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ABSTRACT

This thesis aims to investigate the dynamical processes of the along-slope currents in

the Weddell and Amundsen Seas (Antarctica), their variability and the mechanisms

that regulate the cross-slope exchange of properties.

Firstly, this thesis explores the short-term and spatial variability of the Antarctic

Slope Front system at the northwestern Weddell Sea using data from three ocean

gliders. Twenty-two sections along the eastern Antarctic Peninsula are grouped

regionally and composited by isobaths. The along-slope transport of the Antarctic

Slope Current (upper 1000 m) varies between 0.2 and 5.9 Sv. Higher eddy kinetic

energy (0.003 m2s−2) is observed on sections where dense water is present, possibly

due to baroclinic instabilities in the deep layer. These results provide some of the first

observational confirmation of the high frequency variability associated with an active

eddy field that has been suggested by recent numerical simulations in this region.

Using a multidisciplinary dataset, the physical processes associated with

phytoplankton biomass distribution and how these relate to frontal processes east

of the Antarctic Peninsula are assessed. There is a distinction between upper-

slope and off-shelf areas, which are likely disassociated from each other. Over the

shelf, the relatively low stratification and the likely enhanced mixing and nutrient

input from sediments would contribute to the relatively high primary production.

Offshore, the stronger pycnocline and passive sinking of phytoplankton creates a

deeper subsurface chlorophyll maximum.

Finally, observations from moorings and from ship-based hydrographic stations

at eastern Amundsen Sea are analysed to investigate the variability of the slope

undercurrent and the Circumpolar Deep Water layer within troughs at the continental

shelf. The cumulative onshore temperature transport of CDW was 1.21 TW and

1.79 TW at the central and eastern trough, respectively. High-frequency variability

of temperature transport estimates are different among shelf-break moorings; eddies

and coastal-trapped waves are likely contributors.
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1
INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

Over the period of 1901 to 2010, global mean sea level rose by 0.19 (0.17–0.21 m),

for which ocean thermal expansion and glacier melting have been the dominant

contributors (Church et al., 2013). The rate of sea level rise since the mid-20th century

(2.0 [1.7–2.3] mmyr−1 during 1971–2010) has been larger than the mean rate during

the previous two millennia. It will continue to rise during the 21st century, very likely

at a faster rate than observed from 1971 to 2010, under all IPCC scenarios (Church

et al., 2013). For an unmitigated future rise in emissions of greenhouse gases (RCP8.5),

it is estimated 0.45 to 0.82 m of global mean sea level rise by the end of this century.

By then, about 70% of the coastlines worldwide are projected to experience a sea level

change within ±20% of the global mean. The Antarctic ice sheet holds the majority of

the Earth’s fresh water and has the potential to raise global sea level by 58 m if rapidly

discharged (Fretwell et al., 2013).

The average rate of the Antarctica contribution to sea level rise likely increased

from 0.08 [-0.10 to 0.27] mmyr−1 for 1992–2001 to 0.40 [0.20 to 0.61] mmyr−1 for 2002–

2011. Reductions in the thickness and extent of floating ice shelves have affected

grounded ice, triggering retreat and acceleration of marine-terminating glaciers

(Shepherd et al., 2018). While the Antarctic sea ice extent has shown modest decadal

1
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trends, the grounded ice sheet mass loss is estimated at 2720±1390 Gt between 1992

and 2007 (Wingham et al., 2018) and its peripheral ice shelves are thinning in many

Southern Ocean sectors. These changes do not occur uniformly around Antarctica

(Fig. 1.1a). For example, increase in losses in the Amundsen Sector due to speed

up of glacier flow has been reported (Sutterley et al., 2014). The retreat or thinning

of the ice shelves is generally associated with the destabilisation of the grounded ice

since the ice shelves provide mechanical support for the grounded ice sheet upstream

(Shepherd et al., 2018). The volume of the Antarctic ice shelves has declined through

net overall thinning (Paolo et al., 2015) and through progressive calving-front retreat

of those at the Antarctic Peninsula. However, the highest ice shelf thinning rates have

occurred in the Amundsen and Bellingshausen Seas in west Antarctica (Shepherd

et al., 2004). Although the main retreat events at the Antarctic Peninsula have been

attributed to surface melting and atmospheric warming (Rignot et al., 2004), in the

Amundsen and Bellingshausen seas changes are associated with ocean-driven basal

melting and the intrusion of the warm CDW into the cavities beneath the ice shelves

(Thoma et al., 2008; Pritchard et al., 2012). The distinct behaviour between these two

regions is a consequence of atmospheric forcing, ocean circulation and geological

differences. Even though many processes responsible for regulating the amount of

heat that reach the shelves have been identified, the relative importance of these

processes needs to determined. This thesis explores two distinct datasets, at the

northwestern Weddell Sea and at the eastern Amundsen Sea, to evaluate the shelf-

break processes that modulate the transport of warm waters onto the shelf and their

variability (Fig. 1.2).

The impact of the intrusion on ice sheet stability is not uniform around Antarctica,

the West Antarctic ice shelves being more susceptible to it. These differences are due

to, among other factors such as the grounding line and bedrock geometry, different

degrees of CDW modification on its path onto the continental shelf (Fig. 1.1b). CDW

is the warmest water mass in the Southern Ocean, being transported eastward around

the continent in the Antarctic Circumpolar Current (ACC; Fig. 1.3a). In the Weddell

Sea, the CDW is cooled within the clockwise gyre that separates the continental

margin from the warm ACC waters (Fig. 1.1b). In this region, the Ekman transport

driven by the easterly winds transports the Antarctic Surface Water (AASW; formed

by cooling and freshening of upwelled CDW by atmospheric and ice interaction)
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Figure 1.1: a) Average trend in the elevation and thickness of Antarctic grounded ice and ice
shelves, respectively, determined between 1992 and 2017 north of 81.5 ◦S (dashed grey circle),
and between 2010 and 2017 elsewhere. Also shown is the ocean temperature at the sea floor
around the continent. Figure modified from (Shepherd et al., 2018). b) Average 2005-2010
ocean temperature at 438 m depth, nominal depth of the Circumpolar Deep Water core in the
Antarctic Circumpolar Current, from the Southern Ocean State Estimate Mazloff et al. (2010).
The heavy black line marks the southern boundary of the Antarctic Circumpolar Current.
Figure modified from Silvano et al. (2016).
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onto the continental shelf and generates coastal downwelling. The strong subsurface

horizontal gradient between the fresher and colder on-shelf AASW and the warmer

and saltier off-shelf CDW characterises the Antarctic Slope Front (ASF; Jacobs, 1991;

Heywood et al., 2004), which restricts the on-shelf intrusion of the CDW even in areas

where the Shelf Water (SW; when AASW salinity is enhanced by brine rejection during

sea ice production) is absent. Associated with the ASF, the zonal circulation in the

shelf-break area is dominated by the westward Antarctic Slope Current (ASC; Fig.

1.3a). In West Antarctica, the southern limit of the ACC current is closer to the coast;

at the western Antarctic Peninsula for example, the AAC reaches the shelf break and

allows warm and relatively salty CDW to reach the continental shelf (Fig. 1.1b). In

West Antarctica, the coastal downwelling is too weak to deepen the layer of AASW

to the seabed and the surface buoyancy forcing is generally too weak to produce

SW (when AASW salinity is enhanced by brine rejection during sea ice production)

(Jenkins et al., 2016). Further to the west, in the Amundsen Sea, the easterly winds

over the shelf become progressively more important, and there is the development of

a relatively weak ASF and the westward current associated with it (ASC; Walker et al.,

2013). The weak stratification in the Antarctic region and the strong easterly winds do

not allow the adjustment that limits the depth of the wind-driven circulation in lower

latitudes; as a consequence, the current extends to great depth and the flow is strongly

influenced by topography. Thus, the slope area is a key region for understanding the

processes that influence the heat transport toward ice shelves. The characteristics of

the ASF, and therefore its capacity to modulate the cross-slope exchange vary among

regions. The study of the continental slope processes in these two different regions

will possibly contribute to the understanding the relative importance of processes

affecting the onshore heat transport.

The production of dense shelf waters is another process that contributes to the

importance of the Antarctic region to global climate. The localised production of the

dense waters around the Antarctic continental shelf and the export of the Antarctic

Bottom Water (AABW) to the world ocean are important contributors to the variability

of the global overturning circulation deep cell (Talley, 2013), which transports mass,

heat, salt, carbon and nutrients, and thus plays an important role in regulating global

climate (Rahmstorf, 2003; Lumpkin and Speer, 2007). The Weddell Sea is one of

the main contributors to the global AABW export (Rintoul, 1998; Orsi et al., 1999).
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Figure 1.2: Map of the (a) northwestern Weddell Sea and (b) eastern Amundsen Sea study
areas. Sections are interpolated from (a) glider and (b) CTD data and show the potential
temperature (θ◦C) measured by these instruments. Black, yellow and pink lines indicate the
0, 500 and 1000 m isobaths. Inserted panels show the Antarctic map and the location of the
study regions. Bathymetric data (m) is from Gebco global 30 arc-second interval grid and is
coloured in gray and green.
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The formation of dense shelf waters involves modification of shelf waters by sea

ice and atmospheric interaction and further mixing with regional CDW as it flows

down the slope (forming AABW). Because the formation and export of these dense

water masses require the interaction between onshore and offshore waters, the ASF

can modulate the ventilation of the abyssal ocean by constraining the cross-slope

exchange of properties. The regional properties of the AABW are thus influenced

by local water mass properties and by coupled physical processes associated with

sea ice formation, opening of coastal polynyas (areas of open water in otherwise sea

ice-covered regions), basal ice shelf melting and mixing with ambient water masses.

Changes in the properties of the source waters, in the atmospheric forcing or in the

dynamical processes that lead to the export of waters from the shelf can affect the final

properties of AABW. It is likely that the dense flow also has effect on the dynamics of

the ASF, however this interaction is still to be investigated.

The shelf-slope processes and the strength of the overturning circulation also

have broad implications for biogeochemical cycles and atmospheric carbon dioxide

levels. As the dense waters sink and ventilate the ocean interior by carrying oxygen-

rich waters, they also contribute to the downward flux of carbon through the sinking

of organic matter. This downward flow is balanced by the upwelling limb of the

overturning cell, which brings nutrients from the ocean interior to the surface ocean

and give support to global marine primary production (Rintoul, 2018). The net

exchange of carbon between the atmosphere and the Southern Ocean depends on the

outgassing of carbon driven by upwelling of natural carbon-rich deep water, and the

uptake and storage of anthropogenic carbon, both of which depend on the strength

of the overturning circulation. Despite the nutrient input, the primary productivity

in the Southern Ocean is largely limited by the low concentration of iron (Fe) (Martin

et al., 1990; de Baar et al., 1995; Holm-Hansen et al., 2004). The most significant source

of iron in the Southern Ocean is likely to be from sediments on the continental shelf

and shallow plateaus and islands around the continent. The Antarctic continental

shelf is not only a source of iron, but also is responsible for the most of the primary

productivity in the Southern Ocean (Fig. 1.3b Arrigo et al., 2008b), supporting high

biomass of higher trophic levels. It is likely that the fertilisation of the open ocean by

the continental shelf may be affected by the cross-slope processes and the dynamics

of the ASF; the physical processes at the slope region that may regulate the export of
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Figure 1.3: a) Surface current speed from the OCCAM1 ocean model (Lee and Coward, 2003),
where the ACC jest and the ASC can be observed. Reproduced from (Thompson, 2008); b)
Summer near-surface Chlorophyll a concentration (austral summer season between 2002/03
and 2015/16), frontal locations (black lines; Orsi et al., 1995) and sea ice extent (1979-2008)
in the Southern Ocean (red line). STF, Sub-Tropical Front; SAF, Sub-Antarctic Front; PF Polar
Front; SACCF, Southern Antarctic Circumpolar Current Front. Reproduced from Deppeler and
Davidson (2017).
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the primary production to off-shore regions remain to be investigated.

Recent progress in the dynamical understanding of the Southern Ocean has

highlighted the importance of both transient and stationary eddies in many different

aspects of its dynamics. They are involved in setting the structure of the ACC and of

the overturning circulation, which is closely related to the eddy field associated with

the ACC unstable flow (Marshall and Radko, 2003). A strengthening or weakening of

the overturning circulation under changes in wind forcing (Thompson et al., 2011)

will likely be associated with the sensitivity of this eddy field, which is still under

debate (Farneti et al., 2010; Dufour et al., 2012). Elevated eddy kinetic energy in the

ACC occurs in "hot spots", generally defined by topography. Eddy vorticity fluxes

provide torque that shift jets and affect the strength of the mean flow (Williams

et al., 2007). When encountering a major topographic feature, advection and stirring

by eddies facilitate the cross-front exchange by deep barotropic eddies (Naveira

Garabato, 2012). Eddies are also responsible for stirring of tracers along isopycnals

away of the main ACC jets (Ferrari and Nikurashin, 2010). At the shelf break, regional

modelling studies show that eddy flux is important for transporting warm waters onto

the shelf (Fig. 1.4; Stewart and Thompson, 2015). Theoretical studies also identify

coastal-trapped waves (St-Laurent et al., 2013) and the interaction of bounded flow

with deep troughs (Assmann et al., 2013) at the continental shelf as factors affecting

the on-shore heat transport. The position and strength of the ASF is likely to affect the

properties that will be available to get onshore. However, many of these processes,

particularly at the shelf break, still require to be quantified and model results to be

assessed by in situ data. This is necessary to assess the processes that regulate the

ocean heat transport available to reach the sub-ice-shelf cavities and the possible

vulnerability of the Antarctic Ice Sheet.

Several changes in the Southern Ocean have been reported, such as the warming

of the bottom shelf waters in the Amundsen and Bellingshausen sea (Schmidtko

et al., 2014), and the freshening, warming and contraction of the AABW layer in

the past decades (Purkey and Johnson, 2013; Azaneu et al., 2013). A reduction in

the overturning circulation in the last decade has been suggested as the cause of

changes in chloroflurocarbons between 1990s and early 2000s (DeVries et al., 2017).

Warming, reduction of salinity, acidification and migration of the ocean fronts are

some of the changes that are expected to alter the structure and function of the
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Figure 1.4: The schematic illustrates physical processes that can influence the transport of
warm water from the open ocean to the base of the floating ice shelves. Reproduced from
Rintoul (2018).

phytoplankton communities in the Southern Ocean which, in turn, will affect carbon

export and nutrition for higher trophic levels (Deppeler and Davidson, 2017). Much

has been debated on what these recent changes represent in terms of sensitivity

of the Southern Ocean to changes in forcing. These discussions, however, remain

mainly speculative despite the progress made in recent years in understanding the

dynamics and global influence of the Southern Ocean. This happens mostly because

the global effects of the Southern Ocean are dictated largely by processes of local and

regional scales, of which theoretical understanding is still very limited (Rintoul, 2018).

The continental shelf and slope are key regions for understanding these changes as

the dynamical processes in these regions not only affect the amount of heat that

reaches the ice shelves, but also influence how the signal from changes in the ocean-

sea-atmosphere interaction is transmitted to the deep ocean (Fig. 1.4). Despite

the importance of the continental shelf and slope regions, they are poorly sampled,

particularly during austral winter, and many of the local processes discussed here are

poorly constrained. This occurs in part due to extensive ice cover and the remote

nature of the region. More importantly, the length scale of oceanographic feature

such as eddies, fronts, jets and meanders are particularly small due to the local Rossby

radius of deformation. This imposes challenges not only on sampling but also on
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modelling of these processes. Many climate models and reanalyses, for example,

are unable to simulate the formation and export of dense waters from the shelf,

producing temperature and/or salinity biases in the modelled ocean abyss (Azaneu

et al., 2014; Heywood et al., 2014). As a consequence, many uncertainties remain

in the heat transport across the continental slope, as well as ice shelf stability and

fresh water input, which compromises quantitative predictions of future changes.

Notwithstanding, observational records of longer length and coverage and recent

technological advances, such as the dataset used in this study, can contribute to a

better understanding of the nature and drivers of variability of the Southern Ocean

and progress its physical understanding. This will likely give a better indication of

how this region may respond to future changes.

1.2 QUESTIONS ADDRESSED IN THIS STUDY

This thesis aimed to investigate the dynamical processes associated with the frontal

system at the Weddell and Amundsen Sea continental slopes. The thesis has three

results chapters, which intend to answer the following questions:

• Is the hydrographic signature of the Antarctic Slope Front and its associated

current consistent along the eastern Antarctic Peninsula continental slope?

• What is the relationship, if any, between the dense water overflow and the

frontal current?

• Does the slope front contribute to enhancing local primary productivity?

• In the Amundsen Sea, is the slope undercurrent a persistent feature?

• Is the strength of the undercurrent associated with the onshore flow of warm

waters, as expected by theoretical studies?

• What other processes can affect the variability of onshore heat transport?

1.3 THESIS OUTLINE

In chapter 2 (published as Azaneu et al., 2017), data from the GENTOO (Gliders:

Excellent New Tools for Observing the Ocean) project in the northwestern Weddell
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Sea are used to explore the short-term and spatial variability of the Antarctic Slope

Front system and the mechanisms that regulate cross-slope exchange. Data include

highly temporally- and spatially-resolved measurements from three ocean gliders

deployed in early 2012. Among the several goals of the project, this work contributes

to the objective of assessing the impact of changing dense overflows on the locations

and strengths of the frontal currents and jets. By calculating composite views of the

cross-slope sections, it was possible to identify the average behaviour of the front, as

well as the differences that arise due to the presence of the dense flow.

In addition to gliders, the GENTOO project included a hydrographic survey

undertaken together with nets and underway biological, chemical and physical

measurements. We take advantage of this multiplatform dataset and, in chapter 3,

we assess the key areas of primary productivity in study region by characterising the

phytoplankton distributions. We also discuss the physical processes associated with

plankton spatial variability and how these relate to the slope frontal processes.

Chapter 4 is dedicated to investigate the variability of the warm layer at the

shelf-break and inside the troughs in the eastern Amundsen Sea. The data used in

this chapter are part of the Ocean2ice project, a consortium led by UEA under the

NERC Ice Sheet Stability programme (iSTAR). The project is dedicated to address

processes at the continental shelf break and on the continental shelf that affect the

heat delivered to the ice shelf front, together with the subsequent fate of the ice shelf

meltwater. This work mainly contributes to the assessment of shelf break processes

influencing the onshore heat flow. The temperature transport along-slope and along-

trough is quantified from six hydrographic sections. These estimates are put into

perspective by analysing the variability of the temperature transport per unit area

time series calculated for each of the 5 moorings available. A statistical technique

is used to assess the short-term variability of these transport time series and help

shed light to oceanographic features that might contribute to the observed patterns

of variability. The results of Chapters 2 to 4 are synthesised in Chapter 5 (Synthesis

and final considerations), and the findings from these two distinct regions (Weddell

and Amundsen Seas) are compared.





2
VARIABILITY OF THE ANTARCTIC SLOPE

CURRENT SYSTEM IN THE

NORTHWESTERN WEDDELL SEA

This chapter has been published in the Journal of Physical Oceanography with the

same title (Azaneu et al., 2017). The text in the chapter is included as published. M.

V. C. Azaneu was responsible for the work, under supervision of Karen J. Heywood,

Bastien Y. Queste and Andrew F. Thompson, who provided scientific input and helped

revise the text for publication. The comments from anonymous reviewers also helped

to improve the manuscript.

2.1 INTRODUCTION

One of the most important aspects of Southern Ocean hydrography is the formation

of dense waters on the Antarctic continental shelf, influenced by ocean-atmosphere

interaction, addition of ice shelf meltwater, sea ice formation and melting (Foldvik

et al., 1985; Nicholls et al., 2009). The production and export of Antarctic Bottom

Water (AABW) to the world oceans contributes to the variability of the global

overturning circulation deep cell (Talley, 2013), which transports mass, heat, salt,

carbon and nutrients, and thus plays an important role in regulating global climate

13
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WEDDELL SEA

(Rahmstorf, 2003; Lumpkin and Speer, 2007).

The properties of exported AABW are determined locally around the Antarctic

margin through mixing of Circumpolar Deep Water with dense near-freezing shelf

waters (Carmack and Foster, 1975; Foldvik et al., 1985). The key element of dense

water formation is modification of shelf waters by atmospheric interaction (a cooling

and a salinity increase due to brine rejection during sea ice formation, i.e. forming

High Salinity Shelf Water - HSSW) or cooling through contact with the base of floating

ice shelves (i.e. Ice Shelf Water - ISW). Dense water then leaves the continental shelf

and flows down slope, mixing with adjacent water to form AABW. In the Weddell

Sea, the dense layer mixes with ambient Warm Deep Water (WDW), which is the

Weddell Sea variant of Circumpolar Deep Water, as it flows downslope. As well

as producing the densest AABW variety, the Weddell Sea is the main contributor

to AABW globally (Rintoul, 1998; Orsi et al., 1999). Huhn et al. (2008) determined

that 1.1±0.5 Sv of Weddell Sea Bottom Water (WSBW) was produced in the western

Weddell Sea. However, historical estimates of AABW production and export from

the Weddell Sea are variable, as a consequence of different methods, water mass

definitions and temporal variability (Jullion et al., 2014). Technical limitations on data

sampling in continental shelf areas areas also contribute to the low precision of these

estimates.

A prominent feature of the circulation on the Antarctic continental shelf and slope

is the almost circumpolar westward Antarctic Slope Current (ASC) associated with the

Antarctic Slope Front (ASF). The ASC, together with the Antarctic Coastal Current on

the shelf close to the coast, constitute the major westward currents of the Antarctic

margins (Jacobs, 1991; Heywood et al., 2004). Due to the weak stratification in the

region, the ASF is tied to topography (i.e. constant f/H contours), and is generally

found close to the shelf break following the 1000 m isobath (Gill, 1973; Whitworth

et al., 1998; Heywood et al., 1998, 2004). Previous studies documented changes in the

structure and physical processes influencing the ASF and the ASC along its westward

path. For example, in the eastern Weddell Sea (17 °W), the ASC is characterized by a

surface intensified flow over the shelf break, a separate baroclinic jet over the 1000 m

isobath and a predominantly barotropic jet over the 3000 m isobath (Heywood et al.,

1998). Further west, at the eastern Antarctic Peninsula continental shelf (between

65 °S and 70 °S, 55 °W), dense waters flow over the slope, and the frontal velocity
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field is bottom intensified, presenting two cores with strong baroclinic components

(Muench and Gordon, 1995). At Joinville Ridge, the flow is also bottom intensified,

with two northward-flowing cores, one mainly barotropic at the 1000 m isobath,

and another 20 km offshore with an strong baroclinic component (Thompson and

Heywood, 2008). Heywood et al. (2004) follow the ASF to the northern flank of the

Hesperides Trough and argue that, here, the ASC mixes with waters characteristic

of the Weddell-Scotia Confluence, becoming unidentifiable. Recent studies suggest

that, rather than becoming completely mixed, part of the ASC crosses the South Scotia

Ridge through troughs deeper than 1000 m (Palmer et al., 2012; Meijers et al., 2016).

The continental slope may host multiple fronts, with those further offshore, such

as the Weddell Front (WF) (offshore of 2500 m), associated with the deeper outflow of

dense waters (Muench and Gordon, 1995; Thompson and Heywood, 2008; Thompson

et al., 2009). The WF has been observed from Joinville Ridge, west of the South Orkney

Islands, to as far east as 22°E (Orsi et al., 1993; Heywood et al., 2004). Tracks of surface

drifters suggest that the current associated with the Weddell front flows cyclonically

within the Powell Basin, and along the South Orkney Island plateau, following deep

isobaths (Thompson et al., 2009; Thompson and Youngs, 2013). However, there are no

recent studies that characterize the properties of the front along its cyclonic pathway,

and thus its circulation within the Powell Basin remains speculative.

Because of its topographic steering as well as persistent horizontal gradients

of hydrographic properties, the ASF can act as a barrier to cross-slope transport

(Thompson and Heywood, 2008). Since the production of dense waters requires

property exchange between dense shelf waters and WDW, the formation and export

of dense outflow is partially controlled by the strength and position of the ASF

(Thompson and Heywood, 2008; Baines, 2009; Gordon et al., 2010; Stewart and

Thompson, 2016). In turn, the position and strength of the ASF is sensitive to

wind stress forcing on seasonal and inter-annual time scales (Su et al., 2014; Youngs

et al., 2015; Meijers et al., 2016). Fluxes across the slope are regulated not only by

surface wind forcing, but also by eddy processes. The balance between these two

components is argued to lead to the typical V-shape of the isopycnals at the shelf

break found in dense water export areas (Gill, 1973; Stewart and Thompson, 2013).

Recent studies have discussed the role of mesoscale eddies in cross-slope mass and

property fluxes (Nøst et al., 2011; Stewart and Thompson, 2015; St-Laurent et al.,
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2013), and have shown that wind-driven and eddy-driven transport make comparable

contributions to the Antarctic overturning circulation. The combination of these

processes regulates the exchange of properties between shelf and oceanic regions

(Thompson et al., 2014).

Ocean sampling can be logistically challenging under the rough conditions found

in the Southern Ocean. Additionally, the Rossby radius of deformation ranges

between 5-12 km over the Antarctic shelf and slope, which complicates observation of

oceanographic features such as jets and eddies. New sampling technologies, such as

autonomous underwater vehicles, allow data acquisition under rough conditions and

with higher spatial resolution (Schofield et al., 2013). The data analyzed in this study

were acquired in early 2012 under the multidisciplinary GENTOO project (Gliders:

Excellent New Tools for Observing the Ocean). Three Seagliders were deployed in

the northwest Weddell Sea, providing data coverage that allowed the identification

of dense water spilling off the continental shelf as well as the investigation of the

variability of ASF strength and structure at unprecedented temporal and spatial

scales.

Section 2.2 describes the dataset, data processing steps and calculations. Results

and discussions are presented in sections 2.3 and 2.4 for observations sampled

on the eastern Antarctic Peninsula continental slope and western South Orkney

Islands, respectively. In section 2.3.1, the properties and transport of the dense water

layer sampled by the gliders around Joinville Ridge are presented. Differences and

similarities of the ASF hydrography, velocity and transport between sections in the

northwestern Weddell Sea are evaluated and discussed in section 2.3.2. In section

2.3.3, composite Potential vorticity (PV) sections are presented for scenarios where

dense water is either present or absent. In section 2.4 we present and discuss the

properties of the WF on the western South Orkney Island continental slope. Finally,

section 2.5 summarises our findings and makes final remarks on the variability of the

slope current system flowing around the Powell Basin.

2.2 METHODOLOGY

As part of the GENTOO project, three Seagliders (SG522, SG539 and SG546; Eriksen

et al., 2001) were deployed in the northwestern Weddell Sea on the 23r d and 31st of
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January 2012; they sampled continuously for 19, 49 and 28 days, respectively. Mission

lengths were constrained by both ship availability and the increasing presence of

sea ice as summer ended. Gliders SG522 and SG539 were deployed simultaneously

over Joinville Ridge, on the eastern Antarctic Peninsula continental shelf, while SG546

sampled the waters on the western South Orkney Island (Fig. 2.1).

Figure 2.1: Map of the study area showing the Dive Averaged Current (in the top 1000 m) with
tidal currents removed, for trajectories for gliders (a) SG539, (b) SG522 and (c) SG546. Gliders
were deployed at the southernmost point of their trajectories on the 23rd (SG522 and SG539)
and 31st (SG546) of January, respectively, and traveled north while occupying the cross-slope
sections. Colors indicate potential temperature at 500 m depth, or the bottom temperature
in shallower areas. Note that the 0◦C isotherm is the threshold between red-blue colors to
denote the position of the ASF. The magenta, blue and green boxes in the inset map of the
Antarctic Peninsula highlight the position of panels (a), (b) and (c), respectively.

All gliders were equipped with a Seabird free-flushing CT sail, while glider

SG522 also had an Aanderaa oxygen optode. Dissolved oxygen is calculated
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using the sensor manufacturer’s calibration; it is not calibrated against in situ

measurements. Temperature and salinity measurements are calibrated between

gliders and against CTD profiles, which were calibrated with in situ water

samples. The gliders also determined the dive-averaged current (DAC) in the

upper 1000 m (Eriksen et al., 2001). In total 790 dives are used in this study,

with 1-5 km horizontal and approximately 1 m vertical resolution, resulting in

1580 oceanographic profiles. The gliders typically sampled within 20 m of the

sea floor when on the shelf and slope, or to a maximum depth of 1000 m

when offshore. Glider data were processed using the UEA Seaglider toolbox

(bitbucket.org/bastienqueste/uea-seaglider-toolbox, 29/02/2016) as described by

Queste (2013). The glider hydrodynamic model was optimized by minimizing the

output of cost functions which prescribe the assumed state of water vertical motion,

as described by Frajka-Williams et al. (2011), to obtain improved velocity estimations.

The hydrographic measurements, initially with roughly 1 m vertical resolution,

were binned into 5 m means. The profiles were split into 25 horizontal sections

and their positions projected onto straight sections. When the glider performed a

loop along its trajectory, the data from dives within the loop were excluded. The

data were objectively interpolated onto a grid of 5 m vertical and 2.5 km horizontal

resolution (using a Gaussian weighting function with vertical and horizontal length

scales of 20 m and 20 km, respectively). The speed of the gliders necessarily convolves

temporal and spatial variability. Interpolating with a larger horizontal length scale,

i.e. 30 km, would help to minimise contamination, or aliasing, by short timescale

variability, e.g. tides (Rudnick and Cole, 2011). However, the results were largely

insensitive to the choice of 20 or 30 km horizontal smoothing scale and thus we

opted for using the former value as it is more in accordance with the front width.

Hydrographic values objectively interpolated below the deepest level were excluded

to avoid extrapolation over the slope.

The mapped sections were used to compute geostrophic shear. A typical cross-

slope section was occupied over a period of 3 days. With an along-slope velocity

of approximately 20 kmday−1 and a typical eddy size of 15−20 km these sections

are not true snapshots of the velocity field. Nevertheless, the along-slope current

that occurs primarily within the fronts, which are considerably narrower than the

entire section, is both nearly synoptic and in geostrophic balance (Heywood et al.,
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2004; Stewart and Thompson, 2013). Furthermore, our approach of constructing

composite sections, described below, addresses this limitation of the glider sections

and throughout we emphasize the statistical nature of the variability of the front

system over the continental slope. The sampling strategy applied during the

campaign sought to fly the gliders in a cross-front orientation, so the cross-section

geostrophic velocities captures the primary flow associated with the fronts. We rotate

the coordinate system with respect to the section, such that there is a cross-slope

and an along-slope component. The absolute alongstream geostrophic velocities

were then calculated by referencing geostrophic shear to the component of DAC

perpendicular to the section after tides have been removed. Tidal velocities have been

removed from DAC using the Oregon State University (ESR/OSU AntPen) (2 km high-

resolution Antarctic Peninsula domain) high-latitude barotropic tide model (Padman

et al., 2002). Absolute geostrophic velocities are positive downstream, equivalent to

cyclonic flow within the Powell Basin and Hesperides Trough.

For each section, cumulative cross-section transport between the sea surface and

1000 m was calculated from absolute geostrophic velocity. In the western Weddell

Sea, where the near-bottom velocity is not negligible, flow in the bottom triangle

between two adjacent stations can be significant. Thus, for transport estimates, the

velocity in the bottom triangle is extrapolated following Thompson and Heywood

(2008), in which the geopotential anomaly profile at the shallower station from the

pair is extrapolated linearly to the depth of the deepest station. A new geopotential

anomaly is then created by a weighted average of the extrapolated values and the

values from the deep station.

Hydrographic sections that are not aligned perpendicular to the slope fronts, e.g.

Section 2 (SG522 and SG539) and section 3 from all three gliders (Fig. 2.1), were not

included in the front analysis. We refer to sections 1-6 (SG522) and 1-10 (SG539) as

Powell Basin sections, and 11-14 (SG539) as Hesperides Trough sections (Fig. 2.1

and table 2.1). In cases where the front is crossed twice by a section (i.e. Section 2

SG522 and Section 12 SG539), only the portion enclosing the main flow is included in

transport estimates. Section 12 (SG539), for example, crosses the slope on both flanks

of the Hesperides Trough, with the associated current flowing in opposite directions

(Fig. 2.1). Only the westernmost portion of the section is considered for analysis since

the eastern end does not cross the front entirely.
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Glider Sections Region
SG522 1, 2*, 3*, 4,5,6

Powell Basin (PB)
SG539 1, 2*, 3*, 4, 5, 6, 7, 8, 9, 10
SG539 11, 12, 13, 14 Hesperides Trough (HT)
SG546 1, 2, 3*, 4, 5 South Orkney Island

Table 2.1: Classification of the different glider sections crossing the slope front system, as
seen in Figure 2.1. * indicates sections that do not cross any front and are thus not used in
composite sections. Bold numbers indicate stations where dense waters are sampled. These
sections are used for dense layer composite sections. The remaining sections within Powell
Basin region are used for non-dense layer composite sections.

PV is largely a materially-conserved property in the ocean interior and can be used

to identify the susceptibility of the flow to instabilities (Haine and Marshall, 1998).

The Ertel PV (Müller, 1995) can be written as:

Q = ( f k̂ +∇×u) ·∇b; (2.1)

where ∇× u is relative vorticity and b = −g (ρ−ρ0
ρ0

) is the buoyancy. In this study,

the geostrophic calculations provide only the cross-section (along slope) velocity

component, and therefore it is necessary to simplify PV. The observational PV is then

calculated by:

PV =−∂v

∂z
· ∂b

∂x
+ ∂v

∂x
· ∂b

∂z
+ f · ∂b

∂z
(2.2)

The first and second terms on the right hand side of Equation 2.2 are associated

with the horizontal and vertical components of relative vorticity, respectively. The

third term is the stretching term, which is proportional to the vertical stratification.

This simplification assumes that along-stream buoyancy gradients are much weaker

than cross-stream gradients, which is verified from adjacent glider sections. We

also consider PV along isopycnal surfaces. Geostrophic velocity fields used for PV

calculations were filtered using a boxcar (50 m vertical and 7.5 km horizontal scale)

averaging filter.

Since the flow associated with the ASF is steered by topography, hydrographic

properties interpolated across section were also gridded against local bathymetry.

Information from the glider altimeter was used primarily to determine the

bathymetry along the sections over the slope. In more offshore areas, where the
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bottom was deeper than 990 m, the GEBCO (30 arc-second interval grid) dataset

was used. The most recent GEBCO dataset includes a large amount of multibeam

data (Weatherall et al., 2015), however over the upper slope it is on average shallower

than the altimeter data by 36±138 m. The profiles were linearly interpolated to a

50 m resolution isobath grid. The maximum isobath of the grid is 2500 m, which

encompasses most of the ASF system. The main steps of the gridding method are

exemplified in Figure 2.2. Composite sections with averaged fields were created by

averaging the properties on isobaths. Composite mean sections and their respective

variances were calculated for regions in which the dense water flow is identified (i.e.

Sections 1, 4, 5 and 6 SG522 and 1 SG539), and for the remaining sections within

the Powell Basin region (sections 4-10 SG539; Fig. 2.1 and table 2.1). Different

sections may cross the front at different angles, and may also have different lengths.

Furthermore, the slope varies along the path of the ASF, which complicates the

comparison of different sections or the calculation of an average section in distance

space (Fig. 2.2d). The composite section performed in isobath space is the natural

coordinate system for analysis of a topographically-steered current system.

2.3 GLIDER OBSERVATIONS IN THE NORTHWEST POWELL

BASIN

2.3.1 DENSE WATER FLOW

Neutral density at the deepest depth measured by the glider from each dive is

presented in Figure 2.3a. The interface between WDW and Weddell Sea Deep Water

(WSDW) is generally identified by the 28.27 kgm−3 neutral density (γn) surface

(Fahrbach et al., 2011). Waters denser than this threshold, which will be referred to

as the dense water layer, are found over the shelf and slope of Joinville Ridge, south of

63 °S.

In the glider observations, there is no signature of WSBW (γn ≥ 28.4 kgm−3,

Naveira Garabato et al., 2002). The glider only profiles to 1000 m and, in this area, the

WSBW is expected to flow along deeper isobaths (Thompson and Heywood, 2008).

Over the upper slope, onshore of the 800 m isobath, Upper WSDW (28.27 kgm−3 ≤ γn

≤ 28.31 kgm−3; Naveira Garabato et al., 2002) fills the bottom layer at Joinville Ridge.
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Figure 2.2: Potential temperature (°C) for section 6 SG522 (a) measured along glider dives
showing the sampling pattern schematically, (b) interpolated into a straight section and (c)
gridded along isobaths. 0 °C isotherm is indicated by the white line. Panel (d) shows the
bathymetry along each section used for composite calculations, with distance calculated from
the 600 m isobath at each section. Dashed lines indicate sections sampled by glider SG522 (see
Figure 1).

Over the slope, offshore of the 800 m isobath, Lower WSDW (28.31 kgm−3 ≤ γn ≤
28.4 kgm−3) is found at the sea bed. A denser and more oxygenated Lower WSDW is

identified south of the main zonal axis of the Ridge (Fig. 2.3b), indicating that it was

recently ventilated by shelf waters. Dense waters around the 850 m isobath on the

southern flank of Joinville Ridge result from the mixture of WDW, dense shelf waters

from Larsen A and B ice shelf regions, and WSBW from greater depths (Caspel et al.,
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Figure 2.3: Properties at the deepest point of each dive. (a) Neutral density (γn, kgm−3); (b)
dissolved oxygen (µmolkg−1). Cross symbols indicate dives without altimeter information, or
farther than 100 m from the sea bed. (c) Dense layer (γn ≥ 28.27 kgm−3) thickness (m). (d)
Arrows show the vertically integrated transport of the dense layer, with numbers indicating
the cumulative transport (Sv) along each section. Black lines correspond to 500, 800, 1000,
1300 and 3000 m isobaths.

2015). This explains oxygenated Lower WSDW on the southern flank of the ridge, in

contrast with the northern slope.

Dense layer thickness was calculated from the shallowest appearance of dense

water (Lower and Upper WSDW) to the ocean bottom as indicated by the glider

altimeter (Fig. 2.3c). This layer thickness increases by approximately 150 m between

the upper slope (800m isobath) and the 1000 m isobath. The layer is thicker (250-

300 m) on the southern portion of Joinville Ridge, where denser and more oxygenated

Lower WSDW is present (Fig. 2.3b).

The dense layer appears in sections 1-2, 4-6 (SG522) and 1-2 (SG539; Figs. 2.1

and 2.3d, table 2.1). The main circulation pattern of the dense layer along the slope,

flowing northeastward and then northwestward around the ridge, is shown by the

cross-section transport of the dense flow (Fig. 2.3d). The largest dense water transport

among these sections occurs at meridional section 2 (SG522; Fig. 2.1), which presents

a dense water flow across the 1000 m isobath, from the shelf to deeper waters, of about
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0.3 Sv on southern Joinville Ridge (Fig. 2.3d). In the same area, the dense water flow

along the slope is approximately 0.1 Sv.

2.3.2 FRONTAL STRUCTURE

POWELL BASIN HYDROGRAPHY

Section 6 (SG522), which extends 65 km eastward from the 600 m isobath at 63 ◦3’ S,

is presented as an example of water mass distribution in the region of Joinville Ridge

(Figs. 2.1, 2.4 and 2.5a). At the surface, slightly warmer and fresher water overlies

Winter Water over the shelf and slope. Deeper in the water column, the dense water

layer is present on the continental shelf and over the slope.

Section 6 (SG522) presents the typical characterization of the ASF as the boundary,

below the surface layer, between cold and relatively fresh shelf waters and warmer

and more saline waters offshore (Jacobs, 1991; Heywood et al., 2004). The most

shoreward extent of the 0 °C isotherm (below the Winter Water) is located within the

core of this strong-gradient region, which is a classical identifier for the ASF location

(Jacobs, 1991; Whitworth et al., 1998). This position coincides with the V-shape of the

isohalines, isotherms and isopycnals which, in this section, is located above the slope,

approximately at the 700 m isobath. The position of the front can also be identified by

the large change in water mass properties seen in the temperature-salinity diagrams

(Fig. 2.4). The distinct temperature and salinity maxima, indicative of the WDW core,

change from approximately 0.44 °C and 34.67 east of the 1000 m isobath to a colder

and fresher WDW core ( approximately -0.23 °C and 34.61) at the 550 m isobath.

Located further north of section 6 (SG522), section 8 (SG539) (62 ◦24’ S) does not

exhibit dense water flow (Figs. 2.1 and 2.6a). Here the warm core of WDW extends

up to the 500 m isobath.

The observations confirm that the position of the 0 °C isotherm is consistent

between sections within the Powell Basin. The front location on section 6 (SG522)

is similar to that for the composite of all sections that sampled the dense water

layer (Fig. 2.5a-c). Fluctuations of the front between the 650 and 800 m isobaths is

indicated by the higher temperature variance there (average variance of 0.08±0.04 °C2

in the area below 250 m; Fig. 2.5e). The higher variance on the slope (average

of 0.09±0.05 °C2) is due to variations in the dense layer thickness (as discussed in
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Figure 2.4: Potential temperature-Salinity diagrams (below 200 m) for sections (a) 6 from
SG522, (b)7, (c) 8, (d) 10, (e) 11 and (f) 13 from SG539. Neutral density (γn) contours are in
gray. (g) Map showing DAC of sections presented on panels a-f. Colours indicate different
dives along each section, corresponding to colors in panels a-f.

section 3.2.3.1). The average ASF position for sections that do not present dense

water flow (Fig. 2.6c) is located further onshore; despite the lower variance (average

of 0.03±0.02 °C2 below 250 m), the ASF positions vary over a broader area (500 m to

1300 m isobaths, Fig. 2.6e) than the sections with dense water. Indeed, Sections 8 and

7 (SG539) represent the most shoreward incursion of the 0 °C isotherm onto the shelf

for all sections, while section 10 depicts the most seaward position of the front in the
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Figure 2.5: (a) Potential temperature (°C) and (b) absolute velocity (V, ms−1) for Section 6
(SG522). The composite and variance sections of these properties for all sections that present
dense water flow (see table 1) are shown in panels c-d and e-f, respectively. (f) Eddy kinetic
energy (EKE, m2 s−2) is presented in logarithmic scale. Pink line over the slope indicates dense
water layer. Thick white (gray) line indicates 0 °C isotherm (28.1 kgm3 isopycnal). Dashed
white (gray) lines show -0.6,-0.5,-0.2,-0.1,0.2,0.4,0.6 isotherms (isopycnals from 27.8 to 28.2
every 0.1 kgm−3).

Powell Basin region (at the 1000 m isobath).

Another difference observed between sections 6 (SG522) and 8 (SG539) is that the

front is broader in the latter (in geographic space; Fig. 2.1). The maximum horizontal

temperature gradient calculated at 500 m decreases from 0.17 °Ckm−1 at section 6

(SG522) to 0.09 °Ckm−1 at section 8 (SG539). Sections 8-10 (SG539) are located in

an area where the upper slope is less steep than the southern sections (Fig. 2.1).

Here the horizontal temperature gradient is less than 0.1 °Ckm−1; the average for

the remaining sections is about 0.17 °Ckm−1. Depending on the slope steepness,

the bottom slope may either stabilize the ASC due to the topographic β effect, or
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Figure 2.6: (a) Potential temperature (°C) and (b) absolute geostrophic velocity (ms−1) for
Section 8 (SG539, upper panels). The composite and variance sections of these properties for
all sections within the Powell Basin without dense waters (see table 1) are shown in panels
c-d and e-f, respectively. (f) Eddy kinetic energy (EKE, m2 s−2) is presented in logarithmic
scale. Thick white (gray) line indicates 0 °C isotherm (28.1 kgm−3 isopycnal). Dashed white
(gray) lines show -0.6, -0.5, -0.2, -0.1, 0.2, 0.4, 0.6 isotherms (isopycnals from 27.8 to 28.2 every
0.1 kgm−3).

destabilize it due to increase in available potential energy, which can lead to the

growth of unstable waves (Tanaka and Akitomo, 2001). Over the Antarctic continental

slope (steep slope case), baroclinic instabilities are suppressed, and the destabilizing

effect is dominant only on the upper slope. The reduction of the temperature gradient

over the region with a more gentle slope, section 8-10 (SG539), is consistent with the

argument of Stewart and Thompson (2013).

The velocity composite sections are bottom intensified both where the dense layer

is present and for the remaining Powell Basin sections (Figs. 2.5 and 2.6). The average

velocity of approximately 0.15ms−1 just above the slope is consistent with studies in

which the geostrophic shear is referenced to LADCP measurements (Thompson and
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Heywood, 2008).

The Powell Basin along-slope velocity sections show 2-3 main cores, which

generally occupy the entire water column, but vary in intensity (from 0.1 to 0.25 ms−1)

and in position (Figs. 2.5b-d and 2.6b-d). A strong velocity core between the 500

and 1000 m isobaths, coincident with the local shallowest extent of the 0◦isotherm, is

apparent in all sections. Eddy kinetic energy (EKE) was calculated using the variance

of the velocity field composite sections. It is high both in the dense water composite

section and in the remaining Powell Basin composite section onshore of the 1000 m

isobath, reflecting the variability of the main flow position in the shelf/slope area

(Figs. 2.5f and 2.6f). On the composite of variance and EKE sections (Fig. 2.5d-

e-f) for sections with dense water, the discontinuities present at the 1000 m and

1500 m isobaths are an effect of the different length of the sections used on the

calculation. However, the other visible structures are not artifacts. Sensitivity tests

performed using only sections with similar length showed that the multiple velocity

cores, as well as the high EKE and its banded pattern, are consistent and robust

results. Convergence or divergence of isobaths could also be factors contributing

to EKE values. Nevertheless, in the case of the ASC, we believe that changes in the

distance between isobaths, between sections (Fig. 2.2d), is not important because

almost all the flow is concentrated in narrow frontal jets (Muench and Gordon, 1995;

Graham et al., 2013; Stewart and Thompson, 2016).

The velocity cores offshore of the shelf break are found more frequently at the

1000 m and 1500 m isobaths on the composite section with dense water (Fig. 2.5d),

whereas they are shifted to 1500 m and 2000 m in the composite section for the

remaining Powell Basin sections (Fig. 2.6d). Indeed, the velocity cores are found

more frequently at deeper isobaths in the northern sections. However, there is no

clear trend in the core positions from one region to another. Even between similar

sections (e.g. sections where the dense water is present), there is a variation in the

strength (0.1-0.25 ms−1) and position of these cores (Figs. 2.5d-f and 2.6d-f). Recent

studies have argued that the ASC system is associated with multiple along-slope jets

about 30 km wide at the top of the slope (Stern et al., 2015; Stewart and Thompson,

2016). These jets extend throughout the water column and continuously drift across

the slope, which could explain the variability observed in the velocity along the ASF

pathway. As proposed by Stewart and Thompson (2016), the formation of the multiple
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along-slope jets could be related to the growth of baroclinic instabilities. These

may occur in a turbulent geostrophic flow in the presence of topographic potential

vorticity gradient (Vallis and Maltrud 1993) and consumes the potential energy

associated with the dense outflow over the continental slope. Our observations,

e.g. jet spacing and jet strength, are consistent with Stewart and Thompson (2016)

numerical study. Moreover, in sections with a dense layer, EKE peaks within the WDW

layer, and the EKE of these sections (average of 0.003±0.002 m2 s−2 below 250 m) is

twice as large as those without the dense layer, suggesting a more active eddy field.

The banded pattern observed in the EKE composite section (Figs. 2.5f) is similar to

that shown by Stewart and Thompson (2016), who associate high EKE values with

Circumpolar Deep Water jets and enhanced eddy momentum fluxes.

HESPERIDES TROUGH HYDROGRAPHY

For sections in the Hesperides Trough (i.e. Sections 11 to 13 SG539; Figs. 2.1 and 2.7),

the hydrographic conditions change considerably from those in the Powell Basin. The

waters at approximately 500 m depth do not exhibit the warm and salty core seen in

the Powell Basin sections. Instead, at this depth are found the coldest waters in the

water column above 1000 m. This temperature minimum at 500 m is in agreement

with Figure 2 of Palmer et al. (2012), which shows that in the center of Hesperides

Trough (station 78), the warm WDW core is found at depths (below approximately

800 m) greater than at the eastern Antarctic Peninsula continental slope. Despite this,

there remains an intense property gradient present at mid depths (i.e. between 200

and 800 m) that is considered here as associated with the ASF.

In Hesperides Trough, as in Powell Basin, the ASC is associated with the 0 °C

isotherm (Fig. 2.7), but the flow is stronger (approximately 0.3 ms−1). Section 13

is the northernmost section where it is still possible to track the ASC (Figs. 2.1 and

2.7). In this section the flow separates into two branches following a bathymetric

divergence. The bifurcation of the flow observed in section 13 (SG539) is in agreement

with the estimated∼1.4 Sv of waters within the 28.1-28.27 kgm−3 density range exiting

the Hesperides Trough at gaps at 52.5 °W (Palmer et al., 2012). Further downstream

(Sections 14 and 15, not shown) the 0 °C isotherm is still present, but at shallower

depths and in an area of complex bathymetry, which obfuscates the identification of

the front. Because of the ASF’s transitional character exhibited at sections within the
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Figure 2.7: (a-c) Potential temperature (°C) and (b-d) absolute geostrophic velocity (ms−1)
gridded against distance along section for sections 11 and 13 (SG539; top and bottom panels,
respectively). These are meridional sections, as indicated by the latitude axis at the top of
the panel. Positive velocities indicate flow downstream with the slope current (i.e., north-
eastward at these sections). Thick white (gray) line indicates 0 °C isotherm (28.1 kgm−3

isopycnal). Dashed white (gray) lines show -0.6,-0.5,-0.2,-0.1,0.2,0.4,0.6 isotherms (isopycnals
from 27.8 to 28.2 every 0.1 kgm−3).

Hesperides Trough region, in conjunction with the local bathymetric complexity, we

average only the sections in the Powell Basin area to produce the composite sections.

Whitworth et al. (1998) question the use of the shoreward extent of the 0 °C

isotherm to identify the ASF at the northern tip of the Antarctic Peninsula. Our results

show that, even though the water masses constituting the ASF are strongly modified

along its pathway from the Joinville Ridge to the northeastern Hesperides Trough,

there is still a clear horizontal gradient of the hydrographic properties between 200

and 800 m, centered on the 0 °C isobath, that is associated with a strong flow steered

by the topography. In this region, flows originating from the Bransfield Strait, shallow

South Scotia Ridge and ACC contribute to form the observed property gradient.

The bottom intensification of the ASC is an important aspect identified in the

Powell Basin sections, which is also observed in the Hesperides Trough region (Fig.

2.7). This feature is consistent between the majority of sections crossing the front,

regardless of the presence of dense water or the latitudinal position (Figs. 2.5 and
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2.6). The ratio between the mean velocity in the 50 m above the deepest common

level between adjacent stations, to the velocity averaged in the entire water column,

averaged for all sections, is greater than 1 shoreward of 1000 m, reaching its maximum

(1.5 ± 0.7) at the 800 m isobath (Fig. 2.8b). This value rises to 1.7 ± 0.3 if only

Powell Basin sections are considered. Bottom intensification has been associated

with the presence of a dense layer, which would tilt isopycnals generating a baroclinic

shear that increases with depth (Stewart and Thompson, 2013). Our results show

that the bottom intensification occurs both in places where there is dense waters

over the slope and in areas where it is not present any more, although it decreases

in intensity as the ASC enters the Hesperides Trough. The persistence of this bottom

intensification at the ASC in areas downstream of the dense layer region may indicate

that the front needs time to adjust to the new conditions without the dense layer.

Figure 2.8: (a) Cumulative transport (Sv) above 1000 m, gridded along isobaths and referenced
to the 600 m isobath. Colors identify each section from SG522 (dashed lines) and SG539 (solid
lines). (b) Average for all sections of the ratio of velocity averaged in the 50 m above the deepest
common level between adjacent stations, to the velocity averaged in the upper 1000 m.
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TRANSPORT AND VARIABILITY OF THE ANTARCTIC SLOPE CURRENT

The transport estimates reflect variability in the velocity field associated with the ASF

(Fig. 2.8a). The ASC cumulative transport between the 450 m and 2500 m isobaths for

each of the sections is variable, ranging from 0.2 to 5.9 Sv for sections that reach the

2500 isobath (Fig. 2.8a). At the northwestern SR4 section (approximately collocated

with Section 1 from gliders SG522/SG539), Thompson and Heywood (2008) estimated

that 3.9±0.3 Sv was due to the ASF contribution, which is within the range of values

estimated in our study. The transport estimates along each of the sections do not

show a regular pattern or trend. For example, Section 6 (SG522) has the highest

transport of all sections. In contrast, the adjacent Section 5 (SG522) has the lowest

transport (0.23 Sv). This is quite different from the 2.9 Sv measured 3 days before, in

Section 4 (SG522) (an occupation of the same area), suggesting temporal as well as

spatial variability.

Modeling and observational work agree on a lag of 4-5 months between a change

in wind stress curl and a response of the ASC in the Weddell Sea (Su et al., 2014; Youngs

et al., 2015; Meijers et al., 2016). In our results higher frequency variability is apparent,

likely controlled by different physical processes, with significant changes between

sections sampled about 4 days apart. The differences in the DAC between sections

exemplify how the 1000 m-averaged flow can vary substantially over a short temporal

and spatial scale (Fig. 2.1). Part of this variability may be associated with data

sampling limitations. The sections are not all perpendicular to the frontal jet. This can

affect the frontal gradients, geostrophic velocity and cumulative transport estimates.

Also, the sections do not all encompass the entirety of the ASF and WF system. With

careful analysis, it is possible to successfully estimate cross-frontal gradients from

oblique transects (e.g. Todd et al., 2016). The gridding onto isobaths rather than

along-track distance somewhat reduces the influence of this bias. However, sampling

differences are not expected to be the major cause of the observed variability.

The comparison of sections 4 and 5 (SG522; Fig. 2.9) demonstrates that mesoscale

processes are the dominant cause of the observed variability. Sections 4 and 5 are

examples of a reoccupation of the same area (i.e. measurements start roughly at

the same point and mostly overlay), starting 3 days apart, and therefore sampling

differences have minimal impact on the comparison. The sections show different

velocities, with total transport estimates differing by 2.7 Sv. In section 5, the absolute
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geostrophic velocity along most of the section is southward. The flow is only

northward in the core of the front. The two sections were sampled over 6 days.

Considering an average frontal velocity of 0.1 ms−1 and deformation radius of 5 km,

advection of an eddy-like feature through the section in such a time frame is plausible.

Sections 1 (SG522) and 1 and 9 (SG539) may have also sampled an eddy-like feature,

associated with a reversal in flow direction at least in part of the section, and with a

reduction in transport compared with neighboring sections (Figs. 2.1 and 2.8). Thus,

the presence of eddies may have a significant impact on the transport associated with

the front and its observed variability.

Figure 2.9: (a-c) Potential temperature (°C) and (b-d) absolute geostrophic velocity (ms−1)
for sections 4 and 5 (SG522; top and bottom panels, respectively). Pink line over the slope
indicates dense water layer. Thick white (gray) line indicates 0 °C isotherm (28.1 kgm−3

isopycnal). Dashed white (gray) lines show -0.6,-0.5,-0.2,-0.1,0.2,0.4,0.6 isotherms (isopycnals
from 27.8 to 28.2 every 0.1 kgm−3).

The Antarctic continental shelf and slope are areas of high EKE, where mesoscale

eddies are responsible for the transport of water at intermediate depths and heat to

the shelf (St-Laurent et al., 2013; Stewart and Thompson, 2016). In the modeling work

of Stewart and Thompson (2016), the flow over the continental slope is dominated

by eddies with length scale of O(30 km), in agreement with the spatial scale of the

reverse flow seen in Figure 2.9. The presence of the eddy-like feature and the weaker

temperature gradient seen in section 5 (SG522) in comparison with section 4 (SG522)
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agrees with the model results of Stewart and Thompson (2016), which show that eddy

stirring may contribute to the shoreward heat transport over the upper continental

slope.

2.3.3 POTENTIAL VORTICITY

The PV distribution in the composite section that includes the dense water layer is

similar to the composite field for the remaining sections within Powell Basin (Fig.

2.10). In both cases the magnitude of PV decreases from the top 100 m towards the

ocean interior, reaching values of order 10−10 s−3 for waters below 500 m (neutral

density between 28.15 and 28.2 kgm−3).

The increase in the magnitude of PV towards the shelf is present in all sections

in the western Powell Basin. The greatest horizontal PV gradients are coincident

with potential temperature gradients, i.e., with the general position of the front (Fig.

2.10). For waters denser than 28.1 kgm−3, the PV in neutral density coordinates

shows the shoreward enhancement in the magnitude of PV along isopycnals as it

gets more negative. Above this dense layer, PV is mostly uniform along isopycnals for

most sections. These cross-slope PV gradients indicate a shoreward WDW eddy flux

(Thompson et al., 2014). The presence of a topographic PV gradient in a turbulent

geostrophic flow could stimulate the formation of the along-slope jets discussed in

section 3.b.2.3.2 (Vallis and Maltrud, 1993). In the Hesperides Trough, however, a

cross-slope PV gradient is not evident (not shown), suggesting that in this region shelf

and slope waters may have already mixed. The steeper slope in the Hesperides Trough

(Fig. 2.1) may also suppress eddy generation and consequently cross-front exchange

(Isachsen, 2011; Stewart and Thompson, 2016).

Sections with dense water show an increase in the magnitude of PV near the

bottom over the slope. All sections in which the dense layer is absent show the

minimum magnitude of PV at the densest sampled level (i.e. WDW 28.1-28.2 kgm−3),

characterized by weak vertical stratification. For sections in which dense water is

present, however, there is an increase in the magnitude of PV for the bottom layer

denser than 28.2 kgm−3, below the PV minimum. The stretching term is the dominant

component of PV in all Powell Basin sections (Fig. 2.10), and its increase in the dense

layer is consistent with the increase in stratification there.



2.3. GLIDER OBSERVATIONS IN THE NORTHWEST POWELL BASIN 35

Figure 2.10: (a-b) Composite of potential vorticity (PV, s−3), (c-d) stretching term, (e-f) vertical
component of relative vorticity, (g-h) horizontal component of relative vorticity, and (i-j) PV
against neutral density surfaces (logarithmic scale), gridded on isobaths. Left panels are
composite of sections with dense layer and right panels are composites of the remaining
sections within the Powell Basin (see table 1). Thick (dashed) gray lines indicate 28.1 kgm−3

isopycnal (isopycnals from 27.8 to 28.2 every 0.1 kgm−3).



36
VARIABILITY OF THE ANTARCTIC SLOPE CURRENT SYSTEM IN THE NORTHWESTERN

WEDDELL SEA

The Rossby number (Ro = ζ/ f ≈ (d v/d x)/ f ), calculated here as the ratio between

the vertical component of the observed relative vorticity ζ and the Coriolis frequency

f , is smaller over the upper slope, and greater over the lower slope. The Rossby

number is greater when the dense layer is present. The horizontal component of

relative vorticity is typically two orders of magnitude smaller than the stretching term

and, therefore, has no significant impact on the total PV. Excluding the maximum

values in the upper 100 m, the horizontal component of relative vorticity is highest

over the lower slope, possibly associated with the bottom intensification of velocity

identified in most Powell Basin sections. PV is negative along all Powell Basin and

Hesperides Trough sections. Thus, there is no clear indication of susceptibility of the

flow to instabilities linked to PV taking the opposite sign of f (Thomas et al., 2013;

Ruan and Thompson, 2016). We cannot, however, rule out the possible existence of

symmetric instability processes acting on the flow, because these types of instabilities

would occur on time scales too short to resolve with glider observations. However,

once convection along sloping paths is set up, the symmetric instability can rapidly

produce a scenario that allows the development of baroclinic instability (Haine and

Marshall, 1998).

The vertical change in the sign of the cross-stream PV gradient can provide an

indication of susceptibility of the flow to development of baroclinic instabilities

(Pedlosky, 1964; Johns, 1988). The PV gradient of the basic state (roughly, the

mean state, considered here as the composite sections) will define the ability of the

fluctuations to extract potential energy from the mean flow. The PV gradients for

the two sections used as examples in Figures 2.5 and 2.6 (i.e. Section 6 SG522 and

8 SG539) and for the composite sections are presented in Figure 2.11. Below the

28.1 kgm−3 neutral density isopycnal, i.e. within the WDW layer, changes in the sign

of the cross-stream PV are evident above the slope in sections with dense flow (Figs.

2.11a-c). In sections where the dense flow is absent (Figs. 2.11b-d), these changes in

sign are restricted to very shallow areas. This scenario is consistent between sections,

i.e., in all cases where the dense water is present, and also on the composite section,

there is indication of possible development of baroclinic instabilities on the interface

between the dense layer and the WDW above the slope. In the remaining sections

this process is constrained to the shelf area. These results are in agreement with the

higher EKE observed in the composite section with dense water (Figs. 2.5 and 2.6),
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which supports the assumption of active baroclinic instabilities at the deep layer.

Figure 2.11: Top panels show the cross-stream gradient of potential vorticity (PV) for sections
(a) 6 (SG522) and (b) 8 (SG539). Bottom panels show the cross-stream gradient of PV
composite section for (c) composite of all dense water sections and for (d) composite of all
remaining sections within the Powell Basin.

Stewart and Thompson (2016) suggest that baroclinic instabilities at the

pycnocline and at the WDW/AABW interface releases potential energy into EKE,

providing energy to the eddy field and mechanical forcing to drive the WDW onto

the shelf. Evidence to support their model results is provided by our results showing

enhanced variability and greater potential for development of baroclinic instabilities

at the bottom boundary when dense layers are present.

2.4 GLIDER OBSERVATIONS IN THE EAST POWELL BASIN

To the west of the South Orkney Island, the main frontal system observed is the

WF, which represents the boundary between well-stratified water from the Weddell

Sea interior, and weakly-stratified Weddell-Scotia Confluence waters. The current

associated with the WF is expected to flow cyclonically around the Powell Basin and to

the south around the South Orkney Island, following isobaths (2500-3000 m) deeper

than the ASF (Gordon et al., 1977; Heywood et al., 2004; Thompson et al., 2009).

Although at the eastern Antarctic Peninsula continental slope the WF is part of the
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frontal system, to the west of South Orkney Island its properties differ from the ASF

and therefore it will be discussed in this separate section.

2.4.1 HYDROGRAPHY

The position of the WF can be identified by a jump in the temperature of WDW (Figs.

2.12 and 2.13), in which water on the Weddell Sea side of the front is warmer and

slightly saltier (Heywood et al., 2004). The crossing of the WF can be seen (Fig. 2.13)

by the shift from a warm and salty WDW characteristic of the inner Weddell Sea

(approximately 0.55 °C and 34.68) to colder and fresher water (approximately 0.4 °C

and 34.66). This gradient is associated with the 2000 m isobath. Water with an even

colder temperature maximum (approximately 0.22-0.3 °C) is present at a shallower

isobath (1000 m).

In Section 5 (SG546), the jump in properties of the WDW warm core to a colder

and fresher variant is more evident. From south to north, waters above 200 m become

warmer and less stratified. This demonstrates a more direct influence on Weddell Sea

WDW of waters from the Weddell-Scotia Confluence possibly through Philip Passage.

This is consistent with the circulation pattern simulated by the OSCAR model, which

showed a convergence of northward and southward flow in the vicinity of Philip

Passage (Youngs et al., 2015).

Both sections 1 and 5 (SG546) show a positive (northward) velocity core shoreward

of the 1000 m isobath and another core at approximately the 2000 m isobath (Fig.

2.12). The most striking difference between these two sections is the flow intensity.

The northward jets intensify from approximately 0.1 ms−1 in section 1 to 0.15 ms−1 in

section 5, mostly due to a stronger barotropic component (Fig. 2.1), associated with

the WF. These velocities are comparable to the composite velocity of the ASF. The

cumulative transport at Section 5 (4 Sv) is double the transport at Section 1.

The observed northward current associated with the WF differs from the pattern

previously assumed in this region (e.g. Thompson et al., 2009). A summary of the

surface circulation in the study area based on our results and on previous studies is

presented in Figure 2.14. Youngs et al. (2015) showed that surface drifters released

around Joinville Ridge flow cyclonically within the Powell Basin and then split at

the southwest edge of the South Orkney Island, with some flowing south and others
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Figure 2.12: Potential temperature (°C), absolute geostrophic velocity (ms−1), potential
vorticity (s−3) against depth and potential vorticity against neutral density surfaces (s−3,
logarithmic scale) on the western flank of the South Orkney Island, gridded against isobaths,
for (a) section 1 and (b) section 5 from SG546. These are zonal sections in which the
continental shelf is at the eastern end (see Fig. 2.1) as indicated by the longitude axis at the
top of the panel. Positive velocities indicate northward flow. Observations from Section 5 are
presented only up to the 2000 m isobath.

northward. In the west Powell Basin, at Joinville Ridge, the flow associated with

the WF is tied to a range of deep isobaths (Thompson et al., 2009). Thus, it is

possible that the more offshore part of the flow associated with the WF follows the

deeper isobaths around the basin and south of the South Orkney Island. Meanwhile

the more inshore portion of the flow follows shallower isobaths, making a northern
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Figure 2.13: Potential temperature-Salinity diagrams (below 200 m) for sections (a) 5 and (b)
1 (SG546). Neutral density (γn) contours are in gray. Map shows DAC of sections presented on
panels a-b. Colors indicate different dives along each section, corresponding to panels a-b.
Black lines indicate the 500, 1000, 2000 and 3000 m isobaths.

incursion around the basin boundaries, and flows towards Philip Passage through

the meridional channel west of the South Orkney Island. The bifurcation of the WF

pathway proposed in Figure 2.14 agrees with the surface circulation produced by

the OSCAR model simulation (Youngs et al., 2015), with modelled tracer trajectories

(Meijers et al., 2016) and with the WDW-inferred path within the Weddell Sea (Palmer

et al., 2012).

The maximum magnitude of PV seen in the eastern Powell Basin sections (Fig.

2.12) is located below the surface, between 100 m and 200 m, presenting values of
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Figure 2.14: Map of the study area with summary schematic of updated circulation of the top
1000 m. Different glider sections are shown in different colors along with the dive averaged
currents. Orange line corresponds to the path of the Antarctic Slope Front (ASF) and burgundy
line to Weddell Front (WF). Filled lines showing the circulation indicated by the glider data.
Dashed and dotted lines are the contributions from Thompson et al. (2009) and Heywood
et al. (2004), respectively. Pink line indicates the possible multiple pathways followed by the
WF along isobaths, as suggested by the glider data.

O(10−9s−3), lower than in the western Powell Basin sections. Sections in the eastern

Powell Basin show an increase in the magnitude of PV towards the shelf, although

the gradient is generally weaker than for the western Powell Basin. The PV gradient

is constrained to a narrower density range (28.15-28.19 kgm−3) than in the western

Powell Basin. As seen for the ASF, the stretching term is the leading component of PV.

2.5 SUMMARY

In our study the Antarctic continental slope region of the northwestern Weddell Sea

was sampled with an unprecedented spatiotemporal resolution, providing unique

information on both the dense layer and the variability of the ASF system. Offshore of

the 800 m isobath, dense waters fill the 300 m thick layer above the sea bed. These
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waters are richer in oxygen on the southern flank of the Joinville Ridge than on

the northern flank. A dense layer transport off the shelf of approximately 0.3 Sv is

estimated across the 1000 m isobath, at the southern flank of the Joinville Ridge.

The gliders provided a novel dataset, which allowed a quasi-synoptic view of the

ASF. This allowed the first evaluation of the short-term variability associated with

the flow. The ASF is a consistent feature with a clear hydrographic signature, but it

is also variable and its properties and structure change along its pathway along the

Antarctic slope. The high-resolution sampling has tracked the evolution of the ASF

around the Hesperides Trough, showing a modification of the frontal structure that is

likely to impact shelf-slope exchange. The observations show that the position of the

0 °C isotherm can be used to identify the position of the ASF along its entire pathway

from Joinville Ridge to the interior of the Hesperides Trough. The Hesperides Trough

region, however, is influenced by Weddell-Scotia Confluence waters, and therefore

the ASF hydrographic properties are modified. The results confirm that the front

position within the Powell Basin varies between the 500 m and 800 m isobaths. The

average temperature variance at the front is 0.08±0.04 °C2 for sections with a dense

water layer.

PV anomalies suggests that, where the dense layer is present, there is a greater

potential for development of baroclinic instabilities at the boundary between WDW

and AABW, supported by the higher eddy variability observed in these sections.

Sections with dense water show greater temperature variance within the dense layer

over the slope (average of 0.09±0.05 °C2 at the dense water layer interface) and higher

EKE (average of 0.003±0.002 m2 s−2 below 250 m) in comparison with the remaining

sections, which supports previous modelling work (Stewart and Thompson, 2016).

The variability of the ASF is observed to be at a higher frequency than previous

studies, showing significant changes between sections sampled about 3 days apart.

The observed variation in the position of velocity cores between sections is possibly

related to the formation and drift of multiple along-slope jets. The variability in the

intensity of the flow associated with the ASC does not present a clear temporal or

geographical pattern. The effects of changes in slope steepness and the passage of

eddies through the region were identified as factors contributing to the observed

variability. Sections that sampled eddy-like features show a reversal in flow direction

and reduced transport compared with neighboring sections. The combined effect of
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these two factors can have a significant impact on the transport associated with the

front, its observed variability and the cross-slope transport of mass and properties.

These results also have implications for the representativeness of previous transport

estimates that were composed of a single snapshot (e.g. Jullion et al., 2014; Thompson

and Heywood, 2008). Likewise, our estimates are restricted to austral summer

and may not be representative of the current at other times of year; there may be

variability of the ASF properties and ASC transport on seasonal and interannual time

scales. During autumn, for example, shelf waters may undergo freshening coincident

with strong along-shore wind and strong negative wind stress curl, leading to a

stronger ASF and ASC transport (Graham et al., 2013; Renner et al., 2012; Gordon

et al., 2010). Interannual fluctuations of the front properties and strength of the

boundary current system are influenced by the Southern Annular Mode and respond

to changes in the wind stress curl over the Weddell Sea with a lag of 4-5 months, with

stronger cyclonic wind stress leading to a stronger ASC (Renner et al., 2012; Su et al.,

2014; Youngs et al., 2015; Meijers et al., 2016). However, the structure of the narrow

jets over the slope is unlikely to change. Thus, even though the dataset provides a

comprehensive picture of the ASF, during austral summer and early autumn, further

monitoring of the frontal system is required to establish the seasonal cycle and detect

interannual change (Gordon et al., 2010).

A cross-slope and along-isopycnal PV gradient is a consistent feature of the Powell

Basin region (Thompson et al., 2014). This feature is also present west of the South

Orkney Island, although the gradients are weaker. In the Hesperides Trough, however,

a PV gradient is not evident and the mean flow is stronger than in the Powell Basin

sections.

Despite the spatial variability of the ASC, intensification (up to 60%) of the flow

velocity at the sea bed is a feature common to the majority of sections. This bottom

intensification has been previously associated with the presence of the dense layer

(Stewart and Thompson, 2013). The persistence of this intensification in areas where

dense waters are absent is a surprising feature, and suggests an adjustment period of

the flow, or the existence of other processes that may enhance near-bottom velocities.

The WF exports dense waters from the Weddell Sea (Muench and Gordon, 1995;

Thompson and Heywood, 2008; Thompson et al., 2009). The data presented here

contribute to a new and more accurate picture of the structure of the flow associated
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with the WF and its circulation west of the South Orkney Island (Fig. 2.14). Our results

show significant differences in hydrographic properties and stratification along the

WF, associated with a strong influence of Weddell-Scotia Confluence waters in the

northern part of the region, possibly facilitated by Philip Passage. The observed

northward current associated with the WF clarifies the pattern previously assumed

in this region, agreeing with surface circulation produced by model simulations and

surface drifters (Youngs et al., 2015; Meijers et al., 2016).

The glider data evaluated in this study provide one of the most comprehensive

data sets to assess the characteristics of the ASF in the western Weddell Sea, both in

terms of spatial coverage and horizontal resolution. The results provide an important

observational contribution to a growing body of largely numerical evidence that ASF

variability is strongly influenced by mesoscale processes. It will be important to

understand how the interaction between atmospheric forcing, the mean circulation

and ocean eddies at the Antarctic margins responds to a changing climate.
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3.1 INTRODUCTION

The Southern Ocean can be classified as high nutrient-low chlorophyll (HNLC), with

primary productivity thought to be limited by low iron (Fe) concentrations (Martin

et al., 1990; de Baar et al., 1995; Holm-Hansen et al., 2004; Boyd, 2002; Boyd et al.,

2007). The mean annual primary production of the Antarctic continental shelves

between 1997 and 2006 (109 gCm−2 a−1) represents approximately twice that of

the pelagic zone, accounting for area differences (Arrigo et al., 2008b). They are

disproportionately important with regard to carbon dioxide (CO2) sequestration,

45
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as they exhibit low surface levels of CO2 during summer, are sites of active gas

exchange, and contribute via advection and deep water formation to the export of

anthropogenic carbon (Arrigo et al., 2008a). Antarctic continental shelves support

high biomass of higher trophic levels, in particular penguins, seals and whales (e.g.,

Smith et al., 2014). Continental shelves around Antarctica can be deep, with shelf

breaks generally occurring at depths greater than 500 m, and are influenced by

subsurface flows onto and off the shelf. These flows provide nutrients that resupply

the summer consumption during phytoplankton growth, and heat which at selected

locations drives ice shelf melt (e.g., Dinniman et al., 2011). The outflow, at sites

of deep water formation, drives the global thermohaline circulation (Rintoul, 1998;

Whitworth et al., 1998).

Primary production is dependent on a balance of

sufficient light for photosynthesis, the necessary macro and micro nutrients input

to produce organic matter and grazing by zooplankton. In the Southern Ocean,

mixing and ice cover are the dominant processes governing light availability within

the surface mixed layer, while advection, vertical mixing and ice melt regulate macro-

and micronutrient supply (Pollard et al., 2002). Modelling studies show that, near

the Antarctic Peninsula, primary production is primarily regulated by sediment-

derived iron sources, while icebergs, sea ice and atmospheric dust play secondary

roles (Wadley et al., 2014). The iron supply can occur by benthic iron diffusion,

by enhanced upwelling along the shelf and continental slope, and from sediment

resuspension in areas of rugged bottom topography, e.g. the Scotia Ridge (Westerlund

and Öhman, 1991; De Jong et al., 2012; Smetacek and Nicol, 2005). The upwelling

of macro- and micronutrients can be driven not only by upwelling and topographic

interactions but also by eddy motions, which drive localised upwelling/downwelling

(Sokolov and Rintoul, 2007). The passage of icebergs calved from ice shelves around

the continent has also been reported reported to promote primary production locally

(Smith, 2007; Schwarz and Schodlok, 2009; Biddle et al., 2015). The iron enriched shelf

waters are likely to contribute to a region of high spring chlorophyll a concentrations

and phytoplankton biomass which can stretch from the north east of the Peninsula

to towards South Georgia (Smetacek and Nicol, 2005; Moore and Abbott, 2000;

Holm-Hansen et al., 2004; Thorpe et al., 2004; Abelmann et al., 2006). In the Ross

Sea, benthic (brought to euphotic zone by winter convective mixing) and melting
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sea ice are the largest sources of dissolved iron, while intrusion of Circumpolar

Deep Water (CDW; a relatively old and rich water mass, characterised by a local

temperature maximum and oxygen minimum) is a secondary but also significant

source (McGillicuddy et al., 2015; Kustka et al., 2015). The importance of CDW mixing

in supplying dissolved iron at the eastern Antarctic Peninsula is not clear.

Physical and biological processes occurring near the tip of the Peninsula and in

the Weddell Sea are influenced by many factors, including the formation of sea ice

(Foster et al., 1987), melting of ice shelves (Foldvik et al., 1985) and the complex

underlying bathymetry (Orsi et al., 1993; Thompson et al., 2009). The Powell Basin

and South Scotia Ridge are particularly dynamic sites where strong along-slope

currents, associated with the Antarctic Slope Front (ASF), follow bathymetric contours

and may represent a barrier for cross-slope exchange of properties (Thompson and

Heywood, 2008). Thus, slope processes associated with the front can potentially

influence biochemical exchanges between shelf and open ocean area and affect local

primary productivity at the continental shelf and slope. In the pelagic Southern

Ocean, Sokolov and Rintoul (2007) show that rather than an area of enhanced

production, the fronts associated with the Antarctic Circumpolar Current coincide

with boundaries of regions of similar chlorophyll concentrations. At the continental

slope area, the role of the ASF in the local primary productivity is still uncertain,

partially because of extensive ice and cloud cover, preventing in situ and remote

observations. In addition, the continental shelf is characterised by variability at a

small spatial and temporal scales due to the shallow depths, weak stratification and

small Rossby radius of deformation (typically below 10 km).

The GENTOO project (Gliders: Excellent New Tools for Observing the Ocean)

aimed to assess the importance and location of the subsurface slope front in

regulating cross-slope exchange in the Weddell Sea using highly temporally- and

spatially-resolved measurements from three ocean gliders. In this study, we use a

multiplatform dataset to characterise phytoplankton and krill biomass distribution,

and assess how the pattern of plankton spatial variability relate to frontal processes

east of the Antarctic Peninsula. Specifically, we show that the slope front does not

necessarily promote enhanced productivity. We evaluate the differences along the

continental shelf between Powell Basin and Weddell-Scotia confluence areas, as well

as between on shelf and offshore.
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3.2 OBSERVATIONS, METHODOLOGY AND DATA CALIBRATION

The GENTOO campaign consisted of a ship-based survey (23 January–3 February

2012), during which 41 CTD stations were completed (Fig. 3.1). In addition, three

Seaglider deployments (SG522: 23 Jan.–14 Feb.; SG539: 23 Jan.–12 Mar.; SG546: 31

Jan.–28 Feb.) were conducted along the western Powell Basin Shelf Break and along

the South Scotia Ridge (3.1 and 3.2).

Figure 3.1: (a) Map of study region showing the dataset used. Ship travel, along which krill
density was obtained, is shown by orange dots. Filled circles and diamonds indicate glider
profiles and CTD stations, respectively, coloured by date of sampling. CTD stations in which
water samples were taken are highlighted by pink diamonds. Numbers indicate sections from
gliders SG522 (blue) and SG539 (red). Date-coloured dashed lines represent sea ice border
on the 24th January, 8th February and 09th March. (b) Map of the Antarctica Peninsula and
Drake Passage with the study region highlighted. (c) Potential temperature (θ; ◦C) from gliders
at 50 m.
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The ship’s sensors were calibrated against in situ samples collected with the

rosette and analysed on board and in the laboratory. A total of 120 salinity samples

were analysed using a Guildine Autosal and a resulting offset calculated for the

ship’s CTD conductivity sensor. Salinity is estimated to be accurate to 0.001 and

temperature to 0.001 °C. Samples for chlorophyll a and particulate organic carbon

(POC) were collected in the upper 200 m from the CTD-rosette deployments. Samples

(from 270-540 mL) were filtered through Whatman GF/F filters under low vacuum

and analyzed by fluorometry using the acid-addition method on a Turner Designs 10-

AU fluorometer (JGOFS, 1996). The fluorometer was calibrated using a commercially

prepared chlorophyll standard (Sigma), the concentration of which was checked by

spectrophotometer and high pressure liquid chromotography (Fig. 3.3a). Particulate

matter concentrations were determined by filtering known volumes of seawater

(1 L) through combusted GFF filters, drying at 60◦ C, and pyrolysis on an elemental

analyzer to obtain POC concentrations (Gardner et al., 2000). Acetanilide was used

as a standard. Along-track Antarctic krill biomass (wet weight, gm−2) was calculated

following Fielding et al. (2016) using multi-frequency acoustic data, and knowledge

of krill length-frequency distribution derived from net samples. Three-frequency

volume backscattering strength (Sv , dB re 1 m−1) data were collected using a hull-

mounted Simrad EK60 echo-sounder (38, 120 and 200 kHz). Krill were sampled to

provide parameters required in the target strength model for krill biomass estimation.

Krill were sampled using a rectangular mid-water trawl with a rectangular 8 m2 mouth

opening (RMT8). A total of 7 trawls were targeted on acoustic marks identified in the

glider-deployment regions from the ship’s real-time EK60 data display. Each trawl was

comprised solely of Antarctic krill and ca. 100 krill from each measured for length.

The mass-to-length relationship calculated for the Scotia Sea in 2000 (Hewitt et al.,

2004) was used to convert krill abundance to krill density, which was integrated along-

track per 500 m travelled. The krill density was not uniformly distributed along hours

of the day, showing a more diurnal pattern. Based on the hourly distribution of the

krill density, estimates made between 7h and 19h presented the highest values and

were then selected for the analysis.

Gliders SG522 and SG539 were capable of sampling to 1000 m and were equipped

with a Seabird conductivity - temperature package and a WetLabs triplet ECO

puck measuring chlorophyll a fluorescence, coloured dissolved organic matter
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Figure 3.2: a) Time series of potential temperature (θ; ◦C), chlorophyll a (Chl α; µgL−1) and
particulate organic carbon (POC; µgL−1) concentration for gliders SG539 (a) and SG522 (b).
Pink lines indicate beginning of each transect (see Fig.3.1), as indicated by the numbers. Grey
lines are isopycnals 27.65, 27.95 and 28.1 kgm−3. Orange line indicates the MLD. Bottom
panels in (a) and (b) indicate local bathymetry. Orange dotted line marks 1000 m depth.



3.2. OBSERVATIONS, METHODOLOGY AND DATA CALIBRATION 51

fluorescence and optical backscatter (SG522 at 532 nm; SG539 at 650nm). SG522

was also equipped with an Aanderaa 4330 optode with a fast response foil.

Glider temperature and salinity are estimated to be accurate to 0.005◦C and 0.01,

respectively. Temperature and salinity data from the gliders were calibrated against

available ship CTD data along sections 1 and 2 by matching profile peaks in potential

temperature and salinity space. Glider chlorophyll a concentrations were estimated

by regressing glider observed fluorescence against CTD casts performed alongside the

glider dive. Optical backscatter values obtained from the glider optical sensor were

converted to POC concentrations (Kaufman et al., 2014). Total volume scattering, β

(124◦, 532 nm for SG532 and 650 nm for SG539) was calculated from raw scattering

using a factory-calibrated scale factor. Particulate optical backscattering (bbp;

wavelengths 532 nm for SG532 and 650 nm for SG539), was estimated from total

volume scattering by subtracting the volume scattering of seawater, βw (Morel, 1974),

and applying a factor of 2 πχ, where χ = 1.01 (following Boss and Pegau, 2001).

The backscatter-based POC estimates were then calibrated against ship POC samples

(Figs. 3.1 and 3.3). The closest profile within a 10 km radius from each station was

used in the regression. Dissolved oxygen is calculated using the sensor manufacturer’s

calibration; it is not calibrated against in situ measurements.

Both gliders traveled northwards while repeating transects along the Powell Basin

continental slope (Fig. 3.1). SG522 covered section 1 and 2, repeated section 3 three

times (sections 3–5), and then sampled section 6. SG539 performed each section

(sections 1-14) sequentially before heading into the Weddell–Scotia Confluence

(WSC) where it surveyed the SSR (Fig. 3.1). In total, glider SG539 sampled 15

sections. The sections were sampled in a cross-front orientation, in which the

upper slope and off-shore regions were sampled. Sections 1 from SG522 and

SG539 are the most on-shore sections, sampling the on-shelf upper slope areas.

Glider data were gridded into 4 m vertical bins taking median values, and any

gaps were filled with linear interpolation. Derived properties, such as geostrophic

velocity, were calculated after objectively interpolating the data horizontally onto a

2.5 km horizontal resolution grid (using a Gaussian weighting function with vertical

and horizontal length scales of 20m and 20 km, respectively). Absolute velocities

were obtained by referencing geostrophic velocities to de-tided DAC (dive-averaged

currents; Eriksen et al., 2001). Tidal currents were estimated using a barotropic tide
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Figure 3.3: a) Ship chlorohyll a against samples (only those collected during night time or
below 50 m), coloured by time. b) Linear regression between particulate backscattering (bbp)
from Seagliders SG522 and SG539 and the ship particulate organic carbom samples, coloured
by bathymetric depth.

model (Padman et al., 2002). Other properties derived from the glider hydrographic

sections were the observational Ertel Potential Vorticity (PV; Müller, 1995) and the

Turner Angle (Ruddick, 1983). PV is a largely conservative quantity on isopycnals

if diabatic processes are small. More details on the PV calculation using the glider

data are provided by Azaneu et al. (2017). The Turner angle expresses the relative

contribution of the vertical gradients of potential temperature and salinity to the

vertical stability (N 2). The Turner angle differentiates between "diffusive" regime
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(angles between -90◦and -45◦), salt-fingering regime (angles between 45◦and 90◦),

and a statically unstable water column (N 2 < 0; angles ≥ 90◦or ≤ -90◦). A turner angle

between -45◦and 45◦represent regions where the stratification is stably stratified in

both temperature and salinity. The mixed layer depth (MLD) is defined as the depth

at which the potential density differs by a threshold value of 0.03 kg/m3 from the

potential density at 10 m depth (Dong et al., 2008).

3.3 HYDROGRAPHIC CONTEXT

The main water masses present at the Powell Basin shelf break and slope area are

Antarctic Surface Water (AASW), Warm Deep Water (WDW; regional variety of the

Circumpolar Deep Water) and Antarctic Bottom Water (AABW; Fig. 3.4). AASW

properties are variable spatially and temporally due to interaction with sea ice and

atmosphere. During summer, AASW comprises a relatively warm and fresh surface

layer above the subsurface near-freezing temperature minimum of Winter Water

(WW), which is the remnant of the winter mixed layer (Whitworth et al., 1998; Palmer

et al., 2012). This temperature minimum is present all year in the open ocean

because of the presence of warmer WDW (γn ≥ 28.01 kgm−3) beneath it. WDW is

characterised by a temperature maximum, and a salty and low oxygen core, derived

from Circumpolar Deep Water (Heywood and King, 2002). The permanent pycnocline

between WW and WDW in the open ocean regime defines the lower limit of AASW (at

approximately 300m). Over the shelf, the AASW layer may overlie a layer of waters as

dense (called modified WDW) or denser than the WDW, which is the case for sections

1, 2, 4, 5, and 6 (SG522) and 1 and 2 (SG539; Figs. 3.1 and 3.2; Azaneu et al., 2017).

Waters denser than WDW are defined as AABW (γn ≥ 28.27 kgm−3) and, if denser than

28.27 kgm−3 and colder than -1.7◦C, as Shelf Water (Whitworth et al., 1998). There

is possibly not a barrier for the communication of surface waters from the oceanic

and the shelf regime, however, the properties of these waters can be influenced by

processes that are particular to the two different regimes. The horizontal subsurface

gradient between the thickened layer of relatively cold and fresh AASW with the

warmer and saltier modified WDW is known as the Antarctic Slope Front (ASF; Jacobs,

1991; Whitworth et al., 1998; Heywood et al., 1998). The temperature and salinity

horizontal gradients defining the front also represent a horizontal gradient in density,
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and thus there is a steepening of the slope of the isopycnals where the WDW reaches

the continental slope (Heywood et al., 1998). In regions where the shelf dense waters

are present, the AASW shoals again, leading to a “V-shape" in isopycnals (for example

for sections over Joinville Ridge). If the dense shelf water is absent, there is just the

off-shore side of the “V". North of the South Scotia Ridge, in the Hesperides Trough

region, the complex topography helps promote the confluence of different open-

sea and shelf water masses. The ASF properties are modified by the contribution of

waters originating from the Bransfield Strait, shallow South Scotia Ridge, and ACC. In

the centre of Hesperides Trough, the warm WDW core is found deeper in the water

column than in the Powell Basin region (Palmer et al., 2012; Azaneu et al., 2017).

The classical identifier of the ASF location is defined by the most shoreward extent

of the 0◦C isotherm (Jacobs, 1991; Whitworth et al., 1998). The ASF is generally found

close to the shelf break (Gill, 1973; Whitworth et al., 1998; Heywood et al., 1998, 2004),

mostly between the 500-800m isobaths (Azaneu et al., 2017). Because of the persistent

horizontal gradient of properties, the ASF act as a barrier for cross-slope exchange for

waters within the WDW density range. However, its role in the cross-slope exchange

at surface waters is not certain (Thompson and Heywood, 2008).

The westward geostrophic current associated with the slope front is the Antarctic

Slope Current (ASC), which is topographically steered (Thompson et al., 2009; Azaneu

et al., 2017). The ASC flows cyclonically around the Powell Basin; as it encounters

the South Scotia Ridge, the majority of the flow follows the slope along the southern

edge of the ridge and enters the Hesperides Trough region. Part of the flow turns

west and enters the Bransfield Strait, while part of it merges into a large standing

eddy over the South Scotia Ridge (centered at 62◦S and 54◦W; Thompson et al., 2009).

This anticyclonic eddy is a permanent feature of the circulation and has a diameter

of approximately 40 km. Drifters released in the region remained trapped in this

recirculation for up to a month (Thompson et al., 2009). During the research cruise,

CTD stations were occupied and krill density was estimated across the standing eddy

(Fig. 3.1).
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Figure 3.4: Potential temperature-Salinity diagrams for (a) all glider dives at the western
Powell Basin and (b) in the Hesperides Trough coloured by chlorophyll (Chl α; µgL−1). Panels
(c) and (d) show the same data as (a) and (b), respectively, coloured by water depth (m).

3.4 BIOLOGICAL DISTRIBUTION AND THE INFLUENCE OF

PHYSICAL PROCESSES

Chlorophyll a concentrations varied substantially through the field campaign (Fig.

3.2). The survey can be split into four different regions with respect to chlorophyll a

distributions. We generally observe greater chlorophyll concentrations on-shelf than

the regions directly off-shelf within the Powell Basin; we also observe systematically

higher chlorophyll a concentrations over and north of the South Scotia Ridge, in the

Hesperides Trough (glider sections 10-14 SG539), compared with the generally low
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chlorophyll a levels further south in the Powell Basin (glider sections 1-6 SG522 and

1-9 SG539; (Figs. 3.1 and 3.5). Regardless of the geographical area (i.e. Powell Basin or

Hesperides Trough), chlorophyll values higher than 0.3µgL−1 are mostly found above

the WW temperature minimum (27.95 kgm−3 isopycnal), which is approximately at

120 m in the Powell Basin and deepens to approximately 220 m in the Hesperides

Trough (Fig. 3.2). Based on this vertical distribution of chlorophyll a, we choose to

use 200 m as the depth of vertical integration of chlorophyll a and POC concentrations

(Fig. 3.5) to include the biological signatures from both regions.

In the western Powell Basin, chlorophyll a concentrations ranged from near 0 to

1 µgL−1 (Fig. 3.2). Off-shelf, a diffuse deep chlorophyll maximum is mostly located

in the Winter Water layer, contained within the 27.75 and 27.95 kgm−3 isopycnals

(between 70 and 130 m; Figs. 3.2 and 3.6). In contrast, in the upper slope region,

where we see elevated chlorophyll a values, chlorophyll a is more evenly distributed

within the surface mixed layer (0–100 m).

The on-shelf–off-shelf difference in chlorophyll a vertical distribution is not

necessarily coincident with the classical definition of the ASF position (i.e. on-

shore extent of 0◦C isotherm). However, the cross-slope change in chlorophyll a

distribution is generally coincident with a change in the stratification pattern of

the surface waters. The change in the surface waters stratification is, ultimately,

associated with the front and the on-shore downwelling of the shallow isopycnals

(Fig. 3.6). The intensity of the buoyancy frequency (N 2) peak generally increases

and is more pronounced off-shore, in agreement with the presence of CDW

and a more pronounced Winter Water temperature minimum. This transition is

mostly coincident with the subsurface frontal gradient of properties. The layer of

highest stratification generally matches the 27.75 kgm−3 isopycnal; the subsurface

chlorophyll maximum then sits generally below the pycnocline in offshore areas. On

the upper slope, higher chlorophyll a patches coincide with areas of relatively weaker

stable stratification as indicated by the Turner angle (values between -45◦and 45◦; Fig.

3.6). Since potential vorticity (PV) in the region is largely controlled by the vertical

buoyancy gradient, we observe an increase in PV towards offshore along the surface

isopycnals due to convergence of the isopycnals, which may represent a dynamical

barrier between these regions.

These observations represent late-summer conditions and thus the observed
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Figure 3.5: Maps of (a) depth-integrated chlorophyll a (0 – 200 m) (logarithmic scale, gm−2),
(b) depth of chlorophyll a maximum (m), (c) depth-integrated POC (0 – 200 m) (logarithmic
scale, gm−2), (d) average POC:chlorophyll ratio(0 – 100 m) from gliders. Grey line indicates
1000 m isobath.

deep chlorophyll maximum off-shelf is likely representative of post-bloom conditions

with depleted surface nutrients and a deep chlorophyll maximum sustained by

background mixing of nutrients at the nutricline, just below the pycnocline. Most

of these observations are based on sections that cover the upper slope–off-shelf

areas. In the southern and most shoreward sections (Sect. 1 from SG522 and
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Figure 3.6: Section 6 from glider SG539 biological. (a) Potential temperature (θ; ◦C),
chlorophyll a (Chl α; µgL−1) and particulate organic carbon (POC; µgL−1), (b) Potential
vorticity (logarithmic scale) in neutral density coordinates (log10(PV); s−3), Turner Angle
(TuAngle) and vertical buoyancy gradient (N 2; s−2). In panel (a), the white line indicates the
0◦C isotherm. Dashed black lines indicate neutral density isopycnals. Grey line in panels
indicate mixed layer depth.
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SG539), the isopycnal that outcrops at the surface (27.65 kgm−3), in an area of high

productivity, deepens offshore, bounding the chlorophyll maximum (Fig. 3.2 and

3.6). This, together with the PV gradient (towards offshore) observed at this density

layer, suggest that advective processes associated with eddy fluxes may play a role

in setting the subsurface maximum off-shore by subduction of chlorophyll a and

biomass along isopycnals, a process described by Erickson et al. (2016) at the western

Antarctica Peninsula. However, there is not enough evidence to confirm or dismiss

the contribution of this process for the remaining study area.

Even though in section 6 from SG539 (Fig. 3.6) there is a decrease in POC from

on-shelf to off-shelf, this feature is not strongly consistent among all sections (Fig.

3.5). Maximum POC values are in the top few meters everywhere, not showing the

subsurface maximum observed in chlorophyll in off-shelf areas (Fig. 3.5). Thus, there

is no clear relationship between integrated POC and the front position.

Deeper in the water column, a strong POC signal below 300 m is observed over

the bottom shelf and upper slope for most of the study region, particularly so in

the SSR region (Figs. 3.2, 3.6 and 3.7). The thickness of this layer varies between

200-300 m and, in some locations, it presents POC values of 70µgL−1, higher than

those is observed at the surface. This thick nepheloid layer may indicate that there

is strong sediment resuspension in the area, which could potentially bring iron to

the water column. This is in agreement with studies that show that, in the Atlantic

sector of the Southern Ocean, the main source of dissolved iron is likely to be rich

sediments from continental shelf, shallow plateau and islands (Ardelan et al., 2010;

De Jong et al., 2012; Wadley et al., 2014). Multiple mechanisms can drive the upwelling

of micro (specially iron) and macronutrients (eg. phosphate and nitrate), such as

Ekman divergence, eddy motion and topographic interactions, which may work

simultaneously: e.g. iron transported vertically to shallower depths by topographic

upwelling can be supplied to the mixed layer by Ekman divergence (Sokolov and

Rintoul, 2007). The particularly high POC values observed below 300 m over the

west Powell Basin continental shelf and the shallow South Scotia Ridge seem to be

bottom intensified and may be a consequence of stronger mixing near the seabed

(average value of 84 ± 22 µgL−1; Figs. 3.6 and 3.7). Enhanced mixing due to the

interaction of the bottom intensified currents (Azaneu et al., 2017) with the rough

and shallow bathymetry (Naveira Garabato et al., 2004) may contribute to resuspend
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sediments, bringing dissolved and particulate Fe in the water column. Tidal currents

and internal wave propagation can also contribute to sediment resuspension (De

Jong et al., 2012; Hosegood et al., 2004). The possible development of baroclinic

instabilities at the boundary between the bottom dense layer and the layer above

could facilitate the transfer of iron to shallower layers (Azaneu et al., 2017). Once

in the water column, the organic material could be advected by the main flow along

slope and possibly contribute to primary production in other regions. Moreover, the

bottom boundary layer dynamics can potentially contribute to resuspend sediment

by bottom stress and lead to a cross-slope downward transport of organic material

(Simpson and McCandliss, 2013). In a study in the Celtic Sea shelf-break, (Porter et al.,

2016) relate the inversion in the direction and strength of the along slope current with

the onset of upwelling of deep nutrient rich waters, which would contribute to the

spring bloom. Similarly, the Antarctic Slope Current (ASC) strength is variable in the

western Antarctic Peninsula, with events of reverse in the direction of the along slope

flow (Azaneu et al., 2017), which could also lead to periods of cross-slope upwelling

flow at the bottom boundary layer.

In summary, shelf waters enriched by sediment-derived Fe (Ardelan et al.,

2010), mixing and turbulence generated by the bottom intensified currents (Azaneu

et al., 2017) may be factors contributing to the maintenance of high chlorophyll a

concentration over the upper slope. This leads to higher depth-integrated chlorophyll

values over the upper slope in comparison with offshore areas (Fig. 3.5), where

a deeper and less pronounced subsurface chlorophyll a maximum sits below the

stronger pycnocline.

In the western Powell Basin, in addition to relatively high chlorophyll a

concentrations over the shelf associated with nutrient-rich shelf waters, enhanced

local production also occurs due to the iceberg input of iron (Biddle et al., 2015;

Duprat et al., 2016). In most sections, depth-integrated chlorophyll in off-shelf areas

is mostly below 0.062 gm−2, while in sections 4-6 SG522 it is on average 0.078 gm−2

(Fig. 3.5). Surface waters in these sections are colder (θ between -1.2 – 0◦C; Fig. 3.2),

fresher (salinity between 33.3 – 33.8), more stratified and possibly richer in iron than

in the neighbouring sections (θ between -0.2 – 0.5◦C and salinity between 33.8 – 34)

due to the influence of the sea ice melting. As well as chlorophyll a, POC is also

enhanced in these sections, although it is not possible to associate it directly with the
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Figure 3.7: Section 10 from glider SG539 biological and physical properties. (a) Potential
temperature (θ; ◦C), chlorophyll a (Chl α; µgL−1) and particulate organic carbon (POC;
µgL−1), (b) Potential vorticity (logarithmic scale) in neutral density coordinates (log10(PV);
s−3), Turner Angle (TuAngle) and vertical buoyancy gradient (N 2; s−2). In panel (a), the white
line indicates the 0◦C isotherm. Dashed black lines indicate neutral density isopycnals. Gray
line in panels indicate mixed layer depth.
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iceberg presence since all sections over the Joinville Ridge present higher POC values

than the remaining sections within the Powell Basin. Biddle et al. (2015) showed that

the local biological production at these sections were affected by the passage of a large

iceberg, possibly through local micronutrient injection.

In addition to the cross-slope differences in the chlorophyll a concentration and

distribution in the water column, we observe a clear difference between sections

over and north of the South Scotia Ridge, in the Hesperides Trough (glider sections

10 – 14 SG539), and sections further south in the Powell Basin (glider sections 1 – 6

SG522 and 1 – 9 SG539; Figs. 3.1 and 3.5). Section 10 (Fig. 3.7) partially captures the

transition between the two distinct oceanographic conditions. In Hesperides Trough,

there are significantly higher chlorophyll a concentrations (> 2µgL−1) and, unlike the

Powell Basin, the chlorophyll a signal is not constrained to a relatively shallow surface

mixed layer or a deep chlorophyll maximum. Rather, it is present from the surface to

approximately 150 m, with greater concentrations within the top ∼ 130 m (Figs. 3.2

and 3.4). In Hesperides Trough, higher chlorophyll concentrations (> 2.2 µgL−1) are

found over the shelf, associated with warmer surface waters (> 0.5 ◦C), while within

the trough, surface waters present chlorophyll values mostly between 1.5 and 2.2

µgL−1 and temperatures below 0.5 ◦C (Figs. 3.2 and 3.4). POC follows a similar pattern

of increased concentration and thickness of high POC layer at Hesperides Trough,

where maximum POC concentrations at the surface are coincident with maximum

chlorophyll values. Unlike the chlorophyll distribution, the depth of maximum POC

concentration is not very variable, being mostly at the surface in both regions. The

difference in the biological distribution between Powell Basin and Hesperides Trough

is easily observed in the depth-integrated chlorophyll and POC maps (Figs. 3.5). The

average depth-integrated chlorophyll a and POC concentrations is 0.25 gm−2 and

7.79 gm−2 in Hesperides Trough, in comparison with 0.06 gm−2 and 5.21 0.06gm−2

found in Powell Basin. This difference is greater than one should expect due to

temporal fluctuations of production, and is markedly coincident with the glider

transition to the shallower South Scotia Ridge.

In the Hesperides Trough region, elevated chlorophyll concentrations are

concurrent with warmer waters (Figs. 3.4 and 3.2); however warm water is present

down to depths greater than 300 m (for example at the ends of sections 11 and 13)

while the biological signatures are constrained to the surface ∼ 130 m, indicating that
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the elevated chlorophyll a signal visible between the surface mixed layer and 130 m

is not a result of downward mixing of a surface chlorophyll bloom but rather that

production occurs down to 130 m. Along section 10, which crosses from Powell Basin

to Hesperides Trough over South Scotia Ridge, POC values as high as 45µgL−1 are

observed from the surface down to below 300 m. Elevated values observed in POC

below 200 m, which are not concurrent with elevated chlorophyll a, likely originate

from suspended sediment in this shallow region (shallower than 500 m), rather than

a continuation of the surface POC.

The Powell Basin and Hesperides Trough present very different hydrographic

characteristics which explain the markedly different chlorophyll a and POC regimes.

The relatively low chlorophyll values in the western Powell Basin area are coincident

with a more strongly stratified water column and the presence of Winter Water

(Figs. 3.2 and 3.5); while in Hesperides Trough the high chlorophyll concentrations

are coincident with the low surface stratification characteristic of Weddell-Scotia

Confluence waters (Whitworth et al., 1994). The more homogeneous subsurface

waters within the trough are a result of the erosion of relatively cold and fresh WW

core by mixing with WDW (Palmer et al., 2012). In the proximity of Elephant Island

and South Shetland Islands, it is believed that the main driver of the high chlorophyll

a concentrations is the horizontal mixing between nutrient-rich Weddell Sea shelf

waters and well-stratified AASW from the ACC in Drake Passage ACC (Hewes et al.,

2008). In turn, the productivity at the north-east coast of the Antarctic Peninsula is

sustained by sedimentary sources of iron (Wadley et al., 2014). This is consistent with

the thick bottom layer of enhanced POC concentrations over the shelf and upper

slope. It is possible that the iron introduced in the upper water column by the

interaction of the flow with the bathymetry is advected with the flow, contributing

with the higher productivity observed over the ridge and within the Hesperides

Trough (De Jong et al., 2012; Annett et al., 2015).

The carbon to chlorophyll (POC:Chl) ratio was averaged in the top 100 m to restrict

the calculation to the relatively uniform surface layer of enhanced POC values. The

ratio follows the inverse distribution of the integrated chlorophyll a (Fig. 3.5). It

decreases from an average value of 70 over Joinville Ridge, in the southern portion

of Powell Basin, to 27.4 in Hesperides Tough. Within the Powell Basin, POC:Chl ratio

in the northern portion of Powell Basin (sections 8 – 10) is lower than sections over
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Joinville Ridge, associated with relatively higher chlorophyll and particularly lower

POC concentrations (Figs. 3.2 and 3.5). Furthermore, there is an upper slope–off-shelf

increase in the POC:Chl ratio in the Powell Basin sections. The higher POC:Chl ratios

at the off-shore portion of the sections over Joinville Ridge than with on-shelf areas

and the Hesperides trough area can indicate a lower contribution of phytoplankton

to particulate carbon. This possibly suggests greater Fe limitation in the off-shore

region due to the importance of this nutrient for the chlorophyll photosystem within

phytoplankton cells. This is consistent with previous suggestion that the warmer

waters within the Hesperides Trough are not iron depleted, allowing for very low

POC:Chl ratios (Wadley et al., 2014).

Spatial changes in POC:Chl ratios may also indicate the dominance of distinct

phytoplankton groups. In the Southern Ocean, phytoplankton blooms in regions

such oceanic fronts and marginal ice zones are generally dominated by diatoms

or haptophytes (e.g. Phaeocystis Antarctica; Prézelin et al., 2000). In regions such

as the Ross Sea, lower POC:Chl ratios are generally associated with P. antarctica

during late summer (DiTullio and Smith, 1996; Smith, Walker O. et al., 2000), which

is more tolerant of a deeply mixed and low-light environment than diatoms (Arrigo,

1999; Moisan and Mitchell, 1999). In the north-western Weddell Sea, however, this

flagellate has been reported in very low biomass and shallow mixed layer conditions

of off-shore areas (Mendes et al., 2012). Using data from two summer cruises

(2008 and 2009), Mendes et al. (2012) describe a coastal–offshore succession in the

phytoplankton community composition associated with a horizontal gradient in the

water stability. In more coastal areas (further onshore of our sampling area), diatoms

were dominant in the well-mixed water column, associated with higher biomass.

These were replaced by cryptophytes at the proximity of the upper slope area, where

the stratification was intermediate and, in the off-shore strongly-stratified water, the

low biomass was associated with the dominance of P. Antarctica. This is consistent

with the upper slope–off-shore gradient in stratification, chlorophyll a distribution

and POC:Chl observed in our study. Identification of distinct phytoplankton groups

is beyond the scope of this work. However, the environmental conditions suggest

that an on-shore–off-shore succession of phytoplankton community similar to that

described by Mendes et al. (2012) could be present during our cruise. The possible

dominance of cryptophytes over diatoms at the upper slope area may influence the
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trophic web as they as not as efficiently grazed by Antarctic krill (Moline et al., 2004).

As high biomass regions are considered critical feeding sites for higher trophic

levels, it was expected that the location of these regions had some influence on the

distribution of krill biomass. However, despite the lower chlorophyll a concentration,

krill density is higher in the southern sampled area, over Joinville Ridge, than in the

single transect across South Scotia Ridge (Fig. 3.8). The higher krill density around

Joinville Ridge than at the northern section may be associated with the proximity

of that area with the sea ice edge (Fig. 3.1). The local krill aggregation around the

ridge could have contributed to the relatively high POC concentration observed in the

region. Around Joinville Ridge, the krill distribution is patchy and does not show clear

differences between onshore and offshore areas, nor a correlation with temperature

or chlorophyll a concentration (Fig. 3.8). Krill shows, however, higher densities

where the surface currents converge over shelf and slope areas. The influence of

the circulation can also be the reason for the modest increase in krill density (in

comparison with the surrounding regime) over a local rise in the bottom topography

at the western edge of South Scotia Ridge. In this area, currents from ship current

meters indicate the presence of an anticyclonic eddy (Fig. 3.9), which is a consistent

feature previously reported in drifter studies (Thompson et al., 2009). The colder

temperature in the centre of the eddy is coincident with lower chlorophyll a and a

modest increase in krill density in comparison with its surrounding, which could have

been trapped within its core, leading to intense grazing.

3.4.1 FINAL CONSIDERATIONS

During the almost 2 months of data collection, the ship and the gliders sampled

distinct hydrographic regions, with different water masses and biomass distribution.

The results show two distinct physical and biological scenarios at the western Powell

Basin, onshore and offshore the front position, which are likely disassociated from

each other. Over the upper slope, the weak stratification of surface waters and

the nutrient input from shelf waters contribute to the shallow high chlorophyll

concentrations. Offshore, the erosion of the surface chlorophyll a maximum and

appearance of a subsurface maximum is in agreement with summer-like conditions,

a stronger pycnocline and phytoplankton passive sinking. The two most on-
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Figure 3.8: Map of (a) krill biomass (integrated 0 – 500 m) averaged in every 4 km (only data
collected between 7 – 19h), (b) current direction from de-tided SADCP (averaged in depth 0
– 200 m) colored by fluorescence from thermosalinograph, (c) Potential temperature (θ; ◦C)
and (d) chlorophyll a (Chl α; µgL−1) from CTD stations (averaged in depth 0 – 200 m).

shore sections suggest that advective processes could potentially contribute to the

deepening and formation of the subsurface maximum off-shelf, but there is not

enough evidence to confirm this hypothesis. The results show no evidence of the

frontal structure generating enhanced productivity locally. Rather, the frontal system
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Figure 3.9: Map of (a) krill biomass (integrated 0 – 500 m) averaged in every 4 km (only
data collected between 7 – 19h zoomed around the eddy over South Scotia Ridge, (b) current
direction from de-tided SADCP (averaged in depth 0 – 200 m) colored by fluorescence from
thermosalinograph, (c) Potential temperature (θ; ◦C), potential density (σ; kgm−3) and (d)
chlorophyll a (Chl α; µgL−1) CTD section over eddy.
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contributes to the formation of two hydrographic and biological distinct regions. The

integrated POC content is not markedly influenced by the front. There is, however,

a distinct nepheloid layer above the upper slope that becomes particularly thick

(∼ 300 m) above the South Scotia Ridge, which agrees with studies that suggest the

sediment as an important iron source for coastal Antarctic Peninsula productivity

(e.g. Ardelan et al., 2010; De Jong et al., 2012; Wadley et al., 2014). The resuspension

and transport of sediments by bottom intensified currents, enhanced mixing from

rough bathymetry, mixing of Weddell shelf waters and surface waters from ACC,

and advection of eddies caring nutrient-rich waters may contribute to the high

productivity in the Hesperides trough region, which is mostly associated with warmer

waters. The POC:Chl ratio is also very distinct between Hesperides trough and

western Powell Basin regions, being lower in the former. Within the Powell Basin,

the POC:Chl ratio shows an upper slope–off-shore gradient that suggests a change

in phytoplankton community. Despite that, krill biomass distribution does not

show any clear association with temperature or chlorophyll a concentration, being

mostly affected by the circulation and convergence of the flow. Our understanding

of krill distribution and processes influencing it is limited by the low availability

of simultaneous biological and physical sampling. The use of gliders equipped

not only with fluorescence and backscatter sensors, but also echosounders, could

have provided a more comprehensive view of the biological and physical processes

influencing the local krill community.
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4.1 INTRODUCTION

Ocean-induced basal melting is believed to be the main cause of the observed

thinning and grounding line retreat of glaciers draining the Amundsen Sea sector

during the last two decades (1992-2011; Jenkins et al., 2010; Rignot et al., 2014;

Dutrieux, 2014; Paolo et al., 2015). Between 2010 and 2016, the West Antarctic Ice

Sheet experienced 21.7% of its grounding line retreating, 59.4% if only the Amundsen

Sea Sector is considered (Konrad et al., 2018). Pine Island and Thwaites Glaciers are

two of the major ice streams flowing into the east Amundsen Sea embayment. Despite

69
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the past fast retreat, the ice discharge of Pine Island Glacier (PIG) has remained

steady since 2009 (Mouginot et al., 2014), and its grounding line has stagnated

recently partially due to relatively cold ocean conditions (Konrad et al., 2018). This

recent cold period is also likely related to the lower melt rates estimated from recent

datasets (2012,2014) in comparison with historical data (Dutrieux, 2014; Heywood

et al., 2016). In contrast, Thwaites Glacier has increased its ice discharge considerably,

overcompensating the stoppage of the acceleration of Pine Island Glacier (Mouginot

et al., 2014).

Over the eastern Amundsen continental shelf, the depth of the permanent

thermocline and the associated average temperature below the depth of the bottom

of the ice shelf (350 m) are proxies for the amount of heat available within the sub-

ice inner cavity for melting of the Pine Island ice shelf (Jenkins et al., 2010; Dutrieux,

2014). The onshore temperature flux is provided by Circumpolar Deep Water (CDW),

which accesses the continental shelf mainly through the central (113◦W) and eastern

(102-108◦W) troughs (Fig. 4.1), where this water mass fills the ocean layer below 400 m

(Walker et al., 2007; Nakayama et al., 2013). The offshore CDW, which is characterised

by a subsurface temperature maximum above 1.5◦C, can be divided into upper CDW

and lower CDW. The former is identified by the temperature maximum and oxygen

minimum, and the latter by relatively lower temperatures and higher salinities (>
34.7)(Orsi et al., 1995; Walker et al., 2013). The depth of the central and eastern

troughs is approximately 600 m (Fig. 4.1), which coincides roughly with the offshore

transitional depth between the upper and lower CDW and thus allows the saltier

lower CDW to be found within the central trough (Walker et al., 2013). The central

and eastern troughs merge further on-shelf, allowing the inflow of both troughs to

eventually mix and fill the deep Pine Island Bay (Jacobs et al., 2011; Schodlok et al.,

2012; Nakayama et al., 2013). The importance of the contribution of each trough is

debated. While in situ data from summer 2012 show that the warmer CDW entering

through the eastern trough contributes roughly two thirds to the mixture that reaches

the inner continental shelf (Nakayama et al., 2013), a modeling study suggests that

a recirculation within the central trough, associated with bathymetric sills, could

determine the access of the warm waters further south (Assmann et al., 2013). After

intruding onto the continental shelf, CDW is modified by mixing with colder surface

waters and then is referred as Modified CDW (mCDW) (γn > 28.03; Whitworth et al.,
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1998; Arneborg et al., 2012). Closer to the shelf break, Walker et al. (2013) suggest

that the warm waters filling the trough likely result from the mixture of offshore lower

and upper CDW, rather than mixing between lower CDW and Antarctic Surface Water

(AASW) over the slope.

Figure 4.1: a) Map of study area; IBCSO bathymetry (shaded) and ice shelf edges from
2004 (Haran et al., 2005). Thwaites Glacier (ThS), Pine Island Ice Shelf (PIIS), Pine Island
Bay (PIB), central (CT), eastern (ET) Pine Island troughs. Red dots represent CTD/LADCP
stations; Yellow, light blue, magenta and dark blue stars indicate the location of moorings
M1/M11/M12, M4, M5 and M20. Green dots indicate the position of stations 1, 2 and 4 (from
north to south). The position of meridional sections MS1, MS2, MS3 and MS4 and zonal
sections ZS5 and SZS5 are indicated by yellow dashed lines. Inserted map shows Antarctic
map and the location of study area.

The along slope current system in the eastern Amundsen Sea involves a westward

geostrophic flow at the surface (Antarctic Slope Current), and a strong eastward

undercurrent (Heywood et al., 1998; Chavanne et al., 2010) that has been previously

sampled by Walker et al. (2013) and successfully represented by modeling studies

(e.g. Assmann et al., 2013; Kimura et al., 2017). Such an undercurrent may arise in a
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situation of a downwelling system associated with the easterlies driving the westward

surface slope current, and set up initially by coastal-trapped waves (Chavanne et al.,

2010). The interaction of the eastward geostrophic undercurrent with the shelf break

troughs would facilitate the access of CDW to the continental shelf, providing a

persistent south-eastward baroclinic flow of warm waters (St-Laurent et al., 2013;

Assmann et al., 2013). Among the processes that are suggested to explain the onshore

transport of warm waters through the troughs are topographic steering and the

development of a dominant cyclonic flow from vortex stretching, the development

and cyclonic propagation of topographic waves (St-Laurent et al., 2013), and upslope

transport in the bottom Ekman layer (Wåhlin et al., 2012).

The hydrographic conditions within the Amundsen Sea vary seasonally (Thoma

et al., 2008; Kim et al., 2017; Mallett et al., 2018) and interannually (Dutrieux, 2014;

Jacobs et al., 2011; Steig et al., 2012; Webber et al., 2017). For example, anomalous

ocean conditions were observed in the Pine Island Bay during 2012, characterized by

deeper thermocline and a reduction in the available heat reaching the PIG calving

front (Webber et al., 2017). Changes in the local wind forcing associated with

atmospheric anomalies originating in the central tropical Pacific are suggested by

some studies (Dutrieux, 2014; Jenkins et al., 2016) as the main factor that led to this

cold period, and the main cause of the on-shelf variability on decadal time scales.

The pattern of winds at the continental shelf break is a result of multi-scale

atmosphere-ocean interactions, both local and remotely (Steig et al., 2012; Dutrieux,

2014), and affect ocean conditions on different time scales. The winds will affect

the CDW input onto the shelf, the coastal downwelling and surface buoyancy fluxes,

which ultimately will determine the depth of the thermocline over the continental

shelf (Thoma et al., 2008; St-Laurent et al., 2015; Kim et al., 2016; Jenkins et al.,

2016). Thus, the impact of the ocean circulation and local winds at the shelf break

on the ocean conditions close to the Pine Island ice shelf is not straightforward;

local atmospheric forcing within the Pine Island Bay strongly modulates the ocean

at depths critical for melting of the ice shelf (St-Laurent et al., 2015; Webber et al.,

2017). Furthermore, changes in the temperature transport at the shelf break is likely

to have an asymmetric impact on the PIG ice shelf (Kimura et al., 2017).

Despite the complex processes occurring over the continental shelf that affect

the ocean conditions, the variability of the CDW flow onto the continental shelf
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still remains as an important factor in determining the amount of heat available

within the Amundsen Sea embayment. The CDW inflow variability is also an

important component connecting the non-local climate forcing with the conditions

found over the continental shelf (Thoma et al., 2008) and therefore needs to be fully

investigated. Besides winds, other factors, such as sea-ice coverage and its impact on

the transmission of stress from the atmosphere to the ocean surface, can influence

the variability of the CDW on-shelf flow (Kim et al., 2017). It is suggested that, within

the western (Dotson) trough, seasonal variation in thickness and temperature of the

warm layer is induced by CDW being pushed across the shelf break by ice-modulated

Ekman pumping (Kim et al., 2017). A recent study shows a thicker CDW layer in winter

than in summer using in situ data from 2014 (Mallett et al., 2018). In addition to

surface forcing, the ocean circulation dynamics related to the direction and strength

of the undercurrent may impact the on-shelf temperature transport on time scales

shorter than those associated with large-scale atmospheric forcing (Assmann et al.,

2013; St-Laurent et al., 2013).

In this study, we analyse observations from six moorings and from ship-based

hydrographic sections at the shelf break in the Amundsen Sea to investigate shelf

break processes, including the slope current system, and its influence on the

variability of the temperature transport onto the eastern Amundsen Sea continental

shelf. The dataset and calculations used here are presented in section 4.2. In section

4.3.1, we describe the hydrographic setting based on the Ocean2Ice cruise data.

Section 4.3.2 presents a snapshot of the mass and temperature transports estimated

from hydrographic sections sampled during the early 2014 research cruise. To set

these values in context, section 4.3.3 presents temperature transport calculations

from moored time series. The variability of the along- and across-slope flows is

discussed based on mooring records of current velocity, temperature and salinity at

the shelf break using wavelet analysis.

4.2 METHODOLOGY

The dataset used in this study is part of the iSTAR project (Stability of the West

Antarctic Ice Sheet). The iSTAR research cruise took place in February-March 2014,

during which 102 CTD stations were occupied together with current velocity from
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lowered acoustic Doppler current profiler (LADCP; Figs. 4.1 and 4.2). In this study

we use 52 CTD/LADCP stations collected at the shelf-break and continental slope

area, with which we define 6 hydrographic sections (cross-slope, quasi-meridional

sections MS4, MS1, MS2 and MS3, and cross-trough, quasi-zonal sections ZS5 and

ZS6; Fig. 4.1). In addition, we use data from 6 moorings deployed at the shelf-break

(M5) and in the central (M1/M12, M4 and M11) and eastern (M20) troughs of the

eastern Amundsen continental shelf (Fig. 4.1, table ??). Moorings M1 and M12 are

co-located, while M11 is 1.55 km distant from those; for some of the analysis we take

moorings M1 and M12 as a single ∼ 4 year time series, and we compare it in time with

M11.

Figure 4.2: a) De-tided Current observations in the Amundsen Sea. Purple arrows show
LADCP velocities (300−700 m average). Blue arrows represent velocities from SADCP
(300−700 m average, sub sampled every 3.6 hours). Green arrows indicate velocity from
moorings’ current meters (at approximately 450 m) averaged for the cruise period (30/01/14
to 05/03/14). IBCSO bathymetry (shaded) and ice shelf edges from 2004; b) Rotated axes for
moorings velocities. Blue indicates the along-trough axis and pink the along-slope axis.

Based on the harmonic analysis of the 2 years of velocity records from the

moorings, we identified the semidiurnal and diurnal tides as the main tidal

constituents in the region. The former is relatively more important at the offshore

mooring (M5), while the latter makes a greater contribution over the continental

shelf (moorings M1, M4, and N20). Using the main tidal constituents identified

by the harmonic analysis, we then estimated the tidal current velocities using two

independent methods: (i) extracting the velocities from the barotropic CATS model

(10 km resolution; Padman et al., 2002) and (ii) empirically deriving the tidal velocities
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Mooring Sampling Period Position Local Depth (m) Instrument Depth (m) MAB Variables Measured

M1 06/03/12 to 02/03/14 71◦S 33.7’; 605 AQL 345 263 T,P
113◦W 02.7’ AQL 370 234 T,P

AQL 400 205 T,P
AQL 429 176 T,P
AQL 458 146 T,P

ADCP 490 115 T,U,V,P
SBE-37 487 117 T,S,P

AQL 517 88 T,P
AQL 550 55 T,P
AQD 581 23 T,U,V,P

SBE-37 582 22 T,S,P

M11 12/02/09 to 07/01/11 71◦S 34.2’; 611 SBE-39 450 161 T,P
113◦W 02.4’ SBE-39 503 108 T,P

AQD 555 56 T,U,V,P
SBE-37 580 31 T,S,P

M12 02/03/14 to 07/02/16 71◦S 33.7’; 605 AQL 332 272 T,P
113◦W 02.7’ AQL 380 224 T,P

AQD 423 182 T,U,V,P
SBE-37 426 178 T,S,P

AQL 447 127 T,P
AQL 528 77 T,P
AQD 554 50 T,U,V,P

SBE-37 555 50 T,S,P

M4 05/03/12 to 28/02/14 71◦S 32.7’; 513 SBE-37 361 152 T,S,P
114◦W 18.2’ AQL 398 115 T,P

AQL 435 78 T,P
AQL 469 43 T,P
AQD 485 27 T,U,V,P

SBE-37 487 26 T,S,P

M5 05/03/12 to 28/02/14 71◦S 25.4’; 1465 AQL 309 1156 T,P
114◦W 18.9’ AQL 353 1111 T,P

AQD 399 1066 T,U,V,P
SBE-37 400 1064 T,S,P

AQL 453 1011 T,P
AQL 506 958 T,P
AQD 558 906 T,U,V,P

SBE-37 560 905 T,S,P
AQL 613 852 T,P
AQL 666 799 T,P
AQD 718 747 T,U,V,P

SBE-37 719 745 T,S,P

M20 04/03/14 to 04/02/16 71◦S 19.7’; 634 AQL 378 255 T,P
102◦W 33.0’ AQL 423 210 T,P

AQD 467 166 T,U,V,P
SBE-37 468 165 T,S,P

AQL 518 115 T,P
AQL 569 65 T,P
AQD 595 39 T,U,V,P

SBE-37 596 38 T,S,P

Table 4.1: Summary of instruments used in this study, their depths and sampling period
at each of the moorings. MAB is meters above bottom, T is temperature, S is salinity, U is
zonal velocity component (positive eastward), V is meridional velocity component (positive
northward), and P is pressure. AQD stands for Nortek Aquadopp current meter, SBE for
Seabird Electronics microcats, and AQL for Aquatec Aqualogger logers.

from the mooring time series using the “UTide Matlab” toolbox (Fig. 4.3). The

tidal current velocities derived from moorings are typically below 0.03 ms−1. The

model generally underestimates the tide velocities over the continental shelf, possibly
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because the model bathymetry overestimates the local depth, in comparison with

IBCSO (Arndt et al., 2013). In some cases, the model is also out of phase with the

empirically derived tides. Thus, it was opted to de-tide the SADCP and LADCP

velocities using the empirically derived tides, for which M5 derived tides were used

to de-tide measurements taken offshore of the 1000 m isobath; and M1 and M20

for measurements over the continental shelf within the central and eastern trough,

respectively (Fig. 4.2a).

Figure 4.3: a) Zonal (u; ms−1) tide velocities derived from CATS model (blue) and from current
meter at mooring MS4 (purple) for the cruise period. Grey line show the original velocity data
ms−1) at 581 m. b) Example of zonal (u) and meridional (v) tide components ( ms−1) from
MS4 (blue), MS3 (yellow) and M5 (red). Black circles indicate the tidal currents derived for the
hydrographic sections (Fig. 4.1).

Baroclinic shear was calculated for the six hydrographic sections (Fig. 4.1). All

variables were computed according to the International Thermodynamic Equation of

Seawater-2010 (TEOS-10) framework (Trevor J. McDougall and Barker, 2011). In this

region, for the water masses evaluated in this study, the difference between practical

salinity and absolute salinity (S A, gkg−1) can be up to ∼ 0.2 gkg−1, while potential

temperature (θ) and conservative temperature (Θ, ◦C) are very similar. Thus we

refer to θ only when comparing our results with previous studies. The referencing of

the geostrophic shear was based on the average of the cross-section LADCP velocity
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profiles at the adjacent CTD stations. The vertical average velocity considered only

the currents away 100 m from the ocean bottom and surface.

The CTD stations used in this study for calculation of geostrophic velocity were

sampled when tides were weakest (Fig. 4.3). The average magnitude of the tidal

currents derived for these stations is 0.01 ms−1, which is small compared to the

representative core velocity of the onshore flow (approximately 0.1 ms−1). Thus, the

de-tiding of LADCP and SADCP currents used to reference the geostrophic velocities

had very little impact on the residual velocities of the sections. Despite that, de-tiding

SADCP and LADCP data is advised to eliminate possible bias that the predominantly

diurnal tides might induce over the short (< 12h) cross-trough sections (Assmann

et al., 2013).

Figure 4.4: a) Example of geostrophic velocity (ms−1) referenced to the average LADCP
velocity (dashed black line), non-referenced geostrophic velocity (purple), SADCP velocity
(orange), LADCP velocity at CTD stations (light and dark blue). The reference level was 100-
430 m. b) shows the bottom triangle extrapolation (red) of geostrophic velocity (blue; ms−1)
shown in (a). Orange line indicates the deepest common level between the two CTD stations.

For the cross-section geostrophic transport calculations, the velocity in the

bottom triangle was extrapolated (Fig. 4.4) following Thompson and Heywood (2008).

The error in the transport estimates due to the choice of geostrophic referencing

method is estimated to be ±0.3 ·10−3Sv. The absolute geostrophic velocities were also

used for calculation of the cross-section temperature transport (Qh), given by:

Qh =Cp

∫ 0

−D

∫ xn

x1

ρV (T −T0) d z d x; (4.1)

where x is the horizontal coordinate (m) from grid point x1 to xn , D is the
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water column depth (m) for which the integration is performed, C p (JK−1kg−1)

is the seawater specific heat capacity, ρ is the in-situ density, V (ms−1) is cross-

section absolute geostrophic velocity and T −T0 is temperature minus a reference

temperature. We use as a reference the surface freezing point of CDW, thus obtaining

a temperature transport representing the amount of energy available for melting ice

(Walker et al., 2007).

For each mooring, the current velocities were rotated using an angle defined

based on bathymetry (Fig. 4.2b). The new coordinate system gives a rotated x

axis that is along the main trough orientation (called along-trough; positive towards

onshore) and an orthogonal rotated y axis (called along-slope) that is positive towards

east. For mooring M5, which is at the shelf break, the angle of rotation for the new

coordinate system was chosen so that the along-slope velocity component would

follow the isobaths. Using the rotated velocities, for each of the current meters we

quantify the i th instantaneous temperature transport per unit area (TTF; hereafter

referred to as total temperature flux for brevity). If we define horizontal velocity

(along-trough or along-slope) as V = V +V ′, and temperature as T = T + T ′, total

temperature transport (TTF) time series is calculated as:

T T Fth =Cp ·ρ0(V th ·T r th +V ′
th ·T r th +V ·T ′

r th +V ′
th ·T ′

r th); (4.2)

where Tr = T − T0, a bar indicates a time mean, and primes indicate a deviation

from the time mean. The second term represents anomalous currents advecting

mean temperature, whilst the third represents mean currents advecting anomalous

temperature. The record-length mean TTF is then calculated as:

T T F =Cp ·ρ0(V ·Tr +V ′ ·T ′
r ). (4.3)

The first term is the mean temperature flux (MTF) and the second the mean

eddy temperature flux (ETF). The record-length mean TTF is positive if heat is to

be transported towards onshore (along-trough mean TTF component) and eastward

(along-slope mean TTF component). These calculations were also performed using

velocities that were rotated considering the angle of the average flow. Differences in

temperature fluxes estimates due to the different choice of angle are low for most
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moorings (below 5%). This is not true for M20 and M5. At the position of M20,

the flow rotates cyclonically to enter the narrow channel at the eastern portion of

the trough (Kimura et al., 2017) and thus the mean flow does not follow the trough

orientation. At M5, because of abrupt changes in the direction of the currents, the

average angle for this mooring is not representative of the direction of the mean flow.

We therefore opted to use the constant bathymetry-based rotation angle so there

is a clear geographic reference for direction of the temperature flux and the abrupt

changes in the flow direction would not affect our calculations. We also calculated

the depth-integrated temperature flux by extrapolating linearly the velocity from

each mooring current meter to the depths of temperature measurements available at

each mooring, and then integrating vertically the temperature flux estimated at each

depth. We used wavelet analysis (Morlet wavelets, according to Torrence and Compo,

1998) to illustrate the temporal variation of the temperature flux spectrum.

4.3 RESULTS

4.3.1 HYDROGRAPHY

The hydrographic setting encountered during February 2014 is presented in figures

4.5 and 4.6. The subsurface maximum temperature associated with CDW varies

across the study area. The warmest and shallowest CDW subsurface temperature

maximum (Θ ≈ θ = 1.86◦C), together with a warmer Winter Water core, is observed

at stations 1 and 2 (Figs. 4.1 and 4.5). These are the northernmost and deepest

stations sampled, being located at approximately the 3200 m and 2600 m isobaths

along section MS4 (Fig. 4.1). Approximately 19 km south of station 2, at the 2200 m

isobath, station 4 is the adjacent station on the meridional transect, and shows a

temperature maximum of θ = 1.7 ◦C. The subsurface temperature maximum of 1.8

◦C can be used as an indicator of the position of the southern ACC front (SACCF;

Orsi et al., 1995; Walker et al., 2013) and thus, we place the SACCF between stations 2

and 4, between the 2200 m and 2600 m isobaths. It roughly coincides with the SACCF

position identified by Walker et al. (2013), who placed it at the base of the continental

slope, near the 3000 m isobath. The remaining cross-slope sections do not reach this

isobath and thus the upper CDW is colder than 1.74◦ C.
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Figure 4.5: a) Conservative temperature (Θ ◦C) - Absolute salinity (S A gkg−1) diagram
coloured by dissolved oxygen (µmolkg−1) for all hydrographyc sections defined in figure 4.1.
The main water masses are highlighted (Antarctic Surface water - AASW, Winter Water - WW
and Circumpolar Deep Water - CDW). Panels b), c) and d) show Θ−S A diagram coloured by
distance (m; Sections ZS5) and bathymetric depth (m; Sections MS4 and MS2) at each station.
Grey contours show neutral density (γn) surfaces.

Offshore of the shelf break, CDW fills most of the water column and shoals over

the slope towards south whereas the cold (θ ≤ 0◦) surface water deepens progressively

over the continental shelf (Fig. 4.3.2) as previously described by Walker et al. (2013).

Thus, there is an upwelling of isopycnals toward the continental shelf for waters

below approximately 400 m and cooling of the Upper CDW temperature maximum

associated with the donwelling of the Winter Water layer. This horizontal gradient

over the slope marks the Antarctic Slope Front, which is an almost circumpolar feature

that marks the subsurface boundary between warm and salty off shelf waters and cold

and relatively fresh shelf waters (Jacobs, 1991; Heywood et al., 2004). The horizontal

cross-slope gradient of hydrographic properties is evident by the decrease of the
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upper CDW temperature maximum from 1.7◦C to 1.4 ◦C from areas offshore to areas

onshore of the 650 m isobath at the vicinity of the eastern trough (Figs. 4.5c and 4.6).

At the central trough (Fig. 4.5d), the temperature maximum of waters onshore of

the 650 m isobath (approximately 1.27 ◦C) is colder than in the eastern trough. For

all sections, the 28 kgm−3 isopycnal, which defines the upper limit of the CDW, is

found at approximately 400 m deep over the continental shelf (Fig. 4.6). Within the

central trough, the temperature maximum is located between 400 and 500m, and

the lower CDW is observed below this level with properties similar to offshore. At

both the central and eastern troughs there is a cross-trough gradient in properties

and distribution of water masses (zonal sections ZS5 and ZS6, respectively; Figs. 4.1

and 4.6), where the CDW is colder and found deeper in the water column (below

400 m) at the western flank of the troughs. This gradient is more evident at the eastern

trough, which is also wider than the central. At the eastern trough, the warmest CDW

is restricted to a narrow and deep channel, and what would be considered as lower

CDW is absent at the western flank, where the temperature maximum is found above

the bottom (Figs. 4.6 and 4.5).

The hydrographic sections and TS diagrams allowed us to characterize the

CDW properties and distribution across the study area. These sections are then

used to calculate geostrophic velocities and estimate the cross-section volume and

temperature transport for both the entire water column and the CDW layer.

4.3.2 TRANSPORTS OF MASS AND HEAT FROM HYDROGRAPHIC SECTIONS

QUASI-MERIDIONAL SECTIONS

Consistent between all cross-slope sections, a surface-intensified westward flow is

present at the proximity of the shelf break together with a subsurface or subsurface-

intensified eastward flow (Fig. 4.6). The position and strength of these currents

vary between sections. At the western flank of the central trough (section MS1)

the surface westward current is observed at the shelf break, and the core of the

subsurface-intensified eastward undercurrent is observed around the 1000 m isobath,

weakening offshore. At the eastern flank of the central trough (section MS2), the

surface westward flow is observed over the slope, offshore of the shelf break, whilst

the eastward undercurrent is observed below 300 m depth. Further east, at the eastern
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Figure 4.6: Conservative temperature (Θ◦C), neutral density (γn Kgm−3) and absolute
geostrophic velocity (Velocity ms−1; positive values indicate eastward/southward flow) fields
for meridional sections a) MS1, b) MS2 and c) MS4, and zonal sections d) ZS5 and e) ZS6.
Grey line on γn plots indicate the 28 kgm−3 isopycnal, and white triangles the position of CTD
stations.

trough (section MS4), the eastward undercurrent has a similar strength and structure

as observed at westernmost section MS1, occupying the entire water column and
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presenting a subsurface-intensified velocity core that weakens offshore.

The transport estimates show that the eastward flow prevails in the upper slope

(between the shelf break and the 2000 m isobath), being consistent between all

cross-slope sections (Fig. 4.7a). The transport estimates considering only the CDW

layer (γn > 28.00 kgm−3) follows the same pattern. Between the shelf break and

the 2000m isobath, both the CDW volume and heat along slope transport decrease

from the western to the eastern side of the central trough (MS1=0.56 Sv and 7.17 TW;

MS2=0.41 Sv and 5.22 TW; MS3=0.08 Sv and 1.1 TW and enhances again further east,

at the eastern trough (MS4=0.62 and 8.33 TW).

Figure 4.7: Arrows indicate cross-section transport (Sv) calculated from geostrophic velocities
for a) water column and b) limited to CDW layer. Numbers indicate cross-section cumulative
temperature transport (TW; 10−12 W) for the CDW layer. Positive numbers indicate
eastward/onshore direction. IBCSO bathymetry (shaded)
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QUASI-ZONAL SECTIONS

The inflow of warm waters onto the continental shelf occurs through the eastern

portion of the channels in both central and eastern troughs (ZS5 and ZS6; Fig. 4.6).

In the central trough (section ZS5), the inflow and outflow are similar in structure

and velocity. The instantaneous net transport (i.e. section cumulative transport) is

0.28 Sv onto the shelf, of which 0.05 Sv is within the CDW layer (Fig. 4.7). The CDW

inflow at the eastern portion of the central trough (0.13 Sv) is associated with a heat

transport of 1.59 TW onto the shelf. Taking into account the CDW outflow in the

western portion, the net heat transport at this trough is 0.61 TW onto the shelf. In

the eastern trough (section ZS6; Fig. 4.6), the inflow occurs in a bottom-intensified

narrow jet (approximately 50 km), which is coincident with the warmer temperature

maximum observed in this part of the section. Similarly, the transport estimates

(Fig. 4.7) show that the main inflow of CDW occurs through a narrow gap at the

easternmost portion of the trough. There is a CDW inflow of 0.32 Sv (associated with a

heat transport of 4.23 TW), but because a significant amount of this water mass flows

north off the shelf at approximately 103.5◦W possibly due to a local recirculation, the

cumulative transport for CDW at this section is 0.46 Sv (5.48 TW) off the continental

shelf. The main outflow across the section occurs further west, where the CDW

outflow is negligible, leading to net transport of 3.73 Sv for the entire water column.

The hydrographic sections and cross-sections geostrophic transport estimates

show that the along slope flow at the shelf break is dominated by the eastward

undercurrent. Also, the main inflow of the CDW occurs at the eastern portion of

the cross-trough sections ZS5 and ZS6 (central and eastern troughs), which is higher

in terms of mass and heat transport at the later. These estimates are then put into

perspective by evaluation of the variability of the coastal circulation and temperature

transport estimated from the mooring time series (Section 4.3.3).

4.3.3 MOORING TEMPERATURE TRANSPORT AND VARIABILITY

The currents at the eastern (M1) and western (M4) flanks of the central trough

flow mainly along the trough direction, towards onshore at its eastern side (average

bearing of 158◦at 460 m) and offshore at its western side (average bearing of 341◦at

486 m). Offshore of the shelf break, at mooring M5, the flow is mainly eastward, with



4.3. RESULTS 85

an average bearing of 97.5◦at 400 m. Thus, the along-trough (along-slope) velocity is

the main component of the flow at moorings M1 and M4 (M5).

The mooring time series reveal a considerable amount of intra- and interannual

variability in hydrographic properties and velocity (Figs. 4.8, 4.9 and 4.10). At mooring

M1/M12, there are two main periods in which there is an inflow of relatively warm

(1.4-1.5 ◦C) and light (28.1-28.11 kgm−3) waters, together with shallower (∼ 350 m)

isopycnals, which occur from April to June 2012 and October to November 2014. After

each of these periods there is a cooling of the mCDW and a steady deepening of the

thermocline (here we use the 0.5 ◦C as indicative of the base of the thermocline),

reaching minimum temperature and maximum depths between November 2013 to

April 2014 and November 2015 to February 2016. The first cold period includes the

sampling of the hydrographic stations from Ocean2Ice cruise, which occurred during

February 2014. There are no evident changes in salinity during these warm and cold

periods. In the second cycle of warm-cold period, the fluctuations of the thermocline

depth are amplified. The period of temperature minimum (after September 2015),

which is the lowest in the time series, is also associated with lower salinity, higher

density and a positive trend in on-shelf velocity at both 423 m and 555 m depths.

During the warm and cold periods between April 2012 and March 2014, the

properties of the water masses at both 460m and 581m varied along the mixing line

between Upper and Lower CDW (Fig. 4.11a). The same occurred at 555 m from March

2014 to February 2016, when the lowest temperatures of the entire time series were

observed. In contrast, at 423 m depth, the properties of the water masses varied

along the CDW - Winter Water (WW) mixing line from March 2014 to February 2016,

showing the colder and fresher variety of mCDW by the end of the time series, when

the influence of colder surface waters is stronger. This may indicate a change in the

mixing through time, or can be a consequence of different depths of the shallowest

instrument between periods.

Some of the features observed at the mooring time series at the eastern flank of the

central trough (M1/M12; Fig. 4.8) are also present at its western side (M4; Fig. 4.9) and

at the shelf-break mooring (M5; Fig. 4.10). For example, the relatively warm and salty

period in the second half of 2012 (from June 2012 and January 2013). At M5, waters

above 1.5◦ are found from 550 m to at least the depth of 300 m during this warm period

and, as a consequence, the thermocline is shallowest. While during most of the time
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Figure 4.8: Moorings M1 and M12 a) Depth-integrated along-trough total (TTF; MWm−1,
black) and eddy temperature flux (ETF; MWm−1, purple), for depths 341-581 m and 333-
555 m, respectively. The temperature flux components (V ′T ) and (V T ′) are represented by
the blue and orange lines, respectively. Note that orange line follows the right axis and has
different axis limits. Dashed red line indicates the mean depth-integrated TTF; b) Along-
trough (coloured by absolute salinity) and along-slope (grey) velocity (ms−1) time series. Data
is interpolated hourly and filtered using a 5-days running mean filter. Positive values indicate
on-shore (along-slope) direction. Dashed vertical line in panels a and b indicate the cruise
period; c) Conservative temperature (Θ◦ C) time series interpolated hourly and filtered using
a 5-days running mean filter. The 0.5◦ C isotherm is highlighted in white. Gray lines indicate
depth of original data. Black dashed lines show the local depth (m).

series the water properties measured at M4 at 487 m lie in the middle of the mixing

line between CDW and WW (being lighter than 28.03 kgm−3), during the warm period

of June 2012-January 2013 they are characteristic of mCDW. Similarly to M1, at M4
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Figure 4.9: Mooring M4 a) Along-trough total temperature flux (TTF; MWm−2) at 486 m
depth. Dashed red line indicate the mean TTF; b) Along-trough (coloured by absolute salinity)
and along-slope (grey) velocity (ms−1) time series. Data is interpolated hourly and filtered
using a 5-days running mean filter. Positive values indicate on-shore (along-slope) direction.
Dashed vertical line in panels a and b indicate the cruise period; c) Conservative temperature
(Θ◦ C) time series interpolated hourly and filtered using a 5-days running mean filter. The 0.5◦

C isotherm is highlighted in white. Gray lines indicate depth of original data. Black dashed
lines show the local depth (m).

and M5 there is a steadily deepening of the thermocline and the decrease of overall

temperature and salinity after May 2013, reaching its lowest values by March 2014.

There are two periods during which no “pure CDW” (θ > 1.6◦) is found in the water

column at M5; from March to May 2013, and from November 2013 to March 2014
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(except for a very short warm water intrusion in the end of November 2013). These

periods are also marked by relatively low salinity, particularly at 718 m.

Figure 4.10: Mooring M5 a) Depth-integrated along-trough total (TTF; MWm−1, black) and
eddy temperature flux (ETF; MWm−1, purple), for depths 309-719 m. The temperature flux
components (V ′T ) and (V T ′) are represented by the blue and orange lines, respectively. Note
that orange line follows the right axis and has different axis limits. Dashed red line indicate
the mean TTF; b) Along-slope (coloured by absolute salinity) and along-trough (grey) velocity
(ms−1) time series. Data is interpolated hourly and filtered using a 5-days running mean filter.
Positive values indicate along-slope (on-shore) direction. Dashed vertical line in panels a
and b indicate the cruise period; c) Conservative temperature (Θ◦ C) time series interpolated
hourly and filtered using a 5-days running mean filter. The 0.5◦ C isotherm is highlighted in
white. Gray lines indicate depth of original data.

At the shelf-break (M5), the flow is mostly south-eastward (towards onshore),
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but it is marked by abrupt changes in its direction from towards onshore to towards

offshore (e.g. December 2013 and February 2014), associated with a rotation in flow

direction that can last 15-30 days (Fig. 4.10). These episodes also coincide with the

start of the main episodes of cold waters. These changes in the flow are similarly

observed at all sampled depths. The longest period during which the flow direction

remained constantly towards onshore occurred between June 2012 to December

2012, which coincides with the identified warm and salty period. The Ocean2Ice

cruise happened during the most prominent event of change in the flow direction

at M5. The cruise period was also characterized by the deepest isotherms and coldest

waters during the two-year time series.

TEMPERATURE FLUXES CORRELATION

The total (TTF), mean (MTF) and eddy (ETF) temperature transport per unit area

(referred as temperature flux) were estimated at each mooring, for each current meter

depth (Figs. 4.8, 4.9 and 4.10), using the rotated velocities. At all moorings, most of

the temperature flux variance is dominated by velocity. Off the shelf break (M5) is

where temperature makes the greatest contribution to the along-slope temperature

flux variance, for which the correlation coefficient between these two variables is 0.39.

At M1, for example, the correlation between along-trough or along-slope temperature

fluxes with temperature is below 0.1. The higher influence of the velocity variance

over the total temperature heat flux in comparison with the temperature variance

is confirmed by the magnitude of the V ′T and V T ′ temperature flux components,

where the later is mostly one order of magnitude smaller than the former.

Despite the common features in the mooring time series, the correlation of

temperature flux time series between moorings is relatively low. We calculated lagged

correlations of up to 180 days of time series averaged in windows of 1, 7 and 15

days. In all cases the highest correlations were found for the 15-days averaged time

series, possibly because this window filters the variability observed in velocity (e.g.

4.10). The maximum correlation between M5 and M1 occurs between the former

along-slope (at 717 m) and the latter along-trough (at 581 m) temperature flux time

series (15-day average) at no lag, with a correlation coefficient r=0.27. M1 along-

trough temperature flux (at 581 m) is correlated at no lag with along-trough (r=0.32)

and along-slope (r=0.31) M4 temperature flux (at 486 m). Interestingly, the highest
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Figure 4.11: Conservative temperature (Θ) - Absolute salinity (Θ− S A) diagram coloured by
time for moorings a) M1/M12, b) M4 and c) M5. Data is daily averaged. Legend indicates the
depth of the instruments. CTD data in the region is shown in grey. Contours show neutral
density (γn) surfaces.
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correlation among moorings occurs between M12 (central trough) and M20 (eastern

trough). The along-trough temperature flux of mooring M12 (at 555 m) is correlated at

a 2 days lag (M12 leading) with M20 (at 595 m) along-trough (r=0.33) and along-slope

(r=0.38). Despite being within the eastern trough, mooring M20 main flow is mostly

eastward (119◦bearing).All these correlations are statistically significant at 95% level.

The correlation between moorings is increased when the vertically integrated

temperature flux is used in the analysis. The M5 along-slope and M1 along-trough

vertically integrated temperature flux (15-day average) are correlated at no lag with

r=0.38, whilst along-trough M12 is correlated with along-trough M20 with r=0.72 at

no lag. The correlation between the depth-averaged temperature from the different

moorings is also considered. For the moorings in the vicinity of the central trough

(M5 and M1), the temperature correlation is high (r=0.8) and greater than heat flux

correlations, whilst between central (M12) and eastern troughs (M20) temperature

correlation (0.48) is significant but lower than the temperature flux correlations. This

demonstrates that the correlation estimated between temperature fluxes between

these moorings is primarily dictated by current dynamics, which is in agreement with

the velocity variability leading the variability of the temperature flux.

MEAN TEMPERATURE FLUXES

The mean direction of the TTF and the MTF averaged for the whole sampling period

are consistent between the different depths at all moorings (Fig. 4.12a and Table

4.2). The mean along-trough TTF and MTF at M1 is triple the values calculated at

M4 when similar meters above bottom (MAB) are compared (581 m; 24 m MAB and

485 m; 27 m MAB, respectively). At M1 the TTF and MTF direction is towards onshore,

in contrast with M4, which present negative (towards offshore) along-trough TTF and

MTF values (Fig. 4.12a and table 4.2). At the same depth, the absolute TTF and MTF

at M1 (581 m) is almost double that of M5 (558 m), which average flow is mostly along

the slope. This ratio increases to approximately 3.8 when along-trough components

of TTF and MTF are compared.

For the moorings inside the troughs, the mean ETF values point to the opposite

direction of the mean TTF (and MTF) and across isobaths, i.e., towards offshore for

M4 and onshore for M1, M11, M12 and M20 (Fig. 4.12a and Table 4.2). Offshore
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Full Period Cruise period

Absolute Along-trough Along-slope Absolute Along-trough Along-slope

M1 460 m TTF 4.54×105 4.30×105 −1.47×105 7.09×105 6.86×105 −1.79×105

ETF 2.46×103 −2.45×103 1.78×102 1.07×103 −3.51×102 −1.01×103

MTF 4.56×105 4.32×105 −1.47×105 7.09×105 6.86×105 −1.78×105

581 m TTF 6.47×105 6.46×105 3.82×104 8.60×105 8.59×105 3.18×104

ETF 1.97×103 −1.88×103 −5.92×102 7.12×102 1.77×102 −6.90×102

MTF 6.49×105 6.48×105 3.88×104 8.60×105 8.59×105 3.25×104

M11 555 m TTF 6.33×105 6.30×105 −6.57×104 -
ETF 5.44×103 −5.42×103 −4.95×102 -
MTF 6.38×105 6.35×105 −6.52×104 -

M12 422 m TTF 6.77×105 6.73×105 −7.47×104 -
ETF 1.42×104 −1.42×104 5.02×102 -
MTF 6.92×105 6.87×105 −7.52×104 -

555 m TTF 7.27×105 7.27×105 −2.26×104 -
ETF 1.19×104 −1.19×104 −2.94×101 -
MTF 7.39×105 7.39×105 −2.26×104 -

M4 485 m TTF 2.18×105 −2.18×105 −6.02×103 9.43×104 −9.09×104 2.49×104

ETF 1.19×103 8.06×102 −8.77×102 4.95×103 3.24×103 3.75×103

MTF 2.19×105 −2.19×105 −5.14×103 9.65×104 −9.41×104 2.11×104

M5 399 m TTF 5.52×105 2.33×105 5.00×105 2.91×105 1.45×105 −2.52×105

ETF 2.37×104 4.37×103 2.33×104 2.28×104 −3.79×103 2.25×104

MTF 5.29×105 2.29×105 4.77×105 3.12×105 1.48×105 −2.75×105

558 m TTF 3.65×105 1.67×105 3.25×105 7.27×105 1.51×105 −7.11×105

ETF 8.19×103 −1.63×102 8.19×103 1.31×104 −4.16×103 1.25×104

MTF 3.58×105 1.67×105 3.16×105 7.40×105 1.55×105 −7.23×105

718 m TTF 2.26×105 1.48×105 1.70×105 6.49×105 1.81×105 −6.23×105

ETF 6.31×103 −2.24×101 6.31×103 1.44×104 −4.96×103 1.35×104

MTF 2.21×105 1.48×105 1.64×105 6.63×105 1.86×105 −6.36×105

M20 467 m TTF 1.27×106 3.92×105 1.20×106 -
ETF 2.14×104 −1.00×104 −1.89×104 -
MTF 1.29×106 4.02×105 1.22×106 -

595 m TTF 1.28×106 2.00×105 1.27×106 -
ETF 8.17×103 −2.21×103 −7.87×103 -
MTF 1.29×106 2.02×105 1.27×106 -

Table 4.2: Total (TTF), Eddy (ETF) and Mean (MTF) temperature flux (Wm−2) at each depth,
for each mooring, averaged for their entire sampling period and only the cruise period.
Absolute values refer to the resultant temperature flux from along-trough (rotated x axis) and
along-slope (rotated y axis) components.

of the shelf break, however, the mean ETF calculated from M5 follows the isobaths,

parallel to the continental slope. Inside the troughs, the absolute mean ETF is about

two orders of magnitude smaller than the mean TTF when the average is calculated

for the whole sampling period (Fig. 4.12 and table 4.2). This is not true for M12 at the

eastern trough, which, together with M5 at the shelf break, show higher ETF values

that are only one order of magnitude smaller than the mean TTF. At similar depths,

the along-slope mean ETF at M5 is about 4 times greater than the offshore mean ETF

at M1.
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Figure 4.12: Total (TTF; orange), Eddy (ETF; red) and Mean (MTF; blue) temperature flux for
each mooring, at each depth, averaged for (a) the mooring total sampling period and (b) for
the cruise period (30/01/2014 to 05/03/2014). Notice that ETF and TTF have different scales
on the map.

Even though the direction of the temperature fluxes at the eastern flank of the

central trough are consistent through time (among moorings M11, M1 and M12), the

absolute and along-trough MTF during the period of M12 (2014-2016) is 16% higher

than M11 (2009-2010) and 14% higher than M1 (2012-2014; Fig. 4.12a and Table 4.2).

The integrated along-trough TTF during M12 is 38% higher than in M1. For M12,

the mean ETF, which is directed offshore, is also significantly higher than in previous

years, being 2 times greater than the mean value for M11 and 6 times greater than M1,

probably because of the very low variability during the warm period. At the position

of M20 (2014-2016), the flow rotates cyclonically to enter the narrow channel at the

eastern portion of the trough, as suggested by modeling work (Kimura et al., 2017).

The flow is fairly constant onshore, thus we can assume that the both along-trough

and along-slope components will contribute to the temperature flux onto the shelf,

as well as at M12. Comparing the absolute MTF and TTF at both moorings, at the
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eastern trough (M20) the absolute MTF and TTF are approximately 1.8 times higher

than at the central trough (M12) between March 2012 to February 2016.

The magnitude and direction of the mean temperature fluxes are considerably

different when only the cruise period is considered for the average calculations (Fig.

4.12b and table 4.2). The most striking difference is observed at M5, in which the

mean direction of MTF and mean TTF during the cruise point southwestward, while

the mean ETF is directed towards offshore. At M1, the MTF and mean TTF are greater

during the cruise period in relation to the 2 years average by 33% at 581 m, while

the mean offshore ETF decreases by one order of magnitude. In contrast, at M4 the

offshore mean TTF and MTF are lower during the cruise whilst the onshore mean ETF

is 4 times greater.

WAVELET ANALYSIS

A wavelet analysis, with scales between 2 days and a month, was used to evaluate the

high frequency variability of the temperature flux power spectrum. The temperature

flux is highly correlated with the velocity time series at all moorings and therefore

changes in the flow are expected to drive the variability of the temperature flux. For

example, the main events of rotation in the flow direction at M5 are mostly associated

with energy peaks in the wavelets of the along-trough (cross-slope) temperature flux

time series (Figs. 4.13 and 4.10). The event of flow rotation that occurs during the

early 2014 Ocean2Ice cruise is reflected in the along-trough TTF wavelet analysis by a

statistically significant energy peak at frequencies between 8-24 days at 718m, leading

to a peak of 0.2 MW2 in the 1-30 days average variance. This signal is also present

in the shallower depths, but associated with lower energy levels and shorter periods

(6-10 days at 399 m). The hydrographic sampling started at the peak of this event

and took around one month to complete. Therefore the transport estimates from the

hydrographic sections were likely to be influenced by subinertial variability and are

unlikely to be representative of the long term mean. A period of low energy levels

at frequencies below 16 days is present in the along-trough TTF at M5 (559 m; from

August 2012 to April 2013; Fig. 4.13c), which results from very low variance (energy)

in the temperature time series and a constant onshore flow. When longer periods are

evaluated (30 days to 8 months), M5 is the only mooring that shows robust energy
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Figure 4.13: Wavelets analysis of (a) along-trough and (b) along-slope total temperature flux
(TTF) at moorings M1(581 m depth) and M12 (555 m depth); (c) M4 along-trough TTF at 486 m
depth; (d) along-trough TTF, (e) temperature and (f) along-slope TTF at mooring M5 at 558 m
depth; Bottom panels show scale-average time series for 1-30 days (a-e) and 1-8 months (f).
Vertical dashed lines indicate the cruise period. All time series are interpolated to daily values.

peaks in the TTF wavelets (Figs. 4.13f). At all depths (but more particularly at the two

deeper depths), the along-slope TTF series show an energy peak at 4 months at the

beginning of the time series, which gradually shifts to a 2-3 month period at the end



96
INFLUENCE OF SHELF BREAK PROCESSES ON THE TEMPERATURE TRANSPORT ONTO THE

EASTERN AMUNDSEN SEA CONTINENTAL SHELF

of the time series.

Both along-trough and along-slope (not shown) TTF at M4 (Fig. 4.13) show a clear

energy peak between 4-8 days period along the entire time series. This signal is not

present in the wavelets of temperature time series, and no other mooring shows such

coherent signal. At the eastern flank of the central trough (M1/M12), the along-trough

TTF time series show 4-16 days energy peaks, which occur annually between April and

October, i.e. austral winter (Fig. 4.13a). Most of the energy (for periods lower than a

month) of the along-slope TTF is concentrated in periods shorter than 8 days. After

August 2014 (M12), however, there is a shift in the energy spectrum towards 8-16 days

periods (Fig. 4.13b). The period of low energy levels observed in the along-trough

TTF wavelets at M5 is also present in the along-slope TTF at M1 (average 1-30 days

variance below 0.1 MW2; August 2012 to August 2013). At the same time that there is

a shift in the energy of along-slope TTF from lower periods to periods of 8-16 days

at M12, energy peaks at these periods in the along-slope TTF at M20 (not shown) are

also observed. At this mooring, however, the signal is coherent and less contaminated

by higher frequency variability than at M12.

4.4 DISCUSSIONS

The eastward undercurrent dominates the transport at the upper slope, being located

between the shelf break and the 2000m isobath. Our observations from early 2014

show that the undercurrent described from in situ data in 2003 (Walker et al., 2013)

and from modeling studies (e.g. Assmann et al., 2013) is a persistent feature. The

decrease in the eastward flow from the western side to the eastern side of the central

trough and partial recovery further east observed here is also described by Walker

et al. (2013) and is consistent with most of the flow turning cyclonically to enter the

central trough. The inflow of CDW occurs at the eastern portion of both central and

eastern troughs, while the western part is filled with the outflow of a colder and deeper

mCDW.

During the cruise period, the on-shore CDW heat transport estimated for the

eastern portion of the central and eastern troughs is higher in the later by 2.64 TW due

to greater mass transport and temperature differences between the inflow in the two

regions. Jacobs et al. (2011) argues that although the CDW supplied by the eastern
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trough is warmer than in the central trough, its contribution to glacial melting is

primary controlled by the thermocline depth in the inner continental shelf instead

of temperature of CDW core.

The cumulative onshore volume and temperature transport estimated for the

CDW layer at the central trough (0.05 Sv and 0.61 TW onto the shelf) are lower

than the estimates made by Walker et al. (2007) for a dataset collected in March

2003 (0.23± 0.62 Sv and 2.8 ± 0.68 TW), possibly associated with the anomalous

cold temperatures found during the 2014 cruise. Assmann et al. (2013) estimated

the CDW volume transport at the central trough for 2003 and 2006, which shows

considerable interannual variability. If we consider the section sampled in 2006,

which has a similar flow structure and velocity to our dataset, our CDW volume

transport is more consistent with their estimates, particularly if we compare the same

de-tiding method (0.108 ± 0.039 Sv transported onto the shelf; their table 3). At a

further west trough (Dotson trough), Ha et al. (2014) estimate an average inflow of

CDW of 0.34 Sv and a temperature transport of 2.82 TW during 2011 by integrating

vertically (320m-bottom) the velocity measurements from the mooring’s ADCPs and

then multiplying by an average flow width estimated by the hydrographic sections.

If we make similar assumptions, an average on-shore temperature flux of 1.77 TW is

estimated for 2012-2014 and 2.45 TW for 2014-2016 in the central trough (considering

a fixed inflow width of 27 km) and 1.86 TW during 2014-2016 at the eastern trough

(fixed inflow width of 50 km). This could suggest that during 2014-2016 the central

trough had a greater contribution to the temperature transport onto the shelf than

the eastern trough. Our flow width, however, is based on a section in early 2014 and it

is unlikely that it remained the same for the following two years. In a modeling study,

(Kimura et al., 2017) estimates a climatological onshore temperature transport that is

similar to ours at the central trough (2.5 TW).

A seasonal cycle in the thickness and temperature of the CDW layer is not evident

in the moorings evaluated in this study. A seasonal cycle is also absent in all of the

mooring temperature fluxes, which is in agreement with the lack of seasonality of

the closely correlated velocity time series. Despite the lack of evidence of seasonal

changes in the CDW thickness at the shelf break, this signal has been identified further

south in the eastern Amundsen Sea continental shelf (Webber et al., 2017; Mallett

et al., 2018). Seasonal variations in the warm layer thickness associated with Ekman
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pumping are reported at the western (Dotson) trough (Kim et al., 2017). However, the

orientation of the western and central troughs are different and thus it is possible that

they respond differently to surface stress (Kimura et al., 2017).

The mooring temperature time series show strong interannual variability. There

are two main events of inflow of relatively warm waters in the longest time series (M1

and M12; March 2012 to February 2016), each one followed a period of cooling of the

mCDW and deepening of the thermocline. It could be argued that these hydrographic

variability observed by the mooring are a result of a spatial variability, due to the

drift of the warmer inflow and colder outflow within the trough, rather than temporal

variability. This is, however, unlikely, because the horizontal gradient (1.06 - 1.35 ◦C)

of the CDW temperature maximum during the cruise occupation (during the cold

period of 2014) is lower than the variation observed by the mooring between the warm

and cold cycles (0.94 - 1.47 ◦C at 477 m). Moreover, the warm episode of mid-2012 and

subsequent cooling are observed in both moorings within the central trough and at

the upper slope. For all these moorings, during the warm event the thermocline is

shallowest in the water column, and it is also characterised by a constant on-shore

flow and a suppression/reduction of the temperature variability at the upper slope.

The depth of the thermocline over the continental shelf is sensitive at a range of

time scales to the zonal winds through its effect on the buoyancy forcing, coastal

downwelling, and input of CDW onto the shelf (Thoma et al., 2008; St-Laurent et al.,

2015; Kim et al., 2016; Jenkins et al., 2016). A warm period at the eastern Amundsen

continental shelf break can occur in a scenario of weak easterly winds, which will

promote less downwelling and enhance the undercurrent that brings CDW onto the

shelf (Thoma et al., 2008; Jenkins et al., 2016). Similarly, the cold periods, particularly

the anomalous event at the end of 2015, could be a consequence of stronger easterly

winds increasing downwelling, suppressing the undercurrent and the limiting the

access of CDW onto the shelf. This is in agreement with the temperature time series

which show the warm spells associated with the shallowest thermocline and the cold

periods characterised by its deepening. However, 2015-2016 was marked by a major El

Niño event, which would potentially lead to weaker easterly winds, weaker Antarctic

Slope current (Armitage et al., 2018) and a possible stronger undercurrent. As a

consequence, a greater CDW inflow onto the continental shelf would be expected.

Thus, the observed increase in velocity and temperature flux during this period is in
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agreement with what would be expected in an El Niño, but the hydrography diverges

strongly, showing a cooling trend and deeper thermocline. Among the facts that could

explain this disagreement, it is possible that the local atmospheric circulation had a

configuration different than expected in El Niño years due to the interaction between

the ENSO and the Southern Annual Mode (SAM) on the Amundsen Sea Low (ASL). It

can also be the case that the undercurrent response to the changes in the winds are is

somewhat different than expected. Also, observed cooling can be related to the core

of the warm flow not being captured during the cold period due to movement of the

front. The possible change in the mixing line observed during this period suggests

that surface temperature fluxes nearby could have contributed to the cooling of the

mCDW and the minimum temperatures.

The mid-2012 warm spell, shallow thermocline and subsequent cooling cycle

coincides, but poorly correlates with the cold period, deep thermocline and

subsequent warming (January 2012-January 2014) described by Webber et al. (2017)

in a mooring further onshore, within Pine Island Bay. The different propagation

speeds of the warm and cold anomalies, in addition to local atmospheric forcing,

could explain why the signals observed at our moorings at the shelf break are not

coherent with the variability observed at the Pine Island Bay (Webber et al., 2017;

Kimura et al., 2017). The cold event described in the Pine Island Bay was attributed

to anomalous wind conditions during 2011 due to a La Niña event development

(Dutrieux, 2014), and also a result of local atmospheric forces, associated with a

change in the circulation within the Pine Island Bay (Webber et al., 2017). The peak

of the cooling period at the shelf (M1) coincides with the period of very low along-

trough ETF magnitude at the shelf break (M5; April-October 2012), a consequence of

a constant onshore flow of warm waters with low variance in the temperature and

velocity. This may suggest that the strong local atmospheric forces over the shelf

that led to a change in the circulation and the anomalous cold period also could

have had effect on the suppression of eddy temperature flux which, in turn, could

have contributed to the maintenance of the cold event. The eddy temperature flux is

however one order of magnitude smaller than the TTF at the shelf break and thus it is

unlikely that it would have such impact on the shelf variability.

Those warm-cold cycles, however, do not seem to strongly modulate the total

temperature flux estimated for the moorings, which are strongly dictated by velocity.
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Yet, interannual variability is observed in the temperature fluxes at the central trough

by the increase of absolute and along-trough MTF and offshore ETF for 2009-2010;

2012-2014; 2014-2016 over time. The integrated along-trough TTF and ETF also

increased in magnitude between the last two periods. These calculations do not

take into account the depth of the thermocline, which would be necessary to more

accurately estimate the changes in the temperature transport for the entire water

column.

On top of the warm-cold cycles, at the upper slope (M5) there are a few cold spell

episodes that are generally preceded by a short increase in velocities and a rotation

on the flow at all depths. These events are associated mostly with energy on a 6-24

day period, which may indicate the passage of eddies. The appearance of weekly

anomalies at the shelf break is consistent with the possible mechanisms that lead

to the onshore flow within the trough (St-Laurent et al., 2013). The sampling of the

hydrographic sections from the Ocean2Ice cruise started at the peak of a prominent

cold spell, which was followed by the weakening and rotation of the velocities from

westward along the slope to eastward. These abrupt changes in the currents and

hydrography in time scales shorter than a month calls attention to the care that needs

to be taken when using hydrographic sections for estimates of, e.g., heat and salt

budgets.

The variance of the temperature fluxes is concentrated at short time scales (<
30 days). Mooring M5 is the only one in which significant energy is observed at

monthly or longer time scales, with the main energy peaks of eastward temperature

flux concentrated between 2-3 months. This could be related to changes in the front

position and consequent changes in temperature and along slope currents. Moorings

on different sides of the central trough show different short-term variability in

temperature flux. The clear 4-8 days period energy peak in the offshore temperature

flux at western flank of the central trough is associated with the flow velocity

variability, and no other mooring shows such coherent signal. It is possible that

this energy peak is associated with barotropic oscillations in the flow. Quasi-

regular oscillations with period of 2.5 and 3-4 days were described at the outflow

of the western (Dotson) trough, associated with resonant topographic Rossby waves

(Wåhlin et al., 2016). The inflow mooring (M1) does not show a clear signal, which

may be a consequence of a too slow resonant period that does not permit free waves
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to form (Wåhlin et al., 2016). Even though waves do not induce net transport of

quantities, our calculated temperature flux is dominated by velocity which would

explain why we observe these oscillations in the flux time series. Coastal-trapped

waves can influence mixing and lift/drop the thermocline (Wåhlin et al., 2016) which,

at the shelf-break, will influence the amount of heat that goes onshore. In Artic

fjords, the exchange driven by the propagation of coastal-trapped waves steered by

the topography of across-shelf troughs can exceed both tidal and estuarine exchange

(Inall et al., 2015).

Both moorings M12 and M20 (located at the CDW inflow of the central and eastern

troughs, respectively) show some energy concentrated at periods of 8-16 days, with

the signal on the former more coherent and less contaminated than on the latter.

This is consistent with the relatively high correlation between the two moorings

temperature fluxes with a two day lag. The 2 day lag between these moorings

that are approximately 400 km distant, may suggest that their variability could be

connected by the propagation of baroclinic waves along the slope. For any of the

averaging-windows chosen, the correlation between these moorings is higher than

the correlation between temperature flux from moorings M5 and M1. The correlation

between the temperature flux at the shelf break and the trough inflow despite being

statistically significant is relatively low and thus contrasts the theoretical arguments

that the undercurrent strength strongly influences the temperature flux onto the shelf

(Walker et al., 2013; Thoma et al., 2008; Jenkins et al., 2016).

4.4.1 FINAL REMARKS

The hydrographic sections evaluated here show velocity structures similar to previous

studies, suggesting that the location of these currents are fairly consistent through

time. The time series from four moorings, of up to 4 years, show significant variability

in several time scales of temperature flux estimates, with changes in the strength and

direction of the flow, as well as temperature. This variability includes abrupt changes

in hydrography and currents in short time scales (∼ 15 days), which indicates that

snapshots of the ocean condition should be interpreted with caution. Eddies are

likely contributors to the variability at the shelf-break. Inside the central trough,
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the high frequency variability of the temperature flux may also be influenced by

barotropic oscillations. At interannual time scales, the mean along-trough total

and eddy temperature flux within the central trough increased between 2012-2014

to 2014-2016, while the eddy temperature flux appears to be somehow affected by

the conditions that lead to warm/cold periods. Despite the consistency among

moorings of anomalous periods in temperature and variation in thermocline depth,

the correlation between the temperature flux at the shelf-break and inside the trough

is relatively low. There is not enough evidence to confirm the influence of the slope

undercurrent in the on-shelf temperature transport. Furthermore, the observed

cooling and deepening of the thermocline during the last major El Niño event (2015-

2016) may indicate that the undercurrent response to changes in the atmospheric

forcing can differ from predictions, or that it requires a longer response time for this

to be observed. In the projected scenario of increased frequency of extreme El Niño

events (Cai et al., 2014; Wang et al., 2017), it is critical that the mechanism of response

of the undercurrent to changes in atmospheric forcing is further investigated.



5
SYNTHESIS AND FINAL CONSIDERATIONS

5.1 SUMMARY

This thesis investigats the dynamical oceanographic processes associated with the

continental slope frontal system around Antarctica (more specifically in the Weddell

and Amundsen Seas) that can influence the cross-slope exchange of properties.

The results of this thesis show that these cross-slope processes are climatically

important, firstly because they can regulate the export of dense waters from the

shelf (Chapter 2), and secondly because they may influence the variability of heat

that is transported onshore and that can eventually contribute to ice-shelf melting

(Chapter 4). Moreover, these processes have an effect on local biological productivity

by determining the physical conditions that contribute to the maintenance of distinct

biological regions either side of the slope front (Chapter 3).

5.1.1 THE NORTHWESTERN WEDDELL SEA

In the Weddell Sea (Chapter 2), data from three Seagliders were used to better

understand the temporal and spatial variability of the slope frontal system. Variability

on short time scales (3 to 4 days) is significant, and that the along-slope transport

can vary within this time scale, which means that the front itself changes. The

cross-slope advection of eddies is likely to contribute to this variability. We also

103
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observed dynamical changes when the dense flow was present. The presence of the

dense flow is associated with higher eddy kinetic energy and a greater susceptibility

of the geostrophic flow to baroclinic instabilities that fuel the eddy field, the main

mechanism by which warm waters are transported onto the shelf. In Chapter 3, we

show that the front segregates two different biological regions onshore and offshore

and that the different physical characteristics contribute to the different levels of

biological production between these regions.

Our results reveal important aspects of the local dynamical processes, which leads

to future questions. The long-term variability of the dense water properties have

been discussed in many studies (e.g. Purkey and Johnson, 2013; Azaneu et al., 2013;

Schmidtko et al., 2014), many of which suggest a decrease of density and/or export

of this dense water in the recent decades. In addition to the consequences that this

may have for the strength of the meridional overturning circulation and the transport

of heat and salt across the world ocean, it may also alter the dynamical processes

in the continental slope region. Because of the importance of buoyancy loss over

the shelf (Stewart and Thompson, 2016) and of the presence of the dense flow for

setting up the conditions for the cross-slope eddy flux, a further decrease in density

or volume of the dense layer may lead to a decrease of the amount of energy that is

transferred via instabilities to the eddy field and to a weakening of the heat transport

onto the shelf. Conversely, the southward shift and strengthening of the westerly

winds in the past decades (associated with the positive trend in the Southern Annular

Mode; Thompson et al., 2011) have enhanced the Antarctic Circumpolar Current

eddy kinetic energy (Böning et al., 2008). This, together with changes in the strength

and position of the front arises from changes in the atmospheric circulation (Youngs

et al., 2015), may affect cross-slope eddy advection (and consequent variability of

the front) and the on-shelf transport of warm waters. It is uncertain how the eddy

field will respond to those changes and whether it will affect ice shelves stability and

consequently the dense water formation. In a scenario of greater variability of the

front strength due to an increase in the eddy field, it is possible that the eddy field

would affect the interaction between the two biological regions and, consequently,

their productivity. In this case, the distribution of phytoplankton communities could

be affected with consequences to higher trophic levels.

Many questions are raised by Chapters 2 and 3, but an important conclusion
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is that mesoscale processes are important for the variability of the frontal system

and possibly for cross-slope heat transport. Some of these findings corroborate

theoretical models studies, which is an essential step for improving current

understanding of shelf-break dynamics. These results also reinforce the importance

of a proper parametrisation of mesoscale and submesoscale processes in climate

models for a correct representation of dynamics of the slope current system and an

accurate prediction of future ocean conditions.

Due to the nature of the glider dataset, it can sometimes be challenging to identify

which of the variables (space or time) is contributing to the observed variability. Some

sampling strategies - for example the re-occupation of the same section by the glider

in a short time period - were helpful in partially separating the influence of these

two factors. Nonetheless, the gliders provided an extensive area coverage with a

high spatial and temporal resolution. This allowed us to developed a new method

to combine the many cross-slope sections and to calculate statistics of the average

behaviour of the front by composing them by isobaths. This method proved very

useful for this analysis and could be used in any other regions where the studied

current is strongly steered by topography. The sampling strategy used in the field

campaign (flying the glider aiming to reach the slope with similar angles and keeping

sections’ length roughly consistent) is important for applying this method.

5.1.2 THE EASTERN AMUNDSEN SEA

Chapter 4 explores the variability of the onshore heat transport close to the shelf-

break and its possible link to the along-slope undercurrent. Cross-slope and cross-

trough CTD sections provided a snapshot of the frontal system, its associated currents

and the pattern of the onshore–offshore flow. They showed that the eastward

undercurrent is a persistent feature that dominates the water column transport over

the upper slope. Moreover, the estimated heat transport shows that, in early 2014, the

eastern trough made a greater contribution to the onshore heat transport than the

central trough. These estimates are important for assessing the ability of modelling

studies to represent the structure and properties of the onshore flow. This snapshot

is then put into a broader perspective by the analysis of the data from moorings

deployed in 4 different locations for up to 4 years. The mooring data show a complex
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picture of intra- and interannual variability, for example, the CTD stations of early

2014 were occupied when the moored instruments at the shelf-break registered

anomalously low temperatures and a rotation in the current’s direction. This result

emphases that one-off measurements should be interpreted with caution in this

region.

The temperature transport per unit area estimated at each current meter depth

(called temperature flux) showed higher energy concentrated at short time scales

(days) than at monthly time scales. Several factors could contribute to the observed

short-term variability, such as eddies and resonant waves. Studies have shown

the influence of coastal-trapped waves in other areas of the Antarctic continental

slope, such as their role in enhancing of diurnal tidal currents in the southern

Weddell Sea (Semper and Darelius, 2017). In Artic fjords, the exchange driven by

the propagation of coastal-trapped waves steered by the topography of across-shelf

troughs can exceed both tidal and estuarine exchange (Inall et al., 2015). Even though

the resonant waves do not induce a net oceanic temperature flux toward the shelf,

they can influence mixing and lift/drop the thermocline (Wåhlin et al., 2016) which,

at the shelf-break, will influence the amount of heat that moves onshore. More

interestingly, the effect of these processes possibly varies locally because different

sides of the troughs, and different troughs, show different variability patterns in short

time scales and low correlation between temperature flux estimates. These results

imply that, even though this is a relatively small study area, processes observed at

one point can not be necessarily generalised to other parts of the shelf, and that a

dense spatial sampling coverage is necessary to understand the region dynamics.

The role of the undercurrent in determining the onshore heat transport remains

uncertain. On monthly time scales, the low correlation between the temperature flux

of the eastward undercurrent and of the onshore flow in the central trough suggests

that the influence of the undercurrent on the onshore heat transport may not be as

strong as indicated by modelling and theoretical studies (Thoma et al., 2008; Jenkins

et al., 2016). On interannual time scales, changes in the hydrographic properties are

consistent between the upper slope and inside the trough, suggesting that, on longer

time scales, these regions respond similarly to environmental forcing such as wind.

However, the cold and warm periods observed do not necessarily match what would

be expected in terms of increased/decreased undercurrent strength and temperature
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transport onto the shelf in response to changes in large-scale atmospheric forcing.

For example, the marked El Ninõ conditions during 2015–2016 could have potentially

led to weaker easterly winds, a possible stronger undercurrent (Jenkins et al., 2016)

and, as a consequence, greater Circumpolar Deep Water (CDW) inflow onto the

shelf. Instead, our results show a deeper thermocline and a cold period at the shelf-

break area. One of the possible explanations for this is that the undercurrent has a

weaker response to the local winds than previously suggested (Thoma et al., 2008;

Jenkins et al., 2016). Understanding the wind-forced variability of the along-slope

undercurrent is crucial in a scenario of positive trends in the Southern Annular Mode

(Thompson et al., 2011) and increased frequency of extreme El Ninõ events (Wang

et al., 2017).

Finally, the on-going effort to maintain year-round measurements at the shelf-

break, despite a challenge, proved useful for evaluating short-term variability in

the area. The deployment of more than one moored instruments per trough

and sampling different troughs simultaneously, was important to show the non-

homogeneity of the processes acting within and among troughs and was essential

to evaluate them. It was also important to identify the coherence of the interannual

signals on the upper-slope and within the central trough.

5.2 FUTURE WORK

There are a number of points that could be developed further from this thesis. For

future work using these datasets, we suggest characterising more quantitatively the

processes affecting the short-term variability, which would be beneficial to improving

the performance of models in representing shelf-break processes. For example, in the

Weddell Sea, the susceptibility of the flow to instabilities could be further investigated

by performing linear instability analysis, which would provide parameters that

could be incorporated in model parametrizations. In terms of the influence of

the front on the local productivity, our work showed that the different physical

characteristics onshore and offshore of the front maintain two distinct biological

regions. To further test this hypothesis and to quantify the influence of the front

on the productivity, an estimate of the front strength (e.g. the horizontal gradient

of temperature) could be compared to the off-shore mean levels of productivity to
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test for correlation. Moreover, previous studies have suggested the importance of

an advective mechanism for maintaining the offshore deep chlorophyll maximum

in another region of the Southern Ocean (Erickson et al., 2016). The evaluation of

the importance of this process in our region was hampered by limitations of the

dataset; some sections did not reach far enough onshore as it would be necessary

for this analysis. For future biological campaigns, we suggest that the gliders should

be flown far enough onshore to sample the areas of surface chlorophyll maxima.

Our understanding of the ways in which biological and physical factors influence

the local krill community could by improved by the use, in future campaigns, of

gliders equipped with fluorescence, backscatter sensors and echosounders. The use

of remote sensing (ocean colour) could also be beneficial to this work by giving

snapshots of the spatial distribution of the primary productivity for the entire study

area.

In the Amundsen Sea, the association between the observed sub-inertial

oscillations and resonant coastal trapped waves could be further explored. It

could be improved by comparing the observations from each mooring with

idealised numerical solutions of the properties of the wave for the local bathymetry,

stratification and along-slope current. This would help characterise the oscillations

and possibly be used to compare the importance of these processes in different

troughs. On time scales shorter than 3 months, our work showed a very low

correlation between the temperature flux of the along-slope undercurrent and of the

onshore flow. It is possible that the correlation between these two flows is disguised

by high-frequency variability and that a further investigation considering correlation

on longer time scales (> 3 months) and different smoothing techniques may reveal a

stronger dynamical link. We suggest a 2 month filtering window as a first estimate.

This is because the energy peak at around 2 months found for the temperature flux of

the along-slope current possibly indicates time scales for the movement of the front.

Some of the uncertainty in the analysis of the temperature flux variation comes

from the small number of current meter instruments at each mooring. The estimates

of temperature flux are calculated at each current meter depth, and its variability

is shown to be more strongly correlated with the one-depth velocity time series

than with temperature. However, the variability of total temperature transported

onto the shelf (i.e., considering the whole section and the entire water column)
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is possibly strongly influenced by the depth of the thermocline, which could not

be taken in consideration in our estimates because of the low number of current

meter instruments at different depths. In this regard, the observed increase in the

estimates of temperature transport per unit area during the last cold period (at the

end of 2015) associated with stronger velocities might not be representative of the

changes in transport for entire water column. For future work with this dataset,

we suggest an extrapolation of the velocity measurements to all depths where in

situ temperature was sampled, in addition to the estimation of a salinity algorithm

based on local CTD data, which would provide estimates of temperature transport

variability at more depths than the ones where current meters were placed. This could

help improve the estimates for the heat transport integrated over the water column.

As a suggestion for future hydrographic campaigns, the placement of instruments

measuring currents and hydrography at more depths would allow the estimates to

account for the water column structure and the depth of the thermocline, which

would lead to a more complete picture of the variability of total temperature transport

onto the shelf. In addition, we propose that the mooring deployed at the eastern

trough in Amundsen Sea should be moved to a location where the main inflow could

be better characterised (e.g. slightly further onshore). A procedure that could be

implemented for future field campaigns is the analysis, in the field, of the currents

measured from the ship instruments around the entire study area. This information

could then be used to define the final position of the moored instruments.

To improve our understanding of the processes that drive the inter-annual

variability observed in the hydrographic properties, it is necessary to evaluate

components that can have a direct effect on the local ocean conditions, such as

the variability in front position and the wind field. Attempts were made to define

the position from satellite altimetry, using the Ssalto/Duacs gridded multimission

altimeter product from Aviso; however it did not have high enough resolution to

resolve the front. A recent study has shown the benefits of using gridded along-track

SSH measurements from CryoSat-2 (Wingham et al., 2006) to track ocean features

in coastal Antarctic waters, which could potentially be used to determine the front

position. Alternatively, future campaigns could consider a moored array crossing

the slope from the shelf break to offshore. This way, the variability of the front

position could easily be tracked through time. A less expensive solution would be
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the deployment of gliders to repeatedly sample a cross-slope section. In this case,

however, the sampling period would be shorter. Alongside the ocean measurements,

the wind field could be analysed by remote sensing to check for correlations with the

front.

Finally, the importance of eddies to the cross-slope transport of properties

observed in the Weddell Sea is likely to be lower in the Amundsen Sea because

of the difference in strength of the front and the absence of dense waters in the

Amundsen Sea. However, the different nature of the datasets available for each region

did not allow a direct comparison between them. To confirm this hypothesis, the

deployment of gliders performing cross-slope sections in the Amundsen Sea would

allow a comparison of the levels of Eddy kinetic energy (EKE) estimated in this thesis

for the Weddell Sea. A sampling strategy similar to the one used in the Weddell Sea

should be applied; however we suggest keeping one glider repeatedly sampling one

cross-slope section while another glider travels along the slope performing cross-

slope sections. This can possibly facilitate the separation between the contribution

of spatial and temporal variability.

5.3 FINAL CONSIDERATIONS

Many previous studies have reported the presence and have described the

hydrographic signature of the slope front all around Antarctica. Some studies have

shown, for example, that the frontal system in the Weddell Sea varies with the wind

stress forcing on inter-annual time scales (Youngs et al., 2015). However, little was

known in terms of its variability on shorter time scales. This is in part because of the

rough conditions found in the Southern Ocean (e.g. sea ice cover, low temperatures,

etc) which make regular and long-term sampling difficult. In addition, the narrow

structure of the front, of the current system associated with it and, as shown by this

thesis, the degree of high-frequency variability requires a high spatial and temporal

sampling resolution that cannot be achieved by traditional sampling methods. The

high-frequency temporal variability shown in this thesis is an important result that

needs to be taken into account for future studies that compare hydrographic surveys

from different years and which may interpret changes as interannual variability. The

use of newer technologies, as well as efforts to maintain high-frequency, long-term
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occupations, are shown in this thesis to help provide a more comprehensive view

of the slope system and to be important tools to improve the understanding of

dynamical processes in the shelf-break region.

The two regions evaluated in this work are particularly important for

understanding of impacts of global warming on the ocean and cryosphere. They are

also different hydrographically, which leads to different characteristics of the frontal

system. However, what is noticeable from this study is that the short-term variability

is significant in both regions, and that the advection of mesoscale eddies may play

a role in this variability. While in the Weddell Sea baroclinic instabilities possibly

fuel the eddy kinetic energy field, within the troughs of the eastern Amundsen Sea

the time scales of variability suggest that barotropic resonant waves may influence

the observed variability. Most of these processes are difficult to represent in global

models and tend to be poorly parametrised.

This thesis characterises the short-term variability present in the Antarctic frontal

system in two distinct hydrographic and dynamic regions around the Antarctic

continental slope, and identifies the main processes that contribute to this variability.

It also highlights the importance of properly representing these processes in

modelling studies for the production of more accurate predictions of the Southern

Ocean’s response to future climatic changes. Moreover, this thesis contributes to

the objectives of the Southern Ocean Observing System (SOOS) by giving insights

on how to improve the design and implementation of future multi-disciplinary field

campaigns in Antarctica to answer key outstanding questions on the slope frontal

system dynamics.
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