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Scoping the potential usefulness of seasonal climate

forecasts for solar power management

Matteo De Felice1, Marta Bruno Soares2, Andrea Alessandri3,1, Alberto
Troccoli4

Abstract

Solar photovoltaic energy is widespread worldwide and particularly in Eu-
rope, which became in 2016 the first region in the world to pass the 100 GW
of installed capacity. As with all the renewable energy sources, for an effec-
tive management of solar power, it is essential to have reliable and accurate
information about weather/climate conditions that affect the production of
electricity. Operations in the solar energy industry are normally based on
daily (or intra-daily) forecasts. Nevertheless, information about the incoming
months can be relevant to support and inform operational and maintenance
activities.

This paper discusses a methodology to assess whether a seasonal climate
forecast can provide a useful prediction for a specific sector, in this paper the
European solar power industry. After evaluating the quality of the forecasts
in providing probabilistic information for solar radiation, we describe how to
assess their potential usefulness for a generic user by proposing an approach
that takes into account not only their accuracy but also other potentially
relevant factors. This approach is called index of opportunity and is then
illustrated by presenting an example for the European solar power sector.
The index of opportunity provides indications about where and when seasonal
climate forecasts can benefit the decision-making in the photovoltaic sector.
Even more importantly, it suggests an approach on how to evaluate their
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usefulness for the user’s decision-making. This approach has the advantage
of not limiting the definition of the usefulness only to the quality of the
forecasts but rather considering, in an explicit way, all the factors that must
be combined with the forecast’s quality to define what is useful or not for
the user.

Keywords: Solar Power, Climate, Climate Services, Forecasting

1. Introduction1

The fluctuations of the electricity produced by the majority of renewable2

energy sources (RES) is closely related to weather and climate variability.3

Sources like solar and wind power, which together accounted for approxi-4

mately 12% of the European electricity generation in 2016 [1], are inherently5

non-dispatchable and influenced by the availability of solar radiation and6

wind, respectively. In addition, hydro power generation, which produces7

more than 10% of Europe’s electricity, although a more controllable energy8

source, is also affected by the availability of water in rivers and reservoirs9

which is tightly linked with precipitation and snow melting.10

This strong link between power generation and meteorology implies that11

an increase in energy produced by RES requires actions by the electric utili-12

ties and grid operators to prevent drawbacks and faults due to less favourable13

weather conditions.14

Solar power, specifically photovoltaic power, has a fundamental role in15

the RES mix. With a global installed capacity increase from 177 GW to16

about 400 GW between 2014 and 20175, solar power could reach more than17

600 GW by 2020 [2]. In Europe, the installed capacity in Europe has grown18

by 100 GW and solar power currently supplies on average 4% of the Europe’s19

energy demand [2]. The EU Reference Scenario 2016 6 from the European20

Commission envisages an increase of solar capacity in 2050 (in relation to21

2015) of 116% for Germany, 200% for Italy and 16% for UK [3].22

Solar power is affected by the availability of solar radiation making the23

power supply particularly vulnerable to clouds and, more generally, to the oc-24

currence of low-pressure systems. Furthermore, the efficiency of photovoltaic25

5http://www.ren21.net/gsr-2018/
6Available here: https://ec.europa.eu/energy/sites/ener/files/documents/

ref2016_report_final-web.pdf
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panels is directly related to their temperature adding a further dependence26

to air temperature and wind speed due to cooling effects [4].27

Forecasting the expected production of solar power for the next hours/days28

is normally necessary for the scheduling of non-renewable power plants and29

for decision-making processes within the energy market. However, there are30

also decisions that are made at longer timescales (e.g. 2-3 months ahead) and31

influenced by weather/climate such as in relation to system adequacy anal-32

ysis, hedging, asset management and risk assessment [5]. A tool that could33

help to predict the climate information at long time-scales is the climate34

forecast generated by an Earth system model.35

Seasonal climate forecasts are numerical model-based predictions where36

each forecast is initiated from an estimate of the initial state of the Earth37

system derived from Earth observations. Due to advances in the knowledge of38

the Earth system as well as the dramatic increase of available computational39

power, their quality has improved significantly in the last decades [6]. These40

systems are able to provide predictions of the climate up to several months41

ahead [7, 8]. Although climate forecasts can be perceived as an extension of42

weather forecasts with respect to the timescale of the information provided,43

the shift from “weather” to “climate” information leads to two big differences.44

Firstly, the information covers a longer period (e.g. the next season) and45

larger areas (e.g. mid-size country). Secondly, climate forecasts provide46

probabilistic information, as they consist of an ensemble of simulation, a47

way to deal effectively with the uncertainty.48

The type of information provided by climate forecasts also requires a49

different approach when using the information for decision-making in the50

energy sector. This is due to the different types of resolution (e.g. a seasonal51

instead than hourly average) and the longer timescales which influence other52

types of operations than those pursued at hourly or daily timescales.53

The intrinsic probabilistic nature of seasonal climate forecasts also re-54

quires different methods to assess the quality of the information which are55

technically different from the verification methods applied to deterministic56

(weather) forecasts [9]. Although there is a shared agreement on “why and57

when” seasonal forecasts are good (see for example [10] and [6]), it is often58

considered good practice to apply post-processing (e.g. bias correction) or59

multi-variate statistical methods (e.g. [11]) to enhance the forecasts’ infor-60

mation.61

In recent years, many projects in Europe have assessed and analysed the62

potential usefulness and usability of climate forecasts across a number of sec-63
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tors including energy focusing on long-term climate change scenarios (e.g.64

[12] and [13]) and seasonal climate forecasts as an input for operational ac-65

tivities in the renewable energy sector (e.g. [14, 15, 16, 17]). These efforts66

have been largely underpinned by the need to efficiently manage the renew-67

able energy sector as it is becoming more prominent in Europe7 as well as68

the opportunities arising from new operational forecasting systems8.69

In the scientific literature, there are only a few studies that have looked70

into the use of seasonal climate forecasts for RES (e.g. [18, 19, 11, 20]). How-71

ever, many of those analyse the information provided by the forecasts from a72

statistical perspective and tend to exclude assessments of how the predicted73

climate information can be potentially useful to the user, i.e. help to bet-74

ter inform and support their decisions. An example is [21], which assesses75

the “goodness” of seasonal climate forecasts at the global level, classifying76

their usefulness considering their statistical reliability, i.e. its statistical con-77

sistency, without taking into account explicitly the decision-making of their78

users.79

This paper proposes a methodology to understand the usefulness of sea-80

sonal climate forecasts for the solar power industry considering the main81

factors that are perceived as relevant to an industry user. In Section 2 we82

present an analysis on the predictability of solar power in Europe. Section83

3 presents an approach, called index of opportunity, illustrated with an ex-84

ample on European solar power. In Section 4 we discuss the results and its85

potential application on European regions. Finally, in Section 5 we provide86

some final remarks.87

2. Predicting solar power in Europe88

Solar radiation is the most important meteorological driver for photo-89

voltaic power plants. It can be measured using ground sensors or estimated90

by satellite measures or atmospheric reanalyses. As the scope of this study91

is the European continent a homogeneous dataset spanning a long period92

was required, to this end we opted for a satellite-based product. In addi-93

tion, the use of satellite data is often preferred with respect to reanalyses94

7In the period 1990-2014 the production from RES in Europe has increased by 174%.
For more see the recent EUROSTAT statistics available here http://bit.ly/1TE3Ms5

8An example is the Copernicus Climate Change Service (C3S) seasonal multi-system
freely available at https://climate.copernicus.eu/seasonal-forecasts
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(e.g. MERRA by NASA or ERA-INTERIM/ERA5 by ECMWF) due to95

their higher accuracy [22].96

In this study, we use the SARAH (Surface Solar Radiation Data Set-97

Heliosat) dataset. It was released in 2015 by CM SAF (Satellite Application98

Facility on Climate Monitoring) and provides data for the period of 1983 to99

2013 including the hourly to monthly averages in a regular grid at a resolution100

of 0.05◦×0.05◦ [23, 24]. Although solar radiation is the prominent variable to101

estimate the power output of a PV plant, air temperature plays an important102

role too due to its role in the efficiency of the PV panel [25]. To this end,103

in our analysis we have used 2-metre temperature data from E-OBS dataset104

[26].105

Solar radiation shows a strong seasonality in both its average and vari-106

ability, due to astronomical and atmospheric effects. The inter-annual vari-107

ability for the winter and summer seasons, expressed as the percentage ratio108

between the standard deviation and the mean (hereinafter relative standard109

deviation), is shown in Figure 1. The Mediterranean region shows a lower110

variability than the rest of Europe due to more frequent clear sky conditions.111

Another evident characteristic is the higher variability in the mountain re-112

gions, as for example in the Pyrenees, Apennines, Alps and the Carpathian113

Mountains.114

2.1. Predicting Solar Power using Seasonal Climate Forecasts115

The seasonal forecasts used in this work were produced by the ECMWF9
116

System 4 forecast system which was operational from November 2011 until117

November 2017 [27]. The System 4 system provides every month a forecast118

for the incoming months as a set of different realisations (named ensemble119

members) with a temporal resolution of 6 hours.120

Our analysis focuses on the potential predictability of solar power at re-121

gional level given the difficulty to simulate the actual production at site-level122

due to the lack of information on existing PV plants (geographical coordi-123

nates, panel orientation, on-site measurements, solar panels typology, etc.)124

for all the European countries. We compared for each European region (con-125

sidering NUTS 2 classification, the second level of the European Nomencla-126

ture of territorial units for statistics) the: a) solar power potential obtained127

9The European Centre for Medium-Range Weather Forecasts (ECMWF) is an inter-
governmental organisation established in 1975 and supported by 34 states.
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(a) Winter (December, January and
February)

(b) Summer (June, July and August)

Figure 1: Relative Standard Deviation of daily solar radiation for summer and winter
seasons from SARAH dataset for the period 1983-2013. It is clearly visible how the
Mediterranean regions show a lower variability than the rest of Europe due to a general
clearer sky

using satellite solar radiation and the observed air temperature, and b) the128

solar power potential computed using the same two variables from the sea-129

sonal climate forecast output instead.130

The photovoltaic power potential is a dimensionless metric function of all131

the factors affecting solar power production [28]. It is defined as:132

PVpot(t) = η(t)
G

GSTC

(1)

where G is the solar irradiance (derived from satellite measurements or133

climate forecasts) and GSTC is the solar irradiance at standard conditions134

(the conditions when the PV module produces its nominal power) which is135

equal to 1000W/m2; η(t) is the performance ratio, a coefficient that models136

the changes in efficiency of the PV panel, defined as:137

η(t) = 1 + γ(Tcell(t) − TSTC(t)) (2)

where γ is the temperature coefficient, which is normally provided by the138

manufacturer. In our case we set it to 0.0045◦C−1, which is an average value139

considering the possible photovoltaics technologies (see Dubey et al. [29] for140
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more details on this aspect). TSTC is the temperature at standard conditions141

(here 25◦C) and Tcell is the PV cell temperature that, following the definition142

in Ross [30], can be expressed as:143

Tcell = Tair +G
NOCT − 20

800
(3)

where Tair is the air temperature and NOCT is the Nominal Optimal Cell144

Temperature that we assume here as 48◦C.145

2.2. Probabilistic Analysis146

We analyse the seasonal climate forecasts in predicting PV power pro-147

duction for a 3-month seasonal average with one month of lead time (i.e.148

forecasts issued on the first of February for the spring season, the first of149

May for summer, etc.). In this analysis, we focus on the seasonal averages,150

derived by averaging all the values of each ensemble member for each season.151

Given the probabilistic nature of seasonal forecasts we followed the ap-152

proach and skill measures described in Wilks [31] particularly the Brier Skill153

Score (BSS), a well-known and widely used skill metric for the probabilistic154

forecasts [10, 32]. Although there are several frameworks and metrics that155

can be potentially applied to assess the quality of a probabilistic forecast,156

we opted for the use of the Brier Score [33] for a binary event. We decided157

to focus our analysis on a binary event (e.g. solar power production higher158

than normal), rather than on a continuous variable (e.g. the amount of gen-159

erated electricity), to be able to simplify the decision-making model to better160

concentrate this work on the link between the quality of a forecast and its161

perceived usefulness for a user, as we will see later in Section 4. Using a cate-162

gorical (e.g. binary) predictand instead of a continuous one also makes easier163

the analysis of the joint distribution of observations and forecasts. Moreover,164

the Brier Score is used also for its useful reliability-sharpness decomposition165

[31] and for the fact of being a proper score [34].166

The BSS is based on the Brier Score (BS), that basically corresponds167

to the mean squared error of the probability forecast in predicting a binary168

event. The formula for the BS is the following:169

BS =
1

n

n∑
k=1

(yk − ok)2 (4)
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where o is the observation, with o = 1 when the event occurs and o = 0170

when it does not. Instead y is the probability forecast, with k the index for171

the n time steps.172

The skill score (BSS) is obtained comparing the BS of the forecast with the173

BS of a reference forecast, in this case the climatological relative frequency.174

A BSS of 1 indicates a perfect forecast while a score of 0 means no difference175

between the forecast and the reference forecast. When the value is negative,176

it means that the forecast performs worse than the reference forecast. The177

formula for the BSS is then:178

BSS = 1 − BS

BSref

(5)

where BS and BSref are respectively the Brier Score of the forecast and179

the reference forecast.180

All the datasets here used have been interpolated on a common grid, the181

one of the SARAH dataset. Consequently, also the PV power potential is182

computed point by point on a regular grid and then we choose to aggre-183

gate it, using the mean, at regional level. Moreover, to make this analysis184

more realistic and therefore meaningful for each region we average only the185

grid points where, based on the land-cover information, PV panel may be186

installed. This is based on the methodology proposed by Hansen and Thorn187

[35] and it consists of an analysis of the potential for PV farms per square188

km in Europe using the Corine Land Cover data (CLC2006). This potential189

represents an estimate of the regional PV energy suitability (i.e. the area190

available for PV) taking into account geographical and physical conditions.191

After estimating the potential density of PV panels we classify all the grid192

points as suitable (or not) for PV power installation (see Figure 2), we filter193

out all the grid points that are not suitable (i.e. where the density of PV194

panels is zero as for example in mountain areas) from the regional averages.195

Figure 2 shows a map illustrating, with one km resolution, all the areas that196

are suitable for PV panels, i.e. when the potential for PV farms is greater197

than zero.198

The BSS is used here to measure the skill of the seasonal forecast in199

predicting two binary events: upper event and lower event. The two events200

are defined according to the lower and upper terciles of the average regional201

PV power potential, i.e. the upper (lower) event is defined when the PV202

potential is above (below) the 66th (33th) percentile of all the PV potential203

observed in the considered period (1983-2013).204
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Figure 2: Areas suitable for PV-panel installation. The map has a 1 km of resolution
and it is based on Corine Land Cover Data (CLC2006) following the procedure proposed
by Hansen and Thorn [35]. The grey grid points represent the areas where the potential
density of PV is zero.

Figure 3: Example for West Midlands in summer. The line represents the PV power
potential (see Eq. 1) based on the observed meteorological variables. The bar plot instead
shows the probability given by the seasonal climate forecasts issued in May of a PV power
potential higher than normal (i.e. greater than the 66th percentile) for the incoming
summer.

9
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(a) Winter (December, January and
February)

(b) Summer (June, July and August)

Figure 4: Brier Skill Score for the PV power potential higher than normal (i.e. above the
66th percentile).

An example on how the events are defined is in Figure 3, where the205

photovoltaic power potential is shown for a county in the West Midlands206

region (England) for the summer. The black dots represent the upper event,207

i.e. when the potential is above the 66th percentile (0.20 in this example). The208

bar plot at the bottom indicates the probability predicted by the seasonal209

forecast for having the PV power potential higher than normal. In this210

example the skill score is equals to 0.27.211

The BSS of the seasonal forecast for the two events is shown for all the212

European regions in Figures 4 and 5.213

The coloured areas represent the regions where the seasonal forecast pro-214

vides probabilistic information that is better than climatology i.e. the in-215

formation coming from the observed frequency of the event in the past. In216

both of these figures we can see that in some areas of Europe there is skill in217

multiple regions such as in the Iberian Peninsula during summer months for218

both of the events or in the United Kingdom for the higher event (i.e. the219

prediction that the PV output will be higher than normal).220

A detailed skill assessment of solar power generation (and, more in gen-221

eral, energy and climate variables) can be found instead in two deliverables of222

the ECEM contract [36, 37]. Both the documents focused on solar irradiance223

given that, for seasonal averages, it is highly correlated with the solar power224

production. The assessment in [36] is based both on the point-by-point cor-225

relation between the seasonal forecasts and the ERA-INTERIM reanalysis226

for solar irradiance (Figure 16 of [36]) and on the use of a set of skill-scores227

10
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(a) Winter (December, January and
February)

(b) Summer (June, July and August))

Figure 5: Brier Skill Score for the PV power potential lower than normal (i.e. below the
33th percentile).

for country averages. In the latter analysis (shown in Table 2 and 3 of [36]])228

they have found that for the winter forecasts the correlation is significantly229

greater than zero for Eastern Europe (Albania, Bosnia-Herzegovina, Bul-230

garia, Croatia, Czechia, Greece, Hungary, Macedonia, Montenegro, Serbia,231

Slovakia) and instead for ROC skill-score (see Wilks [31] for the description232

of this metric) only in Serbia and Poland. On the contrary, the authors have233

found that for summer forecasts no areas shows a skill-score significantly234

greater than zero.235

A proper skill assessment is a vital step to evaluate a seasonal climate236

forecast, however, skill metrics alone are not enough to define if a forecast237

is useful or not for a user. In the following section we discuss and present238

an approach for calculating an index of opportunity of seasonal forecasting,239

based on multiple factors including a skill score, to help inform and improve240

the operational decisions of a target generic user.241

3. Index of opportunity: a hypothetical example for the solar242

power industry243

As mentioned above, seasonal climate forecasts can be potentially used244

as a tool to improve the decision-making in sectors where climate plays an245

important role (see [20]). However, as emphasized by [38], for seasonal fore-246

casts to be useful should be able to influence the decision-making: assessing247

their accuracy (as we did in Section 2.1) is generally not sufficient. As such,248

it is critical to understand how this type of forecasts can potentially help249
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to inform the operations and decision processes within the solar power in-250

dustry. In this context, the potential usefulness of seasonal forecasts to the251

end-users will be influenced by a number of aspects such as how much is the252

information provided by the forecast needed to inform the user’s operations253

and decisions; what is the impact of a good (bad) forecast to the user; how254

precise and accurate does the forecast needs to be to be applied by the user255

[38, 39, 40]. Furthermore, broader aspects related to the specific organisa-256

tional context within which the forecasts are to be applied (e.g. governance257

structures, institutional and regulatory contexts, trusting relationships with258

the forecasts’ providers) also influence how potentially useful and, ultimately,259

usable seasonal forecasts can become [39, 40, 41].260

However, the use of seasonal forecasts to inform activities within the solar261

energy sector in Europe is limited. To evaluate the potential usefulness of262

seasonal climate forecasts, we propose an index that, taking into account263

multiple factors, can help understand the capability of the seasonal forecast264

information to inform the solar power industry.265

The main premise of this index is that it is based on the user’s organisa-266

tional context and knowledge in order to capture the factors most relevant to267

the user. This means that the index is an indicator tailored to a specific user268

and a specific decision-making process and, as result, it is not a generalised269

index of usefulness. The first step is therefore to understand what are the270

critical factors to the user which can include, for example the need to detect271

periods with anomalous low generation or to give priority to the regions with272

the greater installed capacity.273

Such index models a specific decision-making process in a particular or-274

ganisational setting. As such, the construction of the index can be considered275

as part of the tailoring process characteristic of a climate service [42, 43, 44].276

Here we propose a hypothetical index based on the following three as-277

sumptions:278

• Skill: we assume that the more skillful the forecast is the more useful279

it is. On the contrary, we consider a forecast with zero or negative skill280

useless;281

• PV potential capacity: we assume that in a region where there is a282

large amount of potential PV installed capacity a good forecast will be283

potentially more useful than in areas with a low potential;284

• Inter-annual variability of solar power potential: we assume that a285

12
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Figure 6: Index of Opportunity: the three panels refers to the variability of PV power
potential (low, medium and high variability).

seasonal forecast should help to cope with the high variability of solar286

power generation (i.e. a large standard deviation).287

These three aspects are the “information layers” that have been combined288

to create the index shown in Figure 6. Each of these aspects is associated289

to a specific factor: Skill, PV Potential Land Share, and Variability. The290

factors have been divided into categories through the following procedures:291

Skill. The skill for power production has been presented in Section 2.1 by292

using the Brier Skill Scores for two events represented by the upper and lower293

terciles (i.e. PV power production above and below normal). We summarise294

the skill by considering the average between the two values, therefore as-295

suming that the prediction of upper and lower events has the same level of296

importance for the user. We make two assumptions: 1) any positive score297

is useful to some extent, because it means that the climate forecast provides298

probabilistic information more accurate than the climatology, i.e. the ob-299

served past; 2) a forecast is never useful when its skill is negative. Based on300

those assumptions, this factor has been divided in four categories: negative301

score, score between 0 and 0.1, between 0.1 and 0.2, and score greater than302

0.2. The choice of the intervals is arbitrary, considering that what is being303

proposed is an example for a generic user.304

PV Potential Land Share. To estimate the potential land share of PV we have305

used the data presented in Section 2.1 (see Figure 2) and we have aggregated306

13



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Figure 7: Percentage of land suitable for PV panels for each European region (NUTS2).
The suitability is defined as the percentage of the grid points that are suitable for PV
panels (see Figure 2).

the values at regional level, therefore obtaining for each European region the307

share of land that is potentially suitable for PV installations (see Figure 7).308

This factor has been divided into six categories to try to characterise the309

diverse suitability for PV installation of the European regions.310

Variability. This factor represents the inter-annual variability of solar power311

potential. The relative standard deviation has been used to measure the312

variability, as done for the solar radiation in Section 2. We have divided313

the variability in three categories, according to the terciles computed on the314

entire distribution for all the seasons, i.e. high (low) variability is defined as315

the relative standard deviation above (below) the 66th (33th) percentile of all316

the relative standard deviations in all the seasons. The calculation has been317

done considering regional aggregated data and the output is shown in Figure318

8. The thresholds have been set to have each category of the same size.319

The three factors are combined based on the function depicted in the320

diagram in Figure 6. For a specific region, we can obtain the value of the index321

firstly selecting one of the three panels according the inter-annual variability322

of the region (Low, Medium or High) and then looking at the color in the row323

and columns according to, respectively, the forecast skill and the PV potential324

land share in the specific region. The potential usefulness is classified in four325

14
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(a) Winter (December, January and
February)

(b) Summer (June, July and August)

Figure 8: Relative standard deviation of PV potential production at regional level. The
three categories are defined according to the terciles of all the values of relative standard
deviation for all the regions and all the seasons. We can observe how the variability is
higher during the winter period due to more frequent cloudy conditions.

levels, ranging from ‘None’ (the lightest shade) to ‘Good’ (the dark purple),326

according to three variables. As stated before, this index is a specific example327

and it reflects the idea that: 1) a forecast is never useful when its skill is328

negative; 2) a forecast is more useful in the regions where the potential land329

share is high (for example when it is higher than 80% the index is always330

at least ‘Fair’); 3) the higher the observed generation variability, the more331

useful is the forecast (in Figure 6 we can see that the index is never ‘Good’332

when we have Low Variability, on the opposite when the variability is High,333

the usefulness is always at least ‘Fair’);334

The index of opportunity has been computed for all the European regions335

at NUTS 2 level.336

4. The potential usefulness of seasonal climate forecasts for solar337

power338

The index of opportunity proposed in the previous section is illustrated339

in Figure 9 for the two main seasons – winter and summer – across European340

NUTS 2 level regions.341

According to our example, the index indicates that seasonal forecasts342

can provide some potential benefits during both seasons in different parts of343

Europe. For example, during winter months, the forecasts are potentially344

useful in areas such as Poland and, in general, in the Northwestern Europe.345
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(a) Winter (December, January and February) (b) Summer (June, July and August)

Figure 9: Index of Opportunity proposed in Section 3 across European NUTS 2 regions.

In the southeastern part of the continent, the index highlights some poten-346

tial benefits in Greece and in the southern Italian regions. During summer347

months, the areas with a fair-to-good value of the index are located in the348

Iberian Peninsula, in the central-southern England regions and in the north349

of France. In general, during summer the index shows potential benefits in350

most of the Mediterranean areas.351

If we take into account in our analysis the actual installed capacity of352

solar PV, we can also observe that the benefit of the climate forecast can353

be seen as a support to a higher penetration of PV in the areas where the354

installed capacity is still low compared to the other regions. Poland for355

example, according to the Polish Energy Regulatory Office, has 100 MW of356

installed solar power in 2017, a number about 400 times lower than Germany357

and about 100 times lower than the UK, two countries that shows a similar358

solar potential [45].359

In addition, despite the interconnection between European power grids,360

multiple electricity markets exist, varying in geographical scope and in the361

typology of the performed operations and the implemented regulations. This362

diversity of the policy and governance structures across countries/regions re-363

quires a closer attention to the underlying assumptions (i.e. the considered364

factors) to be included in an index of opportunity. In this study, the as-365

sumptions included in the index have been selected in order to exemplify the366

approach. However, these should ultimately be discussed and defined with367

the end-users, according to what they regard as critical aspects in their spe-368

cific decision-making processes and in order to fit their information needs.369

16



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

As such, future research efforts should aim to develop and test the proposed370

index of opportunity with decision-makers within the solar power industry371

in Europe to ascertain the usability of such approach in helping them make372

better informed decisions supported by seasonal climate forecasts.373

4.1. Remarks on the choice of the skill score374

In the proposed index the skill score is an important factor because it375

summarises the capability of the forecast to provide an accurate estimate376

of the potential generation. Here we have used the Brier Skill Score met-377

ric considering two possible events: generation above the second tercile (i.e.378

66th percentile) and below the first tercile (i.e. 33th percentile). However,379

there exists a wide range of skill scores, each one focusing on a different as-380

pect. Providing a summary of the most common used scores for probabilistic381

forecasts is not in the scope of this paper, for an in-depth description and382

discussion, the authors refer to Wilks [31] and, for a applicative comparison383

for the energy sector, to the results of the C3S ECEM contract [36, 37].384

As for the other factors, the choice of the skill score and the thresholds385

used to categorise it should be carried out in collaboration with the user386

trying to define which are the statistical features of the forecast most relevant387

for the specific decision-making. An example showing the results of the388

application of different skill scores on the PV power potential is given in the389

Supplementary Material in Fig. S2.390

5. Concluding remarks391

This paper describes how to create an index of opportunity, designed to392

be able to combine multiple factors related to the usefulness for a specific user393

of a forecast in predicting the seasonal PV potential production. A specific394

hypothetical example based on the authors’ experience is presented to help395

illustrate the potential for using such an index. However, the development of396

this type of index should always be pursued in close collaboration with the397

users of the seasonal climate forecasts.398

This study provides some insights on where and when seasonal climate399

forecasts can benefit the decision-making for the photovoltaics sector and,400

more important, it suggests an approach on how to evaluate their usefulness401

for the user’s decision-making. This approach has the advantage of not lim-402

iting the definition of the usefulness only to the quality of the forecasts but403
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rather considering, in an explicit way, all the factors that must be combined404

with the forecast’s quality to define what is useful or not for the user.405

This approach can also be regarded as a step needed for an effective406

integration of seasonal climate forecasts in the decision-making processes in407

the European renewable energy sector, especially considering the challenges408

that the European power systems operators are facing with the increasing409

penetration of PV power and, in general, renewable energy sources.410

This work is also motivated by the fact that the use of the seasonal411

climate information by the solar power industry is probably going to increase412

due to the recent improvements of seasonal forecasting systems in predicting413

phenomena like the North Atlantic Oscillation [46] that are well-known to414

have an impact of solar irradiance and therefore PV power [47, 48].415
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[34] J. Bröcker, L. A. Smith, Scoring probabilistic forecasts: The importance520

of being proper, Weather and Forecasting 22 (2007) 382–388.521

[35] A. C. Hansen, P. Thorn, PV potential and potential PV rent in European522

regions, ENSPAC Research Papers on Transitions to a Green Economy,523

Roskilde University, 2013.524

[36] ECEM, D2.2.1: Skill assessment of energy-relevant climate variables525

in a selection of seasonal forecast models. Report using final data526

sets., Technical Report, Copernicus Climate Change Service, 2018.527

https://doi.org/10.5281/zenodo.1293863.528

[37] ECEM, D3.4.1: Assessment of seasonal forecasting skill for energy vari-529

ables, Technical Report, Copernicus Climate Change Service, 2018.530

[38] A. H. Murphy, What Is a Good Forecast? An Essay on the Nature of531

Goodness in Weather Forecasting, Weather and Forecasting 8 (1993)532

281–293.533

[39] J. Clements, A. Ray, G. Anderson, The value of climate ser-534

vices across economic and public sectors: A review of rele-535

vant literature, United States Agency for International De-536

velopment (USAID): Washington. http://www. climate-services.537

org/wp-content/uploads/2015/09/CCRD-Climate-Services-Value-538

Report FINAL. pdf (accessed 9 December 2015) (2013).539

[40] M. Bruno Soares, M. Daly, S. Dessai, Assessing the value of seasonal540

climate forecasts for decision-making, Wiley Interdisciplinary Reviews:541

Climate Change 9 (2018) e523.542

[41] M. C. Lemos, C. J. Kirchhoff, V. Ramprasad, Narrowing the climate543

information usability gap, Nature climate change 2 (2012) 789.544

22



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

[42] C. Vaughan, S. Dessai, Climate services for society: origins, institutional545

arrangements, and design elements for an evaluation framework, Wiley546

Interdisciplinary Reviews: Climate Change 5 (2014) 587–603.547

[43] C. Buontempo, H. M. Hanlon, M. B. Soares, I. Christel, J.-M. Soubey-548

roux, C. Viel, S. Calmanti, L. Bosi, P. Falloon, E. J. Palin, et al., What549

have we learnt from EUPORIAS climate service prototypes?, Climate550

Services (2017).551

[44] P. Falloon, M. B. Soares, R. Manzanas, D. San-Martin, F. Liggins,552

I. Taylor, R. Kahana, J. Wilding, C. Jones, R. Comer, et al., The553

land management tool: Developing a climate service in Southwest UK,554

Climate Services (2017).555
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Supplemental Materials: Scoping the potential568

usefulness of seasonal climate forecasts for solar power569

management570

(a) Variability - Spring (MAM) (b) Variability - Autumn (SON)

(c) Index - spring (MAM) (d) Index - autumn (SON)

Figure S1: Inter-annual variability and Index of Opportunity for spring and autumn sea-
sons.
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(a) Correlation (b) BSS upper median

(c) BSS upper 75th percentile (d) ROC Skill Score upper (66th)

Figure S2: Four different metrics are used to compare the forecast of PV power potential
as done in Figures 4 and 5. a) The correlation is applied on the mean of all the ensemble
members, it is not a probabilistic skill but however is widely used; b) The Brier Skill Score
with the event defined as the generation above the median; c) Same as b) but using the
75th percentile; d) The ROC skill score for the generation above the second tercile.
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• This work explains how to use better climate forecasts in the energy sector  
• To assess the usefulness of climate forecasts estimating the accuracy is not 

enough 
• This approach considers many factors to assess the usefulness of climate 

forecasts 


