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Abstract. — We show how the modular representation theory of inner forms of general linear
groups over a non-Archimedean local field can be brought to bear on the complex theory in a remar-
kable way. Let F be a non-Archimedean locally compact field of residue characteristic p, and let G
be an inner form of the general linear group GL,(F), n = 1. We consider the problem of describing
explicitly the local Jacquet—Langlands correspondence 7 — ;1,7 between the complex discrete series
representations of G and GL, (F), in terms of type theory. We show that the congruence properties
of the local Jacquet—Langlands correspondence exhibited by A. Minguez and the first named author
give information about the explicit description of this correspondence. We prove that the problem of
the invariance of the endo-class by the Jacquet—Langlands correspondence can be reduced to the case
where the representations m and ji,m are both cuspidal with torsion number 1. We also give an ex-
plicit description of the Jacquet—Langlands correspondence for all essentially tame discrete series re-
presentations of G, up to an unramified twist, in terms of admissible pairs, generalizing previous re-
sults by Bushnell and Henniart. In positive depth, our results are the first beyond the case where m
and ;7 are both cuspidal.
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1. Introduction

1.1.

Let F be a non-Archimedean locally compact field of residue characteristic p, let H be the gen-
eral linear group GL,(F), n > 1, and let G be an inner form of H. This is a group of the form
GL;, (D), where m divides n and D is a central division F-algebra whose reduced degree is de-
noted d, with n = md. Let D(G, C) denote the set of all isomorphism classes of essentially square
integrable, irreducible complex smooth representations of G. The local Jacquet—Langlands cor-
respondence [26, 31, 18, 1] is a bijection

D(G,C) — D(H,C)

T — JLT
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specified by a character relation on elliptic regular conjugacy classes. Bushnell and Henniart have
elaborated a vast programme aiming at giving an explicit description of this correspondence [23,
7, 10, 13]. The present article is a contribution to this programme.

We first have to explain what we mean by an explicit description of the Jacquet—-Langlands
correspondence. Essentially square integrable representations of G can be described in terms of
parabolic induction. Given such a representation m, there are a unique integer r dividing m and
a cuspidal irreducible representation p of GL,, /T(D), unique up to isomorphism, such that = is
isomorphic to the unique irreducible quotient of the parabolically induced representation

px pr*P) x ... x pyS(p)(T—l)

where v is the unramified character “absolute value of the reduced norm” and s(p) is a positive
integer dividing d, associated to p in [41]. The essentially square integrable representation m is
entirely characterized by the pair (p,r); this goes back to Bernstein—Zelevinski [44] when D is
equal to F, and Tadi¢ [41] in the general case (see also Badulescu [2] when F has positive char-
acteristic). In particular, we may write s(7) = s(p). Similarly, associated with the Jacquet-Lang-
lands transfer jpm, there are an integer u dividing n and a cuspidal irreducible representation o
of GL,,/,(F). The integers r,u are related by the identity u = rs(m). It remains to understand
how the cuspidal representations p, o are related.

Thanks to the theory of simple types, developed by Bushnell and Kutzko [16] for the general
linear group GL,(F) and by Broussous [3] and the authors [32, 33, 34, 35] for its inner forms,
the cuspidal representation p is compactly induced from a compact mod centre, open subgroup.
More precisely, there is an extended maximal simple type, made of a compact mod centre sub-
group J of GL,,, /(D) and an irreducible representation A of J, both constructed in a very specific
way, such that the compact induction of A to GL,, /T(D) is irreducible and isomorphic to p. Such
a type is uniquely determined up to conjugacy. Giving an explicit description of the local Jac-
quet—Langlands correspondence will thus consist of describing the extended maximal simple type
associated with the representation ¢ in terms of that of p.

This programme was first carried out for essentially square integrable representations of depth
zero, by Silberger—Zink [39, 40] and Bushnell-Henniart [14]. Before explaining the other cases
which have already been dealt with, we need to introduce two numerical invariants associated to
an essentially square integrable, irreducible representation of G. Such a representation 7 has: a
torsion number t(), the number of unramified characters y of G such that the twisted represen-
tation 7y is isomorphic to 7; and a parametric degree 6 (), defined in [13] via the theory of simple
types, which is a multiple of ¢(7) and divides n. Both of these integers are invariant under the
Jacquet-Langlands correspondence [13]. It is interesting to note that the invariance of the para-
metric degree implies that 6(m)s(m) = n/r. Consequently, the representation ji,7 is cuspidal if
and only if the parametric degree of 7 is equal to n.

In [13], Bushnell and Henniart treat the case where the cuspidal representation 7 is essentially
tame (that is, §(m)/t(m) is prime to p) and of parametric degree n. In that case, they explicitly
describe the Jacquet—Langlands correspondence by parametrizing the conjugacy classes of exten-
ded maximal simple types in G and H by objects called admissible pairs [24]. (We will see these
objects in Section 9.)
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In [10], they also treat the case which is in some sense at the opposite extreme to the essentially
tame case, where n is of the form p*, with & > 1 and p # 2, and where 7 is a cuspidal represen-
tation of D* which is mazimal totally ramified (that is, 6(7) = n and ¢(w) = 1).

In [25], Imai and Tsushima treat the case where 7 is an epipelagic cuspidal representation of
G, that is, of depth 1/n. Such representations are maximal totally ramified.

With the exception of [39, 40] and [14], these results all concern cases where the representa-
tions 7 and jp,7 are both cuspidal, that is, when 7 is of parametric degree n. In such cases, since
the cuspidal representation 7w can be expressed as the compact induction of an extended maxi-
mal simple type (J,A), there is a relatively straightforward formula giving the trace of 7 at an
elliptic regular element in terms of the trace of A (see [8, Theorem A.14] and [13, (1.2.2)]). The
strategies followed in [13, 10] and [25] depend crucially on such a formula. When considering a
non-cuspidal essentially square integrable representation, we are in a much less favourable situa-
tion. For the group GL, (F), Broussous [4] and Broussous—Schneider [5] have obtained formulae
expressing the trace of such a representation at an elliptic regular element by bringing in the
theory of simple types. However, in this article, we follow a different route.

1.2. Preservation of endo-classes

An important first step towards the general case is to look at the behavior of the local Jacquet—
Langlands correspondence with respect to endo-classes. An endo-class (over F) is a type-theo-
retic invariant associated to any essentially square integrable representation of any inner form
of any general linear group over F, whose construction requires a considerable machinery [8, 6].
However, for cuspidal representations of H, it turns out to have a rather simple arithmetical
interpretation through the local Langlands correspondence [9]. Indeed, two cuspidal irreducible
representations of general linear groups over F have the same endo-class if and only if the irre-
ducible representations of the absolute Weil group W associated to them by the local Langlands
correspondence share an irreducible component when restricted to the wild inertia subgroup Pr.
The local Langlands correspondence thus induces a bijection between the set of Wg-conjugacy
classes of irreducible representations of P and the set &(F) of endo-classes over F.

It is expected that the local Jacquet—Langlands correspondence preserves endo-classes. More
precisely, there is the following conjecture.

Endo-class Invariance Conjecture. For any essentially square integrable, irreducible com-
plex representation m of G, the endo-classes of ™ and jLm are the same.

Our first main result is the following (see Theorem 7.1), which reduces this conjecture to the
case of maximal totally ramified cuspidal representations.

Theorem A. Assume that, for all F and n, and all cuspidal irreducible complex representations
7w of G such that §(m) = n and t(7) = 1, the cuspidal representations ™ and jp,7m have the same
endo-class. Then the Endo-class Invariance Conjecture is true.

Before explaining our strategy, we must first make a detour through the modular representa-
tion theory of G and explain recent developments concerning the modular properties of the Jac-
quet—Langlands correspondence. Fix a prime number / different from p, and consider the smooth
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(-adic representations of G, that is, with coefficients in the algebraic closure Q, of the field of
f-adic numbers. There is then the notion of integral irreducible representation of G: containing a
G-stable Z-lattice (where Zy is the ring of integers of Q,), which can then be reduced modulo .
More precisely, given such a representation m containing a stable Z-lattice A, Vignéras [42, 43|
showed that the representation A®Z@ F, is smooth of finite length (where F, is the residue field
of Z;), and its semisimplification is independent of the choice of A; we call this semisimplification
the reduction mod ¢ of m. Thus we can say that two integral irreducible f-adic representations
of G are congruent mod ¢ if their reductions mod ¢ are isomorphic.

To relate this to the local Jacquet—Langlands correspondence, we fix an isomorphism of fields
between C and Qy; replacing one by the other via this isomorphism, we get an f-adic Jacquet—
Langlands correspondence

D(G,Q,) — D(H, Q)
which is independent of the choice of isomorphism. Thus one can study the compatibility of this
correspondence with the relation of congruence mod /¢, which was done by Dat [17] and then in
full generality by Minguez and the first author [30]: two integral representations of D(G, Q) are
congruent mod ¢ if and only their images under the ¢-adic Jacquet—Langlands correspondence
are congruent mod ¢ ([30, Théoreme 1.1]).

We now need to explain how modular representation theory can give us information on the
complex representation theory. The starting point for our strategy to prove Theorem A using mo-
dular methods is the fact that two representations of D(G, Q,) which are congruent mod ¢ have
the same endo-class. The converse is, of course, not true but we will see that one can neverthe-
less link two essentially square integrable representations with the same endo-class by a chain of
congruence relations. Let us explain this in more detail.

Firstly, for any irreducible ¢-adic representation of G, we have a notion of mod-¢ inertial su-
percuspidal support (see Definition 4.1, and also [22] in the split case), coming from the notion of
supercuspidal support for irreducible representations of G with coefficients in Fy, defined in [27].
Two irreducible complex representations of G are said to be ¢-linked (Definitions 5.1 and 4.2)
if there is a field isomorphism C ~ Q, such that the resulting irreducible ¢-adic representations
have the same mod-¢ inertial supercuspidal support. This is independent of the choice of field
isomorphism and it is not hard, using the work done in [30], to show that the Jacquet—Langlands
correspondence preserves the relation of being ¢-linked for essentially square-integrable represen-
tations (Propositions 6.1 and 6.2). We can now introduce the following definition (Definition 5.6).

Definition. Two irreducible complex representations w, 7' of G are said to be linked if there
are a finite sequence of prime numbers £1,...,L., all different from p, and a finite sequence of
irreducible complex representations © = mg, 71, ..., T = 7 such that, for each i € {1,...,r}, the
representations m;_1 and mw; are {;-linked.

Two essentially square integrable complex representations which are linked have the same
endo-class. More generally, if we define the semi-simple endo-class of an irreducible represen-
tation to be the weighted formal sum of the endo-classes of the cuspidal representations in its
cuspidal support (with multiplicities determined by the sizes of the groups — see (5.2)), then two
irreducible representations which are linked have the same semi-simple endo-class. The interest
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of the definition is apparent from the following theorem (see Theorem 5.10), which says that the
converse is also true.

Theorem B. Two irreducible complex representations of G are linked if and only if they have
the same semi-simple endo-class.

In particular, two essentially square integrable complex representations have the same endo-
class if and only if they are linked; moreover, one can then link them by a sequence of essentially
square integrable representations (Remark 5.9).

Theorem B gives a remarkable reinterpretation of what it means for two irreducible complex
representations to have the same semi-simple endo-class. Beyond the intrinsic interest in explica-
ting the notion of endo-class and its relation with modular representation theory, the main in-
terest in this reformulation comes from the fact that, applying results from [30], we are able to
prove the following (Theorem 6.3).

Theorem C. Two essentially square integrable complex representations of G are linked if and
only if their transfers to H are linked.

It follows from Theorems B and C that two essentially square integrable complex represen-
tations of G have the same endo-class if and only if their transfers to H have the same endo-class.
Thus, denoting by &,,(F) the set of endo-classes over F of degree dividing n, the Jacquet—Lang-
lands correspondence induces a bijection

™ (C,n(F) — gn(F)
We now observe the following fact (Proposition 6.5).

Proposition. For every essentially square integrable complex representation of G, there is a
cuspidal complex representation of G with the same endo-class and with parametric degree n.

To prove the conjecture — that is, to prove that 7r; is the identity map — it is therefore sufficient
to prove that, for every cuspidal complex representation 7w of G of parametric degree n, the re-
presentations 7 and jr,m have the same endo-class. Using techniques developed in [13, Section 6],
we can go further and show that one need only consider cuspidal representations of parametric
degree n and torsion number 1, thus obtaining Theorem A. Therefore, to prove the Endo-class
Invariance Conjecture, it remains only to prove the following conjecture. Say that an endo-class
is totally ramified if it has residual degree 1, that is, if its tame parameter field (in the sense of
[15, Section 2]) is totally ramified.

Conjecture. For all F and n, and for every totally ramified F-endo-class © of degree n, there
is a cuspidal complex representation m of G with endo-class ® such that yji,m has endo-class ©.

This conjecture is known to be true in all the cases where the explicit correspondence is known
(see §1.1). See also the remark at the end of this introduction for more recent developments.
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1.3. The level zero part

We now leave to one side the preservation of endo-classes and pass to the next step towards
an explicit description of the Jacquet—-Langlands correspondence. We will see that the modular
methods described in the previous paragraphs can be pushed further to yield additional infor-
mation. Let ® be an endo-class of degree dividing n and suppose that it is invariant under the
Jacquet—Langlands correspondence, i.e. w1(®) = ©. (See the remark at the end of this intro-
duction for a discussion about this assumption.) The correspondence thus induces a bijection
between isomorphism classes of essentially square integrable complex representations of G with
endo-class ®, and those of H. Since the correspondence is also compatible with unramified twis-
ting, we get a bijection

Do(G, ®) — Dy(H, ©)

where Dy(G, ©) denotes the set of inertial classes of essentially square integrable complex repre-
sentations of G with endo-class ®. The theory of simple types [16, 34, 35, 36] gives us a cano-
nical bijection between Dy(G, ®) and the set T(G, ®) of G-conjugacy classes of simple types for
G with endo-class ®. More precisely, the inertial class of an essentially square integrable com-
plex representation m corresponds to the conjugacy class of a simple type (J, ), formed of a
compact open subgroup J of G and an irreducible representation A of J, if and only if A is an
irreducible component of the restriction of m to J. Thus we get a bijection

(1.1) 7(G,0) = T(H, ).

To go further, we need to enter into the detail of the structure of simple types (Paragraph 3.3).

Given a simple type (J,\) of G with endo-class ©®, the group J contains a unique maximal
normal pro-p subgroup, denoted J'. The restriction of A to J! is isotypic, that is, it is a direct
sum of copies of a single irreducible representation 7. This representation 7 can be extended to
a representation of J with the same intertwining set as 7. If we fix such an extension x, then the
representation A can be expressed in the form s ® o, where o is an irreducible representation of
J, trivial on J1.

The quotient group J/J! is (non-canonically) isomorphic to a product of copies of a single
general linear group over a finite field d and o, viewed as a representation of such a product, is
the tensor product of copies of a single cuspidal representation. A theorem of Green [21] allows
us to parametrize o by a character of k*, where k is a suitable extension of d. This character
is determined up to conjugation by the Galois group of k over a certain subfield e of d.

We denote by X the group of characters of k* and by I' the Galois group Gal(k/e). Fixing
once and for all a choice of representation x for a maximal simple type in G with endo-class O,
we get a bijection from X/I' to T(G, ®) (see Paragraph 3.3 for details). Making a similar choice
for H, we also get a bijection from X/T" to T(H, ®). Composing with (1.1), we get a permutation

T:X/T - X/T

which depends on various choices (see Paragraph 8.1). Although one could fix choices, it is not
clear which are the natural ones in general so we must take care with them. In particular, we
will see that, in the essentially tame case, one can make sense of the notion of a compatible
choice for G and H.
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We write [«] for the I'-orbit of a character o € X. The following result (see Proposition 8.8),
which again is proved via modular methods, suggests that, in order to determine the permutation
T it is sufficient to compute the value of Y([a]) for certain characters « only.

Proposition. Let o€ X and let I be the unique subfield of k such that the stabilizer of a in " is
Gal(k/l). Suppose there are a I'-reqular character 5 € X and a prime number £ # p prime to the
order of U such that the order of fa™! is a power of £. Suppose further that Y([3]) = [Bu], for
some character p € X. Then Y([a]) = [av] where v € X is the unique character of order prime
to ¢ such that ="' has order a power of /.

In fact we need a more powerful version of this result, which we do not explain here, which re-
quires being able to pass from G to a bigger group GL,,/(D), with m’ > m. (See Section 8, in par-
ticular Paragraph 8.3.)

To conclude, in the final section of the paper, we illustrate this principle in the essentially tame
case. We start from the Parametrization Theorem [13, 6.1], which gives a canonical bijection

(1.2) (L/F, &) — II(G, §)

between isomorphism classes of admissible pairs of degree n and isomorphism classes of essential-
ly tame cuspidal irreducible representations of G of parametric degree n. The First Comparison
Theorem [13, 6.1] shows how to translate the Jacquet-Langlands correspondence for these cus-
pidal representations in terms of admissible pairs: for any admissible pair (L/F,§) of degree n,
there is a canonically determined tamely ramified character v of L* such that v? = 1 and

JLH(G7 f) = H(Hv §V)

We show that, for appropriate choices, this result can be rephrased in terms of our a-parameters
and gives us an explicit formula for Y ([«]) for all I'-regular characters o € X. Applying the pro-
position above, we then prove that this explicit formula actually holds for any a € X.

As in [13], we formulate our result in terms of admissible pairs. We first define a bijection

between inertial classes of admissible pairs (see Definition 9.5) of degree dividing n and inertial
classes of discrete series representations of G with essentially tame endo-class, extending (1.2) up
to inertia. In the case where G is the group H, this bijection is canonical, but for a general G it
depends a priori on various choices. We prove the following result (see Theorem 9.13).

Theorem D. Let [L/F,£] be an inertial class of admissible pairs of degree dividing n. There is a
canonically determined tamely ramified character p of the group of units of the ring of integers
of L such that > = 1 and

sLIlo[G, €] = Ho[H, &u].

We thus deduce a posteriori that our bijection (1.3) is canonical, that is, it does not depend
on the various choices we have made (see Remark 9.15).
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Remark. After this paper was written, A. Dotto proved the Endo-class Invariance Conjecture
in [20], using methods developed here and in [13]. He goes further and gives an explicit descrip-
tion of the Jacquet-Langlands correspondence up to inertia.

Acknowledgements. The research of the second author was supported by the Engineering
and Physical Sciences Research Council (grant EP/H00534X/1). We also thank the anonymous
referee for several useful comments, particularly relating to the presentation in Section 6.

2. Notation

We fix a non-Archimedean locally compact field F with residual characteristic p. Write ¢ for
the cardinality of the residue field of F.

Given D a finite dimensional central division F-algebra and a positive integer m > 1, we write
M,,, (D) for the algebra of m x m matrices with coefficients in D and GL,, (D) for the group of its
invertible elements. Choose an m > 1 and write G = GL,,,(D). Write d for the reduced degree
of D over F, and define n = md.

Given an algebraically closed field R of characteristic different from p, we will consider smooth
representations of the locally profinite group G with coefficients in R. We write Irr(G,R) for
the set of isomorphism classes of irreducible representations of G and R(G, R) for the Grothen-
dieck group of its finite length representations, identified with the free abelian group with basis
Irr(G,R). If 7 is a representation of G, the integer m is called its degree.

Given a = (my,...,m,) a family of positive integers of sum m, we write i, for the functor of
standard parabolic induction associated with a;, normalized with respect to the choice of a square
root in the field R of the cardinality g of the residual field of F. Given, for each i € {1,...,r}, a
representation m; of GLy,, (D), we write

T X o X T = Go(m ® - @ mp).

Given a representation 7 and a character y of G, we write my for the twisted representation
defined by g — x(g)7(9).

We fix once and for all a smooth additive character ¢ : F — R trivial on the maximal ideal
p of the ring of integers O of F but not trivial on O.

We write v for the unramified R-character of G given by composing the reduced norm from
G to F* with the absolute value of F which takes any uniformizer to the inverse of ¢ in R.

3. Preliminaries

In this section, we let R be an algebraically closed field of characteristic different from p.

3.1.

Let p be a cuspidal irreducible R-representation of G. Associated with p, there is a positive
integer s(p) defined in [28, Paragraph 3.4] (see also Remark 3.8). When R is the field of complex
numbers, s(p) is the unique positive integer k such that p x pv/* is reducible, and it is related to
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the parametric degree d(p) defined in [13, Section 2] by the formula s(p)d(p) = n. For the general
case, see Remark 3.8.

In [27] we attach to p and any integer r > 1 an irreducible subrepresentation Z(p,r) and an
irreducible quotient L(p,r) of the induced representation

(3.1) P X Py X e X puzfl

(see [27, Paragraph 7.2 and Définition 7.5]), where v, is the character (),

When R is the field of complex numbers, Z(p,r) and L(p,r) are uniquely determined in this
way, and all essentially square integrable representations of G are isomorphic to a representation
of the form L(p,r) for a unique pair (p,r).

For an arbitrary R, the representation L(p, ) is called a discrete series R-representation of G
and Z(p,r) is called a Speh R-representation. If p is supercuspidal, Z(p, r) is called a super-Speh
representation.

According to [27, Paragraph 8.1], where the notion of residually nondegenerate representation
is defined, the induced representation (3.1) contains a unique residually nondegenerate irreduci-
ble subquotient, denoted

Sp(p, ).
When R has characteristic 0, this is equal to L(p, 7). When R has characteristic £ > 0 however,
it may differ from L(p,r) (see [27, Remark 8.14]).
Assume R has characteristic £ > 0, and let us write w(p) for the smallest positive integer i > 1
such that pl/f) is isomorphic to p. Then the irreducible representation

(3.2) Sp(p, w(p)l*)

is cuspidal for any integer v > 0. Moreover, any cuspidal non-supercuspidal irreducible represen-
tation is of the form (3.2) for a supercuspidal irreducible representation p and a unique integer
v = 0 (see [27, Théoreme 6.14]). We record this latter fact for future reference.

Proposition 3.1. — Assume R has positive characteristic £, and let p be a cuspidal irreducible
representation of G. There are a unique positive integer k = k(p) and a supercuspidal irreducible
representation T of degree m/k such that p is isomorphic to Sp(T, k).

3.2.

In this paragraph, we assume that R is an algebraic closure Q, of the field of /-adic numbers.
Recall (see [42]) that an irreducible ¢-adic representation of G is integral if it contains a G-stable
Z-lattice. Let p be an f-adic cuspidal irreducible representation of G. By [42] 11.4.12, it is in-
tegral if and only if its central character has values in Z,. In particular, there is always an unra-
mified twist of p which is integral.

Assume p is integral and write a = a(p) for the length of its reduction mod ¢, denoted ry(p).

Proposition 3.2 (|28, Theorem 3.15]). — Let p be an irreducible factor of ry(p). Then

(p)=p+pv+-+ "

where v denotes the unramified mod ¢ character “absolute value of the reduced norm”.
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3.3.

We recall briefly the language of simple strata, though we do not require much of the detail of
the constructions. For a detailed presentation, see [34, 28]. For simple strata, we use the simpli-
fied notation of [15, Chapter 2].

Let [a, 8] be a simple stratum in the simple central F-algebra M,, (D). We don’t recall the pre-
cise definition: we simply recall that it is made of an element 8 € M,,,(D) such that the F-algebra
F[f] is a field, and a hereditary order a € M,, (D) normalized by F[3]*. The centralizer of § in
M,,,(D), denoted B, is a simple central F[3]-algebra. There are an F[/]-division algebra D’ and
an integer m’ > 1 such that

(3.3) B ~ M, (D).

The intersection b = a n B is a hereditary order in B.
Recall [32, 28] that, associated with [a, 8], there are compact open subgroups

H'(a, ) = J'(a,8) < J(a, §)

of G, together with a non-empty finite set C(a, 5) depending on the choice of ¥ made in Section
2. These groups are normal in J(a, 3), and the elements of C(a, 3) are R-characters of H!(a, 3),
called simple characters. Besides, H'(a, 3) and J'(a, 3) are pro-p-groups, and J(a, ) is equal to
6> J(a, B).

Attached to a simple character § € C(a, 8) there is an invariant called its endo-class. We will
not recall the precise definition of this invariant, which can be found in [8, 6]. We will only need
a few properties of endo-classes, which we will recall when they are needed. Endo-classes form
a set &(F) which depends only on F.

Lemma 3.3 ([6, Lemma 4.7]). — Given a simple character 0 € C(a, 3) with endo-class ©, the
degree, ramification index and residue degree of F[3] over F only depend on ©. These integers
are called the degree, ramification index and residue degree of ©, respectively.

The endo-class of a simple character in G has degree dividing n. Conversely, any endo-class
of degree dividing n occurs as the endo-class of some simple character in G.

A B-extension of a simple character 6 € C(a, 3) is an irreducible representation of J(a, 3) with
coefficients in R whose restriction to J!(a, ) is irreducible, whose restriction to H!(a, 3) contains
0 and which is intertwined by any element of B* (see [33, 28]).

Assume now that b is a maximal order in B, in which case we say the simple stratum [a, 3], the
simple characters in C(a, 5) and their S-extensions are mazimal. Let us fix an isomorphism (3.3)
such that the image of b is the maximal order made of all matrices with integer entries. There
is a natural group isomorphism

J(a,8)/7(a, ) =~ GLyy(d)
where d is the residue field of D’. We write § for the group on the right hand side. Let us fix a
[-extension x of some simple character 6 € C(a, 3). We write J = J(a, ) and J' = J!(a, B).
We fix a finite extension k of d of degree m’. We write X for the Galois group of this extension
and X for the group of R-characters of k™. Given « € X, there is a unique subfield d < d[a] € k
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such that the X-stabilizer of « is Gal(k/d[«a]), and then a character g of d[a]* such that « is
equal to ap composed with the norm of k over d[«]. If we write u for the degree of d[«] over d,
then g defines a supercuspidal irreducible R-representation og of GL,(d) — see [21] if R has
characteristic 0, and [19] or [29] otherwise.

Remark 3.4. — More precisely, if R has characteristic 0, fix an embedding of d[«] in M, (d).
Then o¢ is the unique (up to isomorphism) irreducible representation of GL,,(d) such that

tr og(g) = (=1)*71- Zozg(g),
B!

for all g € d[a]* of degree u over d, where v runs over Gal(d[«]/d).

The character oo € X thus defines a supercuspidal R-representation
o(a) =00® - ® o0

of the Levi subgroup GLy(d) x - - - x GLy(d) in §. Moreover, the fibers of the map a — o(«a) are
the Y-orbits of X. Write r for the integer defined by ru = m’. The maximal order b contains a
unique principal order b, of period r whose image under (3.3) consists of matrices with entries in
the ring of integers of D’ whose reduction modulo its maximal ideal is upper triangular by blocks
of size r. We write a, for the unique order normalized by F[8]* such that a, "B = b,, and &, for
the transfer of k with respect to the simple stratum [a,, 8] in the sense of [28, Proposition 2.3].
Considering o(a) as a representation of the group J, = J(a,, 8) trivial on J!(a,, 3), we define

Aa) =k ®o(a)

which is a simple supertype in G defined on J,. in the sense of [37]. Write I" for the Galois group
of k over e, where e denotes the residue field of F[3].

Write © for the endo-class of the simple character § € C(a, 8), and T(G, ®,R) for the set of
isomorphism classes of simple R-supertypes in G with endo-class ®, that is, simple R-supertypes
whose associated simple character has endo-class ©.

Recall ([37] Definition 6.1) that two simple R-supertypes in G are said to be equivalent if the
representations of G obtained from them by compact induction are isomorphic.

Proposition 3.5. — The map
(3.4) a— Aa)

induces a surjection from X onto the set of equivalence classes of T(G,®,R). The fibers of this
map are the I'-orbits of X.

Proof. — Surjectivity follows from the definition of a simple supertype [37, Paragraph 2.2] and
the fact that any supercuspidal irreducible R-representation of G is of the form o («) for some
«a € X with trivial X-stabilizer.

The description of the fibers follows from [36, Theorem 7.2] together with the fact that the
map a — o(a) is I-equivariant, with fibers the Y-orbits of X. Note that [36] is written for com-
plex representations, but [36, Theorem 7.2] holds true in any characteristic different from p. O
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Proposition 3.6. — The bijection
(3.5) {T-orbits of X} < {equivalence classes of T(G,O,R)}
depends only on the choice of k, not on that of the isomorphism (3.3).

Proof. — Choosing another isomorphism B ~ M,,/(D’) such that the image of b is the maximal
order made of all matrices with integer entries has the effect — according to the Skolem—Noether
theorem — of conjugating by an element g € GL,,»(D’) normalizing this standard maximal order.
Thus, if o’(c) is the representation of J, trivial on J!(a,, 3) corresponding to a with respect to
that choice of isomorphism, it differs from o («) by conjugating by g. O

Remark 3.7. — Suppose ki is another extension of d of degree m/. Write X; for the group of
R-characters of its invertible elements and I'; for the Galois group Gal(ki/e). Let t denote the
bijection (3.5) and write t; for its analogue obtained by replacing k by k1. Choosing an isomor-
phism of e-algebras k — ki induces a bijection

b: Xl/Fl g X/F

which does not depend on this choice, and one has t; = t o b.

3.4.

Recall [28] that any supercuspidal R-representation p of G contains a maximal simple charac-
ter, uniquely determined up to G-conjugacy. We define the endo-class of p to be the endo-class
of any simple character contained in p. If we write ® for this endo-class, then p contains a simple
R-supertype A(a) € T(G, ®,R) for some a € X with trivial X-stabilizer.

Remark 3.8. — The positive integer s(p) associated with p in §3.1 is the order of the I'-stabi-
lizer of a.

3.5.

We call an inertial class of supercuspidal pairs of G simple if it contains a pair of the form
(3'6) (GLm/r (D)Ta PR p)

for some integer r dividing m and some supercuspidal R-representation p of GL,,/, (D), and we
define the endo-class of such an inertial class to be the endo-class of p, that is, the endo-class of
any simple character contained in p. By [37, Section 8], there is a bijective correspondence bet-
ween simple inertial classes of supercuspidal pairs of G and equivalence classes of simple super-
types of G, that preserves endo-classes. More precisely, the inertial class of (3.6), denoted €2, cor-
responds to the equivalence class of a simple supertype (J,\) if and only if the irreducible re-
presentations of G occurring as a subquotient of the compact induction of A to G are exactly
those irreducible representations of G occurring as a subquotient of the parabolic induction to
G of an element of €.

From the previous paragraph, we have an endo-class ® and a maximal S-extension k. Combi-
ning the map (3.4) with the correspondence between simple inertial classes of supercuspidal pairs
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and equivalence classes of simple supertypes, we get the following result. Given « € X, we write
Q(a) for the inertial class of supercuspidal pairs of G that corresponds to A(«).

Proposition 3.9. — The map
(3.7) a— Q(a)

induces a surjection from X to the set of simple inertial classes of supercuspidal pairs of G with
associated endo-class ©. Its fibers are the I'-orbits of X.

Let us recall the following important result from [27, Théoréme 8.16]: given an irreducible R-
representation m of G, there are integers mq,...,m, > 1 such that m; + --- + m, = m, and
supercuspidal irreducible representations pi, ..., pr of GL;,, (D), ..., GLy,, (D) respectively, such
that 7 occurs as a subquotient of the induced representation p; x --- x p,.. Moreover, up to re-
numbering, the supercuspidal representations p1, ..., p, are unique. The conjugacy class of the
supercuspidal pair (GLy,, (D) x -+ x GL;,,, (D), p1 ® - - - ® py) is called the supercuspidal support
of 7.

Let us call an irreducible R-representation of G simple if the inertial class of its supercuspidal
support is simple. For instance, any discrete series R-representation of G is simple. We define the
endo-class of a simple irreducible representation to be that of its supercuspidal support.

Definition 3.10. — Let 7 be a simple irreducible representation of G with endo-class ®. The
parametrizing class of 7 is the I'-orbit of a character e € X such that the two following equivalent
conditions hold:

(1) the supercuspidal support of m belongs to the inertial class Q(«);

(2) the representation 7 occurs as a subquotient of the compact induction of A(«a) to G.

The parametrizing class of 7 is denoted X(k, ), or simply X () if there is no ambiguity on the
maximal S-extension k.

Remark 3.11. — Let £’ be another maximal -extension of the simple character 6 € C(a, §) in
G. By [33, Théoreme 2.28] there is a character x of e* such that ' = k¢, where ( is the cha-
racter of J trivial on J' that corresponds to the character x o Ng/e o det of G, where Ny, is the
norm map with respect to d/e. Then we have o € X(x/,7) if and only if o/u € X(k, ), where
p is the character x o Ny of k™.

Remark 3.12. — When R has characteristic 0, the two equivalent conditions of Definition 3.10
are also equivalent to:

(3) the representation 7 occurs as a quotient of the compact induction of A(«) to G.

Equivalently, the restriction of 7 to J, contains A(a) as a subrepresentation.

4. Linked /¢-adic representations

In this section, we fix a prime number ¢ different from p. We will distinguish between ¢-adic
and mod /¢ representations by using a tilde ~ for f-adic representations.
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4.1.

Let 7 be an irreducible ¢-adic representation of G. Fix a representative (M, p) in the inertial
class of its cuspidal support, with M a standard Levi subgroup GLy,, (D) x --- x GL,,, (D) and
p of the form p; ® - - - ® p, where p; is an f-adic cuspidal irreducible representation of GL,,, (D)
for i € {1,...,r}, and with m; + --- + m, = m. Since p; is determined up to an unramified
twist, we may assume it is integral (see paragraph 3.2), and fix an irreducible subquotient p; of
its reduction mod ¢. By the classification of mod £ irreducible cuspidal representations in terms
of supercuspidal representations [27, Théoreme 6.14], there are a unique integer u; > 1 dividing
m; and a supercuspidal irreducible representation 7; of degree w; such that the supercuspidal
support of p; is inertially equivalent to

where the factors are repeated k; times, with m; = k;u;.

Definition 4.1. — Let T be an irreducible ¢-adic representation of G as above. Let us write

L=GL, (D! x - xGL, D), 7=71®  ®nN®  ®n® ®T.
S | —

k1 times k, times

The inertial class in G of the supercuspidal pair (L, 7), denoted iy(7), is uniquely determined by
the irreducible representation 7. It is called the mod ¢ inertial supercuspidal support of 7.

Definition 4.2. — Two irreducible f-adic representations 71, 7 of G are said to belong to the
same C-block if ig(71) = ig(72).

An £-block in the set Irr(G, Q) of all isomorphism classes of irreducible f-adic representations
of G is an equivalence class for the equivalence relation defined by iy.

Let 7 be an irreducible ¢-adic representation of G as above. By definition, iy(7) depends only
on the inertial class of the supercuspidal support of 7. Assume 7 is integral.

Lemma 4.3. — All irreducible subquotients occurring in ro(7), the reduction mod £ of T, have
their supercuspidal support in ig(7).

Proof. — The representation 7 is a subquotient of p; x - -+ X p,.. Since 7 is integral, all the p;’s
are integral and, by Proposition 3.2, for each ¢ there is an integer a; > 1 such that

re(pi) = pi + piv + -+ pi® Y
where v denotes the unramified mod ¢ character “absolute value of the reduced norm”. Thus any
irreducible subquotient of r,(7%) occurs as a subquotient of piv/it x --- x p,vi" for some integers
i1,...,% € N. The result now follows by looking at the supercuspidal support of each p;. O

Corollary 4.4. — Any two integral irreducible (-adic representations of G whose reductions
mod £ share a common irreducible component belong to the same £-block.
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4.2.

Let T be a simple irreducible ¢-adic representation of G. There are an integer r > 1 dividing m
and a cuspidal irreducible representation p of G,/ such that the inertial class of its cuspidal
support contains

We may assume p is integral. We fix an irreducible subquotient p of its reduction modulo £. As
in Paragraph 4.1, there are a unique integer u > 1 dividing m/r and a supercuspidal irreducible
representation 7 of degree u such that the supercuspidal support of p is inertially equivalent to
(GLy(D) x - -+ x GLy (D), 7®- - -®7), with m = kur. Therefore, the mod ¢ inertial supercuspidal
support ig(7) of the f-adic simple irreducible representation 7 is the inertial class of the pair

(GLu(D)kT,T R - ®T).

In particular, it is simple.

Recall that, according to [27, Théoreme 6.11], any supercuspidal irreducible mod ¢ represen-
tation can be lifted to an f-adic irreducible representation. The following lemma is an immediate
consequence of the definition of the mod £ inertial supercuspidal support.

Lemma 4.5. — Let T be an L-adic lift of T. Any simple irreducible £-adic representation whose
cuspidal support is inertially equivalent to

(GL,(D)*",7® - -®7)

is in the same £-block as 7. In particular, the (-adic discrete series representation L(T,kr) is in
the same (-block as 7.

4.3.

Recall that we have fixed in Section 2 a smooth character v, : F — QZ, trivial on p but not on
O. Since F is the union of the p~ for 7 > 1 and p is invertible in Zj, it has values in Z;. For any
simple stratum [a, 8] in M,,,(D), the set of simple ¢-adic characters associated with [a, 3] will be
defined with respect to 1y (see Paragraph 3.3), whereas the set of /-modular simple characters
associated with [a, 3] will be defined with respect to the reduction mod ¢ of ¢,. Reduction mod ¢
thus induces a bijection between ¢-adic and ¢-modular simple characters associated with [a, /].
It also induces a bijection between endo-classes of /-adic and ¢-modular simple characters. Thus
we will speak of endo-classes of simple characters, without referring to the coefficient field.

Let © be the endo-class of Paragraphs 3.3-3.5. Fix a S-extension & of a maximal f-adic simple
character in G of endo-class ®, and write X, for the group of ¢-adic characters of k. The map
(3.4) gives us a bijection A; from X/T" onto the set of equivalence classes of T(G,®, Q,). Also
write Y, for the group of /-modular characters of k*, and « for the reduction mod ¢ of k. This
gives us a bijection A, from Y,/T" onto the set of equivalence classes of T(G,®,F;). These two
bijections are compatible in the following sense.
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Proposition 4.6. — Let T be a simple irreducible £-adic representation of G with endo-class ©,
let o € Xy(T) and let ¢ € Yy be the reduction mod £ of . Then the inertial class iy(T) corresponds
through (3.5) and (3.7) to the equivalence class of the simple supertype Ae(o).

Proof. — Write the inertial class of the cuspidal support of T as in (4.1). Let r be the degree of
k over d[«] and & be the ¢-adic supercuspidal representation of GL, (k) associated to «, where
m' = ru. There is a maximal S-extension Ko of GL,, /(D) such that Ko ®dy is a maximal simple
type contained in p. More precisely, with the notation of Paragraph 3.3 and writing M, for the
Levi subgroup GL,,, /(D) x - - - x GLy, (D) € G and U, for the unipotent radical of the parabolic
subgroup made of upper r x r block triangular matrices of G, the representation of J,. n M, on
the J, n U,-invariant subspace of K, is Ko ® - - - ® Ro.

Let p be an irreducible component of the reduction mod ¢ of p. Then p contains the maximal
simple type kg ® og, where kg is the reduction mod ¢ of Ky and o is that of 5.

Let t be the degree of k over d[¢]. By [30, Lemme 3.2], if we write p in the form Sp(r, k), with
7 supercuspidal (see Proposition 3.1), then kr = ¢ and oy is the unique nondegenerate irreducible
subquotient of the induced representation oy x - - - x o1, where o7 is the supercuspidal mod ¢ re-
presentation of GL,,(d) corresponding to ¢. Moreover, if x; denotes the maximal 3-extension
of GL,, (D) such that the representation of J; n My on the J; n Us-invariant subspace of r; is
K1 ® - ® k1, then k1 ® o1 is a maximal simple type contained in 7. The result follows. ]

We keep in mind the following straightforward but important fact.

Remark 4.7. — Two simple irreducible /-adic representations of G in the same ¢-block have
the same endo-class.

The converse does not hold in general, but we have the following result. Given a € X, write
[a] for its I-orbit and ¢ for its reduction mod ¢. The orbit [¢] depends only on [«], and is called
the reduction mod ¢ of [«a].

Proposition 4.8. — Two simple irreducible £-adic representations of G of endo-class © are in
the same £-block if and only if their parametrizing classes have the same reduction mod (.

Proof. — This follows from Propositions 3.5 and 4.6. O

5. Linked complex representations

5.1.

We fix a prime number ¢ different from p and an isomorphism of fields ¢y : C ~ Q,. If 7 is a
complex representation of G, write ¢j7 for the f-adic representation of G obtained by extending
scalars from C to Q, along ¢;.

Definition 5.1. — Two irreducible complex representations 7, mo of G are said to be £-linked
if the irreducible /-adic representations ¢jm and ¢jm2 are in the same ¢-block.

Lemma 5.2. — This definition does not depend on the choice of ty.
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Proof. — Tt is enough to prove that, for any field automorphism 6 € Aut(Q,), two simple /-adic
representations 71 and 7z of G are in the same ¢-block if and only if 7{ and 7§ are in the same
£-block.

Given an irreducible ¢-adic representation 7, let (L, 7) be an element of its mod ¢ inertial su-
percuspidal support as in Definition 4.1. Then the mod £ inertial supercuspidal support of the
irreducible representation %7 is the inertial class of (L, 7). The result follows. O

5.2.

Recall that we have fixed in Section 2 a smooth character ¢ : F — C*, trivial on p but not on
0. For any simple stratum [a, 5], the set of simple complex characters associated with [a, 5] will
be defined with respect to this choice (see Paragraphs 3.3 and 4.3). We may and will assume
that the character ¢y o1 is the character 1, of Paragraph 4.3. This gives us a bijection between
endo-classes of complex and f-adic simple characters of G. Again, we will speak of endo-classes
of simple characters, without referring to the coefficient field.

Let k be a B-extension of some maximal complex simple character in G having endo-class ©.
Write X for the group of complex characters of k*.

Lemma 5.3. — Let m be a simple irreducible complex representation of G with endo-class ©.
Then we have

aeX(k,m) < oaeX (K, ym).

Proof. — We have a € X(k, ) if and only if 7 contains the simple type A(a) = k(o) ® o(a),
which occurs if and only if ¢j7 contains the f-adic simple type ¢j A(«). Thus it suffices to prove
that (f A(«) is equal to S\g(bg o «), where X, is the map as in Paragraph 4.3 defined with respect
to the maximal (-extension ¢} k.

Firstly, the (-adic S-extension K(is o o) associated with ¢ o o with respect to ¢}k is equal to
vy k(a). Secondly, the f-adic supercuspidal representation (¢ o o) associated with ¢y o o (with
respect to the choice of an isomorphism (3.3)) is equal to ¢jo (o), since it is characterized by a
trace formula (see Remark 3.4). The result follows. O

Definition 5.4. — Let a € X. The £-regular part of « is the unique complex character oy € X
whose order is prime to ¢ and such that aazl has order a power of /.

Given « € X, the orbit [ay] depends only on [a]. It is called the ¢-regular part of [a], denoted
[o]e-

Proposition 5.5. — Two simple irreducible complex representations of G with endo-class ©
are U-linked if and only if the {-reqular parts of their parametrizing classes are equal.

Proof. — Let w1, m be simple irreducible complex representations of G with endo-class ©. We
fix a; € X(k, ;) for each i = 1,2. By Lemma 5.3 and Proposition 4.8, the representations 7y, 7o
are ¢-linked if and only if [tpoaq] and [1p0 aa] have the same reduction mod ¢. But the reduction
mod ¢ of [t 0 «, for a character o € X, is the same as that of [¢; o ay]. It follows that we have

[te o (a1)e] = [te o (a2)e], thus [ar]e = [az2]e. O
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5.3.
Recall that g is the cardinality of the residue field of F. For each prime number ¢ dividing

(5.1) ("= " =1)...(¢—1)

we fix an isomorphism of fields ¢y : C ~ Q,.

Definition 5.6. — Two irreducible complex representations m, 7’ of G are linked if there are a
finite family ¢1, ..., ¢, of prime numbers dividing (5.1) and a finite family of irreducible complex
representations © = g, 71,...,m, = 7 such that, for all integers i € {1,...,r}, the representa-

tions m;_1 and m; are ¢;-linked.

Remark 5.7. — By Lemma 5.2, this does not depend on the choice of the isomorphisms ¢y for
¢ dividing (5.1).

Two linked simple complex representations of G have the same endo-class (see Remark 4.7).
The converse is given by the following proposition.

Proposition 5.8. — Two simple irreducible complex representations are linked if and only if
they have the same endo-class.

Proof. — Assume 7 and 7" are simple irreducible complex representations with the same endo-
class ©. Let a and o' be characters in X(m) and X(7'), respectively, and write & = o/a~!. Let
{1, ..., 4, be the prime numbers dividing (5.1). The character £ decomposes uniquely as

§=&...&
where the order of ; is a power of ¢;, for i € {1,...,r}. Write oy = o and define inductively
a; =a;-1-&

for all i e {1,...,r}. Let m; be a simple irreducible complex representation of endo-class ® and
parametrizing class [a;]. The result follows from Proposition 5.5. O

Remark 5.9. — Suppose that m and 7’ are discrete series representations with the same endo-
class. The proof of Proposition 5.8 shows that the simple representations 71, ..., m-—1 linking =
to ' can be chosen to be discrete series representations as well.

5.4.

Let 7 be an irreducible complex representation of G. Fix a representative (M, p) in its cuspidal
support, with M = GL,,, (D) x --- x GLy,.(D) and p = p1 ® - - - ® py, with mq + --- + m, = m,
and where p; is a cuspidal irreducible representation of GL,,, (D) for i € {1,...,r}. Write @, for
the endo-class of p; and g; for the degree of @;. We define the semi-simple endo-class of 7w to be
the formal sum

(5.2) ) =] ”;?d ey
i=1 J*

in the free abelian semigroup generated by all F-endo-classes. It depends only on the inertial
class of the cuspidal support of .
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Note that, if 7 is a simple irreducible representation with endo-class ®, then its semi-simple
endo-class is ©(7) = (n/g) - © where g is the degree of ©.
The following theorem, which is our first main result, generalizes Proposition 5.8.

Theorem 5.10. — Two irreducible complex representations are linked if and only if they have
the same semi-simple endo-class.

Proof. — Any two linked irreducible complex representations automatically have the same semi-
simple endo-class. We thus start with two irreducible complex representations m, 7’ with the
same semi-simple endo-class. By [28, Théoreme 4.16], the representation 7 can be written

T =T1 X7 X+ X T

where 71,79, ..., T are simple irreducible representations whose inertial cuspidal supports are
pairwise distinct, and this decomposition is unique up to renumbering. We have the following
straightforward lemma.

Lemma 5.11. — Let § be an irreducible complex representation of GLy,—(D) for some integer
ke{l,...,m—1}. Let o, o' be two irreducible complex representations of GLk(D), and let =, 7’
be irreducible subquotients of o X & and o’ x &, respectively. If o and o’ are linked, then m and '
are linked.

For each 7 € {1,...,k}, thanks to Lemma 5.11 and Proposition 5.8, we may and will assume
that 7; is a discrete series representation of the form L(p;, r;) for some cuspidal representation p;
of GL,,, (D) with same endo-class as 7; and some integer r;, such that miry + -+ + mgry = m.
We may even assume that p; has minimal degree among all cuspidal irreducible representations
of GL4(D), a = 1, with the same endo-class as m;. This amounts to saying that m; is equal to
9i/(gi,d), where g; is the degree of the endo-class of ;.

Moreover, if p; and p; have the same endo-class for some 4, j € {1,...,k}, then they have the
same degree, thus they are linked. We thus may assume p1,..., pr have distinct endo-classes,
denoted ®q, ..., Oy, respectively.

Similarly, we may assume the representation 7’ decomposes as a product 7} x 75 x -+ x 7},
where 7T§- is a discrete series representation of the form L(pg-, s j) for some cuspidal representation
p;- of GLm; (D) and some integer s ;= 1, and we may assume that the endo-classes e.,...,0;
of pi,...,p} are distinct. It follows that k = ¢ and, up to renumbering, we may assume that we
have ©) = ©, for each i € {1,...,k}. It then follows that p, and p; have the same degree, by
minimality of m;.

Since 7 and 7’ have the same semi-simple endo-class, we have s; = r; for all 4, thus 7, and =
have the same degree. Proposition 5.8 then implies that 7, and 7} are linked. Theorem 5.10 now
follows from Lemma 5.11 again. 0

6. Application to the local Jacquet—Langlands correspondence

We fix n = md and write G = GL,,(D) and H = GL,(F). As in the introduction, we write
D(G, C) for the set of all isomorphism classes of complex discrete series representations of G,
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and similarly for H. We write
(6.1) 7 :D(G,C) - D(H,C)

for the local Jacquet—Langlands correspondence.

6.1.
We fix an isomorphism of fields ¢y : C ~ Q, and write (as in [30])

(62) :ﬁ[ : D(GaQE) - Q(Hvaf)

for the f-adic local Jacquet—Langlands correspondence between ¢-adic discrete series representa-
tions of G and H. The correspondence (6.2) does not depend on the choice of ¢, ([30, Remar-
que 10.1]). According to [2, Paragraph 3.1], there is a unique surjective group homomorphism

]e : fR(H,@) - R(CUQZ)

where R(G, Q,) is the Grothendieck group of finite length /-adic representations of G, with the
following property: given positive integers nq,...,n, such that n; +--- 4+ n, = n and an f-adic
discrete series representation d; of GL,, (F) for each i, the image of the product &1 x --- x 7, by
]g is 0 if n; is not divisible by d for at least one ¢, and is 71 X - - - X T, otherwise, where n; = m;d
and 7; is the f-adic discrete series representation of GL,,, (D) whose Jacquet-Langlands transfer
is 0, for each 1.

By [30, Théoreme 12.4], there exists a unique surjective group homomorphism of Grothendieck
groups J; : R(H, Fy) — R(G,Fy) such that the diagram

R(H,Q,)° —— R(G,Q,)°

rzl lrz

fR(H,Fg) —J—_) :R(G7F€)
4
is commutative, where R(G, Q,)® is the subgroup of R(G, Q,) generated by integral irreducible
representations, and R(G, Fy) is the Grothendieck group of -modular representations of G.

Proposition 6.1. — Let T and o be £-adic discrete series representations of G, and write 51,
o9 for their Jacquet—Langlands transfers to H, respectively. If 61, o2 are in the same £-block of
H, then 7, T are in the same £-block of G.

Proof. — Let us write 0; = L(p;,r;) and k; = k(p;) for i = 1,2. Then kyry = kore, which we
denote by v, and the mod ¢ inertial supercuspidal support of &1 and &5 contains the supercuspidal
pair
(GLy(F) x -+ x GLy(F),7® - ®7),

with uv = m and for some mod ¢ supercuspidal representation 7 of GL, (D). Fix an ¢-adic lift
7 of 7 and write o = L(7,v). The representation & is in the same ¢-block as 1, d9, by Lemma
4.5. If we write 7 for the ¢-adic discrete series representation of G whose transfer to H is &, then
it is enough to prove that 7 is in the same ¢-block as 7.
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In the remainder of the proof, it will be more convenient for us to deal with Speh representa-
tions rather than discrete series representations, as in [30]. We thus apply the Zelevinski invo-
lution to 7, ™ and &, o1 and thus get f-adic Speh representations.

Let us write o* for the Zelevinski dual of &. Its reduction mod ¢ is the ~-modular super-Speh
representation Z(7,v), by [27, Théoréme 9.39]. If we write 7% = Z(&, t) for the Zelevinski dual
of 7, for some ¢ dividing m and some cuspidal irreducible representation & of GL,,, (D), then its
reduction mod ¢ contains the Speh representation Z(c, t) where « is an irreducible component of
the reduction mod ¢ of & (see for instance [30, Proposition 1.10]). The cuspidal representation «
need not be supercuspidal but, according to Proposition 3.1, it can be written as Sp(f3, k) for
k = k(«) and some supercuspidal irreducible representation /3.

We now look at the reduction mod ¢ of the Zelevinski dual of &1. It is Z(p1,71) where py,
the reduction mod ¢ of pj, can be written as Sp(7yx, k1) for some unramified character x. By
twisting 71 by an unramified character of G, we may assume that x is trivial. According to [27,
Lemme 9.41], the representation Z(p1, k1) decomposes as a Z-linear combination of products of
the form

Z(tv" vy) x -+ X L(TV' v,)
with v1+---+v, = vandiq,...,i, € Z, where v stands for the absolute value of the reduced norm,
as usual. (For an explicit formula for this decomposition, see [30, Sections 11 and 12].) Thanks
to the commutative diagram above, the reduction modulo £ of the Zelevinski dual of 7y will be
made of products of the form

Z(aw™ t) x --- x Z(aw' t,)

with t1 +---+t, =t and i1,...,1, € Z, all of whose irreducible subquotients have supercuspidal
support inertially equivalent to (GLy (D) x - - - x GLy (D), ®- - -® ), with wkt = m. The result
follows from Corollary 4.4. O
6.2.

Proposition 6.1 implies that two complex discrete series representations 71, w9 of G are linked
if their Jacquet—Langlands transfers are linked. We have the following refinement.

Proposition 6.2. — Let 7 and T be £-adic discrete series representations of G, and write 51,
o9 for their Jacquet—Langlands transfers to H, respectively. Then &1, o2 are in the same £-block
of H if and only if w1, T2 are in the same £-block of G.

Proof. — Proposition 6.1 implies that the ¢-adic Jacquet—Langlands correspondence (6.2) indu-
ces a well-defined map from ¢-blocks of discrete series representations of H to those of G: given
an ¢-block of H, if & is any f-adic discrete series representation in that block, then the ¢-block of
the transfer to G of & is independent of the choice of &. This map also preserves depth so that,
for any non-negative rational number r € Q. , we get a well-defined map from ¢-blocks of discrete
series representations of depth r of H to f-blocks of discrete series representations of depth r of
G. This map is between two finite sets of the same cardinality, since they are parametrized by
the same objects: an endo-class of depth r and, by Proposition 4.8, a parametrizing class upto
reduction mod /¢. It is clearly surjective, so is also injective. O



22 VINCENT SECHERRE & SHAUN STEVENS

Allowing ¢ to vary, we deduce

Theorem 6.3. — Two complex discrete series representations of G are linked if and only if
their transfers to H are linked.

It follows that Proposition 5.8 (together with Remark 5.9) induces a map
(6.3) 7y : Ep(F) — &, (F)

depending on G, where &, (F) is the set of F-endo-classes of degree dividing n. More precisely,
given an endo-class © € &£, (F) and a complex discrete series representation m of G of endo-class
®, the endo-class of the Jacquet—Langlands transfer of 7 to H depends only on ®: we denote it
71(®). This map does not depend on the choice of the isomorphisms ¢, for ¢ dividing (5.1).

Proposition 6.4. — The map 1 is bijective.

Proof. — This map is clearly surjective: given an endo-class ® € &, (F), and any discrete series
representation o € D(H, C) with endo-class ©, the endo-class of its inverse Jacquet—Langlands
transfer 771 (o) € D(G, C) is an antecedent of © by 7.

Now let 7, 7' € D(G, C) have Jacquet—Langlands transfers o, o’ to H with the same endo-class.
By Proposition 5.8 and Remark 5.9, the representations o, ¢’ are linked by a family of discrete
series representations. By Theorem 6.3, the same holds for 7 and #’. Thus they have the same
endo-class. O

Recall that the parametric degree of a cuspidal representation of G has been defined in §3.1.

Proposition 6.5. — For every complex discrete series representation of G, there is a cuspidal
complex representation of G with the same endo-class and with parametric degree n.

Proof. — Let m be a complex discrete series representation of G with endo-class ®@. To find a
complex cuspidal representation with same endo-class and parametric degree n, we need to find
a Gal(k/d)-regular complex character o € X which is also Gal(k/e)-regular. The latter implies
the former, so let us find a Gal(k/e)-regular character o € X. For this, it is enough to choose
for o a generator of the cyclic group X. O

As an immediate consequence, we see that, given an endo-class © in &, (F), if there is a single
complex cuspidal representation p of G with endo-class ® and parametric degree n such that
7(p) has endo-class ©, then 71 (@) is equal to ©.

6.3.

In this paragraph, the division algebra D is fixed, but we allow the positive integer m to vary.
Given an m > 1, we write 7y 5, for the map (6.3) induced by the Jacquet-Langlands correspon-
dence from D(GL,, (D), C) to D(GL,4(F), C). Recall (see Lemma 3.3) that, associated with an
endo-class © € E(F), there is an integer called its ramification index.
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Theorem 6.6. — (1) There is a unique map

depending only on D, such that, for any integer m = 1, the restriction of j to En,q(F) coincides
with the map w1 .

(2) The map j is bijective, and it is the identity on all essentially tame endo-classes (that is,
all endo-classes whose ramification index is prime to p).

Proof. — Uniqueness follows from the fact that &(F) is the union of the &,,4(F), for m > 1.

In order to prove the existence of j, it suffices to prove that for all m,k > 1, the maps 71,
and 71, coincide on E,q(F) N Exa(F) = €,4(F), where r denotes the greatest common divisor
of m, k. For this, let ® € &,4(F), and p be a cuspidal irreducible representation of GL, (D) with
endo-class © and parametric degree rd. Its Jacquet—Langlands transfer to GL,4(F) is a cuspidal
representation denoted o, whose endo-class is denoted @’. Then, for any a > 1, the discrete
series representation L(p, a) of GL,,-(D) has endo-class ©, and its transfer L(o, a) to GLyqq(F)
has endo-class ©'. It follows that m1,,(®) = 71 ,(®) = O'. The bijectivity of j follows from
the fact that all the maps 7y ,,, for m > 1, are bijective.

To prove the second part of (2), given an essentially tame endo-class ©, it suffices to find a
single complex cuspidal representation p of G with endo-class ® and parametric degree n such
that 7(p) has endo-class @. But it follows from [13] — which gives an explicit, type-theoretic
description of the Jacquet—Langlands transfer of complex cuspidal representations of G with
essentially tame endo-class and parametric degree n — that this is true of any complex cuspidal
representation p of G with endo-class ® and parametric degree n. O

Remark 6.7. — After this paper was written, Dotto proved the Endo-class Invariance Conjec-
ture in [20]. Thus it is now known that the map j of Theorem 6.6 is in fact the identity.

7. Reduction to the maximal totally ramified case

We continue with the previous notation, so that G = GL,,(D) and H = GL,(F). In this sec-
tion, we closely follow the ideas of [13, Section 6] to make a further reduction to the maximal to-
tally ramified case (see Paragraph 1.1). All representations in this section are complex.

7.1.

Let 7 be a cuspidal (complex) representation of G with parametric degree n. Let (J,A) be an
extended maximal simple type of G contained in 7 [28, §3.1 and Théoréme 3.11], attached to
a simple stratum [a, 8] and a simple character 6 € C(a, 3). Write B for the centralizer of § in
M, (D), so that B ~ M,,/(D’), for some integer m’ > 1 and F[f]-division algebra D’". Fix a max-
imal unramified extension L of F[4] in B, and write K for the maximal unramified subextension
of L over F.

We fix a root of unity ¢ € K of order relatively prime to p such that K = F[(]. Write Gk for
the centralizer of K in G. Let u be a pro-unipotent, elliptic regular element of Gk in the sense
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of [13, Paragraph 1.6]. The element h = Cu then lies in the set Gfgg of elliptic regular elements
of G, so we have

tr 7 ( Z tr A lhx
2eG/J

as in [13, (6.3.1)]. Write J = J(a,5) =J na*. A coset 2J can only contribute to the sum if we
have 2~ 'hx € J or, equivalently, 2 'hz € J. As in [13, 6.3 Lemma], such a coset xJ is contained
in Ng(K)J, where Ng(K) is the normalizer of K in G.

Write ¥ for the Galois group of K/F and I for that of L/F[/3]. Restriction of operators identi-
fies " with a subgroup of ¥. Write ¥y for the unique subgroup of T' (thus of ¥) of order m’s(m),
where s(7) is the integer introduced in Paragraph 3.1. Observe, thanks to the description of the
group J in [34, 5.1], that Wy is the image of JnNg(K) under the surjective map Ng(K)/Gk — V.
As in [13, (6.3.2)], we have

tr m(Cu) = Z Z tr Ay~ ' ¢ u®y)

(XE\IJ/\I’t yGGK/JK

where Jx = J n Gg.
Let us fix a uniformizer wg of F. We choose an irreducible representation x of J such that:

(1) the restriction of k to J is a S-extension of 6;
(2) the character det(x) has order a power of p;
(3) the automorphism k(wr) is the identity.

Note that such a representation is not unique. We now write
o = Homji (K, A)

which carries an action of J given by g- f = A(g) o fok(g)~! for g€ J and f € o. This repre-
sentation is irreducible and trivial on J' = J!(a, 3), and we have the decomposition A = k ® o.
As in [13, (6.4.1)] this gives us

tr w(Cu) = Z tr o(¢%) Z tr k(y1C%uy).

ael /Ty yeGk /I

We are now going to interpret the sum over Gk /Jk as the trace of a cuspidal irreducible repre-
sentation of Gg.

7.2.

Write 0k for the restriction of # to H!(a, 3) n Gk, which is the interior K/F-lift of the simple
character 6 in the sense of [6, Section 5]. The group Jk is also the normalizer of 6k in Gg. We
choose an irreducible representation ki of Jx such that:

(1) the restriction of kk to Jk is a S-extension of fx;
(2) the character det(kk) has order a power of p;
(3) the automorphism ki (wr) is the identity.
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Again, such a choice may not be unique. The pair (Jk, kKk) is an extended maximal simple type
in Gk. It thus defines a cuspidal irreducible representation p of Gk. By [12, (3.4.3) and (5.6.2)],
there is a sign € € {—1, 41} such that

tr H,(y_lCo‘uay) =e€-tr mK(y_lgo‘uo‘y).
As in [13, (6.4.2)] this gives us

(7.1) tr m(Cu) =€ Z tr o(¢%) tr po‘_l(u).

CME\I//\IIt

We do not know whether a result similar to [13, 6.5 Lemma] holds, that is, we do not know whe-
ther the W-stabilizers of p and of its inertial class are both equal to I'. However, let ¥ denote the
stabilizer in ¥ of the inertial class of p and let Xy be a set of representatives for ¥ mod ¥q. For
7 € ¥ there is an unramified character x., of Gk such that p7_1 >~ pX,. Since u is pro-unipotent
(thus compact) we have ng(u) =1, for all a € U/W¥;. Therefore (7.1) can be rewritten as

(7.2) tr m(Cu) =€ Z tr pail(u) Z tr o(¢*7)

aeXg ')/G‘l/o/‘l/t

Note that the map

(7.3) w:(— Z tr o(¢7)

’76‘1’0/‘1&

is not identically zero on the set of K/F-regular roots of unity, by [38, Theorem 1.1(ii)]. Thus
there is an o € ¥ such that the coefficient w(¢®) in (7.2) is nonzero.

7.3.

Now write 7’ for the Jacquet—Langlands transfer of 7 to H. Since 7w has parametric degree n,
the torsion number ¢(7) is equal to the degree of K over F. We now do for 7/ what we did for .

Let (J', X') be an extended maximal simple type of H contained in 7/, attached to a simple stra-
tum [a, 3']. Write B for the centralizer of 5" in M, (F), fix a maximal unramified extension L’
of F[#'] in B" and write K’ for the maximal unramified subextension of L’ over F. The relation
t(r) = t(n'), together with the fact that 7’ also has parametric degree n, implies that K’ and K
have the same degree over F. Therefore, we may identify the maximal unramified subextension
of I'/F with K.

We have an analogue o’ of o and an analogue p’ of p in the argument of the previous paragraph
so that we get

tr 7' (Cu') = € 2 tr p'a,_l(u’) Z tr o (¢
o’eX) el /U

where ( € K is as above, v is a pro-unipotent elliptic regular element of the centralizer Hg of K
in H, ¢ € {—1, +1} is a sign and the subgroups ¥{, ¥(, and X{, are defined as in the previous para-
graph. If (v’ is chosen to have the same reduced characteristic polynomial over F as (u, this is
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equal to (—1)"~" - tr w(Cu), by the trace relation characterizing the Jacquet—Langlands corres-
pondence. We thus get:

¢ YL w(E) T W) = (—1)" e Y w(c) T (u)

a’eXy aeXy

where the function w and its analogue w’ are defined by (7.3).

We apply [13, 6.6 Lemma] (note that p has maximal parametric degree since L/K is maximal).
The p@ ", o' € X{, are not unramified twists of each other, and the same holds for the Jacquet—
Langlands transfers to Hk of the pa_l, a € Xg. Thanks to the linear independence of characters,
it follows that there is an a € ¥ such that

a1

mx(p” ) =p'x
for some unramified character x of Hg, where 7 is the local Jacquet—Langlands correspondence
from Gk to Hyk.

Assume now that mg preserves K-endo-classes for maximal totally ramified cuspidal represen-
tations of Gx. Write E(F) for the set of endo-classes over F, and likewise €(K). The representa-
tions pa_1 and p’ have the same endo-class in €(K). But the K-endo-class of p"‘_1 (respectively,
of p') is a K/F-lift of the F-endo-class of 7 (respectively, of 7’) in the sense of [8, Definition 9.7].
It follows (for instance by applying the restriction map of [8, Corollary 9.13] from E(K) to E(F))
that 7, 7’ have the same F-endo-class. Thus we have proved Theorem A of the introduction:

Theorem 7.1. — Assume that, for all F and n, and all maximal totally ramified, cuspidal irre-
ducible complex representations p of G, the representations p and m(p) have the same endo-class.
Then the map 71 s the identity.

8. Explicit Jacquet—Langlands correspondence up to unramified twist

Now let us fix an endo-class © € &,,(F), and suppose that 71 (®) = ©. Write Dy(G, ®) for the
set of inertial classes of discrete series representations of G with endo-class ®. The local Jac-
quet-Langlands correspondence (6.1) thus induces a bijective map

(81) ™o - @0((}, @) i ﬂo(H, @)

The cuspidal support induces a bijection between Dy (G, ®) and the set of inertial classes of sim-
ple supercuspidal pairs of G with endo-class ©.

8.1.

We fix a simple stratum [a, 3] in M,, (D) such that b = a n B is maximal in B, together with a
simple character 6 € C(a, 3) with endo-class ©, and a S-extension k of 8. The integer m’ coming
from (3.3) is m' = m(d, g)/g, where g denotes the degree of @. Write X for the group of complex
characters of k. Thanks to Proposition 3.5 (see also (3.7)) we have a bijective map

X/I — Do(G,O)

®.2) 0] = Qr.a)
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where Q(k, @) is the inertial class of discrete series representations of G that contain the simple
type A(«).

Similarly, we choose a maximal simple character 6’ € C(a’, #) in H with endo-class © together
with a maximal 3-extension ' of #'. We fix a finite extension k' of the residue field €’ of F[3'] of
degree n’ = n/g, which gives us a parameter set X'/I". We thus get a bijection [o/] — Q(K/, &)
between X'/ and Dy (H, ©), similar to (8.2).

Let us fix an isomorphism of f-extensions e ~ €/, where f denotes the residue field of F. We
thus may assume that k' = k, which identifies the parameter sets X’/T" and X/T". Let Y be the
unique bijective map such that the diagram

XTr — X/

| |

Do(G,®) —— Dy(H, ©)

70

is commutative, where the vertical maps are given by (8.2) and its analogue for H. It depends on

the choice of the maximal S-extensions x and ', as well as the f-isomorphism e ~ €’ (see Remark

3.7 for the dependency in k). We would like to describe Y. The purpose of Proposition 8.8 below

is to show that, in a certain sense, by considering various m > 1 such that md is divisible by the

degree of ©, one can reduce the computation of YT ([a]) to the case where « is suitably regular.
By Proposition 5.5 and Corollary 6.2, we have the following fact.

Proposition 8.1. — For any prime number £, the bijection Y is compatible with taking (-regqu-
lar parts. More precisely, the I'-orbits of o, 5 € X have the same £-reqular part if and only if the
[-orbits Y([a]) and Y([B]) have the same L-regular part.

Proposition 8.1 suggests that, with a suitable choice of ¢, it may be possible to deduce Y ([«])
from the knowledge of Y([5]). We will illustrate this idea in Proposition 8.8 below.

8.2.

We first give another property of the map Y. Set n’ = n/g = m’d’. Given a € X, let f be the
cardinality of its I'-orbit, and write
d/

(8.3) s(@) = sp([a]) = F.d)

Recall that d’ is the degree of d over e (the residue field of F[3]), thus d’ = d/(d, g). Note that the
cardinality of its Gal(k/d)-orbit is equal to f/(f,d’), which was denoted by u in Paragraph 3.3.

Definition 8.2. — We call the integer f the parametric degree of o € X.

This is related to the notion of parametric degree for a discrete series representation as follows:
any discrete series representation in Q(k, a) has parametric degree fg.

Since the local Jacquet—Langlands correspondence preserves the parametric degree (see [13])
we have the following result.

Lemma 8.3. — For all a € X, the parametric degrees of [a] and Y ([«]) are equal.
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Note that Q(x, ) is made of cuspidal representations with cuspidal Jacquet—Langlands trans-
fers if and only if f = n’, that is, if and only if « is e-regular. Indeed, from [13], a discrete series
representation of G is cuspidal with cuspidal Jacquet—Langlands transfer if and only if its para-
metric degree is n.

8.3.

Let a > 1 be a positive integer. We consider the simple stratum [a*, 8] in Mg, (D), where a* is
the hereditary order M, (a), and write 8* € C(a*, 5) for the transfer of  in the sense of [32, 3.3.3].
Associated with k, there is a coherent choice of a maximal S-extension x* of the simple character
6* (|28, Remarque 5.17]). We fix a finite extension k* of k of degree a. Write X* for the group
of complex characters of k** and I'* for the Galois group of k*/e. Repeating the arguments of
Paragraph 8.1 with GLg, (D) and GL4y, (F), we get a bijective map YT* : X*/I'* — X*/I'*. We
have the following straightforward result.

Lemma 8.4. — Let|[a] € X/T, and let L(p,r) be in the inertial class Q(k, «), for some integer r
dividing m and some irreducible cuspidal representation p of GLy, (D). Then L(p,ar) is in the
inertial class Q(k*, a*), where o* is the character a o Ny« of K**.

Proof. — With the notation of Paragraph 3.3 and writing M for the Levi subgroup Gx---x G <
GL4m (D) and U for the unipotent radical of the parabolic subgroup made of upper a x a block
triangular matrices of GLg, (D), this follows from the fact that the representation of J(a, ) "M
on the J(a, 3) n U-invariant subspace of the transfer s}, of k* to J(a¥.,0) s k®---®k. O

For a € X, the orbit [o*] depends only on [«], and we denote it [a]*. By Lemma 8.4 we thus
have

for any character « € X.
Given « € X, we write f for its parametric degree, and e[«a] for the subfield of k of degree f
over e.

Lemma 8.5. — Let a € X. There are an integer a = 1, a prime number £ # p not dividing the
order of e[a]* and an e-regular character B € X* such that 8 = a* mod £.

Proof. — First recall the following result, known as Zsigmondy’s Theorem [45].

Lemma 8.6. — Let b,r = 2 be integers. There exists a prime number £ which divides b" —1 but
not b —1 for anyie {1,...,r—1}, except whenr =6 and b = 2, and when r = 2 and b = 2k 1
for some k = 1.

Let us write Q for the cardinality of e, and let us fix an a > 1 such that an’ > 6f. Applying
Lemma 8.6 with b = Qf and r = an//f, we obtain a prime number ¢ dividing " — 1 but not
dividing b° — 1 for any i € {1,...,7 — 1}. It follows that b has order r in the group (Z/(Z)*.

Let £ be a nontrivial character of k** of order £. Then the character 8 = £a* is congruent to
a* mod ¢. Since the order of « is prime to ¢ (for it divides b — 1), the cardinality of the I'-orbit
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of 8 is the least common multiple of f and the order of Q in (Z/¢Z)*. This cardinality is equal
to fr = an’, thus (3 is e-regular. O

Remark 8.7. — (1) The choice a = 1 is not always possible. For instance, if « is trivial, e
has 7 elements and n’ = 2, then no prime number / satisfies the required condition. We thank
Guy Henniart for a suggestion that brought us to introduce the process described here.
(2) The proof of Lemma 8.5 shows that, for any character a € X, we can choose a to be any
integer > 7. Moreover, the choice of a and £ only depend on the parametric degree f, not on a.
(3) Note that ¢ cannot be 2. Indeed we have ¢ # p and, if p is odd, then the fact that ¢ does
not divide Qf — 1 (the order of e[a]*) implies that £ # 2.

With the notation of Lemma 8.5, we get the following result.

Proposition 8.8. — Assume that Y*([5])

= [Bu] for some character u € X*. Then puy = v*
for some character v € X and we have Y([a]) =

[av].

Proof. — Let us write Y([a]) = [¢/] for some o/ € X. Then [o/*] = [Su] mod £. By Lemma 8.3,
the parametric degree of o’ is f, thus e[a/] = e[a]. It follows that ¢ does not divide the order of
o/. Write 3 = £a* for some character £ whose order is a power of £. Taking ¢-regular parts, we
get [o/*], = [&/*] = [a*p,]. Changing o/ in its I-orbit, we may assume that o/* = o*u,. Thus
e = v* for some v € X. Since Ny« 4, is surjective, we get T([a]) = [av]. O

9. The essentially tame case

The purpose of this section is to illustrate Proposition 8.8 in the essentially tame case. Assume
that @ is essentially tame: we thus have 71 (®) = © by Corollary 6.6. As in Paragraph 8.1, we
will fix maximal simple characters 6, 6’ in G, H with endo-class ©, but we must be careful here:
for our purpose, these choices have to be compatible, in a sense that we define in Paragraph 9.1.

That we need to take care of this compatibility was brought to our attention by the work of
Dotto [20], who resolves this rigidity problem in essentially the same way, though with a slightly
different language.

Recall (Corollary 6.6 and Lemma 3.3) that the tameness assumption on © means that F[3]
is tamely ramified over F, for any simple stratum [a, 8] and any simple character § € C(a, 3) of
endo-class ®. We will see other properties of essentially tame endo-classes below. We also refer
the reader to [11, Section 1] for more details.

As in Section 8, we write g for the degree of ® and set n’ = n/g.

9.1.

In order to formulate our Compatibility Assumption below, it is convenient to use the notion
of ps-character defined in [6, Definition 1.5]. Fix once and for all a separable closure F of F. Its
residue field f is an algebraic closure of the residue field f of F. Let k be the unique extension
of f of degree n’ contained in f and write X for the group of complex characters of k*.
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Let us fix a ps-character (0,0, 3) of endo-class ® with 3 € F. Write E for the field F[3] and e
for its residue field, which canonically identifies with an extension of f contained in k. Write I’
for the Galois group of k over e. Since © is essentially tame, E is tamely ramified over F.

We now fix a homomorphism ¢ : E — M,,, (D) of F-algebras and a principal order a in M,,(D)
normalized by ¢E*, such that the intersection b of a with the centralizer B of tE in M,,(D) is a
maximal order. By [6, Definition 1.5], this gives us a maximal simple stratum [a,¢3] in M,,(D)
and a maximal simple character 6 € C(a, ) of endo-class @. This also defines an f-isomorphism

o, e — e

where e, denotes the residue field of tE. As in Paragraph 3.3, we fix an extension k, of e,. Write
X, for the group of complex characters of (k,)* and I', for the Galois group of k, over e,. The
f-isomorphism ¢, allows us to identify X/T" and X,/T",. Write x for the unique (-extension of ¢
whose determinant has order a power of p. This choice gives us a bijective map between X, /T,
and Do(G, ®) as in (8.2). Composing with the identification above, we get a bijection

(9.1) X/T — Do(G, ©)

denoted w, depending on the various choices we have made.

Using the same ps-character (0,0, 3) as above, we now make similar choices for H: an F-homo-
morphism ¢/ : E — M,,(F) and a principal order a’. This gives us a maximal simple character ¢’,
which is the transfer of 6 in the sense of [32, Paragraph 3.3.3]. Let «’ be its unique [-extension
whose determinant has order a power of p. This gives us a bijection X/T" — Do(H, ©), denoted
w’. Putting the bijections w, w’ and the inertial Jacquet-Langlands correspondence m( of (8.1)
together, we get a permutation T = w'~! om0 w of X/T.

Remark 9.1. — This permutation depends a priori on the choice of the ps-character (0,0, 3)
with endo-class ©, as well as of that of ¢, a,/,a’. Under the Compatibility Assumption below,
Theorem 9.3 will show that T is actually independent of these choices.

We now go back to the simple character . Restricting it to the 1-units of b, it takes the form
&9 o Nrdp for a unique character &y of the 1-units 1 + p,g, where Nrdg denotes the reduced norm
of B (see [32, 3.3.2]). Composing with ¢, we get a character {y o ¢ of 1 + pg. Similarly, we have
a character &y ot/ of the same group.

Compatibility Assumption. We assume that
(9.2) {9 oL = 69/ o 1,/
on 1+ pg.

From now on, we assume that the Compatibility Assumption is satisfied. The character (9.2)
of the 1-units 1 + pg will be denoted &y.

Remark 9.2. — Let E(F) denote the set of all endo-classes over F, and define £(E) accordingly.
There is a canonical map

E(E) — &(F)
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given by [8, Corollary 9.3] (see also [15, Chapter 2]), called the restriction map. It is surjective
with finite fibers. According to [11, Paragraph 1.2], we can identify E-endo-classes of degree 1
with characters of 1 + pg. The tameness assumption on © implies that the E/F-lifts of ©, that
is, the endo-classes in €(E) whose restriction to &(F) is ©, all have degree 1. Besides, & is one of
these lifts, and the map v — &y oy induces a bijection between Autp(E) and the set of E/F-lifts
of ® (see [15, Corollary 2.4])). This gives us a full description of the E/F-lifts of ©.

Our purpose is to get a formula for Y. In Paragraph 9.4, we will use the results of [13] in order
to compute the I'-orbit Y ([«]) for e-regular characters « € X. We will then use Proposition 8.8
to extend this formula to all characters «.

Theorem 9.3. — There is a canonically determined character p of k™, depending only on m,
d and ©, such that > = 1 and
T([e]) = [ap]

for all characters a € X.

More precisely, we will see that the character p is the “rectifier” given by Bushnell-Henniart’s
First Comparison Theorem [13, 6.1] together with [13, Corollary 6.9 and (6.7.4)]. Since the re-
sults from [13] we will use are formulated in terms of admissible pairs, we first have to transla-
te them in terms of our a-parameters.

Let us write X,¢g for the set of e-regular characters in X.

9.2.
We first recall the definition of admissible pairs [24, 13], and basic facts about them.

Definition 9.4. — An admissible pair is a pair (L/F, ) made of a finite, tamely ramified field
extension L/F and a character £ of L* such that:

(1) & does not factor through Ny, i for any field K such that F <€ K < L;
2) if the restriction of € to the 1-units 1+ pr, factors through Ny, /¢ for some field K such that
/
F c K ¢ L, then L/K is unramified.

Two admissible pairs (L;/F,&;), i = 1,2, are said to be isomorphic if there is an F-isomorphism
¢ : Lo — Lp such that & = & o ¢. The degree of an admissible pair (L/F,¢) is [L : F]. We also
introduce the following definition, which will be convenient to us.

Definition 9.5. — Two admissible pairs (L;/F,&;) for i = 1,2, are said to be inertially equiva-
lent if there are an unramified character y of L and an isomorphism ¢ : Ly — L of extensions
of F such that x& = & o ¢. We will write [L;/F,&;] for the inertial class of (Li/F, ;).

Let (L/F, &) be an admissible pair. By [13, 4.1 Lemma], there is a unique sub-extension P/F
of L/F such that & | 1+py, factors through the norm Ny, sp and which is minimal for this property.
It is called the parameter field of the admissible pair. Then L/P is unramified and, if we write
§ | 14+pL = {1 0Ny p for some character & of 1+ pp, then (P/F,&;) is an admissible 1-pair in the
sense of [13, 3.3], that is, & does not factor through Ny, i for any field K such that F < K < L.
According to [11, Theorem 1.3], there is a canonical bijective map between isomorphism classes
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of admissible 1-pairs over F and essentially tame endo-classes over F. Therefore, the admissible
1-pair (P/F, &) determines an essentially tame endo-class, which depends on the inertial class of
(L/F, &) only.

Recall that we have fixed an endo-class ® and a character &, of 1 + pg in the Compatibility
Assumption of Paragraph 9.1.

Lemma 9.6. — Any admissible pair having endo-class © is isomorphic to an admissible pair
(L/F, &) with associated 1-pair (E/F, &p).

Proof. — Suppose that (L/F, &) has endo-class ©, and let (P/F,&;) be its associated admissible
1-pair. By looking at [11, Paragraph 1.3] in more detail, it follows that P is F-isomorphic to E.
Up to isomorphism, we thus may assume that P is equal to E. By Remark 9.2, the characters
&1, & of 1+pg, which define the same endo-class ®, are conjugate under the automorphism group
Autp(E). Therefore, up to isomorphism, we may assume these characters &1, & are equal. [

9.3.

Let (L/F, &) be an admissible pair with endo-class © and degree t dividing n. By Lemma 9.6,
we may assume that it has associated 1-pair (E/F, ). We may also assume that L is contained
in F. By [13, 4.3 Lemma 1], there is a unique character &, of the group of units O such that:

(1) the characters &, and & coincide on the principal unit subgroup 1 + pr;
(2) the order of &, is a power of p.

The character €€, of O is tamely ramified: it thus induces a character & of 1*, where [ is the
residue field of L. This character only depends on the inertial class of (L/F,¢).

Since (L/F,§) is an admissible pair with parameter field E, the residue field I is an extension
of e and &; is an e-regular character of 1. Since L € F, the residue field I naturally embeds in
k. Write a¢ for the character & o Ny of k™. Its parametric degree f is equal to [L : E]. We
thus have t = fg.

We write P, (©) for the set of inertial classes of admissible pairs with endo-class ® and degree
dividing n.

Lemma 9.7. — (1) The character ag is e-regular if and only if [L : F] = n.
(2) The map
(9.3) [L/F,&] = [ag]

induces a bijection between the set of inertial classes of admissible pairs in P, (©) and X/T'.
Remark 9.8. — The map (9.3) depends on the choices we have made in Paragraph 9.1.

Proof. — The character g is e-regular if and only if f = n’/. Multiplying by g, this is equivalent
to t = n. This gives us the first part of the lemma.

Given « € X, there is a uniquely determined field I such that e € I € k and « factors through
the norm Ny, ;, and which is minimal for this property. Write a = 8o Ny for some character
of 1, which is e-regular by minimality of I. Let L be an unramified extension of E with residue
field I. Then § inflates to a tamely ramified character of the units subgroup of L, still denoted /.
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Now write &, for the character of O] of p-power order extending the character & o Ny, / of the
1-units of L, and let & be any character of L™ extending &, 3. Since the character 5 is e-regular,
it follows that the pair (L/F,&) is admissible. The I'-orbit [a¢] associated with its inertial class
is equal to [«]. The map (9.3) is thus surjective.

We now assume that we have two admissible pairs (L;/F, ;) for i = 1,2, with same image [«]
in X/T. For each i, we may assume that (L;/F, ;) has associated 1-pair (E/F, ) by Lemma 9.6,
and we may further assume that L; € F. The character & | 1 + py,, thus factors through N Li/E
and E is minimal for this property. We have an e-regular character & of 1., where I; is the
residue field of L;. Since [ag, ], [, ] are equal, they have the same cardinality f. The fields Iy,
l5 thus have the same degree over e, and Lj, L have the same degree f over E. We thus have
L; = Ly, denoted L. We now have two characters &; ; and &2 of 1™, which are conjugate under
Gal(l/e). Changing again (Lg/F,&2) in its isomorphism class, we may assume that they are
equal. Thus the admissible pairs (L;/F,&;), for ¢ = 1,2, are inertially equivalent. O

9.4.

The Parametrization Theorem [13, 6.1] gives us a canonical bijection
(9.4) (L/F,€) — II(G, &)

between isomorphism classes of admissible pairs of degree n and isomorphism classes of essential-
ly tame irreducible cuspidal representations of G (that is, cuspidal representations with essential-
ly tame endo-class) of parametric degree n.

Lemma 9.9. — (1) Given an admissible pair (L/F, &) of degree n and with associated 1-pair

(E/F, &), the irreducible cuspidal representation II(G, ) belongs to the inertial class Uk, o).
(2) The bijection (9.4) induces a bijection between inertial classes of admissible pairs of degree

n and inertial classes of essentially tame cuspidal representations of G of parametric degree n.

Proof. — By examining the construction of [13, 4.2 and 4.3], we see that an essentially tame ir-
reducible cuspidal representation of endo-class ® will correspond through (9.4) to an admissible
pair (L/F, &) with associated 1-pair (E/F, &) if and only if it contains the maximal simple type
k ® o, where o is the irreducible cuspidal representation of § whose Green parameter in X/T" is
[ag]. Comparing with the construction of Paragraph 3.3, the simple type £ ® o is A(ag). This
gives us the first part of the lemma.

An inertial class of essentially tame cuspidal representations of G with endo-class ® has the
form Q(k, o) for some a € X;eg. The second part of the lemma thus follows from Lemma 9.7. [

We now prove Theorem 9.3 for e-regular characters of X.

Proposition 9.10. — (1) There is a canonically determined character p € X, depending on
m, d and © only, such that u?> =1 and

T([a]) = [ap]

for all characters o € Xieg.
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(2) The character u is non-trivial if and only if p # 2 and the integer
y(©,m,d) =m(d—1)+m'(d — 1) + u(v — 1)
is odd, where the integers u,v = 1 are defined by uv = n/w, v = d/(d,w) with w = n/e(E/F).

Proof. — Let a € X and let (L/F, £) be an admissible pair of degree n and endo-class ® whose
inertial class is associated with [«]. By [13, Theorem A], there is a tamely ramified character
v of L* such that (L/F,£v) is admissible, 12 is trivial and the Jacquet-Langlands transfer of
II(G,¢) is II(H, &v).

Now suppose that (L/F, ) has associated 1-pair (E/F, &) and L is contained in F. Since L/F
has degree n and L is unramified over E, the residue field of L. canonically identifies with k. We
write p for the character of k™ induced by the restriction of v to the units subgroup of L. This
character is entirely described by [13, Corollary 6.9], which gives us Part 2 of the proposition.

Taking inertial classes and using Lemma 9.9, the Jacquet—Langlands correspondence matches
together the inertial class Q(k, a) of TI(G, &) with that of TI(H, {v), and the latter can be written
Q(K', o) for [o/] = [ag,] = [ap]. The result follows. O

9.5.

We now prove Theorem 9.3. Following Remark 8.7, let us fix an odd integer a > 7. We will see
below why it is convenient to choose a odd. We use the notation introduced in Paragraph 8.3. In
particular, we have S-extensions k*, k’* and a permutation T* of X*/T'*. We must pay attention
to the fact that the determinants of x*, x'* have orders which may not be powers of p, thus
Proposition 9.10 may not apply to T* directly.

Let us write x, for the S-extension on J(a*,:3) whose determinant has order a power of p. By
Remark 3.11 there is a character ¢ of J(a*,¢3) trivial on J!(a*,:3) such that Ky = k*C. This
induces a character of GLy(d) of the form x o ¢, o Ng/, o det for some character x of e*.

Similarly, we have a S-extension /{Z’D* whose determinant has order a power of p, and characters
¢',x" such that s = #™*(¢’ and ¢’ induces the character x’ o ¢ o det of GL,/(e,). We write ¥,
for the permutation of X*/I'* corresponding to the maximal S-extensions x5 and x;’. We write
§ for the character (x'x~!) o Npx /e € X*.

Lemma 9.11. — The character 6 is trivial.

Proof. — Let B € X* be an e-regular character. Applying Proposition 9.10 to ¥, gives us the
equality U, ([5]) = [BA] where X € X* is the rectifying character corresponding to am, d and @©.
Since a has been chosen to be odd, we have

y(©®,am,d) = y(©,m,d) mod 2.

It follows that A is trivial if and only if p is, that is A = p*. We thus get U, ([5]) = [Br*].

Now let & be the character x o Ny« /. and define ¢’ similarly. Comparing ¥, and Y* thanks to
Remark 3.11, we get Y*([Be]) = [Bu*c’] for all e-regular character 3 € X*. Since Be~! is
e-regular if and only if 3 is, this gives us

(9-5) TH([8]) = [Bop™]
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for all e-regular 5 € X*.

Now let o € X,eg. By Lemma 8.5 there are a prime number ¢ # p not dividing the or-
der of k™ and an e-regular character 8 € X* such that 8 = o* mod ¢. By (9.5) and Proposi-
tion 8.8 we get Y([a]) = [ar] for some v € X such that v* is the f-regular part of u*. Since
« is e-regular, Proposition 9.10 applied to T gives us Y([a]) = [au]. Putting these equalities
together, we get

[a*u*] = [a*p* 5] mod L.
The character § can thus be written £(a*u*)Q ! for some integer i € {0,...,n' — 1} and some

§ € X* whose order is a power of /. (Recall that Q is the cardinality of e.) Since p has order at
most 2, we get § = £(a*)Q L. Since the orders of § and p* both divide Q — 1, we have

A*Q-D(Q-1) _ ¢-Q,
Since both Q — 1 and the order of a are prime to ¢, we get £ = 1. Thus the order of «, that we

may assume to be Q" — 1 by choosing for a a generator of X, divides (Q — 1)(Q — 1). This
implies ¢ = 0, thus § is trivial as expected. O

Now let o € X be arbitrary. By Lemma 8.5 there are a prime number ¢ # p not dividing the
order of e[a]* and an e-regular character § € X* such that 8 is congruent to a* mod ¢. Since
0 = p*, the identity (9.5) gives us T*([5]) = [Bp*]. By Proposition 8.8, we have Y ([a]) = [av]
for some character v € X such that v* is the f-regular part of p*. Thus v* = p*, which implies
v = p. This completes the proof of Theorem 9.3.

Corollary 9.12. — The permutation T does not depend on the choice of the F-embeddings ¢,/
and the orders a,a’, nor on the choice of the ps-character (©,0,3) of endo-class ©.

9.6.

We now translate Theorem 9.3 in terms of admissible pairs. Let (L/F, &) be an admissible pair
of degree dividing n and endo-class ®. The orbit [a¢] € X/T" given by (9.3) corresponds through
(9.1) to an inertial class §(k, o) of discrete series representations. Write Ilo(G, &) for this inertial
class. The map

is a bijection between P, (®) and Dy(G, ®). This map depends a priori on various choices.

Theorem 9.13. — Let (L/F, &) be an admissible pair with degree dividing n. There is a canon-
ically determined tamely ramified character p of the units subgroup of L such that u?> = 1 and

WO(HO(Gv 5)) = HO(H’ f/"t)

It depends only on m, d and the restriction of & to the principal units 1 + pr,.

Note that by IIo(H, {u) we mean the inertial class corresponding to the pair [L/F, {/i] for any
choice of extension i of p to L*; this is independent of the choice of f.
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Remark 9.14. — Let t be the degree of L/F and write s for the integer s(cy) defined by (8.3).
The parametric degree f = [L : E] of ¢ divides m’d’. Hence u = f/(f,d’) divides m’s, thus m/'.
Let us define an integer r > 1 by m/ = ur, or equivalently by n = rst. Any discrete series repre-
sentation in Io(G, §) has the form L(p, r) for some cuspidal representation p of GL,,.(D) with
parametric degree t.

Remark 9.15. — An admissible pair (L/F, &) of degree ¢ dividing n canonically defines, via the
canonical map (9.4), an isomorphism class of essentially tame cuspidal representation pg¢ of the
group GL;(F). Passing to inertial classes, the map

(L/F.€) ~ L (e, )

induces the map (9.6) when G = H, which is thus canonical in that case. It follows from Theorem
9.13 that (9.6) is a canonical bijection between P,,(®) and Dy (G, @), for any inner form G.
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