A role for a leaky gut and the intestinal microbiota in the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Daniel T. Vipond BSc (Hons), MRSB
Quadram Institute Bioscience & Norwich Medical School

A thesis submitted for the degree of Doctor of Philosophy to the University of East Anglia

September 2018

© This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution.
Abstract

The field of ME/CFS research is challenged by many often confusing and conflicting reports of immune, neuroendocrine, autonomic, neurological dysfunction. During the prodromal phase of this condition patients often report flu-like symptoms, persistent chronic fatigue and gastro-intestinal symptoms including abdominal pain and discomfort. Its study is complicated by the lack of specific biomarkers and criteria to accurately define the illness, relying on the exclusion of other fatiguing illnesses. Recent publications suggest an altered intestinal microbiota and increased intestinal permeability are associated with ME/CFS. Further evidence is accumulating for dysfunctional energy, lipid and amino acid metabolism that may indicate oxidative stress and/or immune-mediated damage to mitochondria, disrupting the efficiency of aerobic respiration, explaining the effect of post-external malaise (PEM), a unique characteristic for the diagnosis of ME.

In this study, Next Generation Sequencing (NGS) and Nuclear Magnetic Resonance (NMR) spectroscopy probed the composition of the intestinal microbiota and faecal and serum microbiomes in 17 severe, house-bound patients and house-hold healthy controls (HHC). Severe, house-bound patients account for 0.5% of all ME/CFS research, yet it is estimated they represent 25% of the patient population. We found Faecalibacterium prausnitzii was significantly reduced in severe patients (p = 0.018) but did not replicate individual differences in faecal and serum metabolites that others have previously reported. We further enhanced a flow cytometry technique for detecting IgA coated bacteria in faecal suspensions and analysed the proportional differences between patients and HHCs. This demonstrated a trend for increased IgA-coated bacteria in most patients; however, this trend was reversed when repeated with a second sample produced a year on.

Since the initial concept for this study, several advances have been made in sequencing methods and quality control standards for metagenomic and metabolomic studies. Based on these, we conclude further investigations are warranted using whole genome sequencing and targeted metabolomics to address the emerging hypotheses in ME/CFS research, with an emphasis on the study of severe, house-bound ME patients.
Table of contents

Abstract 2
Table of Contents 3
List of Figures 8
Abbreviations 14
Acknowledgements 17

Chapter One
1.0 Introduction 21
  1.1 Controversy of ME 22
  1.2 The challenge for ME/CFS Research 24
  1.3 Diagnosis ME/CFS 24
    Assessing fatigue 25
    Alternative sickness behaviour 26
    Case definitions 27
    Ramsay (1986) 28
    Holmes (1988) 28
    Oxford (Chronic Fatigue) 29
    Fukuda (1994) Chronic Fatigue Syndrome 29
    Canadian Consensus Criteria (2003) for ME/CFS 30
    ME International Consensus Criteria (ICC) 31
    Systemic Exertional Intolerance Disorder (SEIDS) 31
    Symptoms 33
    Post-Exertional Malaise (PEM) 34
    Summary 37
  1.4 A proposed infection-neuro-immune disease mechanism in ME/CFS 39
  1.5 The Hypothalamus Adrenal Pituitary axis (HPA) axis 41
    HPA disruption in ME/CFS 42
    Intestinal microbiota programmes the HPA response 43
    Maternal Immune Activation 47
    Maternal Separation and stress 48
    Intestinal microbiota and neural communications 49
    Immune system and HPA axis 49
    Stress and neuroinflammation 51
    Microglial activation and polarisation 52
    Stress impacts the intestinal barrier function 55
    Summary 57
  1.6 Immune Abnormalities in ME/CFS 59
    Inflammation 59
    Cytokine network analysis 60
    Cytokine profiles in early versus long-term ME/CFS diagnosis 61
    Natural Killer (NK) cell deficiency 63
    Virus Infection 63
    Summary 65
  1.7 Autoimmunity in ME/CFS 66
    Infection elicited autoimmunity 67
  1.8 The Human Intestinal Microbiota 68
    Intestinal microbiota and mucosal immunity 70
    Microbial-neuro-immune interactions 74
  1.9 Stress and neuroendocrine manifestations in ME 75
1.10 Intestinal microbiota impacts neuropathology
   Ageing microbiota and neurodegeneration
   Parkinson’s disease
   Increase intestinal permeability in ME/CFS

1.11 Leaky Gut hypothesis in ME/CFS
   Concluding remarks

1.1.12 Overall study aim, hypothesis & objectives

Chapter Two

2.0 Study Design
2.1 General study rational
2.2 Study participants
   Inclusion criteria
   Exclusion criteria
   Disease severity
   Eligibility of House-Hold Control (HHCs)
2.3 Research Ethics Approval
   Informed Consent
   Inclusion of House-Hold Controls (HHCs)
   Ethical considerations
2.4 Sample collection and storage
   Mild/moderate ME/CFS patients
   Home visits
   Stool sample
   Blood sample

Chapter Three

3.0 Characterising the composition of the gut microbiome associated with severity of ME/CFS

3.1.1 Introduction
   Dysbiosis linked to low-grade chronic inflammation
   Microbiota-derived intestinal metabolites.
   Treating intestinal dysbiosis in ME

3.1.2 Profiling the intestinal microbiota
   Limitations of 16S gene-based sequencing studies.
   Faecal DNA extraction
   Evidence of intestinal dysbiosis using culture-based techniques
   16S rDNA-targeted amplicon sequencing in ME/CFS
   Whole-Genome “Shot-gun” (WGS) sequencing
   Summary
   Confounders of microbiome diversity

3.1.3 Aims and Objectives
3.1.4 Hypothesis

3.2 Materials and Methods
3.2.1 Patients
   Stool sample kits
   Improvements to stool sample collection in 2017
3.2.2 Faecal DNA extraction
3.2.3 Acquisition of 16S rRNA gene sequence data
   Mild/moderate ME/CFS (n=25)
Severe ME/CFS (n=21) and House-Hold Controls (n=12) 120
3.2.4 Acquisition of Shallow Shot-gun Metagenomic sequence data 120
Dataset B 120

3.3 Results 125
3.3.1 16S phylogenetic abundance in mild/moderate ME patients (n=25) 125
Dataset A 125
Phylum level observations 127
Genus level observations 128
3.3.2 Shallow shotgun metagenomics 130
Dataset B 130
Phylum level observations 131
Genus level observations 134
Species level observation 138
Statistical comparison of bacterial genera in severe ME vs. HHC 143
Bray-Curtis Dissimilarity Analysis 143
Comparison of severe ME and HHC core microbiomes 145
3.3.3 16S phylogenetic abundance in severe ME and HHCs 148
Dataset C 148
Phylum level observations 152
Genus level observations 153
Statistical analyses 154
Species variation between severe ME and HHC 160

3.4 Discussion 164
Shotgun metagenomics attempt 169
Summary 172

Chapter Four
4.0 Profiling the faecal and serum metabolome in house-bound, severe ME patients 174
4.1 Introduction 175
The metabolomes in ME/CFS 177
Faecal metabolome in ME/CFS 178
Systemic metabolome in ME/CFS 179
Investigating bile acid metabolism in ME 180
Experimental design overview 185
Aims and objectives 187
Hypothesis 187
4.2 Material and Methods 188
4.2.1 Sample preparation and storage 188
4.2.2 Preparation for 1H-NMR spectroscopic analysis 188
Preparation using serum samples 188
Preparation using faecal water extracts 188
Acquisition of NMR data 189
Data analysis 190
4.2.3 Targeted bile acid quantification by mass spectrometry 191
4.3 Results 192
4.3.1 Patient cohorts and datasets obtained 192
Chapter Five

5.0 Detection of IgA-coated faecal bacteria in severe ME/CFS patients

5.1 Introduction

- Measuring intestinal permeability in patients
- Antimicrobial antibodies to assess intestinal permeability
- Evidence of increased intestinal permeability in ME/CFS
- The role of mucosal IgA antibody in protecting the intestinal barrier
- Experimental approach

5.1.2 Aims and objective

5.1.3 Hypothesis

5.2 Material and Methods

5.2.1 Solid versus liquid phase assay for bacterial antibody detection

5.2.2 Bacterial Microarray

- Strain preparation
- Microarray construction and use
- Primary antibody/rabbit serum slide incubation
- Anti-faecal microbe sera
- Validation rabbit sera anti-microbial activity
- Microarray assay validation

5.2.3 Patient and control serum

- Serum endotoxin
- Serum LPS-binding protein (LBP)

5.2.4 Faecal bacteria flow cytometry

- Sample preparation
- Flow cytometry acquisition

5.3 Results

5.3.1 Sample acquisition

5.3.2 Bacterial microarray

5.3.2.1 Microarray assay validation

5.3.2.2 Automated microarray printing

5.3.3 Faecal detection of IgA-coated faecal microbes

5.3.3.1 Proportion of observed IgA+ faecal bacteria changes with time

5.3.4 Serological markers of a leaky gut

5.4 Discussion
# Table of contents

Chapter Six

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0 Discussion and Conclusion</td>
<td>294</td>
</tr>
<tr>
<td>Additional Materials</td>
<td>294</td>
</tr>
<tr>
<td>Supplementary Data</td>
<td>320</td>
</tr>
</tbody>
</table>
# List of figures

| 1.1.1 | Overlapping case definitions can result in patients being diagnosed with ME/CFS with very little symptoms shared between cases | 27 |
| 1.1.2 | Pathway to the diagnosis of Systemic Exertional Intolerance Disorder (SEID) produced by the Institute of Medicine, USA in 2015 | 32 |
| 1.1.3 | Common symptoms of ME/CFS shared across various case definitions | 33 |
| 1.1.4 | The IOM definition of SEID sits between the Fukuda cases definition for CFS and Ramsay’s proposed criteria for ME in 1988 | 36 |
| 1.1.5 | Current psycho-biology model for the pathophysiology of ME/CFS | 40 |
| 1.1.6 | Daylight activates the central CLOCK in the suprachiasmatic nucleus (SCN) which coordinates the daily circadian rhythm for releasing glucocorticoids via neural inputs to CRH/AVP-containing neuron in the PVN of the HPA axis | 42 |
| 1.1.7 | Critical windows between the development of neurons, diversity of the intestinal microbiota and the age of onset of neuropsychological disorders | 44 |
| 1.1.8 | Neural and humoral signalling pathways between the intestine and the brain | 45 |
| 1.1.9 | Germ free mice raised without exposure to microbes display reduced anxiety-like behaviour which cannot be reversed by recolonization following adolescence | 46 |
| 1.1.10 | Polarisation and differentiation of microglial cells resident in the brain and CNS | 53 |
| 1.1.11 | Formal analysis of cytokines networks in 40 female Chronic Fatigue Syndrome patients and 59 female Healthy Controls | 62 |
| 1.1.12 | Commensal bacteria induce T cell differentiation | 72 |
| 1.1.13 | Induction of Immunoglobulin A at Peyer’s Patches (PP) | 74 |
| 1.1.14 | Pathogenesis of NMO arises from Clostridium perfringens molecular mimicry driving autoantibodies against AQP4 channels in the central nervous system | 80 |
| 1.1.15 | Microglial activation is induced by systemic inflammation and contributes towards behaviour adaptions to infection | 83 |
| 1.1.16 | An explanation for ME/CFS incorporating intestinal dysbiosis, intestinal permeability and autoimmunity | 85 |

| 2.1.1 | Heatmap of location of patient home visits 2016-2017 using Google Maps. | 94 |
| 2.2.2 | FECOTAINER® collection device used to collect stool sample | 96 |

| 3.1.1 | The rise in the number of microbiome-based studies between 2005 – 2016 | 104 |
| 3.1.2 | Sequence-based rarefaction curve of Phylogenetic diversity across ME/CFS and Control samples using 16S targeted rRNA sequencing | 108 |
3.1.2 Comparison of relative abundances of bacterial genera between ME/CFS patients and Healthy Controls

3.1.3 Principal Coordinate Analysis (PCoA) plot of healthy controls versus ME/CFS based on 32223 sequences per sample using targeted 16S rRNA gene sequencing

3.2.1 Instructions for OMNIGene® GUT collection device used to collect mild/moderate ME/CFS samples in 2015

3.3.1 Rarefaction curve for the intestinal microbiota of 25 mild/moderate ME patients recruited from walk-in appointment at the CFS service

3.3.2 Alpha diversity plots showing community evenness (Shannon H) A, and richness (Chao1, and PD), B and C, of 25 mild/moderate ME/CFS faecal samples derived from dataset A

3.3.3 Relative abundance (%) of bacterial phyla provides a community composition profile of 25 mild/moderate ME/CFS patients

3.3.4 Genus-level abundance data produced sampling at 8750 reads per sample from faecal samples obtained from 25 mild/moderate ME/CFS patients collected in 2015

3.3.5 Summary of 34 top genera observed in 25 mild/moderate ME/CFS patients based on 16S V4 region sequencing identification

3.3.6 Principal Co-ordinate Analysis using Bray-Curtis dissimilarity and Nearest-Neighbour network analysis comparing all 62 genera across 25 mild/moderate ME/CFS patients

3.3.7 Relative abundance of bacterial phyla observed across all 19 samples (ME=11, HHC=8) using Illumina™ MiSeq® sequencing platform.

3.3.8 Statistical plots for bacterial phyla: Bacteroides, Firmicutes and Actinobacteria in ME and HHC

3.3.9 Comparison of relative abundance (%) of bacterial genera in severe (n=11), mild/moderate (n=25) ME/CFS compared with HHCs (n=8)

3.3.10 Heatmap of 25 most abundant bacterial genera seen in severe ME (n=11) and matched house-hold controls, HHC (n=8)

3.3.11 Bubble chart summary of 59 bacterial species and 9 genera in 11 severe ME patients versus 8 House-Hold Controls

3.3.12 Twenty-five most abundant bacterial species across all samples identified using MetaPhlAn 2.0 in 2018

3.3.13 Status by bacteria genus reveals differences between severe ME and house-matched controls for Eggerthella, Faecalibacterium & Oscillibacter

3.3.14 PCoA analysis using Bray-Curtis dissimilarity to compare compositional differences in beta-diversity between severe ME and HHCs groups

3.3.15 PCoA analysis using Hellinger distances to measure the difference in compositional taxa between severe ME and HHCs

3.3.16 UPGMA clustering unweighted (A) versus (B) weighted UniFrac distances performed in MEGAN using severe ME and HHC samples

3.3.17 Phylogenetic trees featuring the members of bacterial taxa identified as part of a core microbiome within 11 severe ME sample and 8 HHCs

3.3.18 Phylogenetic tree representative the comparison between the shared core microbiome of 11 severe patients and 8 house-hold control

3.3.19 Venn diagram of observed OTUs in severe ME (n=21) and HHCs (n=12) samples
List of figures

3.3.20 Rarefaction curves per sample (A) and averaged species abundance (B) and alpha diversity (C) measured using the Shannon Index, H  
3.3.21 Weighted UniFrac Analysis of hierarchical clustering of samples based on composition and relative abundance of bacterial phyla in 21 severe ME patients and 12 House- Hold Controls  
3.3.22 Box plot of Alpha Diversity indices between 21 severe ME patients and 12 House- Hold Controls using the Shannon (H) index  
3.3.23 Relative abundance ratio of bacterial phyla observed in severe ME versus HHC  
3.3.24 Heatmap of relative abundance of the most dominant genera in 21 severe ME versus 12 HHCs  
3.3.25 Principal Component analysis based on differences of composition of assigned OTUs to bacterial taxa in 21 severe ME patients and 12 HHCs  
3.3.26 PCoA using Bray-Curtis distances to separate 21 severe ME patients from 12 HHCs  
3.3.27 PCoA plot using Chi-Square distance separation between 21 severe ME patients and 12 HHCs  
3.3.28 PCoA plot using Goodall’s similarity index to compare 21 severe ME patients and 12 HHCs  
3.3.29 UPGMA clustering based on unweighed (A) and weighted UniFrac (B) distances between 21 severe ME patients and 12 HHCs  
3.3.30 The bacterial phylum, Fusobacteria are significantly more varied in ME and absent in HHCs  
3.3.31 Top 10 bacteria genera found common in 21 severe ME patients and 12 HHCs  
3.3.32 Bubble plot summary of 21 selected genera across 21 severe ME patients and 12 HHCs  
3.4.1 Nextera XT fragmentation causes breaks within dsDNA and transposon tagging across the sample DNA  

4.1.1 Bile acid synthesis is dependent on expression of CYP7A1 in the liver and is regulated by a negative feedback loop mediated by the induction of FXR  
4.1.2 Summary of “Classical” and ‘Alternative” pathways for bile acid synthesis in humans and mice.  
4.1.3 Secondary bile acid metabolism. Microbial metabolism facilitates transformation of primary bile acids via deconjugation and 7a/b-dehydroxylation  
4.3.1 Partial 600 MHz ¹H-NMR spectra from faecal water extractions used for biphasic separation in methanol/chloroform to extract the hydrophilic layer for small metabolites quantification  
4.3.2 The 45 metabolites detected across faecal water samples using 600 MHz H-NMR spectroscopy  
4.3.3 Box plot representation of 42 out of 45 faecal water low molecular weight metabolites in severe (s) red, versus House-matched (H) green samples  
4.3.4 Summary of Short Chain Fatty Acid (SCFA) compounds whose range of concentrations detected across all samples were too extreme to include with other low molecular weight metabolites quantified using NMR spectra
4.3.5 PCA plots showing interindividual variation of faecal water NMR metabolomic profiles based on 45 absolute concentrations for low molecular weight metabolites
4.3.6 Metabolite labelled PCA plot identifying metabolite compounds influencing spatial separation
4.3.7 PCA plot showing a weak separation between severe (S) and House-Match (H) groups including glycocholate and gammabutyrobetaine
4.3.8 Metabolite labelled PCA plot showing individual metabolites influencing group separation between severe (S) and House-Match (H)
4.3.9 Selected scatter plots of 8 metabolites previously reported to be altered within the ME/CFS patient population but were not observed to be significant altered in this study
4.3.10 Amended scatter plots excluding extreme values included in the initial plot (Fig. 4.3.11) for Glutamate and Tau-MeHis
4.3.11 Scatter dot plots for unknown small metabolite and acetoacetate.
4.3.12 Box plot summary including 25 of 53 serum metabolites detected using 600MHz 1H- NMR
4.3.13 Remaining 26 out of 53 metabolites found in serum
4.3.14 600 MHz 1H diffusion edited NMR spectra of all serum samples (n=34) with patient codes and colouring: severe (S) – blue; mild (M) – green; healthy (H) – red
4.3.15 600 MHz 1H ‘diffusion edited’ NMR spectrum of saline diluted serum (sharp lines from low mol. wt. metabolites are suppressed)
4.3.16 N-acetyl group from glycoproteins
4.3.17 Integrated signal intensities within bucket width at 1.58ppm
4.3.18 26 Bile Acid targeted Mass Spectrometry analysis of faecal water from 8 severe (S) and 6 House-matched controls (H)
4.3.19 Summary scatter plot for 8 out of the total 26 Bile Acids (BA) targeted in 8 severe ME patients versus 6 House-Matched controls
4.3.20 Faecal metabolome concentration of HDCA (ng/ml) in severe (S) ME versus House- Matched controls
4.3.21 Concentration (ng/ml) of glycochenodeoxycholic acid (GCDCA) across 4 groups
4.3.22 Mass Spectrometry targeting on 26 bile acids in serum
4.3.23 Scatter plots summarising concentrations found of tauro-deoxycholic acid (TDCA) found across the 4 groups labelled
4.3.24 Selected scatter plots for absolute bile acid concentration across 4 bile acids in serum

5.1.1 Comparison of methods used in this chapter for detecting antibodies against intestinal microbes in faeces (top) and serum (bottom)
5.1.2 A healthy intestinal microbiota promotes Foxp3+ regulatory T cells to interact with B cells to undergo class switch recombination (CSR) and somatic hypermutation (SHM) in germinal centres to generate polyreactive or “natural” IgA antibodies to maintain microbial diversity
5.1.3 Secretory IgA regulates gut microbiota composition and protects the intestinal barrier
Increased intestinal permeability facilitates translocation of bacterial endotoxin (LPS) and exposure of mucosal-associated bacteria
Grace-Biolab ProPlate® 64-well microarray slide module to create wells on a nitrocellulose glass microscope slide
Maps of locations for 11 home visits attended across South London, UK, during 2016
Bacteroides thetaiotaomicron OmpA⁺ and OmpA⁻ can be immobilised onto a nitrocellulose-coated glass microscope slide
Visualising bacteria stained using Baclight® red by flow cytometry
Slide washing causes loss of bacterial cells
Polyclonal rabbit OmpA antibody was used to test for specificity and reactivity against immobilised VPI5482 bacteria
Reactivity of polyclonal anti-microbial rabbit serum tested against faecal bacteria extracted from human faeces
Automated microarray printing of Baclight® Red stained Bacteroides thetaiotaomicron VPI5482 (OmpA⁺)
Washing causes the majority of cells to be lost from the microarray slide surface
Anti-E.coli-FITC antibody reactivity towards for wild-type E.coli ATCC 700926 and ΔRaFc ‘deep rough’ mutant E.coli immobilised onto nitrocellulose-coated slide
Optimisation of concentration required to visualise faecal bacterial cells with Sybr Green nucleic acid staining using flow cytometry
Flow cytometry data using faecal bacteria isolated from severe ME patient (top row) and their house-hold control (bottom row). Bacterial are gated using Sybr
Flow cytometry data using faecal bacteria isolated from severe ME patient (top row) and their house-hold control (bottom row). Bacterial are gated using Sybr
Flow cytometry data using faecal bacteria isolated from severe ME patient (top row) and their house-hold control (bottom row). Bacterial are gated using Sybr
Flow cytometry data using faecal bacteria isolated from severe ME patient (top row) and their house-hold control (bottom row). Bacteria are gated using Sybr
Flow cytometry data using faecal bacteria isolated from severe ME patient (top row) and their house-hold control (bottom row). Bacteria are gated using Sybr
Flow cytometry data using faecal bacteria isolated from severe ME patient (top row) and their house-hold control (bottom row). Bacteria are gated using Sybr

List of figures
5.3.19 Discrete IgA-coated bacterial subpopulations measured from faecal suspensions in two unpaired, severe ME patients recruited in 2017

5.3.20 Summary of the relative proportion of IgA⁺ faecal bacteria detected in 14 severe, house bound ME patients versus 6 House-Hold Controls (HHC) recruited during 2017

5.3.21 Serum endotoxin activity and LBP concentrations measured in 14 Severe (S), 14 Mild/moderate ME (M) and 10 House-Hold Controls (HHC) as markers for bacterial translocation
### Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>αSn</td>
<td>alpha-synuclein</td>
</tr>
<tr>
<td>16S</td>
<td>16S ribosomal RNA</td>
</tr>
<tr>
<td>4EPS</td>
<td>4-ethylphenylsulfate</td>
</tr>
<tr>
<td>ABC-TP</td>
<td>Adenosine-triphosphate binding cassette transporter permease</td>
</tr>
<tr>
<td>ACTH</td>
<td>Adrenocorticotropic hormone</td>
</tr>
<tr>
<td>ADL</td>
<td>Activities of Daily Living</td>
</tr>
<tr>
<td>ANA</td>
<td>Antinuclear antibodies</td>
</tr>
<tr>
<td>ANS</td>
<td>Autonomic Nervous System</td>
</tr>
<tr>
<td>APCs</td>
<td>Antigen presenting cells</td>
</tr>
<tr>
<td>AQP4</td>
<td>Aquaporin-4</td>
</tr>
<tr>
<td>ASD</td>
<td>Autism Spectrum Disorder</td>
</tr>
<tr>
<td>ASO</td>
<td>Antisense Oligonucleotide</td>
</tr>
<tr>
<td>BBB</td>
<td>Blood Brain Activation</td>
</tr>
<tr>
<td>BDNF</td>
<td>Brain-derived Neurotrophic Factor</td>
</tr>
<tr>
<td>BP</td>
<td>Base pairs</td>
</tr>
<tr>
<td>CBT</td>
<td>Cognitive Behavioural Therapy</td>
</tr>
<tr>
<td>CCC</td>
<td>Canadian Consensus Criteria</td>
</tr>
<tr>
<td>CD</td>
<td>Cluster of Differentiation</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>CDI</td>
<td>Clostridium Difficile Infection</td>
</tr>
<tr>
<td>CF</td>
<td>Chronic Fatigue</td>
</tr>
<tr>
<td>CFS</td>
<td>Chronic Fatigue Syndrome</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony forming unit</td>
</tr>
<tr>
<td>CLOCK</td>
<td>Circadian Locomotor Output Cycles Kaput</td>
</tr>
<tr>
<td>CNS</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>COX</td>
<td>Cyclooxygenase</td>
</tr>
<tr>
<td>CRF</td>
<td>Corticotropin-releasing Factor</td>
</tr>
<tr>
<td>CRP</td>
<td>C-Reactive Protein</td>
</tr>
<tr>
<td>EAE</td>
<td>Experimental Autoimmune Encephalomyelitis</td>
</tr>
<tr>
<td>EBV</td>
<td>Epstein-Barr Virus</td>
</tr>
<tr>
<td>ENS</td>
<td>Enteric Nervous System</td>
</tr>
<tr>
<td>ESR</td>
<td>Erythrocyte Sedimentation Rate</td>
</tr>
<tr>
<td>FFAR2</td>
<td>Free fatty acid receptor 2</td>
</tr>
<tr>
<td>FM</td>
<td>Fibromyalgia</td>
</tr>
<tr>
<td>FMT</td>
<td>Faecal Microbiota Transplantation</td>
</tr>
<tr>
<td>GABA</td>
<td>Gamma-aminobutyric acid</td>
</tr>
<tr>
<td>GALT</td>
<td>Gastro-intestinal associated lymphoid tissue</td>
</tr>
<tr>
<td>GB</td>
<td>Guillain Barre</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>GC/LC-MS</td>
<td>Gas Chromatography/Liquid Chromatography-Mass Spectrometry</td>
</tr>
<tr>
<td>GF</td>
<td>Germ Free</td>
</tr>
<tr>
<td>GI</td>
<td>Gastrointestinal</td>
</tr>
<tr>
<td>GR</td>
<td>Glucocorticoid receptor</td>
</tr>
<tr>
<td>HADS</td>
<td>Hospital Anxiety Depression Scale</td>
</tr>
<tr>
<td>HHC</td>
<td>House-Hold Control</td>
</tr>
<tr>
<td>HPA</td>
<td>Hypothalamus Pituitary Adrenal axis</td>
</tr>
<tr>
<td>HT</td>
<td>High-Throughput</td>
</tr>
<tr>
<td>IBD</td>
<td>Inflammatory Bowel Disease</td>
</tr>
<tr>
<td>IBS</td>
<td>Irritable Bowel Syndrome</td>
</tr>
<tr>
<td>ICC</td>
<td>International Consensus Criteria</td>
</tr>
<tr>
<td>ICD</td>
<td>International Case Definition</td>
</tr>
<tr>
<td>IFNγ</td>
<td>Interferon-gamma</td>
</tr>
<tr>
<td>IgA</td>
<td>Immunoglobulin A</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunoglobulin G</td>
</tr>
<tr>
<td>IgM</td>
<td>Immunoglobulin M</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>ILCs</td>
<td>Innate Lymphoid Cells</td>
</tr>
<tr>
<td>IM</td>
<td>Infectious Mononucleosis</td>
</tr>
<tr>
<td>IOM</td>
<td>Institute of Medicine</td>
</tr>
<tr>
<td>IP</td>
<td>Intestinal Permeability</td>
</tr>
<tr>
<td>KO</td>
<td>Knock-Out</td>
</tr>
<tr>
<td>LEfSE</td>
<td>Linear Discriminant analysis Effect Size</td>
</tr>
<tr>
<td>LPB</td>
<td>Lipopolysaccharide-binding protein</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>M</td>
<td>Mild/moderate ME</td>
</tr>
<tr>
<td>Mφ</td>
<td>Macrophage</td>
</tr>
<tr>
<td>MBP</td>
<td>Myelin basic protein</td>
</tr>
<tr>
<td>MDD</td>
<td>Major Depressive Disorder</td>
</tr>
<tr>
<td>ME</td>
<td>Myalgic Encephalomyelitis</td>
</tr>
<tr>
<td>MHFD</td>
<td>Maternal High Fat Diet</td>
</tr>
<tr>
<td>MHFD</td>
<td>Maternal High Fat Diet</td>
</tr>
<tr>
<td>MIA</td>
<td>Maternal Immune Activation</td>
</tr>
<tr>
<td>MOG</td>
<td>Myelin oligodendrocyte glycoprotein</td>
</tr>
<tr>
<td>MS</td>
<td>Multiple Sclerosis</td>
</tr>
<tr>
<td>MyoD88</td>
<td>Myeloid differentiation primary response 88</td>
</tr>
<tr>
<td>NGS</td>
<td>Next Generation Sequencing</td>
</tr>
<tr>
<td>NHL</td>
<td>Non-Hodgkin’s Lymphoma</td>
</tr>
<tr>
<td>NICE</td>
<td>National Institute for Health and Care Excellence</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-methyl-D-aspartate (NMDA)</td>
</tr>
<tr>
<td>NMO</td>
<td>Neuromyelitis Optica</td>
</tr>
<tr>
<td>NPY</td>
<td>Neuropeptide Y</td>
</tr>
<tr>
<td>OTU</td>
<td>Operational Taxonomic Unit</td>
</tr>
<tr>
<td>oxLDL</td>
<td>Oxidized Low-Density Lipoprotein</td>
</tr>
<tr>
<td>PAMP</td>
<td>Pathogen Associated Molecular Pattern</td>
</tr>
<tr>
<td>PCoA</td>
<td>Principle Coordinate Analysis</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PD</td>
<td>Parkinson’s Disease</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PEM</td>
<td>Post-Exertional Malaise</td>
</tr>
<tr>
<td>PGE2</td>
<td>Prostaglandin E2</td>
</tr>
<tr>
<td>PGN</td>
<td>Peptidoglycan</td>
</tr>
<tr>
<td>POTS</td>
<td>Postural Orthostatic Tachycardia Syndrome</td>
</tr>
<tr>
<td>PP</td>
<td>Peyer’s Patches</td>
</tr>
<tr>
<td>PPR</td>
<td>Pattern Recognition Receptor</td>
</tr>
<tr>
<td>PVFS</td>
<td>Post-Viral Fatigue Syndrome</td>
</tr>
<tr>
<td>PVN</td>
<td>Paraventricular Nucleus</td>
</tr>
<tr>
<td>RA</td>
<td>Relative Abundance</td>
</tr>
<tr>
<td>ReA</td>
<td>Reactive Arthritis</td>
</tr>
<tr>
<td>RhA</td>
<td>Rheumatoid Arthritis</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxygen Species</td>
</tr>
<tr>
<td>RR</td>
<td>Relapsing-Remitting</td>
</tr>
<tr>
<td>S</td>
<td>Severe ME</td>
</tr>
<tr>
<td>sCD14</td>
<td>Soluble Cluster Differentiation 14</td>
</tr>
<tr>
<td>SCFA</td>
<td>Short Chain Fatty Acids</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SEID</td>
<td>Systemic Exertional Intolerance Disorder</td>
</tr>
<tr>
<td>SF-36</td>
<td>Short-form 36 item questionnaire</td>
</tr>
<tr>
<td>SFB</td>
<td>Segmented Filamentous Bacteria</td>
</tr>
<tr>
<td>SLE</td>
<td>Systemic Lupus Erythematosus</td>
</tr>
<tr>
<td>SPF</td>
<td>Specific-pathogen free</td>
</tr>
<tr>
<td>TDA</td>
<td>Topological Data Analysis</td>
</tr>
<tr>
<td>TFT</td>
<td>Thyroid Function Test</td>
</tr>
<tr>
<td>TGR5</td>
<td>Takeda G-protein receptor 5</td>
</tr>
<tr>
<td>Th1/Th2</td>
<td>T-helper 1/T-helper 2</td>
</tr>
<tr>
<td>TJ</td>
<td>Tight Junction</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like Receptor</td>
</tr>
<tr>
<td>TNFα</td>
<td>Tumour Necrosis Factor Alpha</td>
</tr>
<tr>
<td>UPGMA</td>
<td>Unweighted Pair Group Method with Arithmetic Mean</td>
</tr>
<tr>
<td>V4-V5</td>
<td>Hypervariable regions of 16S ribosomal RNA</td>
</tr>
<tr>
<td>WGS</td>
<td>Whole Genome Sequencing</td>
</tr>
</tbody>
</table>
Acknowledgements

I would to thank Richard & Pia Simpson and all at Invest in ME Research UK for funding my studentship to allow me to complete this work. As the first Ph.D. student to undertake ME/CFS research in Norwich, this was an ambitious and daunting project right from the beginning. There have been many times over the years where I (and others) did not think I would succeed. It gives me great pleasure and satisfaction that persistence and refusal to give up has finally made this achievement possible. For the most, I must thank my supervisors, Prof. Simon Carding, Prof. Tom Wileman, Dr. Amolak Bansal; and especially Dr. Melissa Lawson for your reassurance and intervention at a critical moment which saved me from giving into tough criticism – I will always be grateful to you for this.

To Dr. Linda Harvey and Dr. Mark Wilkinson; thank you both for helping me along the difficult journey towards getting research ethics approval and access to the Norwich Biorepository. To the staff and ME/CFS patients at Epsom & St. Helier NHS hospital; thank you for your interest and support of this work. In particular, Mrs. Jackie Cunningham for promoting the research within the immunology department, and to Dr. Rhea Bansal for assisting in blood sample collection during some of the home visits.

Special thanks must go to Dr. Alister Noble; you provided with the first glimmer of hope that I may be able to achieve some sort of result during this project. I appreciate your kindness and help you gave me to generate the data in the final chapter of this thesis. Dr. Lesley Hoyles, your expertise and time you have invested in helping me analyse this first attempt to characterise the metagenome of severe, house-bound ME/CFS patients is greatly appreciated.

In Chapter 4, I was drawn to explore the metabolome in our severe, house-bound patients. To that end, I am grateful to Dr. Ian Colquhoun and Mr Mark Philo for their expertise in $^1$H-NMR and LC/MS respectively. Without your involvement in this project I wouldn’t have the data to produce a publication based on this thesis project – thank you.

Over the years I have had several medical students interested in ME/CFS research who have followed me around and kept me company in the laboratory and during long
journeys to London to visit patients and the clinic. Therefore, my future healthcare should be no cause for concern. It has made the experience a whole lot more enjoyable; Dr. Verity (Veritas) Griffiths, Dr. Vinitha Soundararajan, Dr. Navane Navaneetharaja and Dr. Bharat Harbham - I congratulate you all as you embark on your medical careers. Verity; credit to you for coining the word “Viponderings” to describe the times I would prattle on incoherently about random thoughts I had about science, ME/CFS and Lana Del Rey.

Finally, my thanks and best wishes to my colleagues and now friends, Katharine Seton, Fiona Newberry and Shen-Yuan (Ernie) Hsieh. It is you who will be next in line to succeed in getting your Ph.D. My advice to you all is, don’t let others get you done – you’ve got this.

To my nan, the first female mortuary technician in the U.K., you inspired my interest and desire to pursue biomedical research - this is for all the times you would drive an hour there and back to pick me up from school.

Lastly, to the behind-the-scenes sponsors of this project, mum and dad, I hope you agree that this has been worth it. I owe you both so much.
For mum & dad
Chapter One

1 Introduction
1.0 Background to ME

Myalgic Encephalomyelitis (ME) has been classified by the World Health Organisation (WHO) since 1969 as a disease of nervous system (ICD-10; G93.3) and until recently included Chronic Fatigue Syndrome (CFS) under the same classification code. This enigmatic and ill-defined condition primarily affects young to middle aged adults, more often women, and is usually of sudden onset in apparently healthy and otherwise active individuals. Typically, ME/CFS is preceded by a ‘flu-like’ illness or viral infection associated with immunological abnormalities culminating in highly disabling physical and mental fatigue. The name ME implies a recognised (neuro-)pathology consisting of muscle pain (myalgia) and inflammation in the brain (encephalomyelitis), that so far the has not be established consistently within all patients (Blomberg et al., 2018). The use of ME is preferred by many patients who argue CFS reduces the seriousness and presents the illness in the context of a psychosomatic disorder (Dickson et al., 2007; Looper & Kirmayer, 2004). However, clinical examination and routine blood tests provide no obvious explanation for this pathological fatigue and variety of other symptoms including: cognitive dysfunction, muscle pain, exhaustion after minimal physical or mental exertion, orthostatic intolerance (Bansal, 2016; Haney et al., 2015). This list is not extensive, and symptoms vary in frequency and severity from patient to patient. Many illnesses can be represented by some or all of these symptoms and therefore must be ruled out before ME/CFS can be diagnosed.

Evidence is gathering to support a hypothesis of an infectious trigger causing long-lasting fatigue and immunological and gastrointestinal symptoms that could give rise to wider multi-systemic dysfunction involving signalling between intestinal microbes and the central, autonomic and enteric nervous systems, in addition to signalling between the (neuro-)immune and neuroendocrine systems and the brain. Other syndromes closely associated with ME include fibromyalgia (FM) and irritable bowel syndrome (IBS) which may represent a discrete subsets of ME patients.

- **Prevalence**

It is unclear how many people suffer with ME/CFS worldwide. A recent indication from the Institute of Medicine (IOM) suggests between 836,000 and 2.5 million Americans have ME/CFS (Reynolds et al., 2004). In the UK between 0.23-1.29% of the population are affected (Science Media Factsheet, 2018). The only prescribed treatment to these patients
consists of psychological-led interventions such as Cognitive Behaviour Therapy (CBT) for management of anxiety and depressive-like symptoms that manifest as a result of being chronically ill.

- **Early reports**

An illness that appears synonymous with characteristics of ME/CFS first described in 1869 became known as neurasthenia (Van Deusen, 1869). Symptoms included fatigue, headaches, dizziness, weakness, and emotional disturbances (Beard, 1869). It was originally associated as a result of physical isolation of farmer’s wives who were socially inactive, but was also attributed to stress and a busy lifestyle (Beard, 1869; Van Deusen, 1869). To that end it was viewed as a psychogenic, rather than organic illness which altered the behaviour of the individual. From 1938 up until 1955 several apparent outbreaks of an illness with similar symptoms to poliomyelitis were described. These followed patterns of discrete clusters firstly, in Los Angeles in 1938 where the disease was called “atypical poliomyelitis” with symptoms of muscle weakness and severe pain aggravated by exercise (Gilliam, 1938). In Switzerland, in 1939, 73 soldiers developed low grade fever, with autonomic disturbances, fatigability and loss of concentration that was labelled epidemic neuromyasthenia. What appeared to a case of poliomyelitis in 1948 developed into another outbreak, involving 488 cases in rural areas around Akureyri, Iceland leaving patients severely paralysed particularly within the 15-19 age group, and occurred in 49% of pupils resident at a high school within Akureyri. Seventy percent of these patients had characteristic low grade fever, muscle tenderness, whilst 30% had muscle weakness with pyrexia (Parish, 1978). Other areas of outbreaks of a “polio-like” illness include Denmark, South Africa and Australia (Patarca-Montero, 2004).

**1.1 Controversy of ME**

ME/CFS controversy is driven by the lack of a defined pathophysiology with routine clinical and physical examination, including blood biochemistry revealing no obvious medical abnormalities as a specific cause. Over the decades separate definitions have been generated for ME and CFS with patients who do not meet either criteria diagnosed with idiopathic chronic fatigue which is classified as mental and behavioural disorders (ICD F48.0). An apparent outbreak of this disease was reported in 1955 describing patients suffering from malaise, tender lymph node, sore throat, pain and appeared to be infectious with signs of encephalomyelitis from limb spasms (Staff, 1957). Despite the appearance of
an epidemic of viral encephalomyelitis, the cause was never established and a lack of physical symptoms in these patients convinced many doctors that they were not physically ill, labelling it as ‘benign myalgic encephalomyelitis’ since no one died as a result the illness (IOM, 2015). This along with other reported outbreaks were explained by psychiatrists as a “psychosocial phenomena caused by one of two mechanisms; either mass hysteria on the part of the patients or altered medical perception of the community” and the fact most patients were female fitted with the hypothesis of epidemic hysteria considered characteristic among females (McEvedy & Beard, 1970; IOM, 2015).

Over 200 cases of this chronic illness were documented by Dr Melvin Ramsay, a physician at the Royal Free hospital, who later published the first criteria for ME to refute its proposed psychological aetiology based on apparent involvement of the central nervous system (Staff, 1957). Interestingly some sporadic cases were reported at the time have following a viral infection and had been diagnosed as post viral fatigue syndrome (PVFS) (Lewis Price, 1961; Speight, 2013). Similar epidemics had previously occurred in 1934 and 1947 in Los Angeles and Nevada, respectively (Speight, 2013). These outbreaks have been documented in the literature as poliomyelitis and were indistinguishable from Ramsay’s patients, with a similar neuromuscular condition.

- Psychiatry and ME

Psychiatry has dominated the media and public interpretation of ME/CFS and has had unfortunate consequences for the treatment of patients. Patients can easily be accused of malingering or being ill in the mind. Many doctors and nurses formulate their own opinion based on various psychiatric explanations labelling the condition as a disease of the mind and is largely down to the fact very little or no training is given on how to manage these patients. Therefore, patients are easily stereotyped as neurotic or attention seeking. Other suggested causes include the stress of modern day living and ‘middle class’ disease (Speight, 2013). In the past it is fair to say the media has marginalised campaigns for biomedical research and excluded their voices in favour of the psychosomatic argument (Blease & Geraghty, 2018). This has created a significant amount of frustration for patients who are desperate for answers to this debilitating and life-threatening illness. This is not unusual throughout medical history which tends to favour a psychological explanation when there is no convincing somatic origin. Asthma was once considered one of the ‘holy seven’ psychosomatic illness during the 1930-50s with talking therapy as an alleged cure
Indeed, psychiatric conditions such as depression do have a negative effect on symptoms in somatic illnesses, like asthma, with a reduction in quality of life, that are not aetiologically relevant to its pathogenesis (Opolski & Wilson, 2005).

**1.2 The challenge for ME/CFS Research**

The foundations of ME/CFS research rely on the description of self-reported symptoms and clinical expertise when assessing the patient before making a diagnosis of ME/CFS. The application of reliable and highly specific criteria would be a significant breakthrough for research and in primary care. Indeed, the psychological concept for this condition is still a problem in front line care with 20% of staff believing CFS is all in the patient’s head. International agreement on how we study the ME/CFS population is not forthcoming and is still frequently discussed until the medical and research communities agree on how this heterogenous group of patients be further stratified according to specific symptoms and severity other than subjective categories of: mild, moderate, severe and very severe. How these categories are defined is still a matter of clinical opinion and varies significantly from country to country. Further confusion is generated by the various names that have been introduced to describe unexplained and persistent fatigue. ME and CFS remain the most frequently used, however others including post-viral fatigue or post-infectious fatigue syndrome are named so after the apparent infectious event triggering long-term symptoms. There is symptom overlap with these illnesses makes it unclear if these are separate conditions or all the same (Twisk, 2014).

**1.3 Diagnosing ME/CFS**

The diagnosis of ME/CFS relies entirely on the exclusion of medical or psychiatric conditions associated with fatigue or any other symptoms presenting in the patient (Bansal, 2016). As a minimum criteria, fatigue must persist beyond four months according to current NICE guidelines. Fatigue is a universal symptom making it difficult to distinguish patients who each present their own set of unique symptoms. An added complication for accurate diagnosis is that many of the symptoms are not disease specific and encompass marked variability in severity and a daily and even hourly basis (Bansal et al., 2011). It is perhaps more helpful to view ME/CFS as an umbrella term for a number of conditions defined by chronic persistent fatigue that cannot currently unexplained, that may have discrete pathogenic aetiologies.
- **Assessing fatigue**

Fatigue effects an individual’s ability to function physically and mentally. However, the concept that fatigue can manifest as illness without a pathological explanation called idiopathic fatigue, suggests a psychogenic cause since very little is known about the physiological mechanisms for the sensation of fatigue. Indeed, this makes fatigue difficult to assess with no objective physiological marker. Ultimately, it relies upon highly subjective measures and assessments including patient interviews and completing questionnaires regarding their perception of fatigue and how it impacts their daily functioning. Self-reported scales of fatigue such as the Chalder Fatigue Scale (Chalder et al., 1993) and measures of the impact fatigue has on a patients’ function such as the Short-Form 36 item questionnaire (SF-36) have been used extensively in ME/CFS research (Jason et al., 2009).

The “envelope theory” proposed in 1999 suggests patients pace themselves according to the perceived amount of total energy they have available (Jason et al., 2012). To this end, crashes or worsening of symptoms can be avoided my limiting energy expenditure within this ‘envelope’. Patients kept an activity record to provide a self-assessment report on feelings of fatigue, pain, type and intensity of activity and enjoyment every 30 min to build a comprehensive picture how CFS impacted their daily functioning. Using this method, CFS patients were found to experience fatigue more of the time and to spend 2.5 times more resting than those with major depressive disorder and 4 times longer than the healthy control group after low intensity activity (Hawk et al., 2007; Jason et al., 2012).

However, a review of 39 measures of fatigue has highlighted that no single method encompasses the full nature of fatigue in ME/CFS (Whitehead, 2009). Researchers are challenged as to how to use this subjective information to identify potential underlying physiological aetiologies. However, there are some aspects of the type and severity of fatigue experienced in the ME/CFS population that would not be perceived as normal part of experiencing fatigue that appear to separate these patients from other fatigue-related illnesses (Bansal, 2016). This is the most significant and characteristic symptom of ME, described as a delayed reaction to minimal physical or mental exertion, referred to as post-exertional malaise (PEM).
alternative sickness behaviour

The similarities between ME/CFS and sickness behaviour have been extensively reviewed (Morris et al., 2013). The behaviour responses to infection have been modelled in mice challenged with Lipopolysaccharide (LPS) derived from Gram-negative bacteria, which have shown systemic inflammation can lead to neuroinflammation and sickness behaviour (Biesmans et al., 2013). Behavioural disturbances seen in LPS-treated animals cause depressive-like symptoms and withdrawal from social interaction and the environment. Many ME/CFS patients present with symptoms of “infection” that may drive proinflammatory cytokines IL-1β, IL-6, and TNFα able to trigger vagal nerve stimulation (the nerve from the gut to the brain) or activate brain microglial cell to produce proinflammatory cytokines locally (Hoogland et al., 2015). In humans, an extreme example of sickness behaviour may manifest as delirium, a common and severe neuropsychiatric syndrome, delirium causes confusion, agitation and attentional deficits (MacLullich et al., 2009; Pandharipande et al., 2013). Delirium is associated with aging, a period defined by a declining in the microbiota and therefore insults on the intestinal microbiota may alter brain function causing neuroinflammation and alter a person’s behaviour or response to physical, mental stress or infection (Di Sabatino et al., 2018; Vaiserman et al., 2017).

The overriding issue with ME/CFS research is that patient selection still remains highly ambiguous with interchangeable use of ME and CFS and case definitions. In a systematic review evaluating the application of case definitions, the authors highlighted the existence of over 20 sets of case definitions with significant overlap (Brurberg et al., 2014). As a result healthcare providers do not feel confident in about ME/CFS (Bowen et al., 2005; Brimmer et al., 2010). The lack of specificity and accuracy in the diagnosis of ME/CFS is evident in the fact that CFS-like fatigue has been reported in 30.5% of 9050 randomly selected adults in the Netherlands using the Center for Disease Control (CDC) criteria by questionnaire, commonly referred to as Fukuda criteria (Fukuda et al., 1994; Van’T Leven et al., 2010).

Moreover, this application of broader case definitions has led to a lack of reproducibility in ME/CFS research further fuelling the perception that this illness is psychogenic. A recent critical review has argued that there is ‘no convincing pathogenesis model for CFS’ (Mm & Ssung, 2017).
- **Case definitions**

In the absence of a definitive diagnostic clinical test, guidance is set out in a series of case definitions used to described symptoms of ME/CFS to the detriment of having a homogenous patient population with varying degrees of overlapping symptoms, figure 1.1.1. This has many limitations such as selection criteria biases and methodologies to assess patients and will be influenced by researchers’ own preconceptions of disease aetiology (Morris & Maes, 2013b). Application of case definitions in an apparently multisystem disorder such as ME/CFS can require multiple medical specialities to assess each symptom meets any threshold requirements, e.g. frequency and duration. This can generate difficulty comparing studies using different definitions and criteria to score fatigue and severity. Moreover, many symptoms included in the following case definitions risk including groups of patients that do not suffer from the same disease, with more general criteria including a group of patients in some cases with very little symptom overlap (IOM, 2015).
Figure 1.1.1 Overlapping case definitions can result in patients being diagnosed with ME/CFS with very little symptoms shared between cases. Fukuda criteria sets out symptoms required for diagnosing CFS and it the most widely used case definition. The larger the area within circle of each case definition reflects the more encompassing rather than specific it is for defining patients with broad number of symptoms, in addition to mandatory chronic persistent fatigue. Figure from (Twisk, 2017).

- Ramsay (1986)

The acceptance of ME as a neurological condition by the WHO was attributed to the work of Dr Melvin Ramsay, a clinician at the Royal Free at the time of the 1955 outbreak, who proposed ME was a polio-like, neuromuscular disease and refuted any argument for it being psychogenic based on opinion of psychiatrists reviewing patients notes. The original criteria proposed by Ramsay generally considered most accurate and specific to the nature of ME symptoms including muscle weakness/tenderness, and pain after only minor exertion lasting for days, concentration and memory impairment, sleep disturbance, cold extremities, hypersensitivity and orthostatic tachycardia. Ramsay also documented the fluctuating nature of many of the symptoms and the dramatic effect of exercise upon muscle function which are not observed in IM or ‘glandular fever’ cases (Ramsay, 1986). Here, ME was described as distinctive from poliomyelitis as it did not cause paralysis or resulted in death and was termed ‘benign Myalgic encephalomyelitis’.

- Holmes (1988)

In 1988 the Centres for Disease Control (CDC) introduced the name CFS and provided the first definition. Holmes et al. (1988) produced this criteria to standardise the population and distinguish CFS from potentially viral infection aetiologies that had be associated with outbreaks of EBV infection (Holmes et al., 1988)(Holmes et al., 1987). CFS was described as persistent or relapsing fatigue for at least 6 months severe enough to impair the persons daily activities below 50% of previous capacity before becoming ill. It also stated that 8 or more other symptoms from a list of 11, including ‘neuropsychologic complaints’ had to be present. This led to the inclusion of patients with psychiatric problems such as depression base on generalised overlapping symptoms (Friedberg & Jason, 1998).
- **Oxford (Chronic Fatigue)**

This criteria was established in the 1990s that has been criticised since it only requires severe and disabling fatigue and no longer used for its lack of specificity for diagnosis of CFS, or any neuro-muscular symptoms of ME described by Ramsay in 1987.

- **Fukuda (1994) (Chronic Fatigue Syndrome)**

In 1994 the CDC introduced a new definition commonly referred as the Fukuda criteria after its primary author. Similar to the Holmes criteria, the criteria Fukuda criteria does not provide guidance on interpreting these symptoms and has been criticised for being too broad and encompassing of all cases (Reeves et al., 2003). This sets out the requirement for moderate or severe fatigue lasting at least 6 months in addition to four or more of eight symptoms: post-exertional malaise, unrefreshing sleep, impairment in memory or concentration, headaches, muscle pain, joint pain, sore throat, or tender lymph nodes (Fukuda et al., 1994). None of these symptoms are characteristics of ME are mandatory in the Fukuda definition of CFS; but also, are rather unspecific and potential inclusive of other medical and psychiatric disorders.

It is still the most widely used case definition that has largely been adopted in clinical practice (Brurberg et al., 2014). However, this criteria is frequently judged too vague and polythetic, essentially highlighting a group of patients with chronic fatigue as the predominant factor in their illness. Not all CFS patients will have post-exertional malaise and memory/concentration impairment as these are not strictly required to satisfy Fukuda criteria. The review of the original ME criteria established by Ramsay (1987) suggest a distinct disease that is more than persistent chronic fatigue, with particular emphasis on neuro-immunological exhaustion (Dowsett et al., 1990). In the patients from the Royal Free outbreak, muscular pain, autonomic symptoms and malaise following any form of physical or mental exertion where triggered after a flu-like illness are the hallmarks of ME which Fukuda does not require but help differentiate true cases of ME from ones with general chronic fatigue.

Patients with major depression may also be misdiagnosed with CFS (Jason et al., 1999). It is also possible for patients which very little symptom overlap to be diagnosed with CFS, with the only primary feature of unexplained fatigue being shared with Ramsay’s criteria for ME. Further heterogeneity is introduced when some CFS patient fit the criteria for ME and vice
versa. ME and CFS are used interchangeable or combined as ME/CFS, given many patients satisfy various diagnostic criteria for both. However, there is little understanding about the pathophysiology of ME and how it is separate from CFS, although the delayed exhaustion to minimal physical or mental exertion is considered unique to ME.

- **Canadian Consensus Criteria (2003) for ME/CFS**

The 1955 definition of ME involves post-exertional malaise and impairment of memory and concentration as distinguishing features that are not absolutely required by Fukuda (Dowsett et al., 1990). Thus, the shortcomings of the Fukuda criteria lacking overall specificity for ME, led to the introduction of the Canadian Consensus criteria which had more emphasis on ME-like symptoms requiring two or more neurological/cognitive symptoms and at least one symptom of autonomic, neuroendocrine and immunological dysfunction, as well as post-exertional malaise (PEM) which often causes a delayed exacerbation of all symptoms. The inclusion of more core symptoms identifies patients overlapping with the Ramsay criteria, but also because of the increased number of possible symptoms, like the Holmes criteria, introduces higher rates of psychiatric co-morbidity (Katon & Russo, 1992; Williams, 2014).

The early 2003 criteria required several other symptoms (see figure 1.1.3) in addition to two core symptoms referred in the previous paragraph (Jason et al., 2010). Up to 75% of CFS cases identified with Fukuda also satisfy the Canadian (2003) criteria for ME/CFS (Jason et al., 2013a; Nacul et al., 2011; Jason et al., 2012a.) To address this problem, the updated Canadian Consensus Criteria (2010) introduced structured questionnaires (DePaul Symptoms Questionnaire; SF-36) to gather standardised information in addition to operational definitions for assessing symptoms that must be present within 6 categories (see figure 1.1.3) and must be of moderate severity for at 50% of the time as well as scoring sufficiently low on the SF-36 for substantial reduction in functioning (Jason et al., 2014; Jason et al., 2010; IOM, 2015). This is viewed as a stricter definition than Fukuda with a focus on more severe patients since it does require PEM and memory/concentration impairment and indication of minimum frequencies and severity of symptoms. Fewer patients met this revised definition compared with using the 2003 version and with Fukuda. To this end, the revised Canadian Consensus Criteria perhaps represents severe group of CFS patients with significantly more frequent psychiatric co-morbidity. By contrast, the
original 2003 Canadian Consensus highlighted patients with less psychiatric co-morbidity than Fukuda (Services et al., 2015).

- **ME International Consensus Criteria (ICC)**

The International Consensus Criteria (ICC) for the diagnosis of ME essentially evolved from the Canadian Census Criteria for ME/CFS. Introduced by Carruthers et al. in 2011 it recommended a distinction of ME based on recent research of “widespread inflammation and multisystem neuropathology” (Carruthers et al., 2011). Delayed exhaustion following minimal physical or mental exertion (PEM), termed post-exertional neuroimmune exhaustion by the authors, is an absolute requirement. In addition, neurocognitive impairments, pain, sleep disturbance, neurosensory, perceptual or motor disturbances must be present. Importantly, at least one symptom has to be present from 3 of 5 immune, gastro-intestinal and genitourinary categories – including flu-like symptoms, recurrent viral/bacterial infections, GI discomfort and sensitivities to food, medicines, odours, chemical sensitivities had to be present. Finally, at least one symptom associated with energy production/transportation impairments including cardiovascular/respiratory symptoms, intolerance to extremes of temperature also needs to be present (Twisk, 2017; IOM, 2015).

- **Systemic Exertional Intolerance Disorder (SEIDS)**

An extensive review was conducted by the Institute of Medicine, USA in 2015 of the published studies of ME/CFS and the implementation of case definitions and subsequent diagnosis made from these (IOM, 2015). As a result, the report introduced SEIDS to replace ME/CFS. To qualify for diagnosis of SEIDS, fatigue, PEM and non-refreshing sleep, cognitive deficits and orthostatic intolerance are absolute requirements. Although the application of this criteria is straightforward and simpler (see diagnostic algorithm, figure 1.1.2) than other case definitions, it can still miss symptoms attributed to neuro-immune, neuromuscular and neuroendocrine dysfunction that are the hallmarks of Ramsay’s original ME criteria meaning this definition could essentially still include cases with little symptom overlap.
Figure 1.1.2 Pathway to the diagnosis of Systemic Exertional Intolerance Disorder (SEID) produced by the Institute of Medicine, USA in 2015.

For more information, visit www.iom.edu/MECFS
Figure 1.1.3 Common symptoms of ME/CFS shared across various case definitions Figure adapted from (Online, 2018) assessed 29th September 2018, with additional information included from (Jason et al., 2010).

- **Symptoms**

The case definitions for ME/CFS (CCC), and ME (ICC), and the IOM replacement of ME/CFS with SEID are not entirely satisfactory criteria since they still include patients with other medical and psychological illness that are not defined by neuro-muscular features, delayed muscle fatigability with an apparent prodromal phase that precedes a very serious chronic illness. The list of symptoms and references below are taken from the 2015 IOM report, and provide an overview of all the different symptoms that stand out across multiple studies implementing CFS, ME/CFS and ME criteria, these include: persistent fatigue and unrefreshing sleep, orthostatic intolerance, widespread pain (myalgia), cognitive dysfunction, and immune dysregulation, along with secondary anxiety and depression, contribute to the burden imposed by fatigue in this illness:
- Neurocognitive symptoms defined as slowness of thought; mental fog; and problems with concentrating, memory, or understanding (Arroll and Senior, 2009; Hickie et al., 2009; Jason and Taylor, 2002; Ray et al., 1992).

- Musculoskeletal factors: muscle or joint aches and pains and weakness (Brimacombe et al., 2002; Hickie et al., 2009; Nisenbaum et al., 2004; Tseng and Natelson, 2004);

- Infectious symptoms: a “viral flu-like” factor that includes such complaints as fever, sore throat, and tender lymph nodes (Brimacombe et al., 2002; Nisenbaum et al., 1998, 2004; Tseng and Natelson, 2004);

- Psychological emotional distress or mood or anxiety disturbance factor (Arroll and Senior, 2009; Fostel et al., 2006; Hickie et al., 2009; Ray et al., 1992);

Other common symptoms of the autonomic nervous system include GI disturbances, such as constipation, diarrhoea, nausea, increased bowel sounds, mild bloating and abdominal tenderness are reported by majority (92%) of patients. It is typical for symptoms of IBS to precede onset of ME/CFS that become closely associated with worsening of fatigue, mood, malaise, and severity of muscular and joint pain.

- Post-exertional malaise (PEM)

The CCC and ICC emphasise post-exertional malaise (PEM) to help clinicians rule out cases of idiopathic fatigue. It however can still be viewed as a symptom of ME/CFS rather than exclusively belonging to ME, based on its requirement in the Canadian criteria. PEM generally causes a global worsening of all ME/CFS symptoms for which the trigger can be patient specific and can take different periods for recovery. PEM can be described as a “crash”, “relapse” or “collapse” of varying degrees of duration, severity, impairment, and symptoms that are exacerbated by minimal physical or mental activity (IOM, 2015). Objectively testing the extent of a patients’ PEM by inducing a stressor or forcing the patient exercise is considered unethical given the disabling effects and pain that can last up to days. Therefore, self-reported experiences of PEM and associated triggers are frequently recorded in questionnaires of the patient’s previous experience. How these questions are asked and their wording can influence how the patient responds (Leonard et al., 2015).
PEM is considered a unique symptom of ME/CFS that distinguishes it from cases of idiopathic chronic fatigue, anxiety, depression and other psychiatric and/or fatiguing disorders fatigue-related illness, yet it is still largely an ill-defined and vague. It has been suggested, PEM be further described by the period of delay in its onset, and how long the period of the exacerbation of all ME/CFS symptoms last. For instance, PEM may be more immediate in some patients, as little as 3 hrs, or delayed up to 12-24 hrs after completion of a specific activity, and can endure longer than 24 hrs in severe cases (Bansal, 2016). Interestingly there is a subtle difference between PEM which entails a full-body sensation of malaise and post-exertional muscle weakness observed in Ramsay's ME patients. Indeed it has now been proposed the PEM be categorised according to its nature either as a general factor of exacerbating illness, or extreme muscle pain and weakness, both following from minimal physical or mental exertion (McManimen et al., 2016).
Figure 1.1.4 The IOM definition of SEID sits between the Fukuda cases definition for CFS and Ramsay’s proposed criteria for ME in 1988. SEID does not have require muscle pain (myalgia) with optional orthostatic intolerance. Figure from (F. Twisk, 2018)
**Summary**

There is currently no clear agreed distinction between CFS and ME. The Fukuda criteria upon which the majority of clinical research has implemented to date, has perhaps hindered consistent findings because the patients it diagnoses includes various disease entities which share persistent fatigue; including Chronic Fatigue, Chronic Fatigue Syndrome and ME – see figure 1.1.1. The 2010 Canadian definition attempts to separate CFS by defining more symptoms of a neurological nature but is still has considerable overlap with the earlier CFS definition and therefore attracts a heterogeneous ME/CFS patient population with varying degrees of symptom overlap. The IOM criteria for SEID has been suggested to replace ‘ME/CFS’ and uses simpler criteria than CCC and ICC definitions which should be relatively straightforward to translate into the clinic.

The CDC introduction of the term CFS on the back of the Holmes criteria has led to the confusion of CFS and ME being the same disease (Twisk, 2018). All it has served is to identify a group of patients who share persistent fatigue and does not give insight to the seriousness and severity of the original cases highlighted by Dr Ramsay (Dowsett et al., 1990; FNM, 2017). The more recent Canadian and International ME criteria hybridise CFS/ME with emphasis on PEM and reduce the frequency of depressive disorders with this criteria more successfully selecting against those individuals in whom depression may be a significant factor in their chronic fatigue symptoms (Jason et al., 2012).

The most recent SEID definition attempts to bridge together Fukuda and Ramsay criteria but completely lack requirement for muscle-specific symptoms and will therefore likely continue to represent a heterogenous patient population that remain very distinct the condition of ME described by Ramsay and colleagues (Dowsett et al., 1990). Many symptoms used by Ramsay relating to neuro-muscular pathology, including: muscle weakness particularly after exertion, spasms, extreme tenderness, as well as neurological symptoms such as light and sound sensitivities are unique to ME, yet not defined specified or used as absolute requirement by other case definitions.

In 1990, the year of the death of Ramsay and therefore his last publication before his death, the criteria for ME is re-iterated: “a syndrome commonly initiated by respiratory and/or gastrointestinal infection, but an insidious or more dramatic onset following neurological, cardiac or endocrine disability occurs...features are general or local muscle
fatigue following minimal exertion with prolonged recover” (Dowsett et al., 1990). A table for this paper (reproduced as table 1.1.1) lists the symptoms and signs in 420 patients monitored during the Royal Free outbreak. Ramsay discusses the epidemiological evidence for ME being caused by “non-immune individuals of widespread subclinical non-polio enteroviruses (NPEV)” based on the neurological manifestations for which many NPEVs had been associated with. Out of the 420 cases, 205 (33%) of these had coxsackie B virus neutralisation tests that revealed an ongoing infection (Dowsett et al., 1990). Of course, it cannot be said for certain these cases were a result of an enterovirus, but enteroviruses are well-known causes of acute respiratory and/or gastrointestinal infections and non-specific flu-like illness. Interestingly more recently enteroviruses have been suggested a common trigger, along with EBV, for causing ME/CFS in a subgroup of patients (Zhang et al., 2010). Indeed, many patients show ongoing signs of bacterial/viral infection that could explain their long-term sickness behaviour. These observations have led an infectious-neuro-immune hypothesis model which will now be introduced in the next section.

<table>
<thead>
<tr>
<th>Commonly found ( &gt; 50%)</th>
<th>No.</th>
<th>%</th>
<th>Less commonly found (&lt; 50%)</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muscle fatigue</td>
<td>420</td>
<td>100</td>
<td>Gastrointestinal symptoms****</td>
<td>205</td>
<td>49</td>
</tr>
<tr>
<td>Emotional lability†</td>
<td>411</td>
<td>98</td>
<td>Disturbance of micturition§</td>
<td>160</td>
<td>38</td>
</tr>
<tr>
<td>Myalgia††</td>
<td>336</td>
<td>80</td>
<td>Recurrent lymphadenopathy§§</td>
<td>152</td>
<td>36</td>
</tr>
<tr>
<td>Cognitive disturbance††</td>
<td>323</td>
<td>77</td>
<td>Arthralgia</td>
<td>118</td>
<td>28</td>
</tr>
<tr>
<td>Headache</td>
<td>310</td>
<td>74</td>
<td>Orthostatic tachycardia</td>
<td>88</td>
<td>21</td>
</tr>
<tr>
<td>Giddiness, disequilibrium</td>
<td>302</td>
<td>72</td>
<td>Recurrent abacterial conjunctivitis</td>
<td>68</td>
<td>16</td>
</tr>
<tr>
<td>Autonomic dysfunction††‖</td>
<td>289</td>
<td>69</td>
<td>Orchitis/prostatism in young males</td>
<td>15/113</td>
<td>13</td>
</tr>
<tr>
<td>Auditory disturbances*</td>
<td>289</td>
<td>69</td>
<td>Seronegative polyarthritis</td>
<td>42</td>
<td>10</td>
</tr>
<tr>
<td>Reversal of sleep rhythm</td>
<td>268</td>
<td>64</td>
<td>Vasculitic skin lesions</td>
<td>42</td>
<td>10</td>
</tr>
<tr>
<td>Visual disturbances**</td>
<td>260</td>
<td>62</td>
<td>Myo/pericarditis</td>
<td>34</td>
<td>8</td>
</tr>
<tr>
<td>Parasthesia, hypo &amp; hyperasthesia</td>
<td>256</td>
<td>61</td>
<td>Positive Romberg sign</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>Intercostal myalgia/weakness</td>
<td>247</td>
<td>59</td>
<td>Thyroiditis in female patients</td>
<td>15/307</td>
<td>5</td>
</tr>
<tr>
<td>Fasciculation, spasm, myoclonus</td>
<td>239</td>
<td>57</td>
<td>Meseenteric ademities§§§</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Clumsiness***</td>
<td>235</td>
<td>56</td>
<td>Paresis and muscle wasting</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

+†Includes frustration, elation, depression; ††characteristically affects limbs, shoulder girdle, spinal muscles; †††memory, concentration, anoma, dysexia; ††††especially circulation and thermoregulation; *hyperacusis, deafness, tinnitus; **mainly loss of accomodation, photophobia, nystagmus; ***usually due to impaired spatial discrimination; ****nausea/disturbance of intestinal motility; §frequency incontinence, retention; §§enlargement, recurrent after prodrome; §§§surgical intervention for abdominal pain.

Table 1.1.1. Symptom repertoire of patients diagnosed with ME used Ramsay criteria in 1988. This list is presented as a summary of symptoms found in 420 patients at the Royal Free Outbreak in 1955, highlights muscle fatigue is the defining characteristic of ME with 49% of patients experiencing gastro-intestinal disturbances. Table reproduced from (Dowsett et al., 1990).
1.4 A proposed infection-neuro-immune disease mechanism in ME/CFS

ME/CFS is a complex multifaceted disease involving disruptions to the neurological, neuroendocrine and immune systems. An infectious aetiology can be appreciated from the early documented cases of a fatiguing neuro-muscular condition, that became known as ME. The polio-like nature and symptom onset suggest a systemic infection, possibly originating from the gut which influences immune-inflammatory events responsible for causing sickness behaviour and other symptoms prevalent among neuro-psychiatric conditions where the behaviour may be a result of persistent immune activation and chronic stress and anxiety surrounding not getting better. Persistent infections are known to increase intestinal permeability. This may then explain the self-perpetuating nature of ME, since increased exposure of intestinal immune cells to commensal bacterial antigens such as LPS across the intestinal bacteria can activate the immune system and proinflammatory cytokines that have been documented to cause sickness behaviours but also trigger autoimmunity. Moreover, increased permeability is already known to occur during periods of stress and is significantly influenced during early colonization of microbes along the GI tract. In an attempt to bring order to the sequences of events, this model proposes a step by step process leading to intestinal barrier leakiness as a result of persistent immune activation and disruption to centres of the brain regulating the physiological response to systemic infections.

The following sections of this chapter, present various aspects of this model and explore it in the context of the current observations in ME/CFS, but also wider studies mainly performed in animals attempting to unravel crossover interactions with the immune system, neuroendocrine system and signalling with the brain via the hypothalamus-pituitary-adrenal (HPA) axis. This pathway has been most studied in animal models of infection where it becomes activated leading to distinct physiological changes. Moreover, evidence is emerging of the gut microbiome providing physiological input to the regulation of the immune system and HPA axis during stress test situations.
Figure 1.1.5 Current psycho-biology model for the pathophysiology of ME/CFS. Several symptoms of ME/CFS, chiefly among which post-exertional malaise (PEM), are suggestive of a dysfunctional Hypothalamus-Pituitary-Adrenal axis during times of stress. Stressors can originate from psychological processing of emotions and negative thoughts. Chronic stress can also weaken immunity and cause susceptibility towards infection. Long term exposure stress hormones can also impair intestinal barrier function, causing a “leaky gut” and exposure to intestinal microbes (Lambert, 2009). The immune system reacts with commensal bacteria previously hidden from immune cells, as a result this causes inflammation and further tissue damage and low-grade inflammation resulting from increased exposure to endotoxin (bacterial LPS). Serum antibodies IgM and IgA antibodies have been detected in ME/CFS are raised against intestinal microbes and may potentially cross-react with the CNS engender neuroinflammation and altered behaviour (Maes, Kubera, Leunis, & Berk, 2012; Morris, Berk, Galecki, & Maes, 2014). Finally, health anxiety and the damaging social impact resulting from this illness can causing further stress and GI-disturbances which appear to perpetuate this cycle.
1.5 The Hypothalamus-Pituitary-Adrenal (HPA) axis

The HPA axis is a major gut-brain pathway that protects the body from the dangers of stress. Components of this axis include the immune, neuroendocrine and central, autonomic, and enteric nervous systems, with various positive and negative feedback mechanisms designed to coordinate physiological and behavioural adaptations collectively called the stress response. This response is governed by several pathways (figure 1.1.6) and by the balance of immune (cytokines), endocrine (cortisol) and neural inputs from the intestines (vagus pathway and enteric nervous system) (Rea, Dinan, & Cryan, 2016). Activity of the HPA axis is determined by the release of corticosterone-releasing factor (CRF) from neuro-endocrine neurons from the paraventricular nucleus (PVN) of the hypothalamus during stress (Watts, 2005). Neuro-anatomical tracing studies reveal the suprachiasmatic nucleus (SCN) found in the anterior hypothalamus contains vasopressin-releasing neurons in close proximity to neurons in the PVN which can strongly inhibit corticosterone release during daytime (Kalsbeek et al., 1992). In response to actual or perceived (psychological) stress, CRF stimulates release of adrenocorticotrophic hormone (ACTH) from the anterior pituitary triggering successive release of glucocorticoids (cortisol in humans, corticosterone in animals), catecholamine (adrenaline and noradrenaline), mineralocorticoids (aldosterone) from the adrenal cortex into the systemic circulation causing mobilisation of gluconeogenesis (energy production), increased awareness (hypersensitivity), increased heart rate and blood pressure, and altered behaviour commonly referred to as the “fight or flight” response (Dallman et al., 1993; Rea et al., 2016; Taub, 2008).

Control of the PVN integrates signalling from catecholaminergic, glutamatergic and serotonergic neurotransmitters and is inhibited by the GABA-ergic neurons (Bellavance & Rivest, 2014). Glucocorticoid receptors (GR) expressed in the hippocampus and prefrontal cortex provide autoregulatory feedback to prevent HPA hyperactivity (Herman et al., 2012). The SCN has master control over the release of corticosteroids from the HPA axis, defined by the CLOCK system relying light and dark signals on photosensitive retina ganglion cells to coordinate circadian rhythm of peripheral CLOCKS throughout the body via humoral and neural connections (fig 1.1.6) (Tsigos et al., 2016). The release of CRF follows a circadian and ultradian rhythms measured by glucocorticoids in plasma revealing a day/night cycle and clustering of 6 to 9 surges in plasma cortisol in the very early hours of the morning and before getting up to facilitate awakening and arousal to start the day (Kalsbeek et al., 2012).
Daylight activates the central CLOCK in the suprachiasmatic nucleus (SCN) which coordinates the daily circadian rhythm for releasing glucocorticoids via neural inputs to CRH/AVP-containing neuron in the PVN of the HPA axis. Secreted glucocorticoids also synchronise peripheral CLOCKs by causing expression of CLOCK-related genes in local tissues. CRH: corticotropin-releasing hormone; AVP: arginine vasopressin; PVN: paraventricular nucleus. Figure from (Tsigos et al., 2016).

**HPA disruption in ME/CFS**

Sleep disturbances are common in ME/CFS patients and is acknowledged this can have an impact on the daily rhythm of cortisol secretion (Jackson & Bruck, 2012). Circadian rhythm may also be perturbed in some patients who cannot withstand light and therefore disrupt daylight signals to the SCN via the retino-hypothalamic tract giving inadequate environmental cues when transitioning between day and night (Balbo et al., 2010). Low cortisol in CFS compared with healthy controls were reported to be related to the “low arousal state” in CFS patients (Demitrack et al., 1991). Generally, reduction in cortisol levels are more apparent in women and are associated with worse symptoms (Papadopoulos & Cleare, 2012; IOM, 2015). One report has found patients with more severe symptoms had
lower awakening cortisol and a flatter diurnal curve suggesting dysfunction within HPA signalling (IOM, 2015). However, not all studies have generated consistent data to support blunted HPA activation in all cases of ME/CFS. Interestingly, hyperactivity of CRF-releasing neurons have been associated to early life exposure to stress and is a risk factor in primates for developing major psychiatric disorders in adulthood (Coplan et al., 1996). Early life stress can also be conferred by viral infections such as Epstein-Barr Virus commonly associated with risk for developing ME, as well as enteroviruses which may precipitate a pre-programmed altered HPA response. As a result of a blunted HPA axis, immune-mediated inflammation may persist even with minor physical or psychologic stressors.

- **Intestinal microbiota programmes the HPA response**

There is evidence to support that stressful insults (antibiotic exposure, bacterial/viral infections) which impact the early intestinal microbiota composition can increase the risk neurodevelopmental behaviour disorders (Borre et al., 2014; O’Mahony et al., 2017). Excessive corticosteroid exposure during postnatal development influences the developing brain and neuronal complexity within areas such as the amygdala, hippocampus, and pre-frontal cortex in addition to GR expression (Borre et al., 2014). The hippocampus has inhibitory effects on HPA activation, however, stress causes reduced synaptic plasticity and decreased expression of NR1 and NR3B subunits of the N-methyl-D-aspartate (NMDA) receptor contributing towards HPA hyperactivity (Farzi et al., 2018).

Later in life stress can increase intestinal permeability and activate proinflammatory cytokines and prostaglandins with stimulate the HPA axis (De Punder & Pruimboom, 2015). Hyperactivation of HPA axis decreases GR expression and negative feedback to immune cells resistance to anti-inflammatory properties of cortisol which further weaken the intestinal barrier (Farzi et al., 2018; Kelly et al., 2015). Systemic inflammation and increased circulating cortisol is associated in stress-related neuropsychiatric disorders, particularly Major Depressive Disorder (MDD) (Doolin et al., 2017; Jacobson, 2014). Stress and negative emotions are also a major factor in the development of Irritable Bowel Syndrome (IBS) where peripheral neuro-immune interactions can contribute to abdominal hyperalgesia (Elsenbruch, 2011). As with ME/CFS case definition criteria is applied to the diagnosis of IBS, with 50-90% of patients having an associated psychiatric co-morbidity (Singh et al., 2012). IBS has been found to increase the risk of depressive, anxiety, sleep, and bipolar disorders. Furthermore, gastroenteritis, prior to anxiety and depression are risk factors for the subsequent development of post-infectious IBS (Lee et al., 2015).
Figure 1.1.7 Critical windows between the development of neurons, diversity of the intestinal microbiota and the age of onset of neuropsychological disorders. The stability of the intestinal microbiota can affect development of the neural complexity of the CNS in early life. Early life physical and mental stressors (antibiotic treatment, psychological abuse) can impact the composition of the intestinal microbiota and increase the risk of developing psychiatric illnesses in adult life. Animal studies have shown bidirectional communication between intestinal microbes and the central nervous system that is essential for neurodevelopment and programming of stress-responsivity responses governed by the HPA axis. Figure from (Borre et al., 2014).

The intestinal microbiota colonisation occurs during a critical window of neurogenesis during which time neuronal structures within the CNS are undergoing axonal and dendritic growth and forming synaptic connections (fig 1.1.7). The networks of neuronal connections are complex and highly plastic during this development. Early insults on the intestinal microbiota during this process can cause life-long changes in behaviour and physiological response to stressors later in life. The majority of this work is pre-clinical and predominantly conducted on animal models with targeted manipulation to the intestinal microbiota to observe how these animals respond behaviourally and physiologically to a variety of physical and immune stressors.

Gnotobiotic mice continue to be the most accessible tool for neurobiologists to explore the capacity of the intestinal microbiota to influence the HPA axis and behaviour via immune and neuro-endocrine systems as well as central, autonomic and enteric nervous systems,
(figure 1.1.8) (Cryan & Dinan, 2015; Farzi et al., 2018). High levels of ACTH and corticosterone concentrations are found in germ-free (GF) mice in response to restraint stress and are consistent with HPA hyperresponsiveness (Sudo et al., 2004). GF mice have less brain-derived neurotrophic factor (BDNF) important in neuronal growth, differentiation and survival (Sudo et al., 2004). Some of the differences in GF mice are dependent on sex; for example serotonin concentration is higher in the hippocampus of GF mice with decreased 5-HT1A receptor expression only in female mice (Clarke et al., 2013). GF status appears to disrupt the programming of the HPA axis response via permeant reduction of GR and mineralocorticoid receptor (MR) gene expression in the hippocampus and increasing hippocampal volume (Luczynski et al., 2016).

Fig. 1.1.8 Neural and humoral signalling pathways between the intestine and the brain. These pathways together represent the microbiota-immune-gut-brain axis. The architecture and formation of the CNS and brain occur during early life, when intestinal microbes provide external environmental cues at specific windows of time. Additional factors later in life, such as diet, stress, infections, antibiotic exposure, can also influence the microbiota and its function via the production of microbial specific metabolites, that mimic neurotransmitters, can impact on signalling via the gut-brain axis. The immune system also interacted with the microbiota and can become activated in response to dysbiosis, causing changes in intestinal permeability and production of pro-inflammatory cytokine that can trigger sickness behaviour and activated microglial cells in the brain that increase the risk of neurodegenerative disorders affecting cognition and memory. Figure from (Cenit et, 2017).
Probiotic administration of a single strain, *Bifidobacterium infantis*, restored normal HPA response to stress in GF mice, whilst reduced anxiety behaviour and increased locomotor activity could only be reverted in young mice, not adult mice, with adoptive transfer of SPF microbiota (Sudo et al., 2004). Early life disruptions to the colonisation of the intestinal microbiota occurs simultaneously during neurodevelopment of the brain and CNS and it emerges there are temporal critical windows for colonisation to ameliorate HPA dysfunction later in life (figure 1.1.9).

![Figure 1.1.9](image)

**Figure 1.1.9** Germ free mice raised without exposure to microbes display reduced anxiety-like behaviour which cannot be reversed by recolonization following adolescence. GF mice spend more time in the light and more time spent in the open arm of the elevated plus maze, suggesting they are less anxious. Adolescence is a critical period when the intestinal microbiota influences anxiety-like behaviour, that can have life-long effects. From (Foster et al., 2013).

Altered hippocampal gene expression and increased serotonin production may explain why GF mice display reduced anxiety-like behaviour and increased locomotor activity compared with specific-pathogen free (SPF) mice with a normal microbiota (Neufeld et al., 2011). Antimicrobial treatment in SPF mice alters the composition of the microbiota and increased exploratory behaviour and BDNF expression; and transfer of stress-prone BALB/c mice microbiota into GF NIH Swiss mice transferred anxiety-related behaviour, while transfer of SW microbiota to GF Balb/C mice had an anxiolytic effect, suggesting a direct causal link between the intestinal microbiota and behaviour (Bercik et al., 2011).
Post-natal development can be influenced by antibiotic exposure during the microbial "colonisation window" causing visceral hypersensitivity in adult male rats, without perturbing anxiety, cognition and immune-related stress responses (O’Mahony et al., 2014). Conversely, antibiotic depletion later in life of the microbiota in rats causes depressive behaviour, cognitive deficits, and reduces visceral pain sensitivity (Hoban et al., 2016). Reduction in the number of bacterial species (richness) is associated with depression with evidence for beneficial treatment using lactobacillus and bifidobacterial species to modulate depressive symptoms (Bravo et al., 2011). A stable and diverse microbiota is attributed to colonisation resistance to effectively limit colonisation and overgrowth of pathogens as well as supporting a balance of anti- and pro-inflammatory responses (Lawley & Walker, 2013). Transferring the intestinal microbiota from depressed patients to rats induced anxiety-like behaviour and anhedonia characteristic of depression which suggests a causal role for intestinal microbes in the pathogenesis of depression (Kelly et al., 2016).

It seems paradoxical that GF exhibit both exaggerated HPA activity in response to stress and yet have reduced-anxiety and increase locomotor activity highlighting the complexity of microbiota-gut-brain signalling. Both the amygdala and hippocampus are enlarged in these animals, along with differential gene expression pattern involved in neuronal plasticity, neurotransmission and morphology, and evidence of defects in a subpopulation of immune cells, resident in the brain, called microglial cells (Farzi et al., 2018; Stilling et al., 2015). There is evidence that Blood-Brain-Barrier (BBB) permeability is increased in GF mice with a similar effect in antibiotic-induced disruption to the intestinal microbiota causing tight-junction defects in specific brain regions, predominantly the hippocampus and amygdala (Braniste et al., 2014). Antibiotic treatment has the capacity to effect brain neurochemistry evidenced in the depletion of the SFP mice microbiota during the human equivalent of adolescence causing reduced anxiety, memory impairment, altered tryptophan metabolism, and reduced BDNF, oxytocin, and vasopressin expression in the hypothalamus (Desbonnet et al., 2015).

- **Maternal Immune Activation**

Maternal Immune Activation (MIA) offspring display an altered composition of intestinal microbiota compared to control offspring (Hsiao et al., 2013). These offspring result from pregnant dams injected with viral mimic poly(I:C) to simulate maternal infection link to an increased risk of autism probably caused by elevated level of inflammatory molecules in the maternal blood (Hsiao et al., 2013). Altered intestinal permeability was measured in
MIA offspring was attributed excess leakage of gut-derived metabolites into systemic circulation and consequently is demonstrated to alter the serum metabolome. Administration of *B. fragilis* to MIA offspring every other day for 6 days at weaning was able to ameliorate GI barrier defects associated with an improvement in intestinal permeability. The impact *B. fragilis* has on gut barrier integrity and is shown to be through a mechanism involving changes in expression of Claudins 8 and 15 in the colon, but not in the small intestine, consistent with the fact that the majority of the microbiota including *B. fragilis* resides in the colon and therefore may be an effective treatment for restoring gut permeability defect, at least in MIA offspring. Serum metabolites significantly altered by MIA treatment (around 8% of all 322 serum metabolites detected in adult sera by GC/LC-MS based metabolomics profiling) were restored by *B. fragilis* treatment revealed the most dramatically affected metabolite, 4-ethylphenylsulfate (4EPS) (Hsiao et al., 2013). 4EPS exhibited a 46-fold increase in serum levels of MIA offspring. This is interesting because conventional germ-free mice do not have detectable levels of 4EPS indicating it originates from intestinal microbes. This work remains preclinical so its relevance to humans with autism and similar neurodevelopmental disorders is uncertain.

- **Maternal separation and stress**

Depressive-like behaviours are noted during maternal separation of new born mice causing HPA activation, immune activation and visceral hypersensitivity akin to IBS-like symptoms in humans (O’Mahony et al., 2011). The integrity of the intestinal microbiota is susceptible during maternal separation in infant monkeys; in addition to stress-related behavioural changes caused by elevated cortisol, these infants had significant decreases in faecal *Lactobacilli*, and were more susceptible to bacterial infection and associated emotional behaviour, and stress to disruption to the immune system (Bailey & Coe, 1999). Maternal prenatal stress measured by consistent elevated salivary cortisol during pregnancy induced a higher relative abundance of Proteobacteria and lower *Lactobacilli* and *Bifidobacterium* that are hallmarks of inflammatory diseases and GI symptoms and did cause infant GI symptoms related to changes (Zijlmans et al., 2015).
Intestinal microbiota and neural communications

The autonomic nervous system (ANS) integrates the communication between the CNS and the gut viscera, with resident microbiota signalling interacting with enteric nervous system influencing the brain and the perception of abdominal pain. Primary functions of the enteric nervous system (ENS) include control of movement and transmucosal fluid in maintaining mucosal barrier function and absorption of nutrients – as well as modulation of the immune system through the neuroendocrine system. Several classes of neurotransmitters can be synthesised by specific bacterial species including $\gamma$-aminobutyric acid (GABA), serotonin, catecholamines and acetylcholine (Cenit et al., 2017). Strains of Lactobacillus spp. and Bifidobacterium spp. are known to contribute to the synthesis of GABA; Escherichia spp. Bacillus spp., and Saccharomyces spp. produce noradrenaline; Candida spp., Streptococcus spp., Escherichia spp. and Enterococcus spp. produce serotonin; Bacillus spp. produce dopamine, while Lactobacillus have been shown to make acetylcholine (Barrett et al., 2012; Cenit et al., 2017; Dinan et al., 2013). Neuronal communication between intestinal microbes and the brain is evidenced by benefits of probiotic treatment of social and emotional behaviour. Administering Lactobacillus rhamnosus to mice had a reduction on stress-induced level of corticosterone and on GABA receptor regional expression in the brain. GABA-ergic neuron projecting from the hypothalamus to PVN inhibiting CRF neurons, serving as a gate keeper for PVN activation and receive projections of glutamatergic neurons from the hippocampus and prefrontal cortex – indeed lesions in these brain areas exacerbate responses to psychogenic stress (Figueiredo et al., 2003; Herman et al., 2016). Alteration to GABA receptor expression is known to be implicated in anxiety and depressive states and is also the main CNS inhibitory neurotransmitter. Alterations in the GABAergic system have pathological implications for stress-related psychiatric conditions, as such; these receptors are also main targets for anti-anxiety agents such as benzodiazepines (Bravo et al., 2011).

Immune system and HPA axis

Systemic infection via pro-inflammatory cytokines can activate the HPA-axis and trigger release of corticosterone in animals (Dunn, 2000; Turnbull & Rivier, 1999). However, the HPA axis is normally tightly regulated during infection providing negative feedback to the immune system via immune cells glucocorticoid receptors to downregulate CRF and limit pro-inflammatory cytokine production enabling host adaption to the ongoing stress and to effect certain behavioural changes (Silverman et al., 2005). Stress effects on the immune
system include reduced NK cell activity, changes in peripheral lymphocyte subsets and proliferation, diminished antibody production and reactivation of latent viral infection (Taub, 2008). Early life exposure to LPS in mice causes life-long HPA hyperresponsiveness measured by elevated ACTH and corticosterone reduced GR-mediated negative feedback (Shanks et al., 1995).

The composition of the intestinal microbiota influences the host’s susceptibility and response to infection; mouse enteropathogenic Citrobacter rodentium infection is mild in NIH Swiss mice (resistant) compared to lethal in C3H/HeJ mice, however antibiotic depletion of the microbiota in resistant mice and transfer the microbiota from C3H/HeJ to the resistant mice made them more susceptible to infection; although not lethal, this highlights additional factors including genetic background, but also demonstrated the microbiota can influence host resistance seen by transfer of NIH Swiss microbiota into HeJ mice which delayed pathogen colonisation and mortality (Willing et al., 2011). C. rodentium can drive anxiety like behaviour in CF-1 male mice, challenged at nine weeks old their immune cytokine levels were unchanged, but displayed elevated c-Fos (marker of neuronal activity) within vagal afferent neurons suggesting vagal stimulation confers this type of behaviour rather than immune mediated inflammatory cytokines (Bullitt, 1990; Lyte et al., 2006).

E. coli a gut pathogen which elicits activation of the HPA axis and the secretion of pro-inflammatory cytokines causing changes in the hypothalamus regulation of body temperature, e.g. fever. The adrenal cortex is sensitive to ongoing pro-inflammatory molecules, such as Prostaglandin E2 (PGE2) and correlated with rising corticosterone (Zimomra et al., 2011). The rise in circulating corticosterone is a product of COX-induced prostanoid synthesis which correlates with PGE2 production (Dinan & Cryan, 2012). Psychopathologies with evidence of HPA hyperactivation may therefore be associated immune responses to ongoing infections. Activation of the HPA may be triggered by increased intestinal permeability caused by stress, coupled with short term exposure to stress causing disruption to the microbiota (Bailey et al., 2011; Galley et al., 2014) (De Punder & Pruimboom, 2015).

Neonatal immune challenge with LPS during neurodevelopment increases activity of tyrosine hydroxylase needed to catecholamine synthesis (Shanks et al., 1995). Stress-induced increases in neuroendocrine hormones noradrenaline and dopamine can support growth of intestinal Gram negative bacteria and are a source LPS (Lyte & Ernst, 1992).
Infection elicits HPA activation with challenges using E.coli and LPS in rats causing IL-1 and neuroinflammation leading to memory impairment after a second inflammatory challenge in adulthood (Bilbo, 2005). Interestingly, maternal high fat diet (MHFD) increases circulating pro-inflammatory cytokines and negatively affects the neurodevelopment and microbiota of the foetus (Sullivan et al., 2014). Moreover, HFD is associated with an altered intestinal microbiota and increased vulnerability of anxiety-like behaviour.

- **Stress and neuroinflammation**

Neuroinflammation is synonymous with microglial cell activation; these are innate immune cells resident through the CNS and brain and undergo extreme morphological changes during ageing consistent with them being in an activated, pro-inflammatory state (figure 1.1.10). Innate immune cells display pattern recognition receptors (PPRs) which recognise common microbial and virus structures known as pathogen associated molecular patterns (PAMPS) for example, bacterial cell wall components such as peptidoglycan (PGN) and lipopolysaccharide (LPS) recognised as non-self by Toll-like Receptors (TLR) leading to activation and downstream intracellular signalling associated with myeloid differentiation primary response gene MyoD88 and NF-kB activation of pro-inflammatory cytokines (Mogensen, 2009). In the absence of bacterial or viral infection, the primary function of microglial cells during resting state (M0) is to carry out immune surveillance within the brain and CNS (Kettenmann et al., 2011). The sensing of these bacterial products may regulate the neurodevelopment of the CNS in health as well as triggering neuroinflammation in pathological states. A recent study suggests PPR interactions with the intestinal microbiota are needed for brain development; PGN-recognition proteins and NOD-like receptors are highly expressed during the postnatal window of colonisation, occurring simultaneously with the developing brain (fig. 1.1.7), are sensitive to changes in the intestinal microbiota (Arentsen et al., 2017). Fragments of PGN have been reported to cross the BBB in postnatal development of healthy mice (Arentsen et al., 2017). Using PGN-recognition protein 2 knockout mice lead to the development of changes in social behaviour similar to GF or antibiotic treated mice (Arentsen et al., 2017). Thus translocation of PGN across the BBB and activation of PRRs during neurodevelopment appears to a mechanism for mediating early programming of neuronal circuits associated with emotions, cognitive and motor activity (Arentsen et al., 2017).

GCs are also expressed on microglial cells and thus their immune status, morphology, and number are influenced by peripheral immune events and stress-induced HPA activity
(Sierra et al., 2008). Cytokine and other inflammatory markers such as PGE2 caused due to peripheral events, such as infection, can traverse the choroid plexus and BBB as well as promote prostaglandin release from endothelial cells within the vascular of the PVN and activate microglial cells and the stress response (Rivest, 2001). Moreover, vagal nerve stimulation can transmit information of peripheral inflammation in the gut to the brain to influence the HPA stress response and feedback to the peripheral immune system (Rea et al., 2016).

- **Microglia activation and polarisation**

Under steady state conditions (M0) microglial labelled with CX3CR1-GFP in mice, time-lapse two-photon microscopy shows they have multiple processes which continue to survey their environment (Nimmerjahn et al., 2005). Recognition of bacterial or viral PAMPS by PPRs will stimulate an innate immune response. Bacterial LPS (endotoxin) binds to TLR4 which activates microglia (M1 polarisation) to adopt an amoeboid morphology, show increased motility and production of pro-inflammatory cytokines and reactive species (oxygen or nitrous derived) designed to engulf pathogens and mobilise CD4+ IFNγ-producing Th1 cells and trafficking of immune cells to the brain (Nakagawa & Chiba, 2014). Microglial cells are a prime target for glucocorticoids to control this pro-inflammatory phenotype (Sierra et al., 2008). Figure 1.1.10 shows M1 activated microglial cells produce pro-inflammatory cytokines and chemokines such as IL-1β, IL-6, TNFα, CCL2, ROS, NO that are associated with sickness behaviour (Parnet et al., 2002). Depending on the cytokine milieu, Th2-derived cytokines, IL-4 and IL-13 can promote activation and polarisation of M2 microglia which express anti-inflammatory cytokine IL-10 (Nakagawa & Chiba, 2014). The lowered threshold for microglial activation, known as “microglial priming” is associated with ageing and neuroinflammation, consequently animal studies of neurodegenerative diseases find microglial cells are primed or activated (M1) and are more sensitive to peripheral immune activation (Perry & Holmes, 2014; Perry & Teeling, 2013). Thevaranjan and colleagues recently reported ageing in mice is also associated with decline of the intestinal microbiota (dysbiosis) and increased permeability of the intestinal barrier as well as the BBB triggers chronic systemic inflammation whilst GF mice are protected from these effects (Thevaranjan et al., 2017).
Figure 1.1.10 Polarisation and differentiation of microglial cells resident in the brain and CNS. Microglial cells are frequently referred to as the tissue-resident macrophages of the CNS and have an immunoregulatory function. M1/M2 polarisation occurs when resting microglia are stimulated by pattern and/or danger associated molecular patterns, e.g. LPS, via TLR receptors. M1 microglia are associated with pro-inflammatory cytokine responses and release of PICs into the CNS. Conversely, M2 activation is stimulated by Th2-associated cytokine IL-4 and IL-13 which causes microglia to secrete anti-inflammatory IL-10. Reproduced from (Nakagawa & Chiba, 2014).

As a consequence of damage to the intestinal microbiota, caused by stress or infections, increased intestinal permeability may facilitate increases in plasma endotoxin which activate innate immune responses. Initial (primary) exposure to LPS did not increase IL-1β in the brain, however, long-term repeated dosages of LPS (secondary infection) in mice resulted in increased brain IL-1β, TNFα and IL-12 and an activated (M1) microglial phenotype and exaggerated response to infection with S. typhimurium (Püntener et al., 2012). The characteristics of microglia during stress are similar to ageing, and are likely explained fact both lead to microglial priming, neuroinflammation and heightened reactivity to peripheral immune stimuli caused by low grade inflammation (Jurgens & Johnson, 2012). To this end, prolonged stress could be facilitating the acceleration microglial age-associated M1 polarisation and driving neuroinflammation. The effect of stress is paradoxical since under normal circumstances stress hormones releasing GCs are considered anti-inflammatory causing inactivation of immune cells via GRs. However, stress prior to immune activation in rats enhanced NF-kB activation and proinflammatory cytokine production in the frontal cortex and hippocampus, but was blocked by pre-treatment of an GC receptor antagonist (Munhoz, 2006).
As discussed, early intestinal microbiota colonisation is necessary for postnatal development of the CNS and microbial-gut-brain signalling pathways in coordinating stress and immune responses. Defects in microglial cells are emerging as an important mediator of neuropsychiatric and neuroinflammatory disorders and may also be vulnerable to disruption in the intestinal microbiota. The importance of acquisition of the microbiota in early life for microglial homeostasis is apparent in GF mice which display immature neurons and BDNF. During early life, microglia support neuronal survival, modelling and pruning synaptic pruning as well as producing various neurotrophic factors to promote neuronal circuit development and synaptic formation (Erny et al., 2015). However, a number of downregulated genes required for microglial activation were discovered in GF mice microglial, including type 1 interferon receptors, Janus kinase 3 (Jak3) and signal transducer and activator of transcription 1 (Stat1) are evident compromised immune function and immaturity of microglia cells (Erny et al., 2015). Disruption of synaptic pruning by microglial cells during development is evident in mice lacking Cx3CR1 chemokine receptors, these mice had significant reduced number of microglial cells, and lacked functional neuronal connectivity, and display autism-related behaviour (Zhan et al., 2014).

In addition to the variety of neurotransmitters produced by the intestinal microbiota, Short Chain Fatty Acid (SCFA) production can effect changes in brain neurophysiology being readily absorbed across the BBB and contribute to microglial homeostasis (Rea et al., 2016). GF free mice re-introduced to a normal microbiota reversed deficits in microglial cell numbers, morphology and maturity, however SCFA alone were sufficient in reproducing this outcome (Erny et al., 2015). Moreover, mice deficient for SCFA receptor, FFAR2, also produce the same microglial phenotypic defects seen in GF mice with increased BBB permeability, yet under normal conditions FFAR2 is not expressed in any cell type in the brain and CNS (Braniste et al., 2014; Erny et al., 2015). Psychological stress causes prolonged HPA activation, and alteration in the microglial phenotype may involve trafficking of peripheral monocytes from the spleen (Wohleb et al., 2015). Thus, the intestinal microbiota may regulate microglial activation and neuroinflammation through trafficking of immune cells dependent on the production of SCFA (Rea et al., 2016). Interestingly faecal SCFAs have been reported significantly higher in children with autism spectrum disorder compared with control, suggesting increased fermentation process within the microbiota (Wang et al., 2012).
Studies in GF mice show their microglial cells are less efficient at mounting pro-inflammatory responses to pathogens. It is also revealed the intestinal microbiota can influence BBB permeability since butyrate-producing bacteria can increase expression of tight junction (TJ) protein occludin in the hippocampus and frontal cortex; in addition, transfer of SPF microbiota to GF decreased their BBB permeability (Braniste et al., 2014). Antibiotic-induced intestinal dysbiosis reduces bacterial metabolites in plasma, enhances HPA activity, with similar altered expression to TJ proteins seen in GF mice (Fröhlich et al., 2016). To this end, hyperactivation of HPA and BBB permeability defects may facilitate circulating pro-inflammatory cytokine directly interacting with microglial cells during systemic infections.

Indeed, neuropsychiatric disorder bi-polar and schizophrenia show involvement of the immune system as both TNFα and CRP are elevated in both conditions. Increasingly psychiatric disorders including these, and anxiety and depression are being characterised by neuroinflammation. Ageing is also associated to this immune profile and is termed “inflammageing” with profound effects on mood and emotion (Frasca & Blomberg, 2016). Recently a study collecting cerebral spinal fluid (CSF) in relation to psychiatric symptoms and cognitive dysfunction found CSF-resident microglia patients with schizophrenia and bi-polar disorder have activation markers including CD14, a co-receptor for TLR4 (Johansson et al., 2017). Detection of soluble CD14 in CSP was associated with psychotic symptoms in twins with psychiatric disorders compared with their un-affected twin (Johansson et al., 2017). It is unclear what may be driving these differences, however, it is tempting to speculate increased exposure to bacterial components may drive neuroinflammation as a consequence of increased intestinal permeability (Kelly et al., 2015).

### Stress impacts the intestinal barrier function

Stress-induced increases in intestinal permeability are well documented in animal models for behaviour and in colitis where it is discussed as causing exposure of the body to huge quantities of antigenic material derived from the microbiota which interacts with innate immune cells to drive low grade chronic inflammation (De Punder & Pruimboom, 2015; Fasano, 2012; Kelly et al., 2015; Visser et al., 2009). Stress-response and systemic inflammation in mice is dependent of PPR recognition of bacteria via TLR4 and do not respond to Gram negative bacteria when this receptor is knocked out (Gosselin & Rivest, 2008). Negative emotions and stress-related hormones and neurotransmitters exert influence on the intestinal microbiota and alter physiological of the immune and neuro-
endocrine pathways in complex humoral pathway and neuronal circuits (Rea et al., 2016). Maternal separation in rats, causes increased expression of choline acetyltransferase (ChAT) and hyperactivation of cholinergic neurons belonging to the ENS and is linked to stress-induced CFR activation of CRF-receptor 2 (CRFR2), a G-protein coupled receptor (GPCR) expressed on enteric neurons to induce barrier dysfunction (Gareau et al., 2007). The mechanism was further uncovered by the work of Overman et al., who revealed CRF mediated its permeability effects in this cholinergic neural pathway via activation and release of TNFα and proteases from mast cells, including histamines that impact tight junction proteins (Overman et al., 2012). The expression of PRRs (e.g. TLRs) present on enteric neurons suggests that microbes may interact directly with afferent nerve terminals belonging to the ENS and provide further feedback to the ENS and HPA axis via vagal stimulation (Dinan & Cryan, 2012; Rhee et al., 2009).

Stress is known to induce endotoxin and low-grade inflammation by increasing intestinal permeability and may also cause neuroinflammation by altering permeability of the blood brain barrier through disruption to vascular endothelial tight junctions (De Punder & Pruimboom, 2015; Verma et al., 2006). The genus Lactobacillus is significantly reduced in mice exposed to social stress and in early life stress (Galley et al., 2014; O’Mahony et al., 2011). In rats, probiotic treatment may offer solution to prevent increased permeability following oral administration of Lactobacillus farminis for 2 weeks resulted in decreased circulating LPS and attenuated HPA responses to acute psychological stress (Ait-Belgnaoui et al., 2012).

Further to the work published on germ-free models and maternal separation of animals, GI barrier defects and alterations in the microbiota have been explored in a disease mouse model for autism, as well as in children (Hsiao et al., 2013; Luna et al., 2017). Increased intestinal permeability appears to be an influencing factor in pathogenesis of autism; increased permeability was found in 36.7% of adults patients with ASD, and in 21.2% of their relatives, compared to just 4.8% in healthy children (De Magistris et al., 2010). Similar changes in intestinal permeability have been reported to precede onset of type 1 diabetes in a study of 81 preclinical/new-onset/long-term patients versus 40 healthy controls using the lactulose/mannitol urinary excretion test (Bosi et al., 2006).
An alternative stress signalling pathway may be via enterochromaffin cells which may act as signal transducers between the luminal microbiota and underlying enteric neuronal network by secreting various signalling peptides and hormones including serotonin, CRF, cholecystokinin and somatostatin (Rhee et al., 2009). Low-grade chronic inflammation is associated with an altered intestinal microbiota in depression, with low abundance of butyrate-producing *Faecalibacterium* and high levels of *Enterobacteriacea*e (Jiang et al., 2015). Targeting these changes in the microbiota may influence intestinal immunity and consequently the level of inflammation that is detrimental to causing increased permeability (De Punder & Pruimboom, 2015). Potential future therapies for stress-related and behavioural defects may redress the microbiota’s input using probiotics in neuropsychiatric disorders appears promising (Dinan et al., 2013).

**Summary**

The microbiota is essential to the development and training of neuroendocrine and neuroimmune pathways in neurodevelopment and the HPA axis. Early life stress (antibiotics, infections) can impact the intestinal microbiota and disrupt temporal environmental cues to this process which have life-long consequences for stress handling and response to infection and can lead to priming of microglia in the brain. Many of the symptoms of ME/CFS, such as cognitive impairment, memory deficits, sleep disturbance, malaise, fatigue, are synonymous with ageing, a period where a decline in the diversity of the intestinal microbiota is paralleled with weakened immunity, and GI functions of digestion and motility is often compromised. Low-grade inflammation associated with ageing is apparent from increased levels of TNFα, IL-6 and CRP, and are known to affect cognitive functions and mood (Frasca & Blomberg, 2016). Just as the intestinal microbiota is necessary for post-natal neurogenesis and maturation of macrophage-related microglial cells, perturbations of the intestinal microbiota in later years influences the state of neuroinflammation and risk for neurodegenerative conditions with similar symptoms of cognitive defects and sickness behaviours influenced by peripheral inflammatory events caused by progressive priming and activation of microglial cells via vagal, HPA signalling and inflammatory immune mediators, altering their morphology and function in the brain to the effect of behavioural changes and social deficits similar to anxiety and depression. Finally, intestinal dysbiosis and increased intestinal permeability are plausible mechanisms for exposing the body to non-self antigenic material, predominantly, LPS and PGN from the microbiota which activate innate immune responses and activate microglial cells in the
brain and promote the pathogenesis of neuroinflammatory disorders. Animal models are leading the way in deciphering the relative impact GI function has in neuropsychiatric disorders; GF mice for example show exaggerated stress response and depletion of BDNF that can be rescued with *B. infantis* (Bercik et al., 2011; Sudo et al., 2004); reveal SCFAs are required for maturity and function of microglial cells (Erny et al., 2015).
1.6 Immune Abnormalities in ME/CFS

Immunological studies attempting to characterise immune dysfunction in ME/CFS, are further complicated when stress and disruption to sleep is a known impact on the immune system and is prevalent among the patient population. The main immunological factors that vary between ME/CFS and healthy individuals are serum/plasma levels of chemical of cytokines, which facilitate crosstalk between the innate and the adaptive immune system. The available literature provides a conflicting view on the status of the immune system in ME/CFS (Theorell et al., 2017). Despite this, imbalances in the regulation of the immune system of ME/CFS patients have been documented in multiple studies, ranging from individual case studies to moderately sized patient cohorts (Broderick et al., 2010; Fletcher et al., 2009) Lorusso et al., 2009). The cytokine profiles reported are more indicative of an ongoing immune response to an underlying infection rather than being specific to ME/CFS. However, more recently a specific cytokine immune profile has emerged during early onset of ME/CFS which may help early diagnosis. In these immunological surveys there is potential evidence in some patients of a persistent stimulus triggering the immune system, which results in activation of immune-inflammatory pathways and is highly likely to account for many of the symptoms of ME/CFS including sickness behaviour (Morris & Maes, 2013). However, individual patient cytokine profiles may also depend on patient subgroup and staging of the disease, acute flares versus partial remission, and render it difficult to study the precise nature of the immune dysfunction seen in ME/CFS. Without effective grouping with ME/CFS patient there is a limit the value of determining cytokine levels in patients’ serum due to intraindividual differences and varying methodologies to detect them.

- **Inflammation**

Early reports suggested ME/CFS presented with activation of a chronic low-grade inflammatory responses by the presence of pro-inflammatory cytokines such as TNFα, IL-1β, IL-6 which positively correlates with symptoms of fatigue and the feeling of experiencing an infection, or flu-like illness (Maes et al., 2012) (Morris & Maes, 2013). It is known these cytokines can impact tight-junction protein causing leakiness in the gut and in the blood brain barrier and correlate strongly with sickness behaviour of fatigue and malaise commonly experienced during viral infections. (Morris et al., 2013).
Cytokine network analysis

In an analysis of the cytokine networks of CFS, Broderick and colleagues studied the co-expression of interleukins: 1α, 1β, 2, 4, 5, 6, 8, 10, 12, 13, 15, 17, 23, IFNγ, lymphotoxin-α and TNFα and found distinct modules signalling a shift in the paradigm of Th1, Th2, and Th17 responses of CFS patients versus healthy controls (Broderick et al., 2010). Th1 responses promote inflammatory cytokines secreted by innate immune cells and the activation of cytotoxic T cells as well as natural killer cells (Segerstrom & Miller, 2004). Conversely, Th2 responses produce anti-inflammatory cytokines, which promote humoral immunity by differentiation of B cells into antibody-secreting B cells and antibody class switching to IgE (allergy response). Associated cytokines belong to Th1 and Th2 and typically inhibitory of one another and high anti-inflammatory response reduce the risk of inflammation but can allow existing intracellular infections to persist if there are not adequately cleared.

The association network pattern demonstrated significant attenuation of cytokines IL-1β, IL-4, IFNγ and TNFα promoting Th1 and Th17 responses with higher expression of Th2-inducing cytokines to be responsible for driving the inflammatory milieu in CFS (Broderick et al., 2010). IL-4 concentration was observed three-fold in CFS while IL-2, IFNγ and TNFα remained unchanged. Anti-inflammatory cytokine IL-10 also increased substantially in CFS in contrast to IL-13, 17 as well as IL-5 and 6 which were diminished in the CFS network (Broderick et al., 2010).

Interestingly this supports the bias towards a Th2 response as IL-4 demonstrates an antagonistic effect on Th1-inducing cytokines such as IFNγ and IL-2 (Brenu et al., 2011; Hornig et al., 2015). Ordinarily, IL-2 is associated with Th1 response but can also act as a growth factor for NK-cells which is are consistency found to be diminished in CFS patients (Brenu et al., 2011; Broderick et al., 2010). Moreover, the direct antagonistic role of IL-2 on IL-17 production maintained in healthy controls was removed in CFS and in concert with IL-1β emerges as another network within CFS permissive of an IL-23/Th17/IL-17 inflammatory response (Broderick et al., 2010). A question that is remaining is what causes this disruption within cytokine networks? It may partially be answered by a decreased sensitivity to IL-12 released by macrophages and dendritic cells during viral infection. Normally IL-12 production stimulates Th1 differentiation driven by IL-2 and their subsequent release of IFNγ and TNFα would consequently enhance NK activation and
proliferation during viral clearance. By contrast, in CFS recurrent viral infection may be as a result of reduced NK cell cytotoxicity and elimination of virus-infected cell as shown by the lower expression of activation marker CD69 associated with a reduction in IL-2 and IFNγ in an IL-4 dominant milieu (Mihaylova et al., 2007). An earlier study in 2004 by Skowera et al. demonstrated increases in IL-4 producing CD4 and CD8 T cells; which together with the loss of Th1 antiviral responses may be a factor in decreased NK activity, a bias towards Th2 responses, consistent with a latent viral infection (Skowera et al., 2004).

- **Cytokine profiles in early versus long-term ME/CFS diagnosis**

Pro- and anti-inflammatory cytokines have been evaluated in early cases (< 3 years) of ME/CFS and compared with long-term patients (> 3 years) demonstrating a significance of disease progression in cytokine analysis (Hornig et al., 2015). An immune response was noted by IFNγ associated with CD4+ and CD8+ T-cell, and NK cell activity in the early phase, with decreased CD40L expression. CD40L is necessary for B cell class switching; and its deficiency causes susceptibility to infection triggering progressive neurologic and cognitive decline (Bishu et al., 2009). In long-term cases many cytokines were reduced below levels found in healthy control (Hornig et al., 2015). Elevated TGFβ has emerged as the most consistent finding based on a meta-analysis (Blundell et al., 2015). Montoya and colleagues have studied the association of 51 cytokines with disease severity and found that 13 pro-inflammatory cytokines may contribute to long term immunological changes. None of these were statistically higher in ME/CFS, but measurement for severe patients were found to be in the higher range for controls, whereas mild/moderate cases were in the lower range (Montoya et al., 2017). This may explain why past studies using heterogenous CFS criteria have yielded confusing and conflicting analyses of the immune system.

Finally, increases in TGFβ in ME/CFS may have a negative effect on persistent infections, during an of the immune system to downregulate persistent inflammation. Despite its anti-inflammatory properties via the induction of T(regs), TGFβ has been found in the gut mucosa of IBD patients with active disease (Shen et al., 2015) and thus ongoing pro-inflammatory milieu observed in ME/CFS may alters its role (Morikawa et al. 2016). Interestingly mice with T-cell targeted inactivation of TGFβ signally develop systemic autoimmunity with spontaneous colitis highlights the importance of the TGFβ signalling pathway in immunity (Gorelik & Flavell, 2000). Also the higher prevalence of Non-Hodgkin’s Lymphoma in older ME patients may result from immunosuppression by TGFβ and
upregulation of CD70 expression which is found to inhibit T cell memory effector function referred to as T cell exhaustion (Yang et al., 2014). These defective CD8+ T cells do not produce cytokines such as IL-2 and lose their ability to proliferate during chronic viral infection (Wherry, 2011). Severity of CD8+ T cell exhaustion also depends on the viral load (Wherry, 2011). Decreased CD8+ responses to the lytic phase of EBV reaction in virus-infected B cells have been found during all stages of Multiple Sclerosis (MS) and in CFS patients highlighting impaired viral immunity (Loebel et al., 2014; Pender et al., 2017).

![Diagram](attachment:Figure1.png)

**Fig. 1.1.11 Formal analysis of plasma cytokine networks in 40 female Chronic Fatigue Syndrome patients and 59 female Healthy Controls.** HC and CFS display significantly different network topologies than expected by chance; CFS cluster II- being more “hub-like” design integrating a distinct subnetwork in CFS consisting of cytokines: IL-1b, 2, 4, IFNγ, and TNFα. Note cytokine nodes in CFS cluster I+ are more sparsely connected compared to HC. Figure obtained from (Broderick et al., 2010).

Macrophages stimulated by IFNγ during an ongoing pro-inflammatory response produce neopterin, a marker of cell-mediated immunity and indicator to ongoing oxidative stress (Murr et al., 2002). Interestingly some evidence has been found for increased IFNγ production and elevated neopterin in ME/CFS, as well as IL-12 associated with Th1 immune response and positively correlated with fatigue and flu-like symptoms (Morris & Maes, 2013a). One study that has separated ME from CFS using PEM lasting longer than 24 hr as
the hallmark symptom of ME showed that ME patients had higher levels of IL-1, TNFα and compared to the CFS (Maes et al., 2012).

- **Natural Killer (NK) cell deficiency**

In addition to cytokine profiles, immunophenotyping of peripheral blood mononuclear cells (PBMCs) has shown various of immunological abnormalities in ME/CFS patients with significant increases in IL-10, IFNγ, TNFα, and reduction in cytotoxic activity of NK and CD8+ T cells (Benu et al., 2011). Reduced cytotoxicity in NK cells has been found in ME/CFS and has been attributed to an ongoing virus infection, although this has not been consistently found across all studies (Rivas et al., 2018). This may be down to technical factors some as using fresh whole blood versus frozen PBMCs as well as the time taken to analyse the sample in which small molecule such as cytokines may diminish in concentration (Rivas et al., 2018). CD69 expression is lower in ME/CFS and normally functions to stimulate T cell and NK cytotoxicity (Mihaylova et al., 2007). Indeed, perforin expression has been found lower in patient compared with healthy controls, and is intrinsic to NK cytotoxic effects since it enables membrane disruption to cells targeted by NK cell to allow granzymes to enter and cause apoptosis (Baran et al., 2009; Mihaylova et al., 2007). Finally, a recent article has failed to reproduce previous findings regarding altered NK function which brings it to question any potential use of NK activity and other immunological abnormalities as a diagnostic marker in ME/CFS (Theorell et al., 2017).

- **Virus Infection**

Infectious mononucleosis, IM (Glandular Fever) bears resemblance to CFS but is usually self-limited to recovery within 12 weeks after onset. Typically, around 25% of teenagers and young adults infected with the Epstein Barr Virus (EBV) will go on to develop infectious mononucleosis and a further subset of these cases will also develop CFS after recovery from initial infection, suggesting that CFS may be a prolonged mononucleosis syndrome. EBV infection is common across the population, but the infection usually passes silently in most people without any obvious clinical symptoms. The virus initially targets mucosal epithelium before gaining entry to memory B cells, after which life-long latency usually ensues and is controlled by NK and CD8+ T cell responses. However, the virus may be reactivated and emerge in immune suppressed individuals. The frequency of EBV detection in those with no history of infectious mononucleosis shows that most individuals acquire
adaptive immunity, with the frequency of detection in CFS being no different to the rest of the general population. The idea that EBV is responsible for causing CFS remains controversial. Moreover, viral load and serological responses detected in CFS are inconsistent and are not helped by the use of different viral antigens in different serological assays (Bansal et al., 2011). CFS patients have demonstrated a mixture of enhanced and diminished specific antibody titres towards EBV suggesting possible latent reactivation caused by immune dysfunction in these patients. Diminished NK cytotoxicity and reduced NK-derived perforin production remain concurrently reported and specific to CFS (Brenu et al., 2013), suggesting chronic immune activation by viral infection may be responsible for clonal exhaustion and subsequent depletion of memory T cells (Maher et al., 2005). Regulatory T cells are seen to be increased in ME/CFS and may hinder antigen presentation by dendritic cells through interaction with CD80 and CD86 markers on the surface of DCs. Furthermore, this may contribute to the altered pattern of cytokine secretion by Th cells, favouring a type 2 immune response (Brenu et al., 2014) (Corthay, 2009; Serra et al., 2003). Despite scepticism surrounding EBV infection as a cause of ME/CFS, some evidence suggests underlying immune abnormalities and stress can promote reactivation of the virus and would likely contribute to the relapsing nature of ME/CFS. Circumstantially, the onset of symptoms with viral infections, apparent outbreaks of the illness, persistence of infections in ME/CFS individuals and beneficial treatment of EBV and human herpesvirus 6 infection is consistent with an immune response to infection. Abnormalities within the HPA axis occur in CFS and can be affected by physical and psychological stressors e.g. anxiety and depression. This could play a role in ME/CFS pathogenesis as glucocorticoids secreted as part of the signalling axis are known to drive Th2 polarity and furthermore could support the latent reactivation of EBV leading to chronic recurrent viral infection (Webster et al., 2002). Relentless exposure to virus infection is likely to drive CD8+ T cells to exhaustion and may be further exacerbated by high levels of IL-10 (Angelosanto & Wherry, 2010). An example is HIV infection where IL-10, IFNγ, and TNFα correlate with chronic infection and viral load (Couper et al., 2008).

A recent publication exposed deficient EBV-specific B- and T-cell responses in CFS patients [Loebel et al, 2014]. Serum IgG derived from long-lived plasma cells can persist years after primary infection. Therefore, the authors looked at the memory B cell function, in vitro, toward specific EBV antigens and found low to undetectable antibody responses against
EBNA-1 and VCA antigens in 76% of CFS patients despite normal titres of IgG antibodies to VCA found in serum. This could represent an inability to generate significant numbers of EBV-specific memory B-cells during primary infection or loss of memory B cells in ME/CFS. EBV-specific T cell responses were analysed after stimulation with fragments consisting of overlapping 15-mer peptide derived from EBNA-1 protein normally expressed during early latency phase. Frequency of EBV-specific CD4 and CD8 triple producing TNFα+, IFNγ+, IL-2+ memory T cells were significantly lower in 58% of cases (n=23) than the non-fatigued control group (n=17).

Vast numbers of studies have assayed for sero-prevalence of viral DNA using RT-PCR and conducted sero-analysis of antibodies to different viral antigens leading to mixed results (Bansal et al., 2011). However, no evidence linking a single pathogen, viral or bacterial, to causing ME/CFS pathology has been found. Instead, CFS may be caused by an aberrant response to infection (Hickie et al., 2006) therefore, multiple viral infections may perpetuate a chronic persistent immune activation by exploiting the Th2 bias and disruption to NK cytotoxic function.

Summary

There is no consistent cytokine profile in ME/CFS. Nevertheless, there is a tendency for IL-1, IL-2, IL4, IL-10, IL-17A, IFNγ and TNFα to be elevated in ME/CFS patients particularly with respect to illness (Hornig et al., 2015). Given the high prevalence of GI symptoms in ME/CFS it is interesting to note proinflammatory cytokines, IL-1, TNFα are also found at high levels in patients with inflammatory bowel disease (Strober & Fuss, 2011). Reduced natural killer (NK) cell activity is a common observation in ME/CFS, with multiple studies reporting elevations in FoxP3+ Tregs which may further limit NK cell activity (Brenu et al., 2013b). The cause for this elevation Tregs and heightened IL-10 production is unknown but could represent a counter mechanism to attenuate pro-inflammatory responses during chronic persistent infection in ME/CFS.
1.7 Autoimmunity in ME/CFS

No consistent autoantibodies have been identified in all ME/CFS patients, with those that have been identified overlapping with other autoimmune disorders. Mild to moderate improvement in 67% CFS patients (10/15) was seen treated with Rituximab®, an anti-CD20 B cell depletion therapy (Fluge et al., 2011). This drug works but causing targeted depletions of the CD20 B cell population with a delayed response of 2-7 months before both self-reported and physician-assessed fatigue scores were significantly improved. The trial authors speculate delay in clinical response is due to the gradual elimination of serum autoantibodies (Fluge et al., 2011). Prior to this finding, increases in the naïve/transitional B cell population had been reported in a study by Bradley and colleagues, as well as marked depletion in the plasmablasts.

Blood taken from 56 ME/CFS patients and 37 healthy controls, show ME/CFS may be characterised by increased levels of plasma peroxides and serum oxidised LDL (oxLDL) antibodies which demonstrate ongoing oxidative stress caused by chronic immune activation (Maes et al., 2011). Evidence is emerging that many ME/CFS patients have increased levels of oxidative stress following exercise (Jammes et al., 2005). Interestingly there have been reports of autoimmune responses in some ME/CFS patients against self-epitopes as a result of damage caused by intermediate reactive oxygen species (ROS) from immune processes. These include components of lipid membrane, palmitic, myristic and oleic acid, and anchorage molecules, S-farnesyl-L-cysteine which undergo conformational changes, presenting to the immune system as neoe epitopes (Maes et al., 2006; Morris & Maes, 2014). ROS are essential for killing of bacterial pathogens, however overproduction or inadequate removal of these intermediates by redox pathways may cause significant tissue damage and disruption to the intestinal epithelial barrier (Aviello & Knaus, 2017). These observations in ME/CFS posit the theory that chronic immune activation and ROS cause self-epitopes to be damaged and become a target for the immune system (Morris et al., 2014; Morris & Maes, 2013a). Microbial infection may drive chronic inflammation and cause autoimmune cross-reactivity by a process of molecular mimicry explained by sharing of amino acid sequence homology between bacterial antigens and host self-antigens leading to autoantibodies targeting both (Morris & Maes, 2013a). Increased bacterial translocation is increasingly evident as a result of increased intestinal permeability now demonstrated several human diseases including Crohn’s disease and in liver cirrhosis (Pastor-Rojo et al., 2007; Pijls et al., 2013).
Autoimmune reactions lead to inflammation, increased permeability of blood vessels and migration of lymphocytes to sites of injury that contribute towards patient fatigue and malaise (Maes et al., 2013). The nature of the stimuli and antigen(s) responsible for generating any auto-antibodies in ME/CFS remains to be determined. Several autoantibodies have been documented in ME/CFS patients however, the profiles vary between patients. The most interesting are anti-5-HTA receptor antibodies since the majority of serotonin is produced in the gut (Maes et al., 2013). Additional evidence supports a subset of ME/CFS (29.5%) patients have antibodies against one or more M acetylcholine and β adrenergic receptors (Loebel et al., 2016). Remarkably those patients with elevated antibody levels pre-treatment of Rituximab were the majority of clinical responders; their total IgG, IgA and IgM levels post-treatment were lower, but not significantly different compared to non-responding patients (Loebel et al., 2016). The presence of these antibodies is not disease specific but have been found in autoimmune diseases that share common features with ME/CFS including fatigue and autonomic dysfunction. An example is postural orthostatic tachycardia syndrome (POTS) is estimated to affect 10-20% of CFS patients, where β1 and β2 adrenergic receptor antibodies have also been reported, as well as in orthostatic hypotension cases (Thieben et al., 2007; X. Yu et al., 2012).

- **Infection elicited autoimmunity**

It is known that microbial-derived stimuli can influence the nature and function of immune cells in the intestinal mucosa, and when dysregulated can lead to systemic inflammation (Strober, 2013; Maloy & Powrie 2011; Tanoue et al., 2010). For example, Guillain-Barre (GB) syndrome has been associated with certain bacterial infections including Campylobacter jejuni, Haemophilus influenza and Mycoplasma pneumonia (Heikema et al., 2010). LPS exhibit structural homology to human gangliosides, found chiefly on neuronal ganglia that are major constituents of neuronal cell membranes, and are possible target for cross-reactive antibodies found in the serum of GB patients in response to bacterial infection (Nishimura, 1996). Reactive arthritis (ReA) has been strongly associated with the HLA-B27 allotype and is triggered by diverse bacteria (Alvarez-Navarro 2013). HLA-B27-restricted epitopes of bacterial and self-antigens cross-react to activate cytotoxic lymphocytes and therefore play a role in ReA. The role of HLA-B27 in inflammatory rheumatic diseases also highlights the importance of HLA allotypes being factors in autoimmune disease.
Both viral and bacterial infections have long been associated with pathogenesis in autoimmunity, notably mycoplasma infection in Rheumatoid Arthritis (RA). Mycoplasma-derived antigens are capable of generating cytotoxic cross-reactive effector lymphocytes, which upon isolation from the synovial tissue of RA patients bear the same receptor-targeted specificity to Mycoplasma arthritidis antigen (MAM) (Oldstone, 1998; Cole et al., 2000; Sherbet, 2009). The occurrence of viral infection preceding onset of autoimmunity has been recognised in ME/CFS patients (Morris et al., 2013), and in type 1 diabetes (van der Werf et al., 2007). However, it is difficult to dissect and validate the mechanisms, e.g. molecular mimicry, by which viruses generate autoimmunity.

Reduced cytotoxic T-cell responses to EBV can also increase activating autoreactive B cells as a result of exposure to gut-derived microbial antigens that induce chronic inflammation and T cell exhaustion (Loebel et al., 2014). Blomberg and colleagues have reviewed various aspects of the ME/CFS and suggest a mechanism of microbial infection driving autoimmune processes which impacts on the severity of ME/CFS symptoms (Blomberg et al., 2018). Emerging data supports disruption to intestinal microbiome in ME/CFS and changes in intestinal permeability that are likely to have negative consequences for mucosal tolerance to commensal bacteria as well as wider implications for the immune system that have not yet been explored in ME/CFS.

1.8 The Human Intestinal Microbiota

Intestinal microbes represent the greatest concentration of microbes than any other area on or in the human body whose genetic repertoire (the microbiome) is estimated between 2-20 million genes which vastly exceeds the genetic information of the ~20,000 genes representing the human genome (Kurokawa et al., 2007). Most are bacteria, consisting of more than 1000 different species whose inhabitancy affording functional benefits have become fully integrated with biological pathways controlling our metabolism, immune system, neuro-endocrine system, and development of the brain and central nervous system (Heijtz et al., 2011; Kawamoto et al., 2014; Qin et al., 2010; Round & Mazmanian, 2009; Sudo et al., 2004). Initial colonisation of the intestinal tract occurs immediately after birth and is dominated by Bifidobacterium species belonging to the phyla Bacteroides and runs in parallel with the developing mucosal immune system (Rodriguez et al., 2015). Data from the Human Microbiome Project classifies intestinal bacteria into 5 distinct phyla, listed here from highest to lowest proportional abundance: Firmicutes, Bacteriodetes,
Actinobacteria, Proteobacteria and Verrucomicrobia, the only representative of this last phyla in humans being an intestinal species called Akkermansia muciniphila (Li et al., 2014). Members belonging to Firmicutes (F) and Bacteroides (B) contribute approximately 92% of the microbiota (Eckburg et al., 2005). The ratio of F:B in infants begins at 0.4 (3 weeks to 10 months), evolving to 10.9 in adulthood (25-45 years old) and declining towards 0.6 in the elderly (70-90 years old) (Mariat et al., 2009). The average person’s faecal samples contains approximately 160 different species and regardless of the variation in diversity and composition of the intestinal microbiota between different people, there is similarity in their metabolic statuses, which may be more important in defining aspects of health (Huttenhower et al., 2012; Moya & Ferrer, 2016; Rodríguez et al., 2015). For example, a core microbiota of 57 species has been reported to exist in more than 90% of individuals which suggests these species have critical metabolic functions (Qin et al., 2010).

However, defining the composition of a ‘healthy’ microbiota is complex due to variations in host genetics, diet, lifestyle, age, fitness, stress, geographical location, antibiotic exposure and history of infections, between individual persons (Huttenhower et al., 2012). This variability in the composition of the microbiota from person to person and in disease versus healthy will influences it the metabolic and immunological functions and has driven interest in defining the role of individual species involved in these processes (Rowland et al., 2018). Specific members of microbiota stimulate an equilibrium between pro- and anti-inflammatory immune responses to control diversity and growth of bacterial populations. Altering the composition of the microbiota, through diet, stress, mediators, antibiotics exposes it to possible pathogenic bacteria which promote inflammation and outgrowth over members of the community (Baümler & Sperandio, 2016).

Compositional differences within the profile of gut bacteria have been observed in several human diseases, including ME/CFS, when compared to healthy subjects (Bajaj et al., 2014; Carding et al., 2015; Clemente et al., 2018; Giloteaux et al., 2016; Joossens et al., 2011; Norman et al., 2015; Quigley, 2018). Most strikingly, these observations are not limited to GI disorders such as IBD and IBS (Carding et al., 2015). There is increasing evidence to suggest intestinal bacteria contribute towards systemic chronic inflammatory-based disorders such as obesity, metabolic disorders have now been linked to changes in gut permeability, immunity and the composition of this microbiota referred to as gut dysbiosis (Carding et al., 2015; Fasano, 2012).
The function of the intestinal microbiota is largely mediated through diet. The composition of the diet can substantially alter growth of specific members microbiota as well as its metabolic activity which influences availability of bacterial-derived metabolites to the host. For example, SCFAs are the products of fermentation of dietary fibres which can reduce the pH affecting the growth of pH-sensitive species (*Escherichia coli* and *Salmonella spp.*) within the intestine (Cherrington et al., 1991). SCFA production is reduced by the consumption of high levels of animal saturated fats from meat, and low complexity (refined) carbohydrates (David et al., 2014). Moreover, refined sugars increases the risk of opportunistic pathogen colonisation, e.g. *Clostridium difficile* and *Clostridium perfringens* (Brown et al., 2012). High sugar consumption has been shown to elevate *Enterobacteriaceae* associated with brain and intestinal inflammation and deficits in cognitive capabilities in hepatic encephalomyelitis which is seen as a complication of liver cirrhosis associated with endotoxin exposure and increasing intestinal barrier dysfunction (Bajaj et al., 2012). SCFAs are relevant to inflammatory disorders since the can support immune tolerance by promoting anti-inflammatory responses towards commensals of the intestinal microbiota and have been shown to reduce inflammation in the dextran sulfate sodium (DSS)-induced colitis mouse model (Atarashi et al., 2011). As we age the composition of the microbiota changes towards an increased abundance of *Bacteroidetes* and *Clostridium cluster IV*, however, the capacity to produce SCFAs appears to be reduced and is understood to contribute to the increasing pro-inflammatory tone as we age (Biagi et al., 2010; Claesson et al., 2011; Frasca & Blomberg, 2016). SCFAs also act as signalling molecules via activation of GPCRs, GPR41 and GPR43 also called FFAR2 which have been associated with in reducing pro-inflammatory cytokines; and affecting pathway involved in epithelial integrity, fatty acid oxidation via the activation HDAC (Kimura et al., 2014; Vanhoutvin et al., 2009; Waldecker et al., 2008).

- *Intestinal microbiota and mucosal immunity*

The gut-associated lymphoid tissue (GALT) is home to the majority of immune cells in the body, containing over 70% of the immune system (Vighi et al., 2008). A key function of the immune system is to discriminate between the threat of pathogens and commensal (non-pathogenic) members of the microbiota. To that end, there are several mechanisms the immune system employs which help shape the intestinal microbiota and limit pathogen colonisation.
GF mice has proven valuable in understanding how the intestinal microbiota influences the developing immune system and sets the inflammatory tone through mediating the balance of pro and inflammatory mechanisms. GF mice are more susceptible to pathogen infections compared to conventional mice and have fewer intestinal antigen-presenting cells (APCs) and defects in gut-associated lymphoid tissues (GALT) compared with SPF mice (Kim et al., 2017). Lymphocytes structures for presentation of antigen, for example Peyer’s Patches (PP) and mesenteric lymph nodes (MLN) are sites for , are missing in GF mice but can be restored with intestinal bacteria, or PGN derived from Gram-negative bacteria (Bouskra et al., 2008; Falk et al., 1998).

The microbiota regulates the differentiation of T helper (Th) cells and therefore the balance of T(reg) and Th1/Th2/Th17 subsets which respond accordingly to the presentation of bacterial protein antigens via MHC complexes on dendritic cells (DCs) and macrophages (Mφ) patrolling the lamina propria (Kim et al., 2017). Figure 1.1.12 summaries the functions of each T cell subset and its associated cytokine profile and transcription factors. TLRs are also present on the apical surface of intestinal epithelial cells exposed to bacterial antigens and are themselves significant producers of cytokines contributing to the cytokine milieu (Akira & Hemmi, 2003). The cytokine environment is important as it will influence the activation of a particular T cell subset upon antigen presentation. For example, under normal circumstances, antigen presenting cells (APCs) reside within PPs and produce significant amounts of anti-inflammatory IL-10 to promote T(reg) differentiation and immune tolerance (Iwasaki & Kelsall, 1999). Moreover, Mφ cells do not produce pro-inflammatory cytokines upon activation of TLRs by common bacterial antigens such as LPS (Smythies et al., 2010).

In addition to the defects in secondary lymphoid structures, GF mice have significantly fewer CD4+ T cells in the lamina propria which an imbalance towards a Th2 immune response (H. J. Wu & Wu, 2012). In addition to SCFA production, specific members of the microbiota are known to induce T(reg) cells which include those belonging Clostridia clusters IV and XIVa (Atarashi et al., 2011), polysaccharide A of Bacteroides fragilis (Telesford et al., 2015), and Faecalibacterium prausnitzii (Qiu et al., 2013). However, there are also certain groups of bacteria such as segmented filamentous bacteria (SFB) are capable of eliciting higher numbers of Th1 and Th17 cells critical in the induction of autoimmune pathogenesis and the acceleration of experimental autoimmune
encephalomyelitis (EAE) (Forbes et al., 2016; Lee et al., 2011). Further close protection of the epithelial barrier is afforded by a specialised class of immune cells, called innate lymphoid cells (ILCs) whose role includes the release of IL-22 during infection and in addition to its association with Th17-mediated inflammation, is it protective and counteractive in IBD of mice (Zenewicz et al., 2008).

**1.1.12 Commensal bacteria induce T cell differentiation.** Each T cell subset is defined by its own transcription factor associated cytokine production. Th1 responses are critical in responding to intracellular infections, whereas Th2 is associated in allergy responses. Th17-mediated inflammation controls infection but also has been attributed to the pathophysiology of several chronic auto-inflammatory disorder, including IBD. T(reg) cells induce tolerance and inhibit T cell differentiation into the other subtypes. Several beneficial intestinal bacteria are known to stimulate T(reg) responses which control inflammation. Figure reproduced from (Wu & Wu, 2012).

In addition to stimulating T(regs), secretory IgA (sIgA) enables the immune system to coordinate a response without causing inflammation and protect the epithelial barrier from invasion. Further evidence that single strains of bacteria can alter the balance of pro- and anti-inflammatory responses was demonstrated in probiotic treatment with *Lactobacillus*
Kefir CIDCA 8348 in Swiss mice for 21 days increased the production of faecal IgA and moreover stimulated IL-10 (Carasi et al., 2015). The production sIgA can occur through T cell-dependent and T cell-independent pathways. DCs and Mφ present antigen to naïve B cells at Germinal Centres (GCs) for interaction with Th cells in order to effect differentiation and class switching to become IgA secreting plasmablasts before homing to the intestinal lamina propria as resident IgA producing plasma cells, figure 1.1.13 (MacPherson et al., 2008; Macpherson & Uhr, 2004). IgA production is another feature compromised in GF mice as a result of poor maturation of naïve B cells and underpins the requirement for exposure to intestinal microbes to coordinate commensal-specific IgA production and may also contribute to intestinal barrier defects (Kim et al., 2017). IgA responses are induced following the introduction of commensal bacteria to a reversible colonisation of GF mice however, following repeated dosage of commensal bacteria, IgA responses were in recognition of the exposure of microbes at that time and therefore IgA induction lacks immunological memory or prime boost effect as is the case with systemic vaccination (Hapfelmeier et al., 2010).
Specialised epithelial cells, called M cells, capture luminal antigens at PPs for uptake by CD103+ dendritic cells which migrate within the PP to establish contact with CD4+ T(regs) cells which remain tolerant to the commensal microbiota and support IgA-production. This response requires DC-derived retinoic acid, TGFβ1, IL-10 for T(regs) to differentiate into T-follicular (Tfh) helper cells which interact with antigen-specific naïve B cells to become activated. Once activated B cells then migrate towards the follicle (blue area) where they interact with follicular dendritic cells which retain antigen, enabling rapid expansion of B cells and induction of SHM, IgA CSR and affinity maturation in response to CD40L, IL-21 and TGF-β secreted by Tfh cells. IL-10, retinoic acid further enhances this process and IgA production within the germinal centre by inducing gut-homing markers on B cell, such as α4β7 and CCR9. B cells eventually differentiate into plasmablasts and long-lived plasma cells within the lamina propria that secrete IgA which following pIgR-mediated transcytosis across the epithelial barrier comes into contact with luminal microbes. Figure and description adapted from (Gutzeit, Magri, & Cerutti, 2014).

- **Microbial-neuro-immune interaction**

Afferent vagal neurons are in close contact with the mucosal and display receptors for common signalling molecules such as cytokines that are released from activated immune cells such as macrophages. The explanation therefore for sickness behaviour during infection is best explained as cytokine-mediated activation of the vagus nerve in response to inflammatory changes. In these instances, peripheral cytokines influence the CNS are coupled with mucosal production of other inflammatory mediators many effective upon receptors expressed on enteric neurons such as TNFα receptors, overall facilitating sensitization and perception of abdominal pain via afferent neurons which innervate the gut wall (Mayer, 2011). The basic mechanisms of sensing the microbiota, primary neurons of the ENS, immune cells and enteroendocrine cells are at the forefront of signalling in the gut-brain axis linking functionality of the HPA axis, the neuroendocrine system and the immune system together in gastrointestinal function.

Neuronal signalling is a vital component for modulating immune responses at the intestinal epithelial barrier - particularly controlling mucosal inflammation. Enteric neurons express TNFα receptors (TNFR1 and R2), but neuropeptide Y (NPY) KO mice produce less endogenous TNFα compared with wild-type mice; which has been shown to activate expression of NYP in the ENS leading to changes in intestinal permeability (Chandrasekharan et al., 2008). NPY has a role for pro-inflammatory effects in the GI tract.
and is shown to induce changes in permeability via tight-junction protein, claudin-2 (Chandrasekharan et al., 2008). Enteric neurons also express PPR immune signalling receptors, including Toll-like receptors 2, 3, 4 and 7. Mice lacking expression of TLR2 and TLR4 exhibit defects within the architecture of their ENS, abnormal mucosal secretion and reduced motility, where similar to mice with a depleted microbiota; however Tlr2(-/-) mice developed more severe form of colitis than wild-type mice following SSD treatment (Brun et al., 2013). As a consequence of an underdeveloped ENS, TLR2 KO mice exhibited severe colitis supporting the notion that intestinal microbes are necessary for enteric development and maturation of the mucosal immune system later in life (Sharkey & Savidge, 2014).

1.9 Stress and neuroendocrine manifestations in ME

Psychological stress is a critical factor in the pathological development and maintenance of ME/CFS symptoms. As well as reports of flu-like illness preceding ME, significant life events hyper-activate the stress response through cortisol production as well as from the pressure to perform well at work or school and to succeed. Individuals of this kind are highly ambitious and competitive and have a desire to feel in control with a direction in their lives. However, many ME/CFS patients appear to reach a state of burnout and are unable to fully recover and become increasingly distressed and anxious as well as physically exhausted in pursuit of great expectations. Emotions and negative thoughts lead to further stress, underpinning a psycho-biological mechanism (figure 1.1.5, page 40), this is likely to become self-perpetuating as the stress of not being able to recover and return to normal life will have negative effects on the immune system and consequently the gut microbiota and gut barrier. Thus, the characteristics of inability to rest and unwind, may represent dysfunction within the negative feedback pathways integrated with HPA axis, immune system and the central nervous system.

Further symptom-based evidence for altered stress-responsivity manifests within post-exertional malaise, the main symptom of ME/CFS which highlights the effect physical and psychological stressors endure on patients. Patient’s undertaking any form of physical or mental challenge can expect severe worsening of their symptoms after an initial delay of 12 hours or more in severe ME/CFS. Interestingly, the delay in the effect of PEM is an unusual phenomenon as it is not symptom that has been associated with any other disease, other than ME. Speculatively, PEM may represent a variation of stress response regulated by the
HPA axis. Dysfunctional HPA-axis is also substantiated further by symptoms of cold hands and feet since the hypothalamus regulates the body temperature. Usually body temperature is elevated in response to peripheral infection, but is not in ME/CFS, potentially a weakness in developing infections or allowing reactivation of latent infections such as EBV (Bansal, 2016). Finally, HPA dysfunction is also implicated in the pathophysiology of anxiety and depression and ongoing low-grade chronic inflammation in these conditions.

1.10 Intestinal microbiota impacts neuropathology

Neurological and neuropsychiatric illnesses are strongly linked to intestinal dysbiosis and physical and emotional stressors (Cryan & Dinan, 2015). In addition to immunomodulation, intestinal microbiota can influence the ENS and communicate with the CNS to alter animal behaviour and social stress. This has been demonstrated by faecal microbiota transplantation (FMT) from depressed patients into GF rats inducing alterations in tryptophan metabolism and characteristics of depression, such as increasing anxiety and anhedonia (Kelly et al., 2016). For instance, lactic acid producing bacteria (LAB) are known produces of GABA. Moreover, *Lactobacillus rhamnosus* (JB-1) induces GABA receptor expression throughout the brain, but is dependent of neuronal transmission between the intestine and brain via the vagus nerve, just as the effect of *Bifidobacterium longum* since its anxiolytic action was blocked in vagotomised mice (Bercik et al., 2011; Bravo et al., 2011). Stress is implicated in hyperactivity and hyperresponsivity of the amygdala (the brain centre for emotions and emotional behaviour) and upregulation of CRF expression and is concomitant with a lack of inhibitory control by GABA neurotransmitter signalling. Such dysfunctional GABAergic signalling is associated with anxiety, depression and schizophrenia and abnormal HPA dysfunction (Wang et al., 2016). Glucocorticoid production by the HPA regulates GABA receptor expression and induces atrophy in GABAergic neurons in early life development, thus chronic activation of the HPA contributes to stress and mood disorders by blocking inhibitory GABA feedback in the amygdala (Wang et al., 2016).

There are other factors that may compound dysbiosis such as leakiness of the gut epithelial barrier which is known to be impacted by chronic stress. The enteric nervous system responds to CRF to change gastrointestinal functions during stress events which include during response to pathogen infection. This can heighten visceral pain perception, and to
stimulate inflammatory responses within the gut and CNS. In addition to vagal nerve stimulation, sensory neurons within the ENS can sense specific molecular patterns of molecules expressed on commensal bacteria via TLRs, providing feedback to the brain and immune system. Given the high frequency of GI disease in neurological and neuropsychological disorders these microbiota-derived physiological inputs are emerging critical to the formation of pro-inflammatory conditions as a requisite to developing (and progressing) autoimmune disorders affecting the brain and CNS.

MS is a chronic autoimmune inflammatory disease driven by autoreactive T cells causing demyelination of the CNS. It manifests with similar neurological impairment and gradual degeneration presented in ME/CFS with symptoms including muscle weakness, paresthesia, fatigue, cognitive impairment, numbness and relapsing (flares) and remitting nature affecting the CNS. In addition to genetic susceptibility, the state of the composition intestinal microbiota is emerging as a contributor towards risk of developing autoimmune disease. Clinical studies on patients with relapsing-remitting (RR) onset Multiple Sclerosis (MS) exhibit differences in the composition of intestinal microbes at the taxonomic level compared with healthy controls (Chen et al., 2016; Jangi et al., 2016; Miyake et al., 2015). In a cohort of Japanese patients, these taxa comprise of significant changes to 21 species, of which a depletion of 19 was in RR MS samples; 14 belonging to Clostridia clusters XIVa and IV.

In terms of the richness, the number of species the MS patients (α-diversity) did not differ from healthy controls, unlike in IBD which is characterised by significantly lower species richness (Gong et al., 2016). Therefore, intestinal dysbiosis in MS appears distinct from other inflammatory disorders which have lower α-diversity. In a separate study, species richness also did not separate RR MS from healthy controls, rather active disease patients compared to RR MS showed decreased species richness and warrants further longitudinal studies to determine if and how compositional changes within the intestinal microbiota relate to progression of MS or enhance its severity, or frequency of relapses (Chen et al., 2016).

Interestingly there is very little overlap between the Clostridia species found reduced in RR MS and those that have been documented in IBD (Atarashi et al., 2013). Clostridia are known producers of Short Chain Fatty Acids (SCFAs), particularly butyrate which is a used as an energy source and stimulates anti-inflammatory responses and induction of colonic
T(regs) in the support of immune tolerance towards commensal bacteria (Zhang et al., 2016). In experimental colitis models, SCFAs effect epigenetic changes via inhibition of histone deacetylase 1 (HDAC-1). In particular, *Faecalibacterium prausnitzii*, one of the most abundant bacteria in the intestinal microbiota found less abundant in RR MS, has been identified to regulate Th17/T(reg) differentiation by inhibition of HDAC-1 which blocks IL-6/signal transducer and activation of transcription 3 (STAT3)/IL-17 pathway, causing Foxp3 induction of T(regs) and differentiation (Zhou et al., 2018). T(regs) can produce TGFβ an anti-inflammatory cytokine in order to suppress pro-inflammatory Th1/Th17 cell responses.

Peripheral events leading up to, or during the onset, and progression/exacerbation of neurological diseases are being studied. In a recent pilot study comparing the intestinal permeability of RR MS patients with 18 age and sex-matched healthy controls, the ratio of lactulose/mannitol measured in urine was significantly higher in 16/22 patients (p=0.0284) (Buscarinu et al., 2017). Increased intestinal permeability is a proposed mechanism for developing autoimmune disease that develops over time and in response to intestinal dysbiosis (Fasano, 2012). The interactions between intestinal microbes and the immune system in MS remain unclear and challenging to study in humans. Experimental Autoimmune Encephalomyelitis (EAE) is generated in rodents through peripheral immunisation with CNS antigens including; myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG). As a result, pro-inflammatory infiltration of autoreactive T cells into the brain and CNS of mice, causing chronic inflammatory demyelination that resembles clinical aspects of MS in humans (Stromnes & Goverman, 2006).

In addition to exposure to MOG peptide, T-cell mediated neuroinflammation in EAE requires IFNγ producing Th1 cells and IL-17 and expression of α4β1 integrin for extravasation across the BBB. There is some evidence to suggest systemic infections increased the chances of relapse in MS patients (Correale et al., 2006). Systemic challenge with lipopolysaccharide (LPS) is used to model systemic inflammation. The induction of proinflammatory cytokines including IL-1β, IL-6 and TNFα can influence sickness behaviour and delirium commonly associated with CNS disorders. Pro-inflammatory stimuli and ongoing CNS neuroinflammation induce cyclooxygenase-2 (COX-2) which causes astrocytes supporting the BBB to secrete prostaglandin E2 (Font-Nieves et al., 2012). The induction of fever during infection is described by the IL-6-COX2-PGE2 axis which culminates in the
activation of EP3 receptors expressed in thermoregulatory neurons within the hypothalamus to induce fever and malaise (Eskilsson et al., 2017; Evans et al., 2015).

B cell mediated autoimmunity may also influence RR MS since the intestinal microbiota has been shown necessary to drive autoantibody-producing B cells and for stimulating myelin-specific CD4+ T cells in the process of spontaneous RR EAE (Pöllinger et al., 2009). RR mice are transgenic SJL/J mice predisposed to spontaneously developing EAE due to increased TCR expression specific for MOG peptide 92-106 (Pöllinger et al., 2009). In contrast to induced EAE, RR mice develop the characteristic remission and relapsing nature of RR MS in humans which leads to neuroinflammation causing demyelination throughout the CNS. B cell autoantibodies enhance demyelination and severity since mice deficient in MOG antigen or with depleted B cells do not develop spontaneous RR EAE (Pöllinger et al., 2009).

Latent EBV reaction have been documented to cause serious neurological complication in paediatric patients, with long term consequences including cognitive impairment and epileptic seizure and symptoms of Alice in Wonderland Syndrome affecting sense of vision, sensation, touch, hearing and perception of one’s own body (Fine, 2013). The lytic phase of EBV infection is reactivated when memory B cells undergo differentiation into plasma cells. Normally EBV-specific CD8+ T cells target EBV-infected B cells. However, defective control of EBV reactivation may facilitate generating autoreactive B cells in MS who display defective T cell control of EBV infection with a reported decrease of CD8+ T cells against lytic phase EBV (Pender et al., 2017).

B-cell targeted therapies have been trialled in CNS autoimmune disorders MS and neuromyelitis optica (NMO) despite being considered T-cell mediated (Fillatreau, 2018). Anti-CD20 therapy called Rituximab® has been successful in reducing inflammatory brain lesions and clinical relapses in RR MS during a 48-week trial in 104 patients (Hauser et al., 2008). B cell are potent cytokine produces and also antigen presenting cells, thus engagement with T cells through CD40 and produce IL-6 that enhances Th17 differentiation (Barr et al., 2012). Depletion of B cells may reduce ongoing proinflammation cytokine production as well as removing auto-reactive B cells that may contributing towards pathogenesis. For example, NMO, also called Devic’s disease, is a variant of MS that represents demyelination restricted to the optic nerve and spinal cord. However, IgG1 autoantibodies produced by B cells target AQP4, an aquaporin, expressed in astrocytes to attack myelin. These autoantibodies belong to the class IgG1 and require direction of T-follicular helper cells for class switching and maturation of plasma cells of this antibody.
Rituximab® clinical trials in NMO deplete B cells decreased rate and severity of relapses (Etemadifar et al., 2017).

Analysis of the intestinal microbiota in NMO patients identified enrichment at the species level of Clostridium perfringens, compared with healthy controls (Cree et al., 2016). AQP4-reactive T cells are elevated in NMO patient and specificity mapped to amino-acid residues 63-76. This immunodominant region revealed 90% sequence homology (207-216) to an adenosine-triphosphate binding cassette transporter permease (ABC-TP) expressed by C. perfringens (Zamvil et al., 2018). To put this finding into perspective, myelin-specific T cell responses in MS, reveal less sequence homology between immunodominant T-cell targeted epitopes in myelin and microbiota-derived antigens (Zamvil et al., 2018).

**Figure 1.1.14 Pathogenesis of NMO arises from Clostridium perfringens molecular mimicry driving autoantibodies against AQP4 channels in the central nervous system.** Bacteria become internalised by M cells at the PPs and delivered to dendritic cells which in a healthy microbiota promote anti-inflammatory cytokines and naïve T cells to differentiate into regulatory T cells and T follicular cells which support the induction of IgA secretion. Specific IgA responses to members of the intestinal microbiota can protect against disease and inflammation (Kawamoto et al., 2014; Kubinak & Round,
Overgrowth of *C. perfringens* is thought to contribute to the development of NMO, which becomes internalised by M cells for presentation to immune cells. ABC-TP(p204-217) shares sequence homology with Aquaporin 4, AQP4 (p63-76) and leads to the activation and expansion T cells which recognise both antigens (Oldstone, 1998). Dysbiosis may alter the balance between pro and anti-inflammatory T cell responses in the immune system, causing Th17-polarisation and expansion of auto-reactive ABC-TP/AQP4-specific Th17 cells which promote B cells to differentiate into antibody secreting plasma cells. These pathogenic antibodies further mediate destruction of AQP4 within the CNS causing inflammation of the optic nerves and spinal cord. Figure from (Zamvil et al., 2018).

*Clostridia* strains from *clusters IV, XIVa* and *XVIII* are considered as producers of SCFA and promote TGFβ (Atarashi et al., 2013). *C. perfringens* is not included within these clusters and may well contribute to long-chain fatty acids, similar to Segmented Filamentous Bacteria (SFB) which promote Th17 differentiation (Ivanov et al., 2009). Indeed, CD4+ T cells isolated from NMO patients are characterised by IL-17 production as well as IFNγ and IL-6, inducing Th17 differentiation (Ochoa-Repáraz & Kasper, 2018; Varrin-Doyer et al., 2012).

The intestinal microbiota strongly influences the balance between proinflammatory and anti-inflammatory immune reactions, leading to either protection or induction/progression of disease. Mice SFB induce fewer Th17 cell in the small intestine (Ivanov et al., 2009). Commensal members of the microbiota influence the balance of T(regs)/Th17 in the intestine and so it can be seen the dysbiosis would potential altered this balance. GF mice are in fact protected against EAE producing lower IFNγ and IL-17 as well as having more FoxP3+ T(regs). Re-colonisation with *B. fragilis* producing capsular polysaccharide Ag maintains protection against EAE, as well as some Clostridia species through enhanced stimulation of IL-10 producing FoxP3+ T(regs) (Atarashi et al., 2013; Ochoa-Repáraz et al., 2010). *B. fragilis* has also been shown to be effective at correcting IP in MIA offspring, and alters microbial composition to the benefit of ameliorating ASD-like behaviour and GI complications in these mice (Hsiao et al., 2013).

Intestinal permeability determined by histological sectioning of duodenum, jejunum and ileum of EAE mice show they develop increased intestinal barrier permeability preceding the onset of neurological symptoms (Nouri et al., 2014). Indeed there have been observations of increased intestinal permeability preceding clinical onset and relapses in Crohn’s Disease and type 1 diabetes (Bosi et al., 2006; Fasano, 2011; Irvine & Marshall, 2016).
Th1 associated proinflammatory cytokines, TNFα and IFNγ in combination with IL-17 may trigger overexpression of zonulin and disorganisation of TJs to increase intestinal paracellular transit (Nouri et al., 2014). Metabolic disorders have been well studied with an association between low-grade chronic inflammation sustained by systemic endotoxin measured in obese and diabetic mice with evidence of dysbiosis characterised by increased Proteobacteria abundance which are Gram negative bacteria with presence of endotoxin on their outer membrane (Rizzatti et al., 2017). Endotoxin-induced inflammation is driven microbiota dysbiosis in these animals recognised by the fact that antibiotic treatment reduced circulating endotoxin, improved insulin sensitivity, and lowered systemic inflammation and oxidative stress caused by the immune system (Cani et al., 2008; Rizzatti et al., 2017).

Epithelial tight junctions in the intestine are similar to the endothelial tight junctions of microvascular in the brain and are equally susceptible to endotoxin. Circulating endotoxin can disrupt the blood-brain-barrier (BBB) and activate microglia in the brain via PRRs leading to the recruitment of leukocytes during neuroinflammation. Preventing the extravasation of autoreactive T-cells by blocking α4β1 integrin disrupts trafficking across the BBB and has yielded some clinical benefit in the treatment of RR MS.

- aging microbiota and neurodegeneration

There is a striking parallel between the onset of neurodegenerative disorders such as Parkinson’s Disease and Alzheimer’s and age-related changed within the intestinal microbiota. Age-related decline of the intestinal microbiota is associated with increasing proinflammatory cytokines and deteriorating IP in mice (Thevaranjan et al., 2017). The ageing intestinal microbiome appear to alter in composition with a reduction in alpha diversity, and increased presence of proteobacteria (Rizzatti et al., 2017). Significant decreases have been reported in Bifidobacteria, Bacteroides, and Clostridium cluster IV (Zwielehner et al., 2009).

Enrichment of Proteobacteria are a common observation in inflammatory conditions (Rizzatti et al., 2017). Age-associated intestinal dysbiosis may arise as a consequence of an ageing immune system (immunosenescence) and potentially enhanced susceptibility towards infections, inflammation and autoimmunity. Risk of neurological inflammatory driven pathologically increase as we age, susceptibility to diseases and increased morbidity and mortality due to low-grade inflammation caused by endotoxemia (Singh &
Newman 2011; Freund et al. 2010). The intestinal microbiota is potentially a large source of endotoxin. Concomitantly, ageing causes priming of microglial cells in the brain making them more sensitive to a secondary inflammatory stimulus (Perry & Holmes, 2014). It is not understood why this occurs during a process what is termed inflammageing; however microglial susceptible to activation by circulating pro-inflammatory cytokines caused by a systemic trigger (i.e. infection) may facilitate a leaky blood-brain barrier (BBB) and trafficking of pathogenic T cells that promote various neurogenerative conditions (Bachstetter et al., 2015; Dilger & Johnson, 2008)(Blaylock & Maroon, 2011).

- Parkinson’s Disease (PD)

Sleep disorder, cognitive impairment and mood disturbance are common non-motor symptom in PD (Yu et al., 2018). However, the origins of Parkinson’s Disease (PD) may begin in the intestine. It has been suggest that Gl symptoms, particularly constipation can precede motor symptoms up to 20 years prior to diagnosing PD and may predict onset of PD (Yu et al., 2018). The production of SCFAs by the intestinal microbiota are known to modulate microglia and enhance PD in genetically susceptible mice (Sampson et al., 2016). Overexpression of α-synuclein (αSn) in these mice causes aggregation within neurons and culminates in progressive deficits in motor function as well as intestinal motility dysfunction (Sampson et al., 2016).
Figure 1.1.15 Microglial activation is induced by systemic inflammation and contributes towards behaviour adaptations to infection. Ageing and low-grade systemic inflammation causes progressive priming of microglial cells in the brain that alters their morphology and neural function. Later in life, viral/bacterial infections may cause irreversible activation of microglial cells that increases the risk of illnesses affecting memory, and cognition such as dementia, characterised by neuronal dysfunction, and activated of pro-inflammatory cytokines in the brain. From (Perry & Holmes, 2014).

Microbial production of SCFAs during viral infection have been described as activating microglial cells, the resident tissue macrophage in the brain and CNS (Erny et al., 2015). Indeed, transfer of faecal material from human PD patient donor into αSN-overexpressing mice revealed an altered profile of SCFAs, which was capable of activating microglia alone within PD disease-susceptible GF mice (Sampson et al., 2016). Activation of microglia passes the threshold known as priming of microglial, and induces neuroinflammation observed through morphological changes, including on specific administration of SCFAs in this experiment.

- Increased intestinal permeability in Major Depression

Major depression is a psychiatric disorder with a defined abnormal immune component and suspected changes in intestinal permeability. Patients display high serum IgM and IgA antibodies reactive with LPS (endotoxin) of multiple Gram-negative enterobacteria. The levels of these antibodies are associated with a global worsening of symptoms, including fatigue, autonomic and gastro-intestinal symptoms (Maes et al., 2008). These results also suggest ‘leaky gut’ plays a role by increasing the exposure of bacterial LPS causing an inflammatory immune response marked by proinflammatory cytokines IFN-γ and IL-6. Chronic low-grade inflammation or immune activation that underlies the aetiology of IBS is also a driving risk factor in mood disorders (O’Malley et al., 2011).

- Increased intestinal permeability in ME/CFS

Increased serum IgM and IgA responses have also been documented in CFS patients against the LPS of enterobacteria using an ELISA method (Maes et al., 2007). Given the year of publication of this article it is important to note that the Canadian ME/CFS and/or international ME criteria could not have been applied. As discussed earlier, Fukuda CFS criteria has significant overlap with psychiatric comorbidities.

More recent studies that have assayed for surrogate markers of intestinal permeability, including LPS, LBP, sCD14, I-FABP as well as surveying a number of pro-inflammatory
cytokines conclude that bacterial translocation in ME/CFS may be stimulating the immune system (Giloteaux et al., 2016). Together with recent data showing a reduction in the diversity of the ME/CFS microbiome appear to add further support to this concept, however, there is no additional information related to differences in local gut immune reactions towards intestinal microbes, or how these permeability markers reflect severity of ME/CFS.

1.11 Leaky gut hypothesis in ME/CFS

‘Leaky gut’ is an informal term used to describe increased intestinal permeability that may result in bacterial translocation and exposure to the host immune system. It has been suggested that ‘leaky gut syndrome’ is a mechanism for immune dysfunction and auto-inflammation and autoimmunity (Fasano, 2012). Indeed, there have been several reports of changes in intestinal permeability that are frequently in tandem with evidence for dysbiosis in a selection of neurological and autoimmune diseases (Bosi et al., 2006; Fasano, 2012; Manfredo Vieira et al., 2018; Pijls et al., 2013; Rojo et al., 2007; Sapone et al., 2006). Of course, details for how the microbiota cause the immune system to produce autoantibodies is unclear and in response to which particular microbes in the gut. It is tempting to speculate an unknown infection in ME/CFS initiates neurological complications in some patients, similar to Guillain-Barré (GB) syndrome where LPS derived from Campylobacter jejuni elicit cross-reactive antibodies through molecular mimicry of host gangliosides (Yu et al., 2006). From this, the pathological consequences to the CNS and effects on behaviour appear to be precipitated by immune dysregulation driven by bacterial infection. However, serial pieces of evidence are missing to support this hypothesis.

Figure 1.1.16 An explanation for ME/CFS incorporating intestinal dysbiosis, intestinal permeability and autoimmunity. Our hypothesis is that the pathogenesis of ME/CFS is driven by intestinal dysbiosis that results in increased Th1/Th17 immune responses towards intestinal microbes and
increased intestinal permeability. Increased anti-microbial reactivity to luminal microbes may engender cross reactivity through molecular mimicry with the CNS and brain that so far has not been established in ME/CFS. Identifying intestinal dysbiosis and alterations in intestinal permeability are plausible mechanisms for induction of autoimmunity and have been associated with several autoimmune diseases (Fasano, 2012).

- Concluding remarks

The cause(s) of ME/CFS is not known but is suspected to involve cytokine infiltration of the brain, neuro-inflammation, low NK cell function and frequently follows viral infections suggesting a link with the immune system. Environmental and/or microbiological triggers originating from the gastrointestinal tract are thought to be a cause of the disease or perpetuate symptoms and pathological illness.

Autoimmune reactions lead to inflammation, increased permeability of blood vessels and migration of lymphocytes to sites of injury. Microglia within the brain can be primed during chronic inflammatory diseases but can then induce inflammation in the brain when they are triggered by a second inflammatory challenge such as a systemic microbial infection (Blaylock & Maroon, 2011). This raises the possibility that the damaging neuro-inflammation seen during ME may be triggered by systemic infections. Indeed, several autoantibodies have been documented in some but not all ME/CFS patients. An interesting example are anti-5-HTA receptor antibodies since the majority of serotonin is produced in the gut (Maes et al., 2013b).

Many ME patients have gastrointestinal disturbance, are more likely to develop irritable bowel syndrome, and may have a “leaky” gut barrier (Lakhan & Kirchgessner, 2010). Together these observations suggest that changes in intestinal barrier integrity, which may be driven by or are a consequence of intestinal dysbiosis, as a result, for example, of a gut infection could contribute to ME by increasing exposure of host mucosal and systemic immune cells to microbe-derived antigens and drive systemic inflammation and/or influences the microbiota-gut-brain axis.
1.1.12 Overall study aim, hypothesis & objectives

- Central Hypothesis

Severe ME/CFS patients have a compositionally and functionally altered intestinal microbiota compared to their house-hold relative, which promotes ongoing intestinal epithelial permeability and systemic, chronic (auto)-inflammation.

- Thesis Aim

The first aim was to recruit an apparently healthy, house-hold control participant to match with their respective house-bound, severe ME relative; the second, to characterise the composition and metabolic activity of the intestinal microbiome and to test for evidence of intestinal epithelial permeability in these patients.

Recent metagenomic and metabolomic studies have focussed exclusively on mild to moderately affected ME/CFS patients with respect to conventional age and gender matched healthy controls. If these findings translate into severe, house-bound ME/CFS patients in unknown.

- Specific Objectives:

Chapter 3: To compare metagenomic sequencing methods to characterise the composition of the intestinal microbiota in severe, house-bound patients, in order to determine:

i) if there is evidence for intestinal dysbiosis;

ii) the identity of key bacterial species belonging to a novel “microbial signature” which may help define severe, ME patients from those mild to moderately affected;

iii) the effect of the contribution of external environmental factors known to influence population-level microbiome variation by using house-hold controls
Chapter 4: To define the faecal and serum metabolome of severely affected ME/CFS patients, in order to determine if:

i) altered microbial composition (dysbiosis) influences the faecal and blood serum metabolism;

ii) there is any evidence for alterations in aerobic energy metabolism or of a hypometabolic state, which have recently been reported in studies on mild to moderately affected ME/CFS patients;

iii) severe, ME patients have a distinct bile acid metabolic profile using targeted HPLC-mass spectrometry.

Chapter 5: To evaluate methods for detecting anti-microbial antibodies using solid phase and liquid phase assays by establishing:

i) if lab-cultured bacterial isolates, representative of the human intestinal microbiome, can be immobilised onto nitrocellulose-coated glass slides;

ii) a whole cell bacterial microarray to rapidly screen serum using microarray scanner detection;

iii) the relative abundance of IgA-coated faecal microbes in severe ME/CFS patients versus matched house-hold controls using faecal flow cytometry;

iv) the intestinal permeability status of severe ME patients versus house-hold controls based on serum detection of lipopolysaccharide (LPS) and LPS-Binding Protein (LBP);

v) if IgA reactivity towards faecal microbes correlates with these existing measures of intestinal permeability.
Chapter Two

2  Overall study design
2.1 General study rationale

This thesis project is a pilot study focussed on severe ME/CFS patients who were identified as being house and/or bed-bound. Housebound and bedbound ME/CFS patients account for approximately 25% of the patient population, yet fewer than 0.5% of studies carried out to date include these patients (Pendergrast et al., 2016). Studies of the intestinal microbiota of ME/CFS patients suggest a reduction in microbiota diversity and the number of species of bacteria (Fremont et al., 2013; Giloteaux et al., 2016; Nagy-Szakal et al., 2017). Other culture-based studies using the Fukuda criteria to identify patients, described an increased number of D-lactate producing Enterococcus and Streptococcus spp. in ME/CFS patients providing a plausible explanation for neurological impairment (see symptoms fig 1.1.3) in ME/CFS similar to patients with D-lactic acidosis (Sheedy et al., 2009).

Relatively few studies compare the microbiota of patients with healthy same house-hold individuals as controls despite the benefit of controlling for important environmental factors. Various factors affect the microbiota, chiefly among are diet and lifestyle (Zhernakova et al., 2016). It is a reasonable assumption that members of the same house-hold will share food and be exposed to similar habitat associated factors and microbes. To this end, house-hold members act as a useful environmental control. Finally, the majority of house-hold controls used in this study were relatives of the patient and share a similar genetic background which contributes to microbiota diversity shaping of the host immune response to commensal intestinal microbes.

At the time of writing, this work represents the first insight of the intestinal microbiota of house-bound ME/CFS patients and disease-free members of the same house-hold. The data from this analysis is presented in the following chapter, chapter 4. Host and microbiota metabolism analysed through metabolomics-based approaches has identified alterations energy and lipid metabolism, amino acids and products of microbial metabolism including lactate and SCFAs (butyrate) derived from fermentation of dietary carbohydrates. However, none of these studies have included severe patients or healthy house-hold controls (Armstrong et al., 2015; Germain et al., 2017; Naviaux et al., 2016). In chapter 5 detection of faecal IgA-coated bacteria is determined using flow cytometry as a surrogate for intestinal permeability that has previously been applied to assessing intestinal barrier dysfunction in colitis (Palm et al., 2014).
In total seventeen home visits were carried out across the South of London and neighbouring counties (see heatmap, figure 2.2.1) to collect faecal samples from 17 severe patients and 10 house-hold controls (two being full-time carers). Of these, additional faecal samples were provided by seven patients and five house-hold controls.

During 2015 faecal samples were obtained from twenty-five mild/moderate severity ME/CFS patients recruited from the Chronic Fatigue Service (CFS) at the Epsom & St Helier NHS Foundation Trust University Hospital, Carshalton, UK.

2.2 Study Participants

All patients were registered at the St. Helier CFS service under direct supervision of Dr Amolak Bansal, Consultant Immunologist and Director of the CFS service. This has over more than 10 years registered more than 7000 patients enabling it to establish a substantial clinical history and clinical definition of ME/CFS leading to the development of a 13-point scoring system (figure 1.2.1) based on the most frequent symptoms of ME/CFS (Bansal, 2016) and an absolute requirement for PEM symptom, which scores a maximum of 3 points.

Since 2008 over 2000 patients have been diagnosed using this system and it has remained a robust and rigorous in that during the past decade with no other explanations for fatigue being forthcoming in any patients diagnosed with ME/CFS (Bansal, 2016). Common symptoms in the vast majority (>90%) of patients within this service includes aching muscles and muscles weakness, stress aggravated fatigue, impaired concentration and non-restorative sleep (Bansal, 2016). Additional symptoms include an increased respiratory rate with 70% of moderate to severe and very severe patients presenting with persistent cold hands and feet (Bansal, 2016).
Table 2.2.1 Adapting Fukuda, CCC and ICC case definitions into a 13-point scoring system used by Epsom and St Helier CFS service List of symptoms and respective scores to characterise CFS/ME.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delayed prolonged post-exertion malaise after increases in physical, mental and emotional activity</td>
<td>3</td>
</tr>
<tr>
<td>Non-restorative sleep with frequent difficult initiating and/or maintaining sleep</td>
<td>2</td>
</tr>
<tr>
<td>Impaired concentration that is reduced further by external stimuli</td>
<td>1</td>
</tr>
<tr>
<td>Reduced short term memory with word finding difficulty</td>
<td>1</td>
</tr>
<tr>
<td>New onset headaches (&gt;2/mth and different in character from previous headaches)</td>
<td>1</td>
</tr>
<tr>
<td>Sore throat with cervical tenderness/recurrent flu-like episodes</td>
<td>1</td>
</tr>
<tr>
<td>Arthralgia affecting several joints with stiffness &gt; 1 hr but no swelling</td>
<td>1</td>
</tr>
<tr>
<td>Myalgia affecting multiple groups and exacerbated by mild exertion</td>
<td>1</td>
</tr>
<tr>
<td>Postural instability feeling unstable on standing or sitting</td>
<td>1</td>
</tr>
<tr>
<td>Hypersensitivity to sounds and lights (smells and to a lesser degree taste also)</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Inclusion criteria**

Patients diagnosed with ME/CFS must fulfil the Canadian, International Consensus and Fukada criteria to be part of the St. Helier CFS service. The selection of patients from this service for inclusion in this study were identified by Dr Bansal as described above (Bansal, 2016) with symptoms persisting for a minimum 50% of any period (Jason et al., 2014). Patients must also score a minimum of 8 using this system. The results of previous clinical investigations including blood tests were used to exclude other common causes of persistent tiredness, including psychiatric illness. These tests include full blood counts, levels of C-Reactive Protein (CRP), Erythrocyte Sedimentation Rate (ESR), tests for renal, hepatic (LFT) and thyroid (TFT) function, presence of anti-nuclear antibodies (ANA) to exclude systemic lupus erythematosus (SLE), and serum immunoglobulin levels and gluten sensitivity tested. The patient’s clinical and psychiatric history were also examined to identify potential causes for fatigue. The Hospital Anxiety Depression Scale (HADS) was used to assess any underlying depression and anxiety. The Chalder Fatigue Scale and additional fatigue scale are used routinely to assess the degree of fatigue.
- **Exclusion criteria**

Antibiotic usage 4 weeks prior to enrolment was the only major exclusion criteria with patients given the opportunity to be recruited to the study after completing their antibiotic treatment and after recommendation by Dr Bansal. The other specific exclusion criteria was a HADS score of greater than 7. Anxiety and depression are known to affect the immune system causing stress and disturbances in sleep. Nonetheless, given the chronic state of this illness a degree of depression and anxiety, and stress, is likely to feature in all patients but is distinct from major depressive symptoms including guilt and low motivation. Probiotic consumption was not an exclusionary criterion as this would have restricted patient recruitment.

- **Disease severity**

Patients were grouped based on the severity of their ME/CFS defined by the St. Helier CFS service. Mild/moderate patients were distinguished from severe (house/bed-bound) patients by their ability to attend to repeat hospital visits. This is reflected by descriptions of daily living (ADL) activities used by the service (table 2.2.2). Patients beyond the level of moderate severity cannot or rarely leave the house and are defined as severe in this study.

<table>
<thead>
<tr>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
<th>Very Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Still working, mobile,</td>
<td>Not working, sleeping in daytime.</td>
<td>House-bound, (rarely leaves house) with</td>
<td>Bed-bound, light and noise sensitivities.</td>
</tr>
<tr>
<td>reduction in family and</td>
<td>Reduced mobility, but can leave</td>
<td>severe worsening of symptoms under</td>
<td>Requires someone else to wash and feed them</td>
</tr>
<tr>
<td>leisure activities</td>
<td>the house</td>
<td>physical and mental exertion</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.2.2 Definitions of Activities of Daily Living (ADL) determining the level of severity of symptoms in ME/CFS patients

- **Eligibility of House-Hold Controls (HHC)**

With the exception of 2 out of 10 HHCs, who were full-time carers of the patient, all these individuals were family relatives of each respective severe ME/CFS patient living in the same house-hold. These participants were recruited on the basis of their ‘apparent’ healthy status and could not be clinically assessed, or medical records obtained prior to their inclusion in the study. However, HHCs were advised not to participate with any known medical or psychiatric history, particularly associated with gastrointestinal symptoms.
2.2 Heatmap of location of patient home visits 2016-2017 using Google Maps. A total of 17 home visits were completed to severe, house-bound ME/CFS patients registered at the CFS service in Epsom and St Helier, Surrey.

2.3 Research Ethics Approval

The original study proposal was reviewed by the University of East Anglia Faculty of Medicine and Health Sciences (FMH) Research Ethics Committee in 2014 and subsequently approved (reference FMH20142015-28). This approval allowed for the inclusion of faecal and blood samples collected from patients within the Epsom and St Helier CFS Service using the Norwich Biorepository, approved from the Cambridge East Committee of the National Research Ethics Service (NRES). Copies of approval letters from the committee and the research and development department are provided in supplementary figures 2.1 and 2.2.

The original research proposal included recruitment to assess the intestinal permeability of 140 ME/CFS patients including 35 mild/moderate, 35 patients defined as severe, 35 controls, and 35 ME/CFS with specific GI symptoms. It became apparent that this target was ambitious and could not be completed in the time allowed and it was later revised to focus exclusively on home visits severe patients.
- **Informed consent**

Patient information sheets containing information about the study were provided to patients upon request at the St. Helier CFS service or discussed in routine consultation with Dr Bansal (see appendix). Severe patients were informed of the study by telephone consultation with Dr Bansal who forwarded the information and advised patients interested in participating to contacted myself using email or the study dedicated telephone number. Patients expressing an interest in participating were mailed study documents in advance of any home visit and advised to contact myself via email or telephone to discuss the study further.

- **Inclusion of House-Hold Controls (HHCs)**

The inclusion of a same household control was not an absolute study inclusion criteria in order to enable severe, house-bound patients to participate in this research. Prospective HHCs were approached by the patients themselves before contacting myself to discuss the research and provided with a stool samples kit.

- **Ethical considerations**

The study’s ethical approval did not allow any data collection such as the use of questionnaires for assessing level of functional GI disorders or clinical history to be obtained. As a researcher, it was not possible to conduct a physical examination of the patient to ascertain parameters such as an individual response to painful stimuli or sensitivity to light and sound. There were also several occasions where it was not physically possible to obtain a blood sample for patients. ME/CFS patients can exhibit collapsed or inaccessible veins. In other instances, blood samples could not be acquired without causing distress to the patient and therefore it was deemed unethical to obtain these samples. For example, in severe patients with extreme light sensitivity or with heightened sensitivity to touch and pain stimuli.

### 2.4 Sample collection & Storage

Samples were collected and stored within 1-6 h at -80°C at St Helier prior to transfer to the Norwich Biorepository at a later date. All samples were processed and analysed together.
- **Mild/moderate ME/CFS patients**

Twenty-five mild/moderate ME/CFS patients were recruited in 2015 from St Helier CFS service.

- **Home visits**

A minimum of 2 visits were carried out between 2016-2017 to each of the 17 severe patients, first to consent patient and provide them with the stool sampling kit and instructions for collection (see appendix).

- **Stool sample**

All study participants were instructed to collect their intact faecal sample in a FECOTAINER® (AT Medical B.V., Enschede, Netherlands), figure 2.2.2 no later than 24 hours prior to a scheduled home visit. Samples were stored at 4°C prior to collection from the patient home and transported on ice to St. Helier hospital. Participants donating stool in 2017 collections were also provided with an AnaeroGen™ Compact anaerobic sachet (Cat No. AN0010, Oxoid Ltd., United Kingdom) to activate as soon as they produced their sample to eliminate environmental oxygen conditions and promoting the survival of obligate anaerobic microbes. On return to the hospital, samples were manually homogenised with a sterile autoclaved metal spatula, aliquoted and either processed immediately or stored at -80°C for future use.

![Figure 2.2.2 FECOTAINER® collection device used to collect stool sample. (Reproduced image accessed via www.fecotainer.eu on 12th September 2018).](image-url)
Blood sample

Where possible patients and household controls (HHC) were also bled using S Monovette® Z-Gel for serum collection (Cat No. 02.1388.001, Sarstedt AG & Co., Nümbrecht, Germany). For home visits, it was not always possible to attempt to collect blood from severe patients and HHCs due to unavailability of a phlebotomist to accompany myself.
Chapter Three

3 Characterising the composition of the gut microbiome associated with severity of ME/CFS
3.1.1 Introduction

There is an urgent need to identify validated biomarkers for the diagnosis of ME/CFS. Altered intestinal microbiota composition (dysbiosis) has emerged as a feature of neuro- and immuno-inflammatory diseases, suggesting a causal relationship (Round & Mazmanian, 2009). Gastrointestinal inflammation is associated with abdominal pain and altered bowel movements (Neufeld, 2013). Stress, anxiety and depression are well known psychological disorders, which frequently make GI symptoms worse, particularly in IBS. Intestinal dysbiosis may be a driver of altered gut-brain signalling and pain perception. Thus, IBS is described as a functional disorder, and like ME/CFS appears absent of physical, structural or biochemical abnormalities and is instead identified by characteristic symptoms (Häuser et al., 2012). IBS-like symptoms are common among ME/CFS patients with as many as 92% of all ME/CFS having IBS at some time during the development of ME/CFS (Lakhan & Kirchgessner, 2010). The mechanism for IBS-related abnormal pain and discomfort is thought to be driven by inflammatory derived immune signals, such as cytokines and release of prostaglandins in response to an infection and through direct bacterial activation of the nervous system.

Chui and colleagues have shown that infection by S. aureus activates nociceptors causing mechanical and thermal hyperalgesia in mice, the severity of which correlated with bacterial load (Chiu et al., 2013). Furthermore, LPS stimulation of afferent sensory neurons require TRPA1 ion channel mediated calcium influx and release of neuropeptides which enhance local inflammation and hyperalgesia (Meseguer et al., 2014). Although sensory neurons express the receptor for LPS, TLR4, the sensory responses to LPS in tlr4-deficient mice did not differ (Meseguer et al., 2014). Visceral pain perception has become a target for pharmacological intervention using drugs to block or alter gut-brain signalling and neuroimmune pathways to alleviate symptoms (Farzaei et al., 2016). Increased intestinal permeability in a subset of IBS patients with diarrhoea symptoms enhances severity and hypersensitivity to visceral stimuli (Zhou et al., 2009). Increased bacterial translocation would therefore facilitate direct contact with afferent sensory neurons, which further stimulate visceral hypersensitivity through engagement of bacterial antigens. Given the role of intestinal bacteria in activating nociceptors, management of visceral hypersensitivity in IBS and other disorders with GI symptoms may benefit from targeting the intestinal microbiota as well as the (“leaky”) intestinal epithelial barrier.
The intestinal microbiota is significant in the development of post-infectious IBS in mice where probiotic preparation of *Bifidobacterium* and *Lactobacillus* strains ameliorate IP and inflammatory cytokine production, reducing intestinal inflammation and alleviating hypersensitivity (Wang et al., 2014). An overlapping profile of plasma cytokines has been reported in IBS and ME/CFS driven by IL-6, IL-8 IL-1β and TNF (Scully et al., 2010). Systemic circulation of these cytokines to the brain induces sickness behaviour causing symptoms of extreme malaise and severe fatigue (Dantzer et al., 2008).

- **Dysbiosis linked to low-grade chronic inflammation**

Intestinal inflammation and bacterial translocation can lead to systemic infection and low-grade chronic inflammation in ME/CFS (Lakhan & Kirchgessner, 2010). Changes in the intestinal microbiota in metabolic disorders are associated with higher plasma concentrations of LPS and development of endotoxemia (Cani et al., 2008). It is well documented that the relative abundance of *Firmicutes* exceeds *Bacteroidetes* in metabolic disorders. However, the increased prevalence of Proteobacteria is a potential microbial signature for inflammatory-dependent intestinal and extra-intestinal diseases (Rizzatti et al., 2017). In addition, the aging microbiota is represented by an increase in Proteobacteria and decrease in *Bifidobacteria* and may alter the balance between anti- and pro-inflammatory responses of Treg/Th17 immune cells in the intestine (Biagi et al., 2010).

*Proteobacteria* are Gram-negative and a potential source of LPS which could induce endotoxemia in the development of metabolic disorders. Beyond metabolic disorders, a more recent study has shown that Parkinson’s Disease patients have increased abundance of *Proteobacteria*, but it is unclear how dysbiosis enhances progression and impairment of motor control and decline in neurocognitive functioning. A possibility is that increased intestinal permeability may expose Proteobacteria to the internal environment. Indeed, faecal markers for intestinal inflammation and intestinal permeability, (including zonulin overexpression) are significantly elevated in a cohort of PD patients compared to age-matched healthy controls (Schwiertz et al., 2018). Moreover, intestinal biopsies taken from 9 PD patients showed a positive correlation between intestinal α-synuclein aggregation and serum endotoxin in early PD in response to increase exposure to intestinal bacteria (Forsyth et al., 2011). Whilst these pathological features do not distinguish PD patients from other (neuro)-inflammatory disorders associated with GI barrier dysfunction, it does lead to speculation of a common cause for generating low-grade inflammation and
increased physiologic input from the microbiota in the activation innate immune receptors such as TLR4 and nociceptors in afferent sensory neurons behind a compromised intestinal barrier.

- **Microbiota-derived intestinal metabolites**

It is not known if or how intestinal dysbiosis influences the pathogenesis of ME/CFS. Many of the symptoms of ME/CFS, severe fatigue, malaise, unrefreshing sleep, cognitive impairment, memory deficits, autonomic disturbances including blood pressure changes, orthostatic intolerance, overlap with neurodegenerative and neuropsychiatric disorders, as discussed above. Significantly, an altered microbiota will impact on the profile of microbial products, particularly those with the capacity to act as neurotransmitters and modulators of inflammation. For example, secondary bile acid metabolism (see next chapter) is regulated by certain intestinal bacteria with specialised enzymes (bile salt hydrolases, BSH) modifying structural and chemical changes to primary bile acids produced by the liver. These secondary bile acids are lipophilic and can be absorbed across the intestinal barrier, interacting with cells beyond the intestinal epithelial barrier via TGR5 which has emerged as a key receptor in the mediation of bile acid neural-humoral signalling with an impact on energy homeostasis and inflammation (Bunnett, 2014).

Altered microbiota in PD patients has been associated with alterations in the proportions of SCFAs (Unger et al., 2016). SCFA are significant metabolites produced by the microbiota, the most abundant of which are acetate, propionate and butyrate that are an important source of energy for intestinal epithelial cells. Understanding how the intestinal microbiota changes in disease states will help understand the impact dysbiosis may have on disease pathogenesis. For instance, *Bacteroides thetaiotaomicron* is a major producer of acetate and propionate. *Clostridium tyrobutyricum* produces high levels of butyrate that inhibits HDAC activity and upregulation of TJs proteins such as zonulin, which if dissociated from the TJ complex leads to increased serum levels which is a useful marker for altered intestinal permeability (Bordin et al., 2004; Sapone et al., 2006). However, PD patients have an overall reduction in faecal SCFAs (Unger et al., 2016). In PD patients, members of the phyla Bacteroidetes which includes the family *Prevotellaceae* were reduced with increased abundance of Enterobacteriaceae which includes Proteobacteria (Unger et al., 2016). Significantly ASO mice, engineered to overexpress a-synuclein are genetically susceptible to PD, but do not develop the PD-like phenotype if maintained under germfree conditions or
are treated with antibiotics to eliminate gut microbes. Conventionalisation of these germfree or antibiotic-treated mice restored the PD phenotype, with the transplantation of faecal microbiota from PD patients greatly exacerbating the PD phenotype compared to animals conventionalised with faecal microbiotas of healthy individuals (Sampson et al., 2016). Moreover, SCFAs derived stool samples from PD patients were sufficient alone to enhance motor dysfunction and activate microglial in GF ASO mice (Sampson et al., 2016).

Defects in Blood Brain Barrier (BBB) permeability in the offspring from germfree mice have been observed after intravenous administration of Evans blue dye which accumulates in the brain parenchyma (Al-Asmakh & Hedin, 2015). However, the prior introduction of SCFAs producers, *C. tryrobutyricum* (butyrate) and *B. thetataiotaomicron* (acetate/propionate), enhanced BBB integrity via unknown effects on TJ complexes (Braniste et al., 2014). SCFAs activate the GPR41 and GPR43 G-protein coupled receptors, with physiological effects including of reducing GI transit, energy balance, and anti-inflammatory signals (Al-Asmakh & Hedin, 2015). Gpr43 deficient mice develop colitis, arthritis and asthma (Maslowski et al., 2009). Moreover, butyrate has a neuroprotective effect limiting neuronal damage and prevents α-synuclein accumulation by enhancing autophagy (Liu et al., 2017).

Although the role of SCFAs in the pathophysiology of inflammatory diseases is unclear, associated intestinal dysbiosis appears to have a role in driving pathology in various neurodegenerative diseases (Mulak, 2018). α-synuclein aggregates form in the enteric nervous system many years prior to the onset of PD which raises the question, do neurodegenerative disease begin in the intestine? Mouse models demonstrate that the intestinal microbes contribute to driving neuropathology, further highlighting the need to understand how microbial compositional changes impact microbial metabolite production, for example SCFAs, that may contribute to pathogenesis.

Unlike PD, RR, MS, NMO introduced earlier in chapter 1, there is no animal model for ME/CFS. The observations that the intestinal microbiota can have a wide range of physiology input in metabolic disorders, to neuro-immune and neurodegenerating disorders with similar symptoms including severe fatigue, cognitive deficits, visceral sensitivity and GI disturbances, warrants investigation into ME/CFS to establish potential aetiological causes.
- Treating intestinal dysbiosis

Faecal Microbiota Transplant (FMT) is the practice of transferring a healthy donor stool sample into a patient in an attempt to treat intestinal dysbiosis by restoring a diverse intestinal microbiota (Borody & Khoruts, 2012). In clinical practice it has proven to be very effective in the treatment of recalcitrant Clostridium difficile infection (CDI), which arises as a result of antibiotic treatment leading to the loss of many members of the microbiota, leading to germination of C. difficile spores and bacterial overgrowth.

Bacteriotherapy involving trans-colonoscopic infusion of 13 anaerobic enterobacteria has been trialled in 60 ME/CFS patients. Amongst the ME/CFS patients, 52 had IBS comorbidity. Just over half of these patients responded to an initial infusion, of which 88% no longer experienced GI symptoms. Ten patients that did not respond with significant improvements in refreshing sleep, lethargy, fatigue, did see some improvement in their GI symptoms. Although the initial success rate was encouraging, this trial did not adequately follow up the long term benefit this treatment in these patients. Twelve patients that were followed up of which 7 remained cured of CFS which the other 5 describing relapsing CFS symptoms between 18 months to 3 year following bacteriotherapy (Borody et al., 2012).

3.1.2. Profiling the intestinal microbiota

The relatively few studies that have profiled the composition of intestinal bacteria in ME/CFS are summarised in Table 2.2. It must be appreciated that these studies rely on a small number of patients defined by the use of the Fukuda (1994) criteria for CFS. Moreover, these studies have varied in their experimental approach and according to the technical capabilities at the time. Prior to recent advances in DNA sequencing technology, traditional culture-based techniques were used to study the human intestinal microbiota. In fact, the concept that the composition of the microbiota changes in health is not new and was first reported in 1973 using culture techniques (Tannock & Savage, 1974). However, in the past decade improvements and cost reductions in sequencing technology have made it possible to profile the bacterial composition across different microbiotas on and inside the human body. This is evidenced by the rapidly increasing number of publications shown as year on year increases in figure 3.1.1, as the technology has improved and reduced in cost.
The introduction of high-throughput (HTP) next-generation sequencing (NGS) technology has allowed researchers to exploit the highly conserved bacterial 16S gene for their reliable identification without the necessity of isolating and culturing them, on a massively parallel scale. Sequenced-based molecular identification of bacteria entails a choice of hypervariable regions of 16S rRNA gene using universal primers flanking these regions to amplify the DNA prior to high-throughput next generation sequencing. This generates sequences that are typically 250 base-pairs long, referred to as reads. Each read can then be processed and collectively analysed using bioinformatics software such as Qiime, to assign each of the reads to their operational taxonomic units (OTUs) (D’Amore et al., 2016). The software utilises reference databases to identify each OTU.

![Figure 3.1.1](https://www.researchgate.net/Bibliometric-parameters-of-microbiome-studies-Representations-were-limited-to-the-four_fig1_320728834) [accessed 10 May, 2018]

**Figure 3.1.1** The rise in the number of microbiome-based studies between 2005 – 2016

**Limitations of 16S gene-based sequencing studies**

16S rDNA gene amplicon sequencing has become the most widely used method of NGS to profile of the human gut microbiota. However, its domain is restricted to bacteria and archaea and it is limited to profiling bacteria at the genus level and therefore it is not possible to discriminate bacteria at a species or strain level (Jovel et al., 2016; Ranjan et al., 2016). Furthermore, the choice of 16S hypervariable region and primers introduce a bias for particular bacteria taxonomic groups (Ghyselinck et al., 2013).
- **Faecal DNA extraction**

Faecal samples are the most complex and diverse microbiome samples that can be isolated from on or inside the human body and therefore obtaining a good quality and high yield of DNA from all faecal bacteria can be challenging when studying such a diverse and complex community of microbes which have varying cell membrane and cell wall strengths encapsulating their DNA context. To that end, commercially available DNA extraction kits have been shown to vary in efficiency and quality of DNA extraction. A recent study compared 6 of these kits, including the MP Biomedicals FastDNA® Spin kit for soil used in this study (Turlej-Rogacka et al., 2017). For 16S-based studies all kits produced adequate DNA for PCR amplification, sufficient to provide a product which could be sequenced. However, the kits did vary significantly in obtained DNA concentration and purity using (A\textsubscript{260}/A\textsubscript{280}) ratio (Turlej-Rogacka et al., 2017). For shotgun metagenomic studies high-molecular weight genomic DNA will maximise the quality of output for downstream applications (Bag et al., 2016). However, total recovery of genomic DNA is a significant challenge for commercially available kits using minimal amounts (~250 mg) of faecal material and naturally these methods can have different biases towards the efficiency of DNA extraction from different bacterial species (Brooks et al., 2015). Accurately quantifying the concentration DNA in your sample can depend on the method of choice with more than 10-fold higher DNA concentrations using NanoDrop versus Qubit (Turlej-Rogacka et al., 2017).

- **Evidence of intestinal dysbiosis in ME/CFS using culture-based techniques**

Before the advent of NGS technology, investigators relied on traditional microbiology and bacterial cultures to grow and identified individual isolated bacteria. During an early investigation by Sheedy and colleagues, they likened the neurological impairments of ME/CFS to another condition where lactic acid producing bacteria are responsible for severe cognitive dysfunction. D-lactic acidosis is a metabolic disorder, which usually manifests in patients as a complication of having short bowel syndrome (SBS). SBS describes the inadequate absorption of nutrients by the small intestine, diarrhoea and dehydration enabling colonic bacteria to ferment carbohydrates causing excess D-lactic acid to accumulate in the blood. The effects of D-lactic acid on the CNS are apparent from other studies where it causes neurological impairments such as confusion, slurred speech, muscle weakness and inability to think. Faecal bacteria were grown in selective cultures from 108 CFS patients and 177 controls to generate viable counts (Sheedy et al., 2009). The
number of D-lactic acid producing Enterococcus and Streptococcus species were significantly higher in patients than controls ($p=0.01$) (Sheedy et al., 2009). The possible cause or mechanism for the accumulation of these bacteria is unclear, though their presence will lower the intestinal pH and may explain intestinal permeability increases associated with systemic endotoxemia (Henriksson et al., 1988; Maes & Maes, 2009).

Another report in the same year, outlines the effect of a 4-week programme of administering twice daily ($\times 2$) probiotics containing $10^8$ CFU/ml of *Lactobacillus* F19, *L. acidophilus* NCFB 1748 and *B. lactis* Bb12 in 15 CFS patients with high fatigue and disability scores (Sullivan et al., 2009). During the four-week follow up, 6 patients reported significant improvement in cognitive function, but not in fatigues or physical activity scores compared to pre-treatment, with no significant changes found in their intestinal microbiota PCR-based methods for identification *Lactobacilli* and CFU counts (Sullivan et al., 2009). The authors remarked on the high variability in patient responses demonstrating the heterogeneity of the study group, moreover, the benefits were on a case by case basis, with those benefitting reporting sustainable improvement to cognitive function up to 70 days later (Sullivan et al., 2009).

The depression and anxiety characteristics in 39 CFS were studied in a separate cohort following an 8 week intervention consuming a daily dose of $2.4 \times 10^{10}$ CFU of *L. casei* strain Shirota (LcS) spread across 3 smaller doses of $8 \times 10^9$ CFU after each meal (Rao et al., 2009). Overall, a significant rise in *Lactobacillus* and *Bifidobacteria* spp. was seen in patients receiving the probiotic treatment ($n=19$), as well as a reduction in levels of anxiety, versus those patients ($n=16$) who have received the placebo control (Rao et al., 2009).

16S rDNA-targeted amplicon sequencing in ME/CFS

Fremont and colleagues published the first ME/CFS study using HT 454 pyrosequencing performed on 16S V5-V6 region generating reads of at least 240 bp long (Fremont et al., 2013). On average, 6000-7000 reads were obtained for each patient/control of which 98% could be assigned to specific phyla, and 129 different bacterial genera identified (Fremont et al., 2013). This ME/CFS cohort included patients from Norway and Belgium with respective healthy controls from the same countries. The majority of patients were female and diagnosed by Fukuda criteria. Dysbiosis was more significant in the Norwegian patients with a reduction in firmicutes: *Roseburia, Syntrophococcus, Holdmania, Dialister* and a $x20$
increase in Lactonifactor, and a 3.8 increases in Bacteroidetes genus, Alistipes (Fremont et al., 2013). Interestingly reduction of Roseburia, a Gram-positive butyrate producer, is reported to be a defining characteristic of dysbiosis in ulcerative colitis patients, and thus consistent with intestinal inflammation (Machiels et al., 2014). Moreover, Alistipes (and Enterobacteriaceae) were over-represented in patients with depression (Jiang et al., 2015). In contrast, Belgian patients were less distinct from their respective healthy controls, except for x45 increase in Lactonifactor in patients thus remarkably similar to the 20-fold increase of this genera in Norwegian patients (Fremont et al., 2013).

Since this 2013 study, Roche® 454 sequencing has been replaced by the Illumina® MiSeq platform. The fundamental difference is an ability of 454 sequencing to achieve longer reads (up to 700 bp with 99.9% accuracy and 0.7Gb/ran) compared on average with Illumina® NGS, between 150-300 bp (L. Liu et al., 2012). However, the Illumina® MiSeq v2 platform offers 2 x 250 bp (paired-end, PE) reads yielding a total coverage of 44-50 million reads equivalent to 7.5-8.5 Gb of data per run (Goodwin et al., 2016). Thus, Illumina® provides much more sequencing depth and number of reads than earlier Roche® 454, as well as a more rapid turnaround time of as little as 4 h making it more cost-effective. It can now produce up to 15 Gb output making it the most widely used NGS platform to date (Ravi et al., 2018).

High-throughput is further achieved by multiplexing and pooling samples in an individual sequencing run; allowing a large number of samples, up to 384, to be analysed simultaneously (Illumina, 2014). During DNA library preparation of each samples, specialised DNA adaptors and bar codes (or sequencing indexes) are hybridised to each DNA fragment. Each read sequenced is identified to a particular library representing a unique sample. For example, the Nextera XT library preparation kit manufactured by Illumina® provides 40 unique indexes; two are used in unique combination per DNA fragment enabling up to 384 samples to be analysed in a single sequencing run (Illumina, 2014).

A recent application of NGS Illumina® MiSeq sequencing performed in ME/CFS compared the 16S rDNA V4 sequences from faecal samples of 48 patients compared with 39 healthy controls (Giloteaux et al., 2016). Most of these patients (n=34) reported GI symptoms including constipation, diarrhoea, and abdominal pain/sensitivity (Giloteaux et al., 2016). In
total, 8,534,117 reads were obtained with an average of 98,093 reads per sample (Giloteaux et al., 2016). The primary finding was a reduction of bacterial diversity in ME/CFS patients, \((P=0.004, W=1268; \text{figure 2.2})\). To define the diversity of a sample, sufficient number of sequences must be obtained from each sample to identify all present bacterial taxa. The rarefaction curve in figure 2.2 shows as the number of reads increase the number of identifiable taxa increases up to a plateau. Beyond this point despite increasing the vast number of additional reads, very few or no additional taxa will be identified (Hanson & Giloteaux, 2017). However, too few reads (below 5000, green area) will cause underestimation of bacterial diversity. This puts into perspective the relatively low number of reads achieved by Fremont and colleagues in the earlier study, where 6000-7000 reads per sample did not distinguish \(\alpha\)-diversity within ME/CFS samples compared to controls using the same indices of diversity within a sample (Shannon H evenness, Chaos1 and PD richness).

**Figure 3.1.2** Sequence-based rarefaction curve of Phylogenetic diversity across ME/CFS and Control samples using 16S targeted rRNA sequencing. Based on the same number of sequences per sample, the diversity of assigned bacterial taxa (observed species) is higher in controls compared with ME/CFS patients. Figure reproduced from (Hanson & Giloteaux, 2017)).

Giloteaux et al. reported a reduction in *Bifidobacterium* and *Faecalibacterium* species in ME/CFS patients (figure 2.3) (Hanson & Giloteaux, 2017). Individually the genera in fig. 2.3 represent only 1% of the gut microbiome. At the phylum level, firmicutes were reduced in patients at 35% relative abundance (RA) versus 46% in controls with a relative increase in the abundance of proteobacteria, belonging to the family *Enterobacteriaceae*; 6% in ME/CFS versus 3% in controls (Giloteaux et al., 2016).
Figure 3.1.3 Comparison of relative abundances of bacterial genera between ME/CFS patients and Healthy Controls. Shows relative abundance on a log10 scale. Figure reproduced from (Hanson & Giloteaux, 2017).

The majority of 40 OTUs found to be different in ME/CFS were within Firmicutes; including Ruminococcaceae family members Oscillospira spp, F. prausnitzii, Ruminococcus; and Lachnospiraceae such as Coprococcus spp. (Giloteaux et al., 2016). Although butyrate production was not measured in this cohort, a reduction in butyrate producers and lactic acid promoting bacteria (beneficial to barrier function) is similar to individuals with IBD and IBS and will influence the production of PICs and consequently the risk of immune activation and increases in intestinal permeability demonstrated by higher levels of LPS, sCD14 and LBP in the plasma of ME/CFS patients (Giloteaux et al., 2016).

- **Whole-Genome ‘Shot-gun’ (WGS) sequencing**

Whole genome sequencing, WGS (also called Shotgun metagenomics) is unrestricted to specific target amplicons, like 16S, and is able to resolve the microbiota beyond the genus level, including sequencing information derived from other members of the microbiota such as fungi and viruses. WGS can determine low abundance species as well as functional capacity of the sample microbiome based on the mapping of individual genes (Ranjan et al., 2016). From this, the potential metabolic pathways that enable the microbiota to function, and more critically identify pathways that are disrupted in disease can be deduced. This in combination with other ‘omics technologies, particularly metabolomics (in the next chapter) may provide a more informative description of intestinal dysbiosis in ME/CFS.
patients according to the metabolic function of their intestinal microbiota rather than just changes in composition.

The first WGS-based study was performed in ME/CFS sub-grouped according to the presence of IBS symptoms. Out of the 50 ME/CFS patients recruited, 21 had been diagnosed with IBS with no cases of IBS in 50 healthy controls. Shotgun metagenomic sequence data collected from this cohort is fundamentally different to earlier ME/CFS microbiome studies in that it will not be subject to amplification biases of 16S based sequences; furthermore species-level assignments are possible using MetaPhlan taxonomic assignment, in addition to identification of biological pathways. Increases in unclassified *Alistipes* and *Faecalibacterium* emerged as microbial markers of ME/CFS with IBS, whilst robust statistical testing agreed decreased RA of *B. vulgatus* defined ME/CFS without IBS (Nagy-Szakal et al., 2017). Differences with bacterial species in ME/CFS were driven by IBS co-morbidity including a reduction in RA of *Faecalibacterium* species, *R. obeum*, *E. hallii*, and *C. comes* (Nagy-Szakal et al., 2017). Table 2.1 lists the bacterial species taken from the Nagy-Szakal et al. (2017) study that are the strongest predictors for subgroups of ME/CFS with/without IBS.

<table>
<thead>
<tr>
<th>“ME/CFS”</th>
<th>“ME/CFS + IBS”</th>
<th>“ME/CFS – IBS”</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. catus</td>
<td>Faecalibacterium cf.</td>
<td>Bacteroides caccae</td>
</tr>
<tr>
<td>P. copillosus</td>
<td>Bacteroides vulgatus (decreased RA distinguishes from ME/CFS – IBS, on all statistical tests)</td>
<td>P. capillosus</td>
</tr>
<tr>
<td>D. formicigenerans</td>
<td></td>
<td>P. distasonis</td>
</tr>
<tr>
<td>F. prausnitzii</td>
<td></td>
<td>Bacteroides fragilis</td>
</tr>
<tr>
<td>C. asparagiforme</td>
<td></td>
<td>Prevotella buccalis</td>
</tr>
<tr>
<td>Sutterella wadsworthensis</td>
<td></td>
<td>Bacteroides xylanisolvens</td>
</tr>
<tr>
<td>A. putredinis</td>
<td></td>
<td>D. formicigenerans</td>
</tr>
<tr>
<td>Anaerotruncus colihominis</td>
<td></td>
<td>C. asparagiforme</td>
</tr>
</tbody>
</table>

Table 3.1.1 Lists of bacterial species extracted from text of Nagy-Szakal paper, relevant to their predictive model to distinguish ME/CFS subgroups from controls

Interestingly, there were significant correlations between certain bacterial species and symptom severity scores using the SF-36 and Multidimensional Fatigue Inventory (MFI). Decreased RA of *Faecalibacterium* spp, *R. obeum*, *E. hallii*, *C. comes* and *Coprococcus* spp were associated with IBS-like hypersensitivity, bloating and abdominal discomfort (Nagy-Szakal et al., 2017).
**Summary**

Both Giloteaux et al. (2016) and Nagy-Szakal et al. (2017) have used different methods to produce lists of bacteria at various taxonomic levels (partly on whether the data is 16S or shotgun) which are putatively overrepresented in either patients or controls. Both studies assess the size of the effect that each taxon has on the difference between groups, using the same method of Linear Discriminant analysis Effect Size, (LEfSE). Significant differences were found in 40 OTUs (out of ~1,330 OTUs per sample), but only appear to name corresponding species for some of them despite this being 16S data. Moreover, even if all taxa were distributed randomly between patients and controls, you are likely to get a small number, which appear, by chance, markedly more abundant in one group compared to the other. To that end, if this study were to be repeated it would be surprising if all of these genera listed were found to be significantly more/less abundant in ME/CFS again because of major environmental factors, such as diet known to contribute to population-level variation of the microbiota on a daily basis. Figure 2.4 is taken from Fig. S2 in this paper, to highlight the difficulty in equating these taxa to differences for separation of ME/CFS from Controls in these plots.

The 2017 study additionally presents functional pathways overrepresented in ME/CFS with or without IBS compared with controls. In their statistical analyses, “ME/CFS” is referred distinctly from “ME/CFS + IBS”, and “ME/CFS – IBS”, and “controls” (no ME/CFS, no IBS), suggesting the “ME/CFS” is a supergroup being compared with subsets of itself. Critically this paper lacks an IBS-only disease control group. Parts of the methods to this work suffer ambiguity, particularly with respect to the tools used to create the topological data analysis (TDA) and machine learning approach to identify differences across groups; the lack of detail here does not make this easily reproducible. The machine learning approach was successful in the Giloteaux et al. (2016) study as a way to see what combination of microbial taxa and various plasma markers could successfully predict whether a subject is a patient or control, using most of the data as a training set and then making predictions on the remaining samples. Finally, there is consistency between TDA, the rank-based test, the LEfSe, and features identified by machine learning for species belonging to *Faecalibacterium, Roseburia, Dorea, Coprococcus, Clostridium, Ruminococcus*, and *Coprobacillus* as significantly different in “ME/CFS” compared with “controls” (Nagy-Szakal et al., 2017).
Figure 3.1.4 Principal Coordinate Analysis (PCoA) plot of healthy controls versus ME/CFS based on 32223 sequences per sample using targeted 16S rRNA gene sequencing. 16S rRNA derived microbial community analysis reveals no difference in beta-diversity between patients and controls. Clustering distances calculated with weighted UniFrac (a) and unweighted UniFrac (B). Figure reproduced from (Giloteaux et al., 2016), supplementary figure S2.

- **Confounders of microbiome diversity**

The differences found between Norwegian and Belgium ME/CFS patients highlight the importance influences the environment, diet and genetic background have on the composition of the intestinal microbiota (Fremont et al., 2013). Most studies offer gender and age matching of healthy controls to their patients, with no consideration of the above factors. Cohousing mice is a routine and regular practice in studying the effects of the intestinal microbiota and to control for dietary influences. Interestingly a recent paper studying the enteric virome in IBD in humans demonstrates the importance of having house-hold controls to increase the power of detecting disease-associated changes. Then natural variability in intestinal bacteria and viruses in non-household controls and patients makes it more difficult to see such disease-specific alterations (Norman et al., 2015). It is also expected house-hold controls will more likely share a similar diet and will normally share a similar genetic background mother-daughter or father-son. In these circumstances age of course cannot be matched; however, researchers have to decide which factors to give the priority towards controlling and will depend upon individual study design and the hypothesis. So far, no study investigating the microbiome in ME/CFS has attempted to recruit house-hold controls.
Indeed, comparison of multiple studies in microbiome research is complicated by the fact that different researchers opt for different study designs, extraction methods, sequencing platforms and favour different bioinformatic tools to interpret the data (D’Amore et al., 2016). Nagy-Szakal et al. (2017) acknowledge that their work cannot be directly compared to the earlier 16S rDNA analyses but support intestinal dysbiosis in ME/CFS based on increases/decreases of the RA of specific bacterial species (table 2.1). However, they have made a first attempt to correlate specific symptoms and severity with patterns of dysbiosis in ME/CFS although their study design did not make severity a focus. Impact of severity included scores associated with emotional wellbeing, motivation, fatigue and pain, however the relatively small cohort make it difficult to predict ME/CFS severity using their microbiome data in this study.
<table>
<thead>
<tr>
<th>Study</th>
<th>Sequencing method</th>
<th>Recruitment criteria</th>
<th>Sample size</th>
<th>Platform</th>
<th>Av. number of reads</th>
<th>16S rRNA variable region</th>
<th>Significant Observations/Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fremont et al. (2013)</td>
<td>16S targeted amplicon</td>
<td>Fukuda (1994)</td>
<td>43 ME/CFS, 36 controls</td>
<td>454 FLX (Roche*)</td>
<td>6000-7000 per sample, min 240 b.p.</td>
<td>V5-V6</td>
<td>Up arrows denote increased relative abundance; down arrows denote reduction in relative abundance of bacterial taxa.</td>
</tr>
<tr>
<td>Lipkin et al. (2017)</td>
<td>Shotgun Metagenomic</td>
<td>Fukuda (1994)/Canadian (2003)</td>
<td>50 ME/CFS, 50 controls</td>
<td>Illumina® HiSeq 4000 2x100 bp</td>
<td>~35 million reads per sample</td>
<td>N/A</td>
<td>Positive plasma markers for increased intestinal permeability: LPS, LBP, sCD14</td>
</tr>
</tbody>
</table>

Table 3.1.2 Summary of microbiome studies performed in ME/CFS with relevant findings and overview of methods to determine these differences Up arrows denote increased relative abundance; down arrows denote reduction in relative abundance of bacterial taxa.
3.1.3 Aim and Objective

There is limited evidence to suggest ME/CFS is associated with an altered intestinal microbiota and increased permeability. It is not known how well these findings replicate in other patient cohorts or according to disease severity. Existing published ME/CFS research has made no attempt to stratify patients based on specific symptoms and severity. Often such studies are indirectly comparable due to lack of protocol standardisation and agreement on the best inclusion and exclusion criteria to recruit patients.

The aim for this first results chapter was two-fold. The first, to focus recruitment on patients who are house-bound with severe symptom severity, postulating that the severity of gut dysbiosis may be directly linked to extreme fatigue and neurological symptoms in these patients. The second, to compare house-bound patients with a house-hold control in order to:

- control for environmental factors known to cause population-level variations in microbiome data;
- use 16S targeted gene marker sequencing and whole genome “shotgun” metagenomic sequencing to assess for evidence of or any pattern of intestinal dysbiosis that may;
- support conclusion from existing metagenomics studies in ME/CFS, and;
- identify key bacterial species belonging to a novel “microbial signature” which may help define severe ME patients from those mild to moderately affected.

3.3.4 Hypothesis

Severe, house-bound ME/CFS patients have a distinct microbial signature for dysbiosis that is reflected by their profile of gut bacteria; the composition and reduction of diversity of which, separates them from house-matched healthy controls and when compared to existing metagenomics data from the general ME/CFS population.
3.2 Materials & Methods

3.2.1 Patients

For the work presented in this chapter, a total of 52 individuals (42 ME/CFS and 10 controls) were recruited and consented between 2015-2017 to provide faecal samples to this study. Of these ME/CFS patients, 17 were severe, house-bound and 25 mild/moderate. An additional faecal sample one year on was available in 2017 from 8 previous participants (4 severe ME matched to 4 house-hold controls), bringing the total to 60 faecal samples processed for microbial DNA extraction and sequencing across 16S and whole genome metagenomic platforms.

Prior to any home visits, mild/moderate ME patients were the first participants to be recruited and sequenced in 2015 using 16S rDNA V4 sequencing generating “Dataset A”. Home visits to severe patients were conducted in 2016 (“Dataset B”) and 2017 (“Dataset C”) with modifications made to stool sample collection method that have been used for mild/moderate patients (described below). All samples were initially stored at -80°C at St Helier Hospital, Carshalton, London. At the end of the study recruitment phase, all samples were packaged in dry ice containment and collected by an authorised courier for them to be deposited within the Norwich Biorepository. Samples were the accessible from the Biorepository to be used in experiments.

- Stool sampling kits

The original stool kit used for recruitment of mild/moderate patients included the following items: a Protocult™ collection device (Product #500 Ability Building Centre, Rochester, MN, USA), OMNIGene® GUT stool device (OMR-200, DNA Genotek, ON, Canada), x4 30 ml Universal tubes with spatulas, and zippered bags for packaging. Using this method patients took samples from their own stool and equally divided as much of the sample as possible across the four tubes. As per instructions on the package insert of the OMNIGene® (figure 3.1.1), patients were asked to transfer equivalent of a pea-sized amount of faeces into the yellow tube top and scrape horizontally. After replacing the purple cap, the device is shaken back and forth as hard as possible by hand, for a minimum of 30 seconds to allow mixing with the stabilising liquid.
Figure 3.2.1 Instructions for OMNIGene® GUT collection device used to collect mild/moderate ME/CFS samples in 2015. Patients collected their stool using the paper Protocult™ collection device (A), and then taking a ‘pea-sized’ spot sample from their stool transferred this to an OMIGene™ GUT® tube (B) and followed the visual instructions (1-4) as shown in this figure. The rest of the faecal sample was then divided equally across four 30 ml Universal tubes. Images obtained from: https://www.dnagenotek.com/us/products/collection-microbiome/omigene-gut/OMR-200.html [assessed 10 March 2019].
- Improvements to stool sample collection in 2017

In 2017 changes were made to improve faecal sample collection to facilitate entire stool sample collection for the purposes of homogenisation. This step was particularly necessary for preparation of faecal water samples, as spot sampling from different areas of the same stool sample has been shown to produce varying results (Gratton et al., 2016a). Severe and house-matched participants were instructed to collect their entire faecal sample into a device called a FECOTAINER® (AT Medical B.V., Enschede, The Netherlands), figure 2.2.2 no sooner than 24 hours before a scheduled home visit, and to keep it in the fridge at 4°C in double contained in plastic bags provided. This kit also contained an AnaeroGen™ Compact anaerobic sachet (Cat No. AN0010, Oxoid Ltd., United Kingdom) to activate as soon as participants produced their sample to minimise oxygen conditions limiting any aerobic growth and activity. On return to the hospital, samples were manually homogenised with a sterile autoclaved metal spatula and processed according to their downstream application and stored at -80°C until required.

3.2.2 Faecal DNA extraction

The method for DNA extraction from human faeces was obtained from the Hall Lab at Quadram Institute Bioscience, with minor adaptions to the manufacturer’s kit protocol. Prior to experimenting, faecal DNA extracts were prepared from frozen faecal aliquots that had been pre-weighed (~250mg) into a sterile Lysing Matrix E tubes from the FastDNA SPIN kit for Soil (Cat. No. 116560200, MP Biomedicals, UK). Samples were stored at -80°C as soon as possible on the same day of collection. Earlier samples obtained using the OMNIGene GUT device began the exact same process to be described here, instead taking 250 µl of faecal homogenate.

On the day of the experiment, faecal aliquots were thawed, after which 978 µl sodium phosphate buffer and 120 µl MT buffer was added and homogenised using the FastPrep® Instrument for a duration of 45 seconds and repeated for a total of 3 cycles. Each cycle was separated by placing each sample in ice for 60 seconds to reduce heat. Following the mechanical destruction of bacteria cells within the faeces, cell debris and other faecal particulate were removed by centrifuging at 14,000 x g, for 15 min. The supernatant was transferred into a sterile 2.0 ml Eppendorf tube, to which 250 µl of PPS was added to precipitate protein from the solution. The supernatant was transferred in 15 ml tubes
containing 1 ml of Binding Matrix and inverted by hand for 2 minutes to allow DNA binding. Tubes where then placed in a rack and allowed to settle for 3 minutes after which 500 µl of the supernatant was discarded with care not to disturb the settled Binding Matrix. The remaining resuspended Binding Matrix solution containing bound DNA was passed through a SPIN filter tube at 14,000 x g, for 1 minute. DNA captured on the column was washed using DNase-free salt/ethanol wash (SEWS-M). Subsequently, a second dry spin was performed and each SPIN filter air dried for 10 minutes at room temperature to remove excess alcohol. Finally, DNA was eluted in 50 µl of DNase/Pyrogen free DNA water (DES) pre-incubated at 50 degrees to enhance DNA recovery and stored at 4°C short term, or at -20°C for a longer period. DNA was quantified using Qubit® and Agilent Tapestation.

3.2.3 Acquisition of 16S rRNA gene sequence data

V4 16S rRNA gene sequencing was performed in two batches for mild/moderate patients in 2015 and severe and house-hold controls in 2017. Following microbial DNA was extraction as described above, these samples were sent to sequencing companies for further downstream processing as described below:

- **Mild/moderate ME/CFS (n=25)**

DNA extracted from 25 faecal samples from mild/moderate ME/CFS patients was submitted to Animal Health and Veterinary Laboratories Agency (AHVL) for PCR amplification of the V4-V5 region of the 16S rRNA gene (primers: U515F, 5’-GTGYCAGCMGCCGCGGTA-3’; U927R, 5’-CCCGYCAATTCMTTTRAGT-3’) and (Illumina MiSeq) sequencing. 16S rRNA gene sequence data were processed using QIIME 1.9 (Caporaso et al., 2010). Demultiplexed read files were supplied by the sequencing provider. For each read file, paired-end reads were joined using fastq-join (Aronesty, 2011); minimum acceptable Phred quality score was Q20; primers were removed from reads using cutadapt leaving reads of ~370 nt in length (Martin, 2011). The read files were concatenated and OTUs picked using usearch (99 % mapping, similarity, gg_13_8), which also performs chimera checking (Edgar, 2010). Sequences were aligned using PyNAST (Caporaso et al., 2009). Taxonomy was assigned using gg_13_8 (99 %), with annotations for the representative sequence set checked and corrected where necessary (e.g. in Greengenes, members of the family Rikenellaceae are poorly annotated and newly described prokaryotes are not annotated). Singletons and reads representing < 0.001 % of total reads were filtered from the OTU table. For descriptions of data in terms of abundance,
rarefaction was performed on the OTU table \((n = 8,750)\) so that the number of reads compared per sample was identical.

- **Severe ME/CFS \((n=21)\) and House-hold controls \((n=12)\)**

Faecal DNA extracted from severe house-bound patient and their respective house-hold controls were submitted to Novogene® for 16S sequencing. DNA concentration and purity were checked on 1% agarose gels. According to the concentration, DNA was diluted to 1ng/μL using sterile water. The V4 region of the 16S rRNA gene were amplified using specific primers, U515: F, 5’-GTGYCAGCMGCCGCGGTAA-3’; and U806, R, 5’-CTACCRGGGTATCTAATCC-3’ (Caporaso et al., 2011). All PCR reactions were carried out with Phusion® High-Fidelity PCR Master Mix (New England Biolabs). PCR products stained with Sybr Green nucleic acid stain were separated on a 2% agarose gel and bands selected between 400-450bp of length. These PCR products were mixed in equidensity ratios. Then, the mixture of PCR products was purified with Qiagen Gel Extraction Kit (Qiagen, Germany). Libraries were generated using the NEBNext® UltraTM DNA Library Prep Kit for Illumina and sequencing performed on the Illumina® MiSeq platform. Paired-end reads was assigned to samples based on their unique barcode and truncated by cutting off the barcode and primer sequence. Demultiplexed read files were supplied by the sequencing provider.

**Acquisition of Shallow Shotgun Metagenomic sequence data**

- **Dataset B**

DNA extracted from 11 severe ME/CFS patients and 8 house-matched controls were quantified using Qubit® Broad Range Assay and submitted to Dr Gemma Kay at the Bob Champion Biomedical Research Building, University of East Anglia, UK, for library preparation. An additional sample of containing 20 μl DES H₂O was processed alongside the faecal samples to act a negative control and to highlight potential kit contamination. Illumina library construction was prepped using the Nextera XT DNA kit (Illumina Inc. USA) containing barcoding sequences and i5 and i7 primer adaptors. Raw sequencing reads were pre-processed using Trimgalore (v 0.4.4) for end trimming and filtered to exclude low-quality and low-complexity reads. Adaptor sequences were removed using cutadapt contained with the Trimgalore wrapper. Human sequences were subtracted from the dataset using BBMap 38.06 to align them against the Human reference (hg38), keeping
only unaligned reads for further processing. Bacterial composition (relative abundance) was obtained from raw sequencing data using MetaPhIAn (v1.7.8).
<table>
<thead>
<tr>
<th>Dataset</th>
<th>Year</th>
<th>Study type</th>
<th>Sample Size</th>
<th>ME/CFS status</th>
<th>Platform</th>
<th>Av. number of reads</th>
<th>Analytical methods &amp; bioinformatics tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2015</td>
<td>16S rRNA targeted amplicon</td>
<td>n = 25 ME/CFS</td>
<td>Mild/moderate</td>
<td>Illumina® MiSeq x2 300 bp V4 region</td>
<td>70,769 (rarefied to 8,750)</td>
<td>16S rRNA gene sequence data were processed using QIIME 1.9, species annotation by Greengenes assigned 99% similarity OTU clustering Few Actinobacteria (Bifidobacteria and Coriobacteria)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U515F, U927R</td>
<td>No controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2016</td>
<td>“Shallow” shotgun metagenomics</td>
<td>n = 19</td>
<td>Severe, bed bound</td>
<td>Illumina® MiSeq x2 300bp</td>
<td>960,260 (ranges 253,000 - 2,168,000)</td>
<td>MetaPhlAn 2.0. Capacity to determine species level and functional capacity Microbial community analysis performed using MEGAN 6.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 female ME/CFS</td>
<td>8 house-matched control (7 female, 1 male)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2017</td>
<td>16S rRNA targeted amplicon</td>
<td>n = 33</td>
<td>Severe, bed bound</td>
<td>Illumina® HiSeq 2500 x2 250 bp V4 region</td>
<td>150,882 (rarefied to 47,985)</td>
<td>QIIME 1.7 97% similarity OTU clustering, species annotation by SILVA database Microbial community analysis performed using MEGAN 6.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U515F; U806R</td>
<td>21* females ME/CFS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12* house-matched controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.3.1 Summary and descriptions of metagenomic datasets (A-C) collected in 2015, 2016 and 2017.
Sample Summary:
Dataset A (2015)

<table>
<thead>
<tr>
<th>Status</th>
<th>Sex</th>
<th>Age</th>
<th>DV**</th>
<th>Reads</th>
<th>Observed OTUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>M</td>
<td>54</td>
<td>22</td>
<td>68,165</td>
<td>310</td>
</tr>
<tr>
<td>30</td>
<td>F</td>
<td>28</td>
<td>15</td>
<td>58,752</td>
<td>289</td>
</tr>
<tr>
<td>31</td>
<td>M</td>
<td>41</td>
<td>24</td>
<td>48,775</td>
<td>142</td>
</tr>
<tr>
<td>32</td>
<td>F</td>
<td>65</td>
<td>17</td>
<td>66,839</td>
<td>278</td>
</tr>
<tr>
<td>33</td>
<td>M</td>
<td>48</td>
<td>18</td>
<td>65,459</td>
<td>222</td>
</tr>
<tr>
<td>35</td>
<td>M</td>
<td>37</td>
<td>21</td>
<td>64,504</td>
<td>284</td>
</tr>
<tr>
<td>37</td>
<td>F</td>
<td>60</td>
<td>1</td>
<td>140,262</td>
<td>238</td>
</tr>
<tr>
<td>38</td>
<td>F</td>
<td>43</td>
<td>2</td>
<td>91,835</td>
<td>352</td>
</tr>
<tr>
<td>39</td>
<td>F</td>
<td>39</td>
<td>3</td>
<td>82,192</td>
<td>338</td>
</tr>
<tr>
<td>40</td>
<td>F</td>
<td>44</td>
<td>4</td>
<td>118,137</td>
<td>283</td>
</tr>
<tr>
<td>41</td>
<td>F</td>
<td>54</td>
<td>5</td>
<td>77,531</td>
<td>238</td>
</tr>
<tr>
<td>42</td>
<td>F</td>
<td>45</td>
<td>6</td>
<td>87,229</td>
<td>318</td>
</tr>
<tr>
<td>43</td>
<td>M</td>
<td>47</td>
<td>7</td>
<td>77,101</td>
<td>366</td>
</tr>
<tr>
<td>44</td>
<td>F</td>
<td>25</td>
<td>8</td>
<td>106,107</td>
<td>113</td>
</tr>
<tr>
<td>45</td>
<td>F</td>
<td>48</td>
<td>10</td>
<td>58,552</td>
<td>332</td>
</tr>
<tr>
<td>46</td>
<td>F</td>
<td>72</td>
<td>11</td>
<td>71,712</td>
<td>345</td>
</tr>
<tr>
<td>47</td>
<td>F</td>
<td>30</td>
<td>12</td>
<td>61,424</td>
<td>225</td>
</tr>
<tr>
<td>48</td>
<td>F</td>
<td>55</td>
<td>13</td>
<td>54,967</td>
<td>336</td>
</tr>
<tr>
<td>49</td>
<td>F</td>
<td>33</td>
<td>14</td>
<td>46,834</td>
<td>306</td>
</tr>
<tr>
<td>50</td>
<td>M</td>
<td>58</td>
<td>16</td>
<td>68,534</td>
<td>300</td>
</tr>
<tr>
<td>51</td>
<td>F</td>
<td>53</td>
<td>19</td>
<td>9,064</td>
<td>229</td>
</tr>
<tr>
<td>52</td>
<td>F</td>
<td>27</td>
<td>20</td>
<td>75,622</td>
<td>235</td>
</tr>
<tr>
<td>53</td>
<td>F</td>
<td>32</td>
<td>23</td>
<td>76,883</td>
<td>327</td>
</tr>
<tr>
<td>54</td>
<td>F</td>
<td>21</td>
<td>26</td>
<td>57,916</td>
<td>216</td>
</tr>
<tr>
<td>55</td>
<td>F</td>
<td>59</td>
<td>27</td>
<td>34,851</td>
<td>171</td>
</tr>
</tbody>
</table>

Table 3.3.2 Sample summary of dataset A containing 25 mild/moderate patients (44.72 ± 13.40 years old). Note: these samples were processed using OMNIGENE gut collection tube prior to DNA extraction and 16S gene sequencing.
### Sample Summary:
Datasets B & C

<table>
<thead>
<tr>
<th>Status</th>
<th>Sex</th>
<th>Age</th>
<th>‘Shallow’ Shotgun</th>
<th>16S (V4 region)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Severe</td>
<td>F</td>
<td>63</td>
<td>ME_8</td>
</tr>
<tr>
<td>2</td>
<td>Severe</td>
<td>F</td>
<td>56</td>
<td>ME_5</td>
</tr>
<tr>
<td>3</td>
<td>Control</td>
<td>F</td>
<td>55</td>
<td>CTR_4</td>
</tr>
<tr>
<td>4</td>
<td>Control</td>
<td>F</td>
<td>69</td>
<td>CTR_17</td>
</tr>
<tr>
<td>5</td>
<td>Severe</td>
<td>F</td>
<td>44</td>
<td>F4</td>
</tr>
<tr>
<td>6</td>
<td>Control</td>
<td>F</td>
<td>70</td>
<td>F30</td>
</tr>
<tr>
<td>7</td>
<td>Control</td>
<td>F</td>
<td>55</td>
<td>CTR_18</td>
</tr>
<tr>
<td>8</td>
<td>Severe</td>
<td>F</td>
<td>38</td>
<td>ME_13</td>
</tr>
<tr>
<td>9</td>
<td>Severe</td>
<td>F</td>
<td>21</td>
<td>ME_3</td>
</tr>
<tr>
<td>10</td>
<td>Severe</td>
<td>F</td>
<td>37</td>
<td>F9</td>
</tr>
<tr>
<td>11</td>
<td>Control</td>
<td>F</td>
<td>64</td>
<td>F11</td>
</tr>
<tr>
<td>12</td>
<td>Severe</td>
<td>F</td>
<td>18</td>
<td>ME_12</td>
</tr>
<tr>
<td>13</td>
<td>Severe</td>
<td>F</td>
<td>61</td>
<td>F7</td>
</tr>
<tr>
<td>14</td>
<td>Severe</td>
<td>F</td>
<td>40</td>
<td>F1</td>
</tr>
<tr>
<td>15</td>
<td>Severe</td>
<td>F</td>
<td>54</td>
<td>F17</td>
</tr>
<tr>
<td>16</td>
<td>Severe</td>
<td>F</td>
<td>58</td>
<td>ME_1</td>
</tr>
<tr>
<td>17</td>
<td>Control</td>
<td>M</td>
<td>60</td>
<td>CTR_2</td>
</tr>
<tr>
<td>18</td>
<td>Severe</td>
<td>F</td>
<td>27</td>
<td>ME_6</td>
</tr>
<tr>
<td>19</td>
<td>Control</td>
<td>F</td>
<td>60</td>
<td>CTR_16</td>
</tr>
<tr>
<td>20</td>
<td>Severe</td>
<td>F</td>
<td>63</td>
<td>F5</td>
</tr>
<tr>
<td>21</td>
<td>Severe</td>
<td>F</td>
<td>32</td>
<td>ME_7</td>
</tr>
<tr>
<td>22</td>
<td>Severe</td>
<td>F</td>
<td>31</td>
<td>ME_11</td>
</tr>
<tr>
<td>23</td>
<td>Control</td>
<td>F</td>
<td>54</td>
<td>CTR_15</td>
</tr>
<tr>
<td>24</td>
<td>Control</td>
<td>F</td>
<td>29</td>
<td>CTR_14</td>
</tr>
<tr>
<td>25</td>
<td>Severe</td>
<td>F</td>
<td>56</td>
<td>ME_10</td>
</tr>
<tr>
<td>26</td>
<td>Severe</td>
<td>F</td>
<td>30</td>
<td>ME_19</td>
</tr>
<tr>
<td>56</td>
<td>Control</td>
<td>F</td>
<td>34</td>
<td>CTR_9</td>
</tr>
</tbody>
</table>

Table 3.3.3 Sample summary of datasets B & C consisting of 17 Severe, house-bound patients (42.88 ± 15.16 years old) and 10 house-hold control (55 ± 13.62 years old). Samples obtained during 2016 and 2017. This table also highlights the cross over between datasets B and C in terms of DNA sequencing technology used to survey the ME microbiome.
3.3 Results

3.3.1 16S phylogenetic abundance in mild/moderate ME patients (n=25)

- *Dataset A*

Phylogenetic abundance data was generated from 21 females and 6 male mild/moderate patients. It was not possible to obtain samples from suitable control subjects. Raw sequences were trimmed using cutadapt to remove primers. In total, 1,769,247 reads were generated across 25 samples. The mean number of paired end (PE) reads at 250bp long obtained was 70,770 ± 25,581 S.D. per sample. Reads which clustered together with 99% sequence homology generated a total of 686 Operational Taxonomic Units (OTUs) across all samples. Sequenced-based rarefaction curves were produced at 8750 (figure 3.3.1) and 34000 reads per sample, which demonstrated diversity of all 25 samples was covered by sampling at 8750 reads. A minimum number of 2 samples were required for each particular OTU to be observed in order for that OTU to be retained. After filtering OTUs of less than 0.01% relative abundance, on average, 272 ± 52 SD OTUs were obtained per sample.

---

**Figure 3.3.1 Rarefaction curve for the intestinal microbiota of 25 mild/moderate ME patients recruited from walk-in appointment at the CFS service.** Each sample has been rarefied to 8750 reads. As the gradient of each curve increases less species are discovered within each sample. The higher the curve the greater number of species have been found within that sample.
Figure 3.3.2 Alpha diversity plots showing community evenness (Shannon H) A, and richness (Chao1, and PD), B and C, of 25 mild/moderate ME/CFS faecal samples derived from dataset A. As the gradient of each curve decreases and reaches a plateau the diversity (number of species identified) within that sample does not increase.

All samples were rarefied to 8750 reads, which was below the sample with the least number of reads, sample DV19 (table 3.3.3). The number of observed “species” represented by number of reads clustering with 99% sequence similarity to form unique OTUs was used to calculate the alpha diversity within the mild/moderate ME/CFS group. Figure 3.3.2 shows the respective curves for community evenness using the Shannon H index, and indices for community richness; Chao1 and Phylogenetic Diversity (PD). These plots show as the number of reads increases the curve approaches a plateau beyond which the diversity of each sample does not increase with increasing number of sequence reads. Based on rarefying to 8750 read per sample, Shannon indices produced a value of $H = 5.68 \pm 0.70$ SD, whilst indices for community richness produced $309.92 \pm 59.12$ SD, and $12.18 \pm 2.20$ SD for Chao1 and PD respectively.
Of the 686 OTUs found across all samples, 62 were assigned to bacterial genera using the Greengenes database. OTUs which could not be assigned were classified as unknown. The relative abundance of all OTUs and assigned OTUs were outputted into Microsoft™ Excel® to provide tables at each different taxonomic level from kingdom to the genus level. Four samples DV2, 6, 7, 23 had detectable Archaea ranging from 0.01% - 0.38% of all classifications.

- Phylum level observations

Compositional taxonomic analysis based on bacterial phyla (figure 3.3.3) identified Firmicutes and Bacteroides as the most abundant members of the microbiota at 49.02% and 47.80% respectively. Tenericutes were found in relative high abundance in two samples DV7 and DV23, 5.94% and 14.56% respectively.

Figure 3.3.3 Relative abundance (%) of bacterial phyla provides a community composition profile of 25 mild/moderate ME/CFS patients. Bacteroidetes (red) and Firmicutes (turquoise) are the most dominant bacterial phyla within all samples.
- **Genus level observations**

Genus abundance is the highest taxonomic level that can be achieved in 16S-based microbiome studies. On average, 41.12 ± 3.62 SD genera (figure 3.3.4) were identified per sample, ranging from the lowest, 32 genera in sample DV27, to the highest, 47 genera in sample DV2. Four samples were distinguished by high abundance of *Prevotella*, particularly DV4 at 60.27% of all genera present. Few Actinobacteria which include members of *Bifidobacterium* (0.04%), *Coriobacteria* (0.19%) and *Eggerthella* (0.02%) were identified across all samples. On average, 12.27% ± 8.61 SD of genera (purple bars, fig 3.3.4) were classified as unknown.

![Genus-level abundance data](image)

**Actinobacteria**
- Bifidobacterium
- Collinsella
- Eggerthella

**Bacteroidetes**
- Alistipes
- Bacteroides
- Barnesiella
- Butyricimonas
- Coprobiacter
- Odoribacter
- Parabacteroides
- Paraprevotella
- Prevotella

**Euryarchaeota**
- Methanobrevibacter

**Firmicutes**
- Clostridium
- Eubacterium
- Ruminococcus
- Anaerostipes
- Asaccharobacter
- Bedancellana
- Blautia
- Butyricicoccus
- Candidatus Stoquelichus
- Ctenibacterium
- Clostridium
- Coprobiacter
- Coprococcus
- Coprococci
- Dialister
- Dorea
- Faecalibacterium
- Faecalibacterium

**Flavonifractor**
- Flavonifractor
- Flavobacterium
- Fusibacter
- Fusaibacter
- Harrisella
- Hessellia
- Holdemanellae
- Holdemania
- Hungatella
- Intestinalbacter
- Intestinimonas
- Lachnospiraceae
- Longicatenae
- Oscillospira
- Phascolarctobacterium
- Pseudoflavonifractor
- Romboulia
- Roseburgia
- Roseburia
- Ruminococcus
- Rumonicoccus
- Ruthenibacterium

**Proteobacteria**
- Biophila
- Escherichia/Shigella
- Haemophilus
- Paracoccus
- Sutterella

**Verrucomicrobia**
- Akkermansia

**Unknown**

Figure 3.3.4 Genus-level abundance data produced sampling at 8750 reads per sample from faecal samples obtained from 25 mild/moderate ME/CFS patients collected in 2015.
The raw abundance tables were imported into MEGAN 6.0 for composition community analysis to visualise and compare each sample with the rest of the group. The top 34 most abundant genera are presented in figure 3.3.5. *Bacteroides* was the most abundant genus present in 24 samples at 28.06% ±12.60 SD. This genus was not detected in sample DV27; however, this sample had the third lowest number of reads. *Faecalibacterium* was prevalent in almost all samples at 9.27% ±3.86 SD. No healthy sample control group processed at the same time of this sequencing to compare this data to. However, this data highlights some qualitative difference between patients that may influence the ME/CFS microbiota. For example, *Roseburia* is more abundant (6.01% ± 4.82 SD) in some patients than others ranging from 0.38% to 22.42% RA of the total ME/CFS microbiome. A similar pattern was seen for *Oscillospira* and *Ruminoccoccus* observed at 3.06% ± 2.04 SD and 3.54% ± 1.96 SD RA respectively.

Taxonomic profiles for all 25 samples was analysed using MEGAN which performed analysis of overall compositional differences samples within the group using multiple comparison tests for beta-diversity and applied to Principal Coordinate Analysis (PCoA) using Bray-Curtis dissimilarity. Near-neighbour network representation was generated to reveal any sample grouping (fig 2.3.6).
Figure 3.3.6 Principal Co-ordinate Analysis using Bray-Curtis dissimilarity and Nearest-Neighbour network analysis comparing all 62 genera across 25 mild/moderate ME/CFS patients. Figures created using MEGAN 6.0. Left, PCoA separates samples into clusters, the closer samples cluster together the more compositionally similar they are. Right, Nearest-neighbour network groups.

Bray-Curtis is influenced by the most abundant taxa within a sample. For example, DV4, DV18, DV19 and DV20 form a discrete cluster due to the higher RA of *Prevotella* in these samples $45\% \pm 19.72$ SD. Other outliers include DV7 represented by 41.39% of unknown genera, and DV8 with the highest (35.93%) RA across all samples for *Alistipes*.

### 3.3.2 Shallow shotgun metagenomics

- **Dataset B**

Shotgun metagenomic sequencing of 11 severe, house-bound ME/CFS patients and 8 same house-hold healthy controls (HHC) relatives generated FASTQ files accumulating to 19.24 GB of sequence data from 300 bp, paired end reads from a single lane on the Illumina™ MiSeq® platform. The range of sequence reads obtained was between 230,000 and 2,168,000 for these samples. After QC clean up, there were no reads associated with sample CNEG-20 which was a blank control to exclude any DNA extraction kit contamination and ‘kitome’ effect. A high number of human-associated reads were found in all samples ranging from 7-44% of all reads and removed before analysing sequences using MetaPhlAn. A total of 152 species of bacteria were observed across all samples of which 143 were from within the severe ME/CFS groups compared to 88 found in the HHC group. On average the number of species per sample was $38.64 \pm 6.28$ and $34.62 \pm 8.97$ in ME/CFS and HHCs respectively.
- **Phylum level observations**

_Firmicutes_ were the most abundant bacterial phyla within most samples for patients and HHCs, in figure 3.3.7 (turquoise bars) at 58.17% ± 21.6 in ME and 56.11% ± 12.92 SD in HHC. _Bacteroides_ were less dominant at 17.90% ± 15.26 SD in ME versus 26.66% ± 13.54 SD in HHC. _Actinobacteria_ (blue bars) were more abundant in ME compared with HHC, at RA of 14.59% ± 8.41 SD versus 11.72% ± 6.72 respectively. _Euryarchaeota_ (yellow bars) were found in 3 ME/CFS samples, the highest RA in 1_ME at 15.89%, and in a single HHC sample, 4_HHC at 2.05% RA. These samples were not from the same house-hold. Sample 4_HHC was also notable for having the highest number of human reads at 43.77% of all 253,484 reads generated. After filtering human reads only 169,707 were useable for metagenomic characterisation. Table 2.3.2 present summary of number of reads associated with each sample.

Figure 3.3.7 Relative abundance of bacterial phyla observed across all 19 samples (severe ME=11, HHC=8) using Illumina™ MiSeq® sequencing platform. There are no proportional differences in these bacterial phyla between both groups.
Figure 3.3.8 Statistical plots for bacterial phyla: Bacteroides, Firmicutes and Actinobacteria in ME and HHC. Top left, box plot of all phyla observed, central line represents median percentage of group severe vs. house-hold control; error bars indicate max and min values for each observation. Top right and bottom, each dot represents a single sample; central line is mean percentage, error bars are the standard error (SE). No significant differences.

The RA of *Bacteroides, Firmicutes* and *Actinobacteria* were plotted in graphs (figure 3.3.8) and statistically analysed with the non-parametric Mann-Whitney test for differences between ME and HHC. There were no statistically differences for observed relative abundances across the bacterial phyla between ME and HCC at 5% significance level.
Figure 3.3.9: Comparison of relatives abundance (%) of bacterial genera in severe (n=11), mild/moderate (n=25) ME/CFS compared with HHCs (n=8).
- **Genus level observations**

Genus-level abundance detail of the severe ME microbiome is of qualitative comparative interest to the earlier mild/moderate ME/CFS dataset (figure 2.3.9). A total of 57 bacterial genera were identified across severe ME and HHC samples. These observations were correlated with bacterial genera observed in mild/moderate ME/CFS, of which 29 genera of these were not identified in either severe ME or HHCs. Table 2.3.4 lists the 57 bacterial genera found and their RA in Severe ME and HHCs. This approach highlighted possible genus-level trends across sample groups. For example, *Bacteroides* (fig. 3.3.9, brown) abundance is follows for the trend M>H>S, at 28.06%, 16.14% and 13.1% respectively.
Table 3.3.4 Genus-level abundance data from dataset B. Values expressed in this table are an average percentage (%) of the relative abundance (RA) of genera across groups: severe, house-hold, mild/moderate. A total of 58 genera were observed across all samples from severe patients and house-hold controls. Of these, only 34 out of 62 matched to genera from 16S analysis of mild/moderate patients (dataset A). ND, not detected.
The *Faecalibacterium* genus, shown in pink in this figure, was found lowest in severe ME (2.93%) compared with mild/moderate and HHCs at RA of 10.24% and 9.27% respectively.

Finally, *Alistipes* spp. (fig. 3.3.9 pale blue) were diminished in Severe ME at 2.59% versus 7.42% in HHC and 5.17% in the mild/moderate 16S-derived microbiota.

Using the 25 most abundant genera found in severe ME and HHCs, a heatmap was generated in MetaPhlAn. In this figure (3.3.10), samples to the right of ME-3 tend to feature more controls (6) versus samples to the left are more dominated by ME samples with the exception of 2 HHCs. Based on the low number of samples collected in this cohort is difficult to identify any findings that distinguish the severe ME microbiome separate from HHC. The *Bacteroides* genus tends to be more abundant in HHCs, whilst *Collinsella* spp. is absent in some ME samples and at low-high abundance in HHCs. In addition, *Coprococcus* spp. is identifiably more abundant (dark blues) in at least 4 of severe ME patients and one ME patient higher (red). Notably, *Oscillibacter* spp. was found present in 8 of the severe ME patients whilst only one HHC had this genus.
Figure 3.3.10 Heatmap of 25 most abundant bacterial genera seen in severe ME (n=11) and matched house-hold controls, HHC (n=8). Genera list (g_name) on the right of map. Red colours indicate this genus is present at a higher RA in samples, whereas blue genera are less abundant and black indicates absence of this genera. CNEG-20 is water, used as a kit control (kitome) for sequencing.
- *Species level observations*

A total of 152 species were classified across all samples using MetaPhlAn 1 in 2016. The same raw sequencing data was re-analysed with the more update version of MetaPhlAn 2.0 in 2018. However, this did not significantly alter the outcome of this data. Table 3.3.5 summaries the total number reads associated with each sample and the total number of species observed in it. DNA concentration was measured and recorded prior to dispatch to the sequencing provider who also performed in-house QC checks for DNA fragment length. The lowest quantity of DNA sent for sequencing was 700 ng of total DNA in 20µl water, in sample CTR-15. The highest number of observed species was 52 in ME-10, and the lowest number 20 in CTR-9.

<table>
<thead>
<tr>
<th>Sample</th>
<th>DNA (ng/µl)</th>
<th>Reads</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME-1</td>
<td>172</td>
<td>1,188,807</td>
<td>44</td>
</tr>
<tr>
<td>CTR-2</td>
<td>196</td>
<td>765,785</td>
<td>40</td>
</tr>
<tr>
<td>ME-3</td>
<td>372</td>
<td>818,307</td>
<td>43</td>
</tr>
<tr>
<td>CTR-4</td>
<td>73</td>
<td>169,707</td>
<td>24</td>
</tr>
<tr>
<td>ME-5</td>
<td>294</td>
<td>1,324,046</td>
<td>41</td>
</tr>
<tr>
<td>ME-6</td>
<td>548</td>
<td>1,468,535</td>
<td>38</td>
</tr>
<tr>
<td>ME-7</td>
<td>76.4</td>
<td>1,258,690</td>
<td>46</td>
</tr>
<tr>
<td>ME-8</td>
<td>468</td>
<td>480,512</td>
<td>23</td>
</tr>
<tr>
<td>CTR-9</td>
<td>137</td>
<td>345,280</td>
<td>20</td>
</tr>
<tr>
<td>ME-10</td>
<td>300</td>
<td>1,038,416</td>
<td>52</td>
</tr>
<tr>
<td>ME-11</td>
<td>47</td>
<td>990,786</td>
<td>37</td>
</tr>
<tr>
<td>ME-12</td>
<td>270</td>
<td>1,222,374</td>
<td>40</td>
</tr>
<tr>
<td>ME-13</td>
<td>65.2</td>
<td>1,267,583</td>
<td>39</td>
</tr>
<tr>
<td>CTR-14</td>
<td>199</td>
<td>344,530</td>
<td>24</td>
</tr>
<tr>
<td>CTR-15</td>
<td>35</td>
<td>1,185,795</td>
<td>40</td>
</tr>
<tr>
<td>CTR-16</td>
<td>324</td>
<td>1,090,871</td>
<td>40</td>
</tr>
<tr>
<td>CTR-17</td>
<td>264</td>
<td>1,511,959</td>
<td>47</td>
</tr>
<tr>
<td>CTR-18</td>
<td>144</td>
<td>873,110</td>
<td>42</td>
</tr>
<tr>
<td>ME-19</td>
<td>78</td>
<td>899,956</td>
<td>22</td>
</tr>
</tbody>
</table>

Table 3.3.5 Sample sequencing statistics for extracted DNA concentration from 250 mg of raw faecal stool and number of paired end reads obtained following QC and trimming. This data was generated from 20µl of undiluted DNA sent to an external sequencing provider. Number of reads obtained after removal of human sequences. Number of species assigned to reads using MetaPhlAn 2.0.
Figure 3.3.11 Bubble chart summary of 59 bacterial species and 9 genera in 11 severe ME patients versus 8 House-Hold Controls. Colours representative of individual genera or species. (A) Size of circle is proportional to the relative abundance (RA) of that genus or species with the individual total microbiota. (B) Size of circle represent RA values on a square-root scale to reveal differences between less abundant and minor members of the intestinal microbiota.

Figure 3.3.11 A and B were produced using MEGAN 6.0 to summarise composition differences between species in ME and HHC; which reveals several HHCs had a higher RA of *Faecalibacterium prausnitzii* (pink circles) 10.23% ± 6.04 SD versus 2.93% ± SD 3.15 in HHCs. *Ruminococcus bromii* (brown circles) was higher in 3 of the ME patients; 41.24%, 23.04% and 33.15% respectively in figure 3.3.11B. This part of the figure also shows *Bacteroides vulgatus* (pale blue circles) was missing is 6 patients compared to just two in the HHCs. However, ME-19 had a RA of 36.79% for this species compared to an average of 2.70% ± 1.62 in across all HHCs. Almost half of the relative abundance of species within ME-12 was attributed to *Bifidobacterium adolescentis* (orange circles, fig. 3.3.11B) at 45.39% which was absent in most ME patients and only appear in a single HHC at RA of 3.71% (CTL-17).
Figure 3.3.12 Twenty-five most abundant bacterial species across all samples identified using MetaPhlAn 2.0 in 2018.

Sequence read originally analysed in 2017 were re-analysed using a more recent version of MetaPhlan. Additional species were identified in most samples; however, this did not exceed 12 per sample. It is important to note that these were not new species and instead represented assigning of previously identified species to more samples across both groups. A heatmap was generated in Figure 3.3.12 from MetaPhlAn 2.0 to compare the RA of the top 25 species which varied the most between patients and HHCs.

![Heatmap](image)

Fig. 3.3.13 Status by bacteria genus reveals differences between severe ME and house-matched controls for Eggerthella, Faecalibacterium & Oscillibacter. Statistical analysis and graphical output completed using RStudio®.
- **Statistical comparison of bacterial genera in severe ME versus HHC**

Taxonomic abundance tables were analysed using R Studio for significance testing between ME and HHC at the genus level. Figure 3.3.13 presents the statistical plots generated for this analysis using an unpaired Mann Whitney U test with Benjamin Hochberg p value adjustment. This identified three bacterial genera with a p value <0.05. Members of *Oscillibacteria* spp. and *Eggerthella* spp. were statistically more abundant (p values 0.0183 and 0.0466, respectively) in the severe ME microbiota compared with the HHC group. Conversely, the genus *Faecalibacterium* were significantly lower (p=0.0184) within the severe ME microbiota compared to HHCs. No species belonging to the genus of *Oscillibacteria* or *Eggerthella* were identified whilst *F. prausnitzii* was the only species found within *Faecalibacterium* spp.

- **Bray-Curtis Dissimilarity Analysis**

The beta-diversity between the microbiotas of severe ME and HHCs was calculated using MEGAN 6.0. PCoA of taxonomy using Bray-Curtis distances are based on measures of the most abundant bacterial taxa within that sample. Figure 3.3.14 the direction of clustering of samples has been labelled with the dominant species within these samples driving this spatial separation. Significantly, *Faecalibacterium prausnitzii* emerges as the main principle component in most CTR samples. Other discrete clusters are for ME samples driven my *Ruminoccus bromii* and *Bacteroides uniformis* however, these are explained by typically one of two outlier ME samples compared to the rest of the group, see fig. 3.3.11b.
Figure 3.3.14 PCoA analysis using Bray-Curtis dissimilarity to compare compositional differences in beta-diversity between severe ME and HHCs groups. Analysis draws conclusion of most abundant bacterial species (annotated in figure) associated with separations of samples, e.g. *Faecalibacterium prausnitzii* is more abundant in CTR-2, CTR-4, CTR-9 & CTR-16.

Figure 3.3.15 PCoA analysis using Hellinger distances to measure the difference in compositional taxa between severe ME and HHCs. Plot annotated with bacterial species relevant to driving separation of samples.

PCoA analysis was also performed using Hellinger distances to separate samples based on proportions of taxa observed between each dataset and is considered more representative of proportional differences between taxa between groups of samples. Sample which cluster together are more compositional similar. Another standard tool for microbial community analysis is Unweighted Pair Group Method with Arithmetic Mean (UPGMA) based on UniFrac distances which is a hierarchical clustering method for sample classification used in ecology studies. Samples with the closest distance cluster together as a node. Unweighted UPGMA (figure 3.3.16A) considers the clustering of samples on composition alone, whilst the weighted version (figure 3.3.16B) consider both abundance and composition.
**Comparison of severe ME and HHC core microbiomes**

Core microbiomes were calculated as a feature of MEGAN 6.0 using a sample threshold of 50% and class threshold of 1%. This analysis provided an interesting output and revealed a distinct difference in the number of species determining the core microbiome in patients compared with HHCs. Patients have 6 members of a core microbiota (fig 3.3.17A), represented by *Bacteroides uniformis*, *Verrucomicrobiales*, *Bifidobacterium longum*, *Eubacterium spp.*, *Dorea spp.*, *Ruminococcus spp.* and *Subdoligranulum spp.* Figure 3.3.17B shows there are 8 members within the core microbiome of HHCs distinct from ME and include *Bacteroides vulgatus*, *Alistipes putredinis*, *Streptococcus salivarius*, *Coprococcus comes*, *Dorea longicatena*, *Ruminococcus bromii*, *Faecalbacterium prausnitzii*, and *Ruminococcus bromii*. 

---

*Figure 3.3.16 UPGMA clustering unweighted (A) versus (B) weighted UniFrac distances performed in MEGAN using severe ME and HHC samples. Matched severe ME (red circles), unmatched severe ME (blue circles); matched house-hold controls (green triangles); negative control (yellow circle).*
Figure 3.3.17 Phylogenetic trees featuring the members of bacterial taxa identified as part of a core microbiome within 11 severe ME sample and 8 HHCs. Size of circle is proportional to the relative abundance of taxa within these samples. A: represents common features shared between 11 severe, house-bound ME patients. B: represents 8 house-hold controls related to severe, house-bound patients.
Figure 3.3.18 Phylogenetic tree representative the comparison between the shared core microbiome of 11 severe patients and 8 house-hold controls. Colours and size of circles are proportional of the RA contributing to the microbiome. Patients are in light blue versus HHCs in purple.

Figure 3.3.18 provides shared features of a core microbiome in patients and HHCs compares the compositions of these members between groups. For example, ME (light blue) is less abundant in *Bacteroides vulgatus, Alistipes putredinis, Coprococcus comes, Faecalibacterium prausnitzii*, and *Ruminococcus bromii* but highly more represented by *Eubacterium spp.*
16S phylogenetic abundance in severe ME and HHCs

- Dataset C

This final data provided insight into the 16S V4 region microbiome of 17 female severe, house bound patients and 8 HHCs recruited in 2016/2017 using the enhanced methods for faecal sample collection which required the entire intact stool and was protect using Anaerogen™ Compact® sachet to limit oxygen exposure. Left over sample from the previous year (2016) in conjunction with additional samples produced in 2017 available from 4 patients and their respective HHCs bringing the total number of samples to 21 ME versus 12 HHC.

Table 2.3.6 shows faecal DNA extraction yield was notably lower in samples that had been stored in the -80°C freezer. The minimum concentration yielded was 12 ng/µl in a total volume of 65 µl of ddH₂O. The average number of reads per sample was 150,882 ± 35,890. A total 2520 OTUs were observed across all samples. Of these 2282 (figure 3.3.19) were clustered together with ≥97% DNA sequence similarity and annotated to 866.15±75.80 SD bacterial genera across both groups. OTU abundance was normalised corresponded to sample F4 with the least number of reads at 47,985. On average the number of genera observed per sample in each group was 877±56.40 SD in ME versus 847±108 SD in HHCs.
<table>
<thead>
<tr>
<th>Sample</th>
<th>Status</th>
<th>DNA (ng/μl)</th>
<th>Year</th>
<th>Reads</th>
<th>Ave Len(nt)</th>
<th>Q20</th>
<th>Q30</th>
<th>GC%</th>
<th>Assigned OTUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>ME</td>
<td>803</td>
<td>2017</td>
<td>243,161</td>
<td>253</td>
<td>99.34</td>
<td>98.68</td>
<td>53.14</td>
<td>910</td>
</tr>
<tr>
<td>F2</td>
<td>ME</td>
<td>466</td>
<td>2017</td>
<td>163,179</td>
<td>253</td>
<td>99.37</td>
<td>98.71</td>
<td>53.9</td>
<td>926</td>
</tr>
<tr>
<td>F3</td>
<td>ME</td>
<td>731</td>
<td>2017</td>
<td>223,279</td>
<td>253</td>
<td>99.36</td>
<td>98.71</td>
<td>53.39</td>
<td>877</td>
</tr>
<tr>
<td>F4</td>
<td>HHC</td>
<td>448</td>
<td>2017</td>
<td>47,985</td>
<td>253</td>
<td>99.34</td>
<td>98.68</td>
<td>55.47</td>
<td>467</td>
</tr>
<tr>
<td>F5</td>
<td>ME</td>
<td>648</td>
<td>2017</td>
<td>222,044</td>
<td>253</td>
<td>99.4</td>
<td>98.77</td>
<td>54.03</td>
<td>932</td>
</tr>
<tr>
<td>F6</td>
<td>HHC</td>
<td>610</td>
<td>2017</td>
<td>182,173</td>
<td>253</td>
<td>99.37</td>
<td>98.73</td>
<td>52.68</td>
<td>825</td>
</tr>
<tr>
<td>F7</td>
<td>ME</td>
<td>515</td>
<td>2017</td>
<td>150,931</td>
<td>253</td>
<td>99.36</td>
<td>98.72</td>
<td>54.25</td>
<td>865</td>
</tr>
<tr>
<td>F8</td>
<td>HHC</td>
<td>544</td>
<td>2017</td>
<td>195,424</td>
<td>253</td>
<td>99.39</td>
<td>98.74</td>
<td>52.95</td>
<td>903</td>
</tr>
<tr>
<td>F9</td>
<td>ME</td>
<td>403</td>
<td>2017</td>
<td>117,136</td>
<td>253</td>
<td>99.36</td>
<td>98.7</td>
<td>53.04</td>
<td>934</td>
</tr>
<tr>
<td>F10</td>
<td>ME</td>
<td>526</td>
<td>2017</td>
<td>109,282</td>
<td>253</td>
<td>99.37</td>
<td>98.71</td>
<td>52.67</td>
<td>842</td>
</tr>
<tr>
<td>F11</td>
<td>HHC</td>
<td>2154</td>
<td>2017</td>
<td>172,826</td>
<td>253</td>
<td>99.4</td>
<td>98.78</td>
<td>53.13</td>
<td>1265</td>
</tr>
<tr>
<td>F12</td>
<td>ME</td>
<td>244</td>
<td>2017</td>
<td>166,377</td>
<td>253</td>
<td>99.35</td>
<td>98.7</td>
<td>52.21</td>
<td>805</td>
</tr>
<tr>
<td>F13</td>
<td>ME</td>
<td>171</td>
<td>2017</td>
<td>213,772</td>
<td>253</td>
<td>99.33</td>
<td>98.65</td>
<td>53.12</td>
<td>896</td>
</tr>
<tr>
<td>F14</td>
<td>HHC</td>
<td>978</td>
<td>2017</td>
<td>135,073</td>
<td>253</td>
<td>99.34</td>
<td>98.66</td>
<td>53.49</td>
<td>935</td>
</tr>
<tr>
<td>F15</td>
<td>ME</td>
<td>326</td>
<td>2017</td>
<td>188,528</td>
<td>253</td>
<td>99.34</td>
<td>98.68</td>
<td>53.41</td>
<td>915</td>
</tr>
<tr>
<td>F17</td>
<td>ME</td>
<td>233</td>
<td>2017</td>
<td>219,965</td>
<td>253</td>
<td>99.37</td>
<td>98.71</td>
<td>55.02</td>
<td>881</td>
</tr>
<tr>
<td>F18</td>
<td>ME</td>
<td>822</td>
<td>2017</td>
<td>163,722</td>
<td>253</td>
<td>99.37</td>
<td>98.72</td>
<td>52.89</td>
<td>799</td>
</tr>
<tr>
<td>F19</td>
<td>HHC</td>
<td>576</td>
<td>2017</td>
<td>116,316</td>
<td>253</td>
<td>99.36</td>
<td>98.71</td>
<td>53.56</td>
<td>884</td>
</tr>
<tr>
<td>F20</td>
<td>HHC</td>
<td>476</td>
<td>2017</td>
<td>171,177</td>
<td>253</td>
<td>99.35</td>
<td>98.68</td>
<td>53.21</td>
<td>894</td>
</tr>
<tr>
<td>F21</td>
<td>ME</td>
<td>336</td>
<td>2016</td>
<td>107,094</td>
<td>253</td>
<td>99.36</td>
<td>98.68</td>
<td>53.18</td>
<td>876</td>
</tr>
<tr>
<td>F22</td>
<td>HHC</td>
<td>385</td>
<td>2016</td>
<td>101,151</td>
<td>253</td>
<td>99.36</td>
<td>98.69</td>
<td>52.99</td>
<td>849</td>
</tr>
<tr>
<td>F23</td>
<td>ME</td>
<td>147</td>
<td>2016</td>
<td>150,529</td>
<td>253</td>
<td>99.38</td>
<td>98.75</td>
<td>53.47</td>
<td>1215</td>
</tr>
<tr>
<td>F24</td>
<td>ME</td>
<td>90.2</td>
<td>2016</td>
<td>148,620</td>
<td>253</td>
<td>99.34</td>
<td>98.67</td>
<td>52.56</td>
<td>812</td>
</tr>
<tr>
<td>F25</td>
<td>ME</td>
<td>66.5</td>
<td>2016</td>
<td>196,539</td>
<td>253</td>
<td>99.35</td>
<td>98.68</td>
<td>53.86</td>
<td>830</td>
</tr>
<tr>
<td>F26</td>
<td>ME</td>
<td>44.9</td>
<td>2016</td>
<td>141,569</td>
<td>253</td>
<td>99.36</td>
<td>98.7</td>
<td>54.11</td>
<td>823</td>
</tr>
<tr>
<td>F27</td>
<td>ME</td>
<td>466</td>
<td>2016</td>
<td>190,187</td>
<td>253</td>
<td>99.33</td>
<td>98.66</td>
<td>53.85</td>
<td>785</td>
</tr>
<tr>
<td>F28</td>
<td>HHC</td>
<td>454</td>
<td>2016</td>
<td>92,279</td>
<td>253</td>
<td>99.38</td>
<td>98.73</td>
<td>53.18</td>
<td>782</td>
</tr>
<tr>
<td>F29</td>
<td>ME</td>
<td>12</td>
<td>2016</td>
<td>159,789</td>
<td>253</td>
<td>99.4</td>
<td>98.77</td>
<td>53.21</td>
<td>859</td>
</tr>
<tr>
<td>F30</td>
<td>HHC</td>
<td>351</td>
<td>2016</td>
<td>144,861</td>
<td>253</td>
<td>99.38</td>
<td>98.73</td>
<td>52.91</td>
<td>732</td>
</tr>
<tr>
<td>F31</td>
<td>HHC</td>
<td>672</td>
<td>2016</td>
<td>101,084</td>
<td>253</td>
<td>99.37</td>
<td>98.71</td>
<td>53.35</td>
<td>812</td>
</tr>
<tr>
<td>F32</td>
<td>ME</td>
<td>237</td>
<td>2016</td>
<td>159,332</td>
<td>253</td>
<td>99.37</td>
<td>98.71</td>
<td>53.25</td>
<td>794</td>
</tr>
<tr>
<td>F33</td>
<td>ME</td>
<td>183</td>
<td>2016</td>
<td>91,557</td>
<td>253</td>
<td>99.35</td>
<td>98.68</td>
<td>53</td>
<td>843</td>
</tr>
<tr>
<td>F34</td>
<td>HHC</td>
<td>29.2</td>
<td>2016</td>
<td>84,446</td>
<td>253</td>
<td>99.36</td>
<td>98.7</td>
<td>52.89</td>
<td>816</td>
</tr>
</tbody>
</table>

Table 3.3.6 Summary of sample status and number of paired-end reads, including quality score (Q20 and Q30), DNA concentration, GC% content obtained per sample from 33 samples supplied to sequencing provider.
Figure 3.3.19 Venn diagram of observed OTUs in severe ME (n=21) and HHCs (n=12) samples. Values in overlapping parts represent common OTUs. The numbers refer to specific OTUs unique to that sample group.

Rarefaction curves were plotted for each sample (figure 3.3.20A) using reads rarefied to 47,985 reads. As the number of sequenced reads increases the number of observed species gradually reaches a plateau.

Figure 3.3.20 Rarefaction curves per sample (A) and averaged species abundance (B) and alpha diversity (C) measured using the Shannon Index, H.
Figure 3.3.21 WPGMA cluster analysis using weighted UniFrac distances to reveal hierarchical clustering of samples based on composition and relative abundance of bacterial phyla in 21 severe ME patients and 12 House-Hold Controls. Weighted pair group method with arithmetic mean (WPGMA) is a hierarchical clustering tool used in ecological studies to classify samples. The clustering tree (left) is constructed on the basis of sequence similarity among different samples. The Weighted Unifrac Distance is calculated as an average between clusters of samples with similar sequences forming a node, followed by branching and clustering of samples with more distant sequences.
Figure 3.3.22 Box plot of Alpha Diversity indices between 21 severe ME patients and 12 House-Hold Controls using the Shannon (H) index. Plot highlights no intra-individual sample differences for species diversity within patient and control groups. Diversity of severe ME appears no different from house-hold control samples.

Alpha diversity is used to assess the diversity of microbial composition. This was performed on this dataset using the cut-off of 45,995 reads per sample assigned to OTUs at 97% similarity in DNA sequencing. Classification of these OTUs provides microbial composition. The Shannon H index measures microbial composition in each individual sample (figure 3.3.20C). The difference in H indices obtained from samples within both groups, severe ME and HHCs are presented in figure. 3.3.22.T-test and Wilcoxon tests were performed on this data and showed no significant difference between these groups in terms of microbial composition.

- **Phylum level observations**

Weighted UniFrac distances were applied to PGMA to visualise clustering of samples at the phylum level. Figure 3.3.21 is the output from this analysis and shows a proportion of severe ME patients cluster at this level. However, averaging the RA of phyla between groups shows there were no significant observations in terms of RA at the phylum level. *Firmicutes, Bacteroides, Proteobacteria and Actinobacteria* were observed the most abundant bacterial phyla in that order within both groups (figure 3.3.23).
Figure 3.3.23 Relative abundance ratio of bacterial phyla observed in severe ME versus HHC.

“Healthy” refers to House-Hold Controls (HHCs). There is no significant or observable difference in the proportions of bacterial phyla comparing severe ME with a respective house-hold control.

- **Genus level observations**

The abundance of the most dominant 35 genera among all samples was investigated in terms of distribution between severe patients and HHCs. The majority of the most dominant genera were found within *Firmicutes*. This was based on the analysis of clustering of samples as well as taxa. Interestingly the most abundant dominant genera were found in individual severe ME samples, including *Holdemanella, Streptococcus, Anaerostipes, Prevotella, Dialister, Bifidobacterium, Subdoligranulum, Collinsella, Lachnospiraceae, Dorea, Escherichia-Shigella* and *Mucilaginibacter*.
Figure 3.3.24 Heatmap of relative abundance of the most dominant genera in 21 severe ME versus 12 HHCs. The abundance distribution of the dominant 35 genera among all samples was displayed in this species abundance heatmap. Based on the clustering results of samples and taxa, samples may be clustered or not according to their similarity or differences, observed in this heatmap. Names on right side of heatmap represent bacterial genus. The absolute value of Z represents the distance between the raw score and the mean of the standard deviation across all samples in that group. Z is negative (blue) when the raw score is below the mean and vice versa when the score is above the group mean (red) for that sample.

- **Statistical analyses**

Principle component analysis (PCA) uses complete multivariate data based on OTUs from each sample to compare the structure of the data from the two groups. PC1 (17.19%) and PC2 (PC 7.42%) in figure 3.3.25 show the maximum variation in this data. The similar the microbial composition between samples, the closer the distance corresponding to their position of the plot. Most samples cluster together suggesting a similar microbial composition is shared in both groups. However, four patients and one HHC are compositional distinct from this cluster and appear as outliers.
Figure 3.3.25 Principal Component analysis based on differences of composition of assigned OTUs
to bacterial taxa in 21 severe ME patients and 12 HHCs. Each dot represents a sample plotted
against principal components, PC1 (17.19%) versus PC2 (7.42%). Samples which share a similar
community composition of bacteria, the closer they are represented on the plot. Based on similar
group clustering of ME and HHC samples, plot reveals no difference between the beta-diversity of
patient and control group.

A series of comparisons between patients and HHCs using ecological indices explored in
PCoA plots using Bray-Curtis dissimilarity, Chi-Square and Goodall similarity index to
determine pair-wise similarity between observations of composite multivariate OTU
datasets in the two groups. As discussed earlier, Bray-Curtis measures focus on the most
abundant bacterial taxa, which were found to be Bacteroides vulgatus, Turicibacter spp.
and Clostridium celatum. Patients in the plot (figure 3.3.26) are represented by dark blue
red are matched, whilst un-matched ME patients are the dark blue circles. All HHCs (green
triangles) are matched to their respective severe ME patients.
Figure 3.3.26 PCoA using Bray-Curtis distances to separate 21 severe ME patients from 12 HHCs

High species composition similarity between samples are plotted closer together. There appears to be a reduced similarity comparing between severe ME patient samples, compared to both unmatched and house-hold controls which appear much more similar to one another. Red circles, matched severe ME; dark blue circles, unmatched severe ME; green triangles, house-hold controls.

Plot annotated with bacterial species relevant to driving separation of samples.

MEGAN 6.0 was also used to compute PCoA plots using Chi-Square distances and the Goodall’s similarity index. The former (figure 3.3.27) has the added advantage over Bray-Curtis for considering the differences in proportions of the taxa instead of summarising the most abundant. Using this method, the same bacterial taxa emerge samples in the respective region of the plot. In both methods, un-matched ME patients cluster more closely as do HHCs with exception to CRL-4, -22 and -34.
Figure 3.3.27 PCoA plot using Chi-Square distance separation between 21 severe ME patients and 12 HHCs. Conventional unmatched controls (blue) cluster together revealing similar proportions of bacterial taxa. Contrastingly, severe ME samples (red) display more dissimilarity within their own group and with their respective House-Hold control (HHC), green triangles. Fewer than expected HHCs share similar proportions of the same bacterial taxa identified in their ME patient counterpart.
Goodall’s similarity index (figure 3.3.28) is an non-parametric measure designed to examine pairwise similarity between observations of composite multivariate data and is used to give more weight to differences between rarer bacterial taxa rather than comparing the most abundant genera within a group (Mitra et al., 2010). This had the dramatic effect of reducing the clustering of samples compared to the other PCoA plots. Finally, UPGMA was used to visualise the distances between the clustering of samples according to the unweighted and weighted UniFrac method and is frequently used to compare microbiological community structures. In contrast to Bray-Curtis, the relative relatedness of community members by observation of phylogenetic distances between observe species within a sample is used to compare samples. This analysis was performed using MEGAN 6.0 and presented in figures 3.3.29A (unweighted) and 3.3.29B (weighted). Unweighted only accounts for clustering of OTUs compared to weighted which considers the RA in addition.
Figure 3.3.29 UPGMA clustering based on unweighed (A) and weighted UniFrac (B) distances between 21 severe ME patients and 12 HHCs. Analysis represents the comparing of microbial ecological communities across all samples using phylogenetic distances to generate a tree. Unweighted corresponds to differences in low-abundance taxa, whereas weighted calculates branch length according to the observed abundance of shared and unshared bacterial taxa across both groups and is less sensitive to lower abundance taxa. Red circles, matched severe ME; dark blue circles, unmatched severe ME; green triangles, house-hold controls.
Species variation between severe ME and HHC

T-test was performed to determine species with significant variation between groups (p value < 0.05) at various taxonomic ranks including phylum, class, order, family, genus, and species.

Figure 3.3.30 shows the significant species variation in abundance between both groups. The class of Bacilli spp. appear more (p = 0.004) in severe ME. Conversely, the phylum Sphingobacteria was higher (p = 0.045) in the HHC group. Significant intra-group variation were detected using MetaStat produced in RStudio which used multiple hypothesis-test for sparsely sampled features and Benjamin Hochberg false discovery rate (FDR). Fusobacteria spp. emerged from this analysis as significant (q < 0.05) in severe ME patients.

Figure 3.3.30 The bacterial phylum, Fusobacteria are significantly more varied in ME and absent in HHCs (A) Intergroup variation: left panel, each bar represents the mean value of the abundance in each group of the species showing significant between group variation. The right panel shows the confidence interval between these group variations. The centre each circle represents the difference of the mean value. (B) Intra-group variation detected Fusobacteria were significantly (q <0.05) more varied within patient compared to HHCs where they were absent.
As a final summary of this data, MEGAN was used to generate a phylogenetic tree (figure 3.3.31) of the top 10 most RA genera across also samples and to highlight the relative contribution these have within the two groups. This revealed *Collinsella* spp., *Blautia* spp. and *Lachnospiraceae* spp. were more common in some patients (fig. 3.3.32). Conversely, *Bifidobacterium* spp., *Subdoligranulum* spp. were more common in HHCs. Interestingly, *Faecalibacterium* spp. was similarly abundant in both groups.
Figure 3.3.31 Top 10 bacteria genera found common in 21 severe ME patients and 12 HHCS. The size of circle represents the size of its relative abundance in samples. Each colour represents a sample group and the proportion of dominance that taxa has within the sample group. The first number below the taxonomic name represents the percentage in the whole taxon, while the second number represents the percentage in the selected taxon. Tree highlights no observable differences between these top 10 genera in patients and HHCs; Collinsella; Bifidobacterium; Bacteroides; Clostridium; Blautia; Lachnospiraceae; Roseburia; Faecalibacterium Subdoligranulum; Turicibacter.
Figure 3.3.2 Bubble plot summary of 21 selected genera across 21 severe ME patients and 12 HHCs. Analysis provides individual sample summary of bacterial abundance. There are no obvious differences in abundance of these shared genera between patients and HHCs. Plot generated using MEGAN 6.0. Colour corresponds to bacterial genera listed to the left. Size of bubble given proportional the square root scale of the relative abundance in each sample.

3.4 Discussion

The initial design and concept for this microbiome study was conceived in late 2013. At this time there was very little published guidance on designing the perfect microbiome study. The overwhelming majority of intestinal microbiome research uses faecal samples collected by the participant and DNA extracted using a range of commercially available kits. Since 2013 several reports have highlighted that sample collection represents a crucial step in ensuring uncompromised sample integrity and that stability is maintained for downstream application of Next-Generation Sequencing (NGS) (Panek et al., 2018). Prompt downstream processing of faecal samples should be completed within 2-3 hours with immediate stabilisation for longer term storage (Panek et al., 2018). Relatively short term exposure to room temperature for up to 2 h prior to DNA extraction does not affect the stability of the microbiota composition according to comparison with samples that had been frozen immediately (Guo et al., 2016).

Freezing the faecal sample at -80°C as soon as possible after collection is regarded as the most appropriate method for preserving microbial composition (Choo et al., 2015). This was not possible considering the majority of samples were obtained from house-bound patients who had collected their sample within 24 hrs of a scheduled home visit. Last minute house visits could not be conducted to minimise this time because of the 150-mile distance between the research laboratory and patients living in the South London area. Instead patients were asked to store their sample in the fridge until collection. Refrigeration of up to 72 hours has been shown not to adversely affect the microbiota diversity of composition and is reassuring that this covers the time required to collect the faecal samples from the patients home (Choo et al., 2015). However, all samples were left without refrigeration between collection from the patient’s home and delivery to the hospital laboratory, before storing at -80°C. The time delay was dependent on a number of factors including traffic delays and distances between patient’s homes and the hospital and could be between 1-6 hrs until the sample was frozen may contribute to changes microbial composition. This study also praised OMNIgene GUT® as an alternative method to
refrigeration. These devices contain a patented stabilisation mixture and where initially used in 2015 for the collection of faecal samples from 25 mild/moderate patients in dataset A. Early attempts to extract faecal DNA from -80°C frozen OMNIGene GUT devices failed to produce a readable concentration of DNA using the MOBIO Powersoil® DNA extraction kit and Nanodrop. Instead, the FastDNA® Spin kit for soil was found to extract the minimum 5ng/µl for PCR 16S V4 amplification performed by the sequence provider.

Storage of the OMNIGene GUT at -80°C is only recommended up to 1 month (DNAGenotek, 2017). Samples from mild/moderate patients (dataset A) were kept at the hospital at -80°C for much longer (~9 months) before they were received at the institute for DNA extraction. Notably, these samples have very low abundance of Actinobacteria which includes members of Bifidobacterium spp. and Coriobacteria spp. This observation was found not to be the case in dataset C (fig. 3.3.7) in severe ME patients who had 14.59±8.41% RA of Actinobacteria and may be regarded as a technical artefact. The turnaround time dataset C was much quicker, as these samples had their DNA extract within 3 months of being stored at -80°C. Interestingly Table 3.3.6 shows some of samples from 2016 collections yielded a lower DNA concentration compared to 2017 samples. Studies of long-term storage of faecal material at -80°C has been investigated for samples stored for 2 years and 14 year showing they can be used for 16S but with a reduction in observed OTUs and increased abundance for Lactobacillus spp. and Staphylococcus spp., none of which were detected in our mild/moderate ME patients (Kia et al., 2016; Shaw et al., 2016; Vandeputte et al., 2017). Long term freezing causes substantial DNA shearing compared to fresh faecal extractions and may have greater implications for shotgun metagenomic studies which require high quality input DNA (Kia et al., 2016).

Following sample collection and storage, several processing steps can introduce data bias caused by the DNA extraction protocol and during 16S rDNA library preparation (Rintala et al., 2017). For example, detection of Gram-positive bacteria, particularly Bifidobacterium spp. requires adequate bead-beating during sample DNA extraction and optimisation using modified primers targeting V1-V3 regions (Walker et al., 2015). 16S microbiota profiles are based on the reported relative read abundances of OTUs derived from 16S amplicons; thus PCR amplified DNA can only be representative of the quantitative abundance of all bacteria in faeces if this step is efficient for all strains of bacteria (Wintzingerode et al., 1997). Universal primers U515F and U927R/U806R in datasets A and C respectively, were chosen
to span the 16S V4-V5 region for highest taxonomic resolution of bacterial and archaeal ribosomal gene (Wang & Qian, 2009). This leads to the assumption that the PCR primers have equal access for hybridisation to a specific 16S-targeted V region in all bacteria, however DNA extraction also determines this property depending on how sufficiently the extraction kit causes bacterial cell disruption in order to access the genetic material (Wintzingerode et al., 1997).

Since 16S-based microbiome studies are restricted to short nucleotide (nt) read lengths (100-300bp) on the Illumina platform (compared to 250-400bp using 454 methods), the outcome of the relative abundance of amplicons can also favour different bacteria depending which variable region of the 16S gene is targeted and the specificity of primer sets used. For example, primers spanning hypervariable regions V1-V2 do not adequately reproduce proportional abundance of reads that reflect the contribution of all species in the female genital tract compared to the V3-V4 region which identifies a greater number of taxa (Graspeuntner et al., 2018). There is also consensus that targeting V4-V5 regions in intestinal microbiome studies produces a greater number of recognised OTUs and observed microbial diversity compared to V3-V4 using the Shannon H index (Rintala et al., 2017). Elsewhere, sequencing regions V4-V6 have been suggested to represent the majority of diversity of bacterial phyla for taxonomic classification (Yang et al., 2016).

Amplicon sequencing is suggested to be more sensitive to lower abundant species since utilities a PCR application step in preparation of a library of amplicons to be sequenced (Edgar, 2017). However, primer bias and mismatches can occur during PCR amplification and can bias the relative abundances of amplicon produced in the library (Robinson et al., 2016). Although datasets A and C are 16S-derived sequencing of the same V4 region they were collected by different methods and do not contain overlapping samples to determine the batch effect and therefore cannot be directly compared. Moreover, the library preparation of these datasets use different PCR protocols provided by the sequencing provider at the time. It has been suggested PCR primer length, amplicon length, reaction temperatures and number of cycles, and different polymerases can influence the efficiency for amplification and shown to provide contrasting estimates for community structure (Wu et al., 2010).
The design of the perfect 16S study cannot be achieved because different microbiotas have vastly different microbial structures which makes deciding the most suitable V-region, set of optimal primers and recommended read length a substantial challenge to accurately reflect the correct community profile. Mock microbial community analysis using 16S amplicon read abundances have been independently compared with shotgun metagenomic sequences showing significant deviation away from the 16S estimated bacterial composition compared to the known community structure (Edgar, 2017). To obtain accurate measurement of the full taxonomic diversity within a complex community sample such as human faeces, near complete characterisation of the 16S gene is needed to assign specific bacterial species (Yarza et al., 2014). Therefore species-level abundances using 16S have no meaningful use because they are based on such short read lengths of 250-300bp compared to the available length of the 16S rRNA is around 1400-1900bp (Karst et al., 2018) Closely related bacteria are more difficult to resolve using V4 alone. To that end the species-level assignment given in figure 3.3.31 are not reliable based on this sequence information. Another problem encountered can be 16S copy number variation which will bias the PCR amplification step and influence the predicted microbial composition (Edgar, 2017). Moreover, the choice of storage method, DNA extraction protocol, primer design and sequencing platform will influence the outcome of the result. For consistency, the 16S-derived microbiota in datasets A and C were processed using the same extraction kit and targeted at the V4 of 16S PCR amplification. In future, to avoid any batch effects samples must be analysed together using the same experimental PCR protocols, conditions and at the same time.

Dataset C produced on average 80,122 more reads per sample than those in dataset A, which allowed over 4 times the number of classifiable OTUs to be taxonomically assigned. This fact demonstrates how the collection method, primer sequences, PCR protocols and sequencing length can affect data output and has been explored more in depth using mock microbial populations highlight a need for a standardised approach (Fouhy et al., 2016). Alpha diversity (figure 3.3.22) and beta diversity measurements were not found to be significantly different between Severe ME patients and HHCs. Actinobacteria were present in all samples (figure 3.3.21), as they were also in the “shallow” shotgun, dataset B (figure 3.3.7), adding further convincing evidence that the lack of these species in dataset A, mild/moderate patients is not a genuine finding. In contrast to findings from Giloteaux et al. (2016), the number of observed species in patients was higher than in HHC (figure
3.3.20A and 3.3.20B). A key difference between this study and theirs are the inclusion of controls living within the same house-hold of the patient. It was expected that similar features in microbiota populations would be shared between the microorganisms of patient and their respective HHC. It was expected PCoA analysis would show closer distances between patient and their matched control based on overall community composition. The reverse is found in figures 3.3.26 and 3.3.27 which show house-hold controls are more compositionally related to un-matched ME patients. Goodall’s similarity test was chosen as it specifically considers the fact these samples are paired. It can be seen from figure 3.3.28 that the patient and HHC group are positioned in an overlapping ring formation with some unmatched patients within the centre of the plot. To that end, given the description of this analysis by (Mitra et al., 2010), Goodall dissimilarity more accurately reflects the relationship between severe ME and HHCs. The lack of forming discrete clusters within this PCoA plot also demonstrates how compositionally diverse both patients and HHCs from other members within their respective group. UPGMA UniFrac considers the presence or absence of OTUs distances and did show clustering of some severe ME patient that matched HHCs (fig. 3.3.29) (Jovel et al., 2016). However, UniFrac is a method of determining the phylogenetic relationship tree structures compared between samples, and so given the shallow sequencing and number of observed OTUs this method is perhaps not the most suited to this data, whereas non-phylogenetic measures of ß-diversity, including Bray-Curtis (fig 3.3.26) which does account for zero abundances within the raw data, but is still heavily influenced by more dominant OTUs which overshadow smaller changes in less abundant, rarer OTUs (see supplementary S2.1 and S2.2) (Bray & Curtis, 1957; Jovel et al., 2016). Among the top 10 genera highlighted from MEGAN in figure 2.3.31 that shared between ME and HHC, includes Lachnospiraceae, Roseburia, and Faecalibacterium, that have previously been associated with the ME/CFS (Giloteaux et al., 2016; Nagy-Szakal et al., 2017). Lachnospiraceae the family to which the genus Lactonifactor belongs, found to increased x20 in Norwegian CFS patients and x40 in Belgian CFS patient compared to healthy controls, did not differ between patients and HHCs in dataset B (table 3.3.4) and dataset C (fig. 3.3.11B) (Fremont et al., 2013).

Finally, dataset C did not reproduce findings from dataset B, for significant changes in the relative abundances for Faecalibacterium prausnitzii, Oscillibacter and Eggerthella. Fusobacteria were associated with 1-3 OTUs (figure. 2.3.30) per sample, in patients only. These were samples ME_5, ME_17, ME_27 and ME_29. Fusobacterium are increased in
colorectal cancer (CRC) and have diagnostic relevance as an additional microbial marker for faecal immunochemical testing patient faeces increasing sensitivity of testing to 92.3% from 73.1% to supplement diagnosis of advanced CRC (Wong et al., 2017).

- **Shotgun metagenomics attempt**

In order to overcome the potential biases of 16S gene marker approaches and achieve better taxonomic resolution, shotgun metagenomics (dataset B) was attempted from 2016 visits to 11 house-bound patients. Unfortunately, the term “shallow” shotgun metagenomics was adopted to describe the low sequencing depth of reads with this dataset. Lipkin et al. 2017, acquired on average 7GB of sequence data per sample equivalent to around 35 million reads, compared to our lowest sample which had 253, 484 raw sequencing reads (Nagy-Szakal et al., 2017). This may partly be due to MiSeq platform used to sequence these samples which is limited to 15GB of data with a maximum output of 44-50 million 300bp PE sequencing reads with the MiSeq Reagent Kit v3 (Illumina, 2015).

It is difficult to advise exactly how many reads are required to generate an accurate representation of the total microbiome which also includes members of archaea, fungi and viruses. Cost is a significant factor per sequencing run, individual coverage of these samples is balanced by the total number of samples processed simultaneously in each run by multiplexing up to 96 or 384 samples at a time using dual indexes (barcodes) during library preparation (Quince et al., 2017). Based on the number of reads obtained, this dataset exceeds both average number of reads for 16S in the other datasets. Significantly as it is SMS, it is not restricted to the 16S gene and therefore contains random sequencing across the total microbiome which MetaPlAn has compared against reference genomes available from (www.bitbucket.org/biobakey/metaphlan2). This has had some benefit in being able to apply a species-level identification to dataset B.

As highlighted already, application of SMS to metagenomic studies of diverse microbiotas requires high-quality molecular weight DNA. This aspect was not considered during preparation of dataset B; at the time DNA was quantified using Qubit, which uses a fluorescent dye to hybridise with the sample DNA and is considered superior at providing more accurate concentration than the NanoDrop. Added to this, lack of sequencing depth has since been explained by the fact that libraries were prepped using Illumina® Nextera XT, which is recommended for use in low-biomass starting material of 1ng/µl. As with 16S studies, the choice of method for preparation of library preparation for shotgun
metagenomic sequence data has been evaluated in faecal samples which show Nextera XT performs poorly in these samples with 28% low quality reads compared the more expensive Illumina TruSeq PCR-free kits (Jones et al., 2015). The low DNA input for Nextera XT is possible because of a whole genome amplification (WGA) step, but given the diversity of the intestinal microbiome, there will be the familiar amplification biases that will also cause the RAs of different bacteria to change (Probst et al., 2015). It has been proposed that PCR-free approaches to metagenomic library prep are implemented, however, these are more expensive but will likely be more representation of the true community structure of the faecal microbiota (Quince et al., 2017).

Another explanation for the loss of sequencing depth may be a result of the beat betting used by the FastDNA® spin kit which would create shortened DNA fragments that are suitable enough for 16S, but not for shotgun library preparation with the Nextera XT kit which uses a technique called “tagmentation” (Quince et al., 2017). This causes enzymatic fragmentation of sample DNA and transfers transposons (tags) onto the both ends of dsDNA to allow partial overhang of Illumina® sequencing adaptors. The concentration of the kit’s reagents and the concentration of sample DNA can limit transposome complex transposase activity (figure 3.4.1) and tagging of DNA fragments. Thus, the distribution of tagged DNA within the library will influence the proportion of the library that gets sequenced. For example, samples that are >1ng can therefore lead to under-tagmentation (Caruccio et al., 2009; Holmes et al., 1988; Illumina, 2014; Syed et al., 2009). Prior to sending samples to the sequencing provider for dataset C, they were analysed on the Bioanalyzer™ Tapestation® which produces gel images to assess DNA fragment sizes. Although this dataset produced 16S data, DNA quality can also affect tagmentation. The Nextera XT transposome requires minimum of 300bp to efficiently cut the DNA into fragments for transposon tagging and therefore if the sample DNA is degraded this will cause few tagedmented fragments to be sequenced and will cause an under-representation of species diversity (Illumina, 2014).
Despite the technical issues with this data, there were some interesting findings comparing severe patients with HHCs. The first is the lower RA of *Faecalibacterium prausnitzii* in patients shown in figure 3.3.11. This is in agreement with another report of this species being significantly reduced in ME/CFS patients with IBS (Nagy-Szakal et al., 2017). It is suggested to account for 5% of the total bacteria resident in the intestinal microbiota and a reduction in this species in linked to dysbiosis in intestinal inflammatory diseases such as Crohn’s Disease (Miquel et al., 2013). Significantly higher RA of *Eggerthella spp.* 0.98% ME versus 0.43% HHC (table2.3.4) was seen comparing across the genus level using non-parametric Mann-Whitney U test in figure 3.3.13. The abundance tables for this dataset are included in the supplementary section (S3.1 and S3.2). *Eggerthella spp.* are Gram-positive anaerobes belonging to the phylum *Actinobacteria* normally found in the human intestinal microbiota but have been associated with abdominal sepsis (Gardiner et al., 2014). This finding in severe ME patients was also something reported by Lipkin et al (2017) in ME/CFS without IBS (Nagy-Szakal et al., 2017).
- **Summary**

Seventy-seven samples were analysed using next generation sequencing to determine differences in the composition of the intestinal microbiota between ME/CFS patients and house-hold controls. The composition of the intestinal microbiome of ME/CFS patients has been suggested to be less diverse than that of healthy controls (Fremont et al., 2013; Giloteaux et al., 2016; Nagy-Szakal et al., 2017). We compared and contrasted sequencing of the V4 hypervariable region of the 16S gene, a single genetic marker against recovery of non-targeted, random 150bp DNA sequences representing the entire (meta)genome content extracted from faeces. The data generated from these two methods did not show variation in the diversity of species identified in ME/CFS and HHCs. However, using shallow shotgun sequences, patients had a 5-fold reduction in *Faecalibacterium prausnitzii* compared to HHCs. Other significant differences were at the genus level included increased abundance of *Oscillibacter* and *Eggerthella* in severe ME compared to HHC. Comparison of the members of the core microbiota (defined by bacterial taxa appearing in 50% of all samples) revealed qualitative and quantitative differences between severe ME and HHCs based on 16S sequencing. Severe ME patients have few members of the core microbiota than HHC. No evidence for increased abundance of *Proteobacteria* (a source of bacterial LPS) was found in any of the datasets. The genus contains several known human pathogens and is suggested as a microbial signature for low-grade inflammation sustained by exposure to LPS (Rizzatti et al., 2017).

A recent review highlights the need for best practices for designing and analysing microbiome studies which address some of the issues surrounding reproducibility of microbiome data (Knight et al., 2018). Several sources of confounding factors are generated through every step of a microbiome study. Every microbiome study faces challenges for establishing an experimental design to generate the best source of data and relies on the methods of sample collection, protocols to standardise faecal DNA extraction and library preparation and PCR biases, choice of sequencing platform, pre-processing of reads, and bioinformatics pipelines to analyse sequence data to generate a microbial profile. Therefore, the output of multiple metagenomics studies is very difficult to compare without establishing good practices to address these differences.

In conclusion, the total data in this chapter represents a pre-screening of the composition of the intestinal microbiota of severe ME patients compared to HHCs. We have shown the
taxonomic capabilities of 16S sequencing does not allow sufficient taxonomic resolution to reveal differences between patients and house-hold controls. Our shallow shotgun data utilised non-targeted, random “shotgun” sequencing of the intestinal microbiome but failed to provide adequate coverage based on the low number of sequence reads generated. Despite this, the number of reads generated far exceed the output of both 16S datasets and were processed using MetaPlAn to compare sequences against known bacterial reference genomes. Here, we did reveal a significant reduction in the relative abundance of Faecalibacterium and increased Eggerthella and Oscillibacteria in severe ME compared to HHCs. This study represents the first of its kind to explore the microbiota composition in severe patients matched with their respective healthy house-hold control. We consider this an important strength to this study, but future work should sample from patients diagnosed with IBS to exclude to possible dysbiosis by this cause. Our analysis did not sufficiently replicate those of other ME/CFS metagenomic studies carried out in mild to moderately affected ME/CFS patients. Given the known impact diet has of the microbiota, future studies should give consideration to recording food intake. Future work should also resolve both technical and logistical concerns raised throughout this discussion.
Chapter Four

4 Profiling the faecal and serum metabolome in house-bound, severe ME patients
4.1.1 Introduction

The human metabolome is complex, particularly within the gut since factors including diet, lifestyle, age, medications, and environmental contact with microbes influence experimental data and outcome. Metabolomics, a major contributor among the ‘omics’-based technologies, is being exploited to better understand the role of the functional capacity of gut microbes in the context of health and disease. The majority of research on the intestinal microbiota has focused on genome-based studies that have led to associations of changes in the composition of intestinal bacteria in a broad spectrum of (auto)-immune/inflammatory disorders from: obesity, type II diabetes, cancer, and (neuro)-immune/endocrine pathologies such as multiple sclerosis, autism and depression and anxiety-based disorders. Gradually metagenomics has started to become integrated with metabolomics to functionally annotate the microbiota and characterise its metabolic activity and relative contributions in health and disease. The advent of NGS metagenomics over the last decade has evolved in its high-throughput capacity to identify thousands of targets within the complex samples such as human faeces for a comprehensive sequenced-based identification of a diverse range of bacterial species. Previously it was suggested bacteria outnumber cells in the human body by a ratio of 10:1, however this estimate has been downgraded to be in the same order of the number of cells in the body (Sender et al., 2016). The Human Microbiome Project and MetaHIT have shown the taxonomic diversity of the human microbiota through the number of bacterial species varies enormously from person to person (Ehrlich, 2011; Human Microbiome Project, 2012). However, a number of different communities of bacteria as well as individual bacterial species within the microbiota are able to perform exactly the same metabolic biochemical functions in a healthy microbiome. This functional redundancy allows the microbiota to adapt to environmental changes, or perturbations by changing gene expression to continue to deliver the same functional benefits to the host (Heintz-Buschart & Wilmes, 2018). Nearly 10 million genes have been catalogued from the human gut microbiome with little known about their biochemical function and contribution towards host metabolism (Li et al., 2014). The functional benefits of the microbiota are being recognised in faecal microbiota transplants from healthy donors and has been suggested to be successful in treating some ME/CFS patients (Borody & Khoruts, 2012). Understanding the composition of intestinal bacteria alone is not enough to understand the complex relationship between the intestinal microbiota and host. Depending on the method of prediction between 40-70% of
the protein-coding metagenome has unknown function and is a limitation to metagenomic approaches to unravel disease mechanisms (Heintz-Buschart & Wilmes, 2018). The shift towards shotgun metagenomic provides an overview of the genetic information encoded by the microbiota however, additional ‘omics technologies need to become integrated with this strategy to address the expression of this metagenomic material and characterise its metabolic features which interact with the host and relate to its functions in health and in disease.

The principle technologies of metabolomic profiling uses a combination of platforms including Nuclear Magnetic Resonance (NMR), Gas Chromatography/Mass Spectrometry (GS/MS) and Liquid Chromatography/Mass Spectrometry (LC/MS) in non-targeted and targeted experiments to cover a range of metabolites with accuracy and sensitivity. The aim of this is to combine metabolite profiles with a functionally annotated intestinal microbiome to help identify diagnostic biomarkers as well as unravel diseases mechanisms associated intestinal dysbiosis with limited bias and data-driven approach to biomarker discovery. The biggest challenge remains in the extent of metabolite coverage in a single experiment. In fact multiple methodologies are needed because of the physical biochemical diversity of metabolites ranging from hydrophilic to hydrophobic compounds (Dias & Koal, 2016). The experimental design and choice of workflow to quantify metabolites, as well as differences in the range of signal detection, when comparing NMR data derived from a 600 MHz versus 750 MHz magnetic field strength machine, will alter the signal to noise ratio in NMR spectra and sensitivity towards metabolite detection. Indeed, this can make inter-study comparison difficult not least because of the heterogenous patient cohorts used in ME/CFS research but also differences in size of reference compound libraries to compare against experimental spectra can vary between studies. This is made further difficult in non-targeted experiments when it is not clear which metabolites are of particular interest to that cohort. A combination of targeted and non-targeted approaches using multiple metabolic platforms is for example preferred to identify and quantify as many metabolites as possible. As a result, studies often examine different sets of metabolites and number of metabolites that can be identified can make it challenging to compare studies linking metabolites variation to a particular disease state.
4.1.2 The metabolome in ME/CFS

Suppression of general energy metabolism and mitochondrial dysfunction are thought to be involved in the aetiology and long-term maintenance of the two most significant and highly debilitating symptoms in ME/CFS patients: chronic persistent fatigue and post-exertional malaise (Fluge et al., 2016). Whilst onset of ME/CFS is often described by a flu-like illness, many potential pathogens that have been linked with the disease are not consistently found in all patients, suggesting that they may be acting as a potential trigger to a series of pathological events yet to be defined rather than being a direct cause in itself (Buckwold et al., 1996). The gut acts as a major player within the immune system, since its epithelial cell surface barrier remains exposed to the microbiota. Microbial dysbiosis resulting in altering the diversity profile of gut bacteria has been reported in ME/CFS, but it is unknown how microbial metabolites may conspire to alter local intestinal (and systemic) homeostasis or contribute to the severity of fatigue.

Given that a key microbiota function is in digestion and extracting energy from food and current research highlighting metabolic disruption in energy and lipid metabolism in ME; additional insights may be obtained from studying the severest, most fatigued patients, would provide a test for reproducibility and further substantiate confidence in these findings. Severe patients represent the most fatigued and disabled individuals within the ME spectrum and may represent a subset of patients whom fundamental changes have occurred within their energy metabolism as a product of immune activation (Hornig et al., 2015), on-going inflammation, neuroendocrine dysregulation, autonomic dysfunction and/or cardiovascular anomalies. This highlights the complexity of multi-system dysfunction that have been found to occur in ME/CFS. It is a reasonable assumption to suspect that blood metabolism may be exerting homeostatic shifts across these systems. Moreover, blood metabolism is influenced by gut metabolism and diet, and in general, increasing evidence suggests gut health plays a significant part in many extra-intestinal diseases, including neuro-psychological and neuro-inflammatory disorders (Carding et al., 2015; De Punder & Pruimboom, 2015; Kelly et al., 2016; Moos et al., 2016; Sampson et al., 2016). For example, a study between the relationship of the intestinal microbiota and plasma metabolites show strong correlations, (e.g. microbiota-derived plasma levels of Trimethylamine N-oxide (TMAO)) with microbial community structures and an individual’s body mass which influenced the risk of developing glucose tolerance (Org et al., 2017).
4.1.3 Faecal metabolome in ME/CFS

The relationship between host and changes in gut bacterial populations within the ME/CFS are currently at the correlation level with very little previous reports to comment on the faecal metabolome in these patients. One study by Armstrong et al. (2017) examined the faecal metabolites from 34 female patients using 750MHz ¹H-NMR (see table 4.1.1) to correlate the data with changes in bacterial populations and systemic metabolism by taking blood serum and urine samples (Armstrong et al., 2017). Their findings were consistent within ME/CFS for a decrease in faecal lactate and increase in faecal butyrate, isovalerate and valerate. Small Chain Fatty Acids (SCFAs) such as these, particularly butyrate are utilised by intestinal epithelial cells as an energy source as a by-product of the fermentation of indigestible food in the colon (Inoue et al., 2014). They act by binding to G protein-coupled receptors (GPR41 and GPR43) to signal conversion of adenosine monophosphate-activated protein kinase (AMPK) to the phosphorylated (pAMPK) (Kimura et al., 2014). This facilitates increased fatty acid oxidation and expression of glucose transporter (GLUT4). Moreover, increased gut permeability thought to be present in ME/CFS, and may be exacerbated by higher levels of SCFAs and will enter the blood circulation in increased concentration and have further influence on systemic energy metabolism, but particularly in liver and muscle cells (Armstrong et al., 2017; Giloteaux et al., 2016) . Armstrong’s observations support this idea, since propionate from the gut can enter gluconeogenesis via succinyl-CoA in the liver to generate aspartate and glucose which were positively correlated within serum and urine metabolomic profiles, respectively (Armstrong et al., 2017).

To summarise, the faecal metabolite differences found SCFAs in ME/CFS suggest increased bacterial fermentation that appears facilitated by changes within the microbiome profile. Armstrong used traditional culture methods to simultaneously analysis bacterial species, as such, Clostridium spp. were increased and are interestingly shown to ferment lactate and amino acids in the production of butyrate (Smith & MacFarlane, 1998). Indeed, acetate, propionate and butyrate were all increased in the ME/CFS faecal metabolome, with butyrate being the most significant. Lactate was unexpectedly found to have decreased despite an earlier finding which found an increase in lactic acid producing bacteria in ME/CFS (Armstrong et al., 2017; Sheedy et al., 2009).
4.1.4 Systemic metabolome in ME/CFS

Blood serum and plasma have previously been studied in ME/CFS using NMR and LC-MS and produced intriguingly consistent results that is even more surprising given the extreme heterogeneity which is normally a drawback in studies of these sizes, (see Table 4.3.1) (Armstrong et al., 2015; Germain et al., 2017; Naviaux et al., 2016). Such consistency may be indicative of the blood metabolome being fundamentally different in ME/CFS. Armstrong first reported anomalous energy and oxidative stress pathways in ME/CFS derived from serum NMR experiments 2015 (Armstrong et al., 2015). Using this 2015 data of 29 metabolites identified and quantified in sera, these were later combined with faecal metabolite concentrations in 2017 to conclude SCFAs maybe entering the circulation, especially propionate to cause mitochondrial dysfunction and oxidative stress and may further be exacerbated by increased gut permeability ME (Armstrong et al., 2015, 2017; Giloteaux et al., 2016). Further correlations were made between the faecal and blood metabolomes summarised in table 4.1.1.

In conclusion, current evidence points towards suppression of energy metabolism, fatty acid metabolism and oxidative stress as common pathways altered in ME/CFS and to which there is some consistency within the literature. But it is not clear how these pathways relate to the context of severity of ME or from observations of the faecal microbiome or why these observations are so consistent given the heterogeneity of the ME population included in these studies so far. Naviaux et al. published a landmark paper in 2016 detailing abnormalities within 20 metabolic pathways from plasma, including reduced lipid metabolism, amino acid metabolism, and purine metabolites, and mitochondrial metabolism (Naviaux et al., 2016). Another study using the Fukuda CFS criteria suggested that the ratios of plasma metabolites pyruvate/isocitrate and ornithine/citrulline, related to the TCA and urea cycles, respectively, may have diagnostic relevance (Yamano et al., 2016). Germain et al., who later published from a much smaller pilot cohort using distinct mass spectrometry techniques (see Table 4.1.2), supported the vast range of conclusions drawn from Naviaux’s earlier work targeting 612 metabolites in total. Among the 361 detected, 74 metabolites were significantly different with a similar trend to Naviaux’s finding for a hypometabolic state with 80% of these altered metabolites being lower in ME/CFS versus controls.
4.1.5 Investigating bile acid metabolism in ME

As a follow up to NMR, targeted High-Performance Liquid Chromatography-mass spectrometry (HPLC-MS) was used in faecal water and serum to accurately quantitate 26 bile acids – based on previous observation of decreased taurine in ME/CFS plasma (Niblett et al., 2007). Taurine conjugates with bile acids to form bile salts necessary for lipid absorption which were also found to be negatively affected in patients belonging to the Germain study (Germain et al., 2017). To date, no other studies have targeted the role of bile acids within ME/CFS metabolism; especially in severe, house-bound patients. Moreover, the gut microbiota provides a functional role in the regulation of bile acid metabolism which is vitally important in host lipid and energy metabolism.

Bile acids (BA) are steroidal compounds synthesised in the liver from cholesterol and regulated via negative feedback through their binding to nuclear farnesoid X receptors (FXRs) in the liver and gut, see figure 4.1.1. There are two pathways that have been identified for BA synthesis: the “classical” and “alternate” pathways also shown in figure 4.1.1. The classical pathway is responsible for most BA synthesis and is controlled by the enzyme cholesterol 7α-hydroxylase (CYP7A1) which is inhibited by FXR activation through expression and binding of FGF15/19 to FGF4/BKlotho receptor. As much as 95% of the total BAs secreted are reabsorbed from the gut and delivered to the liver via the hepatic portal vein. Chenodeoxycholic acid (CDCA) and cholic acid (CA) are the two most abundant primary bile acids produced by humans in the liver which serve to facilitate lipid emulsification and digestion. Upon secretion into the duodenum, the bile acid pool may be further altered by the gut microbiota to produce secondary bile acids (Wahlström et al., 2016). Indeed, the gut microbiota can therefore alter the distribution of bile acids as a consequence of dysbiosis within its community structure. In fact, several disease states including inflammatory bowel disease (IBD), liver disease, C. difficile infection, metabolic syndrome, and various cancers are now associated with changes to bile acid metabolism (Staley et al., 2017). Thus, alterations within bile acid metabolism may be indicated by changes of the ratio of primary to secondary bile acids, could be indicative of a disease-associated microbiome.
Figure 4.1.1 Bile acid synthesis is dependent on expression of CYP7A1 in the liver and is regulated by a negative feedback loop mediated by the induction of FXR. Primary acids are produced in the liver. CYP7A1 codes for the enzyme 7α-hydroxylase which converts cholesterol to 7α-hydroxycholesterol. FXR activation inhibits CYP7A1 and is activated by hydrophobic (non-polar) primary and secondary bile acids (CDCA, CA, DCA, LCA). Intestinal activation of FXR induces the release of FGF15/19 into enterohepatic circulation back to the liver where it binds to GFR4/βKlotho receptors on hepatocytes to inhibit CYP8B1, another hydrolase involved in BA synthesis. FXR – farnesoid X receptor; FGF - fibroblast growth factor. (Shapiro et al., 2018)
Figure 4.1.2 Summary of “Classical” and ‘Alternative” pathways for bile acid synthesis in humans and mice. Classical pathway occurs in hepatocytes and accounts for 90% of total bile acid production in humans. Cholic acid (CA) and chenodeoxycholic acid (CDCA) are the predominant primary BAs in humans; whereas CDCA is converted in muricholic acids (MCAs) in mice. Whilst in the liver, BAs are conjugated to either glycine or taurine regulated by bile acid-amino acid transferases (BAT) and bile acid CoA ligase (BAL) prior to bile secretion into the duodenum. Genes coloured in red have been identified as being under the regulation of the intestinal microbiota. The major difference in mice is the conversion of CDCA into αMCA and β-MCA in the mouse liver. Figure has been reproduced from an open access publication – access to this is available from: https://www.researchgate.net/Schematic-overview-of-pathways-involved-in-the-hepatic-synthesis-of-primary-bile-acids-in_fig2_317376112 [accessed 11 Jul, 2018].

BA composition differs significantly in mice, due to the conversion of CDCA through hydroxylation at the 6β-position to form alpha-muricholic acid (αMCA), whereas βMCA is formed from ursodeoxycholic acid (UDCA) (Takahashi et al., 2016). Whilst UDCA is a secondary bile acid in humans, in mice produce is as a primary bile acid (Wahlström et al., 2016). It has been shown in the absence of a microbiota in germ-free mice, the bile acids pool is largely made up of primary conjugated bile acids, including MCAs such as T-αMCA and T-βMCA which are typically more hydrophilic in comparison to human BAs where the
total bile acid pool is more hydrophobic (Wahlström et al., 2016). However, the biochemical pathway for this conversion from CDCA to MCA is unclear; but a recent report suggests Cyp2c70 is a gene required for MCA synthesis in mice which leads to this species variation (Takahashi et al., 2016). Human primary bile acids are mostly conjugated to glycine in the liver but can also include taurine (more frequently in mice), via an enzymatic step involving bile acid-amino acid transferase (BAT) before they are released in the duodenum (Claus et al., 2008). The human gut microbiota influences the bile acid pool from a functional perspective by providing enzymes for deconjugation, dehydrogenation and dehydroxylation of primary bile acids. In the liver primary BAs are found to have hydroxyl groups attached at the 3, 7, 12-carbon positions under regulation of at least 14 enzymes, of which some of these are shown to be under the regulation of unknown factors derived by the gut microbiota. (Sacquet et al., 1983; Sayin et al., 2013). Further biochemical modifications can involve oxidation of these hydroxyl groups and reversible

Fig. 4.1.3 Secondary bile acid metabolism. Microbial metabolism facilitates transformation of primary bile acids via deconjugation and 7α/β-dehydroxylation. Further heterogeneity can be introduced into the BA pool through step-by-step epimerization, oxidation and reduction by 7α/β-hydroxysteroid dehydrogenases to produce stereochemical distinct oxo-bile salts. Upon recirculation to the liver, DCA and LCA are conjugated to glycine or taurine just as primary bile acids are synthesised before being reintroduced into the bile acid pool. In mice, CDCA is converted to muricholic acids (MCAs) and contributes to a distinct secondary bile acid profile compared with humans. Figure has been reproduced from an open access publication – access to this is available from: https://www.researchgate.net/Schematic-overview-of-pathways-involved-in-the-hepatic-synthesis-of-primary-bile-acids-in_fig2_317376112 [accessed 11 July, 2018].
epimerization by microbial enzymes which alter their stereochemical orientation during transformation providing a heterogenous secondary bile acids pool within the gut (Staley et al., 2017). The biochemical steps involved in secondary bile acid metabolism is summarised in figure 4.1.3. The small quantity of BAs that do not get reabsorbed, undergo deconjugation of taurine and glycine by hydrolases ubiquitous throughout the microbiota, and various oxidation steps which serve to alter the chemical properties, particularly the toxicity and hydrophobicity of each bile acid. For example, deoxycholic acid (DCA) is a secondary BA transformed in the large intestine following deconjugation to free cholic acid (CA) and subsequent 7α-dehydroxlyation by intestinal clostridia. Deconjugation enhances detergent properties which lead to the greater disruption of bacterial cell membrane potential (Ridlon et al., 2014). Furthermore, accumulation of DCA has been reported to be associated with a “Western diet” (Dermadi et al., 2017).

Increased concentrations of bile acids appear to favour gram-positive bacteria belonging to the firmicutes which also include Clostridium cluster XVIIa bacteria capable of 7α-dehydroxylation to generate secondary bile acids, DCA from CA, and LCA from CDCA. Conversely, gram-negative bacteria are less resistant to bile acids and prefer lower BA concentrations (Ridlon et al., 2014). Such observations are based on patients presenting with hepatic encephalopathy. These patients exhibit certain neuro-psychiatric abnormalities as a result of liver failure during its severe stages. During these stages, bacterial dysbiosis was observed and linked to low bile acid concentrations and reduction of gram-positive bacteria Blautia and Rumminococcaceae (Bajaj et al., 2014).

BAs are also recognised as important signallers, which act as steroid hormones associated in the regulation of triglyceride and glucose homeostasis. To that effect, BA metabolism has come under increasingly scrutiny to better understand how microbial dysbiosis may contribute in various disease states including type 2 diabetes, cardiovascular disease, non-alcoholic fatty liver disease and cancers. However, a substantial amount of research on BA metabolism to date has been performed in germ-free, specific knock-out and conventional mice; and given the differences between mice and humans, these experimental outcomes limit any translation benefit in human disease and future development of therapies targeting bile acid metabolism. For this reason, it was decided to explore the BA profile for the first time in severe, house-bound ME patients.
4.1.6 Experimental design overview

Various platforms (NMR versus MS) and methods lead to great differences in the power of discovery in the field of metabolomics (Dias & Koal, 2016). Greater accuracy for quantification of metabolites is needed, but it is also desirable being able to detect a greater number of metabolites in a single run. For instance, at the time of writing, the Serum Metabolome database contains 4651 small molecules identified in human serum (Psychogios et al., 2011). The expanse of metabolites which can be targeted falls dramatically short of expectation in comparison to genomics-based technologies which can identify millions of target genes in a single experiment, although 40-70% of their biochemical function is not known (Heintz-Buschart & Wilmes, 2018). This makes current observations and consistencies within the ME/CFS metabolome even more interesting given its heterogenous nature. Here, the result of a small pilot study is presented examining the faecal and serum metabolome profiles from 11 severe, house-hold ME/CFS patients using 600 MHz $^1$NMR spectroscopy.

Where possible, each patient was matched with a house-hold control, and both samples collected and processed for analysis simultaneously. Only samples collected during 2017 were included in this work due to changes made to sample collection protocols requiring faecal homogenisation and faecal water extraction on the day of sample collection. It is important to note that sample preparation and processing were performed in accordance to the methods described by Armstrong et al., 2017. It is highly important to make every endeavour to control for method variation to give more power in comparing studies and towards unravelling multiple aetiologies conspiring to cause ME/CFS symptoms.
<table>
<thead>
<tr>
<th>Study</th>
<th>Selection Criteria</th>
<th>Cohort Size</th>
<th>Biofluid</th>
<th>Type</th>
<th>Metabolites targeted</th>
<th>Observations/Conclusions</th>
</tr>
</thead>
</table>
plasma sphingo- and glyco- sphingolipids in patients who had CFS  
Diagnostic accuracy in males using 8 metabolites versus 13 in female. Posit ME is hypermetabolic response to stress from environment similar to dauer. |
| Germain et al. (2017) | Fukuda (1994)                                          | 17 female ME/CFS (age 53.9±8.6y)                                           | Blood    | Q-Exactive ME (QE-MS) method | 361 (74 altered in ME)                                                                  | 20% of metabolites disrupted in ME/CFS  
31 metabolites in ME incl. lipid metabolism and several amino acids, ↓glucose, ↓ATP, ↓ADP  
↓ primary bile acids & taurine, ↑palmitate                                                |
| Armstrong et al. (2017) | Canadian (2003)                                        | 34 females with ME/CFS (34.9±1.8 SE) y old                                  | Faeces, Blood serum & urine | $^1$H NMR – (800MHz) Bruker Avance II US | Total of 83 identified metabolites in: faeces (24), urine (30) & serum (29) | 14 metabolites altered, ↓faecal lactate, ↑faecal butyrate  
microbial fermentation of fibre and amino acids to produce SCFA                          |
Faecal taurine detected only in 2 patients  
Glycocholate in severe patients (p=0.03)                                                |

Table 4.1.1 Summary of publications relating to the study of the metabolome in ME/CFS  
*Hydrophilic Interaction Liquid Chromatography-ElectroSpray Ionization-Tandem Mass Spectrometry
4.1.7 Aim & Objective

The aim of this chapter was to define the faecal and serum metabolome of severely affected ME/CFS patients compared to house-hold controls, in order to understand how metabolic features may be related to neurological and behavioural aspects associated with greater severity compared to mild and moderately affected patients.

Three recent independent studies on the general ME/CFS population have contributed consistent data revealing various biochemical pathways and metabolites in patients that are associated with a reduction in lipid and energy metabolism (Armstrong et al., 2017; Germain et al., 2017; Naviaux et al., 2016). Whilst these metabolomics-based studies of mild to moderately affected ME/CFS patients have identified such alterations, it is not known if these findings translate to severely affected ME/CFS patients. In order to determine this, the following objectives were established:

- to address the functional capacity of the severe ME/CFS microbiome using NMR spectroscopy to measure low molecular weight metabolites;
- by preparing faecal water and serum samples in accordance to methods set out by a previous NMR study by Armstrong and colleagues in 2017;
- to determine if an altered microbial composition (dysbiosis) influences faecal and serum metabolism in severe ME compared with house-hold controls;
- to determine if severe ME patients display a distinct bile acid metabolic profile using targeted HPLC-mass spectrometry which may described altered energy metabolism in these patients.

4.1.8 Hypothesis

The functional capacity of the intestinal metabolome in severe ME/CFS patients is altered through a decline in the compositional diversity of intestinal bacteria to the detriment of host metabolism, causing the faecal and serum metabolomes of severe, house-bound ME/CFS patients to reflect a hypometabolic state in accordance with altered energy and bile acid metabolism.
4.2. Materials & Methods

4.2.1 Sample preparation and storage

Briefly, the entire stool sample was collected in a FECOTAINER® collection device (AT Medical B.V., Enschede, Netherlands), figure 2.2.2 no sooner than 24 hrs before visiting the patient’s home for collection. During this time before our arrival to collect, patients were advised to keep their sample inside the fridge in double containment using the packaging provided. An AnaeGen™ Compact anaerobic sachet (Cat. No AN0010, Oxoid. Ltd.) was also provided for insertion and activation inside the FECOTAINER® as soon as the sample was produced by the patient.

On return to the hospital the entire stool sample was homogenised manually using a sterile autoclaved metal spatula. Faecal water was extracted from homogenate of each sample with a 2:1 ratio of molecular grade water. It is recommended ~15g of faecal material is used with 30 ml of water but is dependent of amount of original sample provided. This mixture was vortexed for 5 min and centrifuged at 18,000 x g, for 10 min, or 3,500 x g, for 30 min. The supernatant is then divided in to multiple aliquots and stored at -80 degrees prior to analysis.

4.2.2 Preparation for $^1$H NMR spectroscopic Analysis

- Preparation using serum samples

Samples were prepared for NMR using a method modified from a previous study (Armstrong et al., 2017). Serum samples were thawed from -80°C, from which 250µL of serum was added to 250µL ice cold deuterated chloroform and 250µL ice cold deuterated methanol and mix by vortexing. Samples were then left on ice for 15 mins before centrifuging (16100 x g) at 4°C for 10 mins to produce hydrophilic phase of water/deut. methanol and lipophilic phase of deuterated chloroform. 300µL of the top hydrophilic layer was transferred to 300µL of NMR buffer (0.26g NaH$_2$PO$_4$·1.44g K$_2$HPO$_4$·17mg TSP, 56.1mg NaN$_3$ in 100 ml D$_2$O), and mixed mix before transferring 550µL to NMR tube. In addition, 0.9% saline solution (0.9g NaCl in 100ml D2O) was made to combine with serum, using 200µL serum mixed with 400µL saline solution, before transferring 550µL in to NMR tubes.
- Preparation using faecal water extracts

Samples were prepared for NMR using a method modified from a previous study (Armstrong et al., 2017). One millilitre aliquot from each sample were thawed from -80°C. 250μL faecal water was transferred in 250μL ice cold deuterated chloroform and 250μL ice cold deuterated methanol. Samples were mixed by vortexing and left on ice for 15 mins before centrifuging at 16100 x g at 4°C for 10 mins to produce hydrophilic phase of water/deuterated methanol and lipophilic phase of deuterated chloroform. 300μL of the top hydrophilic layer was transferred in to 300μL of NMR buffer (phosphate buffer, pH 7.4 in D₂O, containing 1mM d₄-TSP), and mixed thoroughly before all samples were transferred into NMR tubes. Additional faecal extracts were prepared without chloroform/methanol extraction from 300μL of faecal water in 300μL NMR as described above.

- Acquisition of NMR data

High resolution ¹H NMR spectra of faecal water extracts were recorded on a 600 MHz Bruker Avance III HD spectrometer fitted with a 5 mm TCI cryoprobe and a 60 slot autosampler (Bruker, Rheinstetten, Germany). Sample temperature was controlled at 3000K and the D₂O signal was used as lock. Each spectrum consisted of 1024 scans of TD = 65,536 data points with a spectral width of 20.49 ppm (acquisition time 2.67 s). The noesygppr1d presaturation sequence was used to suppress the residual water signal with low power selective irradiation at the water frequency during the recycle delay (D1 = 3 s) and mixing time (D8 = 0.01 s). A 90° pulse length of approximately 8.1 µs was used, with the exact pulse length determined for each sample by the Bruker automation routine (au_prof1d). Spectra were transformed with 0.3 Hz line broadening and zero filling and were automatically (proc_prof1d) phased and referenced (to TSP) using the TOPSPIN 3.2 software. The noesygppr1d sequence avoids the need for a first order (PHC1) phase correction or for baseline correction. The resulting Bruker 1r files were converted to Chenomx (.cnx) format using the ‘Batch Import’ tool in the Processor module of Chenomx NMR Suite v8.12. The only additional processing during conversion was a shim correction to remove any line-shape irregularity and the concentration of the reference compound, TSP, was set to 0.5 mM. NMR spectra of serum extracts were recorded and processed in exactly the same way except that the number of scans was 512 and the 90° pulse length was approximately 8.6 μs. NMR spectra of the serum/saline solution samples were also obtained using the diffusion edited pulse sequence to emphasise signals from lipoproteins and other large molecules.
Metabolites were identified from the Chenomx library (337 compounds) with in-house additions (ca. 40 compounds), the HMDB database (http://www.hmdb.ca), literature and by use of the 2D-NMR methods, COSY, TOCSY, HSQC and HMBC on selected samples. The 2D methods were useful in obtaining precise chemical shifts which could differ slightly from literature values since the samples contained some methanol in addition to water. Concentrations of up to 45 compounds per sample were obtained using the Chenomx Profiler module and the concentrations of all samples were exported to an excel file. Diffusion edited spectra were analysed using variable width buckets (added graphically to spectra using Bruker AMIX software).

**Data analysis**

Statistical analysis for individual compounds was carried out in GraphPad Prism v5.01 (GraphPad Software, San Diego, CA) using the Mann-Whitney test for comparison of two groups or the Kruskal-Wallis test for three groups, followed in the latter case by Dunn’s Multiple Comparison test for pairwise comparison. Data plots were also produced for the compounds showing the median and interquartile range for each group.

Multivariate statistical analysis (Principal Component Analysis, PCA) was carried out using the PLS Toolbox v8.01 (Eigenvector Research Inc., Wenatchee, WA) running within Matlab R2015a (The Mathworks Inc., Natick, MA). For the PCA any missing values (zero concentrations) in the data table were replaced with a very small value, the rows were normalised (sum of concentrations made the same for each sample) and the columns (compound concentrations) were scaled to unit variance.
4.2.3 Targeted bile acid quantification by mass spectrometry

Faecal water extracts and serum were analysed using HPLC – mass spectrometry operated in multiple reaction monitoring (MRM) mode. Each sample (5 µl) was analysed using an Agilent 1260 binary HPLC coupled to an AB Sciex 4000 QTrap triple quadrupole mass spectrometer. HPLC was achieved using a binary gradient of solvent A (Water + 5mM Ammonium Ac + 0.012% Formic acid) and solvent B (Methanol + 5mM Ammonium Ac + 0.012% Formic acid) at a constant flow rate of 600 µl/min. Separation was made using a Supelco Ascentis Express C18 150 x 4.6, 2.7µm column maintained at 40°C. Injection was made at 50% B and held for 2 min, ramped to 95% B at 20 min and held until 24 minutes. The column equilibrated to initial conditions for 5 minutes.

The mass spectrometer was operated in electrospray negative mode with capillary voltage of -4500V at 550°C. Instrument specific gas flow rates were 25ml/min curtain gas, GS1: 40 ml/min and GS2: 50 ml/min. Dwell time for each MRM was 20 ms. Quantification was applied using Analyst 1.6.2 software to integrate detected peak areas relative to the deuterated internal standards.
4.3. Results

4.3.1 Patient cohorts and datasets obtained

This chapter presents various datasets using faecal water and blood serum samples collected from 2016-2017. Table 4.3.1 summarises the types of samples collected and from which group of participants. This has given rise to 4 distinct datasets (4A-4D), which have displayed and described in table 4.3.2. Each dataset here is presented in its order collection and the result of each described in the following text in that order. All samples within each dataset have been included in the same experiment.

4.3.2 Identification of faecal metabolites using NMR

Proton Nuclear magnetic resonance (^1H-NMR) spectroscopy was used to identify metabolites within faecal water from 11 female severe house-bound ME patients (42.1 ± 4.8 SE years) versus 6 house-matched controls (63 ± 2.4 SE years). The resultant cohort was matched on the basis of each healthy control living with a patient. With the exception of one matched healthy control, paired samples were gender matched and typically represent mother as control, and daughter as patient. Due to this relationship it was not possible to control for age differences. A total of 45 compounds were examined and quantified as absolute concentrations down to the low micromole per litre range. Figure 4.3.1 shows the multiple spectra obtained using AMIX (Bruker) to colour individual spectra by group (e.g. patient/control). The peaks were used to determine concentrations of individual metabolites by fitting the spectra of known single compounds from the reference library to the experimental spectra. Ice cold methanol/chloroform was mixed with serum to create biphasic separation of upper hydrophilic layer containing low molecular weight metabolites. It is this fraction in which the data has generated from.

Prior to statistical testing no assumption was made on distribution of individual metabolite concentration; to this end p-values were determined with the non-parametric Mann-Whitney test in GraphPad prism. In some samples the compound concentrations were below the limit of detection were set at 0.0001 mM to avoid having zeroes for the statistical analyses. The outcome of these p-values is summarised with the table included as part of figure 4.3.2.
Table 4.3.1 Summary of participant samples acquired for metabolic profiling.

<table>
<thead>
<tr>
<th>Status</th>
<th>Sex</th>
<th>Age</th>
<th>Faecal water</th>
<th>Serum NMR 2016</th>
<th>Serum NMR 2017</th>
<th>Bile Acid analysis faeces</th>
<th>Bile Acid analysis serum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Severe</td>
<td>F</td>
<td>63</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>Severe</td>
<td>F</td>
<td>56</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>Control</td>
<td>F</td>
<td>55</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>Control</td>
<td>F</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>Severe</td>
<td>F</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>Control</td>
<td>F</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>Control</td>
<td>F</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td>Severe</td>
<td>F</td>
<td>38</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>Severe</td>
<td>F</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td>Severe</td>
<td>F</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>11</td>
<td>Control</td>
<td>F</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td>Severe</td>
<td>F</td>
<td>18</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>13</td>
<td>Severe</td>
<td>F</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>14</td>
<td>Severe</td>
<td>F</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>15</td>
<td>Severe</td>
<td>F</td>
<td>58</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>16</td>
<td>Control</td>
<td>M</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>17</td>
<td>Severe</td>
<td>F</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>18</td>
<td>Control</td>
<td>F</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>19</td>
<td>Severe</td>
<td>F</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>20</td>
<td>Severe</td>
<td>F</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>21</td>
<td>Control</td>
<td>F</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>22</td>
<td>Control</td>
<td>F</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>23</td>
<td>Control</td>
<td>F</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>24</td>
<td>Severe</td>
<td>F</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>25</td>
<td>Severe</td>
<td>F</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>26</td>
<td>Mild ME</td>
<td>F</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>27</td>
<td>Mild ME</td>
<td>M</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>28</td>
<td>Mild ME</td>
<td>F</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>29</td>
<td>Mild ME</td>
<td>F</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>30</td>
<td>Mild ME</td>
<td>M</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>31</td>
<td>Mild ME</td>
<td>F</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>32</td>
<td>Mild ME</td>
<td>M</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>33</td>
<td>Mild ME</td>
<td>M</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>34</td>
<td>Mild ME</td>
<td>M</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>35</td>
<td>Mild ME</td>
<td>F</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>36</td>
<td>Mild ME</td>
<td>F</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>37</td>
<td>Mild ME</td>
<td>F</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Table 4.3.1 Summary of participant samples acquired for metabolic profiling.

15 Severe (age 42.9±4.04 SE years), 15 Mild/Moderate (age 44.7±3.49 SE years), and 9 Control (age 57.3±4.04 SE years). Status for each participant is given. ‘X’ identifies year sample was collected and the analysis performed.
<table>
<thead>
<tr>
<th>Dataset</th>
<th>Biofluid</th>
<th>Platform</th>
<th>Sample size</th>
<th>ME/CFS status</th>
<th>Sample prep.</th>
<th>Metabolite coverage</th>
<th>Summary of findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>4A</td>
<td>Faecal water</td>
<td>1H-NMR (600MHz)</td>
<td>n=17: 11 ME/CFS, 6 House-matched controls</td>
<td>Severe</td>
<td>Ice-cold deuterated Methanol/chloroform Extraction of hydrophilic phase</td>
<td>As described by Armstrong et al. 2015</td>
<td>Increased glycocholate (p=0.03) Hypoxanthine (p=0.05) Methylsuccinate (p=0.06)</td>
</tr>
<tr>
<td>4B</td>
<td>Faecal water</td>
<td>HPLC-MS</td>
<td>n=14: 8 ME/CFS, 6 House-matched controls</td>
<td>Severe</td>
<td>200µl faecal water</td>
<td></td>
<td>No significant findings Kruskal-Wallis</td>
</tr>
<tr>
<td>4C</td>
<td>Blood Serum</td>
<td>1H-NMR (600MHz)</td>
<td>n=34: 25 ME/CFS, 9 House-matched controls</td>
<td>Severe (n=14), Mild/moderate (n=11)</td>
<td>Ice-cold deuterated Methanol/chloroform Extraction of hydrophilic phase Diff. edited NMR: Saline-diluted serum</td>
<td></td>
<td>No significant findings Kruskal-Wallis with Dunn’s test</td>
</tr>
<tr>
<td>4D</td>
<td>Blood Serum</td>
<td>HPLC-MS</td>
<td>n=46: 26 ME/CFS, 7 House-matched 6 IBD</td>
<td>Severe (n=14) &amp; Mild/moderate (n=14)</td>
<td>200µl undiluted serum</td>
<td></td>
<td>Significant variances across samples within dataset Traces of muricholic acids HDCA higher in some severe ME patients</td>
</tr>
</tbody>
</table>

Table 4.3.2 Overview of datasets presented in this chapter and metabolite coverage generated using NMR and HPLC-MS metabolomic profiling of participants recruited between 2015-2017. Datasets are organised in chronological order for each experiment: “A” represents the first dataset; and “D” being the final dataset to be completed.
Scatter dot plots were generated in GraphPad Prism for each metabolite for comparison between the severe ME group and matched healthy controls. These have been summarised and presented as supplementary figures (S4.1 and S4.2) included within the appendix. The horizontal lines indicate the max, median and min.

In an attempt to separate severe ME (S) from House-Hold Controls (H), principal component analysis (PCA) was performed to identify any metabolites as a source of variation between the two groups (figure 4.3.5). The first principal component (PC1(41.69%)) represents the largest possible variance. This is determined to a large extent by interindividual differences, particularly samples with unusually higher values, although an attempt was made by normalising the sum of concentrations in each sample to the same value. PC3(8.92%) versus PC4(6.80%) in the right plot of figure 4.3.5 shows severe (S) in red separates from house-matched (H) in green. The numbers refer to the individual samples driving these differences. In order to understand the source of this variation, figure 4.3.6 provides an annotated PCA plot with specific faecal metabolites. This is useful in identifying specific metabolites within individual samples causing the variance. Here compounds: formate, ethanol, lactate, succinate, methylamine, glutarate, methylsuccinate, taurine and 3-phenylpropionate are found higher in patients 6, 14 and 15 and not in the severe (S) groups in general. To that end, there is very little statistical power based on the observations made in this experiment. For many compounds there are one or two samples with very high values – often these come from the same sample, for example sample 9 (and 12) is high in amino acids and sample 15 is very high in succinate and lactate, (figures 4.3.7 & 4.3.8).

The conclusion is that a weak separation is found between patients and control. Of the 45 compounds examined only one showed p<0.05. This compound was the nearest calibrated standard that was available in our reference library, which was “glycocholate”, although it should be considered of as a general bile acid signal. The inclusion of this compound along with another seen in very high concentration in 3 of the severe patients was γ-butyrobetaine. This present in very low concentration in patients and controls and is a gut metabolite of L-carnitine and intermediate in the conversion of carnitine to trimethylamine and TMAO (Koeth et al., 2014). L-carnitine is associated with a lot of meat in the diet, however it is more likely that these patients have been taking L-carnitine supplements. PCA
separation with the addition of these compounds is included in figure 4.3.7. In this plot, PC1(39.99%) demonstrates that severe (S) samples 6, 9, 12, 14, 15 in red, are the source of this variation of which, the compounds have been annotated to the plot in figure 4.3.8. Metabolites shown in the positive region f PC3 are more likely to be in higher concentration in severe (S) patients, versus the negative region which reveals compounds more likely to be higher in house-matched (H) control. A more detailed analysis of the bile acids by mass spectrometry in a targeted analysis appears later in this chapter as a follow up to the apparent bile acid signal detected significantly higher in patients. The next nearest significant difference was hypoxanthine (p=0.05) and methylsuccinate (p=0.06), see box plot in figure 4.3.3.

A box plot summary presents the entire dataset was and highlights the lack of evidence for differences in individual metabolites (figure 4.3.3). Some of the trends identified are at variance with earlier publications suggesting short chain fatty acids are in higher concentration within the ME/CFS populations. The data obtained for this in figure 4.3.4 shows no evidence of this in severe ME patients. No differences were found for pyruvate or ornithine or any of the detected amino acids in this experiment. Alas, these other studies had more participants, but nevertheless the clinical severity of patients used in our study made this finding even more disappointing. From Armstrong et al. (2017), table in Fig 1e and Sec 3.4 in this paper find significant differences between patients and controls for isovalerate, lactate and valerate – in each case with a higher level in patients. Although not significant they also report a higher level of total SCFA in patients. Although none of these are found to be significant in this small cohort of severe patients there does appear to be a trend for all of them to be higher in controls (isovalerate, valerate, acetate, butyrate, propionate), but not in patients. The PCA loadings with figure 4.3.8 agree with this since all these metabolites appear in the negative region of PC3 and are likely to be higher in house-matched (H) samples, according to this experiment.
Faecal Water $^1$H-NMR

Figure 4.3.1 Partial 600 MHz $^1$H-NMR spectra from faecal water extractions used for biphasic separation in methanol/chloroform to extract the hydrophilic layer for small metabolites quantification. 1-17 are shown. Severe (S) are in blue. House-Matched (H) are green. $\gamma$-gain increased to reveal smaller peaks. All metabolites assigned to the reference spectra using Chemomx software. “BA” = bile acid peak, quantified as “glycocholate”.
Table (left) provides the name of each metabolite compound and p-value generated from the Mann Whitney test. Out of the 17 faecal water samples from (11) severe, house-bound ME/CFS patients and (6) house-matched control, the only significant difference was reported from a potential bile acid signal. The scatter plot for this compound display the absolute concentrations in mM from individual samples. Severe mean = 0.015mM vs control = 0.0058mM

Figure 4.3.2 The 45 metabolites detected across faecal water samples using 600 MHz 1H-NMR spectroscopy. Table (left) provides the name of each metabolite compound and p-value generated from the Mann Whitney test. Out of the 17 faecal water samples from (11) severe, house-bound ME/CFS patients and (6) house-matched control, the only significant difference was reported from a potential bile acid signal. The scatter plot for this compound display the absolute concentrations in mM from individual samples. Severe mean = 0.015mM vs control = 0.0058mM
Figure 4.3.3 Box plot representation of 42 out of 45 faecal water low molecular weight metabolites in severe (s) red, versus House-matched (H) green samples. The magnitude of the concentration of the other 3 metabolites could not be presented in this plot. Each household control (H) is matched to an individual severe (S) ME patient. Both samples were collected and analysed simultaneously on a 600MHz $^1$H-NMR Bruker machine. Central line of each box represents the median. Width denotes the interquartile range, with error bars positioned to show Min and Max.
concentration detected across that group. “Glycocholate” has been labelled with inverted commas as the closest assigned bile acid fitting the experimental spectra.

Figure 4.3.4 Summary of Short Chain Fatty Acid (SCFA) compounds whose range of concentrations detected across all samples were too extreme to include with other low molecular weight metabolites quantified using NMR spectra. Box plot with whiskers. Concentrations were analysed using the Mann-Whitney test at 5% significance level. Severe (n=11) versus House-Matched (n=6). Acetate: severe mean = 4.21±0.64 SE mM versus House-Matched mean = 5.00±1.25 SE mM. Butyrate: severe mean = 0.97±0.19 SE mM versus House-Matched mean = 1.21±0.38 SE mM. Propionate: severe mean 1.15±0.19 SE mM versus House-Matched mean = 1.14±0.21 SE mM. P values were 0.80, 0.73 and 0.96 respectively.
Figure 4.3.5 PCA plots showing interindividual variation of faecal water NMR metabolomic profiles based on 45 absolute concentrations for low molecular weight metabolites. PC1 vs PC2 & PC3 vs PC4 scores. Severe (S), red, House-Matched (H), green. Separation between severe and control group is seen on PC3. Data Row normalised and autoscaled.

Figure 4.3.6 Metabolite labelled PCA plot identifying metabolite compounds influencing spatial separation. Row normalised and autoscaled. PC3 vs PC4 Loadings.
Figure 4.3.7 PCA plot showing a weak separation between severe (S) and House-Match (H) groups including glycocholate and gammabutyrobetaine. Row normalised and autoscaled. PC1 vs PC3. Severe (S), red, House-Matched (H), green.

Figure 4.3.8 Metabolite labelled PCA plot showing individual metabolites influencing group separation between severe (S) and House-Match (H). Analysis includes glycocholate and γbutyrobetaine. Row normalised and autoscaled. PC1 vs PC3 Loadings. Metabolites in the positive part of PC3 are expected to be higher in patients and those in negative part to be higher in controls.
4.3.2. Serum metabolome

- *dataset 4C*

Direct quantification of a total of 53 metabolites was conducted in a slightly larger patient cohort representing 14 severe (S), as well as 11 mild/moderate (M) ME patients and 9 house-matched (H) controls. Table 4.3.1 highlights that paired samples 3 and 9 where included twice in this dataset due to the availability of further serum collected approximately one year later.

A similar and more comprehensive set of metabolites were measured using the same method of extraction in methanol/chloroform, producing a biphasic with a top hydrophilic layer, as in Armstrong et al., (2015). They found significant difference for acetate, glucose, glutamate, hypoxanthine, lactate and phenylalanine. Scatter plots presented in figure 4.3.9 highlight the fact that none of these findings were replicated within severe (S) patients. Indeed, following a log transformation of all absolute metabolite concentrations across groups and summary of the distribution of all data points within a box plot demonstrates a lack of evidence for differences, figures 4.3.12 and 4.3.13. Many of the bars show extreme overlapping variation in all groups: (S), (M) & (H). The three groups were analysed statistically according to the response variable of absolute metabolite concentration in millimolar (mM). As with the earlier data on the severe ME faecal metabolome, no assumption was made about the distribution of concentration values. In order to not assume statistical significance by chance, a non-parametric analysis of variance was carried out using the Kruskal-Wallis (KW) test. A post-hoc Dunn’s multiple comparison test was applied since the response variable in this case in ordinal (severe(S)/mild-moderate (M)/house-matched (H)) rather than nominal, i.e. treatment. This allows for determination of which pairs of groups (S v M, S v H, M v H) is significantly different from the other.

Out of all the tests only one was found to be significant – 2-hydroxyisovalerate, which had a p value of 0.02 with S v M as the pair that was significantly different (M>S). This has been identified in urine and is associated with lactic acidosis, where lactic acid accumulates in the body and can result in the lowering of blood pH. It is also among several hydroxycarboxylic acids which form ketone bodies from the ketogenesis of amino acids valine, leucine and isoleucine (Liebich & Först, 1984). Unfortunately, none of the other
observations for these amino acid concentrations were helpful in supporting any form of hypothesis surrounding this finding, except that is likely that these patients were in a fasting period during the sample was taken. Although no diet information or pattern of eating was recorded during the study.

With respect to glutamate, one of the healthy samples appeared as an obvious outlier at 0.15mM. In figure 4.3.10 this sample has been removed to resolve any visible separation across the groups. On repeat of a KW test, there was a significant difference across the groups for glutamate (p=0.03), however Dunn’s multiple comparison did not confirm which paired groups were significantly different. An attempt to view the data with other clear single outliers within scatter plots for hypothanthine (within the Mild group) and phenylalanine (within House-Matched group) were excluded and re-plotted (not shown). These outliers did not make any difference to reveal at specific trend. Tau-methylhistidine included in this figure, is another increased metabolite that may be slighter higher within some severe (S) patients, however, given the distributions of concentrations derived from house-hold controls (H) and the small ranges in concentration difference it is hard to conclude anything from this. Suffice to say, Tau-methylhistidine is an amino acid largely present in actin and myosin, and can be used as a surrogate for indirect determination of muscle myofibrillar protein degradation (Lowry et al., 1985; Röuthig et al., 1984). Indeed, in the context of severe, house-bound patients, this is not a surprising finding.

Two other metabolites from serum did appear interesting based on the possible subset distribution of concentration in severe (S). Figure 4.3.11 presents the scatter plots for an unknown metabolite at 2.69ppm, and for acetoacetate. In both these plots, there appears to be an emergence of two discrete, severe (S) patient populations. Higher levels of acetoacetate are indicative of ketosis during a fasting state. Indeed, many of the severest patients, who remain bed-bound the entire time, eat very little and at inconsistent times of the day. Dehydration is also common among them and is reflected by the Bristol scores, most which score 1, being the most dehydrated stool presenting difficult to pass for the patient.

Finally, as a statistical summary for all metabolite concentrations measured in serum, table 4.3.3 provide mean concentrations (mM) and the standard error for each of 53 metabolites
measured in serum along with their respective p value for KW test performed with Dunn’s multiple comparison test. Despite a more comprehensive overview of the coverage of 53 serum metabolites none of the previous findings based of just 24 serum metabolites could be replicated (Armstrong et al., 2017). Armstrong et al. acknowledged no investigation was performed on their serum samples using the apolar layer extracted during methanol/chloroform extract. In the next result section, for the first time in ME/CFS research, an attempt has been made to study the lipid profile of ME/CFS serum.

Figure 4.3.9 Selected scatter plots of 8 metabolites previously reported to be altered within the ME/CFS patient population but were not observed to be significant altered in this study. Plots were generated using GraphPad Prism. Each dot represents a single participant. Horizontal line represents the median concentration (mM) value. Error bars represent the Max and Min values observed from each experimental group.
Figure 4.3.10 Amended scatter plots excluding extreme values included in the initial plot (Fig. 4.3.11) for Glutamate and Tau-MeHis. Glutamate (p=0.03, M>H). Tau-MeHis (p=0.07)

Figure 4.3.11 Scatter dot plots for unknown small metabolite and acetoacetate. Significance tested using Kruskal-Wallis test with Dunn’s post-hoc test, no significances observed. Distribution of concentrations (mM) plotted appear to indicate a trend in metabolite concentration across groups, S>M>H for both metabolites. (p=0.81 and p=0.66 respectively).
Figure 4.3.12 Box plot summary including 25 of 53 serum metabolites detected using 600MHz $^1$H-NMR. Frozen storage (-80°C) serum collected from severe (S), mild/moderate (M) and House-Matched (H) were analysed simultaneously. Analysis was performed blinded using experimental spectra compared with reference spectra of known small compounds. Absolute concentrations were obtained in milli-molar (mM) before undergoing log transformation and plotting data using GraphPad Prism. Three groups S, M, & H were analysed for statistical significance using the Kruskal-Wallis test with Dunn’s post correction. *(2-hydroxyisovalerate, p=0.02).
Figure 4.3.13 Remaining 26 out of 53 metabolites found in serum. All samples were analysed simultaneously using 600 MHz $^1$H-NMR. Central line of boxes represents median value for each compound; error bars show samples were the max and min concentration was detected. Width of box shows the interquartile range. Absolute concentrations were determined from measurement of peak intensity. Compounds were identifiable based on comparison of the experimental spectra with known reference spectra in the library. No significant differences were observed across groups: (S), (M) & (H).
<table>
<thead>
<tr>
<th>Metabolite</th>
<th>P value</th>
<th>Severe</th>
<th>Mild/moderate</th>
<th>House Matched</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Aminobutyrate</td>
<td>0.95</td>
<td>Mean</td>
<td>0.0062</td>
<td>0.00082</td>
</tr>
<tr>
<td>2-Hydroxybutyrate</td>
<td>0.94</td>
<td>Mean</td>
<td>0.0106</td>
<td>0.00149</td>
</tr>
<tr>
<td>2-Hydroxyisovalerate</td>
<td>0.027†</td>
<td>Mean</td>
<td>0.0017</td>
<td>0.00013</td>
</tr>
<tr>
<td>2-Desoxyspergolate</td>
<td>0.25</td>
<td>Mean</td>
<td>0.0076</td>
<td>0.00066</td>
</tr>
<tr>
<td>3-Hydroxybutyrate</td>
<td>0.75</td>
<td>Mean</td>
<td>0.0179</td>
<td>0.00385</td>
</tr>
<tr>
<td>3-Hydroxyisovalerate</td>
<td>0.57</td>
<td>Mean</td>
<td>0.0039</td>
<td>0.00052</td>
</tr>
<tr>
<td>3-Methyl-2-oxovalerate</td>
<td>0.13</td>
<td>Mean</td>
<td>0.0056</td>
<td>0.00052</td>
</tr>
<tr>
<td>3-methyl-2-oxobutirate</td>
<td>0.63</td>
<td>Mean</td>
<td>0.0134</td>
<td>0.00021</td>
</tr>
<tr>
<td>Acetate</td>
<td>0.62</td>
<td>Mean</td>
<td>0.0144</td>
<td>0.00203</td>
</tr>
<tr>
<td>Acetoacetate</td>
<td>0.66</td>
<td>Mean</td>
<td>0.0056</td>
<td>0.000106</td>
</tr>
<tr>
<td>Acetone</td>
<td>0.58</td>
<td>Mean</td>
<td>0.0019</td>
<td>0.00025</td>
</tr>
<tr>
<td>Alanine</td>
<td>0.29</td>
<td>Mean</td>
<td>0.1264</td>
<td>0.08000</td>
</tr>
<tr>
<td>Arginine</td>
<td>0.67</td>
<td>Mean</td>
<td>0.0171</td>
<td>0.00115</td>
</tr>
<tr>
<td>Asparagine</td>
<td>0.36</td>
<td>Mean</td>
<td>0.0128</td>
<td>0.00656</td>
</tr>
<tr>
<td>Aspartate</td>
<td>0.76</td>
<td>Mean</td>
<td>0.0092</td>
<td>0.00586</td>
</tr>
<tr>
<td>Betaine</td>
<td>0.78</td>
<td>Mean</td>
<td>0.0096</td>
<td>0.00090</td>
</tr>
<tr>
<td>Carnitine</td>
<td>0.75</td>
<td>Mean</td>
<td>0.0128</td>
<td>0.00447</td>
</tr>
<tr>
<td>Choline</td>
<td>0.93</td>
<td>Mean</td>
<td>0.0037</td>
<td>0.00042</td>
</tr>
<tr>
<td>Creatine</td>
<td>0.09</td>
<td>Mean</td>
<td>0.0124</td>
<td>0.00140</td>
</tr>
<tr>
<td>Creatinine</td>
<td>0.82</td>
<td>Mean</td>
<td>0.0153</td>
<td>0.00092</td>
</tr>
<tr>
<td>Dimethylamine</td>
<td>0.2</td>
<td>Mean</td>
<td>0.0005</td>
<td>4.93681E-05</td>
</tr>
<tr>
<td>Ethanol</td>
<td>0.53</td>
<td>Mean</td>
<td>0.0103</td>
<td>0.00224</td>
</tr>
<tr>
<td>Formate</td>
<td>0.49</td>
<td>Mean</td>
<td>0.0083</td>
<td>0.00048</td>
</tr>
<tr>
<td>Glutamate</td>
<td>0.027†</td>
<td>Mean</td>
<td>0.0030</td>
<td>0.00042</td>
</tr>
<tr>
<td>Glutamine</td>
<td>0.39</td>
<td>Mean</td>
<td>0.1460</td>
<td>0.00052</td>
</tr>
<tr>
<td>Glycol</td>
<td>0.35</td>
<td>Mean</td>
<td>0.0262</td>
<td>0.00242</td>
</tr>
<tr>
<td>Glycine</td>
<td>0.47</td>
<td>Mean</td>
<td>0.0855</td>
<td>0.00669</td>
</tr>
<tr>
<td>Histine</td>
<td>0.57</td>
<td>Mean</td>
<td>0.0258</td>
<td>0.00208</td>
</tr>
<tr>
<td>Hypoxanthine</td>
<td>0.94</td>
<td>Mean</td>
<td>0.0035</td>
<td>0.00038</td>
</tr>
<tr>
<td>Isocitrate</td>
<td>0.48</td>
<td>Mean</td>
<td>0.0184</td>
<td>0.00238</td>
</tr>
<tr>
<td>Isopropyl</td>
<td>0.08</td>
<td>Mean</td>
<td>0.0014</td>
<td>0.00009</td>
</tr>
<tr>
<td>Lactate</td>
<td>0.11</td>
<td>Mean</td>
<td>0.0702</td>
<td>0.00655</td>
</tr>
<tr>
<td>Leucine</td>
<td>0.58</td>
<td>Mean</td>
<td>0.0385</td>
<td>0.00372</td>
</tr>
<tr>
<td>Lysine</td>
<td>0.88</td>
<td>Mean</td>
<td>0.0460</td>
<td>0.00237</td>
</tr>
<tr>
<td>Methacol</td>
<td>0.29</td>
<td>Mean</td>
<td>0.0157</td>
<td>0.00269</td>
</tr>
<tr>
<td>Methanol</td>
<td>0.45</td>
<td>Mean</td>
<td>0.0026</td>
<td>0.00044</td>
</tr>
<tr>
<td>Ornithine</td>
<td>0.06</td>
<td>Mean</td>
<td>0.0145</td>
<td>0.00148</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>0.76</td>
<td>Mean</td>
<td>0.0195</td>
<td>0.00081</td>
</tr>
<tr>
<td>Proline</td>
<td>0.34</td>
<td>Mean</td>
<td>0.0365</td>
<td>0.00616</td>
</tr>
<tr>
<td>Proplyne glycol</td>
<td>0.97</td>
<td>Mean</td>
<td>0.0039</td>
<td>0.00023</td>
</tr>
<tr>
<td>Pyruvate</td>
<td>0.19</td>
<td>Mean</td>
<td>0.0157</td>
<td>0.00369</td>
</tr>
<tr>
<td>Sarcosine</td>
<td>0.23</td>
<td>Mean</td>
<td>0.0004</td>
<td>3.69564E-05</td>
</tr>
<tr>
<td>Serine</td>
<td>0.39</td>
<td>Mean</td>
<td>0.0435</td>
<td>0.00304</td>
</tr>
<tr>
<td>Threonine</td>
<td>0.84</td>
<td>Mean</td>
<td>0.0387</td>
<td>0.00267</td>
</tr>
<tr>
<td>Trypsynaph</td>
<td>0.31</td>
<td>Mean</td>
<td>0.0139</td>
<td>0.00042</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>0.42</td>
<td>Mean</td>
<td>0.0237</td>
<td>0.00322</td>
</tr>
<tr>
<td>Urea</td>
<td>0.19</td>
<td>Mean</td>
<td>0.1878</td>
<td>0.01646</td>
</tr>
<tr>
<td>Valine</td>
<td>0.85</td>
<td>Mean</td>
<td>0.0672</td>
<td>0.00302</td>
</tr>
<tr>
<td>Citrate</td>
<td>0.12</td>
<td>Mean</td>
<td>0.0158</td>
<td>0.00102</td>
</tr>
<tr>
<td>Glucose</td>
<td>0.44</td>
<td>Mean</td>
<td>0.0122</td>
<td>0.00065</td>
</tr>
<tr>
<td>β-Alanine</td>
<td>0.07</td>
<td>Mean</td>
<td>0.0027</td>
<td>0.00086</td>
</tr>
</tbody>
</table>

Mean values and standard error were calculated using Microsoft Excel. Data was plotted using Prism (see scatter plots in supplementary materials). Kruskal-Wallis test was applied for determining level of significance at 5% followed by Dunn’s multiple comparison test to compare across groups: (S) vs (M) vs (H).

Table 4.3.3 Summary statistic for absolute concentration (mM) of low molecular weight (hydrophilic) metabolites in serum. Mean values and standard error were calculated using Microsoft Excel. Data was plotted using Prism (see scatter plots in supplementary materials). Kruskal-Wallis test was applied for determining level of significance at 5% followed by Dunn’s multiple comparison test to compare across groups: (S) vs (M) vs (H).
4.3.4 Diffusion edited NMR using saline diluted serum

- **dataset 4C**

A separate dataset was collected using saline-diluted serum to explore spectral contributions from lipoproteins and other macromolecules as opposed to small molecular metabolites. Diffusion edited NMR spectra were analysed by summing the intensities within each variable width bucket. As far as possible each bucket was assigned by comparing spectral features with reference spectra in the literature. At the time of writing, no previous data using $^1$H-NMR has looked at the contribution of lipoproteins in this disease. Blood serum contains various proteins and lipoproteins which contribute strongly to $^1$H-NMR spectra with smaller metabolites such as amino acids superimposed as sharp peaks. The larger molecules generate much broader resonances figure 4.3.14 compared with the earlier NMR generated spectrum (figure 4.3.1). This is characteristic of larger macromolecules such as lipoproteins due to their faster relaxation properties of protons associated with aromatic and aliphatic chemical groups. By alternating the NMR pulse sequence during the acquisition of the samples this generates a diffusion edited NMR spectrum (figure 4.3.15). This approach utilises an echo phenomenon to recover certain signals after a delay in diffusion - as such, macromolecules behave as ‘sluggish’ movers.

The data provides a spectral overview of CH groups of lipids within lipoprotein particles, table 4.3.4. This was then analysed by summing the intensities within each variable width bucket, shown as black bars along the chemical shift axis in figure 4.3.15. Each bucket is labelled with a chemical shift at the centre of each bucket (ppm). The integrated intensities from each sample are presented in dot plots comparing Severe (S), Mild/moderate (M) and House-Matched (HM) – see supplementary figure (S 4.3) in appendix. These intensities were normalised by setting the sum of intensities in each spectrum to 1 to allow for concentration difference. Table 4.3.4 presents the identities of the chemical shifts relating to each variable width bucket. These have been assigned using the resonances observed from high resolution 750 MHz $^1$H-NMR using normal human blood plasma (Foxall et al., 1995).
Figure 4.3.14 600 MHz $^1$H diffusion edited NMR spectra of all serum samples (n=34) with patient codes and colouring: severe (S) – blue; mild (M) – green; healthy (H) – red.
Figure 4.3.15 600 MHz 1H ‘diffusion edited’ NMR spectrum of saline diluted serum (sharp lines from low mol. wt. metabolites are suppressed). The data are analysed by summing the intensities within each variable width bucket (black bars below the spectrum). Each bucket is labelled with the chemical shift at the centre, e.g. the arrowed bucket is labelled ‘2.03’ in the supplementary statistical plots.
<table>
<thead>
<tr>
<th>Metabolite</th>
<th>Chemical Structure</th>
<th>Chemical shift (ppm)</th>
<th>Assigned</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsaturated lipid</td>
<td>=CHCH2CH2</td>
<td>5.31690001</td>
<td>5.31</td>
<td>1D, COSY, HMQC</td>
</tr>
<tr>
<td>Glyceryl of lipids</td>
<td>CHO2COR</td>
<td>5.1967001</td>
<td>5.2</td>
<td>COSY</td>
</tr>
<tr>
<td>Glyceryl of lipids</td>
<td>CH2COR</td>
<td>4.26854992</td>
<td>4.25</td>
<td>HMQC</td>
</tr>
<tr>
<td>myo-inositol</td>
<td>CH2</td>
<td>4.08055019</td>
<td>4.06</td>
<td>JRES</td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
<td>3.9484993</td>
<td>3.98</td>
<td>JRES</td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
<td>3.93875003</td>
<td>3.93</td>
<td>JRES</td>
</tr>
<tr>
<td>Glycerol</td>
<td>C2H</td>
<td>3.88940001</td>
<td>3.87</td>
<td>JRES, COSY</td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
<td>3.81389999</td>
<td>3.83</td>
<td>JRES, COSY, HMQC</td>
</tr>
<tr>
<td>Choline (lipid)</td>
<td>NCH2</td>
<td>3.67209995</td>
<td>3.66</td>
<td>JRES, COSY, HMQC</td>
</tr>
<tr>
<td>Glycerol</td>
<td></td>
<td>3.56110001</td>
<td>3.56</td>
<td>1D, COSY, HMQC</td>
</tr>
<tr>
<td>Choline</td>
<td>N(CH3)</td>
<td>3.22959995</td>
<td>3.21</td>
<td>JRES, HMQC</td>
</tr>
<tr>
<td>Albumin lysyl</td>
<td>e-CH2</td>
<td>3.00000000</td>
<td>3.01</td>
<td>1D, JRES, COSY, HMQC</td>
</tr>
<tr>
<td>Lipid</td>
<td>C=CCH2=C</td>
<td>2.74849999</td>
<td>2.72</td>
<td>1D, COSY,</td>
</tr>
<tr>
<td>Lipid</td>
<td>CH2CO</td>
<td>2.23970008</td>
<td>2.23</td>
<td>COSY</td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
<td>2.07934999</td>
<td>2.08</td>
<td>1D, JRES, COSY</td>
</tr>
<tr>
<td>Glycoprotein (acetyls)</td>
<td>NHCOCH3</td>
<td>2.03464997</td>
<td>2.04</td>
<td>1D, COSY, HMQC</td>
</tr>
<tr>
<td>Lipid</td>
<td>CH2=C</td>
<td>1.98540002</td>
<td>2</td>
<td>COSY</td>
</tr>
<tr>
<td>Lipid</td>
<td>CH2CH2=C</td>
<td>1.71249998</td>
<td>1.69</td>
<td>COSY, HMQC</td>
</tr>
<tr>
<td>Lipid</td>
<td>CH2CH2CH2CO</td>
<td>1.3513</td>
<td>1.32</td>
<td>JRES, COSY, HMQC</td>
</tr>
<tr>
<td>Lipid (mainly VLDL)</td>
<td>CH2CH2CH2CO</td>
<td>1.29580003</td>
<td>1.29</td>
<td>1D, CPMG, JRES, COSY</td>
</tr>
<tr>
<td>Lipid</td>
<td>CH3CH2CH2</td>
<td>1.23405004</td>
<td>1.22</td>
<td>HMQC</td>
</tr>
<tr>
<td>Cholesterol C21</td>
<td>C21</td>
<td>0.89815</td>
<td>0.91</td>
<td>HMQC</td>
</tr>
<tr>
<td>Lipid (mainly VLDL)</td>
<td>CH3(CH2)n</td>
<td>0.8364</td>
<td>0.84</td>
<td>1D, JRES, COSY, HMQC</td>
</tr>
<tr>
<td>Cholesterol C18</td>
<td>C18</td>
<td>0.70524999</td>
<td>0.7</td>
<td>HMQC</td>
</tr>
<tr>
<td>Lipid (mainly VLDL)</td>
<td>CH2CH2CO</td>
<td>1.57999998</td>
<td>1.57</td>
<td>JRES, COSY, HMQC</td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
<td>1.509</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.3.4 Experiment spectra peak assignment based on observed chemical shift and reference to known lipid molecules detected in normal human plasma. Using 750MHz 1H-NMR.
The only significant difference discovered was across two groups (p=0.009, S>H) for a signal at 2.03ppm. This signal was identified as N-Acetyl groups from α1-acid glycoprotein (figure 4.3.16). The next closest significant signals were detected at 2.24ppm, 1.23ppm and 1.58ppm. The signal at 1.58ppm (figure 4.3.17) appears to follow a trend (S>M>H) and appears to correspond to citrulline based on the observed resonances recorded in Nicholson & Foxall, (1995). However, in this particular experiment small molecules such as citrulline are known to be excluded. The earlier set of samples processed using methanol/chloroform extraction would have detected low molecular weight metabolites such as this, but unfortunately did not detect citrulline either.

**Figure 4.3.16  N-acetyl group from glycoproteins** The points in the statistical plot shows the integrated intensities of the bucket labelled with a chemical shift of 2.03ppm. These intensities have been normalised i.e. the sum of intensities in each spectrum has been set to 1 to allow for concentration differences. (p=0.009).
Figure 4.3.17 Integrated signal intensities within bucket width at 1.58ppm. No significant p value. There appears to be a trend (S>M>H).

Citrulline was detected in 2D NMR experiments used for signal identification but it was too low in concentration and lacked clear-cut signals that could be used for quantification by NMR. Armstrong et al., claim to have quantified it using the same method as they had access to a 900 MHz NMR, the 600 MHz machine. Citrulline has previously been suggested as a surrogate marker for increased intestinal permeability as well as intestinal insufficiency relating to short bowel syndrome in patients (Curis et al., 2007; Fragkos & Forbes, 2018). In a 2018 review, the authors conclude citrulline is ‘quite reasonably’ a marker of intestinal function and absorption (Fragkos & Forbes, 2018).
4.3.5 Targeted bile acid mass spectrometry

- dataset 4B

As an extension to the 45 metabolites identified using $^1$H-NMR in severe ME faecal water; additional aliquots for available samples were used for a targeted analysis of 26 bile acids (Table 4.3.5) using Liquid-Chromatography – Mass Spectrometry (LCMS) in multiple reaction mode (MRM). A total of 14 samples were analysed including 8 severe ME (S) patients versus 6 House-Matched (H) controls. The range of concentrations observed across the 26 bile acids varied dramatically and for the purposes of summarising this data across the two groups (S v H), log transformation of absolution bile acid concentrations enabled visualisation on a box plot (figure each bile acid, 4.3.18). Individual metabolites were compared between severe (S) and house-matched (H) using the Mann-Whitney test, except where multiple samples gave zero concentrations, using GraphPad Prism. Beta-muricholic acid ($\beta$-MCA), a primary bile acid that is one of the main forms of major bile acids found in germ-free mice, was significantly higher in severe patients, p value = 0.0416) (Eyssen et al., 1976). The literature is clear that the presence of this bile acid is not expect in humans but been reported to be detected in low concentrations in urine (Goto et al., 1992). Tauro-conjugated forms of alpha- and beta- muricholic acids were also detected in (S) and (H) faecal metabolomes. Table 4.3.5 provides statistical summary of mean bile acid concentrations (ng/ml) and standard errors and respective p value.

The bile acid, temporarily designated as ‘glycocholate’ based on earlier collected NMR spectra which showed a weak separation between severe (S) and house-matched (H), did not produce any significant result, with a recorded p value of 0.4162. For some bile acids, one or two severe ME (S) samples were observed to have unusually higher concentration values outside the rest of the group (see Figure 4.3.19).
Figure 4.3.18 26 Bile Acid targeted Mass Spectrometry analysis of faecal water from 8 severe (S) and 6 House-matched controls (H) Box plot used to compare range of log of concentrations (mM) detected within (S) and (H) groups. Line inside each box represent the median. Error bars indicate the extreme Max and Min values.
Figure 4.3.19 Summary scatter plot for 8 out of the total 26 Bile Acids (BA) targeted faecal water in 8 severe ME patients versus 6 House-Matched controls. Horizontal lines indicate the max, median, and min. Patient numbers 12 and 15 were consistency revealed as outliers across at least 3 BAs. Data was analysed by Mann-Whitney test at the 5% significance level. Plots are labelled with the abbreviated name of each BA listed in Table 4.3.5.
Figure 4.3.20 Faecal metabolome concentration of HDCA (ng/ml) in severe (S) ME versus House-Matched controls. No significant different report by Mann-Whitney test (p=0.15).

Hyodeoxycholic acid (HDCA) showed a cluster of patients with almost double the concentration detected within the House-matched (H) group. The scatter plot in figure 4.3.20 has been annotated with a red box to highlight these patients. It has been documented that HDCA is formed from muricholic acid and hyocholic acid by an unknown Gram-positive rod shaped bacterium originating from the gut of rodents (Eyssen et al., 1999). It is therefore considered to be a secondary bile acid formed in humans as a metabolic by-product of intestinal bacteria. It is not normally present in the urine of healthy humans (Almé et al., 1977); but most interesting has also been cited as being absorbed well across the gut barrier based on its excretion in urine (Sacquet et al., 1983) in patients with cholestatic disease and others with purported intestinal malabsorption (Almé et al., 1977; Summerfield et al., 1976). Interestingly, HDCA has been shown to be effective in treating rodents for metabolic disorders and a diet enriched in HDCA was protective of atherosclerotic plaque formation in LDL receptor knockout mice by reducing intestinal absorption of cholesterol (Shih et al., 2013).
<table>
<thead>
<tr>
<th>Bile Acid</th>
<th>Abreviation</th>
<th>Type</th>
<th>Faeces Un-paired t test</th>
<th>Severe (S)</th>
<th>St. Err.</th>
<th>House-Matched (H)</th>
<th>Mean</th>
<th>St. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha-muricholic acid</td>
<td>α-MCA</td>
<td>Primary (mouse)</td>
<td>0.0631</td>
<td>21.90</td>
<td>9.20</td>
<td>7.0</td>
<td>3.60</td>
<td></td>
</tr>
<tr>
<td>beta-muricholic acid</td>
<td>β-MCA</td>
<td>Primary (mouse)</td>
<td>0.0416*</td>
<td>43.75</td>
<td>20.37</td>
<td>5.6</td>
<td>3.30</td>
<td></td>
</tr>
<tr>
<td>Cholic acid</td>
<td>CA</td>
<td>Primary (mouse)</td>
<td>0.3948</td>
<td>661.90</td>
<td>20.00</td>
<td>59.4</td>
<td>36.50</td>
<td></td>
</tr>
<tr>
<td>Chenodeoxycholic acid</td>
<td>CDCA</td>
<td>Primary (mouse)</td>
<td>0.3397</td>
<td>355.40</td>
<td>16.60</td>
<td>19.7</td>
<td>9.10</td>
<td></td>
</tr>
<tr>
<td>Deoxycholic acid</td>
<td>DCA</td>
<td>Secondary</td>
<td>0.8786</td>
<td>639.80</td>
<td>373.20</td>
<td>1076</td>
<td>615.10</td>
<td></td>
</tr>
<tr>
<td>Glycocholic acid</td>
<td>GCA</td>
<td>Glyco-conjugated</td>
<td>0.4162</td>
<td>165.10</td>
<td>3.10</td>
<td>24.6</td>
<td>12.50</td>
<td></td>
</tr>
<tr>
<td>Glycochenodeoxycholic acid</td>
<td>GCDA</td>
<td>Glyco-conjugated</td>
<td>...</td>
<td>3.00</td>
<td>1.40</td>
<td>3.30</td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td>Glycodeoxycholic acid</td>
<td>GDCA</td>
<td>Glyco-conjugated</td>
<td>0.2583</td>
<td>17.20</td>
<td>3.60</td>
<td>4.60</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>Glycocholic acid</td>
<td>GHCA</td>
<td>Glyco-conjugated</td>
<td>...</td>
<td>0.00</td>
<td>0.00</td>
<td>4.20</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>Glycohyodeoxycholic acid</td>
<td>GHDCA</td>
<td>Glyco-conjugated</td>
<td>...</td>
<td>5.70</td>
<td>0.00</td>
<td>1.10</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>glycolithocholic acid</td>
<td>GLCA</td>
<td>Glyco-conjugated</td>
<td>...</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Glycoursodeoxycholic acid</td>
<td>GUDCA</td>
<td>Glyco-conjugated</td>
<td>...</td>
<td>11.70</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Hydroxycholic acid</td>
<td>HDCA</td>
<td>Secondary</td>
<td>0.1511</td>
<td>1128.50</td>
<td>598.90</td>
<td>757.7</td>
<td>422.30</td>
<td></td>
</tr>
<tr>
<td>Lithocholic acid</td>
<td>LCA</td>
<td>Secondary</td>
<td>0.7645</td>
<td>621.50</td>
<td>287.70</td>
<td>681.9</td>
<td>409.70</td>
<td></td>
</tr>
<tr>
<td>Muricholic acid</td>
<td>MCA</td>
<td>Primary (mouse)</td>
<td>...</td>
<td>53.60</td>
<td>12.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Tauro-a-muricholic acid</td>
<td>Tα-MCA</td>
<td>Tauro-conjugated</td>
<td>0.3989</td>
<td>27.10</td>
<td>18.90</td>
<td>78.6</td>
<td>47.70</td>
<td></td>
</tr>
<tr>
<td>Tauro-b-muricholic acid</td>
<td>Tβ-MCA</td>
<td>Tauro-conjugated</td>
<td>0.983</td>
<td>169.70</td>
<td>130.90</td>
<td>128.1</td>
<td>69.20</td>
<td></td>
</tr>
<tr>
<td>Taurocholic Acid</td>
<td>TCA</td>
<td>Tauro-conjugated</td>
<td>0.9303</td>
<td>127.50</td>
<td>91.60</td>
<td>97.3</td>
<td>50.30</td>
<td></td>
</tr>
<tr>
<td>Taurochenodeoxycholic acid</td>
<td>TCDA</td>
<td>Tauro-conjugated</td>
<td>...</td>
<td>5.60</td>
<td>3.50</td>
<td>29.9</td>
<td>18.00</td>
<td></td>
</tr>
<tr>
<td>Tauroxycholic acid</td>
<td>TDA</td>
<td>Tauro-conjugated</td>
<td>...</td>
<td>7.20</td>
<td>2.20</td>
<td>165.9</td>
<td>99.60</td>
<td></td>
</tr>
<tr>
<td>Taurodehydrocholic acid</td>
<td>TDHCA</td>
<td>Tauro-conjugated</td>
<td>...</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>trihydroxyxypoprostanic acid</td>
<td>THCA</td>
<td>Secondary</td>
<td>...</td>
<td>0.00</td>
<td>0.00</td>
<td>0.83</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Tauroxydeoxycholic acid</td>
<td>THDCA</td>
<td>Tauro-conjugated</td>
<td>...</td>
<td>0.00</td>
<td>0.00</td>
<td>3.80</td>
<td>2.10</td>
<td></td>
</tr>
<tr>
<td>Tauro lithocholic acid</td>
<td>TLA</td>
<td>Tauro-conjugated</td>
<td>...</td>
<td>0.00</td>
<td>0.00</td>
<td>7.20</td>
<td>4.30</td>
<td></td>
</tr>
<tr>
<td>Tauroursodeoxycholic acid</td>
<td>TUDCA</td>
<td>Tauro-conjugated</td>
<td>...</td>
<td>8.25</td>
<td>5.70</td>
<td>5.70</td>
<td>2.60</td>
<td></td>
</tr>
<tr>
<td>Ursodeoxycholic acid</td>
<td>UDCA</td>
<td>Secondary</td>
<td>0.2567</td>
<td>179.10</td>
<td>116.00</td>
<td>49.20</td>
<td>30.10</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.3.5 Statistical summary table for 26 bile acids (BA) quantified in faecal water samples from severe (S) ME patients versus house-matched (H) controls. Mean concentrations are provided in ng/ml with standard error in measurements. Both groups were compared for statistical significance at the 5% level using the Mann-Whitney test, p values are displayed in table
<table>
<thead>
<tr>
<th>Bile Acid</th>
<th>Abbreviation</th>
<th>Type</th>
<th>P value</th>
<th>Severe (S) Mean</th>
<th>Severe (S) St. Err</th>
<th>Mild (M) Mean</th>
<th>Mild (M) St. Err</th>
<th>Healthy Mean</th>
<th>Healthy St. Err</th>
<th>IBD Mean</th>
<th>IBD St. Err</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha-muricholic acid</td>
<td>α-MCA</td>
<td>Primary (mouse)</td>
<td>0.55</td>
<td>30.12</td>
<td>2.77</td>
<td>25.21</td>
<td>1.91</td>
<td>27.5</td>
<td>1.98</td>
<td>33.00</td>
<td>6.01</td>
</tr>
<tr>
<td>beta-muricholic acid</td>
<td>β-MCA</td>
<td>Primary (mouse)</td>
<td>0.16</td>
<td>11.12</td>
<td>9.21</td>
<td>0.00</td>
<td>0.00</td>
<td>11.25</td>
<td>4.81</td>
<td>9.67</td>
<td>9.67</td>
</tr>
<tr>
<td>Cholic acid</td>
<td>CA</td>
<td>Primary (mouse)</td>
<td>0.01*</td>
<td>78.29</td>
<td>14.79</td>
<td>102.21</td>
<td>29.43</td>
<td>155.91</td>
<td>58.29</td>
<td>240.33</td>
<td>54.77</td>
</tr>
<tr>
<td>Chenodeoxycholic acid</td>
<td>CDCA</td>
<td>Primary (mouse)</td>
<td>0.003**</td>
<td>57.21</td>
<td>12.11</td>
<td>109.5</td>
<td>37.65</td>
<td>137.00</td>
<td>49.06</td>
<td>233.00</td>
<td>65.45</td>
</tr>
<tr>
<td>Deoxycholic acid</td>
<td>DCA</td>
<td>Secondary</td>
<td>0.33</td>
<td>267.07</td>
<td>106.47</td>
<td>189.5</td>
<td>55.78</td>
<td>230.25</td>
<td>54.37</td>
<td>130.67</td>
<td>24.05</td>
</tr>
<tr>
<td>Glycocholic acid</td>
<td>GCA</td>
<td>Glyco-conjugated</td>
<td>0.47</td>
<td>143.64</td>
<td>23.58</td>
<td>185.57</td>
<td>49.04</td>
<td>188.75</td>
<td>33.51</td>
<td>172.83</td>
<td>27.00</td>
</tr>
<tr>
<td>Glycoursodeoxycholic acid</td>
<td>GUDCA</td>
<td>Glyco-conjugated</td>
<td>0.59</td>
<td>354.86</td>
<td>67.04</td>
<td>553.86</td>
<td>107.18</td>
<td>453.33</td>
<td>85.75</td>
<td>439.17</td>
<td>105.08</td>
</tr>
<tr>
<td>Glycodeoxycholic acid</td>
<td>GCDA</td>
<td>Glyco-conjugated</td>
<td>0.19</td>
<td>270.00</td>
<td>60.85</td>
<td>225.64</td>
<td>44.62</td>
<td>267.33</td>
<td>68.02</td>
<td>87.83</td>
<td>21.28</td>
</tr>
<tr>
<td>Glycohyodeoxycholic acid</td>
<td>GHCA</td>
<td>Glyco-conjugated</td>
<td>0.02*</td>
<td>0.64</td>
<td>0.64</td>
<td>6.92</td>
<td>2.49</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Glycohyodeoxycholic acid</td>
<td>GHDC</td>
<td>Glyco-conjugated</td>
<td>0.27</td>
<td>14.29</td>
<td>0.54</td>
<td>11.36</td>
<td>1.34</td>
<td>13.42</td>
<td>1.48</td>
<td>9.67</td>
<td>3.15</td>
</tr>
<tr>
<td>glycolithocholic acid</td>
<td>GLCA</td>
<td>Glyco-conjugated</td>
<td>0.16</td>
<td>16.07</td>
<td>2.04</td>
<td>16.42</td>
<td>1.94</td>
<td>21.67</td>
<td>4.72</td>
<td>10.83</td>
<td>1.28</td>
</tr>
<tr>
<td>Glycoursoxydeoxycholic acid</td>
<td>GUDCA</td>
<td>Glyco-conjugated</td>
<td>0.15</td>
<td>15.21</td>
<td>1.33</td>
<td>13.71</td>
<td>0.79</td>
<td>16.00</td>
<td>1.00</td>
<td>16.67</td>
<td>0.92</td>
</tr>
<tr>
<td>Hyodeoxycholic acid</td>
<td>HDCA</td>
<td>Secondary</td>
<td>n/a</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Lithocholic acid</td>
<td>LCA</td>
<td>Secondary</td>
<td>0.10</td>
<td>59.57</td>
<td>47.91</td>
<td>1.71</td>
<td>1.71</td>
<td>32.42</td>
<td>24.22</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Muricholic acid</td>
<td>MCA</td>
<td>Primary (mouse)</td>
<td>0.84</td>
<td>75.5</td>
<td>16.87</td>
<td>136.29</td>
<td>38.63</td>
<td>105.41</td>
<td>28.43</td>
<td>88.67</td>
<td>32.71</td>
</tr>
<tr>
<td>Tauro-muricholic acid</td>
<td>T-MCA</td>
<td>Tauro-conjugated</td>
<td>0.21</td>
<td>17.86</td>
<td>8.69</td>
<td>2.07</td>
<td>1.42</td>
<td>5.50</td>
<td>3.00</td>
<td>20.83</td>
<td>9.51</td>
</tr>
<tr>
<td>Tauro- -muricholic acid</td>
<td>T-MCA</td>
<td>Tauro-conjugated</td>
<td>0.06</td>
<td>319.93</td>
<td>126.3</td>
<td>124.93</td>
<td>18.66</td>
<td>220.08</td>
<td>48.64</td>
<td>122.83</td>
<td>28.32</td>
</tr>
<tr>
<td>Taurocholic Acid</td>
<td>TCA</td>
<td>Tauro-conjugated</td>
<td>0.11</td>
<td>123.21</td>
<td>24.16</td>
<td>77.14</td>
<td>10.36</td>
<td>149.5</td>
<td>32.2</td>
<td>147.83</td>
<td>56.52</td>
</tr>
<tr>
<td>Taurochenodeoxycholic acid</td>
<td>TCDA</td>
<td>Tauro-conjugated</td>
<td>0.93</td>
<td>90.71</td>
<td>24.22</td>
<td>81.5</td>
<td>18.8</td>
<td>98.25</td>
<td>25.88</td>
<td>79.17</td>
<td>24.36</td>
</tr>
<tr>
<td>Taurodeoxycholic acid</td>
<td>TDCA</td>
<td>Tauro-conjugated</td>
<td>0.13</td>
<td>85.43</td>
<td>17.71</td>
<td>50.57</td>
<td>8.32</td>
<td>73.67</td>
<td>21.79</td>
<td>30.50</td>
<td>6.17</td>
</tr>
<tr>
<td>taurodehydroxyacetic acid</td>
<td>TDHCA</td>
<td>Tauro-conjugated</td>
<td>0.30</td>
<td>0.00</td>
<td>0.00</td>
<td>2.07</td>
<td>2.07</td>
<td>0.00</td>
<td>0.00</td>
<td>6.50</td>
<td>6.50</td>
</tr>
<tr>
<td>trihydroxyprostanoic acid</td>
<td>THCA</td>
<td>Secondary</td>
<td>n/a</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Taurohydroxydeoxycholic acid</td>
<td>THDCA</td>
<td>Tauro-conjugated</td>
<td>0.13</td>
<td>15.07</td>
<td>0.66</td>
<td>12.57</td>
<td>12.3</td>
<td>13.58</td>
<td>0.50</td>
<td>15.17</td>
<td>1.08</td>
</tr>
<tr>
<td>Taurolithocholic acid</td>
<td>TLCA</td>
<td>Tauro-conjugated</td>
<td>0.17</td>
<td>16.00</td>
<td>0.94</td>
<td>13.79</td>
<td>1.41</td>
<td>17.00</td>
<td>1.79</td>
<td>12.33</td>
<td>1.02</td>
</tr>
<tr>
<td>Tauroursodeoxycholic acid</td>
<td>TUDCA</td>
<td>Tauro-conjugated</td>
<td>0.60</td>
<td>21.21</td>
<td>2.89</td>
<td>15.00</td>
<td>2.13</td>
<td>16.83</td>
<td>1.98</td>
<td>15.67</td>
<td>3.61</td>
</tr>
<tr>
<td>Ursodeoxycholic acid</td>
<td>UDCA</td>
<td>Secondary</td>
<td>0.36</td>
<td>17.57</td>
<td>4.35</td>
<td>39.93</td>
<td>11.77</td>
<td>30.67</td>
<td>6.95</td>
<td>36.50</td>
<td>10.89</td>
</tr>
</tbody>
</table>

Table 4.3.6 Statistical summary of serum bile acid concentrations (nM) in Severe (S), Mild/moderate (M), Healthy, and IBD. Included 26 targeted bile acids quantified using mass spectrometry. Significant p values are in **bold**. Colour shading for ease of separation of values corresponding to 12 severe ME (red), 14 mild/moderate ME (yellow), 7 healthy (green) and 6 IBD (blue) samples. Mean concentrations and standard error per metabolite, per group. P values calculated using Kruskal Wallis test at 5% significance: *denotes p < 0.05, ** denotes p < 0.01.
4.3.6 Bile Acid analysis of ME serum

- dataset 4D

Targeted HPLC mass-spectrometry of the same 26 bile acids was accurately quantified in a total of 46 serum samples collected between 2015-2017. This represents the largest and final dataset (designated 4D, Table 4.3.2) acquired during the study. Twenty-six ME/CFS patients where included in the experiment were categorised as follows: 12 severe (S), 14 mild/moderate (M). In addition, 7 House-Matched (H) and 6 IBD serum samples were also included. Sera collected the previous year (2016) was available at the time, for 2 of the severe patients (n=12+2, severe) and their respective House-Matched control (n=7+2). A further 3 conventionally healthy samples were provided as a gift along with the 6 IBS serum samples kindly given by Dr Alistair Noble (Imperial College London, UK), bringing the total sample size to 46.

The synthesis of primary bile acids takes place within the liver where major bile salts are produced when conjugated with taurine and glycine, forming tauro-chenodeoxycholate (TCDCA) and glycochenodeoxycholate (GCDCA) respectively (Germain et al., 2017). Both of these have been reported significantly reduced in ME/CFS patients. In contrast, within severe (S) and Mild/moderate (M) patients there was no statistically relevant difference for either. However, upon review of the scatter plot for GCDCA (fig. 4.3.21), it does appear as if severe patients have a lesser concentration compared with the other groups which would be in agreement with these previous reports. Although it is worth noting that this trend was not identified in the faecal water metabolome of the same participants (figure 4.3.19).

![Figure 4.3.21 Concentration (ng/ml) of glycochenodeoxycholic acid (GCDCA) across 4 groups. KW test revealed no significant differences at 5% significance.](image-url)
Figure 4.3.22 Mass Spectrometry targeting on 26 bile acids in serum. Four groups compared: 14 severe (S), 14 Mild/moderate (M), 14 House-Matched (H) and 6 IBD serum. Statistical analysis was performed in GraphPad Prism using one-way ANOVA with Dunnett’s Multiple comparison to House-Matched (H). No significance was observed.
Figure. 4.3.23 Scatter plots summarising concentrations found of tauro-deoxycholic acid (TDCA) found across the 4 groups labelled. Kruskal-Wallis with Dunn’s multiple comparison test reveal the following values (left plot) $p=0.132$, (right plot) $p=0.047$.

Another interesting trend emerged from a primary bile acid produced in the liver called taurodeoxycholic acid TDCA. The initial Kruskal-Wallis (KW) test performed for this bile acid did not show significant differences in accumulation between different groups. Review of the scatter plot highlighted 3 healthy outliers. These samples were subsequently removed from the plot (figure 4.3.23), given the limited criteria for the condition of healthy was based on participants ‘apparently healthy’. After which, the KW test re-applied to show higher, significant difference between groups, at a $p$ value of 0.047. Alas, Dunn’s multiple comparison was unsuccessful is demonstrating which pair of groups were significantly different, but the trend appears to be $S>M>H$. Tauro-conjugated bile acids are more typically found in mice, compared to human bile acids which more frequently conjugate with glycine.
In an attempt to summarise this work, as with previous datasets 4A-C, a box plot was constructed comprising serum bile acid concentrations (ng/ml) across severe (S), mild/moderate (M), house-matched (H) and IBD groups. Statistical summary of the data is provided by Table 4.3.6 with mean BA concentrations and standard errors, including p values determined by individual KW tests. As with the faecal metabolome, several muricholic derived bile acids were detectable and quantified in serum, with possibly the highest concentrations detected in a few of the severe (S), see table 4.3.6. However, in a recent metabolomic study profiling bile acids in human plasma from patients with Alzheimer’s disease (AD) various muricholic acid forms were below the limit of detection (Pan et al., 2017).

Figure 4.3.24 Selected scatter plots for absolute bile acid concentration across 4 bile acids in serum. Consistently the same patients are the represented as outliers within their respective group (S), (M), (H) for these particular bile acids. No clinical information was provided for IBD serum samples used in this analysis. KW test revealed GHCA group differences generative p value of 0.02, but failed Dunn’s multiple comparison. CDCA **p=0.003 CA *p= 0.01
Chenodeoxycholic acid (CDCA) and cholic acid (CA) are considered primary bile acids that undergo synthesis in both the livers of humans and mice before conversion by intestinal microbes to lithocholic acid (LCA) and deoxycholic (DCA) respectively (Hu et al., 2014). CDCA is usually abundant in human bile, but is not compared with mice where it converted to muricholic acids (Zhang & Klaassen, 2010). Higher serum concentration of CDCA and other bile acids such as GCA, GCDC, TCDCA are noted with respect to liver injury and disease (Luo et al., 2018). No evidence, as such, is presented within these data to suggest severe (S) ME or mild/moderate (M) patients display signs of liver injury or disease. On the contrary, the CDCA scatter plot presented in figure 4.3.2 was highly significantly different (p=0.003) based on KW test and Dunn’s multiple comparison, for the following trends, S<IBD, M<IBD. CDCA is normally abundant in human bile compared with mice where is converted to muricholic acid. Indeed, the earlier observation of higher faecal HDCA is also intriguing as it can be formed from MCAs.
4.4 Discussion

Metabolomics was used to profile metabolites derived from serum and the faecal microbiota of ME/CFS patients compared to HHCs. The composition of the intestinal microbiota was explored in the previous chapter in ME/CFS using metagenomics increasingly interprets the functional gene diversity, rather than its taxonomic profile, needed to carry out important functions including vitamin, short chain fatty acid production, amino acid synthesis, secondary bile acid metabolism and fermentation of non-dietary carbohydrates (Vernocchi et al., 2016). Metabolomics is able to compliment functional metagenomic interpretations, by providing a metabolic profile as an intermediate between microbiota-host interactions. Until now recent metabolome studies to date, have suggested some consistencies for alterations with the ME/CFS faecal and blood metabolome. These findings have been substantiated by independent research groups and by the application of different metabolomics methods using $^1$H-NMR and Mass Spectrometry (MS). Based on this, it was expected that the severe ME patient cohort examined here would exhibit similar metabolic disturbances relating to their energy and lipid metabolism. Furthermore, given their severity of clinical status it was hypothesised that the scale of such metabolic difference may be accentuated in severe ME compared with the general mild/moderate ME patient population. The data presented in this chapter based on serum did not support this hypothesis. Indeed, the lack of any particular finding in either faecal and serum metabolome was surprising and appear to reject our hypothesis.

Faecal water collected from 11 severe ME patients and 6 house-matched controls were the first samples to be examined. These samples were collected in 2017 following changes made to sample collection where the patient was asked to provide samples from their own stool specimen which, did not allow for control of location of the sample from the entire stool. In an attempt to address the issues around the lack of standardisation frequently the case in microbiome-based studies, it was decided to collect the entire stool sample from each participant. Gratton et al. (2016) show that faecal homogenisation is an important step in overcoming sample variability according to where you sample even within same stool specimen (Gratton et al., 2016b). Transport time was also an additional factor when attempting to conduct patient home visits. There was considerable journey time for some sample collections depending on where they lived with respect to the site of sampling processing.
There may be a consensus regarding reduced butyrate production in the faecal metabolome in ME/CFS patients, although this was not seen in this study. No assumptions were made about the distribution of metabolite concentrations prior to statistical testing. To that end, a conservative approach was made in the decision to use non-parametric testing to compare differences across different groups. In contrast to parametric testing, this approach is more stringent, with less assumption but also does not account for the fact that each house-matched control is paired with a severe ME patient. However, this does not negate that upon review of the data in figures 4.3.3. there is great overlap in individual metabolite concentrations between the groups. Earlier work by Armstrong et al., (2017) using 900MHz $^1$H-NMR, provided the most relevant incite in to the ME systemic metabolome since it also used ME/CFS serum, but only had the capacity to detect 29 metabolites. With the emphasis on the severity of ME with our patient cohort, the lack of any result is puzzling given that in the analysis of serum 53 metabolites there were detected and quantified in severe ME, again, no significant conclusions can be justified.

The lack of reproducibility continues to be a challenge for ME research, however this is layered with further challenges when considering potential methodological differences may be contributing dramatically to the outcome of the result. As discussed, sample collection and processing must also be controlled. Review of table 4.1.1 highlights serum versus plasma as the most obvious factor in accounting for variability with respect to small metabolites that appear to be more stable in plasma than in serum based on the lack of any consistent findings that have previously reported. Both serum and plasma analyses have been performed in ME patients using mass spectrometry but only those done using plasma highlight significant overlap in observed differences in metabolic pathways.

Unfortunately, it was not possible to include plasma in this work since serum collection was originally prioritised for the purposes of identifying the presence of (auto)-antibodies towards gut microbes in future work. Serum is the preferred standard for antibody-based discovery. Moreover, serum collected from house-bound patients experienced variable delays (1-4 hrs) in transport to the laboratory for processing and storage at -80°C. It is unknown if this causes further enhanced loss of some metabolites or if plasma would be more resilient. For future sample collection is would be highly preferably to include mobile refrigeration during transportation to maintain constant temperature of all samples.
Other methodological difference include NMR platform technology and equipment used. Armstrong et al. produced their data on a 900 MHz $^1$H-NMR machine – which is 1.5 times stronger than the 600 MHz machine used in this chapter. Briefly, when a sample is placed in a strong magnetic field the nuclear spins allocate themselves to two energy levels: low (‘spin up’) and high (‘spin down’). The energy level difference is small compared with thermal energy so the difference in number of nuclei in the lower and upper energy levels is very low e.g. 1 in a million. It is only this difference that we can detect. The difference in energy levels is greater and more detectable using 900 MHz machine versus 600 MHz. Moreover, signals are 1.5x more spread out at 900MHz, across 0-10 ppm, the full range of signals for hydrogen. For these reasons, a signal of interest that is overlapped with an interfering signal at 600 MHz may be better resolved at 900 MHz.

Contrary to Armstrong et al. (2017), no evidence has been found for increased fermentation within this severe patient cohort. Particularly no difference was found for faecal butyrate or any other SCFAs. Often the faecal specimen provided by the patient was significantly less than that from house-matched control and appear very hard and dehydrated. Taking into account the disabling nature which confines these patients to the house and bed, often patients eat very little and do not drink enough. This most likely decreases gut transit and is a process that is known to increase the pH in the gut environment (Thursby & Juge, 2017). Studies have documented the effect of higher pH to show increased SCFA production and a decrease in lactate concentration, another metabolite in which no significant difference was observed (Belenguer et al., 2007).

One interesting metabolite detected was γbutyrobetaine. This could be measured at a low level in most samples (patients and controls) but was notably higher in 3 of the patients. It is a gut microbial metabolite of L-carnitine (Koeth et al., 2014) and an intermediate in the conversion of carnitine to trimethylamine and TMAO. L-carnitine is found in meat, fish and eggs, however could also suggest these patients are taking a supplement with carnitine. Another possible explanation could be these patients lack bacteria that effect the conversion to TMA or TMAO. Increased Lactonifactor spp. belonging to the family Lachnospiraceae spp. and Ruminococcus spp. can produce TMAO, whilst Bacteroides spp. has been found to be less abundant in its presence (Wang et al., 2015). Another metabolite that was only found in two patients was taurine. Taurine may be relevant since it is known to conjugate to primary bile acids in the liver whose function is important in lipid metabolism and consequently energy homeostasis. Like, L-carnitine, taurine is also
found in many health and energy supplements which we were unable to obtain any information regarding their consumption by ME or control subjects included in this study.

The liver is the site for bile acid synthesis from cholesterol. Tauro-chenodeoxycholate (TCDCA) and glyco-chenodeoxycholate (GCDCA) have already been reported to be reduced in ME/CFS, which may suggest potential liver damage, although more the status of more conventional markers for this are unknown in ME/CFS (Germain et al., 2017). Bile acids are an important aspect to lipid metabolism since they facilitate the digestion and absorption of lipids within the small intestine. Interestingly, high fat diets may lead to partial intestinal permeability dysfunction; thus, bile acid metabolism was explored in these severe ME patients in the context of a role for a leaky gut in ME/CFS as providing a potential mechanistic role in these circumstances. Moreover, an unidentifiable suspected ‘bile acid’, to which the closest reference match was glycocholate, appeared significantly higher in severe patients (fig. 4.3.2) based on NMR resonances observed from their faecal water. Out of the 45 metabolites, this unknown bile acid was the only significantly different metabolite (KW, p=0.03).

Global metabolite profiling uses an untargeted approach in the field of biomarker discovery, however different platforms can be limited to the size and chemical properties of metabolites they detect. Increasing the number of metabolites identified requires authenticated standards included in the analysis to compare mass spectra and retention time with sample metabolites (Roessner, 2001). The choice of sample extraction solvent can allow for separation of polar and apolar metabolites. With our NMR work, chloroform/methanol was used for biphasic solvent extraction, thus our focus was on small soluble metabolites in serum and faeces. The sensitivity and resolution of NMR is considered inferior the MS-based methods, therefore better coverage of the metabolome uses both of these in combination. Together 1H-NMR and MS are the most powerful metabolomic techniques that define the number of metabolites in clinical samples (Collino et al., 2013). Other published ME/CFS studies have been able to detect a wide variety of metabolites with a range of physical chemical properties. Germain and colleagues used plasma to quantify 361 metabolites using Q-Exactive MS (QE-MS) and found ADP, ATP, pyrimidines and many amino acids were significantly decreased in ME (Germain et al., 2017). Indeed, it would be interesting to undertake similar sophisticated workflows and MS, as previously described, to examine these pathways in severe ME patients. However the majority of the “signature”
metabolites identified from the analysis of much larger numbers of metabolites (Armstrong et al., 2017; Germain et al., 2017; Naviaux et al., 2016) whose abundance was altered in mild and moderately affected ME/CFS patients; whilst of those metabolites overlapping with our study were found unaltered in severe ME/CFS patients.

The previous chapter discovered that severe ME patients tended to have less F. prausnitzii compared to HHCS. (fig. 3.3.11B). A reduction in this species has been well-established with IBD and considered an important contributor to intestinal health (representing 5% of the total microbiota) providing energy to colonocytes through butyrate production and simulating anti-inflammatory signalling pathways (Arumugam et al., 2011; Cao et al., 2014; Miquel et al., 2013; Qiu et al., 2013). Our expectation was to find a reduction in faecal butyrate. However, Armstrong and colleagues suggested ME/CFS patients to display increased microbial fermentation correlated with Clostridium spp. and Bacteriodes spp. producing higher levels of SCFAs, valerate, isovalerate and butyrate (Armstrong et al., 2017). None of these were found any different between our severe patients and HHCS, (figure 4.3.3) or from our sequencing data. Microbial volatile organic acids may be better targeted using GS/MS compared to NMR as the current agreement between metabolic studies in ME/CFS have been focused on using MS techniques (Germain et al., 2017; Naviaux et al., 2016).

Targeted bile acid mass spectrometry did not reveal any significant changes in bile acid composition between patients and controls and was not helped by the relatively low sample group sizes. This was in exception to serum CDCA found significantly lower in severe ME patient serum and is known to be reduced in fasting states (J. Zhang et al., 2017). Surprisingly, the alpha and beta forms, as well as tauro-conjugated muricholic acids were detectable across all samples in faecal water and serum even though it has been suggested that the human gut microbiota is unable to metabolize CDCA into βMCA (Martin et al., 2007, 2008; Sacquet et al., 1984, 1985). Conversely, mice can hydroxylate chenodeoxycholic acid (CDCA) in the liver at the 6β-position to form α-muricholic acid (MCA) and ursodeoxycholic acid (UDCA) to form βMCA. Cyp2c70 is the principal enzyme involved in MCA production and is responsible for the differences in bile acid metabolite profile between humans and mice with further heterogeneity introduced in secondary bile acid metabolism by intestinal microbiota where taurine/glycine conjugated primary bile acids undergo deconjugation by intestinal bacteria using bile salt hydrolases (BSHs). Tauro-
alpha/beta-muricholic acids (T-α/βMCAs) were also detected in patients and controls, despite also normally being considered as species-specific primary bile acids in mice that are lacking in humans. Notably, tauro-beta-muricholic acid has been studied as a farnesoid X receptor (FXR) antagonist in mice models for metabolic disorders including obesity and insulin resistance, where reduction of bacteria with BSH activity protected against obesity and improved insulin sensitivity (Prawitt et al., 2011). Further work is needed to explore the BA profile in ME/CFS due to it roles in participating in different signalling pathways involved in lipid, glucose, and energy metabolism.

Targeted analysis conducted in this way does have a drawback in that other less abundant, minority isoforms may go unnoticed in humans, such as muricholic acids. For instance, (García-cañañaveras et al., 2012) were able to detect for the first time T-αMCA in healthy human serum using UPLC MRM MS, where in mice MCAs form >80% of the total primary acid pool (García-cañañaveras et al., 2012). Analysis of faecal bile acid composition also revealed high levels of a mouse secondary bile acid, hyodeoxycholic acid (HDCA) shown in figure 4.3.20, in some severe ME patients. Although this result is not statistically significant, it appears convincingly higher in concentration for five severe patients (red box), at over twice the median concentration compared to the control group. In fact the conventional mouse gut microbiome is able to convert T-βMCA through bile salt hydrolase (BSH) and bile acid 7α-dehydroxylase forming β-MCA and hyodeoxycholic acid (HDCA; 3α,6α-Dihydroxy-5β-cholan-24-oic acid) respectively (Ridlon et al., 2014). The higher levels of HDCA in severe patients is unusual and obscure when reviewing the current published literature which purport hydroxyl groups in human primary bile acids to mainly occupy the 3, 7, 12-position, whilst only mice can also add hydroxyl groups at the 6-postion forming HDCA and α/β/γ-MCAs (Sacquet et al., 1983). Indeed, the only difference between deoxycholic acid (DCA) and HDCA is the position of the hydroxyl group, which is at the 12-position in DCA. To that end, HDCA is considered to be a major murine secondary bile acid, absent in humans, that is microbially generated from the primary bile acids αMCA and βMCA (Studer et al., 2016).

The microbiome is a source of various bile salt hydroxylases (BSHs) that can perform deconjugation of glycine and taurine to liberate free primary bile acids and 7α-dehydroxylating bacteria facilitating bile acid conversion. Member of Lactobacillus spp. and Bacteroides spp. are known to produce BSH, none of which we found correlations in our
earlier discussed sequencing of the ME/CFS metagenome (De Smet et al., 1995; Stellwag & Hylemon, 1976). An unidentified Gram-positive rod-shaped bacteria capable of dehydroxylation of the 7β-hydroxy group and epimerization of the 6β-hydroxy group into a 6α-hydroxy group converting βMCA into HDCA was isolated from rat intestines (Eyssen et al., 1999). Therefore, this makes the higher levels on detection in some severe samples, in tandem with low levels of MCAs a possible interesting finding. HDCA does not appear to be used as a substrate for further conversion by intestinal bacteria and has been reported to be well absorbed in the human intestine, although serum levels were unremarkable in severe ME serum (Sacquet et al., 1983).

Thus, mice and humans have different bile acid pools that may affect signalling through bile acid receptors and host physiology very differently across species further highlighting the microbiome’s role interaction in host species metabolism. This warrants caution when translating the bulk of research literature performed in mice to explain human disease states. For instance, germ-free mice have revealed that a lack of a gut microbiota not only changes the bile acid pool within the entero-hepatic circulation and serum but also reduces availability of SCFAs, such as butyrate used as an energy substrate by colonocytes (Bäckhed et al., 2007; Wichmann et al., 2013). Consequently, these animals display hyperglycaemia and insulin resistance causing disruption to glucose metabolism. SCFAs are considered necessary for gut health, since lack of butyrate-producing bacteria has been associated with type 2 diabetes. Furthermore, in a recent report using mice with a disrupted microbiota caused by antibiotic treatment there was improved glucose homeostasis and insulin sensitivity compared to their GF counterparts. (Zarrinpar et al., 2018). Conflicting reports such as these and the known metabolic difference between mice and man highlight the complexities of microbial metabolic interactions with host metabolism and physiology. More observation led studies must be applied in human disease states, such as this work in severe ME to decipher how apparent changes in the gut microbiota may be altering host metabolism and physiology particularly with respect to host lipid and energy metabolism.

Our data is most relevant for comparison with Armstrong and colleagues, based on 1H-NMR measurements in faecal water and serum, whereas the other studies use plasma and MS in combination with different workflows. Serum versus plasma is another consideration that has to be made when comparing studies and the respective metabolomic profile will be different (Yu et al., 2011). The coagulation and separation of serum within the gel
collection tube can alter the metabolite profile and, as with metagenomic research, highlights the important for sample collection and processing standardisation (Liu et al., 2018). Moreover, blood transport time and storage were significant cofounding factors given that these samples were obtained from home visits and had various delays in processing for long term storage (Jobard et al., 2016). The drawback is that we have been unable to detect and quantify a large number of metabolites that have been reported to alter various aspects of ME/CFS metabolism. Targeted acquisition of metabolites in these pathways can be sought with more sophisticated workflows using MS, as previously described (Germain et al., 2017). As an example, we targeted bile acids in our analyses, and acknowledge their biological importance to energy metabolism and glucose homeostasis (Shapiro et al., 2018; Wahlström et al., 2016). Blood serum levels of BAs are difficult to interpret given the known impact diet and the time of taking the sample. However, TDCA was significantly higher ($p = 0.047$) in severe ME (fig. 4.3.22) and may directly inhibit colon motility and slow intestinal transit time and gastric emptying as shown in mice (Abdu & Albaik, 2016). Interestingly, bile acids can inhibit LPS-induced TNF$_\alpha$ secretion, while conjugated bile acids can act as signalling molecules for TGR5 pathways to modulate inflammation (Chang et al., 2018). Moreover, TCDA may also decreases systemic inflammatory cytokines by increasing immune-regulatory cells (Chang et al., 2018).

In conclusion, despite the adoption of similar sample processing and acquisition of NMR metabolic profile, we were unable to replicate the observations reported by Armstrong and colleagues. Despite the relative reduction in $F. praunstzii$ in severe ME patients reported in the previous chapter, faecal butyrate concentration was not decreased compared to household controls. Of note, the levels of muricholic acid and their derivatives cholic acid and chenodeoxycholic acid (CDCA), which are the most important human primary bile acids, were significantly lower in the serum of severe ME/CFS patients. Analysis of faecal bile acid composition also revealed high levels of a mouse-associated secondary bile acid, hyodeoxycholic acid (HDCA) in severe ME. HDCA is considered to be a major murine secondary bile acid, absent in humans, that so far, has only reported to be microbiially generated within the rat intestinal microbiome from primary bile acids $\alpha$MCA and $\beta$MCA (Eyssen et al., 1999; Studer et al., 2016). Further work exploring the significance of specific alterations of bile acid profile in ME/CFS may yield new mechanistic insights into how the alterations in primary bile acids impacts on signalling pathways involved in lipid, glucose, and energy metabolism that are a general feature of ME/CFS.
Chapter Five

5 Detection of IgA-coated faecal bacteria in severe ME/CFS patients
5.1 Introduction

Increased intestinal permeability, or “leaky gut” is not currently recognised as a standalone medical disorder that can be diagnosed and treated. In health, the intestinal epithelial barrier acts as a physical barrier protected by a immunologically active mucus layer with bacteriostatic and bactericidal properties, such as anti-microbial peptides, called defensins, to stop invasion and translocation of harmful microbes and toxins that may elicit inflammatory damage from infection injury (Khounlotham et al., 2012). Increased gut permeability represents a major loss of this barrier function causing increased exposure of intestinal microbes to the intestinal immune system with the risk of translocating bacteria entering the systemic circulation and other sites in the body triggering widespread systemic immune system activation (Fasano, 2012). Finally, the intestinal microbiota represents an entity that can be manipulated with diet and pre-/probiotic interventions, and in extreme cases with faecal transplantation of the microbiota in an attempt to treat a “leaky gut” and ameliorate inflammatory-driven intestinal barrier tissue damage.

Bacterial and viral infections are commonly reported prior to, and during the onset of autoimmune disease where intestinal permeability may increase the exposure of immune cells to intestinal microbes and environmental triggers (e.g. food, medications) which does not normally occur in good health (Fasano, 2012). This can then be contributing to a mechanism where reactivity against foreign bacterial and viral antigens leads to cross-reactive antibodies towards self-epitopes which share a common protein sequence similarity during a process referred to a molecular mimicry (Oldstone, 1998). The concept of molecular mimicry was first described in 1983 where monoclonal antibodies to measles virus P protein (MV-P) were found to react with intermediate filament protein, vimentin (Fujinami et al., 1983). Neurological symptoms are triggered during Campylobacter jejuni infection in some individuals. This food-borne pathogen is a major cause of gastroenteritis that can trigger Guillain-Barre syndrome (GBS). During the infection antibodies are made reactive to lipooligosaccharide (LOS) structures on the outer surface membrane of C. jejuni. Structural analysis of LOS includes sialyated moieties homologous to human gangliosides leading to antibody cross-reactivity directed against peripheral nerves as well as Campylobacter (Heikema et al., 2010). Infection appears to initiate these pathological events, but after pathogen clearance autoimmunity persists suggesting there are additional perpetuating factors which drive this phenomenon, which may be explained by long lived auto-antibodies and/or persistent regeneration of new autoantibodies.
Less than 10% of persons with a genetic risk for developing type 1 diabetes develop disease. Antigen presenting cells, such as macrophages and dendritic cells, are in close proximity to the intestinal barrier and their responsiveness is dependent on individual genotypes of HLA class I and II molecules for presentation of antigen to T cells. To that end, a genetic predisposition is not sufficient for disease development. Increased intestinal permeability may have a key role in a pre-autoimmune mechanism which initiates or progresses autoimmunity in T1D patients causing auto-destruction of insulin producing pancreatic β cells (Visser et al., 2009).

Evidence for existence of leaky gut in patients with type 1 diabetes (T1D) and their relatives, is based on expression of the tight junction protein, zonulin which is frequently upregulated in autoimmune disease and causes disassembly of tight junctions between gut epithelial cells (Fasano, 2011; Sapone et al., 2006). This is further correlated with increased intestinal permeability measurements of sugar absorption greater in 42% out of 339 diabetic patients in comparison to age-matched controls (Sapone et al., 2006). A separate independent study also found increased intestinal permeability preceding clinical onset of T1D by comparing the intestinal permeability to sugars in 18 preclinical subjects with 28 new onset and 35 long-term with 40 healthy controls (Bosi et al., 2006). These findings underpin the concept that a leaky gut may shift the balance towards contribution of various environmental factors including changes in the gut microbiota, in conjunction with genetic factors and immune responsiveness which conspire to cause the pathogenesis of T1D. However, the detail of the precise order these events following increased intestinal permeability is not known and therefore in the various conditions associated with increased permeability it is not known how important altered intestinal permeability relates as a cause or consequence across these disease pathologies.

T1D patients have also shown high titres of antibodies against glutamate decarboxylase (GAD), an enzyme found in pancreatic β cells, which has sequence similarity to coxsackie B viral protein p2-C suggesting a viral trigger for this disease. Interestingly, PBMCs isolated from patients with autoantibodies to islet cells proliferated in response to GAD and this viral peptide. However, it is unclear what are the most significant environmental triggers are or the sequences of such events in the development of T1D although there is some evidence that diabetogenic T cells are initially primed in the intestine in response to dietary
gluten and is therefore associated in pathogenesis (Antvorskov et al., 2014; Visser et al., 2009).

- **Measuring intestinal permeability in patients**

The current method to assess intestinal permeability in patients is not routinely used in NHS clinical practice because it is invasive and requires medical supervision with delayed sample collection of urine to measure the rate of excretion of low to high molecular weight sugars, lactulose/mannitol/sucralose (Andre et al., 1988). High molecular weight molecules such as lactulose rely on much slower transcellular uptake across the epithelial barrier as opposed to paracellular transit of smaller sugar probes such as mannitol into the circulation. Determining the ratio between the concentrations of these two molecules in the patient’s urine after 5-6 hrs requires sophisticated analytical equipment such as HPLC/MS not found in conventional NHS hospital laboratories. Moreover, results obtained generally reflect changes in small intestinal permeability as lactulose is degradable by bacteria in the colon (Bischoff et al, 2014).

In their review Bischoff et al., 2014 described at almost 100 publications linking intestinal permeability to disease. In the 4 years since their review on this topic the majority of the methods used to assess intestinal permeability have not advanced in attempt to address their limitations. Another common choice of method is to examine patient serum/plasma for levels of bacterial endotoxin (LPS) using the lysate from horseshoe crabs, which is highly sensitivity to bacterial endotoxins forming a gel clot. This is known as the Limulus-Amoebocyte Lysate (LAL) assay. Such assays can be technically challenging to perform since the enzymes in the clotting cascade in this crab can be inhibited by various protein factors in human blood in addition to EDTA and heparin anticoagulants found in blood collection tubes can all effect endotoxin recovery. Manufactures of LAL kits do not recommend its use in clinical samples without undertaking special precautions to minimise these effects. In addition to circulation levels of LPS, other surrogate markers such as soluble CD14 and LPS-Binding Protein (LPB) which bind help to and sequester LPS have been documented for many diseases (Buscarinu et al., 2017; De Kort et al., 2011; Irvine & Marshall, 2000; Maes et al., 2007; Rojo et al., 2007). LPS measurement may be the preferred surrogate marker for intestinal permeability for its obvious advantages over the L/M test which requires significant patient intervention. Despite the technical complications assaying for LPS in plasma, data published comparing the disease activity of IBD patients correlated increased
LPS with clinical worsening of the patients’ condition (Rojo et al., 2007). Plasma LPS level could also separate patients in inactive and active Crohn’s disease which had significantly higher circulating LPS compared with inactive and active Ulcerative Colitis (UC) patients.

In the pursuit of diagnostic biomarkers, systemic antibodies reactive towards intestinal microbes, as well as autoantibodies resulting from intestinal inflammation, have been explored in the context of leaky gut in IBD where increased intestinal permeability has been associated in the onset of pathology as well as the relapse or progression of disabling symptoms (Macpherson et al., 1996; Mitsuyama et al., 2016; Palm et al., 2014; Sapone et al., 2006; Tibble et al., 2000). A predisposition to increased intestinal permeability may explain why certain individuals are prone to developing IBD since mice genetically engineered to lack junctional adhesion molecule A (JAM-A) and adaptive immune cells develop colitis (Khounlotham et al., 2012). Whereas JAM-A deficiency alone did not cause colitis because of compensatory mechanism leading to an enhanced adaptive immune cell response and increased IgA secretion (Khounlotham et al., 2012). The combined loss of barrier and adaptive immune cells exaggerated acute mucosal injury in these mice (Khounlotham et al., 2012). Many IBD patients report stressful life events prior to episodes of illness. Stress has been implicated with negative consequences for the immune system and increasing intestinal permeability and may be an etiological factor in promoting a leaky intestinal barrier (Ait-Belgnaoui et al., 2012; Glaser & Kiecolt-Glaser, 2005; Vanuytsel et al., 2014).

It has been proposed that autoantibodies reactive with the intestinal microbiota and intestinal epithelial tissue be useful markers in IBD patients and provide insight to its immune-mediated pathogenesis. Indeed, a diagnostic test to differentiate IBD from non-IBD, and Crohn’s from Ulcerative colitis, has been commercialised by Prometheus® Laboratories (Nestlé Health Science) called IBD sgi Diagnostic®. Now its 4th generation of this screening panel including 9 serological markers (Prometheus Laboratories, San Diego, CA). The test uses the ELISA platform to quantify anti-microbial antibodies such as anti–Saccharomyces cerevisiae antibody (ASCA), antibody to Escherichia coli outer membrane porin C (OmpC), antibody to Pseudomonas fluorescens–associated sequence (anti-I2), and antibody to flagellin Cbir1 (anti-CBir1) (Targan et al., 2005). A report by Benor et al. in 2010 highlighted an earlier version of this test, IBD7, based on 7 serological markers without any genetic or inflammatory markers now included in the up-to-date version, was not successful at predicting IBD in children referred for suspected IBD and initial clinical
evaluation and diagnostic by conventional endoscopy and histopathology (Benor et al., 2010); Here, detection anti-flagellin antibodies only had a specificity of 53%. Elevated IgG antibody titres have been reported in 120 Crohn’s patients compared with 120 non-IBD, age-matched controls, against a cocktail antigen preparation derived from \( B. \) *vulgatus* and another using 20 mucosal-associated gut bacteria, and is consistent with loss of barrier function causing increased exposure to microbial antigens and an altered immune response (Adams et al., 2008). It still remains that clinical diagnosis of IBD requires invasive endoscopy and histopathology to inform differential diagnosis of clinical forms such as Crohn’s Disease and Ulcerative Colitis.

**- Antimicrobial antibodies to assess intestinal permeability**

Despite substantial evidence for increased intestinal permeability in neurological/neuropsychiatric pathologies such as MS, Parkinson’s disease, stress, anxiety, depression, autism spectrum disorders, as well as in ME/CFS, there is limited data available on systemic antibody responses towards intestinal commensal bacteria in health and disease (Hollander, 1999; Vanuytsel et al., 2014). How intestinal permeability contributes towards a disease mechanism is poorly understood in these conditions although there is some evidence to suggest increase intestinal permeability precede years before onset of diabetes and Parkinson’s Disease and first degree relatives of these patients also have higher intestinal permeability (Bosi et al., 2006; Forsyth et al., 2011). Anti-microbial antibodies may be more informative and evident of decreased compartmentalisation between the local intestinal immune system and systemic immunity, which may increase the presence of anti-microbial antibodies to intestinal bacteria in samples of peripheral blood. Indeed, systemic IgA, IgG and IgM antibodies reactive against *E.coli*, *E. faecalis*, *E. coli Nissle*, *B. fragilis*, *K. pneumoniae*, and *B. thetaiotaomicron* have been measured in 29 IBD patients (a combination of mild/active and active CD and UC) and 19 controls using live bacterial fluorescence activated cell sorting (FACS) (Haas et al., 2011). It is perhaps not surprising that severe chronic enteropathy is associated with IBD patients to have higher antibody titres in IBD patients probably due to increased exposure in the gut arising from damage caused to the intestinal barrier. The same study highlights chronic HIV-1 infection association with enteropathy and B cell disturbances, with data suggesting bacterial translocation arises from circulating LPS, sCD14 and butyrate potential driving chronic immune activation. However, comparison of systemic antibodies to gut commensals in these patients to healthy controls were no different and did not support their hypothesis.
for gut bacteria driving this chronic immune activation. The authors acknowledge lack of
data on local immune responses in the gut of these patients since faecal samples were not
available to study IgA-responses to gut commensals where distinct reactivity to certain
members of the intestinal microbiota provides an IgA +/- index of specific antibodies that
have been identified in IBD (Palm et al., 2014). As a result, the earlier reports of increased
bacterial translocation and LPS exposure in HIV-1 appear misleading since Haas et al. did
not replicate increased LPS or endoCAb levels. To that end, increased intestinal
permeability does not appear relevant cause for immune activation in chronic HIV-1
infection.

The gut bacteria in the lumen do not normally cause a systemic immune response as the
gut is considered a separate closed compartment (MacPherson & Uhr, 2004). On the basis
a leaky gut reduces the compartmentalisation between the gut immune system and
systemic immunity, blood serum is becoming an attractive sample for quantifying
antibodies against gut commensals. Previously where elevated LPS, sCD14, LPS-bind
protein (LBP) in serum has indicated leaky gut, by identifying high titres of commensal
antibodies in peripheral blood as well as confirming a series of specific Here there is a
requirement for a rapid, high-throughput method for simultaneous detection of multiple
commensal antibodies in a single serum sample.

Current methods such as live bacterial FACs and traditional ELISA can only quantify
antibody titres towards a select number of commensal isolates whilst it is estimated that
there are 1000 species of gut bacteria present in a healthy gut (Qin et al., 2010). In an
attempt to address this problem, in this chapter a new technique for a leaky gut microarray
chip is presented as well as a flow cytometry to measure anti-microbial antibodies to faecal
bacteria. This technique uses existing DNA microarray printers to deliver whole cell bacteria
onto a glass slide coated with substrate designed to immobilise cells. Following incubation
with a minimal amount of patient serum, such slides can be screened with a secondary
anti-human IgG antibody for reactivity against several candidates of the microbiota, figure
5.1.1 using a standard microarray scanner.
Figure 5.1.1 Comparison of methods used in this chapter for detecting antibodies against intestinal microbes in faeces (top) and serum (bottom). Top: isolated faecal bacteria suspended in liquid can be incubated with IgA-specific and binding detected using a flow cytometer. Bottom: in adaptation to a method reported by Thirumalapura et al., 2006 simultaneous screening of serum against multiple intestinal bacteria immobilised onto nitrocellulose can be assessed using a conventional DNA microarray scanner and microarray printing equipment.

Bacteria have previously been immobilised onto nitrocellulose-coated glass slides used for the detection of antibodies in sera of dogs infected with *Francisella tularensis* (Thirumalapura et al., 2006). The method used both Gram positive and Gram-negative bacteria and reported successful immobilisation onto commercially available nitrocellulose-coated glass slides. An immunoassay of this kind has not been reported for use in human serum antibody detection. As a platform, microarrays offer high-throughput capability that would favour screening multiple serum samples for reactivity against potentially hundreds of bacterial isolates from the human gut microbiota. In a single experiment this format would aid simultaneous antibody and help identify specific titres of antibody relevant to disease pathology and the status of the immune system. This assay would not only be useful for ME/CFS research but may also facilitate other areas of research with difficulty in establishing a causative role for increased gut permeability.
Evidence of increased intestinal permeability in ME/CFS

Evidence of raised concentrations of serum IgA and IgM against LPS in CFS patients for a limited number of enterobacteria isolates has been obtained in several studies, concluding that serum IgA levels to selected isolated bacterial species also correlated with severity of illness using the Fibro-fatigue scale (Maes et al., 2007). These isolates include Hafnia alvei, Pseudomonas aeruginosa, Morganella morganii, Proteus mirabilis, Pseudomonas putida, Citrobacter koseri, and Klebsiella pneumonia (Maes et al., 2007). It has been proposed that severity of symptoms of fatigue, IBS symptoms, and failing memory/concentration in some ME/CFS patients originated from having a leaky gut which drives inflammation and cell mediate immune activation and altered cytokine production (Maes & Maes, 2009). In a case report on a 13 year old girl who showed high titres for IgM against LPS of enterobacteria, normalisation of leaky gut led to complete remission of her symptoms using a combination of antioxidants, zinc and glutamine, with immunoglobulin therapy (Maes et al. 2007). Maes also report higher serum antibody titres for the same enterobacteria in patients with major depression disorder (MDD). In 2013, Maes reported autoimmunity in some ME/CFS patients and increased IgA responses towards commensal enterobacteria, all of which were associated with increased fatigue, neurocognitive and autonomic symptoms, sadness and a flu-like malaise (Maes et al., 2013). Leaky gut may well support autoimmunity but with limited data of the types of antibodies made to only a few commensal bacteria it is difficult to decipher the source of this phenomenon.

In summary, the current methods for defining intestinal permeability are not without limitation, open to misinterpretation, and are not widely used in clinical practice. Without improved methods to assess intestinal permeability and the role of the microbiota in disease, current therapeutics such as prebiotic and probiotics, and especially faecal microbiota transplantation may be ineffective. Detection of systemic IgG and gut mucosal IgA antibodies towards commensal bacteria as a surrogate for intestinal permeability in patients has yet to be explored in ME/CFS.
The role of mucosal IgA antibody in protecting the intestinal barrier

The intestine generates several grams of IgA per day, secreted from large numbers of plasma cells from beneath the surface of the layer of epithelial cells which form the intestinal barrier and is the main mediator of intestinal mucosal immunity (Pabst, 2012). IgA antibody responses can be produced by T cell dependent and independent pathways (Macpherson et al., 2012). The majority of commensal bacteria have been found to mostly stimulate IgA production in a T cell independent manner resulting in low affinity or non-specific “natural” IgA antibodies which contribute to the shaping of the gut microbiota (Bunker et al., 2015; Rescigno, 2014). In contrast, T-cell dependent mechanisms for IgA production lend towards reactivity against non-self, bacterial derived specific antigenic proteins presented by dendritic cells and macrophages in Peyer’s patches and mesenteric lymph node (mLNs) during infection (Bunker et al., 2015). Mucosal IgA also appears to have as significant role in immune compartmentalisation between the local and the systemic immune system since mice deficient in IgA produce higher serum antibodies towards gut commensals (Macpherson & Uhr, 2004; Sait et al., 2007).

More recently, in mice, the majority of the reactivity of slgA appears to be naturally polyreactive against the commensal microbiota instead of being specific to individual bacteria taxa (Bunker et al., 2017). Whilst its primary function is to promote immune exclusion of intestinal pathogens by neutralising them for phagocytosis, the commensal member B. fragilis adapts it outer-membrane surface structures to promote IgA-binding, to gain access and colonise mucosal niches providing intimate contact with gut barrier epithelial cellular innate immune receptor such as TLRs (Donaldson et al., 2018). Another study found a proportion of the IgA repertoire contains reactivity towards specific commensal antigens that appears to be dependent on T cell pathways (Benckert et al., 2011). T cell independent pathways obliterated by MyD88/TRIF double KO mice are deficient in ‘naturally’ polyreactive IgA antibodies and instead show systemic antibodies reactivity towards the intestinal microbiota (Slack et al., 2009). Supportive of systemic antibody production are Th1 and Th2 cytokines IFNγ and IL-4 known to trigger CSR to IgG1 and IgG2a and IgE in allergy, respectively (Mitsdoerffer et al., 2010) Finally, in the event of increased intestinal permeability, we hypothesis exposure to the intestinal microbiota will initiate pro-inflammatory T cell mediated responses that are known support B cell proliferation and affinity maturation within the gut-associated lymphoid tissue (GALT) enhanced antibody production (Mitsdoerffer et al., 2010). In humans, CD27+ and CD27-
IgA+ circulating memory B cells are known to exist which operate under T-cell dependant and independent pathways, respectively (Berkowska et al., 2015). T cell dependent CD27+ IgA+ circulation memory B cells may become activated in a pro-inflammatory milieu and secrete more slgA. Conversely, CD27- IgA- circulating memory B cells are T cell independent and their IgA reactivity profile has shown to be polyreactive towards commensal members of the intestinal microbiota (Berkowska et al., 2015). Under normal homeostatic conditions, T(reg) and DCs derived cytokines IL-10 and TGFβ would favour T cell independent B cell proliferation and CD27- IgA+ memory B cell production of “natural” polyreactive antibodies against the commensal microbiota, thus support the immunological barrier against bacterial translocation (Berkowska et al., 2015).

Based on studies carried out in animal models in a healthy gut microbiota, Foxp3+ T regulatory cells promote immune tolerance toward the commensal microbiota by suppressing inflammation and regulating the diversity of IgA repertoire through selection in Peyer’s patches enriched with antibody secreting B cells (Kawamoto et al., 2014). Foxp3+ T cells differentiate into T-follicular helper (Tfh) cells in germinal centres where they interact with naïve B cells to stimulate differentiation into gut homing IgA-secreting plasma cells whose quantity of IgA antibody production and specificity influences the composition of the gut microbiota (Kawamoto et al., 2014; Rescigno, 2014). Absence or dysregulation of IgA production severely impacts the composition of the gut microbiota (Kawamoto et al., 2012; Suzuki et al., 2004; Wei et al., 2011). M cells have a major role in the uptake of luminal antigens presented by APCs in Peyer’s Patches and in their absence GCs in mice fail to mature causing a decline in the total production of slgA (Rios et al., 2016). Tolerogenic DCs suppress Th7/Th19 inflammatory responses through releasing retinoic acid, IL-10 and TGF-B with promote Foxp3+ T regulatory cells and can further differentiate into Tfh cells with express CD40L and IL-21 to induce B cell mediated IgA production in the germinal centres (GCs) (fig 5.1.2) (Gutzeit et al., 2014). A disrupted microbiota can also lead to altered antigen presentation and loss of tolerance potentially overwhelming the regulatory T cell maintenance of GCs and instead activate pro-inflammatory Th1/Th17-cell dependent IgA production. Further, increased intestinal permeability would facilitate increased uptake of bacterial luminal antigens by DCs which migrate to LNs where they interact with naïve T cells to trigger clonal expansion and differentiation into Th1/Th2/Th17 T cell subsets with their associated cytokine profiles influencing B cell interactions.
Elevated levels of secretory IgA are an apparent compensatory mechanism for compromised intestinal permeability and has been reported in mice deficient in junctional adhesion molecule A (Khounlotham et al., 2012). Interestingly in IBD the identification of taxa-specific levels of IgA-coating faecal bacterial has revealed distinct patterns of the colitogenic microbiota in IBD (Palm et al., 2014). Therefore, measurement of IgA-coated bacteria may be a future diagnostic marker for the outcome of the interactions between the immune system and gut bacteria. The status of IgA+/IgA- coated bacteria in addition to specific systemic antibody responses to gut microbes are not known in ME/CFS.

![Image](image.png)

Figure 5.1.2. A healthy intestinal microbiota promotes Foxp3+ regulatory T cells to interact with B cells to undergo class switch recombination (CSR) and somatic hypermutation (SHM) in germinal centres to generate polyreactive or "natural" IgA antibodies to maintain microbial diversity. B cells residing in germinal centres interact with T-follicular cells which migrate to germinal centres (GCs) by expressing CXCR5 chemokine receptor (King et al., 2008) to stimulate B cell maturation into long-lived IgA-secreting plasma cells. Graphical abstract taken from Kawamoto et al., 2012.

**Experimental approach**

Observations of IgA-coated faecal bacteria can be easily assessed with minimal invasiveness to the patient since no blood extraction is needed. Intestinally secreted IgA antibody can be visualised using an anti-human IgA secondary antibody conjugated to APC and measured by flow cytometry as a proportion of total faecal bacteria (Palm et al., 2014).
With the necessary antibody isotype control for excluding nonspecific binding, flow cytometry has a major advantage over traditional ELISA methods and western blotting techniques, which usually test single bacterial antigen (LPS) extracted from bacterial lysate as opposed to whole cell bacteria which maintain the integrity and full complement of bacterial cell antigens to which the host immune system would be exposed to in vivo.

Patient antibodies which target bacterial surface antigens in pure culture and in human faeces have been explored using flow cytometry (Moor et al., 2016; van der Waaij et al., 1994). This has an added advantage over more traditional techniques such as an ELISA since the bacteria are in liquid suspension and do not require immobilisation to a microtitre plate or glass slide. It is also much easier to adjust bacterial densities in liquid phase and to detect discrete bacteria populations within a faecal bacteria suspension to which antibodies have bound to. Moreover, faecal flow cytometry examines the entire faecal bacteria cell population unique to that individual which can lead to the identification of specific bacterial subpopulations. Until now, faecal IgA production has not been explored in the ME/CFS population and may be useful additional marker for increased intestinal permeability. The benefit being this is a potential non-invasive method that can determine this status without the need a blood sample.
5.1.2 Aims & Objectives

The first aim of this chapter was to determine the suitability of a whole-cell bacterial microarray ("chip") to assess ME/CFS patient serum antibody reactivity against representatives of the intestinal microbiota using immunofluorescence and high-throughput microarray scanning.

In order to achieve this aim, the following objectives were set out:

- to determine the stability of lab-cultured intestinal bacteria once immobilised onto nitrocellulose-coated glass microscopy slides;
- establish an assay protocol using a microarray scanner to detect polyclonal antimicrobial antibodies generated in rabbit from a stool sample provided from a healthy donor (positive control);
- following validation of the microarray, screen blood serum from severe ME/CFS patients and house-hold controls;
- to detect serum antibody reactivity against this microarray to determine intestinal permeability status in ME/CFS versus house-hold controls.

The second aim of this chapter was to assess intestinal IgA reactivity against faecal microbes, isolated in a faecal liquid suspension from patients and house-hold controls using a modified method of flow cytometry:

- to exclude faecal contaminants by using a nuclei acid stain to resolve microbes;
- in order to determine if severe ME patients have a higher relative abundance of IgA-coated faecal bacteria compared with their house-hold controls;
- to assess faecal IgA reactivity against intestinal bacteria with serological markers such as LPS and LBP, to see how IgA-bound faecal bacteria may serve as a surrogate marker for interpreting intestinal permeability in patients.
5.1.3 Hypothesis

Patients with severe ME/CFS have increased intestinal permeability, which causes a loss of compartmentalisation between the intestinal and systemic immune systems (fig. 5.1.4). This exposes the intestinal microbiota to the immune system leading to increased T-cell dependant mucosal IgA production and reactivity towards faecal bacteria. Secretory IgA is therefore a potential biomarker for intestinal dysbiosis and increased barrier permeability (fig 5.1.3).

Figure 5.1.3 Secretory IgA regulates gut microbiota composition and protects the intestinal barrier. IgA is the predominant antibody isotype found in the intestine and recognises a broad range of members of microbes. Levels of IgA coating intestinal bacteria may be a marker for increased intestinal permeability in an attempt to neutralise commensal bacteria as well as enteric pathogens that may be relevant to ME/CFS pathophysiology. Increased IgA-bound bacteria may also indicate dysbiosis resulting from the interactions between intestinal microbes and the immune system in these patients.
Increased intestinal permeability facilitates translocation of bacterial endotoxin (LPS) and exposure of mucosal-associated bacteria. Antigen presenting cells (APCs) interact with members of the microbiota to present bacterial antigens to T-helper cells which stimulates polyclonal B cells activation and expansion to produce antibodies towards these members of the intestinal microbiota. Flow cytometry can be used to identify IgA-bound bacteria within mixed faecal bacterial suspensions obtained from patients and their house-matched control. Higher levels of IgA-coated bacteria may a valid indicator of intestinal permeability in accordance with other serological marker for evidence of bacterial translocation. Diagram created in Microsoft® PowerPoint® by Daniel Vipond.
5.2 Materials & Methods

5.2.1 Solid versus liquid phase assay for bacterial antibody detection

The methods used in this chapter attempt to probe human serum and faeces to elucidate immunoreactivity against whole cell faecal bacterial surface antigens presented on a solid slide and in liquid suspension.

5.2.2 Bacteria Microarray

The protocol for a whole cell bacterial microarray was based on the method of Thirmulalapura and colleagues using Gram positive and Gram negative bacteria immobilised onto nitrocellulose-coated glass slides to detect antibodies in canine infected serum (Thirumalapura et al., 2006).

- **Strain preparation**

Bacterial cells were resuscitated from a -80°C glycerol stock and grown for 16 h under appropriate growth conditions. Cells were harvested by centrifuging at 6000 x g for 10 min. Cells were washed in PBS and adjusted to an optical density (OD) of 1.0 ± 10% at 600 nm and plated onto solid agar media for CFU counting. For visualisation purposes, bacteria were fluorescently stained using 1μl/ml Baclight® Red or Sybr Green nuclei acid (x10,000) stain, diluted 1:10,000 for 30 min. Bacteria were inactivated by fixing in 1% paraformaldehyde (PFA) for 15 min to preserve whole cells structure before use in experiment. Based on colony counting experiments, one millilitre of cell suspension represents approximately 10⁸ cells.

- **Microarray construction and use**

The ProPlate® microarray slide module (Grace Bio-Labs, Sigma cat. GBL204839) was inserted onto the surface of a SuperNitro Microarray substrate glass slide containing a 150 μm layer of nitrocellulose (Arrayit® item no. SNM) to create 64 discrete wells for pipetting sample. 50 μl of fixed bacterial cells in PBS suspension was pipetted into each well and any remaining wells filled with PBS. The slide coupled with its silicone gasket was held in place with snap clips before being placed into a makeshift polystyrene block enclosed within a centrifuge swing bucket and monitored whilst operating at 700 rpm (99xg) for 15 min to pull down cells onto the slide surface. The slide was left overnight at 4°C to facilitate binding of bacteria to the nitrocellulose coating on the slide.
Figure 5.2.1 Grace-Biolab ProPlate® 64-well microarray slide module to create wells on a nitrocellulose glass microscope slide. Dimensions are given in millimetres (mm).

- **Primary antibody/rabbit serum slide incubation**

  The printed bacterial microarray was blocked with 2-10% BSA (Sigma cat. no. 05470) in PBS (pH 7.4) for 1 h on a gently shake at 4°C inside sterile a Petri dish. If using serum, the sample was heated to 56°C in a heat block for 30 min to inactive complement proteins and kept on ice afterwards. All primary antibody/rabbit serum dilutions were performed in sterile-filtered PBS, 2%BSA, typically at dilutions of 1:50, 1:100, 1:200. Primary antibody or rabbit serum was pipetted into each well and left overnight at 4°C. The next day, the slide was washed twice with sterile-filtered PBS in Petri Dish for 5 min, while gently shaking.

  In later experiments, the slide was spin dried using a makeshift polystyrene insert for swing bucket modules designed for that specific centrifuge. These slides were then incubated with the rabbit OmpA monoclonal antibody or rabbit serum samples for 30 min at room temperature. After incubation, the slides were washed twice for 10 min each with PBS-T.

  Bound antibody was detected using 50 μl/well secondary goat anti-rabbit-IgG antibody conjugated to Dylight® 550 (5μg/ml) at 1:200 in PBS, 2% BSA for 30 min. The ProPlate® gasket was retained on the glass slide throughout the entire experiment and through a single PBS wash bath step and dried at 50°C. The slides were then immediately scanned for fluorescence on the GenePix® 4000B Microarray Scanner using 635 nm and 532 nm lasers, and the images acquired using the scanner’s native GenePix® Pro 6.0 software.
- **Anti-faecal microbe anti-sera**

Rabbit polyclonal antibodies were generated by CovalAb UK (Cambridge, United Kingdom) against faecal bacteria isolated from a single healthy human stool sample. Two female rabbits were immunised accordingly to the regime over 67 days in table 5.2.1 and included four injections per animal.

<table>
<thead>
<tr>
<th>Day</th>
<th>Pre-immune bleed</th>
<th>Intradermal injection (1 mL / rabbit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(4 - 5 mL) and storage at -20°C</td>
<td>0.5 mL of $10^6$ fixed bacteria + 0.5 mL incomplete Freund's adjuvant</td>
</tr>
<tr>
<td>14</td>
<td>Intradermal injection (1 mL / rabbit)</td>
<td>0.5 mL $10^6$ fixed bacteria + 0.5 mL incomplete Freund's adjuvant</td>
</tr>
<tr>
<td>28</td>
<td>Intradermal injection (1 mL / rabbit)</td>
<td>0.5 mL $10^6$ fixed bacteria + 0.5 mL incomplete Freund's adjuvant</td>
</tr>
<tr>
<td>39</td>
<td>Test bleed (4 - 5 mL) and storage at +4°C Dispatch of sera D0 &amp; D39 - 15/09/2015</td>
<td>0.5 mL of $10^6$ fixed bacteria + 0.5 mL incomplete Freund's adjuvant</td>
</tr>
<tr>
<td>42</td>
<td>Subcutaneous injection (1 mL / rabbit)</td>
<td>0.5 mL of $10^6$ fixed bacteria + 0.5 mL incomplete Freund's adjuvant</td>
</tr>
<tr>
<td>53</td>
<td>Test bleed (10 - 15 mL) and storage at +4°C Dispatch of sera D53 - 29/09/2015</td>
<td>0.5 mL of $10^6$ fixed bacteria + 0.5 mL incomplete Freund's adjuvant</td>
</tr>
<tr>
<td>67</td>
<td>Terminal bleed (50 - 70 mL) and storage at +4°C</td>
<td>0.5 mL of $10^6$ fixed bacteria + 0.5 mL incomplete Freund's adjuvant</td>
</tr>
</tbody>
</table>

**Table 5.2.1 67-day immunisation protocol used in rabbit to generate polyclonal antibodies against human faecal bacteria isolated from a single healthy donor.**

Faecal bacteria were extracted from 1g of fresh human stool by homogenisation with PBS and centrifuging at 300 x g for 5 min to remove large particulates. One millilitre of the bacterial supernatant was taken and washed twice in PBS (3,500 x g, 10 min) to produce a biomass of 400 μg for immunisations.

- **Validating of rabbit sera anti-microbial activity**

Faecal bacteria from the same donor were extracted in PBS and diluted across the slide in a series of 1:10 dilutions and blocked with 2% BSA for 1hr before being incubated with serum at a dilution of 1:100 for a further 1hr. Slide washes were performed for removal of blocking and after each primary and secondary antibody incubation using a 0.5l PBS bath. The slide was developed with a secondary goat anti-rabbit IgG-conjugated to Dylight®650 for 1 hr. Dylight® 650 provides far-red fluorescence with excitation/emission at 652/672 nm respectively.
Microarray assay validation

Polyclonal antibody generated in rabbit for outer-membrane protein A (OmpA) (1.74mg/ml) was kindly provided by Dr Régis Stentz (Quadram Institute Bioscience, Norwich). OmpA is widely expressed among Gram-negative bacteria. In addition, a strain of Bacteroides thetaiotaomicron engineered to lack OmpA protein, GH290, was also made accessible as a negative control species for immobilisation on the microarray in experiments to enable determination of optimal assay conditions as well as the limit of antibody detection. In a further attempt to provide proof-of-concept an E.coli RaFC “deep rough” mutant was also immobilised and used as an additional control, onto a slide and probed used an anti-E coli FITC antibody (1:500) for 1hr at RT. The slide was imaged immediately using the 532 nm (green) laser on the microarray scanner and signal gain adjusted in relation to wells left as blanks.

5.2.3 Patient and control serum

Bacterial endotoxin (LPS) and LPS-Binding Protein (LBP) were quantified in patient and house-hold control (HHC) serum samples collected into 9 ml polypropylene blood collection tube using the S-Monovette® Z system containing a clotting activator (Sarstedt, Germany, order: 02.1063.001). Collection tubes were centrifuged 2000 x g for 15 min to extract the serum. Serum samples were kept stored at -80°C until required.

Serum Endotoxin

Endotoxin testing was performed on severe ME (S), House-Hold Control (HHC) and earlier Mild/moderate ME/CFS (M) samples using the same batch of reagents provided the Kinetic-QCL Limulus-Amoebocyte Lysate (LAL) kit manufactured by (Lonza Ltd., Switzerland, Cat. No. 50-650U). Serum was diluted 1:10 in LAL water certified as pyrogen-free and inactivated by heating to 56°C for 30 min. After cooling, serum was then kept on ice and stored overnight at 4°C. Endotoxin standards were made using E. coli 055:B5 by reconstituting the supplied vials in a volume of LAL water provided on the certificate of analysis. All serum samples, endotoxin standards and a negative control (LAL water) were dispensed in a volume of 100 µl into wells on endotoxin-free microplate and preincubated in the microplate reader at 37°C for 10 min. Reconstituted LAL reagent was prepared by adding 2.6 ml of LAL water to lyophilised mixture of lysate prepared from circulation amoebocytes from the horseshoe crab and kept at 4°C and used on the same day. 100 µl of
LAL reagent into each well on the microplate as quickly as possible before activating the microplate reader. This assay has been designed to measure ΔOD over time, (Reaction Time, RT) to increase the initial absorbance measurement by 200 mOD. To this end, each well was simultaneously measured for absorbance OD at 405 nm every 50 seconds for 2 hr on the BioRad® Benchmark Plus plate reader using Microplate Manager software. Individual OD readings for each well was then exported to a Word® Excel® file and kinetic plots generated for each sample and controls. A standard curve of known endotoxin concentration ranging from 0.005 EU/ml to 50.0 EU/ml was established. Using a four-parameter linear regression model, a mathematical formula representing the kinetic plots from each serum sample was generated to calculate the precise Reaction Time (RT) for a ΔOD of 200mOD. The concentration of endotoxin is inversely proportional to the RT.

Serum LPS-Binding Protein (LBP)

The same aliquots of serum analysed for endotoxin that had been kept at 4°C overnight were used to measure LPS-binding protein (LBP) by a Human LBP ELISA kit according to kit instructions (RayBio® Inc., item code: ELH-LBP). Briefly, serum samples were diluted in LAL water to a final 1:100 concentration. Duplicate testing was performed on 100 µl of diluted serum per sample well and concentrations of LBP ranging from 0.819 ng/ml to 200 ng/ml and a zero standard after transferral to the LPB microplate immobilised with anti-human LBP. Following a 2.5 hr incubation at room temperature, a secondary biotinylated anti-human LBP antibody was added for 1 hr at room temperature with gently shaking. The plate was then washed four times before incubating with HRP-streptavidin for 45 min at room temperature. After plate washing, 100 µl of the supplied 3,3,5,5’-tetramethylbenzidine (TMB) was added as a substrate for 30 min in the dark. 50 µl of 0.2M sulfuric acid was added per well to stop the reaction, and readings for each well measured at 450 nm using the BioRad® Benchmark Plus and native Microplate manager software.
5.2.4 Faecal bacteria flow cytometry

- Sample preparation

Stool samples were homogenised manually using a metal spatula for 5 min. Six aliquots containing 100 mg of raw faecal pellet was prepared from each stool sample and designated use in flow cytometry experiments. These were stored at -80°C before the experiment. On the day of the experiment, a single 100 mg aliquot of raw faeces was taken for each study participant and initially thawed whilst resting on wet ice and then gradually up to room temperature to mitigate any protease activity causing degradation of IgA antibody. It is estimated that 1g of healthy stool contains anywhere between $10^9$-$10^{10}$ bacteria cells. Based on this, all 100 mg faecal homogenates were diluted to 1:100 which is equivalent to $10^6$ cells in a final volume of 4 ml and stained with Sybr Green (1:10,000) and anti-human IgA-APC (1:100). To do this, 1ml of sterile-filtered Dulbecco’s phosphate-buffered saline (Sigma, cat. D8537) was used to homogenise each 100 mg of faeces using a plastic pestle and mot for 5 min. This faecal homogenate was then centrifuged at 300 x g for 5 min to produce a faecal bacterial suspension. This suspension was then further diluted 1:10 in PBS before staining. Sybr green nuclei acid stain was provided as a gel stain at a x10,000 concentration in DMSO (Sigma, cat. S9430) and diluted in each sample to a final concentration of 1/10,000 and added to 20 µl sample of the faecal bacterial suspension in PBS to a FACS tube containing 80 µl PBS containing SYBR green to make a further 1:10 dilution. To this, 1 µl of anti-human IgA-APC antibody (Miltenyi Biotec, order no. 130-116-879) was incubated at room temperature for 30 min before fixing in 350 µl of 1% PFA and temporarily placed onto ice whilst awaiting to be analysed.

- Flow cytometry data acquisition

Flow cytometric analysis was performed on faecal bacteria suspensions stained with Sybr green (1:10,000) and anti-human IgA-APC (1:100) using the BD FACSCanto™ II and BD FACS Diva software for data acquisition. Forward and side scatter voltages were adjusted to capture events within the space of the plot. Non-fluorescently labelled cells were used to set PMT voltages for APC (IgA-detection) and FITC (Sybr Green) and position these events on the bottom left area of the plot. Events captured in the bottom right of the plot were positive for Sybr green, and events observed top left were IgA-APC position. Anti-human IgG-APC (1:100) was used in each sample as an isotype control for non-specific binding.
5.3 Results

5.3.1. Sample acquisition

Home visits were conducted during May 2016 and at the end of February 2017. A total of 17 severe ME patients were recruited and included in this chapter (Table 5.3.1) Nine household controls were recruited and linked to their respective ME participant. It must be noted that out of these nine house-matched controls, two were unrelated full-time carers of these severe ME patients. This was the best achievable environmental control in these instances, since these carers worked long hours in close contact with the patient and in the preparation of meals.

Figure 5.3.1 shows a map of the locations of the 11 home visits carried out in 2016. Due to the availability of a suitably trained medical profession, it was not possible to obtain blood samples from all these home visits. Blood taking from these patients proved difficult for most severe patients and was deemed unethical to pursue further attempts to take blood. The difficulties in obtaining blood was another turning stone to switch strategies from systemic microbial antibody detection, to using less invasive faecal samples to access IgA reactivity in faecal bacteria.

Figure. 5.3.1 Maps of locations for 11 home visits attended across South London, UK, during 2016
Sample Collection Summary

<table>
<thead>
<tr>
<th>Sample</th>
<th>Status</th>
<th>Age</th>
<th>Sex</th>
<th>Collection year</th>
<th>Paired samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Severe ME</td>
<td>63</td>
<td>F</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Severe ME</td>
<td>56</td>
<td>F</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>House Control</td>
<td>55</td>
<td>F</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>House Control</td>
<td>69</td>
<td>F</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Severe ME</td>
<td>44</td>
<td>F</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>House Control</td>
<td>70</td>
<td>F</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>House Control</td>
<td>55</td>
<td>F</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Severe ME</td>
<td>38</td>
<td>F</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Severe ME</td>
<td>21</td>
<td>F</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Severe ME</td>
<td>37</td>
<td>F</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>House Control</td>
<td>64</td>
<td>F</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Severe ME</td>
<td>18</td>
<td>F</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Severe ME</td>
<td>61</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Severe ME</td>
<td>40</td>
<td>F</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Severe ME</td>
<td>54</td>
<td>F</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Severe ME</td>
<td>58</td>
<td>F</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>House Control</td>
<td>60</td>
<td>M</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Severe ME</td>
<td>27</td>
<td>F</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>House Control</td>
<td>60</td>
<td>F</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Severe ME</td>
<td>63</td>
<td>F</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Severe ME</td>
<td>32</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Severe ME</td>
<td>31</td>
<td>F</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>House Control</td>
<td>54</td>
<td>F</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Carer</td>
<td>29</td>
<td>F</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Severe ME</td>
<td>56</td>
<td>F</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Severe ME</td>
<td>30</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Carer</td>
<td>34</td>
<td>F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5.1.1 Patient Demographics: Severe ME (n=17) plus House-Hold controls (n=9)

“X” denotes sample collected. Severe ME (age 42.9±13.2 years) and House-matched controls (age 57.3±8.8 years). Yellow highlights patients followed up for a second sample.

In 2017, additional faecal samples were made available from 7 of the original severe ME patients recruited in 2016, with another 6 new severe ME patients included in final home visits to conclude the entire study. Again, owing to the difficulties of organising a suitable trained clinical professional to take blood as well as these patients being exceptionally challenging to acquire a suitable vein for bleeding, not all severe ME patients and their controls contributed blood serum to this study.
5.3.2 Bacterial Microarray

Attempts to design and develop a useful bacterial microarray for patient systemic serum antibody detection was carried prior to research ethics approval and therefore these experiments were conducted in advance of any patient or control sample collections. The rationale for its design was to allow for ease of detection of serum antibodies in human serum against multiple faecal bacterial isolates and for the simultaneous detection of these antibodies using high-throughput microarray printing and array scanning.

Early attempts used single cultured intestinal isolates immobilised onto a nitrocellulose-coated slide. Bacteroides thetaiotaomicron VPI 5482 was chosen for its ability to withstand oxygen exposure on the lab bench and due to the availability from within the research group culture collection and that of an outer-membrane protein A deficient strain, GH290 (OmpA\(^{-}\)). This was also one of the species used for anti-microbial detection by Haas et al., 2011 in HIV-1 infection and IBD patients (Haas et al., 2011).

![Figure 5.3.1. Bacteroides thetaiotaomicron OmpA\(^{+}\) and OmpA\(^{-}\) can be immobilised onto a nitrocellulose-coated glass microscope slide. Baclight Red\(^{\circledast}\) stain was incubated with cells before transfer of 10 \(\mu\)l to slide. Slide was dual laser imaged on the GenePix Microarray scanner. Fluorescence cells appear detectable, read at wavelength of 635 nm versus 532 nm.](image)

In preparation to access the effect of CFU numbers on the detectability of Baclight\(^{\circledast}\) Red signal during the microarray scan; PBS suspended \(\text{VPI}5482\) (10\(^{9}\) cells/ml) and \(\text{GH}290\) (10\(^{9}\)...
cells/ml) cells were stained with Baclight® Red (100 μM, working dye solution) in a final 1:1000 dilution. The desired cell number (ranging from $10^6$, $10^7$, $10^8$, or $10^9$ cells per array spot) was achieved by serial dilution in PBS. Figure 5.3.1 shows an example of these cells deposited onto the microarray using a 10 μl printing volume. The Baclight® red fluorescence intensity was recorded using the red laser ($\lambda = 635$ nm). The slide was also scanned for fluorescence on the green channel of the microarray scanner ($\lambda = 532$ nm) and shows background fluorescence may interfere with downstream signal detection of antibodies on this channel. It was difficult to quantitate the intensity of Baclight® fluorescence at this stage, however OmpA⁺ cells did appear more fluorescent from this image.

In slide-independent studies using flow cytometry (figure 5.3.2), Baclight® Red was demonstrated to only have fluorescent properties when it was associated with both Gram positive and negative bacterial cells, confirmed also by the manufacturer’s protocol and gave reassurances that Baclight® detection was a reliable visual indicator of the presence and location of cells on the microarray slide. Figure 5.3.2 shows *E. gallinarum* (Gram positive) and *A. muciniphila* and *B. thetaiotaomicron* (both Gram negative) cells can be sort for fluorescence using Baclight signal intensity.

**Pure culture faecal isolates**

---

**Figure 5.3.2 Visualising bacteria stained using Baclight® red by flow cytometry.** Threshold set to a minimum of <100 ets/s based on sterile-filtered PBS (left plot). Bacterial cells were positioned within the plot using forward (FSc) and side scatter (SSc) light properties which are proportional the size of...
individual cells (FSC) and intracellular complexity (SSC). Histogram measured the Baclight® intensity, cells accumulate to the right of this plot are positively stained. Pseudo-colour represents concentration of cells where a region of interest (gate) has been added to exclude culture debris and non-specific events. Number inside gate is a percentage of all events processed. These were then gated and measured for Baclight signal in the histogram (red).

- Microarray assay validation

Immobilisation of OmpA+/− strains of *Bacteroides thetaiotaomicron* on nitrocellulose-coated glass slides was used to optimise the antibody detection protocol using a polyclonal anti-OmpA antibody and a secondary goat anti-rabbit-IgG conjugated to Dylight®550 (Thermo-Scientific) for green fluorescence that could be detected on the microarray scanner’s second laser at 532 nm. To facilitate multiple antibody conditions on single glass slide, a multiarray chamber (fig. 5.2.1), was integrated with the glass slide to produce 64 individually spaced wells similar to a microtiter plate. Binding of the OmpA antibody would be expected using the wild-type VPI5482 strain, with GH290 (OmpA+) representing a negative control.

![Before wash](image1)

**Before wash**  \(\lambda 635 \text{ nm}\)

![After wash](image2)

**After wash**  \(\lambda 635 \text{ nm}\)

*Figure 5.3.3 Slide washing causes loss of bacterial cells.* 10 μl of bacterial suspension (10⁹ CFU/ml) of stained and unstained VPI5482 and GH290 cells per well (10⁸ cells) was air dried onto slide and subjected to three separate washing steps by submerging slide in a 5L bath of PBS-T (0.05% Tween 20) and left to dry in between each wash. After the final wash the slide was left to dry at 37°C before scanning.
An experiment was required to test if immobilised bacteria can withstand a minimum of three PBS-T wash steps to allow for application and removal of (1) a suitable blocking reagent, (2) serum/antibody, and (3) removal of unbound primary/secondary antibody.

*Bacteroides thetaiotaomicron strains* remain partially immobilised onto the slide after three washing steps (figure 5.3.3). Efficiency and stability of cells immobilisation appears to vary across different regions of the slide since loss of fluorescence occurs more to wells at the ends of the slide. There appeared to be no differences between OmpA⁺ or OmpA⁻ cells.

Using the ProPlate 64-well gasket configuration, VPI5482 and GH290 cells were immobilized onto separate slides with the application of primary OmpA antibody concentrations (1:100, 1:200, 1:500) titrated against secondary goat anti-rabbit IgG-Dylight®550 (1:100, 1:100, 1:500). Figure 5.3.5 shows two slides with annotations for antibody incubated against OmpA⁺/⁻ *Bacteroides*. Cells incubated with antibody were not stained with Baclight® Red to avoid any signal bleed over onto the 532 nm laser used to detect secondary antibody binding. Both slides contained $10^8$ cells per well which were deposited onto the slide in 10 μl volume/well in an attempt to coat the entire well surface. Six wells did contain $10^9$ cells stained with Baclight® Red as a control and for the purposes of monitoring following slide washing.
Figure 5.3.4 Polyclonal rabbit OmpA antibody was used to test for specificity and reactivity against immobilised VPI5482 bacteria.

Several attempts were made using OmpA antibody to provide proof-of-concept for this method of antibody detection. A makeshift polystyrene insert for a centrifuge swing bucket was created to introduce centrifugal force to maximise contact between cells and the slide surface. Blocking with BSA was attempted at 2% and increased to 10% to minimise slide background signal in fig. 5.3.4. However, scanning of both slides at 532 nm did not reveal specific binding of antibody to the wild-type (OmpA⁺) *Bacteroides*.
Figure 5.3.5 Reactivity of polyclonal anti-microbial rabbit serum tested against faecal bacteria extracted from human faeces. Donor faecal bacteria used to immunise rabbit was used on this slide, starting at $10^8$ cells diluted across the slide using PBS. Top: slide map shows the position of cell dilutions and antibody staining concentration. (A) single (red) laser, $\lambda = 635$ nm, scan of slide to detect secondary antibody binding produced no reactivity. (B) single (green) laser, $\lambda = 532$ nm measures background fluorescent activity. (C) dual laser ($\lambda = 635/532$ nm) with increased gain show no specific antibody reactivity to faecal bacteria.
Rabbit sera raised against faecal bacteria isolated from a single human donor was tested using this microarray format in figure 5.3.5. However, no fluorescence was detected on the array scanner at 635 nm.

An attempt using pooled serum from rabbits “17” and “20”. In this experiment, blocking was increased by using 10% BSA and the serum was left overnight at 4°C. The slide was then processed and developed as previously performed and scanned for fluorescence (figure 5.3.6). Detection using the green channel shows the slide surface to be highly auto-fluorescent. Combined post-immune sera was compared directly with the pre-immune bleed for anti-microbial activity to donor faecal bacteria titrated against cell number, but this produced little or no detectable antibody binding (fig. 5.3.6, right).
Figure 5.3.6 Post-immunised rabbit sera shows no anti-microbial reactivity using donor faecal bacterial immobilised onto a nitrocellulose-coated glass microscope slide. Anti-microbial reactivity towards faecal bacteria was compared using pre- and post-immune rabbit sera. Faceal bacteria were diluted from $10^3 - 10^5$ cells using PBS only as a negative control. Slide was imaged on separate laser channels, $\lambda = 635$ nm, green (left) and $\lambda = 635$ nm, red (right). Regions of interest (boxes) indicate wells created to deliver cells onto slide.

- **Automated microarray printing**

A microarray printer was used to deliver cells onto the nitrocellulose-coated slide in the same fashion described by Thirumalapura and colleagues. To that end, a microarray printing buffer was recreated using PBS containing 20% Ficoll 400 and 4% glycerol to suspend VPI5482 bacterial cells at a density of $10^9$ cell/ml. Figure 5.3.7 shows example of cells printed with each array spot representing ~25,000 cells. PBS/Ficol/Glycerol was compared with PBS alone, which provided a better quality of array spot. The bottom image in fig. 5.3.7 shows a scan of the entire slide surface and the differences in the quality of spotting. During imaging of the slide, signal gain was adjusted in relation to areas of the slide out of range of the microarray printer and was kept constant during re-imaging of the same slide following slide washing.
Automated microarray printing of Baclight® Red stained *Bacteroides thetaiotaomicron* VPI5482 (OmpA*). Cells were robotically printed onto a nitrocellulose-coated glass slide and imaged using a microarray scanner. (A) Entire slide surface imaged using single (red) laser, $\lambda = 635$ nm. (B) Represents enlarged view of area in white box in A. (C) Compared Baclight® signal intensity ($\lambda = 635$ nm) from bacterial cells suspended in either PBS and PBS/Ficol/Glycerol printing buffer.

Baclight® signal was quantified using pre-defined analysis modes within the native GenePix® software on the array scanner. Based on the microarray printing pattern, regions of interest could be placed around each array spot and its fluorescent signal recorded and exported into an Excel file.

**Figure 5.3.8** Washing causes the majority of cells to be lost from the microarray slide surface. Two printing buffers, PBS and PBS/20%Ficol/4% glycerol were used to robotically print bacterial cells from *Bacteroides thetaiotaomicron* (Gram negative), *Enterococcus gallinarum* (Gram positive), *E.coli* (Gram negative), and *Akkermansia muciniphila* (Gram negative) on to a nitrocellulose glass slide. Cells were stained with Baclight® Red according to different conditions; either before or after fixing cells overnight or staining unfixed cells and printing on the same day. Blue bars indicate Baclight® Red fluorescence pre-wash, compared to the red bars at post-wash. Mean fluorescence values were recorded in arbitrary units (AU) following scanning of entire slide surface. Error bars give the range of standard deviation.
Figure 5.3.8 (blue bars) compares the intensity of Baclight® signal in PBS versus PBS/20% Ficoll/4% Glycerol. Given the final version of this assay would require tens or even hundreds of different representatives of the human gut microbiota, such an assay would require advanced preparation and staining of these bacteria before they could be immobilised onto the array. Baclight® intensity was a third higher in cells printed in PBS alone for *B. thetaiotaomicron*. However, it did not make any notable difference if cells have been stained the previous day and kept at 4°C compared to staining these cells the same day to be printed. The order of fixing cells before or after Baclight® staining did not make a difference for *B. thetaiotaomicron* or *E. gallinarum*; with the exception for *E. coli* that was more advantageous to stain these cells on the same day of printing. Interestingly the difference in fluorescence between the printing buffers for *Akkermansia muciniphila* was the least in contrast to the other strains that performed better in PBS, highlighting optimal printing and staining conditions are dependent on the bacterial strain. Reimaging the slide following washing revealed complete loss of Baclight® signal from all strains suggesting these cells have been lost from the slide surface.

Figure 5.3.9 Anti- *E. coli* -FITC antibody reactivity towards wild-type *E. coli* ATCC 700926 and ΔRaFc ‘deep rough’ mutant *E. coli* immobilised onto nitrocellulose-coated slide. 5x10⁶ cells transferred onto slide and diluted in series 10⁻¹-10⁻⁵. Each row of the slide indicates condition of cells prepared (1) unstained and unfixed, or Baclight® Red stained in unfixed (2) and 2% formalin (3).
A final attempt was made to generate a working slide assay using a ‘deep rough’ mutant raFC mutant *E. coli*. A FITC-conjugated goat polyclonal anti-*E. coli* antibody was tested against ATCC 700926 cells, including a K-12 like *E. coli* strain and a ‘deep rough’ mutant *E. coli*. This antibody reacts with most *E. coli* given the 95% homology across all strains. It was anticipated this experiment would work based on reducing the number of washing steps since no secondary antibody was required, however figure 5.3.9 is a scan of result of this experiment at 532 nm and show no specific antibody reactivity towards wild-type *E. coli*. Non-specific binding appeared to have occurred but was due to bleed over of Bclair® Red signal, as previously observed in figure 5.3.1. Fixing did appear to reduce this effect. Based on independent experiments using rabbit serum, OmpA and *E. coli* antibodies it was determined that this assay, in our hands, was not suitable to continue for future detection of serum antibodies in patient samples. At this time in the study it became apparent an alternative method was needed to evaluate anti-bacterial antibodies in patient samples.

5.3.3 Faecal detection of IgA-coated faecal microbes

Sybr green was used to label faecal bacteria isolated from homogenised stool samples of patients and house-hold controls. Figure 5.3.10 is an early experiment with faecal bacteria isolated from a single healthy donor stool. The flow plots reveal a subpopulation of cells that are Sybr green positive. Bacterial cells can also be identified using light scatter characteristics alone providing an adequate threshold of detection has been established so that no more than a rate of 100 events per second are detected using sterile-filtered PBS alone. PBS containing unstained/stained bacterial cells were diluted to an approximate range of 5000 events per second to minimise risk of clogging the cytometer.

The protocol for visualising faecal bacteria using Sybr green in a flow cytometer was based on a protocol used by Dr Alistair Noble (Imperial College London) to stain intra-epithelial microbes isolated from biopsy samples of patients with inflammatory bowel disease (IBD). Here, Sybr green staining has been used as a refinement to earlier published work using faecal flow cytometry where no attempts have been made to separate faecal bacteria from other particulates within stool (Palm et al., 2014).
Figure 5.3.10 Optimisation of concentration required to visualise faecal bacterial cells with Sybr Green nucleic acid staining using flow cytometry. Faecal bacteria were extract from a single donor provided as 100 mg aliquot for homogenisation and diluted 1:100 in PBS. FSc and SSc properties were used to identify faecal microbes from faecal debris. Identifying faecal bacteria was enhanced with Sybr green staining diluted to 1/10,000 versus 1/100,000 for 30 min or 60 min and inspected on the flow cytometer.

Further optimisation of Sybr green was performed with anti-human IgA and compared against faecal bacteria in an ME and HHC sample, by 1:100 and 1:1000 dilution of faecal bacteria in sterile-filtered PBS. We found 1:100 dilution most suitable for staining (see supplementary figures 5.1 and 5.2).

A total of 19 samples were analysed from 2016 collections. The method for faecal IgA detection presented here was tested in an early experiment using a single matched severe ME patient and house-hold control. The percentage of IgA+ bacteria in the severe ME (57, F) patient was 21.3% compared to 6.37% in the HHC (60, M) (figure 5.3.11). The percentage of non-specific binding was 0.16% and 0.27% from patient and HHC respectively. The Sybr green staining was recorded at 52.7% in the patient versus 81.9% in the HHC. Although the percentage of Sybr Green is higher in the control, this should not make any difference to the percentage recorded for IgA detection.
The effectiveness of the Sybr green positive staining appeared to vary in both patients and HHCs. As an example, Sybr green staining pattern did not appear consistent in identifying bacteria within the faecal homogenate shown in the house-hold control (HHC), although the percentages suggested more were identified in the ME (21, F) patient compared to the HHC (55, F) at 54.8 % in ME and 66.4% in HHC (figure 5.3.12). In this pair, the percentage of isotype non-specific bind was recorded at 0.17% for the patient and 3.60% for the HHC. The percentage of IgA⁺ bacteria was the second highest in its group at 36.6%, over double the percentage compared to 16.5% measured in the HHC. This pair represented the greatest difference in percentage between patient and HHC. This patient is also the second youngest at 21 years old and remains entirely bed-bound.

As a third example of this dataset, another female ME (38, F) and HHC (69, F) pair showed more consistent Sybr⁺ green positive staining for faecal bacteria at 51.8% versus 70.1% in ME and HHC respectively (figure. 5.3.13). This patient presents the third highest percentage at 31.8% IgA⁺ bacteria compared with 17.0% IgA⁺ in the HHC control. Sybr Green positive staining was 51.8% versus 70.1% for ME and HHC respectively. Non-specific bind with isotype antibody was 4.85% in ME versus 0.72% in HHC.
Figure 5.3.11 Flow cytometry data using faecal bacteria isolated from severe ME patient (top row) and their house-hold control (bottom row). Bacteria are gated using Sybr green fluorescence and measured for anti-IgA-APC binding to these cells recorded in the top right quadrant of IgA plots. Isotype control provides indicator for non-specific binding events. Pseudo-colour shows areas of increasing cell numbers. Numbers within each gate, represent the percentage out of total events recorded.
Figure 5.3.12 Flow cytometry data using faecal bacteria isolated from severe ME patient (top row) and their house-hold control (bottom row). Bacteria are gated using Sybr green fluorescence and measured for anti-IgA-APC binding to these cells recorded in the top right quadrant of IgA plots. Isotype control provides indicator for non-specific binding events. Pseudo-colour shows areas of increasing cell numbers. Numbers within each gate, represent the percentage out of total events recorded.
Figure 5.3.13 Flow cytometry data using faecal bacteria isolated from severe ME patient (top row) and their house-hold control (bottom row). Bacterial are gated using Sybr green fluorescence and measured for anti-IgA-APC binding to these cells recorded in the top right quadrant of IgA plots. Isotype control provides indicator for non-specific binding events. Pseudo-colour shows areas of increasing cell numbers. Numbers within each gate, represent the percentage out of total events recorded.
In summary, the percentage of IgA-coated faecal bacteria all 19 samples analysed was determined by subtracting non-specific antibody staining as measured using isotype antibodies (figure 5.3.15). The average percentage of IgA⁺ bacteria found in severe ME patients was 25.87 ± 7.42% SD versus 20.32 ± 7.35% SD in HHC. Although the differences with mean IgA⁺ coated bacterial was not significant when using a paired t test (p = 0.09). Non-specific binding events were similar across both groups at 3.56 ± 2.40% SD for ME versus 2.67 ± 2.35% in HHC. When matching patient with their HHC in figure 5.3.14 (right-side plot), there appears to be an emerging trend for severe patients to have more IgA⁺ coated faecal microbes than that of their designed house-hold control. The red line in figure 5.3.14 highlights a severe patient (21, F), and HHC (55, F) (flow data plots shown in figure 5.3.12), which had greatest difference between measured IgA⁺ bacteria compared the other pairs.

- Proportion of observed IgA⁺coated faecal bacteria changes with time

In 2017 an additional 20 faecal samples were studied including some samples from a second stool sample collected from patients and their house-hold control almost a year since the previous collection and analysis. Table 5.1.1 summaries 12 of the original 19 samples visited in 2016 (highlighted in yellow) that were revisited almost a year later. 

Figure 5.3.14 Summary of the relative abundance of IgA-coated faecal bacteria in 8 pairs of severe, house-bound ME/CFS patients versus house-hold (control) and 3 unmatched patients. Right, paired and unpaired samples; left, lines indicate pairing between patient and house-hold control, red line represents patient 9, see table 5.3.1. Paired t-test did not show any significance difference between the two groups.
In addition, 6 new severe ME patients were recruited in 2017 as well as 2 new house-hold controls contributing 2 matched pairs.

In the following chosen examples of this flow data the acquisition of samples has been adapted to show proportions of Sybr green negative (Sybr-) events to establish the proportion of IgA antibody reactivity in each sample that may have occurred in instances where Sybr green staining has been less effective. The percentage of IgA\(^+\) bacteria in figure 5.3.15 shows 27.3% IgA\(^+\) in ME (27, F) compared to 11.3% IgA\(^+\) in the HHC (60, F). Review of the first samples from this pair in 2016 (supplementary S5.2) revealed a profile of 21.5% versus 26.5% IgA\(^+\) in patient and control, respectively. The percentage of Sybr\(^+\) IgA\(^+\) events were 6.56% in ME and 10.6% in HHC. Isotype antibody reactivity was higher in HHC at 5.71% compared to 1.54% in ME.

The youngest ME patient within this group was 19 years old in 2017. The patient had also previously donated to this study alongside the same HHC. The samples they provided in 2017, showed similar profile of IgA\(^+\) coated bacteria within both persons, figure 5.3.16. The percentage of IgA\(^+\) bacteria was closely similar, as before, at 11.8% in ME (18, F) and 13.0% in HHC (55, F). In 2016, both these samples had a higher proportion of IgA-coated faecal bacteria with the patient’s sample profile was recorded at 29.5% compared to 21.1% in the control (supplementary figure S5.6). Once again, the Sybr\(^+\) green staining in figure 5.3.16 appears greater in HHC at 66.7% versus 53.1% in ME. Interestingly, 11.2% of IgA\(^+\) events for HHC were recorded in the Sybr\(^+\) region, compared to 4.48% in ME (fig. 5.3.16). Non-specific binding is also higher in HHC sample at 3.95% versus 1.24% in ME.

Figure 5.3.17 is another example of a follow up a year later showing the profile of IgA\(^+\) can change from sample to sample. In this most recent sample, the percentage of IgA\(^+\) bacteria was recorded at 5.09% in ME (38, F) compared with 6.56% in HHC (69, F). The HHC has a greater proportion of Sybr\(^+\) IgA\(^+\) events at 11.5% compared with 8.45% in the patient. This is contrasted to the 2016 data obtained for this pair shown previously in figure 5.3.13 which showed 31.8% in the patient compared to 17.0% IgA\(^+\) in the control. Both samples showed low non-specific antibody reactive: 0.27% ME versus 0.55% HHC. Less non-specific antibody binding was seen in the HHC compared to 4.85% in the previous year (figure.5.3.13)
Two non-paired severe ME patients revealed interesting IgA⁺ antibody staining patterns. The percentage of Syb⁺ IgA⁺ in the first patient (40) was 17.9% compared to 2.40% Sybr⁻ IgA⁺ events (figure 5.3.18A). The Sybr⁺ IgA⁺ pattern was the clearest from all samples demonstrating an obvious subpopulation of IgA⁺ faecal bacteria. The percentage of non-specific antibody reactivity was all low at 1.03%. This other patient (54) who entirely bed bound (figure 5.3.18B) showed a similar percentage of Sybr⁺ IgA⁺ bacteria at 17.3% and more Sybr⁻ IgA⁺ events recorded 11.4%. Although the staining in this patient was not as discrete as in the previous patient. Isotype antibody reactivity was slightly higher at 4.83%. No data had been collected for these patients the previous year since these patients had not yet been recruited part of the study.
Figure 5.3.15 Flow cytometry data using faecal bacteria isolated from severe ME patient (top row) and their house-hold control (bottom row). Bacteria are gated using Sybr green fluorescence and measured for anti-IgA-APC binding to these cells recorded in the top right quadrant of IgA plots. Isotype control provides indicator for non-specific binding events. Pseudo-colour shows areas of increasing cell numbers. Numbers within each gate, represent the percentage out of total events recorded.
Figure 5.3.16 Flow cytometry data using faecal bacteria isolated from severe ME patient (top row) and their house-hold control (bottom row). Bacteria are gated using Sybr green fluorescence and measured for anti-IgA-APC binding to these cells recorded in the top right quadrant of IgA plots. Isotype control provides indicator for non-specific binding events. Pseudo-colour shows areas of increasing cell numbers. Numbers within each gate, represent the percentage out of total events recorded.
Figure 5.3.17 Flow cytometry data using faecal bacteria isolated from severe ME patient (top row) and their house-hold control (bottom row). Bacteria are gated using Sybr green fluorescence and measured for anti-IgA-APC binding to these cells recorded in the top right quadrant of IgA plots. Isotype control provides indicator for non-specific binding events. Pseudo-colour shows areas of increasing cell numbers. Numbers within each gate, represent the percentage out of total events recorded.
Figure 5.3.18 Discrete IgA-coated bacterial subpopulations measured from faecal suspensions in two unpaired, severe ME patients recruited in 2017. Top (A), F (40) bottom (B), F (54).

The flow cytometry data from the 2017 collections is summarised in figure 5.3.19. The range of IgA-coating of faecal bacteria in severe ME is greater than for house-hold control samples. This is due to one particular ME patient (highlighted as the red line in figure 5.2.19B. The data for this HHC (60) and patient (27) pair is presented in figure 5.3.15. This pair previously studied in 2016 (see supplementary figure 5.2) revealed 26.5% (ME) versus 21.5% (HHC) IgA+. Comparison of the two time points for the ME patient show the profile is similar at 26.5% in 2016 compared to 27.3% in 2017. Conversely, the HHC decreased from 21.5% in 2016 to 11.3% in 2017. Unfortunately, as can be seen from figure 5.3.19, a reverse trend is found in 2017 showing most ME patients have less of a percentage of IgA+ faecal bacteria compared to their HHC: mean % IgA+ in ME was 10.72 ± 4.95 SD versus 9.73 ± 4.14...
SD in HHC. There was very little difference on average between non-specific antibody reactivity in ME (1.87 ± 1.15% SD ME compared to 1.46 ± 2.90% SD in HHC).

Figure 5.3.19 Summary of the relative proportion of IgA+ faecal bacteria detected in 14 severe, house bound ME patients versus 6 House-Hold Controls (HHC) recruited during 2017. (A) Percentage abundance of IgA-coated faecal bacteria in samples collected in 2017. (B) lines indicated pairing between severe ME patient and house-hold control.

5.3.4 Serological markers of a leaky gut

Thirty-eight complement inactivated serum samples were used to measure endotoxin (LPS) concentration and LPS-binding protein (LBP) as surrogate markers for intestinal permeability. Both screening assays were performed consecutively on same aliquot of serum per patient and house-hold control sample. The endotoxin screen was performed firstly, followed by the LBP assay within 24hrs on serum kept at 4°C. The serum samples had undergone one freeze-thaw cycle in total. Samples from mild/moderate ME/CFS were more freely available since these patients were able to attend the hospital during a pre-arranged visit during 2015. The data obtained for LPS and LPB in these samples showed no clear differences between these groups (figure 5.3.20).
Figure 5.3.20 Serum endotoxin activity and LBP concentrations measured in 14 Severe (S), 14 Mild/moderate ME (M) and 10 House-Hold Controls (HHC) as markers for bacterial translocation. The horizontal bars in both plots for LPS and LPB in figure 5.3.20 represent the median values for reaction time (RT) and concentration (μg/ml) respectively. Error bars represent the standard deviation.
5.4 Discussion

The results from this chapter provide a new insight into the pattern of IgA-coated faecal microbes in severe, house-bound ME patients. To date, there are no clinical biomarkers reflecting the status of the intestinal immune system and its interactions with luminal microbes. Previous studies have assessed the composition of the ME/CFS microbiome with data limited to the general ME/CFS population and no information about how changes in the microbiome may relate to severity of ME. Giloteaux et al. and others have reported a general reduction in microbial diversity in the general ME/CFS population as well as increases in Gram negative *Proteobacteria* which are more abundant in inflammatory environments such as IBD and provide source of bacterial LPS (Giloteaux et al., 2016; Sartor, 2011). Based on the current available data, there is a lack of consensus on the precise pattern of dysbiosis and how this is related to causality in ME/CFS. Indeed, any disturbances within the ME microbiome will alter dynamic feedback mechanisms with the gut immune system and reactivity to certain microbes that may give indications of underlying mechanisms driving changes in the immune system. This needs to be addressed in further studies of additional immune parameters for possible additional biomarkers, such as leaky gut.

We hypothesised that severe ME patients have increased intestinal permeability which can impact immunity by allowing intestinal microbes to be exposed directly to the local and subsequently systemic immune systems. The mucosal immune response was examined for production of secretory IgA (sIgA) reactive with faecal bacteria isolated from the patient’s own stool. Indeed, faecal bacterial flow cytometry has been established for some time with different variations in faecal sample preparation and staining (van der Waaij et al., 1994). To refine the method used by Palm et al., 2014, faecal microbes were stained with Sybr Green nucleic acid stain to exclude faecal debris, electronic noise and small bubbles registering as events within the flow cytometer. This appeared to work well in most samples, however IgA+ reactivity was also apparent in Sybr green negative fractions suggesting some microbes may not stain as effectively. The effectiveness of Sybr green staining it likely to depend on the stool consistency and the composition of an individual’s microbiota as many bacteria have differences in the structure and design of their cell wall. This is a similar problem to the one discussed earlier regarding DNA extraction from bacteria within complex samples such as human faeces where the diversity and complexity of the community structure of the microbiota is the greatest compared to any other site in or on the human body.
The protocol for detection of IgA-bound faecal bacteria was trialled and optimised with Sybr green staining using one of the first patient/household control samples collected in 2016. The IgA profile in this patient and house-hold control (fig 5.3.11) showed a higher proportion of IgA+ coated bacteria in ME: 21.3% versus 6.37% in the HHC. This result was encouraging and demanded further investigation using more samples, since potentially, IgA-coating might be a useful immune marker to describe interactions between microbes and the immune system and may have relevance in the context of the status of the integrity of the intestinal barrier. On the latter point, inflammation in active IBD causes tissue damage and destruction of the intestinal barrier and as discussed in the introduction to this chapter, anti-microbial antibodies may have some diagnostic relevance in this process (Mitsuyama et al., 2016; Strober & Fuss, 2011). The integrity of the intestinal barrier is essential for innate immunity via PPRs displayed on the epithelial cells to which commensal bacteria can bind and signal anti-inflammatory immune responses as well as producing anti-inflammatory molecules such as butyrate which further enhance T(reg) responses and HDAC activity to promote changes in gene expression that support epithelial barrier integrity and tolerance to intestinal bacteria (Bordin et al., 2004; Vanhoutvin et al., 2009; Zhou et al., 2018). Without the proper regulation and exclusion from the luminal environment, commensal bacteria can infiltrate the intestinal epithelial barrier providing non-self antigen simulating inflammation and tissue damage by increasing activation immune cells such as DCs and macrophages to produce pro-inflammatory cytokines which favour Th1/Th17 proliferation.

Under normal conditions in the intestine, T-cell independent IgA production is supported through interaction of B cells with DCs which produce retinoic acid inducing α4β7 integrins and chemokine receptor 9 expression on circulating B cells to home to the intestinal mucosa and differentiate within the lamina propria into plasma cells secreting sIgA (Fagarasan et al., 2010; Mora et al., 2006). DC-derived factors such as BAFF and APRIL further bind to B cells and enhance class switch recombination (CSR) from IgM to the IgA isotype (Berkowska et al., 2015). However, an altered pro-inflammatory T cell environment driven by increases in intestinal permeability could lead to more T cell dependent production of mucosal IgA secreted by plasma cells in the lamina propria governing somatic hypermutations and enhancing antibody affinity towards specific microbial antigens in the intestine. For example, T-follicular helper (Tfh) cells interact with B cells in the GCs of the lamina propria through CD40L presented on activated CD4+ T cells increasing CD40
intracellular signalling which causes activation-induced cytidine deaminase (AID) within B cells to undergo affinity maturation and CSR to IgA antibody production (Berkowska et al., 2015; Muramatsu et al., 2000; Rescigno, 2014; Shulman et al., 2013). Moreover, Th17 cells and their associated cytokines IL-17, IL21, and IL22 have been shown to induce strong proliferative responses in B cells triggering CSR and increased antibody production with blockading of IL-17 signalling leading to reduction in the size and number of germinal centres where naïve B cells encounter antigen and undergo affinity maturation (Mitsdoerffer et al., 2010). IL-17 has been shown to promote intestinal IgA responses to intestinal infection although it did not affect the development of IgA+ memory B cell responses (Huang et al., 2017). Under homeostatic conditions, DC and Treg cell derived cytokines, TGFβ and IL-10, represent a major T cell independent pathway which leads to the differentiation of B cells into antibody secreting plasma cells with affinities for lipid and carbohydrate structures on bacterial cell surfaces that are consider to be ‘natural’ of innate antibodies which help stop microbial translocation across the epithelial barrier (Berkowska et al., 2015; Litinskiy et al., 2002; Macpherson et al., 2000). Finally, it has been documented that serum level of IgM and IgA reactive antibodies against bacterial LPS have been found to be higher in patients with CFS as well as in major depression disorder (Maes et al., 2012; Maes, Mihaylova, et al., 2007).

Leaky gut is commonly associated in IBD as a consequence rather than a direct cause with the majority of current IBD therapies target inflammatory pathways with limiting degrees of efficacy (Shimshoni et al., 2015). Potential therapies directed at modulating the microbiome and restoration of the gut barrier are highly likely important targets in future treatments. This is further substantiated by the fact that a high percentage of IgA-coated microbes have been reported in IBD patients and subsequently isolated and sequenced to identify specific bacterial taxa associated with driving inflammation in germ-free mice (Palm et al., 2014). Whilst IBD is an extreme example of loss of intestinal barrier integrity; the increases in the proportion of IgA-coated bacteria may be a new marker for intestinal permeability that can be applied to other diseases associated with permeability and intestinal immune system defects.

A total of 11 severe ME patients and 8 house-hold controls were recruited in 2016. The original recruitment target of 35 patients had previously been determined using a statistical power calculation based on the differences in endotoxin measurements found serum from IBD patients versus healthy controls (Rojo et al., 2007). Home visits required a significant amount of
organisation and coordination to ensure samples were collected and processed as quickly as possible. Unfortunately, it was not possible to perform experiments on fresh samples, so faecal aliquots were processed and stored at -80°C on the day of collection and examined at the end of the recruitment phase. Simultaneous processing of all these samples occurred in a single day and were analysed in a blinded fashion. An emerging trend for increased IgA-coating was found in the majority of severe ME patients compared with their respective house-hold control (HHC), fig. 5.3.14. Most interestingly is patient 9 in this figure which had the second highest proportion of Sybr+ IgA+ bacteria (36.6%) and the biggest increase compared with the HHC. This patient was visited in a completely darkened room and was highly sensitive to any light and sound and speech was difficult. Even though all the patients considered in this work are referred to as severe, there is still considerable variation between them. Whereas, some have no sensitivity to light or sound and are able to manoeuvre around the house, others are almost entirely bed-bound. It is important to note that the conception of this study occurred prior to the 2015 when the Institute of Medicine gave a recommendation to change ME to systemic exertional intolerance disorder (SEID) (IOM et al., 2015). New diagnostic criteria are continuously being reviewed with no consensus on the best criteria to use in ME research.

With the exception of one matched pair, all samples used in this work were gender matched, see table 5.2.1. Age is a confounding factor in this study and is known to be important for the immune system (Magrone et al., 2013), but emphasis should be given to the fact that environmentally matched samples obtained from the same house-hold were made a priority for microbiome analysis. Unlike mice, diet and housing factors are almost entirely difficult to control in humans. Therefore, the inclusion of healthy same house-hold controls was an attempt to control for important co-variants of microbiome variation, lifestyle, diet and behaviours. Many of the paired samples are relatives of one another therefore share genetic similarities as well as exposure to the same house-hold environment. Joosens et al. were the first to show unaffected relatives of patients living with Crohn’s disease exhibit distinct pattern of intestinal dysbiosis with evidence for decreased species *Collinsella aerofaciens* and *Escherichia coli-Shigella* group and increase RA of *Ruminococcus torques* compared with healthy controls (Joossens et al., 2011). Intestinal permeability has been reported at a two-fold increase in Crohn’s and relatives compared to conventional healthy controls suggesting this to be a contributing factor and potential disease mechanism (Hollander et al., 1986). Indeed, first degree relatives of IBD patients have a 1 in 10 risk of developing the condition and taking together with current
microbiome data indicate a significant role for gut dysbiosis and leaky gut in causing disease (Russell & Satsangi, 2004).

The availability of a second stool sample from some of the patients studied in 2016 gave opportunity to re-examine IgA reactivity to faecal microbes in these patients and their HHCs. The level of IgA+ microbes was similar or decreased in ME. Out of the 12 ME patients revisited, only 6 were included with a HHC. Patient 18, a daughter aged 27 matched with her mother aged 60 in figure 5.3.16 was convincingly higher on this occasion but had previously showed no difference the previous year (supplementary figure 3). The result highlights the dynamic nature of IgA production against intestinal microbes and raises significant questions. For example, are there qualitative differences in the bacterial taxa coated with IgA in severe ME compared with HHC; do systemic IgG antibodies exist against these IgA-coated bacteria? This list is not extensive; however, further work is needed to see how faecal IgA-coated bacteria proportional differ over time and if this can be attributed to disease worsening.

Many of the severe ME patients produced visibly smaller amounts of stool which were compact and hard to manipulate indicating dehydration. This will have an impact of the total number of bacteria within the sample, however IgA measurements are provided as a percentage of total faecal bacteria is not affected by the variation of the numbers of events recorded in each sample. Other research has examined the role of serum IgA against a limited number of enterobacteria using an indirect ELISA containing the LPS of 7 different species (Maes et al., 2007). This work has been further extended to suggest that treatment of a leaky gut can improve ME symptoms based a ‘leaky gut diet’ and supplementation with L-carnitine, CoQ10, lipoic acid and taurine (Maes et al., 2007). In this case study, this diet focused on exclusion certain dietary allergens, such as dairy, as well as adherence to low-carbohydrate and gluten-free food in a single 13 year old girl who was already lactulose intolerant (Maes et al., 2007).

During the process for obtaining research ethical approval, a new method was explored to help determine if alterations in intestinal barrier permeability exist in ME/CFS patients. Using a novel whole cell bacterial microarray-based approach to screen patients’ serum for antibodies against intestinal bacteria immobilised onto a nitrocellulose-coated glass slide. Bacteroides thetaiotaomicron, Enterococcus gallinarum, Escherichia coli and Akkermansia muciniphila were assessed for their ability to be printed on a microarray, figures 5.3.8 & 5.3.9. Microarray printing offers huge scope to include hundreds of representatives of the
human gut microbiota compared with relative few microbes have been targets for seroreactivity using flow cytometry (Haas et al., 2011). The growth kinetics for each strain enabled calculation of the growth rate, $\mu$, and estimation of the time-point at which cells had reached mid-exponential growth phase for subsequent immobilisation on to the microarray (data not shown). Mid-exponential growth phase was chosen for the purposes of obtaining a high cell viability count so that upon fixing cells in 4% formaldehyde the majority of cells would remain intact (“whole-cell”) when screened against patient serum. Thus, any serum antibody reactivity detected will be against bacterial surface antigens such as LPS, fimbriae, or pili etc.

The rationale for using whole cell bacteria immobilised onto a microarray slide, follows that the bacterial cell surface is decorated with an array of molecules such as outer membrane proteins, lipopolysaccharide, flagella (H-antigens), capsules and fimbriae or pili and that the surface molecules are involved in bacterial adherence and are important in establishing an infection (Thirumalapura et al., 2006). Finally, antibodies directed against the bacterial surface antigens can neutralise the bacteria and afford protection particularly against invading extracellular bacteria leaking from the gut.

Systemic priming to intestinal microbes has been documented in IBD and suggested to drive chronic immune activation and consequently disease progression via translocation of intestinal bacteria, including their products such as LPS (Haas et al., 2011; Elkadri et al., 2013). Experiments performed in specific-pathogen free mice demonstrate compartmentalisation between the intestinal mucosal immune system and systemic immunity where IgG responses to commensal bacteria are undetectable unless these mice have been engineered with deficiencies in bacterial sensing through toll-like receptor signalling (Slack et al., 2009). On the contrary, antimicrobial antibodies have been measured healthy humans against a limited number of representatives of commensal bacteria using flow cytometry (Haas et al., 2011). More evidence suggests gram-negative commensals can stimulate systemic immune responses to produce IgG antibodies reactive against commensal antigens, and murein lipoprotein (MLP) on Gram negative bacterial cell walls (Zeng et al., 2016). MLP was found as a major source for stimulating IgG responses in mice and humans. Passive transfer of anti-MLP IgG antibodies in mice to demonstrated protection against *Salmonella* infection (Zeng et al., 2016). This study underpins commensal driven immune response have widespread systemic consequence for the protection against pathogens.
Failed attempts to successfully validate the bacterial array using wild-type OmpA positive and negative stains was further compounded by the time home visits became underway with challenges confronted in obtaining blood necessary to perform this type of screening assay. To that end, the solid phase bacterial microarray assay was abandoned in favour for the ease of availability of stools samples to explore anti-IgA responses to faecal bacteria. LPS-Binding Protein (LPB) is another indicator of LPS leakage into systemic blood serum which could be an effect of microbial translocation. LBP increases binding of circulating LPS to soluble CD14, but its quantification can be more advantageous than detection of LPS alone, since it does not suffer of interference from blood that have been well documented using LAL assays. We found no evidence of these markers being any different in ME patients compared to house-hold controls. This result is in contrast to an earlier report which suggests ME patients have increased bacterial translocation based on elevated plasma LPS, CD14 and LBP concentration in 48 ME/CFS patients and 39 controls, compared to just 12 severe patients and 10 HHHCs (Giloteaux et al., 2016). Interestingly we observed much less LBP in both patients and HHC ranging from 8 ng/ml to 4.38 μg/ml compared to a median of 12.38 μg/ml for healthy controls in this previous study. However, our observations for LBP concentration are within the range of healthy humans reported to be between 1.85 – 17.4 μg/ml in serum in a study of serum LBP concentration analysed in 63 severe sepsis and septic shock patients whose level of LBP was found to increase 10 fold in range from 11.8 μg/ml to 275 μg/ml which also reduced LPS activity as expected (Zweigner et al., 2001).

To conclude, the representation of anti-microbial antibodies in patients compared with healthy controls is proposed as an additional marker for interpretation and understanding of how the intestinal microbiota interacts with the immune system in pathological circumstances. Flow cytometry is a well-established technique, shown in this chapter to be suitable for measuring anti-IgA-coating in faecal samples. Skill of the flow cytometer operator is needed to confidently lower the threshold voltages to determine the relatively small size of bacterial cell within the area of the data plot. Bacteria are approximately 1 μm with pure cultures successfully demonstrating light scatter characteristics that were used to examine faecal suspension of bacteria. This can be achieved using forward and side scatter light properties alone, although it is worth noting particles of a similar size that or not microbial, e.g. food particles may also be detected. Thus, the data here has shown that Sybr green appears to be a useful refinement to examine faecal microbes and should be used regularly, but it must also be acknowledged that composition of the microbiota will also impact the success of this labelling. Where possible we
have tried to include data for Sybr IgA fractions of the microbiota. From our analyses the differences between the percentage of IgA coated to total faecal bacteria between severe ME patients and HHCs is inconclusive but quantitative differences are distinct from qualitative differences. Therefore, an outstanding question remains, what are these IgA antibodies specific towards? Future work is needed to isolate these bacteria and identify their taxonomic profile as well as the status of IgA-coated microbes in relation to worsening of symptoms severity for ME/CFS. In the first dataset, from collections made during 2016, we identified a non-significant trend of increased IgA-coated faecal microbes in severe ME compared to house-hold controls. Repeat sample collection, in 2017, reversed this trend. Whilst sample collections for both years were conducted during the season of spring/summer, it is worth noting age, gender and seasonal variations influence SigA and are indeed reported lower in females, increasing in both genders with age (Weber-Mzell et al., 2004). Certainly, faecal IgA concentration and microbial specificity appear relevant in the context of IBD pathology and gut permeability defects in these cases (Adams et al., 2008; Hollander et al., 1986; Palm et al., 2014; Targan et al., 2005; Viladomiu et al., 2017). The data presented here in severe ME warrant further investigation in larger, better defined patient cohort, preferably taking multiple samples to assess the dynamics of intestinal secreted IgA reactivity over time.
6.0 General Discussion

The original hypothesis for this study suggested increased intestinal permeability exposes the local intestinal immune system to a quantity of non-self-bacterial antigens that facilitates low-grade chronic inflammation and possible autoimmunity (Kelly et al., 2015). The mechanism behind this theory is that chronic immune activation in ME/CFS causes oxidative and nitrosative stress (O&NS) and prolonged levels of pro-inflammatory cytokines via activation of NF-κB (Morris & Maes, 2014). Serum IgM levels against damaged lipid cell membrane components such as palmitic and myristic acid present as neo-epitopes, previously hidden from the immune system (Maes et al., 2006). ROS such as peroxides and superoxides (\( \mathrm{H}_2\mathrm{O}_2 \) and \( \mathrm{O}_2^- \)) are generated by the immune system to kill pathogens injected by phagocytes (Fang, 2011). Recently a linked has been proposed between chronic immune activation of ROS in serum causes mitochondrial dysfunction (Blomberg et al., 2018).

Critically, oxidation of cysteine residues in pyruvate kinase M, an enzyme associated with the pyruvate dehydrogenase complex (PDC) can block production of pyruvate which supplies energy in to the citric acid cycle (Anastasiou et al., 2011).

We anticipated to replicate recently reported disturbances in severe patients, in particular aerobic energy metabolism affected in ME/CFS with increased lactate production (arising from pyruvate) and breakdown of amino acids as an alternative energy source for the citric acid cycle to produce ATP (Fluge et al., 2016; Germain et al., 2017; Naviaux et al., 2016; Yamano et al., 2016). Many individual serum metabolites others have reported were found to be no different in our severe ME patients. In some cases, one or two samples were distinctly separate from the rest of the group and these have been marked with their sample number. Our study is most comparable with Armstrong and colleagues who also used \(^1\)H-NMR to analyses serum and faecal water metabolomes (Armstrong et al., 2015, 2017). They, and others, have suggested disturbed energy metabolism through inhibition of glycolysis that may be linked to mitochondrial dysfunction through chronic immune activation of oxidative stress pathways (Armstrong et al., 2017; Fluge et al., 2016). We did not find elevated glucose, or reduced lactate (fig. 4.3.11), glutamate and pyruvate in patients as suggested by Armstrong et al, and therefore cannot conclude glycolysis is being affected. Another metabolite we were expecting to find reduced was hypoxantine, a breakdown product of ATP. Several amino acids were expected to be reduced in the event of them being used as an alternative to carbohydrate energy sources (gluconeogenesis) for the citric acid cycle, but this was not replicated either. To this end, serum citrate
concentration was the same for all groups, (table 4.3.3). Interestingly, faecal γ-butyrobetaine was notably higher in 3 severe ME patients, and is a metabolite of L-carnitine which is essential for transfer of acetyl-CoA into the mitochondrial matrix for energy production from the beta oxidation of fatty acids. Increased lactic acid producing bacteria have been reported in CFS patients, but we did not measure any differences in both faecal and serum concentrations for lactate (Sheedy et al., 2009). Based on the serum profile we cannot provide evidence for increased intestinal permeability since microbial-derived metabolite butyrate was not detected. The suggestion of increase amino acids in serum was also not replicated in our cohort, nor were they reduced due to increased bacterial fermentation to reproduce SCFAs (Armstrong et al., 2015).

Both our faecal water and serum metabolome profiling used a small number of samples. Fourteen was the maximum group size, used in serum, for severe ME compared to 34 ME/CFS patients included in Armstrong and colleagues work. The number of patients we analysed the faecal metabolome in was just 11 severe patients and 6 HHC as these samples were collected in 2017. Again, we found no significant changes in the faecal metabolome of ME/CFS patients with respect to increased SCFA production entering energy metabolism, as previously reported (Armstrong et al., 2017). The sequence data (dataset C) for these samples also provided no significant findings, based on 16S V4 amplicon sequences (fig 3.3.2). Earlier collections in 2016 analysed using shotgun metagenomics did provide some significant changes for reduced *F. prausnitzii* and increased *Eggerthella spp.* and *Oscillibacter spp.* in severe ME. Table 3.3.2 compares the overlap of the same patients and HHCs providing samples in 2016 and 2017 to produce both datasets. We had expected to find the opposite of increased SCFAs, particularly the anti-inflammatory mediator butyrate, given its production is associated with *F. prausnitzii* and protection against colitis in rodents (Zhou et al., 2018). Despite re-analysing a different aliquot from some of the same samples collected in 2016 from the same patient, and repeated collections from these patients in 2017 as well as recruiting brand new patients, we did not see a reduction of *F. prausnitzii* in patients based on 16S amplicon sequencing. Many of the patients and HHCs did appear to associate according to their respective pairing based on 16S composition (fig. 4.3.28), which does reflect house-hold exposure and a degree of shared diet can influence the microbiota, although we could not request dietary information.
To perform correlations between the composition of the ME/CFS intestinal microbiome and the faecal and serum metabolomes, we would have needed to compare dataset C with our NMR data, as samples in these datasets were collected at the same time. To that end, we found insufficient difference between severe patients and controls for concentration of metabolites and differences in microbial composition to use a machine learning approach to produce a predictive model for diagnosing severe ME patients from house-hold controls. The relevance here to explain how the structure and metabolic role of the microbiota in various pathophysiological mechanisms, likely to exist in ME/CFS, may more severely disrupt host metabolism in some patients more than others. Such an approach would require many more data points, and a different study design integrating shotgun metagenomics with mass spectrometry to cover ten times more the number of metabolites based on comparison of the number of observations made by Germain and Naviaux. Under half the number of species of bacteria were observed in our shotgun metagenomic dataset compared to Nagy-Szakal and colleagues. The reasons for this were explained earlier, however, it is worth noting we observed 38.64±6.28 SD and 34.62±8.97 SD species in ME/CFS and HHCs, respectively, compared to 74.24±1.67 SE and 77.5±2.07 SE in their ME/CFS cohort and controls, respectively. We were unable re-perform shotgun metagenomics and instead produced dataset C using 16S-targeted amplicon sequencing. The two methods cannot be compared but it is apparent that 16S sequencing does not provide detailed functions of the microbiome and should be replaced with more informative shotgun metagenomic studies which provide functional pathway information that others have reported disturbed in ME/CFS which can then be better integrated with interpretation of faecal and blood metabolomes in patients.

Nagy-Szakal and colleagues reported IBS status significantly altered the composition of the intestinal microbiome in ME/CFS. We did not objectively assess the IBS symptoms in our patients, but it is worth mentioning that all patients did have IBS-like symptoms, particularly abdominal pain and dietary intolerances in most cases to diary. Stress and anxiety are cofounding factors which influence the microbiota and are highly prevalent in ME/CFS patients and may predispose them to IBS (Lakhan & Kirchgessner, 2010). At the genus level, *Faecalibacterium, Roseburia, Dorea, Coprococcus, Clostridium, Ruminococcus* and *Coprocobacillus* were associated with ME/CFS with an emphasis on *Faecalibacterium* and *Alistipes* (Nagy-Szakal et al., 2017). Although, dataset A contains no controls, figure 3.3.5 showed the biggest differences in RA for individual mild/moderate ME/CFS patients.
was in the genera, \textit{Faecalibacterium}, as well as \textit{Roseburia}, \textit{Alistipes}, and \textit{Oscillospira}. Interestingly, we found the \textit{Eggerthella} genus was more abundant in our severe ME patients (figure. 3.3.13A) which Nagy-Szakal and colleagues report one of its members \textit{Eggerthella lenta} may be a marker for patients with IBS (Nagy-Szakal et al., 2017). We did not find a significant difference in the relative abundance of the genus \textit{Blautia} between severe patients and HHCs (figure. 3.3.32) despite this being reported to drive separation of ME/CFS without IBS from controls (Nagy-Szakal et al., 2017). \textit{Blautia} can account for anywhere between 2.5\% to 16\% of the total intestinal microbiota but is usually more abundant in IBS due to higher levels of gases produced as by-products of bacterial fermentation (Eren et al., 2015; Rajilić-Stojanović & de Vos, 2014; Vernocchi et al., 2016). Higher abundance of \textit{Blautia} may also be reflective of \textit{Dorea} spp. as a major contributor of hydrogen and carbon dioxide gas production, which \textit{Blautia} can convert into acetate (Rajilić-Stojanović & de Vos, 2014). To that end, it is important to separate IBS co-morbidity as a cofounding factor influencing the ME/CFS microbiota and makes it more likely an ME/CFS associated profile will be influenced by low in abundance individual species. In addition to the lack of being able to reproduce increased SCFA production in ME/CFS we did not find any evidence for increased microbial fermentation based on relative abundances of \textit{Clostridium} spp. or \textit{Bacteroides} spp. either. Finally, we cannot conclude there is any difference in the diversity or number of bacteria found in ME/CFS and HHCs.

Germain and colleagues performed pathway analysis on 74 altered metabolites they found using mass spectrometry. This showed taurine metabolism had the highest impact factor in ME/CFS given its decrease in patients, 3 end products in primary bile acid biosynthesis in this metabolic pathway that were also found reduced in ME/CFS patients (Germain et al., 2017). In our severe patient cohort, faecal taurine was only found in 3 patients in high concentration (supplementary 4.1), and importantly none of the HHCs. In these patients it may suggest increased bile salt hydrolysis. Bile salts enable emulsification and digestion of dietary fat, uptake of vitamins, and maintenance of intestinal barrier function, but can become metabolised into secondary and tertiary bile acids by members from diverse genera including \textit{Bacteroides}, \textit{Clostridium}, \textit{Lactobacillus}, \textit{Bifidobacterium}, \textit{Enterobacter}, \textit{Eubacterium} and \textit{Escherichia} (Vernocchi et al., 2016). Microbial deconjugation of taurine is the first step which prevents active uptake to the liver for recirculation. High concentration of free bile acids can then become metabolised into secondary bile acids that are able to diffuse lipid bilayers causing disruption to the cell membrane and regeneration of ROS.
which can cause DNA damage and mutation and mitochondrial dysfunction that have been associated with a risk of colon cancer (Ajouz et al., 2014; De Boever et al., 2000). Observations of changes in bile acids metabolism in ME/CFS are relevant given they participate in energy regulation, glucose and lipid metabolism (Wahlström et al., 2016). CDCA was lowest in severe ME serum (fig. 4.3.32A) but compared with HHCs does not support evidence of liver toxicity damage as suggested by Germain and colleagues. Conversely active IBD serum provide in the same experiment was statistically higher for CDCA and CA compared to the other groups and may reflect increased bile acid re-uptake due to intestinal barrier breakdown. CDCA concentration may well be expected to be lowest in the severe group given these patients undergo significant periods of fasting or eating very little. This was also reflected by on average less faecal material provided at sample collection compared with HHCs.

In summary, we have been the first to achieve shot metagenomic sequencing in severe, house-bound ME/CFS patients. The rapid evolution of next generation sequencing, guidance in designing the perfect microbiome study from methods of sample collection to analysis have arrived largely after they could be applied to this work. In the previous discussion chapters, it has emerged designing a study on ME/CFS is not straightforward and must be carefully thought out as there are many possible cofounders in these types of studies and is further complicated by the range of symptom complexes within ME/CFS which patients could be selected for and against, e.g. patients with or without IBS or PEM. The choice of these is dependent of the nature of the study and the available resources and methods to clinical assess these patients. The work presented in this thesis attempts to explore the impact of severity of ME/CFS symptoms. How these symptoms are objectively measured along with interpretation of symptoms questionnaires is not agreed internationally. Arranging home visits to patients and coordinating sample collections was enormously time consuming and expensive but did reveal severity of ME/CFS is still largely dependent on a matter of opinion and can have different interpretations and meaning from patient to patient. For example, out of the 17 patients visited, 4 demonstrated extreme hypersensitivity to light and sound. One patient in particular was bed-bound living in the basement to avoid sources of natural or artificial light and was extremely sensitivity to the quietest of sounds. Other severe patients were more mobile around the house, with symptoms vary from day to day.
Our efforts to minimise cofounding factors influencing the microbiome are demonstrated by the inclusion of household controls. We have also taken the approach to adopt a more functional understanding of the microbiome in ME/CFS with the acquisition of $^1$H-NMR metabolomic profiling from faecal water and serum in an attempt to re-produce findings that have only recently populated the ME/CFS literature in the last two years. Again, these recent findings have come at a time when they could not influence our study design, particularly targeting known compounds in energy and lipid metabolism, as well as controlling for sampling methods and standard operating procedures used in these studies. For example, we originally set out to use serum for anti-microbial detection instead of plasma, which is the biofluid of choice in mass spectrometry studies. To address our hypothesis patients with ME/CFS have increased intestinal permeability we measured the proportion of IgA-coated faecal bacteria, based on the assumption increased IgA production to neutralise intestinal bacterial in a mechanism known as immune exclusion. Although we measured surrogate markers, LPS and LBP, and found no evidence of increased permeability, we gained an insight into the immune system interactions with the intestinal microbiota through sIgA interaction with the patient’s own faecal material versus microbes cultured and LPS alone. These results initially showed a trend for increased IgA-coated bacteria in ME/CFS versus HHCs. Almost a year later this trend appeared to reverse. Further work is needed to measure the abundance of bacterial taxa with IgA⁺ and IgA⁻ and to see if these correlate with increased antibodies in serum. This analysis recently been performed in adults versus the elderly and found differences in abundances of Clostridiaceae and Enterobacteriaceae were lower in the IgA⁺ for the elderly group (Sugahara et al., 2017).

- **Summary**

We draw this thesis work here to a conclusion with the suggestion that more focus is needed for longitudinal shotgun metagenomic studies in ME/CFS to see how functional pathways change in the ME/CFS microbiome and impact the disease with an emphasis of symptom severity and recommendation for the inclusion of household controls. We set out to replicate existing findings of mild to moderately affected ME/CFS patients and to identify significant evidence for intestinal dysbiosis. This is the first metabolome-based study of severely affected ME/CFS patients that incorporates the unique feature of same household healthy control subjects to mitigate against major environmental factors that contribute to population-level microbiome variation. On contrary to previous reports in
ME/CFS, our findings fall short of a reduction in the diversity of the severe, house-bound ME microbiome when we compared them with this form of control. Indeed, several applied indices for measuring similarity between groups showed both severe ME and house-hold controls were more compositionally heterogenous than unmatched controls. Based on the current sample size, no clear pattern emerged from this data to suggest a role for specific members on the intestinal microbiome, except for the low abundance of *F. prausnitzii*. However, this species is not specific to ME/CFS and is well associated with IBS symptoms, also highly prevalent amongst the ME/CFS patient population. For that reason, more functional based studies examining the relationship between microbes and the host are encouraged, particularly with respect to microbial-immune and gut-brain signalling. As such, transcriptomic and proteomic analyses may further probe the metabolic activity, beyond the predictive capability of whole-genome sequencing analysis.

Based on comparing more than 50 metabolites in serum and faecal samples our findings do not replicate those of other ME/CFS metabolomics studies. Indeed, the lack of any particular finding consistent with altered metabolism in either faecal and serum metabolome of severe ME/CFS patients was surprising and appears to reject our earlier hypothesis. The only significantly altered serum metabolite we detected was the N-Acetyl groups from α1-acid glycoprotein which was significantly (p=0.009) increased in severely affected ME/CFS patients. This has previously been identified as a circulating biomarker predictive of the short-term risk of death and of possible relevance to ME/CFS, has been implicated in various pathophysiological mechanisms including inflammation, lipoprotein metabolism, and metabolic homeostasis (Fischer et al., 2014).

Other methodological divergencies include the use of serum, in which small metabolites may be less stable than in plasma, and mass spectrometry in combination with different workflows with the capability of detecting much higher numbers (up to 600 or more) of metabolites (Germain et al., 2017; Naviaux et al., 2016). Targeted acquisition of metabolites in the future should be undertaken using more sophisticated workflows and MS, as previously described (Germain et al., 2017). Our targeted bile acid mass spectrometry analysis and quantitation in ME/CFS patients is a unique aspect of our study and has not been the focus of metabolome studies carried out to this date. However, consideration should be given to food intake and timing of the sample. Therefore, it is recommended integration of targeted metabolomics to characterise the status of energy,
lipid, and amino and bile acid metabolism in severe ME/CFS should also be a priority for future investigation.

Finally, the pathogenesis of ME/CFS is likely to involve disruption of neural, neuroendocrine and immune signalling pathways communicating along the gut-brain axis. Indeed, GI symptoms and intestinal dysbiosis co-associate in several neurological and (auto)immuno-inflammatory disorders, including ME/CFS. It is apparent the difficulty excluding environmental influences known to cause microbiota population-level changes which make it challenging to identify specific ‘diagnostic’ microbial signatures. More information is needed to establish models for interaction between microbes and host physiology. Of interest for future studies, are microbial-immune interactions as a key regulator of microbiota-gut-brain communication. To that end, the final chapter of this thesis has shown it is possible to isolate faecal microbes from stool, to evaluate the proportion of faecal microbes bound by intestinal IgA which, we suggest, may be cell sorted and extracted for DNA sequence-based identification. A future objective may be to elucidate specific members of the ME/CFS microbiota eliciting strong mucosal derived and systemic antibody production found in serum, compared with house-hold relatives. A reasonable aim would be to determine the subset phenotype and specificity of T cells for reactivity towards intestinal microbes. Various assays can be used to measure cytokines associated with T-cell induction and proliferation in response towards the patient’s endogenous microbiota extracted from faecal samples. Indeed, we hypothesise a leaky gut causes induction and priming of immune cells within the intestinal submucosa which stimulates trafficking of encephalitogenic T cells to cross the blood-brain barrier in to the CNS. Here, flow cytometry would be a powerful method to explore the expression of gut/brain homing markers expressed on the cell surface of these immune cells. This would be a significant attempt to go beyond the descriptive nature of high-throughput ‘omics technologies to better understand the potential for microbial-immune interactions to influence ME/CFS pathology, in addition to the metabolism as a feature of the intestinal microbiota.
Additional Materials

Research publication, Study Approvals and Patient Assessment
ENIGHR SUPPLEMENT

Dysbiosis of the gut microbiota in disease

Simon Carding¹,², Kristin Verbeke³, Daniel T. Vipond¹,², Bernard M. Corfe⁴,⁵,⁶ and Lauren J. Owen⁶

¹Institute of Food Research, Norwich, UK; ²Norwich Medical School, University of East Anglia, Norwich, UK; ³Translational Research in Gastrointestinal Disorders, KU Leuven, Leuven, Belgium; ⁴Molecular Gastroenterology Research Group, Department of Oncology, University of Sheffield, Sheffield, UK; ⁵Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK; ⁶Human Nutrition Unit, Department of Oncology, University of Sheffield, Sheffield, UK

There is growing evidence that dysbiosis of the gut microbiota is associated with the pathogenesis of both intestinal and extra-intestinal disorders. Intestinal disorders include inflammatory bowel disease, irritable bowel syndrome (IBS), and coeliac disease, while extra-intestinal disorders include allergy, asthma, metabolic syndrome, cardiovascular disease, and obesity.

In many of these conditions, the mechanisms leading to disease development involves the pivotal mutualistic relationship between the colonic microbiota, their metabolic products, and the host immune system. The establishment of a ‘healthy’ relationship early in life appears to be critical to maintaining intestinal homeostasis. Whilst we do not yet have a clear understanding of what constitutes a ‘healthy’ colonic microbiota, a picture is emerging from many recent studies identifying particular bacterial species associated with a healthy microbiota. In particular, the bacterial species residing within the mucus layer of the colon, either through direct contact with host cells, or through indirect communication via bacterial metabolites, may influence whether host-cellular homeostasis is maintained or whether inflammatory mechanisms are triggered. In addition to inflammation, there is some evidence that perturbations in the gut microbiota is involved with the development of colorectal cancer. In this case, dysbiosis may not be the most important factor, rather the products of interaction between diet and the microbiome. High-protein diets are thought to result in the production of carcinogenic metabolites from the colonic microbiota that may result in the induction of neoplasia in the colonic epithelium.

Ever more sensitive metabolomics methodologies reveal a suite of small molecules produced in the microbiome which mimic or act as neurosignallers or neurotransmitters. Coupled with evidence that probiotic interventions may alter psychological endpoints in both humans and in rodent models, these data suggest that CNS-related co-morbidities frequently associated with GI disease may originate in the intestine as a result of microbial dysbiosis. This review outlines the current evidence showing the extent to which the gut microbiota contributes to the development of disease. Based on evidence to date, we can assess the potential to positively modulate the composition of the colonic microbiota and ameliorate disease activity through bacterial intervention.

Keywords: Microbiome; short-chain fatty acids; gut health; colonic metabolome; gut-brain-axis; inflammation

*Correspondence to: Bernard M. Corfe, Molecular Gastroenterology Research Group, Department of Oncology, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK. Email: b.m.corfe@shef.ac.uk

This paper is part of the Proceedings from the 2013 ENIGHR Conference in Valencia, Spain. More papers from this supplement can be found at http://www.microbecolhealthdis.net

The human intestinal microbiota is made up of trillions of microorganisms most of which are of bacterial and viral origin that are considered to be non-pathogenic (1, 2). The microbiota functions in tandem with the host’s defences and the immune system to protect against pathogen colonisation and invasion. It also performs an essential metabolic function, acting as a source of essential nutrients and vitamins and aiding in the extraction of energy and nutrients, such as short-chain fatty acids (SCFA) and amino acids, from food. Ultimately, the host depends on its intestinal microbiota for a number of vital functions and thus the intestinal microbiota may contribute to health. It is, however, difficult to describe the precise impact of the intestinal microbiota on human health and the involvement in human disease.

Alterations in the microbiota can result from exposure to various environmental factors, including diet, toxins, drugs, and pathogens. Of these, enteric pathogens have the greatest potential to cause microbial dysbiosis as seen in experimental animal models, where foodborne viral
pathogens can trigger both local and systemic inflammation altering the composition of the microbiota and barrier function, as a mechanism for developing autoimmunity, as shown in type 1 diabetes and T-cell mediated destruction of insulin-producing pancreatic β-cells (3–5). Documenting dysbiosis has traditionally relied on classical microbiological techniques and the ability to culture pure isolates for identification and classification, which is necessarily limited to ‘culturable’ microorganisms. The advent of high-throughput DNA based pyrosequencing technology to classify bacteria and archaea according to individual 16S rRNA sequences directly from human samples (usually faecal in origin) with no need for culturing now provides a rapid and detailed means of profiling complex communities of microorganisms. Since the first application of this technology, it has been shown that the composition of the intestinal microbiota varies substantially amongst individuals (6). This can in part be explained by genetic differences amongst hosts with positive relationships between similarity in dominant faecal microbial communities and genetic relatedness of the host being observed (7). At the phylum level, *Bacteroidetes* and *Firmicutes* dominate with *Proteobacteria*, *Actinobacteria*, *Fusobacteria*, *Spirochaetes*, *Verrucomicrobia*, and *Lentisphaerae* also present (8, 9). Using metagenomic analysis to investigate the functional capability of the intestinal microbiota genome (microbiome), it has been shown that almost 40% of the microbial genes present in each individual are shared with at least half the general population providing evidence for the existence of a functional core, or core microbiome (10). The main approach to studying changes in composition of the intestinal microbiota in relation to disease has relied primarily on the phylogenetic characterisation of the microbiota of diseased individuals in comparison with apparently healthy individuals. However, since there are substantial inter-individual and intra-individual variations in addition to age-related changes in the composition of the intestinal microbiota, it is difficult to establish precise relations between human health and the presence of relative abundance of specific microbial communities. It may be possible in the future to use specific changes in compositional diversity, or even functional diversity, as biomarkers for health or specific diseases. It is important to note, however, that it is questionable whether changes in phylogenetic composition are a cause or consequence of a given disease.

Arguably the strongest evidence of the direct involvement in or requirement for the intestinal microbiota in disease pathogenesis comes from studies using germ-free mouse models of human autoimmune disease in which the requirement for exposure to and colonisation by environmental microorganisms on disease initiation and progression can be determined (Table 1). In most but not all of the disease models, the severity and/or incidence of disease is reduced under germ-free conditions consistent with the microbiota being a ‘trigger’ for disease progression. However, attempts to identify the members of the ‘pathogenic’ microbiota (pathobionts) that can reproduce the effect of the microbiota as a whole have to date failed.

It is perhaps not surprising that intestinal dysbiosis is most often associated with GI-related diseases in which alterations in the interaction of the host (immune system) with lumen-derived stimuli and antigens initiate and/or perpetuate uncontrolled inflammation in the intestinal mucosa, and in some cases beyond.

**Metabolomic impact of the interaction between diet and the microbiome on human health**

Food components that escape digestion in the small intestine, as well as endogenous compounds such as digestive enzymes and shed epithelial cells and associated mucus, enter the colon and become available for fermentation by the colonic microbiota. Bacterial conversion of these compounds results in a wide variety of metabolites that are in close contact with host’s cells. In this way, these metabolites can affect the metabolic phenotype of the host and influence the risk of disease (11).

Undigested carbohydrates and proteins constitute the major substrates at the disposal of the microbiota. Fermentation of these substrates results in the production of a range of metabolites including SCFAs, branched chain fatty acids, ammonia, amines, phenolic compounds, and gases, including hydrogen, methane, and hydrogen sulphide. In addition, the intestinal microbiota is involved in the production of vitamins, the activation or inactivation of bioactive food components such as isoflavonoids.

<table>
<thead>
<tr>
<th>Disease</th>
<th>Microbiota status</th>
<th>Disease impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammatory bowel disease</td>
<td>Germ free, antibiotics or probiotics</td>
<td>No disease or reduced severity</td>
</tr>
<tr>
<td>Spontaneous arthritis</td>
<td>Germ free</td>
<td>No disease</td>
</tr>
<tr>
<td>Autoimmune arthritis</td>
<td>Germ free</td>
<td>No disease</td>
</tr>
<tr>
<td>Autoimmune encephalomyelitis</td>
<td>Germ-free</td>
<td>Weak severity</td>
</tr>
<tr>
<td>Systemic lupus erythematosus</td>
<td>Germ free</td>
<td>No change</td>
</tr>
<tr>
<td>Type 1 diabetes</td>
<td>Germ free</td>
<td>No disease</td>
</tr>
<tr>
<td>Spontaneous ankylosing enteropathy</td>
<td>Germ free or probiotics</td>
<td>No disease</td>
</tr>
</tbody>
</table>

*Table 1*. The intestinal microbiota and autoimmunity

**Citation**

and plant lignans, the conversion of prodrugs to their bioactive forms, and the transformation of bile acids and xenobiotics (12, 13).

**Mechanistic effect of metabolites on host health**

The SCFA acetate, propionate, and butyrate are the major anions in the colon and are mainly produced by bacterial fermentation of undigested carbohydrates. Up to 95% of produced SCFA are readily absorbed by the colonocytes for use as energy substrates. As colonocytes derive up to 60–70% of their energy needs from SCFA oxidation (14), SCFA provide about 10% of the daily caloric requirements in humans (15). The fraction that is not consumed by the colonocytes is transported across the basolateral membrane to the liver via the portal blood stream. Besides their local role as energy substrates within the colon, SCFA act as signalling molecules involved in systemic lipid metabolism and glucose/insulin regulation (16). These effects are, at least partly, mediated through interaction with two specific G-protein-coupled receptors – GPR41 and GPR43 (later renamed to FFAR3 and FFAR2, respectively) (17) that are widely distributed throughout the human body, including the small intestine and colon (18). Within the cells, SCFA can act as inhibitors of histone deacetylases to induce hyperacetylation of histones which affects gene expression and results in anti-inflammatory properties, induction of growth arrest, and apoptosis (19). However, an integrated understanding of the impact of SCFA on host metabolism requires more quantitative data on fluxes of SCFA in different body compartments. Due to its inaccessible, little information is available on in vivo production rates of SCFA and kinetics of absorption in the large intestine.

Plant polyphenols have been associated with health benefits including anti-inflammatory, antiestrogenic, cardioprotective, chemoprotective, and neuroprotective effects (10). However, the mechanistic evidence in vivo is not yet fully understood. The majority of plant polyphenols require metabolic transformation (including deylation and hydrolysis) to render them biologically active. Within the colon, they are broken down by the microbiota to a variety of small phenolic compounds of which the physiological relevance is not well known (20). In addition, recent studies indicate a selective modulation of the microbiota composition after polyphenol consumption (21). For instance, consumption of red wine polyphenols significantly increases *Enterococcus, Prevotella, Bacteroides, Bifidobacterium, Bacteroides uniformis*, *Eggerthella lenta*, and *Blautia coccoidei-Eubacterium rectale* numbers in healthy humans (22). Therefore, the health benefits associated with polyphenols should not only be attributed to their bioactive metabolites but also to the modulation of the intestinal microbiota.

Other products of bacterial metabolism have been associated with diseases affecting the liver, cardiovascular system and the kidneys.

In recent years, the gut–liver axis and the impact of the intestinal microbiota on liver function has gained increasing attention. The liver is extensively exposed to metabolites produced at intracoliconic fermentation as it receives 70% of its blood supply from the intestine through the portal vein (23). In the early 1980s, a possible causative role of the microbiota in the development of non-alcoholic fatty liver disease (NAFLD) was suggested. In patients that underwent intestinal bypass surgery, hepatic steatosis developed in parallel with bacterial overgrowth. Interestingly, the steatosis regressed after treatment with the antibiotic, metronidazole (24). One of the mechanisms relating the microbiota to NAFLD is bacterial metabolism of choline. In mice susceptible to NAFLD and fed a high-fat diet, choline was increasingly metabolised to methylamines resulting in high urinary excretion of dimethylamine (DMA) and trimethylamine (TMA) and correspondingly low levels of serum phosphatidylcholine (25).

Due to conversion of choline into methylamines by the microbiota, the bioavailability of choline is reduced, resulting in the inability to synthesise phosphatidylcholine with subsequent accumulation of triglycerides in the liver. This mimics choline-deficient diets which have been consistently associated with hepatic steatosis (26).

The bacterial metabolite TMA is consequently absorbed by the intestinal mucosa and transported to the liver via the portal vein where it is oxidised to trimethylamine-N-oxide (TMAO) by the flavin mono-oxygenase (FMO) enzyme complex. In a metabolomics study profiling the plasma of patients undergoing elective cardiac evaluation, TMAO was identified and confirmed as a predictor of cardiovascular disease (CVD). Subsequent mice experiments confirmed the obligate role of the intestinal microbiota in the formation of TMAO and indicated the pro-atherogenic nature of TMAO by augmentation of cholesterol loaded macrophages and foam cell formation (27). Similarly, metabolism by the intestinal microbiota of dietary L-carnitine, a TMA abundant in red meat, also produced TMAO and accelerated atherosclerosis in mice (28).

**Dysbiosis in disease**

**Dysbiosis and GI-tract-related disorders**

Inflammatory bowel disease

Crohn’s disease (CD) and ulcerative colitis (UC) are the most prevalent forms of inflammatory bowel disease (IBD), characterised by chronic relapsing inflammation affecting the intestinal mucosa. Although the aetiology of both diseases is unknown, there is increasing evidence that intestinal microbial dysbiosis has a role in the pathogenesis of IBD (29). Overall, patients exhibit a decrease in microbial population and functional diversity and stability of
their intestinal microbiota with decreases in specific Firmicutes and a concomitant increase in Bacteroidetes and facultative anaerobes such as Enterobacteriaceae (38). Significant differences in the microbiota of CD versus UC patients have also been noted (31, 32). In CD, the predominant dysbiosis has been described to be associated with five bacterial species amongst which alterations in the abundance of Faecalibacterium prausnitzii is associated with the prolongation of disease remission (32, 33), with this bacterium having a therapeutic effect in experimental models of colitis (34). Conversely, adherent-invasive E. coli and Mycobacterium paratuberculosis have been implicated in CD pathogenesis although a causal relationship is yet to be demonstrated (35, 36). Indeed, up to now, it is still unclear whether intestinal microbial dysbiosis is a direct cause for the inflammation in IBD, or merely the result of a disturbed environment in the GI-tract. One study that has sought to determine the status of the microbiota in early diagnosis CD cases is that of Gevers et al. (Cell Host Microbe 2014) (37). This study analysed the microbiota of a large cohort of newly diagnosed paediatric CD patients and found clear differences in bacterial populations between CD and healthy control patients. CD patients had increased abundance of Enterobacteriaceae, Pasteurellaceae, Veillonellaceae, and Fusobacteriaceae, and decreased abundance in Erysipelotrichales, Bacteroidales, and Clostridiales compared to healthy control patients. Interestingly, these differences were only revealed when analysing mucosal samples (rather than faecal samples), indicating that the bacteria resident in the mucosal layer may be more significant for disease aetiology.

Dysbiosis and other GI-tract disorders
In addition to IBD, metabolic disorders, obesity, and type 2 diabetes (T2D), the intestinal microbiota has also been implicated in several other (chronic) GI-related diseases and disorders, such as irritable bowel syndrome (IBS), coeliac disease, and colorectal cancer (CRC). In IBS, changes in microbiota composition have been described in the different subtypes of disease compared to healthy individuals (38, 39) although the changes are not uniform (40). Coeliac disease and CRC have also been associated with alterations in microbiota composition with increased diversity and richness observed compared to control subjects (41, 42). In all of these diseases, however, no consistent pattern of microbiota changes has yet been observed. In the case of coeliac disease, however, a recent study has shed light on the interaction between host genetics and microbiota composition in relation to disease development. Expression of the leukocyte antigen DQ2 is a strong risk factor for the development of coeliac disease. Children with this haplotype have an altered microbiota composition (compared to non-HLA DQ2 individuals) prior to clinically apparent disease (43). Coeliac disease results from CD4 T-cell reactivity to dietary gliadin, with some bacterial species being able to digest gliadin and perhaps therefore reduce the immunopathogenicity of ingested gliadin.

Dysbiosis in systemic disease

Metabolic disorders
An increase in the relative abundance of Firmicutes and a reduction in the level of Bacteroidetes have been observed in both obese mice (44) and humans (45) although these findings have not been replicated in all studies (46–52). Of note, intestinal dysbiosis is not currently used as a factor in diagnosing or predicting onset of a metabolic disease such as obesity or T2D. More subtle changes in the composition of the intestinal microbiota have been described in obese individuals with a reduced compositional microbial diversity compared with lean individuals (7). Additional evidence implicating the intestinal microbiota in obesity originates from obese (ob/ob) mice that lack expression of the gene encoding leptin, the product of which promotes satiety. In support of the involvement of the microbiota in the development of obesity in these mice, antibiotic treatment conferred changes in the gut microbiota, reducing the incidence of metabolic endotoxemia, inflammation, and several obesity-linked parameters (53). In human populations, it is evident that a high-fat diet and overconsumption of food are responsible for the greater prevalence of obesity and T2D in the West, thus conspiring to alter host metabolism and immune homeostasis via diet-induced changes in the intestinal microbiota. Indeed, the role of the microbiota in metabolism, and notably its ability to harvest energy from food, highlight a significant environmental factor impacting the risk of metabolic disease. A direct link between intestinal microbiota composition and body weight comes from studies using germ-free mice to show that the absence of intestinal microbes protects against diet-induced obesity, and that the intestinal microbiota is involved in the regulation of fat storage (54–56). These and similar studies have led to the proposal that obese individuals are more efficient in converting food into usable energy and in storing this energy in fat than lean individuals, which is related to, and may be a consequence of, the functionality of the intestinal microbiota. Major insights into differences between various physiological states of the host, such as in obese versus lean individuals, should therefore be obtained by studying the functional microbial diversity in addition to phylogenetic diversity. Indeed, an altered representation of bacterial genes and metabolic pathways, including those involved in nutrient harvest, has been found to be related to obesity (7). Also, the amount of SCFA produced by the intestinal microbiota, rather than the changes in the composition of the microbiota, is important in the development of obesity (51). Perhaps unsurprisingly, shifts
in microbiota phyla have also been described in T2D (57), with metagenomics-based studies identifying discriminant metagenomic markers that may differ between different ethnicities of patients (58, 59). The question remains whether dysbiosis of the intestinal microbiota is a direct cause for any metabolism-related disorder, or whether changes in the intestinal microbial communities in affected and obese individuals are an adaptation to a change in the host’s diet. Two observations relevant to answering this question are one, that the transfer of microbiota from lean donors into individuals with metabolic syndrome can increase insulin sensitivity and overall amelioration of symptoms of metabolic disease (60) and two, dietary changes in humans leads to rapid and reversible changes in the relative abundance of dominant members of the intestinal microbiota (61).

The potential interaction between host physiology, behaviour, the microbiome, and diet is evidenced in both animal and human studies showing rapid changes in microbiota composition after Roux-en-Y gastric bypass surgery (RYGB) (52, 62) although the impact on metabolite levels has been less explored. Nevertheless, in a non-obese rat model, RYGB surgery resulted in profound metabolic perturbations (63). Besides lower concentrations of oligosaccharides and higher concentrations of SCFA, increased levels of colonic protein fermentation metabolites were found in faecal samples obtained after surgery. These results might point at an incomplete digestion of proteins in the small intestine as a result of the bypass leading to an increased supply of protein to the colon with increased protein fermentation. Interestingly, faecal water samples obtained 2 and 8 weeks after the operation, displayed significantly more cytotoxicity compared to the samples obtained from sham-operated animals (64). It needs to be investigated whether the observed association between increased levels of amino acid fermentation metabolites and increased cytotoxicity also involves a causal relationship. In healthy, normal weight subjects, increased protein fermentation after a high-protein diet was not associated with increased faecal water cytotoxicity (65).

Also, between the large intestine and the kidney, a bi-directional functional relationship exists. Uremia influences the colonic microbial metabolism whereas microbial-related metabolites are involved in the progression of the kidney disease (66). p-Cresyl sulphate and indoxyl sulphate have been most extensively studied and are considered as prototypes of the so-called uremic toxins. They are derived from bacterial fermentation of the aromatic amino acids tyrosine and tryptophan, respectively, followed by sulphation in the colonic mucosa or the liver. Within the plasma, they are highly protein-bound and accumulate when kidney function fails. The free, unbound levels of these solutes increase more than their total plasma levels due to competition for binding sites on plasma proteins (67). In patients with chronic kidney disease, both p-cresyl sulphate and indoxyl sulphate levels have been linked to overall mortality, CVD and progression of the kidney disease (68).

**Dysbiosis and CNS-related disorders**

Intestinal microbial dysbiosis has also been observed in extra-intestinal diseases and in particular those that may impact on the ‘gut–brain–axis’ to affect the CNS and behaviour and cognitive function.

Several studies have focused on the possibility that the intestinal microbiota may influence cognitive function and behaviour by direct reprogramming of the hypothalamus–pituitary–adrenal (HPA) axis, a common pathway activated in response to infection and perturbed by psychological stressors. It is known that enteric infections can cause anxiety, depression, and cognitive dysfunction; germ-free mice that have no intestinal microbiota display alterations in stress-responsivity, central neurochemistry, and behaviour indicative of a reduction in anxiety in comparison to conventionalised mice (43). For example, in germ-free mice, increased anxiety-like behaviour has been associated with changes in the production of neurotrophic factors and hormones and expression of their receptors (69). In pathogen-infected mice (70–73), *Campylobacter jejuni* (a common cause of gastroenteritis) can induce anxiety-like behaviour in mice and brainstem activation (the nucleus tractus solitarius and lateral parabrachial nucleus). Commensal bacteria may affect brain changes through GABA, which can directly influence receptors both immune and neural within the ENS and CNS (74, 75). GABA is the main CNS inhibitory neurotransmitter and is involved in regulating physiological and psychological processes. Alterations in central GABA receptor expression are implicated in the pathogenesis of anxiety and depression (76).

Early colonisation of the intestinal tract by microbes is known to be important for the post-natal development of the enteric nervous system (77). Accordingly, intestinal microbiota may have implications on the development and function of the CNS (78, 79).

Evidence of a possible causal role of the intestinal microbiota in the development of autism spectrum disorder (ASD) comes from a maternal immune activation (MIA) mouse model in which pregnant animals after being administered the viral mimetic, ploy(I:C), display increased intestinal permeability and develop stereotypical abnormalities in behaviour, social ability, and communication that resemble ASD (80). MIA offspring display intestinal dysbiosis and an altered serum metabolic profile, characterised by excessive levels of microbiota-derived 4-ethylphenylsulphate (4EPS), compared to control offspring, with intestinal barrier function being restored and ASD-like symptoms being alleviated after
administering probiotic bacteria. Of particular note, exogenously administered EPS, which is structurally related to the toxic sulphated form of p-cresol, resulted in an anxiety-like behaviour in naïve mice, suggesting that autism, and maybe other behavioural conditions, involve the GI-tract eventually impacting on the immune, metabolic, and nervous systems.

With the emerging preclinical data and indications in developmental disorders, it is perhaps no coincidence that GI-tract disorders including IBD and IBS are common co-morbidities in debilitating stress-related disorders, including depression and anxiety (81, 82). Recent research suggested that intestinal permeability and bacterial translocation may drive immuno-inflammatory and oxidative and nitrosative stress (IO&NS) pathways in depression and thus play a role in its pathophysiology. Chronic depression in humans was shown to be accompanied by increased immune response (serum IgM and IgA responses) directed against lipopolysaccharide (LPS) products of gram negative gut enterobacteria, that is, \textit{Hafnia alvei}, \textit{Pseudomonas aeruginosa}, Morganella morgani, \textit{Pseudomonas putida}, \textit{Citrobacter koseri}, and \textit{Klebsiella pneumonia} (83). Attempts have been made to examine the potential CNS and behavioural impact of bacteriotherapy in germ-free and pathogen-infected rodents. Germ-free mice exhibit hyper-responsive HPA axis activity following stress as compared to specific-pathogen free mice (78) and this hyper-response of the HPA axis was reversed by \textit{Bifidobacterium infantis} (84). \textit{B. infantis} increased plasma tryptophan levels, decreased serotonin metabolite concentrations in the frontal cortex and dopamine metabolite concentrations in the amygdaloid cortex (85), both of which are implicated in depression (86, 87). In humans, the efficacy of probiotics for mood regulation was suggested in a trial of \textit{Lactobacillus casei} that showed subjects with the lowest scores in the depressed/related dimension at baseline had significant improvement in mood scores after taking the probiotic compared to the placebo group (88). The combination of \textit{L. helveticus} and \textit{B. longum} reduced anxiety and had beneficial psychological effects with decreased serum cortisol in healthy human volunteers (89).

Functional brain activity measured by functional magnetic resonance (fMRI) showed that a probiotic formulation reduced brain intrinsic connectivity and response to emotive stimuli and changes in midbrain connectivity (90).

However, it should be noted that several studies have failed to observe an effect of probiotic supplementation on anxiety measures in clinical populations, including IBS (91, 92), schizophrenia (93), and rheumatoid arthritis (94). This may be explained in part by the spectrum of doses, species (and combinations thereof), and timings used in probiotic interventions and the lack of a standard trial design.

**Future approaches: restoration of the intestinal microbiota through bacteriotherapy**

There is huge potential for manipulating the microbiota to sustain, improve, or restore the microbiota in at risk or diseased individuals.

An important pre-requisite for bacteria-based therapy (bacteriotherapy) is defining what constitutes a ‘healthy’ microbiota during and throughout life, which may be defined differently at the population and individual level. More research is needed to examine species and strain diversity in the GI-tract, the diversity of microbial genes (microbiome), and what their functionality is in the GI-tract throughout human development – from the cradle to the grave! Therapeutically, probiotic-based approaches have been used with some success for centuries (95, 96), as have the more drastic and cruder approach of wholesale microbiota replacement strategies based upon faecal transplantation (97). The application of these procedures is discussed in more detail in a separate review in this supplement – Manipulating the gut microbiota to maintain health and treat disease. The development and use of these and other more refined approaches using chemically defined bacterial products in the clinic will rely on understanding their molecular mechanisms of action and the particular host features requiring personalisation of approach in order to enable bacterial/probiotic therapies to yield their full potential in the treatment and management of human health.

**Acknowledgements**

The authors thank Dr Nick Chadwick for his support and critical review during the production of this manuscript. The authors acknowledge the support of the European Science Foundation (ESF), in the framework of the Research Networking Programme, The European Network for Gastrointestinal Health Research.

**Conflict of interest and funding**

The authors have not received any funding or benefits from industry or elsewhere to conduct this study.

**References**


Citation: Microbial Ecology in Health & Disease 2015, 6: 26191 - http://dx.doi.org/10.3402/mehd.v6i26.26191


43. Olivares M, Neef A, Castillejo G, Palma GD, Varea Y, Capilla A, et al. The HLA-DQ2 genotype selects for early intestinal...


Dysbiosis of the gut microbiota in disease


Citation: Microbial Ecology in Health & Disease 2015; 26: 26191 - http://dx.doi.org/10.3402/mehd.v26i26.26191

311
Faculty of Medicine and Health Sciences Research Ethics Committee

Daniel Vipond
MED

16th July 2015

Dear Daniel

Title: A role for a leaky gut and the intestinal microbiota in the pathophysiology of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME)
Reference: 20142015 - 28

Thank you for your e-mail dated 13th July 2015 notifying us of the amendments you would like to make to your above proposal. These have been considered and we can now confirm that your amendments have been approved.

We would like to remind you that following clarification of the NRES approval for the Biorepository/tissue bank to collect tissue, it is now a requirement that researchers such as yourself collecting tissue using the NNUH biorepository process are obliged to bank some of their sample with the tissue bank. This banking will allow other researchers to potentially access and use these samples. Therefore, you will be required to bank some of the tissue that you are collecting as a result of your amendment. Mark Wilkinson will be able to offer you guidance as to how much and in what form you should bank this tissue.

Please can you ensure that any further amendments to either the protocol or documents submitted are notified to us in advance, and also that any adverse events which occur during your project are reported to the Committee.

Please can you also arrange to send us a report once your project is completed.

Yours sincerely,

Linda Harvey
Chair Human Tissue - FMH Research Ethics Committee

Cc Simon Carding
5 March 2015

Dear Mr Vipond

Re: NHS Permission

Chief Investigator: Mr Daniel Vipond
ESTH Collaborator: Dr Amolak Bansal
Study Title/Acronym: A role for a leaky gut and the intestinal microbiota in the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome.
REC No.: 2014/2015-28
Sponsor: University of East Anglia
NHS Permission Date: 5 March 2015

Thank you for submitting documentation in respect of the above-mentioned study for NHS Permission from Epsom and St Helier University Hospitals NHS Trust (ESTH).

ESTH has granted NHS Permission for the study to proceed on the basis described in the application form, protocol and supporting documentation submitted, subject to the following terms and conditions being satisfied:

1. The study is conducted in accordance with:
   • Trust Policies and Procedures
   • The Data Protection Act 1998
   • NHS Confidentiality Code of Practice
   • NHS Caldicott Report and Caldicott Guardians
   • The Human Tissue Act 2004
   • Good Clinical Practice
   • Other relevant legislation released during the course of the study.

2. Members of the Research Team who wish to conduct research at ESTH and are not Trust employees must contact the R&D Office to establish appropriate contractual arrangements are in place (e.g. honorary contracts, letters of access), prior to commencement of the research study.

3. Please ensure that you submit a copy of any amendments made to this study to the R&D Office.

4. A requirement of the Research Governance Framework is that Trusts have a duty to monitor research studies. If this study is selected for monitoring, it is your responsibility, as Principal...
A role for a leaky gut and the intestinal microbiota in the pathophysiology of ME/CFS

Stool Sample Collection

If you are happy to provide your consent to take part in the study, you will be asked to provide a stool sample using a ‘sampling kit’. A blood sample will also be required which will be arranged to be taken either at the Immunology Dept, D Block, St Helen Hospital or during a scheduled home visit.

Instructions on what to do with the kit are given below:

**IMPORTANT INFORMATION**

**Sample collection** will take place between 27th February and 3rd March 2017

Please contact by telephone or email to make arrangements for your sample collection. For severe ME/CFS patients a scheduled home visit during above dates can be arranged.

**Sample Storage**

Place FECOTAINER® with stool sample inside plastic zipped bag, and put into fridge at 4°C

**Kit contents**

- FECOTAINER® (collection bowl)
- AnseroGen Compact Sachet
- Zip bag
- Brass Stool Scale
- Barcode sticker to place on FECOTAINER®

Please ensure your stool sample is collected within no more than 24 hrs prior to scheduled collection day/time

Healthy Volunteers acting as a House-matched control:

Do you live with anybody who would help provide us with a stool sample and by donating blood?

It is helpful, where possible, that we can match each patient sample with a healthy house-matched stool and blood sample, to act as a control.

This will help identify potential disease-specific changes within gut bacteria and metabolism between patient and a healthy volunteer. The importance of house-match is on the basis of a similar environmental exposure and diet if two people are living together, or are related. Your participation in this study is not affected if no house-matched healthy volunteer is able to participate.

**Kit directions**

1. Please record weight of the FECOTAINER®, written on the cellophane of the blue device and record in this space __________ grams.
2. Unwrap FECOTAINER® and fold open the arms, unscrew the top, and depress the centre to form a bowl.
3. Place the device on the toilet basin, and lower the toilet seat downwards to secure in place. Adjust the position how you prefer to ease your sample collect.
4. Perform up to 4 bowl movements into the bowl without urinating in it
5. Next, take the AnseroGen Compact, tear open, DO NOT USE SCISSORS, take out the sachet and place into the collection bowl. Secure on blue lid.
6. Place entire FECOTAINER® with stool sample inside, into the zippy bag supplied and label your sample with the sticker with your unique Sample ID (matching the number at the top of this page)
7. Place the sample into the fridge & await collection & keep this paper to hand over to the researcher.

To make arrangement for stool sample collection please contact
01603 251433
or preferably email: daniel.vipond@ifr.ac.uk

Version 1.0

14th February 2017

Norwich Research Park, Colney, Norwich, NR4 7UA, UK
Tel: +44(0) 1603 255000
Chronic Fatigue Syndrome – Symptom list

Date......................

Name.............................................. DoB...................................... Occupation.....................................

Onset of Fatigue: Acute or Gradual onset Viral symptoms

Brief history of Fatigue:

Main worries now: Getting better Finances Work Serious illness Wasting

Employment/School: F/T P/T – hours/wk........ Nil........since.............

<table>
<thead>
<tr>
<th>SYMPTOMS</th>
<th>Y/N</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Exertional Malaise (PEM)</td>
<td></td>
<td>Time to onset Duration Severity</td>
</tr>
<tr>
<td>Non-Restorative sleep</td>
<td></td>
<td>Difficulty getting off to sleep Frequent wakening</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Early morning wakening Daytime sleeping</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Obstructive Sleep Apnoea Restless Legs</td>
</tr>
<tr>
<td>New Headaches</td>
<td></td>
<td>Frequency Severity Location</td>
</tr>
<tr>
<td>Sore throat +/- LN</td>
<td></td>
<td>Frequency</td>
</tr>
<tr>
<td>Fever and Sweats</td>
<td></td>
<td>Frequency Mild Mod Severe</td>
</tr>
<tr>
<td>Impaired Concentration</td>
<td></td>
<td>Brain fog</td>
</tr>
<tr>
<td>Reduced STM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthralgia</td>
<td></td>
<td>Joint swelling Joint stiffness</td>
</tr>
<tr>
<td>Myalgia</td>
<td></td>
<td>Never Sometimes All the time Any muscle tenderness?</td>
</tr>
<tr>
<td>Intol of sound &amp; light</td>
<td></td>
<td>Overload</td>
</tr>
<tr>
<td>Postural instability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depression</td>
<td></td>
<td>Mood Anhedonia Libido Appetite Worthlessness Tearful</td>
</tr>
<tr>
<td>Anxiety</td>
<td></td>
<td>Persistent Anxiety Episodic anxiety</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Panic attacks</td>
</tr>
<tr>
<td>Fibromyalgia</td>
<td></td>
<td>Severity How many areas</td>
</tr>
</tbody>
</table>
**Activities**

How far can you walk at maximum?

Can you prepare a meal?  Y  N

Can you wash yourself  Y  N

Any leisure activity? Walking / Cinema / Eating out / Visiting friends / Other

For how long can you read a book?  Watch a film?

**Personality before CFS:**

**Treatments used to date:**

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Used</th>
<th>When</th>
<th>Helpful</th>
</tr>
</thead>
<tbody>
<tr>
<td>GET</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>CBT</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>SSRI</td>
<td>Yes</td>
<td>No</td>
<td>Which drugs</td>
</tr>
</tbody>
</table>

**Alternative Therapies**

Reflexology  Homeopathy  Acupuncture  Pilates  Meditation  Head Massage

Yoga

**Dietary manipulation:**  No  Yes  What was this?

Echinacea  Ginseng  INADA  CoQ10  Others

**Past Medical History**

**Past Psychiatric History**

**Systems Inquiry**  CVS  Resp  GI  UG  NS

Smoke  Alcohol  Illicit drugs

**Present Medication**  Allergies

**Social Support**  Pets

**Family History**
Examination

Pulse bp Temperature
Throat Lymphadenopathy
Joint swelling Fibromyalgia
Heart Lungs Abdomen Neurology

Investigations

<table>
<thead>
<tr>
<th>FBC</th>
<th>Hb</th>
<th>WBC</th>
<th>Platelets</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AANT</td>
<td>ANA</td>
<td>GPC</td>
<td>AMA</td>
</tr>
<tr>
<td>Ig’s</td>
<td>IgG</td>
<td>IgM</td>
<td>IgA</td>
</tr>
<tr>
<td>CRP</td>
<td>TSH</td>
<td>U/E</td>
<td>LFT</td>
</tr>
<tr>
<td>Anti-EM abs</td>
<td>Positive</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>ANA</td>
<td>Positive</td>
<td>Pattern</td>
<td>Level</td>
</tr>
</tbody>
</table>

Assessment

Severity of Fatigue: Mild Moderate Severe Very Severe

Mild – mobile, self caring, light domestic duties, may be working but to detriment of social, family and leisure activities.

Moderate – Reduced mobility, not working, reduced ADL, sleeping in daytime, peaks and troughs of activity.

Severe – few ADL, severe cognitive difficulties, wheelchair dependent for mobility, rarely leave house, often significant worsening of symptoms with any mental or physical exertion.

Very severe – no ADL, bedbound most of time, unable to tolerate any noise & are light sensitive, require someone else to wash, toilet and feed them.
Recommendations

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Comments</th>
<th>Treatment</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>GET</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSRI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low T4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**REVIEW:**  As needed  3 months  6 months  1 year  Discharge
Supplementary Data
Supplementary figure S3.1: Raw abundances of bacterial genera belonging to severe ME patients (dataset B, chapter 3).
Supplementary figure S3.2: Raw abundance table for bacterial genera belonging to HHCs (dataset B, chapter 3)
Methionine

Methylamine

Methylsuccinate

Nicotinate

Phenylacetate

Phenylalanine

Proline

Propionate
Supplementary figure 4.1: Metabolomic profile of faecal water using $^1$H-NMR revealed 45 metabolites in 11 house-bound ME patients and 6 HHCs.
Supplementary figure 4.2: Metabolomic profile of serum using \(^1\text{H}-\text{NMR}\) revealed 53 metabolites in 25 ME/CFS patients (14 severe (S); 11 mild/moderate (M)) and 9 HHCs.
Supplementary figure 4.3: Metabolomic profile of saline diluted serum using diffusion edited spectrum obtained from $^1$H-NMR revealed 45 metabolites in 14 severe ME, and 11 mild/moderate ME patients and 9 HHCs.
Supplementary figure 4.4: Individual bile acid concentrations in faecal water from 8 ME/CFS patients versus 6 HHCs
Supplementary figure 4.4: Individual bile acid concentrations in serum of 14 severe ME, 14 mild/moderate ME/CFS, 10 house-hold control & 6 IBD samples
Supplementary figure 5.1 Optimisation of faecal bacterial cell suspension for staining with Sybr green using ME patient faeces. Sybr green concentration (1:10,000) stained 1:100 (top row) versus 1:1000 (bottom row) dilution of faecal bacteria in PBS.
Supplementary figure 5.2 Optimisation of faecal bacterial cell suspension for staining with Sybr green using faeces from ME patient’s household control. Sybr green concentration (1:10,000) stained 1:100 (top row) versus 1:1000 (bottom row) dilution of faecal bacteria in PBS.
Paired samples #1
Control, F (30) 12%
ME, F (57) 20%

Isotype control
IgA-APC
Paired Sample #3
Control, F (60) 26.5%
ME, F (27) 21.5%
Paired samples #4
ME, F (31) 41.2%
Control, F (55) 33.2%

IgA-APC

Isotype control
Paired samples #6
Control, F (35) 29.9%
ME, F (33) 16.0

IgA-APC

Isotype control
Paired samples #8
Control, F (55) 21.1%
ME, F (18) 29.5%
Non-paired sample
1STB100  ME, F (63) 31.1%

IgA-APC

Isotype control
**Non-paired samples**

1. **15TB0096**  ME, F (56)  
   23.7% Jones

2. **15TB0076**  ME, F (31)  
   11.9%

**IgA-APC**

**Isotype control**
2017  Severe ME, F (21) – Paired 3

2017  House-Hold Control, F (55) – Paired 3

2017  Severe ME, F (58) – Paired 4

2017  House-Hold Control, M (60) – Paired 4

2017  Severe ME, F (56) – Unpaired
2017  Severe ME, F (44) – Paired 7

2017  Severe ME, F (61) – Unpaired

2017  Severe ME, F (40) – Unpaired

2017  Severe ME, F (70) – Paired 7

2017  Severe ME, F (54) – Unpaired
References


Bag, S., Saha, B., Mehta, O., Anbumani, D., Kumar, N., Dayal, M., ... Das, B. (2016). An improved method for high quality metagenomics DNA extraction from human and environmental samples. *Scientific Reports*. https://doi.org/10.1038/srep26775


experimental colitis. PLoS ONE. https://doi.org/10.1371/journal.pone.0003304
Chen, J., Chia, N., Kalari, K. R., Yao, J. Z., Novotna, M., Soldan, M. M. P., ... Mangalam, A. K. (2016). Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Scientific Reports. https://doi.org/10.1038/srep28484


in Future Clinical Laboratory Medicine. *EJIFCC.*


Fluge, Ø., Mella, O., Bruland, O., Risa, K., Dyrstad, S. E., Alme, K., ... Tronstad, K. J. (2016). Metabolic profiling indicates impaired pyruvate dehydrogenase function in myalgic encephalopathy/chronic fatigue syndrome. *JCI Insight,* 1(21). https://doi.org/10.1172/jci.insight.89376


Font-Nieves, M., Sans-Fons, M. G., Gorina, R., Bonfill-Teixidor, E., Salas-Peŕdomo, A., Marquez-Kisinousky, L., ... Planas, A. M. (2012). Induction of COX-2 enzyme and down-
regulation of COX-1 expression by lipopolysaccharide (LPS) control prostaglandin E2 production in astrocytes. *Journal of Biological Chemistry*. https://doi.org/10.1074/jbc.M111.327874


Translational Psychiatry. https://doi.org/10.1038/tp.2016.42
Huang, X., Sun, M., Chen, F., Xiao, Y., Chen, L., Yao, S., & Cong, Y. (2017). IL-17 promotes intestinal IgA response to intestinal infection but does not affect memory B cell development. The Journal of Immunology, 198(1 Supplement), 200.16 LP-200.16. Retrieved from http://www.jimmunol.org/content/198/1_Supplement/200.16.abstract
Iwasaki, A., & Kelsall, B. L. (1999). Freshly isolated Peyer’s patch, but not spleen, dendritic
cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. The Journal of Experimental Medicine. https://doi.org/10.1084/jem.190.2.229


Joossens, M., Huys, G., Cnockaert, M., De Preter, V., Verbeke, K., Rutgeerts, P., … Vermeire,


Mucosal antibodies in inflammatory bowel disease are directed against intestinal bacteria. Gut. https://doi.org/10.1136/gut.38.3.365


Maes, M., Mihaylova, I., & Leunis, J. C. (2006). Chronic fatigue syndrome is accompanied by an IgM-related immune response directed against neoptopes formed by oxidative or nitrosative damage to lipids and proteins. Neuroendocrinology Letters.


Maes, M., Twisk, F. N. M., & Johnson, C. (2012). Myalgic Encephalomyelitis (ME), Chronic Fatigue Syndrome (CFS), and Chronic Fatigue (CF) are distinguished accurately: Results of supervised learning techniques applied on clinical and inflammatory data. Psychiatry Research. https://doi.org/10.1016/j.psychres.2012.03.031


Naviaux, R. K., Naviaux, J. C., Li, K., Bright, A. T., Alaynick, W. A., Wang, L., ... Gordon, E.


injury via the release of mast cell proteases and TNF-α. *PLoS ONE.* https://doi.org/10.1371/journal.pone.0039935

Pabst, O. (2012). New concepts in the generation and functions of IgA. *Nature Reviews Immunology.* https://doi.org/10.1038/nri3322


Rintala, A., Pietilä, S., Munukka, E., Eröla, E., Pursiheimo, J. P., Laiho, A., ... Huovinen, P. (2017). Gut microbiota analysis results are highly dependent on the 16s rRNA gene target region, whereas the impact of DNA extraction is minor. *Journal of Biomolecular Techniques*. https://doi.org/10.7171/jbt.17-2801-003


against the gastrointestinal commensal flora. *International Immunology.* https://doi.org/10.1093/immunol/dxl142


Sartor, R. B. (2011). Key questions to guide a better understanding of host-commensal microbiota interactions in intestinal inflammation. *Mucosal Immunology.* https://doi.org/10.1038/mi.2010.87


Zhernakova, A., Kurilshikov, A., Bonder, M. J., Tigchelaar, E. F., Schirmer, M., Vatanen, T., ...


