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Abstract. — We show how the modular representation theory of inner forms of general linear
groups over a non-Archimedean local field can be brought to bear on the complex theory in a remar-
kable way. Let F be a non-Archimedean locally compact field of residue characteristic p, and let G
be an inner form of the general linear group GLnpFq, n ě 1. We consider the problem of describing
explicitly the local Jacquet–Langlands correspondence π ÞÑ JLπ between the complex discrete series
representations of G and GLnpFq, in terms of type theory. We show that the congruence properties
of the local Jacquet–Langlands correspondence exhibited by A. Mı́nguez and the first named author
give information about the explicit description of this correspondence. We prove that the problem of
the invariance of the endo-class by the Jacquet–Langlands correspondence can be reduced to the case
where the representations π and JLπ are both cuspidal with torsion number 1. We also give an ex-
plicit description of the Jacquet–Langlands correspondence for all essentially tame discrete series re-
presentations of G, up to an unramified twist, in terms of admissible pairs, generalizing previous re-
sults by Bushnell and Henniart. In positive depth, our results are the first beyond the case where π
and JLπ are both cuspidal.
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1. Introduction

1.1.

Let F be a non-Archimedean locally compact field of residue characteristic p, let H be the gen-

eral linear group GLnpFq, n ě 1, and let G be an inner form of H. This is a group of the form

GLmpDq, where m divides n and D is a central division F-algebra whose reduced degree is de-

noted d, with n “ md. Let DpG,Cq denote the set of all isomorphism classes of essentially square

integrable, irreducible complex smooth representations of G. The local Jacquet–Langlands cor-

respondence [26, 31, 18, 1] is a bijection

DpG,Cq Ñ DpH,Cq

π ÞÑ JLπ
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specified by a character relation on elliptic regular conjugacy classes. Bushnell and Henniart have

elaborated a vast programme aiming at giving an explicit description of this correspondence [23,

7, 10, 13]. The present article is a contribution to this programme.

We first have to explain what we mean by an explicit description of the Jacquet–Langlands

correspondence. Essentially square integrable representations of G can be described in terms of

parabolic induction. Given such a representation π, there are a unique integer r dividing m and

a cuspidal irreducible representation ρ of GLm{rpDq, unique up to isomorphism, such that π is

isomorphic to the unique irreducible quotient of the parabolically induced representation

ρˆ ρνspρq ˆ ¨ ¨ ¨ ˆ ρνspρqpr´1q

where ν is the unramified character “absolute value of the reduced norm” and spρq is a positive

integer dividing d, associated to ρ in [41]. The essentially square integrable representation π is

entirely characterized by the pair pρ, rq; this goes back to Bernstein–Zelevinski [44] when D is

equal to F, and Tadić [41] in the general case (see also Badulescu [2] when F has positive char-

acteristic). In particular, we may write spπq “ spρq. Similarly, associated with the Jacquet-Lang-

lands transfer JLπ, there are an integer u dividing n and a cuspidal irreducible representation σ

of GLn{upFq. The integers r, u are related by the identity u “ rspπq. It remains to understand

how the cuspidal representations ρ, σ are related.

Thanks to the theory of simple types, developed by Bushnell and Kutzko [16] for the general

linear group GLnpFq and by Broussous [3] and the authors [32, 33, 34, 35] for its inner forms,

the cuspidal representation ρ is compactly induced from a compact mod centre, open subgroup.

More precisely, there is an extended maximal simple type, made of a compact mod centre sub-

group J of GLm{rpDq and an irreducible representation λ of J, both constructed in a very specific

way, such that the compact induction of λ to GLm{rpDq is irreducible and isomorphic to ρ. Such

a type is uniquely determined up to conjugacy. Giving an explicit description of the local Jac-

quet–Langlands correspondence will thus consist of describing the extended maximal simple type

associated with the representation σ in terms of that of ρ.

This programme was first carried out for essentially square integrable representations of depth

zero, by Silberger–Zink [39, 40] and Bushnell–Henniart [14]. Before explaining the other cases

which have already been dealt with, we need to introduce two numerical invariants associated to

an essentially square integrable, irreducible representation of G. Such a representation π has: a

torsion number tpπq, the number of unramified characters χ of G such that the twisted represen-

tation πχ is isomorphic to π; and a parametric degree δpπq, defined in [13] via the theory of simple

types, which is a multiple of tpπq and divides n. Both of these integers are invariant under the

Jacquet–Langlands correspondence [13]. It is interesting to note that the invariance of the para-

metric degree implies that δpπqspπq “ n{r. Consequently, the representation JLπ is cuspidal if

and only if the parametric degree of π is equal to n.

In [13], Bushnell and Henniart treat the case where the cuspidal representation π is essentially

tame (that is, δpπq{tpπq is prime to p) and of parametric degree n. In that case, they explicitly

describe the Jacquet–Langlands correspondence by parametrizing the conjugacy classes of exten-

ded maximal simple types in G and H by objects called admissible pairs [24]. (We will see these

objects in Section 9.)
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In [10], they also treat the case which is in some sense at the opposite extreme to the essentially

tame case, where n is of the form pk, with k ě 1 and p ‰ 2, and where π is a cuspidal represen-

tation of Dˆ which is maximal totally ramified (that is, δpπq “ n and tpπq “ 1).

In [25], Imai and Tsushima treat the case where π is an epipelagic cuspidal representation of

G, that is, of depth 1{n. Such representations are maximal totally ramified.

With the exception of [39, 40] and [14], these results all concern cases where the representa-

tions π and JLπ are both cuspidal, that is, when π is of parametric degree n. In such cases, since

the cuspidal representation π can be expressed as the compact induction of an extended maxi-

mal simple type pJ,λq, there is a relatively straightforward formula giving the trace of π at an

elliptic regular element in terms of the trace of λ (see [8, Theorem A.14] and [13, (1.2.2)]). The

strategies followed in [13, 10] and [25] depend crucially on such a formula. When considering a

non-cuspidal essentially square integrable representation, we are in a much less favourable situa-

tion. For the group GLnpFq, Broussous [4] and Broussous–Schneider [5] have obtained formulae

expressing the trace of such a representation at an elliptic regular element by bringing in the

theory of simple types. However, in this article, we follow a different route.

1.2. Preservation of endo-classes

An important first step towards the general case is to look at the behavior of the local Jacquet–

Langlands correspondence with respect to endo-classes. An endo-class (over F) is a type-theo-

retic invariant associated to any essentially square integrable representation of any inner form

of any general linear group over F, whose construction requires a considerable machinery [8, 6].

However, for cuspidal representations of H, it turns out to have a rather simple arithmetical

interpretation through the local Langlands correspondence [9]. Indeed, two cuspidal irreducible

representations of general linear groups over F have the same endo-class if and only if the irre-

ducible representations of the absolute Weil group WF associated to them by the local Langlands

correspondence share an irreducible component when restricted to the wild inertia subgroup PF.

The local Langlands correspondence thus induces a bijection between the set of WF-conjugacy

classes of irreducible representations of PF and the set EpFq of endo-classes over F.

It is expected that the local Jacquet–Langlands correspondence preserves endo-classes. More

precisely, there is the following conjecture.

Endo-class Invariance Conjecture. For any essentially square integrable, irreducible com-

plex representation π of G, the endo-classes of π and JLπ are the same.

Our first main result is the following (see Theorem 7.1), which reduces this conjecture to the

case of maximal totally ramified cuspidal representations.

Theorem A. Assume that, for all F and n, and all cuspidal irreducible complex representations

π of G such that δpπq “ n and tpπq “ 1, the cuspidal representations π and JLπ have the same

endo-class. Then the Endo-class Invariance Conjecture is true.

Before explaining our strategy, we must first make a detour through the modular representa-

tion theory of G and explain recent developments concerning the modular properties of the Jac-

quet–Langlands correspondence. Fix a prime number ` different from p, and consider the smooth
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`-adic representations of G, that is, with coefficients in the algebraic closure Q` of the field of

`-adic numbers. There is then the notion of integral irreducible representation of G: containing a

G-stable Z`-lattice (where Z` is the ring of integers of Q`), which can then be reduced modulo `.

More precisely, given such a representation π containing a stable Z`-lattice Λ, Vignéras [42, 43]

showed that the representation ΛbZ`
F` is smooth of finite length (where F` is the residue field

of Z`), and its semisimplification is independent of the choice of Λ; we call this semisimplification

the reduction mod ` of π. Thus we can say that two integral irreducible `-adic representations

of G are congruent mod ` if their reductions mod ` are isomorphic.

To relate this to the local Jacquet–Langlands correspondence, we fix an isomorphism of fields

between C and Q`; replacing one by the other via this isomorphism, we get an `-adic Jacquet–

Langlands correspondence

DpG,Q`q
»
ÝÑ DpH,Q`q

which is independent of the choice of isomorphism. Thus one can study the compatibility of this

correspondence with the relation of congruence mod `, which was done by Dat [17] and then in

full generality by Mı́nguez and the first author [30]: two integral representations of DpG,Q`q are

congruent mod ` if and only their images under the `-adic Jacquet–Langlands correspondence

are congruent mod ` ([30, Théorème 1.1]).

We now need to explain how modular representation theory can give us information on the

complex representation theory. The starting point for our strategy to prove Theorem A using mo-

dular methods is the fact that two representations of DpG,Q`q which are congruent mod ` have

the same endo-class. The converse is, of course, not true but we will see that one can neverthe-

less link two essentially square integrable representations with the same endo-class by a chain of

congruence relations. Let us explain this in more detail.

Firstly, for any irreducible `-adic representation of G, we have a notion of mod-` inertial su-

percuspidal support (see Definition 4.1, and also [22] in the split case), coming from the notion of

supercuspidal support for irreducible representations of G with coefficients in F`, defined in [27].

Two irreducible complex representations of G are said to be `-linked (Definitions 5.1 and 4.2)

if there is a field isomorphism C » Q` such that the resulting irreducible `-adic representations

have the same mod-` inertial supercuspidal support. This is independent of the choice of field

isomorphism and it is not hard, using the work done in [30], to show that the Jacquet–Langlands

correspondence preserves the relation of being `-linked for essentially square-integrable represen-

tations (Propositions 6.1 and 6.2). We can now introduce the following definition (Definition 5.6).

Definition. Two irreducible complex representations π, π1 of G are said to be linked if there

are a finite sequence of prime numbers `1, . . . , `r, all different from p, and a finite sequence of

irreducible complex representations π “ π0, π1, . . . , πr “ π1 such that, for each i P t1, . . . , ru, the

representations πi´1 and πi are `i-linked.

Two essentially square integrable complex representations which are linked have the same

endo-class. More generally, if we define the semi-simple endo-class of an irreducible represen-

tation to be the weighted formal sum of the endo-classes of the cuspidal representations in its

cuspidal support (with multiplicities determined by the sizes of the groups – see (5.2)), then two

irreducible representations which are linked have the same semi-simple endo-class. The interest
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of the definition is apparent from the following theorem (see Theorem 5.10), which says that the

converse is also true.

Theorem B. Two irreducible complex representations of G are linked if and only if they have

the same semi-simple endo-class.

In particular, two essentially square integrable complex representations have the same endo-

class if and only if they are linked; moreover, one can then link them by a sequence of essentially

square integrable representations (Remark 5.9).

Theorem B gives a remarkable reinterpretation of what it means for two irreducible complex

representations to have the same semi-simple endo-class. Beyond the intrinsic interest in explica-

ting the notion of endo-class and its relation with modular representation theory, the main in-

terest in this reformulation comes from the fact that, applying results from [30], we are able to

prove the following (Theorem 6.3).

Theorem C. Two essentially square integrable complex representations of G are linked if and

only if their transfers to H are linked.

It follows from Theorems B and C that two essentially square integrable complex represen-

tations of G have the same endo-class if and only if their transfers to H have the same endo-class.

Thus, denoting by EnpFq the set of endo-classes over F of degree dividing n, the Jacquet–Lang-

lands correspondence induces a bijection

π1 : EnpFq Ñ EnpFq.

We now observe the following fact (Proposition 6.5).

Proposition. For every essentially square integrable complex representation of G, there is a

cuspidal complex representation of G with the same endo-class and with parametric degree n.

To prove the conjecture – that is, to prove that π1 is the identity map – it is therefore sufficient

to prove that, for every cuspidal complex representation π of G of parametric degree n, the re-

presentations π and JLπ have the same endo-class. Using techniques developed in [13, Section 6],

we can go further and show that one need only consider cuspidal representations of parametric

degree n and torsion number 1, thus obtaining Theorem A. Therefore, to prove the Endo-class

Invariance Conjecture, it remains only to prove the following conjecture. Say that an endo-class

is totally ramified if it has residual degree 1, that is, if its tame parameter field (in the sense of

[15, Section 2]) is totally ramified.

Conjecture. For all F and n, and for every totally ramified F-endo-class Θ of degree n, there

is a cuspidal complex representation π of G with endo-class Θ such that JLπ has endo-class Θ.

This conjecture is known to be true in all the cases where the explicit correspondence is known

(see §1.1). See also the remark at the end of this introduction for more recent developments.
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1.3. The level zero part

We now leave to one side the preservation of endo-classes and pass to the next step towards

an explicit description of the Jacquet–Langlands correspondence. We will see that the modular

methods described in the previous paragraphs can be pushed further to yield additional infor-

mation. Let Θ be an endo-class of degree dividing n and suppose that it is invariant under the

Jacquet–Langlands correspondence, i.e. π1pΘq “ Θ. (See the remark at the end of this intro-

duction for a discussion about this assumption.) The correspondence thus induces a bijection

between isomorphism classes of essentially square integrable complex representations of G with

endo-class Θ, and those of H. Since the correspondence is also compatible with unramified twis-

ting, we get a bijection

D0pG,Θq
»
ÝÑ D0pH,Θq

where D0pG,Θq denotes the set of inertial classes of essentially square integrable complex repre-

sentations of G with endo-class Θ. The theory of simple types [16, 34, 35, 36] gives us a cano-

nical bijection between D0pG,Θq and the set TpG,Θq of G-conjugacy classes of simple types for

G with endo-class Θ. More precisely, the inertial class of an essentially square integrable com-

plex representation π corresponds to the conjugacy class of a simple type pJ, λq, formed of a

compact open subgroup J of G and an irreducible representation λ of J, if and only if λ is an

irreducible component of the restriction of π to J. Thus we get a bijection

(1.1) TpG,Θq
»
ÝÑ TpH,Θq.

To go further, we need to enter into the detail of the structure of simple types (Paragraph 3.3).

Given a simple type pJ, λq of G with endo-class Θ, the group J contains a unique maximal

normal pro-p subgroup, denoted J1. The restriction of λ to J1 is isotypic, that is, it is a direct

sum of copies of a single irreducible representation η. This representation η can be extended to

a representation of J with the same intertwining set as η. If we fix such an extension κ, then the

representation λ can be expressed in the form κb σ, where σ is an irreducible representation of

J, trivial on J1.

The quotient group J{J1 is (non-canonically) isomorphic to a product of copies of a single

general linear group over a finite field d and σ, viewed as a representation of such a product, is

the tensor product of copies of a single cuspidal representation. A theorem of Green [21] allows

us to parametrize σ by a character of kˆ, where k is a suitable extension of d. This character

is determined up to conjugation by the Galois group of k over a certain subfield e of d.

We denote by X the group of characters of kˆ and by Γ the Galois group Galpk{eq. Fixing

once and for all a choice of representation κ for a maximal simple type in G with endo-class Θ,

we get a bijection from X{Γ to TpG,Θq (see Paragraph 3.3 for details). Making a similar choice

for H, we also get a bijection from X{Γ to TpH,Θq. Composing with (1.1), we get a permutation

Υ : X{Γ Ñ X{Γ

which depends on various choices (see Paragraph 8.1). Although one could fix choices, it is not

clear which are the natural ones in general so we must take care with them. In particular, we

will see that, in the essentially tame case, one can make sense of the notion of a compatible

choice for G and H.
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We write rαs for the Γ-orbit of a character α P X. The following result (see Proposition 8.8),

which again is proved via modular methods, suggests that, in order to determine the permutation

Υ it is sufficient to compute the value of Υprαsq for certain characters α only.

Proposition. Let α P X and let l be the unique subfield of k such that the stabilizer of α in Γ is

Galpk{lq. Suppose there are a Γ-regular character β P X and a prime number ` ‰ p prime to the

order of lˆ such that the order of βα´1 is a power of `. Suppose further that Υprβsq “ rβµs, for

some character µ P X. Then Υprαsq “ rανs where ν P X is the unique character of order prime

to ` such that µν´1 has order a power of `.

In fact we need a more powerful version of this result, which we do not explain here, which re-

quires being able to pass from G to a bigger group GLm1pDq, with m1 ą m. (See Section 8, in par-

ticular Paragraph 8.3.)

To conclude, in the final section of the paper, we illustrate this principle in the essentially tame

case. We start from the Parametrization Theorem [13, 6.1], which gives a canonical bijection

(1.2) pL{F, ξq ÞÑ ΠpG, ξq

between isomorphism classes of admissible pairs of degree n and isomorphism classes of essential-

ly tame cuspidal irreducible representations of G of parametric degree n. The First Comparison

Theorem [13, 6.1] shows how to translate the Jacquet–Langlands correspondence for these cus-

pidal representations in terms of admissible pairs: for any admissible pair pL{F, ξq of degree n,

there is a canonically determined tamely ramified character ν of Lˆ such that ν2 “ 1 and

JLΠpG, ξq “ ΠpH, ξνq.

We show that, for appropriate choices, this result can be rephrased in terms of our α-parameters

and gives us an explicit formula for Υprαsq for all Γ-regular characters α P X. Applying the pro-

position above, we then prove that this explicit formula actually holds for any α P X.

As in [13], we formulate our result in terms of admissible pairs. We first define a bijection

(1.3) rL{F, ξs ÞÑ Π0rG, ξs

between inertial classes of admissible pairs (see Definition 9.5) of degree dividing n and inertial

classes of discrete series representations of G with essentially tame endo-class, extending (1.2) up

to inertia. In the case where G is the group H, this bijection is canonical, but for a general G it

depends a priori on various choices. We prove the following result (see Theorem 9.13).

Theorem D. Let rL{F, ξs be an inertial class of admissible pairs of degree dividing n. There is a

canonically determined tamely ramified character µ of the group of units of the ring of integers

of L such that µ2 “ 1 and

JLΠ0rG, ξs “ Π0rH, ξµs.

We thus deduce a posteriori that our bijection (1.3) is canonical, that is, it does not depend

on the various choices we have made (see Remark 9.15).
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Remark. After this paper was written, A. Dotto proved the Endo-class Invariance Conjecture

in [20], using methods developed here and in [13]. He goes further and gives an explicit descrip-

tion of the Jacquet–Langlands correspondence up to inertia.

Acknowledgements. The research of the second author was supported by the Engineering

and Physical Sciences Research Council (grant EP/H00534X/1). We also thank the anonymous

referee for several useful comments, particularly relating to the presentation in Section 6.

2. Notation

We fix a non-Archimedean locally compact field F with residual characteristic p. Write q for

the cardinality of the residue field of F.

Given D a finite dimensional central division F-algebra and a positive integer m ě 1, we write

MmpDq for the algebra of mˆm matrices with coefficients in D and GLmpDq for the group of its

invertible elements. Choose an m ě 1 and write G “ GLmpDq. Write d for the reduced degree

of D over F, and define n “ md.

Given an algebraically closed field R of characteristic different from p, we will consider smooth

representations of the locally profinite group G with coefficients in R. We write IrrpG,Rq for

the set of isomorphism classes of irreducible representations of G and RpG,Rq for the Grothen-

dieck group of its finite length representations, identified with the free abelian group with basis

IrrpG,Rq. If π is a representation of G, the integer m is called its degree.

Given α “ pm1, . . . ,mrq a family of positive integers of sum m, we write iα for the functor of

standard parabolic induction associated with α, normalized with respect to the choice of a square

root in the field R of the cardinality q of the residual field of F. Given, for each i P t1, . . . , ru, a

representation πi of GLmipDq, we write

π1 ˆ ¨ ¨ ¨ ˆ πr “ iαpπ1 b ¨ ¨ ¨ b πrq.

Given a representation π and a character χ of G, we write πχ for the twisted representation

defined by g ÞÑ χpgqπpgq.

We fix once and for all a smooth additive character ψ : F Ñ Rˆ, trivial on the maximal ideal

p of the ring of integers O of F but not trivial on O.

We write ν for the unramified R-character of G given by composing the reduced norm from

G to Fˆ with the absolute value of F which takes any uniformizer to the inverse of q in R.

3. Preliminaries

In this section, we let R be an algebraically closed field of characteristic different from p.

3.1.

Let ρ be a cuspidal irreducible R-representation of G. Associated with ρ, there is a positive

integer spρq defined in [28, Paragraph 3.4] (see also Remark 3.8). When R is the field of complex

numbers, spρq is the unique positive integer k such that ρˆ ρνk is reducible, and it is related to
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the parametric degree δpρq defined in [13, Section 2] by the formula spρqδpρq “ n. For the general

case, see Remark 3.8.

In [27] we attach to ρ and any integer r ě 1 an irreducible subrepresentation Zpρ, rq and an

irreducible quotient Lpρ, rq of the induced representation

(3.1) ρˆ ρνρ ˆ ¨ ¨ ¨ ˆ ρν
r´1
ρ

(see [27, Paragraph 7.2 and Définition 7.5]), where νρ is the character νspρq.

When R is the field of complex numbers, Zpρ, rq and Lpρ, rq are uniquely determined in this

way, and all essentially square integrable representations of G are isomorphic to a representation

of the form Lpρ, rq for a unique pair pρ, rq.

For an arbitrary R, the representation Lpρ, rq is called a discrete series R-representation of G

and Zpρ, rq is called a Speh R-representation. If ρ is supercuspidal, Zpρ, rq is called a super-Speh

representation.

According to [27, Paragraph 8.1], where the notion of residually nondegenerate representation

is defined, the induced representation (3.1) contains a unique residually nondegenerate irreduci-

ble subquotient, denoted

Sppρ, rq.

When R has characteristic 0, this is equal to Lpρ, rq. When R has characteristic ` ą 0 however,

it may differ from Lpρ, rq (see [27, Remark 8.14]).

Assume R has characteristic ` ą 0, and let us write ωpρq for the smallest positive integer i ě 1

such that ρνiρ is isomorphic to ρ. Then the irreducible representation

(3.2) Sppρ, ωpρq`vq

is cuspidal for any integer v ě 0. Moreover, any cuspidal non-supercuspidal irreducible represen-

tation is of the form (3.2) for a supercuspidal irreducible representation ρ and a unique integer

v ě 0 (see [27, Théorème 6.14]). We record this latter fact for future reference.

Proposition 3.1. — Assume R has positive characteristic `, and let ρ be a cuspidal irreducible

representation of G. There are a unique positive integer k “ kpρq and a supercuspidal irreducible

representation τ of degree m{k such that ρ is isomorphic to Sppτ, kq.

3.2.

In this paragraph, we assume that R is an algebraic closure Q` of the field of `-adic numbers.

Recall (see [42]) that an irreducible `-adic representation of G is integral if it contains a G-stable

Z`-lattice. Let rρ be an `-adic cuspidal irreducible representation of G. By [42] II.4.12, it is in-

tegral if and only if its central character has values in Z`. In particular, there is always an unra-

mified twist of rρ which is integral.

Assume rρ is integral and write a “ aprρq for the length of its reduction mod `, denoted r`prρq.

Proposition 3.2 ([28, Theorem 3.15]). — Let ρ be an irreducible factor of r`prρq. Then

r`prρq “ ρ` ρν ` ¨ ¨ ¨ ` ρνa´1,

where ν denotes the unramified mod ` character “absolute value of the reduced norm”.
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3.3.

We recall briefly the language of simple strata, though we do not require much of the detail of

the constructions. For a detailed presentation, see [34, 28]. For simple strata, we use the simpli-

fied notation of [15, Chapter 2].

Let ra, βs be a simple stratum in the simple central F-algebra MmpDq. We don’t recall the pre-

cise definition: we simply recall that it is made of an element β P MmpDq such that the F-algebra

Frβs is a field, and a hereditary order a Ď MmpDq normalized by Frβsˆ. The centralizer of β in

MmpDq, denoted B, is a simple central Frβs-algebra. There are an Frβs-division algebra D1 and

an integer m1 ě 1 such that

(3.3) B » Mm1pD
1q.

The intersection b “ aX B is a hereditary order in B.

Recall [32, 28] that, associated with ra, βs, there are compact open subgroups

H1pa, βq Ď J1pa, βq Ď Jpa, βq

of G, together with a non-empty finite set Cpa, βq depending on the choice of ψ made in Section

2. These groups are normal in Jpa, βq, and the elements of Cpa, βq are R-characters of H1pa, βq,

called simple characters. Besides, H1pa, βq and J1pa, βq are pro-p-groups, and Jpa, βq is equal to

bˆJ1pa, βq.

Attached to a simple character θ P Cpa, βq there is an invariant called its endo-class. We will

not recall the precise definition of this invariant, which can be found in [8, 6]. We will only need

a few properties of endo-classes, which we will recall when they are needed. Endo-classes form

a set EpFq which depends only on F.

Lemma 3.3 ([6, Lemma 4.7]). — Given a simple character θ P Cpa, βq with endo-class Θ, the

degree, ramification index and residue degree of Frβs over F only depend on Θ. These integers

are called the degree, ramification index and residue degree of Θ, respectively.

The endo-class of a simple character in G has degree dividing n. Conversely, any endo-class

of degree dividing n occurs as the endo-class of some simple character in G.

A β-extension of a simple character θ P Cpa, βq is an irreducible representation of Jpa, βq with

coefficients in R whose restriction to J1pa, βq is irreducible, whose restriction to H1pa, βq contains

θ and which is intertwined by any element of Bˆ (see [33, 28]).

Assume now that b is a maximal order in B, in which case we say the simple stratum ra, βs, the

simple characters in Cpa, βq and their β-extensions are maximal. Let us fix an isomorphism (3.3)

such that the image of b is the maximal order made of all matrices with integer entries. There

is a natural group isomorphism

Jpa, βq{J1pa, βq » GLm1pdq

where d is the residue field of D1. We write G for the group on the right hand side. Let us fix a

β-extension κ of some simple character θ P Cpa, βq. We write J “ Jpa, βq and J1 “ J1pa, βq.

We fix a finite extension k of d of degree m1. We write Σ for the Galois group of this extension

and X for the group of R-characters of kˆ. Given α P X, there is a unique subfield d Ď drαs Ď k
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such that the Σ-stabilizer of α is Galpk{drαsq, and then a character α0 of drαsˆ such that α is

equal to α0 composed with the norm of k over drαs. If we write u for the degree of drαs over d,

then α0 defines a supercuspidal irreducible R-representation σ0 of GLupdq — see [21] if R has

characteristic 0, and [19] or [29] otherwise.

Remark 3.4. — More precisely, if R has characteristic 0, fix an embedding of drαs in Mupdq.

Then σ0 is the unique (up to isomorphism) irreducible representation of GLupdq such that

tr σ0pgq “ p´1qu´1 ¨
ÿ

γ

αγ0pgq,

for all g P drαsˆ of degree u over d, where γ runs over Galpdrαs{dq.

The character α P X thus defines a supercuspidal R-representation

σpαq “ σ0 b ¨ ¨ ¨ b σ0

of the Levi subgroup GLupdqˆ¨ ¨ ¨ˆGLupdq in G. Moreover, the fibers of the map α ÞÑ σpαq are

the Σ-orbits of X. Write r for the integer defined by ru “ m1. The maximal order b contains a

unique principal order br of period r whose image under (3.3) consists of matrices with entries in

the ring of integers of D1 whose reduction modulo its maximal ideal is upper triangular by blocks

of size r. We write ar for the unique order normalized by Frβsˆ such that arXB “ br, and κr for

the transfer of κ with respect to the simple stratum rar, βs in the sense of [28, Proposition 2.3].

Considering σpαq as a representation of the group Jr “ Jpar, βq trivial on J1par, βq, we define

λpαq “ κr b σpαq

which is a simple supertype in G defined on Jr in the sense of [37]. Write Γ for the Galois group

of k over e, where e denotes the residue field of Frβs.

Write Θ for the endo-class of the simple character θ P Cpa, βq, and TpG,Θ,Rq for the set of

isomorphism classes of simple R-supertypes in G with endo-class Θ, that is, simple R-supertypes

whose associated simple character has endo-class Θ.

Recall ([37] Definition 6.1) that two simple R-supertypes in G are said to be equivalent if the

representations of G obtained from them by compact induction are isomorphic.

Proposition 3.5. — The map

(3.4) α ÞÑ λpαq

induces a surjection from X onto the set of equivalence classes of TpG,Θ,Rq. The fibers of this

map are the Γ-orbits of X.

Proof. — Surjectivity follows from the definition of a simple supertype [37, Paragraph 2.2] and

the fact that any supercuspidal irreducible R-representation of G is of the form σpαq for some

α P X with trivial Σ-stabilizer.

The description of the fibers follows from [36, Theorem 7.2] together with the fact that the

map α ÞÑ σpαq is Γ-equivariant, with fibers the Σ-orbits of X. Note that [36] is written for com-

plex representations, but [36, Theorem 7.2] holds true in any characteristic different from p.
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Proposition 3.6. — The bijection

(3.5) tΓ-orbits of Xu Ø tequivalence classes of TpG,Θ,Rqu

depends only on the choice of κ, not on that of the isomorphism (3.3).

Proof. — Choosing another isomorphism B » Mm1pD
1q such that the image of b is the maximal

order made of all matrices with integer entries has the effect – according to the Skolem–Noether

theorem – of conjugating by an element g P GLm1pD
1q normalizing this standard maximal order.

Thus, if σ1pαq is the representation of Jr trivial on J1par, βq corresponding to α with respect to

that choice of isomorphism, it differs from σpαq by conjugating by g.

Remark 3.7. — Suppose k1 is another extension of d of degree m1. Write X1 for the group of

R-characters of its invertible elements and Γ1 for the Galois group Galpk1{eq. Let t denote the

bijection (3.5) and write t1 for its analogue obtained by replacing k by k1. Choosing an isomor-

phism of e-algebras kÑ k1 induces a bijection

b : X1{Γ1 Ñ X{Γ

which does not depend on this choice, and one has t1 “ t ˝ b.

3.4.

Recall [28] that any supercuspidal R-representation ρ of G contains a maximal simple charac-

ter, uniquely determined up to G-conjugacy. We define the endo-class of ρ to be the endo-class

of any simple character contained in ρ. If we write Θ for this endo-class, then ρ contains a simple

R-supertype λpαq P TpG,Θ,Rq for some α P X with trivial Σ-stabilizer.

Remark 3.8. — The positive integer spρq associated with ρ in §3.1 is the order of the Γ-stabi-

lizer of α.

3.5.

We call an inertial class of supercuspidal pairs of G simple if it contains a pair of the form

(3.6) pGLm{rpDq
r, ρb ¨ ¨ ¨ b ρq

for some integer r dividing m and some supercuspidal R-representation ρ of GLm{rpDq, and we

define the endo-class of such an inertial class to be the endo-class of ρ, that is, the endo-class of

any simple character contained in ρ. By [37, Section 8], there is a bijective correspondence bet-

ween simple inertial classes of supercuspidal pairs of G and equivalence classes of simple super-

types of G, that preserves endo-classes. More precisely, the inertial class of (3.6), denoted Ω, cor-

responds to the equivalence class of a simple supertype pJ, λq if and only if the irreducible re-

presentations of G occurring as a subquotient of the compact induction of λ to G are exactly

those irreducible representations of G occurring as a subquotient of the parabolic induction to

G of an element of Ω.

From the previous paragraph, we have an endo-class Θ and a maximal β-extension κ. Combi-

ning the map (3.4) with the correspondence between simple inertial classes of supercuspidal pairs
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and equivalence classes of simple supertypes, we get the following result. Given α P X, we write

Ωpαq for the inertial class of supercuspidal pairs of G that corresponds to λpαq.

Proposition 3.9. — The map

(3.7) α ÞÑ Ωpαq

induces a surjection from X to the set of simple inertial classes of supercuspidal pairs of G with

associated endo-class Θ. Its fibers are the Γ-orbits of X.

Let us recall the following important result from [27, Théorème 8.16]: given an irreducible R-

representation π of G, there are integers m1, . . . ,mr ě 1 such that m1 ` ¨ ¨ ¨ ` mr “ m, and

supercuspidal irreducible representations ρ1, . . . , ρr of GLm1pDq, . . . ,GLmrpDq respectively, such

that π occurs as a subquotient of the induced representation ρ1 ˆ ¨ ¨ ¨ ˆ ρr. Moreover, up to re-

numbering, the supercuspidal representations ρ1, . . . , ρr are unique. The conjugacy class of the

supercuspidal pair pGLm1pDq ˆ ¨ ¨ ¨ ˆGLmrpDq, ρ1 b ¨ ¨ ¨ b ρrq is called the supercuspidal support

of π.

Let us call an irreducible R-representation of G simple if the inertial class of its supercuspidal

support is simple. For instance, any discrete series R-representation of G is simple. We define the

endo-class of a simple irreducible representation to be that of its supercuspidal support.

Definition 3.10. — Let π be a simple irreducible representation of G with endo-class Θ. The

parametrizing class of π is the Γ-orbit of a character α P X such that the two following equivalent

conditions hold:

(1) the supercuspidal support of π belongs to the inertial class Ωpαq;

(2) the representation π occurs as a subquotient of the compact induction of λpαq to G.

The parametrizing class of π is denoted Xpκ, πq, or simply Xpπq if there is no ambiguity on the

maximal β-extension κ.

Remark 3.11. — Let κ1 be another maximal β-extension of the simple character θ P Cpa, βq in

G. By [33, Théorème 2.28] there is a character χ of eˆ such that κ1 “ κζ, where ζ is the cha-

racter of J trivial on J1 that corresponds to the character χ ˝Nd{e ˝ det of G, where Nd{e is the

norm map with respect to d{e. Then we have α1 P Xpκ1, πq if and only if α1µ P Xpκ, πq, where

µ is the character χ ˝Nk{e of kˆ.

Remark 3.12. — When R has characteristic 0, the two equivalent conditions of Definition 3.10

are also equivalent to:

(3) the representation π occurs as a quotient of the compact induction of λpαq to G.

Equivalently, the restriction of π to Jr contains λpαq as a subrepresentation.

4. Linked `-adic representations

In this section, we fix a prime number ` different from p. We will distinguish between `-adic

and mod ` representations by using a tilde r for `-adic representations.
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4.1.

Let rπ be an irreducible `-adic representation of G. Fix a representative pM, rρq in the inertial

class of its cuspidal support, with M a standard Levi subgroup GLm1pDq ˆ ¨ ¨ ¨ ˆGLmrpDq and

rρ of the form rρ1 b ¨ ¨ ¨ b rρr where rρi is an `-adic cuspidal irreducible representation of GLmipDq

for i P t1, . . . , ru, and with m1 ` ¨ ¨ ¨ ` mr “ m. Since rρi is determined up to an unramified

twist, we may assume it is integral (see paragraph 3.2), and fix an irreducible subquotient ρi of

its reduction mod `. By the classification of mod ` irreducible cuspidal representations in terms

of supercuspidal representations [27, Théorème 6.14], there are a unique integer ui ě 1 dividing

mi and a supercuspidal irreducible representation τi of degree ui such that the supercuspidal

support of ρi is inertially equivalent to

pGLuipDq ˆ ¨ ¨ ¨ ˆGLuipDq, τi b ¨ ¨ ¨ b τiq

where the factors are repeated ki times, with mi “ kiui.

Definition 4.1. — Let rπ be an irreducible `-adic representation of G as above. Let us write

L “ GLu1pDq
k1 ˆ ¨ ¨ ¨ ˆGLurpDq

kr , τ “ τ1 b ¨ ¨ ¨ b τ1
loooooomoooooon

k1 times

b ¨ ¨ ¨ b τr b ¨ ¨ ¨ b τr
loooooomoooooon

kr times

.

The inertial class in G of the supercuspidal pair pL, τq, denoted i`prπq, is uniquely determined by

the irreducible representation rπ. It is called the mod ` inertial supercuspidal support of rπ.

Definition 4.2. — Two irreducible `-adic representations rπ1, rπ2 of G are said to belong to the

same `-block if i`prπ1q “ i`prπ2q.

An `-block in the set IrrpG,Q`q of all isomorphism classes of irreducible `-adic representations

of G is an equivalence class for the equivalence relation defined by i`.

Let rπ be an irreducible `-adic representation of G as above. By definition, i`prπq depends only

on the inertial class of the supercuspidal support of rπ. Assume rπ is integral.

Lemma 4.3. — All irreducible subquotients occurring in r`prπq, the reduction mod ` of rπ, have

their supercuspidal support in i`prπq.

Proof. — The representation rπ is a subquotient of rρ1 ˆ ¨ ¨ ¨ ˆ rρr. Since rπ is integral, all the rρi’s

are integral and, by Proposition 3.2, for each i there is an integer ai ě 1 such that

r`prρiq “ ρi ` ρiν ` ¨ ¨ ¨ ` ρiν
ai´1,

where ν denotes the unramified mod ` character “absolute value of the reduced norm”. Thus any

irreducible subquotient of r`prπq occurs as a subquotient of ρ1ν
i1 ˆ ¨ ¨ ¨ ˆ ρrν

ir for some integers

i1, . . . , ir P N. The result now follows by looking at the supercuspidal support of each ρi.

Corollary 4.4. — Any two integral irreducible `-adic representations of G whose reductions

mod ` share a common irreducible component belong to the same `-block.
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4.2.

Let rπ be a simple irreducible `-adic representation of G. There are an integer r ě 1 dividing m

and a cuspidal irreducible representation rρ of Gm{r such that the inertial class of its cuspidal

support contains

(4.1) pGLm{rpDq
r, rρb ¨ ¨ ¨ b rρq.

We may assume rρ is integral. We fix an irreducible subquotient ρ of its reduction modulo `. As

in Paragraph 4.1, there are a unique integer u ě 1 dividing m{r and a supercuspidal irreducible

representation τ of degree u such that the supercuspidal support of ρ is inertially equivalent to

pGLupDqˆ¨ ¨ ¨ˆGLupDq, τb¨ ¨ ¨bτq, with m “ kur. Therefore, the mod ` inertial supercuspidal

support i`prπq of the `-adic simple irreducible representation rπ is the inertial class of the pair

pGLupDq
kr, τ b ¨ ¨ ¨ b τq.

In particular, it is simple.

Recall that, according to [27, Théorème 6.11], any supercuspidal irreducible mod ` represen-

tation can be lifted to an `-adic irreducible representation. The following lemma is an immediate

consequence of the definition of the mod ` inertial supercuspidal support.

Lemma 4.5. — Let rτ be an `-adic lift of τ . Any simple irreducible `-adic representation whose

cuspidal support is inertially equivalent to

pGLupDq
kr, rτ b ¨ ¨ ¨ b rτq

is in the same `-block as rπ. In particular, the `-adic discrete series representation Lprτ , krq is in

the same `-block as rπ.

4.3.

Recall that we have fixed in Section 2 a smooth character ψ` : F Ñ Qˆ
` , trivial on p but not on

O. Since F is the union of the p´i for i ě 1 and p is invertible in Z`, it has values in Zˆ` . For any

simple stratum ra, βs in MmpDq, the set of simple `-adic characters associated with ra, βs will be

defined with respect to ψ` (see Paragraph 3.3), whereas the set of `-modular simple characters

associated with ra, βs will be defined with respect to the reduction mod ` of ψ`. Reduction mod `

thus induces a bijection between `-adic and `-modular simple characters associated with ra, βs.

It also induces a bijection between endo-classes of `-adic and `-modular simple characters. Thus

we will speak of endo-classes of simple characters, without referring to the coefficient field.

Let Θ be the endo-class of Paragraphs 3.3-3.5. Fix a β-extension rκ of a maximal `-adic simple

character in G of endo-class Θ, and write X` for the group of `-adic characters of kˆ. The map

(3.4) gives us a bijection rλ` from X`{Γ onto the set of equivalence classes of TpG,Θ,Q`q. Also

write Y` for the group of `-modular characters of kˆ, and κ for the reduction mod ` of rκ. This

gives us a bijection λ` from Y`{Γ onto the set of equivalence classes of TpG,Θ,F`q. These two

bijections are compatible in the following sense.
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Proposition 4.6. — Let rπ be a simple irreducible `-adic representation of G with endo-class Θ,

let α P X`prπq and let φ P Y` be the reduction mod ` of α. Then the inertial class i`prπq corresponds

through (3.5) and (3.7) to the equivalence class of the simple supertype λ`pφq.

Proof. — Write the inertial class of the cuspidal support of rπ as in (4.1). Let r be the degree of

k over drαs and rσ0 be the `-adic supercuspidal representation of GLupkq associated to α, where

m1 “ ru. There is a maximal β-extension rκ0 of GLm{rpDq such that rκ0b rσ0 is a maximal simple

type contained in rρ. More precisely, with the notation of Paragraph 3.3 and writing Mr for the

Levi subgroup GLm{rpDqˆ¨ ¨ ¨ˆGLm{rpDq Ď G and Ur for the unipotent radical of the parabolic

subgroup made of upper r ˆ r block triangular matrices of G, the representation of Jr XMr on

the Jr XUr-invariant subspace of rκr is rκ0 b ¨ ¨ ¨ b rκ0.

Let ρ be an irreducible component of the reduction mod ` of rρ. Then ρ contains the maximal

simple type κ0 b σ0, where κ0 is the reduction mod ` of rκ0 and σ0 is that of rσ0.

Let t be the degree of k over drφs. By [30, Lemme 3.2], if we write ρ in the form Sppτ, kq, with

τ supercuspidal (see Proposition 3.1), then kr “ t and σ0 is the unique nondegenerate irreducible

subquotient of the induced representation σ1ˆ ¨ ¨ ¨ˆσ1, where σ1 is the supercuspidal mod ` re-

presentation of GLm1{tpdq corresponding to φ. Moreover, if κ1 denotes the maximal β-extension

of GLm{tpDq such that the representation of Jt XMt on the Jt X Ut-invariant subspace of κt is

κ1 b ¨ ¨ ¨ b κ1, then κ1 b σ1 is a maximal simple type contained in τ . The result follows.

We keep in mind the following straightforward but important fact.

Remark 4.7. — Two simple irreducible `-adic representations of G in the same `-block have

the same endo-class.

The converse does not hold in general, but we have the following result. Given α P X, write

rαs for its Γ-orbit and φ for its reduction mod `. The orbit rφs depends only on rαs, and is called

the reduction mod ` of rαs.

Proposition 4.8. — Two simple irreducible `-adic representations of G of endo-class Θ are in

the same `-block if and only if their parametrizing classes have the same reduction mod `.

Proof. — This follows from Propositions 3.5 and 4.6.

5. Linked complex representations

5.1.

We fix a prime number ` different from p and an isomorphism of fields ι` : C » Q`. If π is a

complex representation of G, write ι˚`π for the `-adic representation of G obtained by extending

scalars from C to Q` along ι`.

Definition 5.1. — Two irreducible complex representations π1, π2 of G are said to be `-linked

if the irreducible `-adic representations ι˚`π1 and ι˚`π2 are in the same `-block.

Lemma 5.2. — This definition does not depend on the choice of ι`.
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Proof. — It is enough to prove that, for any field automorphism θ P AutpQ`q, two simple `-adic

representations rπ1 and rπ2 of G are in the same `-block if and only if rπθ1 and rπθ2 are in the same

`-block.

Given an irreducible `-adic representation rπ, let pL, τq be an element of its mod ` inertial su-

percuspidal support as in Definition 4.1. Then the mod ` inertial supercuspidal support of the

irreducible representation rπθ is the inertial class of pL, τ θq. The result follows.

5.2.

Recall that we have fixed in Section 2 a smooth character ψ : F Ñ Cˆ, trivial on p but not on

O. For any simple stratum ra, βs, the set of simple complex characters associated with ra, βs will

be defined with respect to this choice (see Paragraphs 3.3 and 4.3). We may and will assume

that the character ι` ˝ψ is the character ψ` of Paragraph 4.3. This gives us a bijection between

endo-classes of complex and `-adic simple characters of G. Again, we will speak of endo-classes

of simple characters, without referring to the coefficient field.

Let κ be a β-extension of some maximal complex simple character in G having endo-class Θ.

Write X for the group of complex characters of kˆ.

Lemma 5.3. — Let π be a simple irreducible complex representation of G with endo-class Θ.

Then we have

α P Xpκ, πq ô ι` ˝ α P X`pι
˚
`κ, ι

˚
`πq.

Proof. — We have α P Xpκ, πq if and only if π contains the simple type λpαq “ κpαq b σpαq,

which occurs if and only if ι˚`π contains the `-adic simple type ι˚`λpαq. Thus it suffices to prove

that ι˚`λpαq is equal to rλ`pι` ˝αq, where rλ` is the map as in Paragraph 4.3 defined with respect

to the maximal β-extension ι˚`κ.

Firstly, the `-adic β-extension rκ`pι` ˝ αq associated with ι` ˝ α with respect to ι˚`κ is equal to

ι˚`κpαq. Secondly, the `-adic supercuspidal representation rσ`pι` ˝αq associated with ι` ˝α (with

respect to the choice of an isomorphism (3.3)) is equal to ι˚`σpαq, since it is characterized by a

trace formula (see Remark 3.4). The result follows.

Definition 5.4. — Let α P X. The `-regular part of α is the unique complex character α` P X

whose order is prime to ` and such that αα´1
` has order a power of `.

Given α P X, the orbit rα`s depends only on rαs. It is called the `-regular part of rαs, denoted

rαs`.

Proposition 5.5. — Two simple irreducible complex representations of G with endo-class Θ

are `-linked if and only if the `-regular parts of their parametrizing classes are equal.

Proof. — Let π1, π2 be simple irreducible complex representations of G with endo-class Θ. We

fix αi P Xpκ, πiq for each i “ 1, 2. By Lemma 5.3 and Proposition 4.8, the representations π1, π2

are `-linked if and only if rι` ˝α1s and rι` ˝α2s have the same reduction mod `. But the reduction

mod ` of rι` ˝ αs, for a character α P X, is the same as that of rι` ˝ α`s. It follows that we have

rι` ˝ pα1q`s “ rι` ˝ pα2q`s, thus rα1s` “ rα2s`.
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5.3.

Recall that q is the cardinality of the residue field of F. For each prime number ` dividing

(5.1) pqn ´ 1qpqn´1 ´ 1q . . . pq ´ 1q

we fix an isomorphism of fields ι` : C » Q`.

Definition 5.6. — Two irreducible complex representations π, π1 of G are linked if there are a

finite family `1, . . . , `r of prime numbers dividing (5.1) and a finite family of irreducible complex

representations π “ π0, π1, . . . , πr “ π1 such that, for all integers i P t1, . . . , ru, the representa-

tions πi´1 and πi are `i-linked.

Remark 5.7. — By Lemma 5.2, this does not depend on the choice of the isomorphisms ι` for

` dividing (5.1).

Two linked simple complex representations of G have the same endo-class (see Remark 4.7).

The converse is given by the following proposition.

Proposition 5.8. — Two simple irreducible complex representations are linked if and only if

they have the same endo-class.

Proof. — Assume π and π1 are simple irreducible complex representations with the same endo-

class Θ. Let α and α1 be characters in Xpπq and Xpπ1q, respectively, and write ξ “ α1α´1. Let

`1, . . . , `r be the prime numbers dividing (5.1). The character ξ decomposes uniquely as

ξ “ ξ1 . . . ξr

where the order of ξi is a power of `i, for i P t1, . . . , ru. Write α0 “ α and define inductively

αi “ αi´1 ¨ ξi

for all i P t1, . . . , ru. Let πi be a simple irreducible complex representation of endo-class Θ and

parametrizing class rαis. The result follows from Proposition 5.5.

Remark 5.9. — Suppose that π and π1 are discrete series representations with the same endo-

class. The proof of Proposition 5.8 shows that the simple representations π1, . . . , πr´1 linking π

to π1 can be chosen to be discrete series representations as well.

5.4.

Let π be an irreducible complex representation of G. Fix a representative pM, ρq in its cuspidal

support, with M “ GLm1pDq ˆ ¨ ¨ ¨ ˆGLmrpDq and ρ “ ρ1 b ¨ ¨ ¨ b ρr, with m1 ` ¨ ¨ ¨ `mr “ m,

and where ρi is a cuspidal irreducible representation of GLmipDq for i P t1, . . . , ru. Write Θi for

the endo-class of ρi and gi for the degree of Θi. We define the semi-simple endo-class of π to be

the formal sum

(5.2) Θpπq “
r
ÿ

i“1

mid

gi
¨Θi

in the free abelian semigroup generated by all F-endo-classes. It depends only on the inertial

class of the cuspidal support of π.
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Note that, if π is a simple irreducible representation with endo-class Θ, then its semi-simple

endo-class is Θpπq “ pn{gq ¨Θ where g is the degree of Θ.

The following theorem, which is our first main result, generalizes Proposition 5.8.

Theorem 5.10. — Two irreducible complex representations are linked if and only if they have

the same semi-simple endo-class.

Proof. — Any two linked irreducible complex representations automatically have the same semi-

simple endo-class. We thus start with two irreducible complex representations π, π1 with the

same semi-simple endo-class. By [28, Théorème 4.16], the representation π can be written

π “ π1 ˆ π2 ˆ ¨ ¨ ¨ ˆ πk

where π1, π2, . . . , πk are simple irreducible representations whose inertial cuspidal supports are

pairwise distinct, and this decomposition is unique up to renumbering. We have the following

straightforward lemma.

Lemma 5.11. — Let δ be an irreducible complex representation of GLm´kpDq for some integer

k P t1, . . . ,m´1u. Let σ, σ1 be two irreducible complex representations of GLkpDq, and let π, π1

be irreducible subquotients of σˆ δ and σ1ˆ δ, respectively. If σ and σ1 are linked, then π and π1

are linked.

For each i P t1, . . . , ku, thanks to Lemma 5.11 and Proposition 5.8, we may and will assume

that πi is a discrete series representation of the form Lpρi, riq for some cuspidal representation ρi
of GLmipDq with same endo-class as πi and some integer ri, such that m1r1 ` ¨ ¨ ¨ `mkrk “ m.

We may even assume that ρi has minimal degree among all cuspidal irreducible representations

of GLapDq, a ě 1, with the same endo-class as πi. This amounts to saying that mi is equal to

gi{pgi, dq, where gi is the degree of the endo-class of πi.

Moreover, if ρi and ρj have the same endo-class for some i, j P t1, . . . , ku, then they have the

same degree, thus they are linked. We thus may assume ρ1, . . . , ρk have distinct endo-classes,

denoted Θ1, . . . ,Θk, respectively.

Similarly, we may assume the representation π1 decomposes as a product π11 ˆ π12 ˆ ¨ ¨ ¨ ˆ π1t,

where π1j is a discrete series representation of the form Lpρ1j , sjq for some cuspidal representation

ρ1j of GLm1j pDq and some integer sj ě 1, and we may assume that the endo-classes Θ1
1, . . . ,Θ

1
t

of ρ11, . . . , ρ
1
t are distinct. It follows that k “ t and, up to renumbering, we may assume that we

have Θ1
i “ Θi for each i P t1, . . . , ku. It then follows that ρ1i and ρi have the same degree, by

minimality of mi.

Since π and π1 have the same semi-simple endo-class, we have si “ ri for all i, thus πi and π1i
have the same degree. Proposition 5.8 then implies that πi and π1i are linked. Theorem 5.10 now

follows from Lemma 5.11 again.

6. Application to the local Jacquet–Langlands correspondence

We fix n “ md and write G “ GLmpDq and H “ GLnpFq. As in the introduction, we write

DpG,Cq for the set of all isomorphism classes of complex discrete series representations of G,
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and similarly for H. We write

(6.1) π : DpG,Cq Ñ DpH,Cq

for the local Jacquet–Langlands correspondence.

6.1.

We fix an isomorphism of fields ι` : C » Q` and write (as in [30])

(6.2) rπ` : DpG,Q`q Ñ DpH,Q`q

for the `-adic local Jacquet–Langlands correspondence between `-adic discrete series representa-

tions of G and H. The correspondence (6.2) does not depend on the choice of ι` ([30, Remar-

que 10.1]). According to [2, Paragraph 3.1], there is a unique surjective group homomorphism

rJ` : RpH,Q`q Ñ RpG,Q`q

where RpG,Q`q is the Grothendieck group of finite length `-adic representations of G, with the

following property: given positive integers n1, . . . , nr such that n1 ` ¨ ¨ ¨ ` nr “ n and an `-adic

discrete series representation rσi of GLnipFq for each i, the image of the product rσ1ˆ ¨ ¨ ¨ ˆ rσr by
rJ` is 0 if ni is not divisible by d for at least one i, and is rπ1ˆ¨ ¨ ¨ˆ rπr otherwise, where ni “ mid

and rπi is the `-adic discrete series representation of GLmipDq whose Jacquet–Langlands transfer

is rσi, for each i.

By [30, Théorème 12.4], there exists a unique surjective group homomorphism of Grothendieck

groups J` : RpH,F`q Ñ RpG,F`q such that the diagram

RpH,Q`q
e

rJ`
ÝÝÝÝÑ RpG,Q`q

e

r`

§

§

đ

§

§

đ

r`

RpH,F`q ÝÝÝÝÑ
J`

RpG,F`q

is commutative, where RpG,Q`q
e is the subgroup of RpG,Q`q generated by integral irreducible

representations, and RpG,F`q is the Grothendieck group of `-modular representations of G.

Proposition 6.1. — Let rπ1 and rπ2 be `-adic discrete series representations of G, and write rσ1,

rσ2 for their Jacquet–Langlands transfers to H, respectively. If rσ1, rσ2 are in the same `-block of

H, then rπ1, rπ2 are in the same `-block of G.

Proof. — Let us write rσi “ Lprρi, riq and ki “ kprρiq for i “ 1, 2. Then k1r1 “ k2r2, which we

denote by v, and the mod ` inertial supercuspidal support of rσ1 and rσ2 contains the supercuspidal

pair

pGLupFq ˆ ¨ ¨ ¨ ˆGLupFq, τ b ¨ ¨ ¨ b τq,

with uv “ m and for some mod ` supercuspidal representation τ of GLupDq. Fix an `-adic lift

rτ of τ and write rσ “ Lprτ , vq. The representation rσ is in the same `-block as rσ1, rσ2, by Lemma

4.5. If we write rπ for the `-adic discrete series representation of G whose transfer to H is rσ, then

it is enough to prove that rπ is in the same `-block as rπ1.
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In the remainder of the proof, it will be more convenient for us to deal with Speh representa-

tions rather than discrete series representations, as in [30]. We thus apply the Zelevinski invo-

lution to rπ, rπ1 and rσ, rσ1 and thus get `-adic Speh representations.

Let us write rσ˚ for the Zelevinski dual of rσ. Its reduction mod ` is the `-modular super-Speh

representation Zpτ, vq, by [27, Théorème 9.39]. If we write rπ˚ “ Zprα, tq for the Zelevinski dual

of rπ, for some t dividing m and some cuspidal irreducible representation rα of GLm{tpDq, then its

reduction mod ` contains the Speh representation Zpα, tq where α is an irreducible component of

the reduction mod ` of rα (see for instance [30, Proposition 1.10]). The cuspidal representation α

need not be supercuspidal but, according to Proposition 3.1, it can be written as Sppβ, kq for

k “ kpαq and some supercuspidal irreducible representation β.

We now look at the reduction mod ` of the Zelevinski dual of rσ1. It is Zpρ1, r1q where ρ1,

the reduction mod ` of rρ1, can be written as Sppτχ, k1q for some unramified character χ. By

twisting rπ1 by an unramified character of G, we may assume that χ is trivial. According to [27,

Lemme 9.41], the representation Zpρ1, k1q decomposes as a Z-linear combination of products of

the form

Zpτνi1 , v1q ˆ ¨ ¨ ¨ ˆ Zpτνir , vrq

with v1`¨ ¨ ¨`vr “ v and i1, . . . , ir P Z, where ν stands for the absolute value of the reduced norm,

as usual. (For an explicit formula for this decomposition, see [30, Sections 11 and 12].) Thanks

to the commutative diagram above, the reduction modulo ` of the Zelevinski dual of rπ1 will be

made of products of the form

Zpανi1 , t1q ˆ ¨ ¨ ¨ ˆ Zpανir , trq

with t1` ¨ ¨ ¨` tr “ t and i1, . . . , ir P Z, all of whose irreducible subquotients have supercuspidal

support inertially equivalent to pGLwpDqˆ¨ ¨ ¨ˆGLwpDq, βb¨ ¨ ¨bβq, with wkt “ m. The result

follows from Corollary 4.4.

6.2.

Proposition 6.1 implies that two complex discrete series representations π1, π2 of G are linked

if their Jacquet–Langlands transfers are linked. We have the following refinement.

Proposition 6.2. — Let rπ1 and rπ2 be `-adic discrete series representations of G, and write rσ1,

rσ2 for their Jacquet–Langlands transfers to H, respectively. Then rσ1, rσ2 are in the same `-block

of H if and only if rπ1, rπ2 are in the same `-block of G.

Proof. — Proposition 6.1 implies that the `-adic Jacquet–Langlands correspondence (6.2) indu-

ces a well-defined map from `-blocks of discrete series representations of H to those of G: given

an `-block of H, if rσ is any `-adic discrete series representation in that block, then the `-block of

the transfer to G of rσ is independent of the choice of rσ. This map also preserves depth so that,

for any non-negative rational number r P Q`, we get a well-defined map from `-blocks of discrete

series representations of depth r of H to `-blocks of discrete series representations of depth r of

G. This map is between two finite sets of the same cardinality, since they are parametrized by

the same objects: an endo-class of depth r and, by Proposition 4.8, a parametrizing class upto

reduction mod `. It is clearly surjective, so is also injective.
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Allowing ` to vary, we deduce

Theorem 6.3. — Two complex discrete series representations of G are linked if and only if

their transfers to H are linked.

It follows that Proposition 5.8 (together with Remark 5.9) induces a map

(6.3) π1 : EnpFq Ñ EnpFq

depending on G, where EnpFq is the set of F-endo-classes of degree dividing n. More precisely,

given an endo-class Θ P EnpFq and a complex discrete series representation π of G of endo-class

Θ, the endo-class of the Jacquet–Langlands transfer of π to H depends only on Θ: we denote it

π1pΘq. This map does not depend on the choice of the isomorphisms ι` for ` dividing (5.1).

Proposition 6.4. — The map π1 is bijective.

Proof. — This map is clearly surjective: given an endo-class Θ P EnpFq, and any discrete series

representation σ P DpH,Cq with endo-class Θ, the endo-class of its inverse Jacquet–Langlands

transfer π´1pσq P DpG,Cq is an antecedent of Θ by π1.

Now let π, π1 P DpG,Cq have Jacquet–Langlands transfers σ, σ1 to H with the same endo-class.

By Proposition 5.8 and Remark 5.9, the representations σ, σ1 are linked by a family of discrete

series representations. By Theorem 6.3, the same holds for π and π1. Thus they have the same

endo-class.

Recall that the parametric degree of a cuspidal representation of G has been defined in §3.1.

Proposition 6.5. — For every complex discrete series representation of G, there is a cuspidal

complex representation of G with the same endo-class and with parametric degree n.

Proof. — Let π be a complex discrete series representation of G with endo-class Θ. To find a

complex cuspidal representation with same endo-class and parametric degree n, we need to find

a Galpk{dq-regular complex character α P X which is also Galpk{eq-regular. The latter implies

the former, so let us find a Galpk{eq-regular character α P X. For this, it is enough to choose

for α a generator of the cyclic group X.

As an immediate consequence, we see that, given an endo-class Θ in EnpFq, if there is a single

complex cuspidal representation ρ of G with endo-class Θ and parametric degree n such that

πpρq has endo-class Θ, then π1pΘq is equal to Θ.

6.3.

In this paragraph, the division algebra D is fixed, but we allow the positive integer m to vary.

Given an m ě 1, we write π1,m for the map (6.3) induced by the Jacquet–Langlands correspon-

dence from DpGLmpDq,Cq to DpGLmdpFq,Cq. Recall (see Lemma 3.3) that, associated with an

endo-class Θ P EpFq, there is an integer called its ramification index.
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Theorem 6.6. — (1) There is a unique map

j “ jD : EpFq Ñ EpFq,

depending only on D, such that, for any integer m ě 1, the restriction of j to EmdpFq coincides

with the map π1,m.

(2) The map j is bijective, and it is the identity on all essentially tame endo-classes (that is,

all endo-classes whose ramification index is prime to p).

Proof. — Uniqueness follows from the fact that EpFq is the union of the EmdpFq, for m ě 1.

In order to prove the existence of j, it suffices to prove that for all m, k ě 1, the maps π1,m

and π1,k coincide on EmdpFq X EkdpFq “ ErdpFq, where r denotes the greatest common divisor

of m, k. For this, let Θ P ErdpFq, and ρ be a cuspidal irreducible representation of GLrpDq with

endo-class Θ and parametric degree rd. Its Jacquet–Langlands transfer to GLrdpFq is a cuspidal

representation denoted σ, whose endo-class is denoted Θ1. Then, for any a ě 1, the discrete

series representation Lpρ, aq of GLarpDq has endo-class Θ, and its transfer Lpσ, aq to GLardpFq

has endo-class Θ1. It follows that π1,mpΘq “ π1,rpΘq “ Θ1. The bijectivity of j follows from

the fact that all the maps π1,m, for m ě 1, are bijective.

To prove the second part of (2), given an essentially tame endo-class Θ, it suffices to find a

single complex cuspidal representation ρ of G with endo-class Θ and parametric degree n such

that πpρq has endo-class Θ. But it follows from [13] – which gives an explicit, type-theoretic

description of the Jacquet–Langlands transfer of complex cuspidal representations of G with

essentially tame endo-class and parametric degree n – that this is true of any complex cuspidal

representation ρ of G with endo-class Θ and parametric degree n.

Remark 6.7. — After this paper was written, Dotto proved the Endo-class Invariance Conjec-

ture in [20]. Thus it is now known that the map j of Theorem 6.6 is in fact the identity.

7. Reduction to the maximal totally ramified case

We continue with the previous notation, so that G “ GLmpDq and H “ GLnpFq. In this sec-

tion, we closely follow the ideas of [13, Section 6] to make a further reduction to the maximal to-

tally ramified case (see Paragraph 1.1). All representations in this section are complex.

7.1.

Let π be a cuspidal (complex) representation of G with parametric degree n. Let pJ,λq be an

extended maximal simple type of G contained in π [28, §3.1 and Théorème 3.11], attached to

a simple stratum ra, βs and a simple character θ P Cpa, βq. Write B for the centralizer of β in

MmpDq, so that B » Mm1pD
1q, for some integer m1 ě 1 and Frβs-division algebra D1. Fix a max-

imal unramified extension L of Frβs in B, and write K for the maximal unramified subextension

of L over F.

We fix a root of unity ζ P K of order relatively prime to p such that K “ Frζs. Write GK for

the centralizer of K in G. Let u be a pro-unipotent, elliptic regular element of GK in the sense
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of [13, Paragraph 1.6]. The element h “ ζu then lies in the set Gell
reg of elliptic regular elements

of G, so we have

tr πphq “
ÿ

xPG{J

tr λpx´1hxq

as in [13, (6.3.1)]. Write J “ Jpa, βq “ JX aˆ. A coset xJ can only contribute to the sum if we

have x´1hx P J or, equivalently, x´1hx P J. As in [13, 6.3 Lemma], such a coset xJ is contained

in NGpKqJ, where NGpKq is the normalizer of K in G.

Write Ψ for the Galois group of K{F and Γ for that of L{Frβs. Restriction of operators identi-

fies Γ with a subgroup of Ψ. Write Ψt for the unique subgroup of Γ (thus of Ψ) of order m1spπq,

where spπq is the integer introduced in Paragraph 3.1. Observe, thanks to the description of the

group J in [34, 5.1], that Ψt is the image of JXNGpKq under the surjective map NGpKq{GK Ñ Ψ.

As in [13, (6.3.2)], we have

tr πpζuq “
ÿ

αPΨ{Ψt

ÿ

yPGK{JK

tr λpy´1ζαuαyq

where JK “ JXGK.

Let us fix a uniformizer $F of F. We choose an irreducible representation κ of J such that:

(1) the restriction of κ to J is a β-extension of θ;

(2) the character detpκq has order a power of p;

(3) the automorphism κp$Fq is the identity.

Note that such a representation is not unique. We now write

σ “ HomJ1pκ,λq

which carries an action of J given by g ¨ f “ λpgq ˝ f ˝ κpgq´1 for g P J and f P σ. This repre-

sentation is irreducible and trivial on J1 “ J1pa, βq, and we have the decomposition λ “ κb σ.

As in [13, (6.4.1)] this gives us

tr πpζuq “
ÿ

αPΨ{Ψt

tr σpζαq
ÿ

yPGK{JK

tr κpy´1ζαuαyq.

We are now going to interpret the sum over GK{JK as the trace of a cuspidal irreducible repre-

sentation of GK.

7.2.

Write θK for the restriction of θ to H1pa, βq XGK, which is the interior K{F-lift of the simple

character θ in the sense of [6, Section 5]. The group JK is also the normalizer of θK in GK. We

choose an irreducible representation κK of JK such that:

(1) the restriction of κK to JK is a β-extension of θK;

(2) the character detpκKq has order a power of p;

(3) the automorphism κKp$Fq is the identity.
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Again, such a choice may not be unique. The pair pJK,κKq is an extended maximal simple type

in GK. It thus defines a cuspidal irreducible representation ρ of GK. By [12, (3.4.3) and (5.6.2)],

there is a sign ε P t´1,`1u such that

tr κpy´1ζαuαyq “ ε ¨ tr κKpy
´1ζαuαyq.

As in [13, (6.4.2)] this gives us

(7.1) tr πpζuq “ ε
ÿ

αPΨ{Ψt

tr σpζαq tr ρα
´1
puq.

We do not know whether a result similar to [13, 6.5 Lemma] holds, that is, we do not know whe-

ther the Ψ-stabilizers of ρ and of its inertial class are both equal to Γ. However, let Ψ0 denote the

stabilizer in Ψ of the inertial class of ρ and let X0 be a set of representatives for Ψ mod Ψ0. For

γ P Ψ0 there is an unramified character χγ of GK such that ργ
´1
» ρχγ . Since u is pro-unipotent

(thus compact) we have χα
´1

γ puq “ 1, for all α P Ψ{Ψt. Therefore (7.1) can be rewritten as

(7.2) tr πpζuq “ ε
ÿ

αPX0

tr ρα
´1
puq

ÿ

γPΨ0{Ψt

tr σpζαγq

Note that the map

(7.3) w : ζ ÞÑ
ÿ

γPΨ0{Ψt

tr σpζγq

is not identically zero on the set of K{F-regular roots of unity, by [38, Theorem 1.1(ii)]. Thus

there is an α P Ψ such that the coefficient wpζαq in (7.2) is nonzero.

7.3.

Now write π1 for the Jacquet–Langlands transfer of π to H. Since π has parametric degree n,

the torsion number tpπq is equal to the degree of K over F. We now do for π1 what we did for π.

Let pJ1,λ1q be an extended maximal simple type of H contained in π1, attached to a simple stra-

tum ra1, β1s. Write B1 for the centralizer of β1 in MnpFq, fix a maximal unramified extension L1

of Frβ1s in B1 and write K1 for the maximal unramified subextension of L1 over F. The relation

tpπq “ tpπ1q, together with the fact that π1 also has parametric degree n, implies that K1 and K

have the same degree over F. Therefore, we may identify the maximal unramified subextension

of L1{F with K.

We have an analogue σ1 of σ and an analogue ρ1 of ρ in the argument of the previous paragraph

so that we get

tr π1pζu1q “ ε1
ÿ

α1PX10

tr ρ1α
1´1

pu1q
ÿ

γ1PΨ10{Ψ
1
t

tr σ1pζα
1γ1q

where ζ P K is as above, u1 is a pro-unipotent elliptic regular element of the centralizer HK of K

in H, ε1 P t´1,`1u is a sign and the subgroups Ψ1t,Ψ
1
0 and X10 are defined as in the previous para-

graph. If ζu1 is chosen to have the same reduced characteristic polynomial over F as ζu, this is
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equal to p´1qn´m ¨ tr πpζuq, by the trace relation characterizing the Jacquet–Langlands corres-

pondence. We thus get:

ε1
ÿ

α1PX10

w1pζα
1

q tr ρ1α
1´1

pu1q “ p´1qn´m ¨ ε
ÿ

αPX0

wpζαq tr ρα
´1
puq

where the function w and its analogue w1 are defined by (7.3).

We apply [13, 6.6 Lemma] (note that ρ has maximal parametric degree since L{K is maximal).

The ρ1α
1´1

, α1 P X10, are not unramified twists of each other, and the same holds for the Jacquet–

Langlands transfers to HK of the ρα
´1

, α P X0. Thanks to the linear independence of characters,

it follows that there is an α P Ψ such that

πKpρ
α´1
q “ ρ1χ

for some unramified character χ of HK, where πK is the local Jacquet–Langlands correspondence

from GK to HK.

Assume now that πK preserves K-endo-classes for maximal totally ramified cuspidal represen-

tations of GK. Write EpFq for the set of endo-classes over F, and likewise EpKq. The representa-

tions ρα
´1

and ρ1 have the same endo-class in EpKq. But the K-endo-class of ρα
´1

(respectively,

of ρ1) is a K{F-lift of the F-endo-class of π (respectively, of π1) in the sense of [8, Definition 9.7].

It follows (for instance by applying the restriction map of [8, Corollary 9.13] from EpKq to EpFq)

that π, π1 have the same F-endo-class. Thus we have proved Theorem A of the introduction:

Theorem 7.1. — Assume that, for all F and n, and all maximal totally ramified, cuspidal irre-

ducible complex representations ρ of G, the representations ρ and πpρq have the same endo-class.

Then the map π1 is the identity.

8. Explicit Jacquet–Langlands correspondence up to unramified twist

Now let us fix an endo-class Θ P EnpFq, and suppose that π1pΘq “ Θ. Write D0pG,Θq for the

set of inertial classes of discrete series representations of G with endo-class Θ. The local Jac-

quet-Langlands correspondence (6.1) thus induces a bijective map

(8.1) π0 : D0pG,Θq Ñ D0pH,Θq.

The cuspidal support induces a bijection between D0pG,Θq and the set of inertial classes of sim-

ple supercuspidal pairs of G with endo-class Θ.

8.1.

We fix a simple stratum ra, βs in MmpDq such that b “ aXB is maximal in B, together with a

simple character θ P Cpa, βq with endo-class Θ, and a β-extension κ of θ. The integer m1 coming

from (3.3) is m1 “ mpd, gq{g, where g denotes the degree of Θ. Write X for the group of complex

characters of kˆ. Thanks to Proposition 3.5 (see also (3.7)) we have a bijective map

(8.2)
X{Γ Ñ D0pG,Θq

rαs ÞÑ Ωpκ, αq
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where Ωpκ, αq is the inertial class of discrete series representations of G that contain the simple

type λpαq.

Similarly, we choose a maximal simple character θ1 P Cpa1, β1q in H with endo-class Θ together

with a maximal β-extension κ1 of θ1. We fix a finite extension k1 of the residue field e1 of Frβ1s of

degree n1 “ n{g, which gives us a parameter set X1{Γ1. We thus get a bijection rα1s ÞÑ Ωpκ1, α1q

between X1{Γ1 and D0pH,Θq, similar to (8.2).

Let us fix an isomorphism of f -extensions e » e1, where f denotes the residue field of F. We

thus may assume that k1 “ k, which identifies the parameter sets X1{Γ1 and X{Γ. Let Υ be the

unique bijective map such that the diagram

X{Γ
Υ

ÝÝÝÝÑ X{Γ
§

§

đ

§

§

đ

D0pG,Θq ÝÝÝÝÑ
π0

D0pH,Θq

is commutative, where the vertical maps are given by (8.2) and its analogue for H. It depends on

the choice of the maximal β-extensions κ and κ1, as well as the f -isomorphism e » e1 (see Remark

3.7 for the dependency in k). We would like to describe Υ. The purpose of Proposition 8.8 below

is to show that, in a certain sense, by considering various m ě 1 such that md is divisible by the

degree of Θ, one can reduce the computation of Υprαsq to the case where α is suitably regular.

By Proposition 5.5 and Corollary 6.2, we have the following fact.

Proposition 8.1. — For any prime number `, the bijection Υ is compatible with taking `-regu-

lar parts. More precisely, the Γ-orbits of α, β P X have the same `-regular part if and only if the

Γ-orbits Υprαsq and Υprβsq have the same `-regular part.

Proposition 8.1 suggests that, with a suitable choice of `, it may be possible to deduce Υprαsq

from the knowledge of Υprβsq. We will illustrate this idea in Proposition 8.8 below.

8.2.

We first give another property of the map Υ. Set n1 “ n{g “ m1d1. Given α P X, let f be the

cardinality of its Γ-orbit, and write

(8.3) spαq “ sDprαsq “
d1

pf, d1q
.

Recall that d1 is the degree of d over e (the residue field of Frβs), thus d1 “ d{pd, gq. Note that the

cardinality of its Galpk{dq-orbit is equal to f{pf, d1q, which was denoted by u in Paragraph 3.3.

Definition 8.2. — We call the integer f the parametric degree of α P X.

This is related to the notion of parametric degree for a discrete series representation as follows:

any discrete series representation in Ωpκ, αq has parametric degree fg.

Since the local Jacquet–Langlands correspondence preserves the parametric degree (see [13])

we have the following result.

Lemma 8.3. — For all α P X, the parametric degrees of rαs and Υprαsq are equal.
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Note that Ωpκ, αq is made of cuspidal representations with cuspidal Jacquet–Langlands trans-

fers if and only if f “ n1, that is, if and only if α is e-regular. Indeed, from [13], a discrete series

representation of G is cuspidal with cuspidal Jacquet–Langlands transfer if and only if its para-

metric degree is n.

8.3.

Let a ě 1 be a positive integer. We consider the simple stratum ra˚, βs in MampDq, where a˚ is

the hereditary order Mapaq, and write θ˚ P Cpa˚, βq for the transfer of θ in the sense of [32, 3.3.3].

Associated with κ, there is a coherent choice of a maximal β-extension κ˚ of the simple character

θ˚ ([28, Remarque 5.17]). We fix a finite extension k˚ of k of degree a. Write X˚ for the group

of complex characters of k˚ˆ and Γ˚ for the Galois group of k˚{e. Repeating the arguments of

Paragraph 8.1 with GLampDq and GLanpFq, we get a bijective map Υ˚ : X˚{Γ˚ Ñ X˚{Γ˚. We

have the following straightforward result.

Lemma 8.4. — Let rαs P X{Γ, and let Lpρ, rq be in the inertial class Ωpκ, αq, for some integer r

dividing m and some irreducible cuspidal representation ρ of GLm{rpDq. Then Lpρ, arq is in the

inertial class Ωpκ˚, α˚q, where α˚ is the character α ˝Nk˚{k of k˚ˆ.

Proof. — With the notation of Paragraph 3.3 and writing M for the Levi subgroup Gˆ¨ ¨ ¨ˆG Ď

GLampDq and U for the unipotent radical of the parabolic subgroup made of upper aˆ a block

triangular matrices of GLampDq, this follows from the fact that the representation of Jpa˚r , βqXM

on the Jpa˚r , βq XU-invariant subspace of the transfer κ˚ar of κ˚ to Jpa˚ar, βq is κb ¨ ¨ ¨ b κ.

For α P X, the orbit rα˚s depends only on rαs, and we denote it rαs˚. By Lemma 8.4 we thus

have

Υ˚prα˚sq “ Υpαq˚

for any character α P X.

Given α P X, we write f for its parametric degree, and erαs for the subfield of k of degree f

over e.

Lemma 8.5. — Let α P X. There are an integer a ě 1, a prime number ` ‰ p not dividing the

order of erαsˆ and an e-regular character β P X˚ such that β ” α˚ mod `.

Proof. — First recall the following result, known as Zsigmondy’s Theorem [45].

Lemma 8.6. — Let b, r ě 2 be integers. There exists a prime number ` which divides br´1 but

not bi´1 for any i P t1, . . . , r´1u, except when r “ 6 and b “ 2, and when r “ 2 and b “ 2k´1

for some k ě 1.

Let us write Q for the cardinality of e, and let us fix an a ě 1 such that an1 ą 6f . Applying

Lemma 8.6 with b “ Qf and r “ an1{f , we obtain a prime number ` dividing br ´ 1 but not

dividing bi ´ 1 for any i P t1, . . . , r ´ 1u. It follows that b has order r in the group pZ{`Zqˆ.

Let ξ be a nontrivial character of k˚ˆ of order `. Then the character β “ ξα˚ is congruent to

α˚ mod `. Since the order of α is prime to ` (for it divides b´ 1), the cardinality of the Γ-orbit
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of β is the least common multiple of f and the order of Q in pZ{`Zqˆ. This cardinality is equal

to fr “ an1, thus β is e-regular.

Remark 8.7. — (1) The choice a “ 1 is not always possible. For instance, if α is trivial, e

has 7 elements and n1 “ 2, then no prime number ` satisfies the required condition. We thank

Guy Henniart for a suggestion that brought us to introduce the process described here.

(2) The proof of Lemma 8.5 shows that, for any character α P X, we can choose a to be any

integer ě 7. Moreover, the choice of a and ` only depend on the parametric degree f , not on α.

(3) Note that ` cannot be 2. Indeed we have ` ‰ p and, if p is odd, then the fact that ` does

not divide Qf ´ 1 (the order of erαsˆ) implies that ` ‰ 2.

With the notation of Lemma 8.5, we get the following result.

Proposition 8.8. — Assume that Υ˚prβsq “ rβµs for some character µ P X˚. Then µ` “ ν˚

for some character ν P X and we have Υprαsq “ rανs.

Proof. — Let us write Υprαsq “ rα1s for some α1 P X. Then rα1˚s ” rβµs mod `. By Lemma 8.3,

the parametric degree of α1 is f , thus erα1s “ erαs. It follows that ` does not divide the order of

α1. Write β “ ξα˚ for some character ξ whose order is a power of `. Taking `-regular parts, we

get rα1˚s` “ rα
1˚s “ rα˚µ`s. Changing α1 in its Γ-orbit, we may assume that α1˚ “ α˚µ`. Thus

µ` “ ν˚ for some ν P X. Since Nk˚{k is surjective, we get Υprαsq “ rανs.

9. The essentially tame case

The purpose of this section is to illustrate Proposition 8.8 in the essentially tame case. Assume

that Θ is essentially tame: we thus have π1pΘq “ Θ by Corollary 6.6. As in Paragraph 8.1, we

will fix maximal simple characters θ, θ1 in G, H with endo-class Θ, but we must be careful here:

for our purpose, these choices have to be compatible, in a sense that we define in Paragraph 9.1.

That we need to take care of this compatibility was brought to our attention by the work of

Dotto [20], who resolves this rigidity problem in essentially the same way, though with a slightly

different language.

Recall (Corollary 6.6 and Lemma 3.3) that the tameness assumption on Θ means that Frβs

is tamely ramified over F, for any simple stratum ra, βs and any simple character θ P Cpa, βq of

endo-class Θ. We will see other properties of essentially tame endo-classes below. We also refer

the reader to [11, Section 1] for more details.

As in Section 8, we write g for the degree of Θ and set n1 “ n{g.

9.1.

In order to formulate our Compatibility Assumption below, it is convenient to use the notion

of ps-character defined in [6, Definition 1.5]. Fix once and for all a separable closure F of F. Its

residue field f is an algebraic closure of the residue field f of F. Let k be the unique extension

of f of degree n1 contained in f and write X for the group of complex characters of kˆ.
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Let us fix a ps-character pΘ, 0, βq of endo-class Θ with β P F. Write E for the field Frβs and e

for its residue field, which canonically identifies with an extension of f contained in k. Write Γ

for the Galois group of k over e. Since Θ is essentially tame, E is tamely ramified over F.

We now fix a homomorphism ι : E Ñ MmpDq of F-algebras and a principal order a in MmpDq

normalized by ιEˆ, such that the intersection b of a with the centralizer B of ιE in MmpDq is a

maximal order. By [6, Definition 1.5], this gives us a maximal simple stratum ra, ιβs in MmpDq

and a maximal simple character θ P Cpa, ιβq of endo-class Θ. This also defines an f -isomorphism

φι : eÑ eι

where eι denotes the residue field of ιE. As in Paragraph 3.3, we fix an extension kι of eι. Write

Xι for the group of complex characters of pkιq
ˆ and Γι for the Galois group of kι over eι. The

f -isomorphism φι allows us to identify X{Γ and Xι{Γι. Write κ for the unique β-extension of θ

whose determinant has order a power of p. This choice gives us a bijective map between Xι{Γι
and D0pG,Θq as in (8.2). Composing with the identification above, we get a bijection

(9.1) X{Γ Ñ D0pG,Θq

denoted ω, depending on the various choices we have made.

Using the same ps-character pΘ, 0, βq as above, we now make similar choices for H: an F-homo-

morphism ι1 : E Ñ MnpFq and a principal order a1. This gives us a maximal simple character θ1,

which is the transfer of θ in the sense of [32, Paragraph 3.3.3]. Let κ1 be its unique β-extension

whose determinant has order a power of p. This gives us a bijection X{Γ Ñ D0pH,Θq, denoted

ω1. Putting the bijections ω, ω1 and the inertial Jacquet–Langlands correspondence π0 of (8.1)

together, we get a permutation Υ “ ω1´1 ˝ π0 ˝ ω of X{Γ.

Remark 9.1. — This permutation depends a priori on the choice of the ps-character pΘ, 0, βq

with endo-class Θ, as well as of that of ι, a, ι1, a1. Under the Compatibility Assumption below,

Theorem 9.3 will show that Υ is actually independent of these choices.

We now go back to the simple character θ. Restricting it to the 1-units of b, it takes the form

ξθ ˝NrdB for a unique character ξθ of the 1-units 1` pιE, where NrdB denotes the reduced norm

of B (see [32, 3.3.2]). Composing with ι, we get a character ξθ ˝ ι of 1` pE. Similarly, we have

a character ξθ1 ˝ ι
1 of the same group.

Compatibility Assumption. We assume that

(9.2) ξθ ˝ ι “ ξθ1 ˝ ι
1

on 1` pE.

From now on, we assume that the Compatibility Assumption is satisfied. The character (9.2)

of the 1-units 1` pE will be denoted ξ0.

Remark 9.2. — Let EpFq denote the set of all endo-classes over F, and define EpEq accordingly.

There is a canonical map

EpEq Ñ EpFq
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given by [8, Corollary 9.3] (see also [15, Chapter 2]), called the restriction map. It is surjective

with finite fibers. According to [11, Paragraph 1.2], we can identify E-endo-classes of degree 1

with characters of 1` pE. The tameness assumption on Θ implies that the E{F-lifts of Θ, that

is, the endo-classes in EpEq whose restriction to EpFq is Θ, all have degree 1. Besides, ξ0 is one of

these lifts, and the map γ ÞÑ ξ0 ˝ γ induces a bijection between AutFpEq and the set of E{F-lifts

of Θ (see [15, Corollary 2.4])). This gives us a full description of the E{F-lifts of Θ.

Our purpose is to get a formula for Υ. In Paragraph 9.4, we will use the results of [13] in order

to compute the Γ-orbit Υprαsq for e-regular characters α P X. We will then use Proposition 8.8

to extend this formula to all characters α.

Theorem 9.3. — There is a canonically determined character µ of kˆ, depending only on m,

d and Θ, such that µ2 “ 1 and

Υprαsq “ rαµs

for all characters α P X.

More precisely, we will see that the character µ is the “rectifier” given by Bushnell–Henniart’s

First Comparison Theorem [13, 6.1] together with [13, Corollary 6.9 and (6.7.4)]. Since the re-

sults from [13] we will use are formulated in terms of admissible pairs, we first have to transla-

te them in terms of our α-parameters.

Let us write Xreg for the set of e-regular characters in X.

9.2.

We first recall the definition of admissible pairs [24, 13], and basic facts about them.

Definition 9.4. — An admissible pair is a pair pL{F, ξq made of a finite, tamely ramified field

extension L{F and a character ξ of Lˆ such that:

(1) ξ does not factor through NL{K for any field K such that F Ď K Ĺ L;

(2) if the restriction of ξ to the 1-units 1`pL factors through NL{K for some field K such that

F Ď K Ď L, then L{K is unramified.

Two admissible pairs pLi{F, ξiq, i “ 1, 2, are said to be isomorphic if there is an F-isomorphism

φ : L2 Ñ L1 such that ξ2 “ ξ1 ˝ φ. The degree of an admissible pair pL{F, ξq is rL : Fs. We also

introduce the following definition, which will be convenient to us.

Definition 9.5. — Two admissible pairs pLi{F, ξiq for i “ 1, 2, are said to be inertially equiva-

lent if there are an unramified character χ of Lˆ2 and an isomorphism φ : L2 Ñ L1 of extensions

of F such that χξ2 “ ξ1 ˝ φ. We will write rL1{F, ξ1s for the inertial class of pL1{F, ξ1q.

Let pL{F, ξq be an admissible pair. By [13, 4.1 Lemma], there is a unique sub-extension P{F

of L{F such that ξ | 1`pL factors through the norm NL{P and which is minimal for this property.

It is called the parameter field of the admissible pair. Then L{P is unramified and, if we write

ξ | 1`pL “ ξ1 ˝NL{P for some character ξ1 of 1`pP, then pP{F, ξ1q is an admissible 1-pair in the

sense of [13, 3.3], that is, ξ1 does not factor through NL{K for any field K such that F Ď K Ĺ L.

According to [11, Theorem 1.3], there is a canonical bijective map between isomorphism classes
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of admissible 1-pairs over F and essentially tame endo-classes over F. Therefore, the admissible

1-pair pP{F, ξ1q determines an essentially tame endo-class, which depends on the inertial class of

pL{F, ξq only.

Recall that we have fixed an endo-class Θ and a character ξ0 of 1` pE in the Compatibility

Assumption of Paragraph 9.1.

Lemma 9.6. — Any admissible pair having endo-class Θ is isomorphic to an admissible pair

pL{F, ξq with associated 1-pair pE{F, ξ0q.

Proof. — Suppose that pL{F, ξq has endo-class Θ, and let pP{F, ξ1q be its associated admissible

1-pair. By looking at [11, Paragraph 1.3] in more detail, it follows that P is F-isomorphic to E.

Up to isomorphism, we thus may assume that P is equal to E. By Remark 9.2, the characters

ξ1, ξ0 of 1`pE, which define the same endo-class Θ, are conjugate under the automorphism group

AutFpEq. Therefore, up to isomorphism, we may assume these characters ξ1, ξ0 are equal.

9.3.

Let pL{F, ξq be an admissible pair with endo-class Θ and degree t dividing n. By Lemma 9.6,

we may assume that it has associated 1-pair pE{F, ξ0q. We may also assume that L is contained

in F. By [13, 4.3 Lemma 1], there is a unique character ξw of the group of units OˆL such that:

(1) the characters ξw and ξ coincide on the principal unit subgroup 1` pL;

(2) the order of ξw is a power of p.

The character ξξ´1
w of OˆL is tamely ramified: it thus induces a character ξt of lˆ, where l is the

residue field of L. This character only depends on the inertial class of pL{F, ξq.

Since pL{F, ξq is an admissible pair with parameter field E, the residue field l is an extension

of e and ξt is an e-regular character of lˆ. Since L Ď F, the residue field l naturally embeds in

k. Write αξ for the character ξt ˝ Nk{l of kˆ. Its parametric degree f is equal to rL : Es. We

thus have t “ fg.

We write PnpΘq for the set of inertial classes of admissible pairs with endo-class Θ and degree

dividing n.

Lemma 9.7. — (1) The character αξ is e-regular if and only if rL : Fs “ n.

(2) The map

(9.3) rL{F, ξs ÞÑ rαξs

induces a bijection between the set of inertial classes of admissible pairs in PnpΘq and X{Γ.

Remark 9.8. — The map (9.3) depends on the choices we have made in Paragraph 9.1.

Proof. — The character αξ is e-regular if and only if f “ n1. Multiplying by g, this is equivalent

to t “ n. This gives us the first part of the lemma.

Given α P X, there is a uniquely determined field l such that e Ď l Ď k and α factors through

the norm Nk{l, and which is minimal for this property. Write α “ β ˝Nk{l for some character β

of lˆ, which is e-regular by minimality of l. Let L be an unramified extension of E with residue

field l. Then β inflates to a tamely ramified character of the units subgroup of L, still denoted β.
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Now write ξw for the character of OˆL of p-power order extending the character ξ0 ˝NL{E of the

1-units of L, and let ξ be any character of Lˆ extending ξwβ. Since the character β is e-regular,

it follows that the pair pL{F, ξq is admissible. The Γ-orbit rαξs associated with its inertial class

is equal to rαs. The map (9.3) is thus surjective.

We now assume that we have two admissible pairs pLi{F, ξiq for i “ 1, 2, with same image rαs

in X{Γ. For each i, we may assume that pLi{F, ξiq has associated 1-pair pE{F, ξ0q by Lemma 9.6,

and we may further assume that Li Ď F. The character ξi | 1` pLi thus factors through NLi{E

and E is minimal for this property. We have an e-regular character ξi,t of lˆi , where li is the

residue field of Li. Since rαξ1s, rαξ2s are equal, they have the same cardinality f . The fields l1,

l2 thus have the same degree over e, and L1, L2 have the same degree f over E. We thus have

L1 “ L2, denoted L. We now have two characters ξ1,t and ξ2,t of lˆ, which are conjugate under

Galpl{eq. Changing again pL2{F, ξ2q in its isomorphism class, we may assume that they are

equal. Thus the admissible pairs pLi{F, ξiq, for i “ 1, 2, are inertially equivalent.

9.4.

The Parametrization Theorem [13, 6.1] gives us a canonical bijection

(9.4) pL{F, ξq ÞÑ ΠpG, ξq

between isomorphism classes of admissible pairs of degree n and isomorphism classes of essential-

ly tame irreducible cuspidal representations of G (that is, cuspidal representations with essential-

ly tame endo-class) of parametric degree n.

Lemma 9.9. — (1) Given an admissible pair pL{F, ξq of degree n and with associated 1-pair

pE{F, ξ0q, the irreducible cuspidal representation ΠpG, ξq belongs to the inertial class Ωpκ, αξq.

(2) The bijection (9.4) induces a bijection between inertial classes of admissible pairs of degree

n and inertial classes of essentially tame cuspidal representations of G of parametric degree n.

Proof. — By examining the construction of [13, 4.2 and 4.3], we see that an essentially tame ir-

reducible cuspidal representation of endo-class Θ will correspond through (9.4) to an admissible

pair pL{F, ξq with associated 1-pair pE{F, ξ0q if and only if it contains the maximal simple type

κb σ, where σ is the irreducible cuspidal representation of G whose Green parameter in X{Γ is

rαξs. Comparing with the construction of Paragraph 3.3, the simple type κb σ is λpαξq. This

gives us the first part of the lemma.

An inertial class of essentially tame cuspidal representations of G with endo-class Θ has the

form Ωpκ, αq for some α P Xreg. The second part of the lemma thus follows from Lemma 9.7.

We now prove Theorem 9.3 for e-regular characters of X.

Proposition 9.10. — (1) There is a canonically determined character µ P X, depending on

m, d and Θ only, such that µ2 “ 1 and

Υprαsq “ rαµs

for all characters α P Xreg.
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(2) The character µ is non-trivial if and only if p ‰ 2 and the integer

ypΘ,m, dq “ mpd´ 1q `m1pd1 ´ 1q ` upv ´ 1q

is odd, where the integers u, v ě 1 are defined by uv “ n{w, v “ d{pd,wq with w “ n{epE{Fq.

Proof. — Let α P Xreg and let pL{F, ξq be an admissible pair of degree n and endo-class Θ whose

inertial class is associated with rαs. By [13, Theorem A], there is a tamely ramified character

ν of Lˆ such that pL{F, ξνq is admissible, ν2 is trivial and the Jacquet–Langlands transfer of

ΠpG, ξq is ΠpH, ξνq.

Now suppose that pL{F, ξq has associated 1-pair pE{F, ξ0q and L is contained in F. Since L{F

has degree n and L is unramified over E, the residue field of L canonically identifies with k. We

write µ for the character of kˆ induced by the restriction of ν to the units subgroup of L. This

character is entirely described by [13, Corollary 6.9], which gives us Part 2 of the proposition.

Taking inertial classes and using Lemma 9.9, the Jacquet–Langlands correspondence matches

together the inertial class Ωpκ, αq of ΠpG, ξq with that of ΠpH, ξνq, and the latter can be written

Ωpκ1, α1q for rα1s “ rαξνs “ rαµs. The result follows.

9.5.

We now prove Theorem 9.3. Following Remark 8.7, let us fix an odd integer a ě 7. We will see

below why it is convenient to choose a odd. We use the notation introduced in Paragraph 8.3. In

particular, we have β-extensions κ˚, κ1˚ and a permutation Υ˚ of X˚{Γ˚. We must pay attention

to the fact that the determinants of κ˚, κ1˚ have orders which may not be powers of p, thus

Proposition 9.10 may not apply to Υ˚ directly.

Let us write κ˚p for the β-extension on Jpa˚, ιβq whose determinant has order a power of p. By

Remark 3.11 there is a character ζ of Jpa˚, ιβq trivial on J1pa˚, ιβq such that κ˚p “ κ˚ζ. This

induces a character of GLm1pdq of the form χ ˝ φι ˝Nd{eι ˝ det for some character χ of eˆ.

Similarly, we have a β-extension κ1˚p whose determinant has order a power of p, and characters

ζ 1, χ1 such that κ1˚p “ κ1˚ζ 1 and ζ 1 induces the character χ1 ˝ φι1 ˝ det of GLn1peι1q. We write Ψp

for the permutation of X˚{Γ˚ corresponding to the maximal β-extensions κ˚p and κ1˚p . We write

δ for the character pχ1χ´1q ˝Nk˚{e P X˚.

Lemma 9.11. — The character δ is trivial.

Proof. — Let β P X˚ be an e-regular character. Applying Proposition 9.10 to Ψp gives us the

equality Ψpprβsq “ rβλs where λ P X˚ is the rectifying character corresponding to am, d and Θ.

Since a has been chosen to be odd, we have

ypΘ, am, dq ” ypΘ,m, dq mod 2.

It follows that λ is trivial if and only if µ is, that is λ “ µ˚. We thus get Ψpprβsq “ rβµ
˚s.

Now let ε be the character χ ˝Nk˚{e and define ε1 similarly. Comparing Ψp and Υ˚ thanks to

Remark 3.11, we get Υ˚prβεsq “ rβµ˚ε1s for all e-regular character β P X˚. Since βε´1 is

e-regular if and only if β is, this gives us

(9.5) Υ˚prβsq “ rβδµ˚s
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for all e-regular β P X˚.

Now let α P Xreg. By Lemma 8.5 there are a prime number ` ‰ p not dividing the or-

der of kˆ and an e-regular character β P X˚ such that β ” α˚ mod `. By (9.5) and Proposi-

tion 8.8 we get Υprαsq “ rανs for some ν P X such that ν˚ is the `-regular part of δµ˚. Since

α is e-regular, Proposition 9.10 applied to Υ gives us Υprαsq “ rαµs. Putting these equalities

together, we get

rα˚µ˚s ” rα˚µ˚δs mod `.

The character δ can thus be written ξpα˚µ˚qQ
i´1 for some integer i P t0, . . . , n1 ´ 1u and some

ξ P X˚ whose order is a power of `. (Recall that Q is the cardinality of e.) Since µ has order at

most 2, we get δ “ ξpα˚qQ
i´1. Since the orders of δ and µ˚ both divide Q´ 1, we have

α˚pQ
i´1qpQ´1q “ ξ1´Q.

Since both Q´ 1 and the order of α are prime to `, we get ξ “ 1. Thus the order of α, that we

may assume to be Qn1 ´ 1 by choosing for α a generator of X, divides pQi ´ 1qpQ ´ 1q. This

implies i “ 0, thus δ is trivial as expected.

Now let α P X be arbitrary. By Lemma 8.5 there are a prime number ` ‰ p not dividing the

order of erαsˆ and an e-regular character β P X˚ such that β is congruent to α˚ mod `. Since

δ “ µ˚, the identity (9.5) gives us Υ˚prβsq “ rβµ˚s. By Proposition 8.8, we have Υprαsq “ rανs

for some character ν P X such that ν˚ is the `-regular part of µ˚. Thus ν˚ “ µ˚, which implies

ν “ µ. This completes the proof of Theorem 9.3.

Corollary 9.12. — The permutation Υ does not depend on the choice of the F-embeddings ι, ι1

and the orders a, a1, nor on the choice of the ps-character pΘ, 0, βq of endo-class Θ.

9.6.

We now translate Theorem 9.3 in terms of admissible pairs. Let pL{F, ξq be an admissible pair

of degree dividing n and endo-class Θ. The orbit rαξs P X{Γ given by (9.3) corresponds through

(9.1) to an inertial class Ωpκ, αξq of discrete series representations. Write Π0pG, ξq for this inertial

class. The map

(9.6) rL{F, ξs ÞÑ Π0pG, ξq

is a bijection between PnpΘq and D0pG,Θq. This map depends a priori on various choices.

Theorem 9.13. — Let pL{F, ξq be an admissible pair with degree dividing n. There is a canon-

ically determined tamely ramified character µ of the units subgroup of L such that µ2 “ 1 and

π0pΠ0pG, ξqq “ Π0pH, ξµq.

It depends only on m, d and the restriction of ξ to the principal units 1` pL.

Note that by Π0pH, ξµq we mean the inertial class corresponding to the pair rL{F, ξµ̂s for any

choice of extension µ̂ of µ to Lˆ; this is independent of the choice of µ̂.
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Remark 9.14. — Let t be the degree of L{F and write s for the integer spαξq defined by (8.3).

The parametric degree f “ rL : Es of αξ divides m1d1. Hence u “ f{pf, d1q divides m1s, thus m1.

Let us define an integer r ě 1 by m1 “ ur, or equivalently by n “ rst. Any discrete series repre-

sentation in Π0pG, ξq has the form Lpρ, rq for some cuspidal representation ρ of GLm{rpDq with

parametric degree t.

Remark 9.15. — An admissible pair pL{F, ξq of degree t dividing n canonically defines, via the

canonical map (9.4), an isomorphism class of essentially tame cuspidal representation ρξ of the

group GLtpFq. Passing to inertial classes, the map

pL{F, ξq ÞÑ L
´

ρξ,
n

t

¯

induces the map (9.6) when G “ H, which is thus canonical in that case. It follows from Theorem

9.13 that (9.6) is a canonical bijection between PnpΘq and D0pG,Θq, for any inner form G.
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un appendice par V. Sécherre et S. Stevens, Proc. London Math. Soc. 109 (2014), n˝4, p. 823–891.

[29] , Représentations modulaires de GLnpqq en caractéristique non naturelle, Trends in number
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