Certainly, diverse image processing methods can be applied for further image
analysis for similarity and pattern recognition.

Fig. 1: Comparison of two gray-scale images in the same malware family. Some similarity
in image patterns can be observed.

Gray level co-occurrence matrix (GLCM) is defined as the tabulation of
occurring times for different combinations of pixel brightness values (grey
levels) in an image. The GLCM is usually used for a series of “second order”

texture calculations. First order texture measures are statistics and calcu-
lated from original images. Second order measures consider the relationship
between groups of two (usually neighboring) pixels in original images.

GLCM-6 represents the six largest eigenvalues of characteristics in GLCM,
i.e., Contrast, Homogeneity, Correlation, Dissimilarity, ASM, and Entropy.
We can extract the data from DEX file to form a gray-scale image, from
which GLCM-6 values can be extracted as features to building a training
set.

4. Proposed Scheme - SaaS

The proposed scheme consists of three major functions: network data
capture and feature extraction, repackage detection, and code classification.
The input process output (IPO) model of the system is depicted in Fig. 2.

PROCESS

Get the app’s fingerprinte by Find if the app was
fuzzing hash repackaged

{ i OUTPUT
‘ Get the app’s dex graph’s

N —— , y \
E App.apk i feature by using GLCM i Find if the app was i
i ’ i malwared |
i i Find if the app has | :

malicious behavior

T Get the app’s opcode N-
GRAM feature

Fig. 2: The IPO (input process output) model of the system.

4.1. App Capture and Feature Extraction
4.1.1. App capture

We custom-tailor crawling codes via python for a large scale App crawling
from Android application markets. The crawled Apps will further be decom-
piled to obtain their n-gram sequences and GLCM information. We prefer
to collect more samples in this procedure to establish a better training set
(i.e. more features of Apps can be learned), which can improve the accuracy
in future machine learning procedure.

8

4.1.2. App fingerprint recording

App fingerprint is recorded by following major steps: Extract the instruc-
tion sequences of DEX files; Attain a sequence of simplified instructions;
Process sequence via fuzzy hash algorithm to record App fingerprint. Fuzzy
hash algorithm outputs the hash value of each section related to sequences,
which will not be influenced by most modification operations such as adding
or deleting instructions. The specific tool can be selected for providing fuzzy
hashing function, e.g., SSDEEP, which can compare similarity strength be-
tween candidate files.

4.1.8. N-gram extraction

We use Baksmali to process APK file to output corresponding smali
source code. All smali files will firstly be examined and then seven criti-
cal instructions, i.e., M, R, G, I, T, P, V, are selected and extracted. We
code a Python program to slice the list to produce the corresponding n-gram
sequences. In our system, we assign N = 3 as the length of feature sequence.
Some samples of 3-gram are illustrated in Tab. 1.

More specifically, extracting n-gram characteristics mainly presents fol-
lowing functions: Decompile APK file of an APP; Create an ALLsmali file
which encloses the contents of all smali files in each folder (those folders are
all come from one APK); Obtain file named F.smali (here F is the index
of the order, which is identical with App order in decompiling) to extract
the simplified instructions; Generate file named FSEQ.txt by converting in-
structions into instruction codes; Create file named n-gram.txt that contains
n-gram features of designated App by extracting n-gram from instruction
codes.

4.1.4. Feature extraction from gray-scale image

As we have mentioned previously that a binary file can be easily converted
into a gray-scale image, we convert the data extracted from DEX file to a
gray-scale image. MATLAB’s GLCM funtion in Java environment will be
invoked to compute GLCM-6 values from the gray-scale image.

The GLCM-6 values describe following six features for a given gray-scale
image [20].

e Contrast reflects intensity difference between a pixel and its neighbors
over the whole image, which is defined as

Con = Z Z(i — §)2P(i, 5) (1)

9

where i and j represent gray value of pixels in an image and P(i,7) is
the probability that both pixel ¢ and j are at specific position.

e Homogeneity reflects the closeness of element distribution in GLCM
to GLCM diagonal, which is defined as

HOTL_ZZI+|@—]| (2)

e Correlation reflects the statistical measure on how a pixel is correlated
to its neighbors over whole image, which is defined as

Corr = Z Z ijp(i’j> e (3)

- 102
(A

where iy = Y2, Y P (i, 5), 2 = 30, 5, 5P, §), 01 = X (i—m)* X, Pli,),
and 0y = ZJ(] - ,U2)2 > P, 9).

e Dissimilarity reflects the dissimilarity between two pixels, which is
defined as
Dis = > i~ jlP(i.j) (4)
i

e Angular Second Moment (ASM) reflects the summation of squared
elements in GLCM, which is defined as

Asm = Z Z P(i, j)? (5)

e Entropy reflects the complexity and the inhomogeneous degree of an
image, which is defined as

Ent = ZZP(i, j)log P(i, §) (6)

A training set is constructed by combining the data from n-gram and
GLCM-6. Relevant procedure is illustrated in Fig. 3.

10

Y ~ y
[APKFile decompress > DEX File

AN

l v l
KeyTool ‘ aapt tool BakeSmali+Scri

pt Processing v

| | |

get get get

s ! !

cert permission of Opcode from

signature the four Smali
components

Smaliimage
script
processing

\ 4

Opcode N- ‘ DEX grayscale
gram features

Training
set

Fig. 3: The flow chart of forming the train set.

4.2. Repackage Detection

Repackage detection is employed in our system, in which two folders are
considered: the similarity of App fingerprint between inspected two Apps,
and the certificate of App. Although repackaged App has different certificates
from original App, most functions in it remain similarity.

Our system collects many certificated App’s fingerprint. When a raw
App sample from markets is crawled, App fingerprint will be computed and
stored. The fingerprint will then be compared with the other fingerprints
which are stored before. If there exists a fingerprint which is highly similar
to the detected fingerprint and the certificate is distinct with the detected
one, the detected App is very likely to be repackaged one and will be assigned
a score denoted as scorer. The fingerprint of the repackaged App will be
removed.

4.3. Code Classification

The code classification process intends to identify Apps that contain mali-
cious codes. A suspected strength in percentage that indicates the possibility
of an App to be malware is assigned to each evaluated App. It will be au-
tomatically labeled as “normal” or “malware” by the classifier according to
pre-setting threshold. Two thresholds are assigned in our system based on
our empirical results from experiments on code classification. A specific App

11

is regarded to be malware, if its strength percentage is larger than a; An
App is probably to be malware, if that percentage is larger than 8 but lower
than a.

The classification method is based on random forest. In our experiments,
the test of binary classification reports an accuracy 99.5987%. (Correctly
Classified Instance 1489, Incorrectly Classified Instance 6, Kappa statistic
0.992, Mean absolute error 0.0293, Root mean squared error 0.0775, Rel-
ative absolute error 5.866%, Root relative squared error 15.5187%) After
above detections, each App will be assigned a score denoted as scorec =
scoren + scoreq, where scorey is a n-gram score, and scoreg is a gray-scale
image score. If an App is labeled by classifier as “malware”, socrey is set
to a negative value, whose absolute value equals probability calculated from
machine learning results. In contrast, if an App is labeled by classifier as
“normal”, scorey will be set a positive value. scoreg is set similarly.

We hereby briefly give an example on classifier by n-gram. Firstly, all
Smali files are obtained from an APK by using Baksmali, and they are merged
into a new file named AllSmali. The system then retrieves all Opcodes orderly
from AllSmali and these Opcodes will be simplified. The n-gram method is
employed to count the amount of 3-gram sequences, which will be dumped if
the amount is larger than 300. The system then obtains the n-gram features
of the APP as a file. We further create a test model that learns from n-gram
features of other Apps, using random forest technique to classify the App
(“malware” or “normal”). scorey of the App will be assigned according to
the results of classifier. Features of analyzed App will be included into the
test model for model upgrading.

4.4. Enhancement Method

To better analyze behaviors of an APP, we further propose an enhance-
ment method based on complex networks to characterize features on func-
tion calling graph, and then combine the n-gram information of features with
multiple metrics borrowing from complex networks, e.g., degree, average clus-
tering coefficient, average path length, to contribute features set in classifier
model.

4.4.1. Function calling graph

We use FlowDroid to create a graph about an App’s function calling.
FlowDroid is an open source static analysis tool for Android Apps, which can
output a graph which starts at function named “dummyMain”, and connects

12

all invoked functions in the App. The file named graph.gexf is created by
Flowdroid, which is a graph containing nodes and edges. Nodes present
API names and function names. Edges present source node information and
target node information.

An App may call some safe SDK (Software Development Kit) to simplify
the coding process, same development time, and reduce bugs. However, it
increases the difficulties in analyzing internal behaviors of Apps. Because
certain SDK libraries may call sensitive APIs, false positive may increase
due to auditing those sensitive APIs. Thus, we need to reduce the false
alert from SDK libraries, such as Alipay SDK, BaiduMap SDK, and so on.
Besides, we also need to remove common advertisement libraries to increase
the accuracy of the detection. In our experiments, we remove 75 common
advertisement libraries, such as com.google.android.gms.ads, net.cavas.show,
com.adsmogo.adview, net.youmi.android, et al.

The specific method to remove some safe SDK libraries and common ad-
vertisement libraries is show in Alg. 1. It takes as input 3 files - graph.gexf,
node_sdk.dot and node_sensiti.dot. Here graph.gexf file is created by using
FlowDroid, node_sdk.dot lists the names of safe SDK libraries and adver-
tisement libraries, and node_sensiti.dot contains names of sensitive APIs. In
graph.gexf the names of safe SDK libraries and advertisement libraries are
shown in nodes and edges, so it is easy to remove nodes or edges which pos-
sess those names. By using Alg. 1, we obtain a simplified function calling
graph.

4.4.2. Get sensitive APIs information
In this section, we define sensitive APIs that will be used in complex

networks. We use TF-IDF (Term Frequency - Inverse Document Frequency)
method to define sensitive APIs.

Definition 1. Sensitive API. The API that occurs more in malware but less
in normal Apps will be regarded as a sensitive API.

In Android environment, developers need to write some permissions in
AndroidManifest.xml file to call some specific APIs. Thus, we can comb
sensitive permissions in AndroidManifest.xml to reveal sensitive APIs.

Definition 2. Sensitive Permission. The permission that occurs more in
malware but less in normal Apps will be regarded as sensitive permission.

13

Algorithm 1 Remove some safe SDK libraries and common advertisement

libraries
Input: graph.gexf,node_sdk.dot, node_sensiti.dot

Output: edge.dot

1: function RmW ght(graph.gez f)

2 for each node from edge in graph.gexf do
3 if node contains node_sdk.dot then

4 erase(node); // erase the node information from original file
5: function SimlifyFEdges(node)

6: erase(edge);

7 node < node.target;

8 SimlifyEdges(node);

9: end function
10: elsenode contains node_sensiti.dot
11: edge.wetght < 2;
12: end if
13: end for

14: end function

We use APKtool to dig permissions from 757 malware and 346 normal
Apps. Partial permissions and their percentages in two types are listed in
Tab. 2. The percentage is calculated by the number of permission divide the
number of Apps in normal or malware.

Table 2: Partial of permissions and their percentages in two types

Permission Percent in malware (%) | Percent in normal (%)
ACCESS_WIFLSTATE 26.81 43.93
CHANGE_WIFISTATE 12.29 27.17

BROADCAST_PACKAGE_REMOVED 2.38 0
CONTROL_LOCATION_UPDATES 1.45 0
DELETE_PACKAGES 17.97 0
DEVICE_POWER 1.98 0
INTERNAL_SYSTEM_WINDOW 2.77 0
UNINSTALL_SHORTCUT 7.13 0
WRITE_HISTORY_BOOKMARKS 7.79 0
BAIDU LOCATION SERVICE 0 2.02
BROADCAST_PACKAGE_CHANGED 0 2.31
BROADCAST_PACKAGE_REPLACED 0 2.31
INTERACT_ACROSS_USERS_FULL 0 4.34
SEND_DOWNLOAD_COMPLETED_INTENTS 0 1.16
SYSTEM_OVERLAY_WINDOW 0 2.02

14

By using TF-IDF we summarize some permissions with strong intentions
in Tab. 3. By analyzing those permissions with strong indications, we finally
confirm 35 sensitive APIs, e.g., android.telephony.SmsManager.sendDataMessage,
android.telephony.SmsManager.sendMultipart Text Message,
android.telephony.SmsManager.send Text Message, android.content.ContentResolver.query,
et al. Those sensitive APIs will contribute to complex networks modeling.

Table 3: Permission with strong indications

Permission intends to malware Permission intends to normal
UNINSTALL_SHORTCUT INTERACT_ACROSS_USERS_FULL
WRITE_HISTORY_BOOKMARKS | BROADCAST PACKAGE_REPLACED
INTERNAL_SYSTEM_WINDOW BAIDU_LOCATION_SERVICE
CONTROL_LOCATION_UPDATES SYSTEM_OVERLAY_WINDOW

Relying Alg. 1 and sensitive APIs, we further refine a graph that contains
function calling relations, removes safe SDK and advertisement nodes, edges
that link one or both nodes related to sensitive APIs are labeled a specific
weight, namely, 2. The output of Alg. 1 is a file named edge.dot that saves all
edges and nodes. To create a complex network, we propose Alg. 2 that takes
as input edge.dot to output a file on complex networks data. The algorithm
denotes sensitive APIs as leaf nodes and inverses source nodes within 5 layers
for complex networks. The sample is illustrated in Fig. 4 and Fig. 5.

Sensitive API layer 1 @

Fig. 4: original graph

The visual exchange is shown in Tab. 4. The left table on edge informa-
tion matches Fig. 4 and right table matches Fig. 5.

Layer depth is 5 is due to following reasons: 1) retain the features about
calling sensitive APIs in malware, and 2) reduce the combine probability
with sensitive APIs in normal App.

The graph we created by using Alg. 1 and Alg. 2 is complex networks,
because the graph matches the features of complex networks such as 1) short

15

Algorithm 2 Construction of complex networks
Input: edge.dot
Output: cple ntw.dot
1: if edge.weight==2 then
2 vector < edge.targetinedge.dot
3: end if
4: 1 =4
5: function ConstC N (vector)
6
7
8

for each node from vector do
while i > 0&&edge.source! = empty() do
new_vector < edge.source; //new-built vector, different from
the previous

9: put The edge into cplx_ntw.dot;
10: ConstC N (vector);
11: 1= —;
12: end while
13: end for
14: 1=4;
15: edge.source <— ori;
16: eged.source < new,ector;

17: put The edge into cplx ntw.dot;
18: end function

Sensitive API layer 1

Fig. 5: complex graph

path lengths, 2) scale-free and 3) power-law degree distributions. Tab. 5
lists some sample data from original graph, simplified graph, and complex
networks. The first column in Tab. 5 is sample name. The second and third
columns are original node number (ONN) and original edge number (OEN).
The fourth and fifth columns are simplified graph node number (SNN) and
simplified graph edge number (SEN) by calling Alg. 1. It shows that Alg. 1
is useful to simplify the graph. The sixth and seventh columns are network

16

Table 4: From original graph to complex networks.

label | weight | source | targe ID | label | weight | source | targe
1 2 2 1 1 1 2 2 1
2 1 4 2 2 2 1 4 2
3 1 6 2 3 4 1 6 2
4 1 6 3 4 5 1 7 6
5 1 7 6 5 6 1 8 6
6 1 6 5 6 7 1 8 7
7 1 8 6 7 9 1 9 8
8 1 8 7 8 0 1 origin 4
9 1 9 8 9 0 1 origin 8
10 1 10 9 10 0 1 origin 9

node number (NNN) and network edge number(NEN) by calling Alg. 2.
It shows that node number and edge number decrease again. The last 3
columns in Tab. 5 are features of networks: average degree (AD), average
clustering coefficient (ACC), and average path length (APL).

Table 5: Some simple’s features about complex network
Sample label | ONN | OEN | SNN | SEN | NNN | NEN | AD | ACC | APL
204 | 418 192 390 |41 58 1.415 | 0.039 | 3.021
387 | 811 373 | 753 | 82 139 | 1.695 | 0.027 | 3.259
394 | 819 378 | 731 |104 | 156 | 1.500 | 0.031 | 3.252
425 | 968 386 | 827 |65 93 1.431 | 0.026 | 3.144
656 | 1627 | 562 | 1399 | 126 | 188 | 1.492 | 0.021 | 3.287
711 | 1749 | 689 | 1521 | 236 | 324 | 1.373|0.024 | 3.272
2494 | 6616 | 2035 | 5788 | 308 | 429 | 1.597 | 0.036 | 3.331
4585 | 12708 | 3148 | 6290 | 317 | 427 | 1.347 | 0.033 | 3.168

0 3 O U= Wi

We observe that the average path length is much less than sample net-
work edge number, and this matches the feature on short path length in
complex networks. Fig. 6 shows that network degree distribution matches
power-law degree distribution. Base on above observation, we claim that
our created networks are complex networks, and we may apply features of
complex networks to detect malware.

4.4.3. Sensitive API n-gram constructing and vector creating
This section explains how to obtain sensitive API n-gram from App com-
plex networks. Firstly, we define what is sensitive API n-gram.

17

Degree Distribution Degree Distribution

6 70 80 90 100 110 120 13) 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 33 40 42 44
Value Value

Degree Distribution Degree Distribution

Value Value

Fig. 6: Degree distribution of 4 samples.

Definition 3. In complex networks, if there exist identical nodes among the
paths from original node to distinct sensitive API nodes within the depth
less than 5 layers, those different sensitive APIs construct a sensitive API’s
n-gram.

Base on above definition and the file named cplx_ntw.dot, we propose
Alg. 3 as follows:

Base on Alg. 3, if there exist some paths from original node to sensitive
API nodes, and there exist identical nodes in those paths, we can collect
those sensitive APIs into n-gram, where n represents the number of sensitive
APIs. In the Fig. 7, there are 3 paths from original node to sensitive API
nodes (node_1, node_2, node_3). Because branch_1 and branch 2 are two
different nodes, and in the paths from original to node 2 and node_3 there
exist same node - branch 2, we say that node_1 is sensitive API 1-gram or
l-gram, and node_2 and node_3 are called 2-gram.

Base on Alg. 3, we can obtain App sensitive n-gram features. We extract
757 malware and 356 normal App’s sensitive n-gram features and use TF-
IDF to get some n-gram sequences that have the greatest difference between
those two types of Apps. In Tab. 6 there exist some functions in n-gram
sequences, and each function represents more than one sensitive APIs. There
are 22 functions and we can finally form 242 n-gram sequences from those

18

Algorithm 3 Extraction n-gram sequence
Input: cplx_ntw.dot
Output: n_gram.dot
if edge.weight==2 then

vector <— edge.target in cplx_ntw.dot;
end if
for each node; in vector do

List; value <—noeds on the road from ori to node;, in the order by
layer;
6: List;_key < node;;
7: end for
8
9

: for each List; do
add node; to n-gram;;

10: for eachList; do

11: if have common element between List; and List; then
12: add node; to n-gram;;

13: end if

14: end for

15: put n-gram; into n-gram.dot;

16: end for

Fig. 7: Sensitive API n-gram:[(node_1)(node_2,node_3)]. Here (node_1) is 1-gram and
(node-2,node_3) are 2-gram

function combinations, and those n-gram sequences are stored in the file
named ngftr.txt.

After extracting n-gram from an App, we further extract features with
respect to complex networks including average degree, average clustering co-
efficient, and average path length. The complex networks is create by Alg. 1
and Alg. 2 from the graph created by FlowDroid. After all required features
are available, we create a vector containing those n-gram features and com-

19

Table 6: The functions in n-gram from complex networks

Label | Type Argument 1 Argument 2 Argument 3 Argument 4
1 delete function
2 call telephone function
1-gram
3 send message
4 capture broadcast
5 read short message
6 file access
7 Send short message access address list
8 receive broadcast
9 get location information
10 read short message
11 2-gram file access
12 send by internet access address list
13 N receive broadcast
14 get location information
15 capture broadcast
16 call telephone access address list
17 capture broadcast send broadcast
18 equipment’s IMEIL equipment’s IMSI
19 | 3-gram send by internet receive restart broadcast read short message
20 receive restart broadcast | get location information
21 deor ond by internet read short message access address list call telephone
22 grat send by wterne get location information equipment’s IMEIL equipment’s IMSI

plex network features. That is, Vector ::= (g1, g2, g3, ... Gn, D, J, L, M/N),
where g; (i = 1,2,...,n) are n-gram features; If the App has this feature, g;
will be set as 1; Otherwise, it is 0; D is average degree; .J is average clustering
coefficient; L is average path length; M represents “malware”; N represents
“normal”. In the enhancement experiments, vector information are feeded
into WEKA to train detection model and accuracy results are evaluated.

4.4.4. Experiment FEvaluation

We use WEKA to train model by vector information from 8364 malware
and 5318 normal Apps. Those vectors contain n-gram features, complex net-
work features, and App type in terms of “M” or “N”. In the experiments,
we use K cross validation to obtain the average accuracy of the proposed
method. Tab. 7 lists detection performance in terms of Time, True Positive
(TP) rate, False Positive (FP) rate, Precision, Recall, and Receiver Operat-
ing Characteristic Curve (ROC) by evaluating 5 different machine learning
methods with 10 cross validation in WEKA.

From Tab. 7, we observe that the accuracy of 5 machine learning methods
are all accepted, since all TPRs are greater than 0.94 and all FPRs are lower
than 0.06 (all ROCs approach 1). Among them, J48 and NavieBayes cost
less time and Random Forest and Bagging cost more time. But, TPRs of

20

Table 7: The results of different machine learning methods

Algorithm | Time(s) | TP Rate | FP Rate | Precision | Recall | ROC
J48 2.49 0.961 0.048 0.961 0.961 | 0.974
RandomForest | 18.74 0.963 0.038 0.963 0.963 | 0.992
SMO 14.45 0.945 0.052 0.946 0.945 | 0.946
NaiveBayes 0.23 0.942 0.06 0.942 0.942 | 0.98
Bagging 11.64 | 0965 | 0045 | 0965 | 0.965 | 0.985

J48, RandomForest and Bagging are all greater than 0.96. Thus, J48 is the
best method to this vector data set in WEKA.

To justify our method, we choose the same data as in the paper written by
N. Peiravian et al. [21]. The data performs as a benchmark in comparisons,
which are shown in Tab. 8. Perm represents the permission information in
AndroidManifest.xml, API represents API calling graph features, and Com+
represents combinative features with both Perm and API.

Table 8: The benchmark data

Data Set | Algorithm | Precision | Recall
Perm J48 0.898 0.866
API J48 0.894 0.903
Com+ J48 0.906 0.928
Perm Bagging 0.92 0.882
API Bagging 0.936 0.907
Com+ Bagging 0.949 0.941

Comparison results with benchmark data are depicted in Fig. 8. It
shows that our proposed method outperforms others in terms of accuracy in
the detection of malware.

5. Experiment and Performance Evaluation

5.1. Module Fvaluation
As an integral system with multiple modules, we prefer to evaluate the

performance of individual component first and then evaluate the overall per-
formance. The major function modules to be tested include crawling module,
feature extraction module, classifier module, and repackage detection mod-
ule.

21

—¥— J48
0.96 Bagging

Precision
4
o
w

o
©
N

o
©
=1

0.90 -

Complex Network Perm API Com+
scheme

Fig. 8: Performance comparison in accuracy with benchmarks

5.1.1. App crawling module test

In this module, we examine whether the designed crawling program can
download Apps so fast as to sense and monitor third-party App markets
(Wandoujia market!, Mumayi market?, Anzhi market®, Android market* and
Huawei market®), which are 5 most popular Android markets in China. The
speed of downloading under normal PC client is about 0.4 Mbps at first,
which certainly is not suitable for large-scale App analysis. We next de-
ploy our system at clouds, it then can reach nearly 1.6 Mbps downloading
throughput, e.g., obtaining 3GB data in half an hour. The downloading
speed in clouds is four times faster than that in PC end.

5.1.2. App feature extraction module test

In this module test, we mainly test n-gram feature extraction and GLCM-
6 feature extraction. For n-gram test, we test the performance of two steps:
Decompile APK files, and Get n-gram features.

It takes 37 minutes to decompile 100 sample APK files firstly. It seems
not to be efficient. After analyzing the reason, we observe that the decompile
speed is related to APK size. If APKs that are larger than 100M are removed,
the speed of decompiling increases from 2.7 APKs/min to 475 APKs/min.

Thttps:/ /www.wandoujia.com/
2url=http://www.mumayi.com/
3url=http://www.anzhi.com/
4url=http://apk.hiapk.com/
Surl=http://app.hicloud.com/

22

After decompiling the APK file, we further test n-gram feature extraction
performance. Our experiments spend 1500s to process 1000 malware samples
for extracting n-gram features. In experimental results we find there exist
some n-gram feature files with size less than 1k, which indicates that feature
extraction is unsuccessful. We further analyze the reason - heads of some
APKs are damaged in decompiling procedure in Windows.

Some features we obtained (e.g., 18 3-gram features from one n-gram file)
in this module test are shown in Tab. 9.

Table 9: 3-gram features extracted from normal Apps

MGR GRG RGT GIP IPT PTV
VP VPP PPM PMT MTP TPM
PMV MVM VMI MII IIG IGI

5.1.8. App classifier module test

To build training set, we choose 1495 App samples including 754 malicious
Apps and 741 normal ones to extract n-gram features and GLCM-6 values.
We label them with “Normal” or “Malware”, and write them into CSV format
file. After that, the data in training set are processed by WEKA, in which
a classifier can be created finally. Above procedure takes about 270 seconds
in the experiments. It shows that after ten-fold cross validation, TP rate of
the model is 0.989 and FP rate is 0.054, it justifies that the classifier model
has high accuracy for detecting malware.

To classify unknown APKs, we build a testing set by including 200 mal-
ware and normal samples collected from online BBS. The establishment of
the testing set is similar to the training set, except that the former excludes
the attribute label (“Normal” and “Malware”). We can classify the test-
ing set by using classifier model, whose results will be compared with BBS
declaration manually, to evaluate the accuracy of the classifier. The experi-
mental results are given in Fig. 9, in which there are 5 columns - The first
column displays sample sequences; The second column indicates actual class
of sample (because we exclude attribution labels in the test set, all they
are 1 :7, where 1 presents default label and 7 presents actual label); The
third column outputs predicted results by using classifier model (“Normal”
or “Malware”); The fourth line shows whether there are some errors (nothing
showed) or not; The fifth column presents the probability of predict results
that is in the range of 071.

23

By checking the results manually, our system can achieve an accuracy
with nearly 98.5% in detecting malware.

=== Predictions on test data ===

inst# actual predicted error prediction (
1:? 2:normal
:? 2:normal
? 2:normal
? 2:normal
? 1:malware
? 1l:malware
? 2:normal
? 2:normal
? 2:normal
? 2:normal
? 2:normal
? 2:normal
:? 2:normal
?

?

?

?

o

?

?

?

?

?

?

XNV A WNE

2:normal
2:normal
2:normal
2:normal
2:normal
2:normal
1:malware
2:normal
2:normal
2:normal
2:normal

Fig. 9: The results of classification by classifier model.

5.1.4. Repackaging detection module test

In this module test, SSDEEP is selected to provide fuzzy hash algorithm
to get an App’s fingerprint, which is shown in Tab. 10. The first line shows
the brief information of the results, which are blocksize, hash, hash, and file
name.

Table 10: The fingerprint of App by using ssdeep

ssdeep,1.1-blocksize:hash:hash,filename

196008:
Xvm3WGPKh/kOiCb6Mm05Y0YjM81F+RAaCbLm7w2BV:
sWGC6RKY0Y71F+0DmLiw2BV,/Users/idF TPClienttestnew.zip

Some comparison results by using SSDEEP’s command “-m”and judge-
ment on App certification are given in Tab. 11 and Tab. 12. In the former
table, there exist multiple Apps possessing identical certificates, and the
similarity is 100%. Those Apps are the same from one publisher, and are
compiled for many times. In the latter table, there exist multiple Apps that
hold low similarity (lower than 50%) but possess the same certificate. The
reason is due to the different versions of the same App. Sometimes there exist

24

some Apps that match with others with similarity more than 95%, although
they do not hold the same certificate. Such situation can be reasoned from
two aspects as follows: 1) Either or both is (are) repackaged; 2) A number
of same third-party libraries are called in source code of both Apps.

Table 11: Some Apps have same certificates with others
Number of App Similarity with others If have same cert
No.0

matches No.2 49%

matches No.11 100% same cert
matches No.21 50%
matches No.25 49%
matches No.30 100% same cert
matches No.181 100% same cert

Table 12: Some App is lower similarity with other App but have same cert with other App
Number of App Similarity with others If have same cert
NO.7

matches No.259 54%

matches No.287 38% same cert
matches No.290 49% same cert
matches No.291 54% same cert

In the experiments, 340 malware samples include 50 repackage samples
are included. The repackage module detects 48 repackaged samples among
50, which justifies the repackage detection method is sound.

5.2. Integral Fvaluation

We conduct the cloud-based real-time monitoring on large-scale Apps in
this section. Malware situational awareness curve will be created, shown,
updated for App markets with multiple applications, e.g., massive filtering,
supervision, risk management, trend alter and so on. It can also be provided
as a third-party service for network governance. Fig. 10 depicts malware
trends in 3 mainstream markets for a given period. It shows that in those 3
markets from April 23 to April 29, 2017, there exist some new malware that
are detected by our proposed system but not aware by App markets.

A risk assessment on App markets are also sorted for five major markets.
The metrics is based on the proportion of malware and repackaged applica-
tions in the market, which is normalized into a score range in [0,100]. The

25

16

—>-anzhi
<3 mumayi
kuan

The number of malware detected

8 s -
4/23 4/24 4/25 4/26 4/27 4/28 4/29
Time

Fig. 10: Malicious code trends.
results (Fig. 11) shows that all scores are not high. It means that in those

markets there exist contain malware or repackaged applications that are not
detected.

100

80

oIIIII

huaweiwandoujiaanzhuo mumayi anzhi
Markets name

o
o

The quality score
5

N
o

Fig. 11: The risk assessment for major App markets.

6. Conclusion

In this paper, we propose a comprehensive system that can automatically
crawl Android Apps and detect malware in a large-scale at real-time. The
features of App are extracted by n-gram and GLCM-6 values. Fuzzy hash
algorithm is utilized for detecting repackag. The model of complex networks
are applied for extracting characteristics in calling function graph. The de-
tection accuracy of our system is evaluated over a large amount of Apps

26

crawled from top 5 popular App markets in China. The results validate the
scalability of our system. Our system can detect malware in those markets
unaware. Moreover, it can evaluate the risk of those markets in portion of
malware.

7. Acknowledgment

The research was financially supported by the Major Scientific and Tech-
nological Special Project of Guizhou Province (20183001), Open Funding of
Guizhou Provincial Key Laboratory of Public Big Data with No. 2017BD-
KFJJ006, National Natural Science Foundation China 61502362, and Open
Funding of Hubei Provincial Key Laboratory of Intelligent Geo-Information
Processing with No. KLIGIP2016A05.

References

[1] S. News, Google play have an obvious growth in 2017, http:
//tech.sina.com.cn/it/2018-04-05/doc-ifysuuya8013472.shtml
(Apri 2014).

[2] dqriot, 2016 android malware special report, http://blogs.360.cn/
blog/review_android_malware_of_2016/ (feb 2017).

[3] M. E. Karim, A. Walenstein, A. Lakhotia, L. Parida, Malware phylogeny
generation using permutations of code, Journal in Computer Virology,
1 (1-2) (2005) 13-23.

[4] S. Wehner, Analyzing worms and network traffic using compression,
Journal of Computer Security, 15 (3) (2007) 303-320.

[5] P. Faruki, V. Laxmi, A. Bharmal, M. Gaur, V. Ganmoor, Androsimilar:
Robust signature for detecting variants of android malware, Journal of
Information Security and Applications, 22 (2015) 66-80.

[6] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang,
B. Zang, Vetting undesirable behaviors in android apps with permission
use analysis, in: Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, ACM, New York, NY, USA, 2013,
pp. 611-622.

27

[7]

[10]

[11]

[12]

[14]

[15]

[16]

K. Rieck, T. Holz, C. Willems, P. Diissel, P. Laskov, Learning and clas-
sification of malware behavior, in: Detection of Intrusions and Malware,
and Vulnerability Assessment, Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2008, pp. 108-125.

M. Apel, C. Bockermann, M. Meier, Measuring similarity of malware
behavior, in: 2009 IEEE 34th Conference on Local Computer Networks,
IEEE, Zurich, Switzerland, 2009, pp. 891-898.

L. Zeng, W. Ren, Y. Chen, M. Lei, Lmdgw: a novel matrix based dy-
namic graph watermark, Journal of Ambient Intelligence and Human-
ized Computing.

X. Wang, Y. Yang, Y. Zeng, Accurate mobile malware detection and
classification in the cloud, Springerplus, 4 (1) (2015) 583.

S. Jadhav, S. Dutia, K. Calangutkar, T. Oh, Y. H. Kim, J. N.
Kim, Cloud-based android botnet malware detection system, in: 2015
17th International Conference on Advanced Communication Technology

(ICACT), IEEE, Seoul, South Korea, 2015, pp. 347-352.

S. Y. Yerima, S. Sezer, G. McWilliams, I. Muttik, A new android mal-
ware detection approach using bayesian classification, in: 2013 IEEE
27th International Conference on Advanced Information Networking and
Applications (AINA), IEEE, Barcelona, Spain, 2013, pp. 121-128.

S. Y. Yerima, S. Sezer, I. Muttik, High accuracy android malware de-
tection using ensemble learning, IET Information Security 9 (6) (2015)
313-320.

F. A. Narudin, A. Feizollah, N. B. Anuar, A. Gani, Evaluation of ma-
chine learning classifiers for mobile malware detection, Soft Computing,
20 (1) (2016) 343-357.

S. H. Hung, C. H. Tu, C. W. Yeh, A cloud-assisted malware detection
framework for mobile devices, in: 2016 International Computer Sympo-
sium (ICS), IEEE, Chiayi, Taiwan, 2016, pp. 537-542.

V. Keselj, F. Peng, N. Cercone, C. Thomas, N-gram-based author pro-
files for authorship attribution, in: Proceedings of the conference pacific

28

[17]

[18]

[19]

association for computational linguistics, PACLING, Vol. 3, Harifax,
Canada, 2003, pp. 255-264.

V. N. Patodkar, I. R. Sheikh, Twitter as a corpus for sentiment anal-
ysis and opinion mining, in: Proceedings of the Seventh International
Conference on Language Resources and Evaluation (LREC’10), ELRA,
Valletta, Malta, 2010.

T. Abou-Assaleh, N. Cercone, V. Keselj, R. Sweidan, N-gram-based de-
tection of new malicious code, in: Proceedings of the 28th Annual Inter-
national Computer Software and Applications Conference, 2004(COMP-
SAC 2004), Vol. 2, IEEE Computer Society, Washington, DC, USA,
2004, pp. 41-42.

R. Moskovitch, C. Feher, N. Tzachar, E. Berger, M. Gitelman, S. Dolev,
Y. Elovici, Unknown malcode detection using opcode representation,

in: Intelligence and Security Informatics, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008, pp. 204-215.

L. K. Soh, C. Tsatsoulis, Texture analysis of sar sea ice imagery using
gray level co-occurrence matrices, IEEE Transactions on Geoscience and
Remote Sensing, 37 (2) (1999) 780-795.

N. Peiravian, X. Zhu, Machine learning for android malware detection
using permission and api calls, in: 2013 IEEE 25th International Con-
ference on Tools with Artificial Intelligence, IEEE, Herndon, VA, USA,
2013, pp. 300-305.

29

