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Abstract. I construct, in ZFC, a forcing notion that collapses @3

and preserves all other cardinals. The existence of such a forcing
answers a question of Uri Abraham from 1983.

1. Introduction

It is a trivial fact that, under CH, the collapse of !2 to !1 with
countable conditions, Coll(!1,!2), is a forcing notion collapsing @2 and
preserving all other cardinals. In [1], Abraham addresses, and answers
a�rmatively, the question whether the existence of a forcing notion
with the above property can be proved in ZFC alone.1 It should be
pointed out that Todorčević provides a di↵erent proof of the same
conclusion in [13], Theorem 6. In fact he shows, in ZFC, that for
every nonzero n < ! there is a partial order Q collapsing !n to !1,
preserving !1, and preserving all cardinals above !n. Given a stationary
subset S of [!n]@0 of size @n, which always exists by a standard covering
argument (cf. Lemma 3.1), and a bijection i : !n �! S, Q is the set,
ordered by reverse inclusion, of all finite subsets of S linearly ordered
by the relation x < y i↵ i(x) 2 y.

For a set X of ordinals, Add(!, X) denotes the finite–support pro-
duct of copies of Cohen forcing indexed by the ordinals in X. Also,
given cardinals , �, the set of functions p ✓  ⇥ � such that |p| <
, ordered by reverse inclusion, is denoted by Coll(,�). Abraham’s
construction in ZFC of a forcing P collapsing exactly @2 proceeds in
the following way. First he fixes a subset A ✓ !2 such that !L[A]

2 = !2.
His forcing P is the iteration Add(!,!1) ⇤ Coll(!1,!2)L[A][Ġ], where
of course Coll(!1,!2)L[A][Ġ] denotes Coll(!1,!2) as computed in the
inner model L[A][Ġ]. This makes sense as Add(!,!1) is in fact in
L[A] and every Add(!,!1)–generic filter over V is of course generic
over L[A]. It is immediate to check that P collapses !2 and preserves
all higher cardinals. What needs some argument is to show that P
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1Note that Coll(!1,!2) collapses 2@0 to !1 if CH fails.
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preserves !1, and this is where the Cohen reals come into play. For
this one proves that Coll(!1,!2)L[A][Ġ] is �–distributive in VAdd(!,!1).
(Coll(!1,!2)L[A][Ġ] is certainly �–directed closed in L[A]Add(!,!1), but
no longer so in VAdd(!,!1) in general.) Given an Add(!,!1)–generic
G, a condition p 2 Coll(!1,!2)L[A][G], and a Coll(!1,!2)L[A][G]–name ḟ
in V[G] for an !–sequence of ordinals, one finds a certain descending
sequence (pn)n<! 2 L[A][G] of conditions in Coll(!1,!2)L[A][G] in such
a way that

S
n pn happens to decide ḟ(m) for every m < !. The

Cohen reals are used to guide the construction of (pn)n. The way (pn)n
is constructed ensures, by a density argument, that for every m < !
there is some pn deciding ḟ(m). Of course L[A][G] does not know about
the fact that

S
n pn decides ḟ(m) for all m as ḟ is not even in L[A][G],

but V[G] does.
In [1], Abraham asks if this result can be extended to higher cardi-

nals; in particular, he asks whether it is true, in ZFC, that there is a
forcing notion collapsing @3 and preserving all other cardinals. In this
paper I answer this question, a�rmatively, by proving the following
theorem.

Theorem 1.1. (ZFC) There is a partial order P with the following

properties.

(1) P collapses @3.

(2) P preserves all cardinals above @3.

(3) P is <!2–distributive.

I will actually give two proofs of Therem 1.1 for the reason I will
describe next.

My original proof of the above result was in two steps, as follows:

(1) In a first step, one proves that there is a cardinal–preserving
forcing adding a set A ✓ !3 such that !3 computes !3 correctly
and such that the collection of internally club2 elementary sub-
models of H(!3)L[A] in L[A] is stationary in V.

(2) Working in a forcing extension as given by (1), one can extend
Abraham’s construction, using a natural forcing AddB(!1) for
adding @1–many mutually generic Baumgartner clubs – rather
than Add(!,!1) – in order to predict the relevant objects.

Subsequently, Veličković observed that part (2) can be replaced by
a significantly simpler argument using Neeman’s forcing with chains of
models of two types (countable and internally club of size @1) over an
extension as given by (1). Thus, if my original proof of Theorem 1.1

2I will properly introduce all undefined notions soon.
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was a natural extension of Abraham’s proof of the main result from
[1], Veličković’s modification extends Todorčević’s proof of that result.

Even if Veličković’s proof is simpler, I think the proof strategy in (2)
is itself of su�cient interest and may found further applications. For
this reason, I have opted for giving both proofs (first the original proof
and then Veličković’s). The reader who is interested only in the result
may of course want to skip the first proof of Theorem 1.1, after Section
3, and read only the second proof.

In the next section I will lay the ground towards the first proof.
After introducing the forcing AddB(X), for a set X of ordinals, and
giving its main properties (in Subsection 2.1), I give a sketch of how
to lift Abraham’s construction using AddB(!1) (in Subsection 2.2). In
Section 3, I briefly discuss covering properties for inner models, and
show how to always find a cardinal–preserving forcing adding a suitable
partial square–sequence on !2; it will then follow that in the generic
extension there is a subset A of !3 such that !L[A]

3 = !3 and such the
suitable form of covering holds for H(!3)L[A]. This is part (1) of both
proofs of Theorem 1.1 referred to above. In Section 4, and building
on the construction in Section 3, I give the two proofs of Theorem
1.1. Section 5 is a short section addressing a question of a similar
flavour as Abraham’s question, regarding the possibility that CH fails
in a suitably absolute way, and I conclude the paper with some natural
questions in Section 6.

Much of the notation in this paper follows the set–theoretic standards
set forth in [5] or [7]. In particular, given an isomorphism ' : P �! Q
between forcing notions and a P–name ẋ, '̂(ẋ) denotes the Q–name
given by {('(p), '̂(ẏ)) : (p, ẏ) 2 ẋ}. If  is a cardinal and ↵ is an ordi-
nal, +↵ denotes the ↵–th cardinal � such that � � ; in other words,
if  = @�, then +↵ = @�+↵. If  < � are infinite regular cardinals,
S�
 = {↵ < � : cf(↵) = }.

Acknowledgement: I thank Tanmay Inamdar for reminding me of
[1] and calling my attention to the question whether there is, in ZFC, a
forcing notion collapsing exactly @3, and Stevo Todorčević for remind-
ing me of his result in [13] in connection with Abraham’s theorem. I
also thank Boban Veličković for finding the simplified proof of Theorem
1.1.

2. Approaching Abraham’s question

One first naive approach towards answering Abraham’s question af-
firmatively would be to try to push his construction one cardinal up,



4 D. ASPERÓ

i.e., replacing everywhere !1 and !2 by !2 and !3, respectively. This
will not work in general, though; for one thing, even replacing Cohen
forcing by the version, in a suitable L[A], of the forcing for adding a
Cohen subset of !1 might well collapse cardinals. Thus, it seems that
one will need a gentler way to add (many) subsets of !1 if this approach
is to work.

2.1. Adding many Baumgartner clubs. Let B denote Baumgart-
ner’s forcing from [3] for adding a club by finite approximations: B is
the set, ordered by reverse inclusion, of all finite functions p ✓ !1 ⇥ !1

which can be extended to a strictly increasing and continuous function
F : !1 �! !1. B canonically adds a new club of !1, which I will call a
Baumgartner club. The following definition is from [2].

Definition 2.1. Let X be a set of ordinals. AddB(X) is the following
forcing notion: Conditions in AddB(X) are pairs of the form p = (f,F)
with the following properties.

(1) f is a finite function with dom(f) ✓ X and such that f(↵) 2 B
for every ↵ 2 dom(f).

(2) F is a finite function with dom(F) ✓ !1 such that for every
� 2 dom(F),
(a) � is an indecomposable ordinal,
(b) F(�) is a countable subset of X,
(c) � 2 dom(f(↵)) and f(↵)(�) = � for all ↵ 2 dom(f)\F(�),

and
(d) ot(F(�0)) < � for every �0 2 dom(F � �).

Given AddB(X) conditions (f0,F0), (f1,F1), (f1,F1) extends (f0,F0)
i↵

• dom(f0) ✓ dom(f1) and f0(↵) ✓ f1(↵) for every ↵ 2 dom(f0),
and

• dom(F0) ✓ dom(F1) and F0(�) ✓ F1(�) for every � 2 dom(F0).

Given a set X of ordinals, AddB(X) can be seen as a particularly
simple finite–support product of copies of B incorporating side condi-
tions – these are the F ’s in the conditions. AddB(X) is designed to
add mutually generic Baumgartner clubs indexed by the ordinals in X
while preserving all cardinals.3 In fact, one obtains Proposition 2.2 by
arguments which are either trivial or essentially contained in [2].

Given two functions F and G, let F �G denote the function H with
domain dom(F) [ dom(G) such that

3It is easy to see that both the finite–support product and the full–support
product of countably many copies of B collapse !1.
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• H(x) = F(x) for every x 2 dom(F) \ dom(G),
• H(x) = G(x) for every x 2 dom(G) \ dom(F), and
• H(x) = F(x) [ G(x) for every x 2 dom(F) \ dom(G).

Also, given a set X, let �X denote X \ � in case X \ � 2 !1.
The following proposition enumerates the main properties of AddB(X)

relevant to us here.

Proposition 2.2. Let W be an inner model such that !W
1 = !1 and

let X 2 W be a set of ordinals. Then the following holds.

(1) For every AddB(X)W–generic G over V and every ↵ 2 X,

[
{f(↵) : (f,F) 2 G for some F , ↵ 2 dom(f)}

is the strictly increasing enumerating function of a Baumgart-

ner club over V.

(2) If every countable subset of X in V is included in a countable

set in W, then AddB(X)W is proper in V. In fact, in that

case, given any cardinal ✓, any countable elementary substruc-

ture N of H(✓) such that AddB(X)W 2 N , and any (f,F) 2
AddB(X)W \N , if f 0

is the function with domain dom(f) such
that

f 0(↵) = f(↵) [ {h�N , �Ni}
for all ↵ 2 dom(f) and Y 2 [X]@0\W is such that N \X ✓ Y ,

then the pair (f 0,F [ {h�N , Y i}) is, in V, an (N,AddB(X)W)–
generic extension of (f,F).

(3) In V, AddB(X)W has the @2–c.c.

(4) Let X 0 2 W be a set of ordinals and let g : X �! X 0
be an

order–preserving bijection in W. Then the function sending

(f,F) 2 AddB(X)W to

({hg(↵), f(↵)i : ↵ 2 dom(f)}, {h�, g“F(�)i : � 2 dom(F)})
is an isomorphism between AddB(X)W and AddB(X 0)W.

(5) For every partition (X0, X1) of X in W, AddB(X)W can be na-

turally represented as the product AddB(X0)W ⇥ AddB(X1)W;

in fact, the function sending a condition ((f0,F0), (f1,F1)) 2
AddB(X0)W ⇥ AddB(X1)W to (f0 [ f1,F0 � F1) is an isomor-

phism between AddB(X0)W ⇥ AddB(X1)W and AddB(X)W.

Proof. Only the proof of conclusion (2) is not completely straightfor-
ward. For the reader’s convenience I am giving a proof of this conclu-
sion suggested by the referee and somewhat simpler than the original
proof from [2].
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Let p̄ = (f̄ , F̄1) be an extension of (f 0,F [ {h�N , Y i}) in AddB(X)
and let D 2 N be a dense subset of AddB(X) in N . We want to find
a condition in D \N compatible with p̄.

We define a function g with domain dom(f̄) \N , by letting g(↵) =
f̄(↵) � �N for all ↵ 2 dom(f̄) \ N . We define also p = (g, F̄ \ N).
Then p is clearly a condition in AddB(X) weaker than p1. If we take
an arbitrary extension p† = (f †,F †) of p in D \ N and ask if p† is
compatible with p̄ (as we would like it to be), there could be two
problems with compatibility. The first possible problem is that for some
� 2 E = (dom(F̄) \ N) \ dom(F †), for some �0 < � in the domain of
F † it is not the case that ot(F †(�0)) < �. The second possible problem
is that for some � 2 dom(F̄) \ N there is some ↵ 2 dom(f †) \ F̄(�)
such that f †(↵)(�) 6= �. (Note that this may only happen for ↵ 2
dom(f †) \ dom(g).)

In order to handle the first problem, in the above definition of p
we replace F̄ \ N by {h�, ;i : � 2 dom(F̄ � �N)} , i.e., we let p =
(g, {h�, ;i : � 2 dom(F̄ � �N)}). For the second problem we work as
follows.

Claim 2.3. For any countable set E there is a condition pE = (fE,FE),
pE 2 D, such that pE extends p and E \ (dom(FE) \ dom(g)) = ;.
Proof. Otherwise, by elementarity of N we can take a counterexample
E 2 N . Then E ✓ N since E is countable. But then p̄ brings about a
contradiction since N \ (dom(f̄) \ dom(g)) = ;. ⇤

Using the claim enables one to construct a ✓–increasing sequence
(E⇣)⇣<!1 2 N of countable subsets of X such that for all ⇣ there is
some extension p⇣ = (f⇣ ,F⇣) of p, p⇣ 2 D, such that E⇣ \ (dom(f⇣) \
dom(g)) = ; and dom(f⇣) ✓ E⇣+1. We may of course assume that
p⇣ 2 N for each ⇣ < �N .

Define Z =
S{F̄(�) : � 2 dom(F̄), � < �N}. Then ot(Z) < � and

so there is some ⇣ < !1 such that Z \ (E⇣+1 \ E⇣) = ;. But then
p⇣ 2 D \ N is readily seen to be compatible with p̄ since no member
of dom(f⇣) \ dom(g) can be trapped by Z.

⇤

It is worth pointing out that the above proof can be slightly simplified
in the case X ✓ !1 (which in fact is the only case we will need here).

Given an ordinal ↵ < !1 and a generic filter G for AddB(!1), I will
write FG(↵) to denote the enumerating function of the ↵-th Baum-
gartner club adjoined by G, i.e., the function

S{f(↵) : (f,F) 2
G for some F , ↵ 2 dom(f)}.
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2.2. Lifting Abraham’s construction using AddB(!1). There is a
clear analogy between the properties of AddB(X) listed in Proposi-
tion 2.2 and corresponding properties of Add(!, X), and it turns out
that this analogy su�ces to make AddB(!1) a suitable candidate to
be used in place of Add(!,!1) in the approach to Abraham’s prob-
lem sketched before,4 provided one can find an inner model L[A], for

A ✓ !3, such that !L[A]
3 = !3 and such that a suitable form of covering

with respect to internally club models holds for L[A]. Indeed, given the
existence of such an inner model L[A], one can construct with the help
of AddB(!1)L[A] a forcing notion which collapses @3 and preserves all
other cardinals. The forcing is P = AddB(!1)L[A] ⇤ Coll(!2,!3)L[A][Ġ].
It is straightforward to show that P collapses @3 and preserves all
higher cardinals. Similarly as in Abraham’s proof, working in an ex-
tension V[G] of V by AddB(!1)L[A] one proves that Coll(!2,!3)L[A][G]

preserves !1 and !2, and in fact that it is <!2–distributive, and for this
one uses the Baumgartner clubs coming from the generic G in order to
guide, in V[G], the construction, taking place in L[A][G], of a certain
!1–sequence of conditions in Coll(!2,!3)L[A][G] which will end up de-
ciding all values Ḟ (i) of a fixed Coll(!2,!3)L[A][Ġ]–name Ḟ in V[G] for
an !1–sequence of ordinals.

In order to answer Abraham’s question, the missing ingredient here
is of course the inner model L[A]. However, one can show that the
existence of such an L[A] can always be forced while preserving cardi-
nals. In fact, the existence of such an L[A] follows from the existence
of a partial square sequence on !2, and one can prove that there is
always a forcing preserving cardinals and adding such an object. This
forcing is a natural “small” version of Neeman’s forcing Square from
[10]. Combining these two constructions, it follows that ZFC proves
the existence of a partial order collapsing !3 and preserving all other
cardinals.

It is worth pointing out a significant dissimilarity between the con-
struction in [1] and the (second part of the) present construction. In
Abraham’s proof, the verification of the �–directedness in VAdd(!,!1)

of his Coll(!1,!2)L[A][Ġ] makes use of a certain descending sequence
(pn)n of conditions in Coll(!1,!2)L[A][Ġ], as mentioned before, where
the conditions pn are picked from within a suitable countable structure
N (and where the construction is guided by any Cohen real r which is
generic over some intermediate extension V0 of V such that N 2 V0).
In the present construction, on the other hand, one cannot just pick an

4It in fact su�ces to take AddB(!1) rather than AddB(!2).
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@1–sized structure N and do a similar thing. The problem is that we
would like to pick the members of our descending !1–sequence of con-
ditions from within N , but if we want to do that we will typically get
stuck at stages of countable cofinality since N cannot be closed under
!–sequences if CH fails. Instead, one has to consider a certain 2–chain
(M⌫)⌫<!1 of countable structures in L[A] – which we will be able to
find thanks to the suitable form of covering for L[A] – and argue in a
somewhat subtler way. The disagreement at this point between Abra-
ham’s construction and the present construction is the reason why here
one can do with AddB(!1) rather than AddB(!2). Also, even if we are
working here with these countable structures M⌫ , it would not su�ce
to add reals in the first step of the construction rather than subsets of
!1, and the reason is that we will need our construction to be able to
point, at any given stage, to M⌫ for some arbitrarily high ⌫ < !1.

3. Covering lemmas for suitable inner models and forcing

partial square while preserving cardinals

Let X be a set and � a cardinal. Recall that D ✓ [X]� is said to
be a club of [X]� i↵ D is cofinal in ([X]�,✓) and the union of any ✓–
increasing �–sequence of members ofD is in D, and that a set S ✓ [X]�

is stationary if and only if S \D 6= ; for every club D of [X]�. A proof
of the following standard covering lemma appears in [1].

Lemma 3.1. Let W ✓ V be a transitive inner model of V. Let 
be a cardinal in V, let n < !, and suppose (+n)W = (+n)V. Then

(+i)W = +i
for every i  n, and for every X 2 W such that |X|W =

+n
and every i < n, every subset of X of size +i

is included in a

subset of size +i
in W and every club D of [X]

+i
in W is a stationary

subset of [X]
+i

in V.

A simple observation that will be used repeatedly in this paper is
that if  is an infinite cardinal and A ✓ , then H()L[A] has size  in
L[A] and in fact H()L[A] = L[A] since every bounded subset of  in
L[A] is in L↵[A] for some ↵ < .

The above covering lemma su�ces for the purposes of [1] but does
not seem to be enough for us here. Recall that an infinite set X is
internally club (IC, for short) i↵ X =

S
i<cf(|X|) Xi where, for each i,

|Xi| < |X| and (Xj)j<i 2 X. What we seem to need in our situation is
the existence of an inner model of the form L[A], for A ✓ !3, satisfying
the following enhanced form of Lemma 3.1: L[A] computes !3 correctly
(and therefore it computes also !1 and !2 correctly) and the set of
X 2 [H(!3)L[A]]@1 in L[A] which are, in L[A], internally approachable
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is stationary in V. I will work now towards showing that it is always
possible to force, without collapsing cardinals, in such a way that in
the extension there is such an A ✓ !3.

A club–sequence is a sequence ~C = (C� : � 2 S), for S a set of
ordinals, such that each C� is a club of �. A club–sequence ~C is coherent
if and only if for every � 2 dom(~C) and every limit point ✏ of C�,
✏ 2 dom(~C) and C✏ = C� \ ✏.

The following result is due to Shelah (see [11], Lemma 4.4 (3)).

Proposition 3.2. (Shelah) Suppose  < � are infinite regular car-

dinals. Then there is decomposition �+ =
S

i<� Si such that for ev-

ery i < � there is a coherent club–sequence (C� : � 2 Si) such that

ot(C�) =  for every � 2 Si of cofinality .

Given an infinite cardinal � and a regular cardinal   �, I will call
a coherent club–sequence (C� : � 2 S) such that

• S ✓ �+, and
• {� 2 S \ S�+

 : ot(C�) = } is a stationary subset of �+

a partial square sequence on �+ concentrating on cofinality . I will also
refer to such an object as a ⇤p

�–sequence concentrating on cofinality .
If  = �, I will just say partial square sequence on �+ and ⇤p

�–sequence.
The following lemma can now be established.

Lemma 3.3. Suppose there is a ⇤p
!1
–sequence

~C = (C� : � 2 S).
Then there is A ✓ !3 with the following properties.

(1) !L[A]
3 = !3

(2) For every cardinal ✓ > !3, the set of N 4 H(✓) such that

• |N | = @1,

• N \H(!3)L[A] 2 L[A], and
• N \H(!3)L[A]

is IC in L[A]
is a stationary subset of [H(✓)]@1

.

Proof. It follows from Proposition 3.2 for  = !1 and � = !2 that we
may fix a ⇤p

!2
–sequence ~D = (D� : � 2 T ) concentrating on cofinality

!1. Let e⌫ : ! �! ⌫ be a bijection for each ⌫ 2 [!, !1), f↵ : !1 �! ↵
a bijection for each ↵ 2 [!1, !2), and g� : !2 �! � a bijection for
each � 2 [!2, !3). Let A ✓ !3 code ~C, ~D, ~e = (e⌫ : ⌫ 2 [!, !1)),
~f = (f↵ : ↵ 2 [!1, !2)) and ~g = (g� : � 2 [!2, !3)) in some canonical
way.

Conclusion (1) clearly holds for L[A]. Let i : !3 �! H(!3)L[A] =
L!3 [A] be a bijection in L[A]. We may assume that i is the initial
segment of length !3 of the canonical well–order <L[A] of L[A]. In
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order to verify (2), let F : [H(✓)]<! �! H(✓) be a function in V. Our
aim is to find some N that is closed under F for which the properties
of (2) hold. Let (Q�)�<!3 be a ✓–continuous ✓–increasing sequence of
elementary submodels of H(✓) of cardinality @2 containing A, closed
under F , and such that for all �, �� = Q� \ !3 2 !3.

Let � be of cofinality !1 such that � = �� 2 T and ot(D�) = !1.
Let also ↵ 2 S be such that ot(C↵) = !1 and such that there is an
elementary substructure N of Q� of size @1 containing A, closed under
F , and such that

• N \ !3 = g�“↵ and
• D� ✓ g�“↵

To see that ↵ can be found, note that since Q� is closed under F
and contains A, there is a club E0 of [Q�]@1 consisting of N 4 Q�

closed under F and such that A 2 N and D� ✓ N . We have that
E1 = {N \ !3 : N 2 E1} contains a club E2 of [�]@1 and that E3 =
{g�“↵ : ↵ < !2} is a club of [�]@1 , and of course club–many members of
E2\E3 are ordinals. Let (⇢↵)↵<!2 be the strictly increasing enumeration
of the club C of ordinals in E2 \ E3. Since the set of ↵ 2 S such that
ot(C↵) = !1 is stationary, we may find such an ↵ in C. But then ↵ is
as required.

Let M = i“(g�“↵). Since M 2 L[A], F“[N ]<! ✓ N , and M =
N \H(!3)L[A], it su�ces to show that M is IC in L[A].

For this, let (C↵(⇠))⇠<!1 and (D�(⇠))⇠<!1 be the strictly increasing
enumerations of C↵ and D�, respectively. Let also ZFC⇤ be a suitable
fragment of ZFC without the Power set Axiom (in the language for
(L!3 [A],2, A)). We are going to define now a ✓–increasing sequence
(M⌫)⌫<!1 of countable sets such that

S
⌫<!1

M⌫ = M , together with an
increasing sequence (⇠✏⌫+1)⌫+1<!1 of countable ordinals for ✏ = 0, 1, 2.
For convenience we start with M0 = ;. Suppose ⌫ < !1, ⌫ > 0, and
suppose (M⌫0)⌫0<⌫ and (⇠✏⌫0+1)⌫0+1<⌫ have been defined for each ✏ < 3.
If ⌫ is a limit ordinal we let M⌫ =

S
⌫0<⌫ M⌫0 . If ⌫ = ⌫̄ + 1, then we let

(⇠2⌫ , ⇠
1
⌫ , ⇠

0
⌫) be the least triple (⇠

2, ⇠1, ⇠0), in any canonical well–order of
! ⇥ !1 ⇥ !1 fixed throughout, such that

(i) ⇠✏ > ⇠✏⌫0+1 for all ⌫ 0 < ⌫̄ and ✏ < 3,
(ii) JA

D�(⇠2)
|= ZFC⇤, and

(iii) {⇠0⌫̄ , (C↵(⇠))⇠⇠1⌫̄
, (D�(⇠))⇠⇠2⌫̄

} 2 M 0, where M 0 is the canonical
Skolem closure of gD�(⇠2)“(fC↵(⇠1)“⇠

0)) in JA
D�(⇠2)

.

By our choice of (��)�<!3 , together with the fact that � is a limit of
{�� : � < !3} of cofinality !1 and D� is a club of � and the fact that
~D is a coherent sequence, we can find some ⇠2 such that ⇠2 > ⇠2⌫0+1
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for all ⌫ 0 < ⌫̄, JA
D�(⇠2)

|= ZFC⇤, and (D�(⇠))⇠⇠2⌫̄
2 i“(gD�(⇠2)“↵) 4

JA
D�(⇠2)

. Then ⇠1 and ⇠0 can be found easily using the fact that, by

the coherence of ~C, all objects in (iii) are in i“(fD�(⇠2)“↵). This shows
that (⇠2⌫ , ⇠

1
⌫ , ⇠

0
⌫) exists. We let M⌫ be the canonical Skolem closure of

gD�(⇠2⌫)“(fC↵(⇠1⌫)“⇠
0
⌫)) in JA

D�(⇠2⌫)
.

Each M⌫ is a countable subset of M , and of course (M⌫)⌫<!1 is ✓–
continuous by construction. If ⌫ = ⌫̄ + 1, then using the uniformity of
the definition of (M⌫0)⌫0⌫̄ and of (⇠✏⌫0+1)⌫0+1<⌫ (for ✏ < 3), together with
the fact that M⌫ |= ZFC⇤ contains ⇠0⌫̄ , (C↵(⇠))⇠⇠1⌫̄

and (D�(⇠))⇠⇠2⌫̄
, it

is easy to check that (M⌫0)⌫0⌫̄ 2 M⌫ . Finally, it is easy to check thatS
⌫<!1

M⌫ = M . ⇤
By a result of Magidor ([8]), it is consistent that there is no partial

square sequence on !2. On the other hand, the existence of such an
object can always be forced while preserving all cardinals:

Lemma 3.4. There is a partial order P0 such that

(1) |P0| = @2,

(2) P0 preserves !1 and !2, and

(3) P0 forces the existence of a ⇤p
!1
–sequence.

Proof. This follows from, essentially, analysing the relevant proofs from
[10], Section 3. Let ~e = (e↵ : ↵ 2 [!1, !2)) be such that e↵ : !1 �! ↵ is
a bijection for each ↵. Let F be a countable set of Skolem functions for
(H(!2),2,~e), and for everyX ✓ !2 let Sk(X) be the closure ofX under
all functions in F . Let S consist of all sets of the form e↵“⌫, for some
uncountable ↵ < !2 and some ⌫ < !1, such that Sk(e↵“⌫)\ !2 = e↵“⌫
and !1 \ e↵“⌫ = ⌫. Let T consist of all ↵ < !2 such that Sk(↵)\!2 =
↵ and such that e↵“⌫ 2 Sk(↵) for club–many ⌫ 2 !1. Borrowing
terminology from Neeman’s [9] and [10], let us call members of S [ T
nodes. Strictly speaking, though, these sets are not nodes in Neeman’s
sense since they are not themselves models of a suitable fragment of
ZFC.

Claim 3.5. The set of countable N 4 H(!2) such that N \ !2 is a

node is a stationary subset of [H(!2)]@0
and the set of N 4 H(!2) such

that |N | = @1 and N \!2 is a node is a stationary subset of [H(!2)]@1
.

Proof. This claim is quite standard but I include a proof for complete-
ness. Let F : [H(!2)]<! �! H(!2) be a function. For the first part
we pick some ↵ < !2 such that F“[↵]<! ✓ ↵ and then, noting that
{e↵“⌫ : ⌫ 2 [!, !1)} is a club of [↵]@0 , pick some ⌫ < !1 such that
F“[e↵“⌫]<! ✓ e↵“⌫. For the second part we define a strictly increasing
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and continuous sequence (↵⌫)⌫<!1 of ordinals in !2, together with a
sequence (N⌫)⌫<!1 of countable elementary submodels of H(✓), for ✓
large enough, containing F and such that for all ⌫, (e↵⌫0 )⌫0⌫ 2 N⌫+1

and N⌫+1 \!2 = e↵⌫+1“� for some � < !1. This is of course possible by
the first part. Now it is easy to check that ↵ = sup⌫<!1

↵⌫ is a node, as
witnessed by the club of ⌫ < !1 such that e↵“⌫ =

S
⌫0<⌫ e↵⌫0“⌫. ⇤

P0 will be Squarep, where Squarep = Squarep(S, T ) is the following
rendering of Neeman’s forcing Square from [10], Section 3:

Conditions in Squarep are pairs (s, c) with the following properties.

(1) s 2 Pside(S, T ). Here, this means that s 2 [S [ T ]<! is closed
under intersections and that there is a (necessarily unique) enu-
meration (Qk)k<n of s such that Qk 2 Sk(Qk+1) for all k+1 < n.

(2) c is a function on s.
(3) For each Q 2 s, c(Q) is an 2–linear set of countable nodes from

s \Q.
(4) For each Q 2 s, if T is cofinal in sup(Q\!2), then T is cofinal in

sup(M\!2) for everyM 2 c(Q). If T is bounded in sup(Q\!2),
then c(Q) = ;.

(5) For each Q 2 s, if M 2 c(Q), then c(M) = c(Q) \M .
(6) If ↵ 2 T \ s, M 2 S \ s, ↵ 2 M , and T is cofinal in ↵, then

M \ ↵ 2 c(↵).

Given Squarep–conditions (s, c) and (s⇤, c⇤), we say that (s⇤, c⇤) ex-
tends (s, c) i↵ the following holds.

(i) s⇤  s in Pside(S, T ). This means that s ✓ s⇤.
(ii) c(Q) ✓ c⇤(Q) for every Q 2 s.
(iii) For Q 2 s, R 2 c(Q)[ {Q}, and P 2 c⇤(Q)\Sk(R), if Sk(P ) ◆

c(Q) \R 6= ;, then Sk(P ) ◆ s \R.

By the proof of [10], Claim 3.3, the extension relation on Squarep is
transitive. Clearly, Squarep has size @2. The proof of [10], Lemma 3.4
and Corollary 3.5 establishes the following claim.

Claim 3.6. Let Q be a node and (s, c) 2 Sk(Q) \ Squarep. Then
• there is an extension (s0, c0) of (s, c) such that Q 2 s0, and
• if (s0, c0) 2 Squarep is such that Q 2 s0 and N 4 H((2@1)+) is

such that ~e 2 N and N \ !2 = Q, then (s0, c0) is (N, Squarep)–
generic.

By Claims 3.5 and 3.6 it then follows that Squarep preserves !1 and
!2.

The corresponding form of Claim 3.6 from [10] does not necessarily
hold for Squarep, and this is ultimately the reason why Squarep cannot
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be used to add a full ⇤!1–sequence rather than just a partial square
sequence. However, the following weak form of this claim can be proved
easily.

Claim 3.7. Let (s, c) 2 Squarep, ↵ 2 s \ T , and � 2 T \ ↵ such that

Q 2 Sk(�) for every Q 2 s \ Sk(↵). Then (s [ {�}, c) 2 Squarep.

Finally, the corresponding version of the proof of [10], Lemma 3.8
using the above Claim 3.7 instead of Claim 3.6 from [10], combined
with the present Claims 3.6 and 3.5, establishes that Squarep adds a
⇤p

!1
–sequence.

⇤

4. Collapsing exactly @3

As mentioned in the introduction, I will give two proofs of Theorem
1.1. The first one is the proof that I initially found, using AddB(!1).
The second proof, due to Veličković, is considerably simpler.

4.1. First proof of Theorem 1.1. Let P0 be a poset as in Lemma 3.4.
By Lemma 3.3, in V1 = VP0 we may fix A ✓ !3 such that !L[A]

3 = !3

and such that for every cardinal ✓ > !3, the set of N 4 H(✓) such that

• |N | = @1,
• N \H(!3)L[A] 2 L[A], and
• N \H(!3)L[A] is IC in L[A]

is a stationary subset of [H(✓)]@1 . Still inV1, let P1 = AddB(!1)L[A]⇤Q̇,
where Q̇ is, in L[A]AddB(!1), a name for Coll(!2,!3)L[A][Ġ]. Our poset
will be P = P0 ⇤ Ṗ1, where Ṗ1 is a P0–name for P1.

By a standard density argument it is clear that P collapses !3. Since
P0 preserves cardinals, it will be enough to show that in VP0 , P1 has
a dense set of size @3 and preserves both !1 and !2. Let us work from
now on in V1 = VP0 .

Claim 4.1. P1 has a dense set of size @3.

Proof. Since @@2
3 = @3 holds in L[A], AddB(!1)L[A] is, in L[A], a forcing

notion of size at most @3 and, by Proposition 2.2 (3), with the @2–
c.c., which in turn implies, by (@@1

3 )L[A] = @3, that there are at most
@3–many antichains of AddB(!1)L[A] in L[A]. Working in an extension
of L[A] by AddB(!1)L[A], every condition in Coll(!2,!3)L[A][Ġ] can be
canonically coded by a subset of ↵, for some ↵ < !3, and by the above
there are at most @@2

3 = @3 many nice AddB(!1)L[A]–names in L[A] for
subsets of any such given ↵. Finally, the set P2 of (p, q̇) 2 P1 such that
q̇ is a canonical name for a condition in Coll(!2,!3)L[A][Ġ] coded by a
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nice AddB(!1)L[A]–name for a bounded subset of !3 is dense in P1, and
by what we have seen P2 has size @3. ⇤

By Proposition 2.2 (2) together with Lemma 3.1, we have that
AddB(!1)L[A] is proper in V1. It thus remains to show, in an exten-
sion of V1 by AddB(!1)L[A], that Coll(!2,!3)L[A][Ġ] is <!2–distributive.
For this, let G be AddB(!1)L[A] generic over V1, let Ḟ 2 V1 be an
AddB(!1)L[A]–name for a Coll(!2,!3)L[A][Ġ]–name for a function from
!1 into the ordinals, and let q 2 Coll(!2,!3)L[A][G]. For the remainder of
this proof, if Y ✓ !1, then let ĠY denote the canonical AddB(Y )–name
for the generic object added by AddB(Y )L[A].

By our choice of A we may find, in V1, an elementary substructure
N of some large enough H(✓) containing everything relevant – which
includes Ḟ – of size @1 and such that M = N\H(!3)L[A] 2 L[A] is such
that M =

S
⌫<!1

M⌫ for a ✓–continuous sequence (M⌫)⌫<!1 2 L[A] of

countable elementary substructures of H(!3)L[A] such that (M⌫0)⌫0⌫ 2
M⌫+1 for all ⌫. Let also ⇡ : !1 ! M be a surjection in L[A] such that
for every ⌫, ⇡ � �M⌫ is a surjection from �M⌫ onto M⌫ . We may assume
⇡ � �M⌫ 2 M⌫+1 for all ⌫ < !1.

Remember that for every � 2 !1, FG(�) denotes the enumerating
function of the �-th Baumgartner club adjoined by G, i.e., the functionS{f(�) : (f,F) 2 G for some F , � 2 dom(f)}. We build in L[A][G]
a decreasing sequence (q⌫)⌫<!1 of conditions in Coll(!2,!3)L[A][G], to-
gether with an increasing sequence (�⌫)⌫<!1 of countable ordinals. We
use the Baumgartner clubs of !1 added by G in order to guide the
construction of these sequences. Specifically, we run the construction
as follows.

(1) q0 = q and �0 = 0.
(2) If ⌫ is a non-zero limit ordinal and both (q⌫

0
)⌫0<⌫ and (�⌫

0
)⌫0<⌫

have been defined, then q⌫ =
S

⌫0<⌫ q
⌫0 and �⌫ = sup⌫0<⌫�

⌫0 .
(3) Suppose ⌫ < !1 is an ordinal and q⌫ and �⌫ have been defined.

Let q⌫+1 be q̇G if q̇ is an AddB(!1)L[A]–name, FG(�M�⌫
)(1) = �

with � > �⌫ , FG(�M�⌫
)(0) = ⇠ with ⇠ < �M� , ⇡(⇠) = q̇, and q̇G

is a condition in Coll(!2,!3) extending q⌫ . In this case let also
�⌫+1 = �. Otherwise let q⌫+1 = q⌫ and �⌫+1 = �⌫ + 1.

In other words, (q⌫)⌫<!1 and (�⌫)⌫<!1 are obtained from q0 = q and
�0 = 0 by taking unions at nonzero limit stages. At successor stages
⌫ + 1, we use the �M�⌫

–th Baumgartner club C naturally added by
G in order to define q⌫+1 and �⌫+1: We look at whether the second
member � of the strictly increasing enumerating function F of C is
such that � > �⌫ and whether the first member of F is some index
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⇠ < �M� such that ⇡(⇠) happens to be a AddB(!1)L[A]–name q̇ whose
interpretation by G is a condition in Coll(!2,!3)L[A][G] extending q⌫ . If
that is the case, then we set q⌫+1 = q̇G and �⌫+1 = �, and otherwise
we just set q⌫+1 = q⌫ and �⌫+1 = �⌫ + 1. Note that the construction
of (q⌫

0
)⌫0⌫+1 and (�⌫

0
)⌫0⌫+1 takes place in M�⌫+1+1[G], and that in

fact these sequences are definable in that model from ⇡ � �M�⌫+1 and
(M⌫0)⌫0�⌫+1 . Note also that �⌫ � ⌫ for all ⌫.

In the end, we let q⇤ be
S

⌫<!1
q⌫ . Note that q⇤ 2 L[A][G]. For each

⌫ < !1, let q̇⌫ and �̇⌫ be AddB(!1)L[A]–names in L[A] for, respectively,
q⌫ and �⌫ . Let also q̇⇤ be an AddB(!1)L[A]–name in L[A] for q⇤. Note
that we may assume, for each ⌫, that both q̇⌫ and �̇⌫ are in M�⌫+1.

Next we will see that, thanks to the genericity of G, q⇤ is an extension
of q which turns out to decide all of ḞG. This will conclude the proof
of the theorem.

Claim 4.2. q⇤ decides ḞG(i) for every i < !1.

Proof. Let q̇0 2 V1 be some AddB(!1)L[A]–name for a condition in
Coll(!2,!3)L[A][Ġ!1 ] extending q̇⇤ and deciding the value of Ḟ (i). Let
(f,F) be a condition in AddB(!1)L[A]. In V1, let Q be a countable
elementary substructure of H(✓) containing (q̇⌫)⌫<!1 , (�̇

⌫)⌫<!1 , q̇
0, Ḟ

and i.
Let f 0 be the function with domain dom(f) sending ↵ to f(↵) [

{h�Q, �Qi} and let F 0 = F [ {h�Q, �Qi}. Then (f 0,F 0) is an extension
of (f,F) which is (Q,AddB(!1)L[A])–generic by Proposition 2.2 (2).
Hence, (f 0,F 0) forces the following.

(a) There is a condition in Ġ!1 \Q forcing that q̇0 is a condition in
Coll(!2,!3)L[A][Ġ!1 ] deciding Ḟ (i).

(b) For every ⌫ < �Q there is a condition in Ġ!1 \ Q forcing that

�̇⌫ < �Q and that q̇0 extends q̇⌫ in Coll(!2,!3)L[A][Ġ!1 ].

Let now R 2 V1 be a countable elementary substructure of N con-
taining all relevant objects – which now includes Ḟ , i, (q̇⌫)⌫<�Q , and
(�̇⌫)⌫<�Q – and such that � := �R > �Q is such that M� = R\H(!3)L[A].
Of course q̇0 is not in R (as it was defined only after defining all q̇⌫).
However, we will be able to find a certain q̄ 2 R reflecting the relevant
properties of q̇0. Indeed, since (f 0,F 0) forces (a) and (b), by existential
completeness there is an AddB(!1)L[A]–name q̄ 2 R such that (f 0,F 0)
forces the following.

(c) There is a condition in Ġ!1 \Q forcing that q̄ is a condition in
Coll(!2,!3)L[A][Ġ!1 ] deciding Ḟ (i).
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(d) For every ⌫ < �Q there is a condition in Ġ!1 \ Q forcing that

�̇⌫ < �Q and that q̄ extends q̇⌫ in Coll(!2,!3)L[A][Ġ!1 ].

Let Y = !1 \ {�Q} and let ' : AddB(!1)L[A] �! AddB(Y )L[A], ' 2
R \ L[A], be an isomorphism which is the identity on AddB(�Q)L[A].
This ' exists by Proposition 2.2 (4).

Let f 00 be the function with domain dom(f 0) sending ↵ 2 dom(f 0)
to f 0(↵) [ {h�, �i} and let F 00 = F 0 [ {h�, � \ {�Q}i}. Then (f 00,F 00)
is a condition in AddB(Y )L[A] and, since (f 00,F 00) extends (f 0,F 0) 2
AddB(�Q)L[A], viewed as an AddB(Y )L[A]–condition, ' is the identity
on AddB(�Q)L[A], and (f 0,F 0) forces (c) and (d) in AddB(!1)L[A], we
have that '̂(q̄) 2 R is an AddB(Y )L[A]–name such that (f 00,F 00) forces
the following in AddB(Y )L[A].

(e) There is some (g,G) 2 ĠY with dom(g)[dom(G)[S range(G) ✓
�Q forcing that '̂(q̄) is a condition in Coll(!2,!3)L[A][ĠY ] decid-
ing '̂(Ḟ )(i).

(f) For every ⌫ < �Q there is some (g,G) 2 ĠY with dom(g) [
dom(G) [ S

range(G) ✓ �Q forcing that '̂(q̄) extends '̂(q̄⌫) in

Coll(!2,!3)L[A][ĠY ] and forcing '̂(�̇⌫) < �Q.

Since (f 00,F 00) is (R,AddB(Y )L[A])–generic by Proposition 2.2 (2),
we can fix an extension (f̄ , F̄) of (f 00,F 00) and an AddB(Y )L[A]–name
q† 2 R\H(!3)L[[A] = M� for a Coll(!2,!3)L[A][ĠY ]–condition such that
(f̄ , F̄) forces the following in AddB(Y )L[A].

(g) There is some (g,G) 2 ĠY with dom(g)[dom(G)[S range(G) ✓
�Q forcing that q† decides '̂(Ḟ )(i).

(h) For every ⌫ < �Q there is some (g,G) 2 ĠY with dom(g) [
dom(G) [ S

range(G) ✓ �Q forcing that q† extends '̂(q̇⌫) in

Coll(!2,!3)L[A][ĠY ] and forcing '̂(�̇⌫) < �Q.

Let now (h, F̄) be a condition in AddB(!1)L[A] extending (f̄ , F̄) 2
AddB(Y )L[A] ✓ AddB(!1)L[A] and such that h(�Q)(1) = � and h(�Q)(0) =
⇠ for some ⇠ < � such that ⇡(⇠) =  ̂(q†), where  = '�1.

Now comes a subtle point, which uses the fact that AddB(Y )L[A] is,
not only isomorphic to, but also a complete suborder of AddB(!1)L[A]

(which is true by Proposition 2.2 (5)): Using once again that ' is the
identity on AddB(�Q)L[A], together with the fact that (f̄ , F̄) forces (g)
in AddB(Y )L[A] and that, as I said, AddB(Y )L[A] is a complete suborder
of AddB(!1)L[A], we have that (h, F̄) forces in AddB(!1)L[A] that

(i) there is some (g,G) 2 Ġ!1 with dom(g)[dom(G)[S range(G) ✓
�Q forcing that ⇡(⇠) decides  ̂('̂(Ḟ ))(i) (= Ḟ (i)).
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Similarly, again by the above and since (f̄ , F̄) forces (h) in AddB(Y )L[A],
we have that (h, F̄) forces in AddB(!1)L[A] that

(j) for every ⌫ < �Q there is some (g,G) 2 Ġ!1 with dom(g) [
dom(G) [S

range(G) ✓ �Q forcing that ⇡(⇠) extends  ̂('̂(q̇⌫))

(= q̇⌫) in Coll(!2,!3)L[A][Ġ!1 ] and forcing  ̂('̂(�̇⌫)) = �̇⌫ < �Q.

Thanks to (j), we know that (h, F̄) forces in AddB(!1)L[A] that �̇�Q =
sup⌫<�Q �̇

⌫ = �Q and that ⇡(⇠) extends q̇�Q =
S

⌫<� q̇
⌫ . Hence, by the

definition of q�Q+1 in (3) and the fact that �M�Q
= �Q, it follows that

(h, F̄) forces that q̇�Q+1 = ⇡(⇠) and q̇�Q+1 decides Ḟ (i). It follows that
(h, F̄) forces that q̇⇤ decides Ḟ (i). This concludes the proof of the claim
since (h, F̄) extends (f,F). ⇤

Claim 4.2 completes the proof of Theorem 1.1. ⇤

4.2. Second proof of Theorem 1.1 (due to Veličković). As in the
first proof, we start out by considering a poset P0 as in Lemma 3.4. By
Lemma 3.3, in V1 = VP0 we may fix A ✓ !3 such that !L[A]

3 = !3 and
such that for every cardinal ✓ > !3, the set of N 4 H(✓) such that

• |N | = @1,
• N \H(!3)L[A] 2 L[A], and
• N \H(!3)L[A] is IC in L[A]

is a stationary subset of [H(✓)]@1 .
In VP0 , we let P1 be the forcing consisting of finite chains of models

of two types (in Neeman’s terminology), countable and IC of size @1,
coming from H(!3)L[A]. Specifically, let P1 be the forcing, ordered by
reverse inclusion, of finite sets p with the following properties.

(1) Every Q 2 p belongs to L[A] and is either
(a) a countable elementary substructure of H(!3)L[A], or
(b) an IC elementary substructure of H(!3)L[A].

(2) There is an enumeration (Qi)i<n of p such that for all i, if i+1 <
n, then Qi 2 Qi+1.

(3) For all M , N 2 p, if M is countable, N is uncountable, and
N 2 M , then N \M 2 p.

Let N be the set of IC N 4 H((2@2)+) of size @1 such that N \
H(!3)L[A] 2 L[A] and such that N \ H(!3)L[A] is IC in L[A]. Since
N is, in V, a stationary subset of [H((2@2)+)]@1 , we also have that the
set M of countable M 4 H((2@2)+) such that M \ H(!3)L[A] 2 L[A]
is a stationary subset of [H((2@2)+))]@0 . Since, by Neeman’s analysis
in [9] of the forcing of finite two–type chains of models, P1 is both
M–proper and N –proper (i.e., for every Q 2 M [N , every condition
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in Q \ P1 can be extended to a condition which is (Q,P1)–generic), it
follows from the stationarity of M and N that forcing with P1 over
VP0 preserves both !1 and !2. Also by Neeman’s analysis, we have
that P1 adds an 2–increasing sequence of models (Ni)i2I of size @1

such that H(!3)L[A] =
S

i2I Ni, and hence collapses !3. Finally, forcing
with P1 over V

P0 preserves all cardinals above !3 since P1 ✓ H(!3)L[A]

and |H(!3)L[A]| = @3. ⇤

5. CH may fail in an absolute way

The following is a question of a similar flavour as the main question
addressed in this paper: Is there always a set A ✓ !2 such that !L[A]

2 =
!2 and L[A] |= CH? In other words, is it always possible to code a
sequence of injections g↵ : ↵ �! !1 (for ↵ < !2) in such a way that
not more than @1–many reals be also coded? Note that this is always
possible if we replace !2 with !1. Indeed, if A ✓ !1, then a simple
condensation argument yields that L[A] |= 2@0  , for  = !V

1 , and
on the other hand one can obviously always find A ✓ !1 such that
!
L[A]
1 = !1.
In this short section I observe that the answer to the above question

is no: It is consistent that CH fails in an absolute way, in the sense
that any inner model computing !2 will think that CH fails.

Recall that if  is an infinite cardinal, a +–Aronszajn tree T is said
to be special if there is a function f : T �!  such that for every
⇠ < , f�1(⇠) is a collection of pairwise incomparable nodes of T . We
say that f specializes T . It is a standard fact that if 2< = , then a
standard construction, in ZFC, of a special @1–Aronszajn tree can be
lifted to + to produce a special +–Aronszajn (see e.g. [5]).

Theorem 5.1. Suppose there are no special @2–Aronszajn trees. If

A ✓ !2 is such that !
L[A]
2 = !2, then L[A] |= ¬CH.

Proof. Suppose otherwise. Since CH holds in L[A], there is a tree
T 2 L[A] such that L[A] |= T is a special @2–Aronszajn tree. Let f :

T �! !1 be a specializing function in L[A]. Since !L[A]
2 = !2, we

immediately get that f witnesses, in V , that T is an @2–Aronszajn tree
there. Contradiction. ⇤

6. Some open questions

Many questions in this area remain open. The following seem to be
some such questions.
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Question 6.1. Is there, in ZFC, a forcing notion collapsing @4 and

preserving all other cardinals?

We could also focus on ZF instead of ZFC. It is easy to see that,
in ZF, Coll(!,!1) is a forcing notion collapsing @1 and preserving all
other alephs.

Question 6.2. Is there any natural number n > 1 such that ZF proves

the existence of a forcing notion collapsing @n but preserving all other

alephs?

The problem of forcing ⇤!1 by finite conditions while preserving
cardinals has received some attention in recent years. Indeed, each of
[4], [6] and [10] contains forcing notions adding a ⇤!1–sequence.

5 All
these papers need to use some form of GCH as additional hypothesis.
As we have seen in Lemma 3.4, a partial square sequence on !2 can
always be added while preserving cardinals. However, the following
question seems to be open.

Question 6.3. Is there, in ZFC, a forcing notion preserving all cardi-

nals and adding a ⇤!1 sequence?

The following seems to be a natural question regarding the absolute
failure of CH considered in Section 5.

Question 6.4. Does the nonexistence of any A ✓ !2 such that !
L[A]
2 =

!2 and L[A] |= CH have consistency strength beyond ZFC?

The last question I want to mention concerns Club–Guessing on S!2
!1
:

Let us say that a club–sequence ~C = (C� : � 2 S) is club–guessing i↵
for every club D ✓ sup(S) there is some � such that C� ✓ D.

Question 6.5. Suppose @! is a strong limit. Is there a partial order

P with the following properties?

(1) |P| < @!

(2) P preserves !1, !2 and !3.

(3) P forces the existence of a club–guessing sequence

~C = (C� :
� 2 S!2

!1
)

The main motivation for asking Question 6.5 comes from the follow-
ing (probably folklore) observation.

Observation 6.6. Suppose ZFC proves that if @! is a strong limit,
then there is a partial order satisfying (1)–(3) in Question 6.5. Then
ZFC proves that if @! is a strong limit, then 2@! < @!3 .

5A version of the corresponding forcing in [10] was of course the forcing used in
the proof of Lemma 3.4.
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Proof. Suppose @! is strong limit and yet 2@! > @!3 . If P satisfies
(1)–(3) in Question 6.5, then after forcing with P it is still true that
2@! is a strong limit and 2@! > @!3 . Now, working in this extension,
we run Shelah’s proof of 2@! < @!4 if @! is a strong limit ([12]), using
the club–guessing sequence on S!2

!1
we have added rather than a club–

guessing sequence on S!3
!1

as in Shelah’s proof – which ZFC gives us for
free – and derive a contradiction in the same way. ⇤
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