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Abstract 
 

The field of ME/CFS research is challenged by many often confusing and conflicting reports 

of immune, neuroendocrine, autonomic, neurological dysfunction. During the prodromal 

phase of this condition patients often report flu-like symptoms, persistent chronic fatigue 

and gastro-intestinal symptoms including abdominal pain and discomfort. 

Its study is complicated by the lack of specific biomarkers and criteria to accurately define 

the illness, relying on the exclusion of other fatiguing illnesses. Recent publications suggest 

an altered intestinal microbiota and increased intestinal permeability are associated with 

ME/CFS.  Further evidence is accumulating for dysfunctional energy, lipid and amino acid 

metabolism that may indicate oxidative stress and/or immune-mediated damage to 

mitochondria, disrupting the efficiency of aerobic respiration, explaining the effect of post-

external malaise (PEM), a unique characteristic for the diagnosis of ME.  

 

In this study, Next Generation Sequencing (NGS) and Nuclear Magnetic Resonance (NMR) 

spectroscopy probed the composition of the intestinal microbiota and faecal and serum 

microbiomes in 17 severe, house-bound patients and house-hold healthy controls (HHC). 

Severe, house-bound patients account for 0.5% of all ME/CFS research, yet it is estimated 

they represent 25% of the patient population. We found Faecalibacterium prausnitzii was 

significantly reduced in severe patients (p = 0.018) but did not replicate individual 

differences in faecal and serum metabolites that others have previously reported. We 

further enhanced a flow cytometry technique for detecting IgA coated bacteria in faecal 

suspensions and analysed the proportional differences between patients and HHCs. This 

demonstrated a trend for increased IgA-coated bacteria in most patients; however, this 

trend was reversed when repeated with a second sample produced a year on.  

 

Since the initial concept for this study, several advances have been made in sequencing 

methods and quality control standards for metagenomic and metabolomic studies. Based 

on these, we conclude further investigations are warranted using whole genome 

sequencing and targeted metabolomics to address the emerging hypotheses in ME/CFS 

research, with an emphasis on the study of severe, house-bound ME patients. 
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RA Relative Abundance 
ReA Reactive Arthritis  
RhA Rheumatoid Arthritis  
ROS Reactive Oxygen Species 
RR Relapsing-Remitting 
S Severe ME 
sCD14 Soluble Cluster Differentiation 14 
SCFA Short Chain Fatty Acids 
SD Standard Deviation 
SEID Systemic Exertional Intolerance Disorder  
SF-36 Short-form 36 item questionnaire 
SFB Segmented Filamentous Bacteria 
SLE Systemic Lupus Erythematosus 
SPF Specific-pathogen free 
TDA Topological Data Analysis 
TFT Thyroid Function Test 
TGR5 Takeda G-protein receptor 5 
Th1/Th2 T-helper 1/T-helper 2 
TJ Tight Junction 
TLR Toll-like Receptor 
TNFa Tumour Necrosis Factor Alpha 
UPGMA Unweighted Pair Group Method with Arithmetic Mean 
V4-V5 Hypervariable regions of 16S ribosomal RNA 
WGS Whole Genome Sequencing 
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1.0 Background to ME 
 

Myalgic Encephalomyelitis (ME) has been classified by the World Health Organisation 

(WHO) since 1969 as a disease of nervous system (ICD-10; G93.3) and until recently 

included Chronic Fatigue Syndrome (CFS) under the same classification code. This 

enigmatic and ill-defined condition primarily affects young to middle aged adults, more 

often women, and is usually of sudden onset in apparently healthy and otherwise active 

individuals. Typically, ME/CFS is preceded by a ‘flu-like’ illness or viral infection associated 

with immunological abnormalities culminating in highly disabling physical and mental 

fatigue.  The name ME implies a recognised (neuro-)pathology consisting of muscle pain 

(myalgia) and inflammation in the brain (encephalomyelitis), that so far the has not be 

established consistently within all patients (Blomberg et al., 2018). The use of ME is 

preferred by many patients who argue CFS reduces the seriousness and presents the illness 

in the context of a psychosomatic disorder (Dickson et al., 2007; Looper & Kirmayer, 2004). 

However, clinical examination and routine blood tests provide no obvious explanation for 

this pathological fatigue and variety of other symptoms including: cognitive dysfunction, 

muscle pain, exhaustion after minimal physical or mental exertion, orthostatic intolerance 

(Bansal, 2016; Haney et al., 2015). This list is not extensive, and symptoms vary in 

frequency and severity from patient to patient. Many illnesses can be represented by some 

or all of these symptoms and therefore must be ruled out before ME/CFS can be 

diagnosed. 

 

Evidence is gathering to support a hypothesis of an infectious trigger causing long-lasting 

fatigue and immunological and gastrointestinal symptoms that could give rise to wider 

multi-systemic dysfunction involving signalling between intestinal microbes and the 

central, autonomic and enteric nervous systems, in addition to signalling between the 

(neuro-)immune and neuroendocrine systems and the brain. Other syndromes closely 

associated with ME include fibromyalgia (FM) and irritable bowel syndrome (IBS) which 

may represent a discrete subsets of ME patients.  

 

- Prevalence 

It is unclear how many people suffer with ME/CFS worldwide. A recent indication from the 

Institute of Medicine (IOM) suggests between 836,000 and 2.5 million Americans have 

ME/CFS (Reynolds et al., 2004). In the UK between 0.23-1.29% of the population are 

affected (Science Media Factsheet, 2018). The only prescribed treatment to these patients 
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consists of psychological-led interventions such as Cognitive Behaviour Therapy (CBT) for 

management of anxiety and depressive-like symptoms that manifest as a result of being 

chronically ill.  

 

- Early reports 

An illness that appears synonymous with characteristics of ME/CFS first described in 1869 

became known as neurasthenia (Van Deusen, 1869). Symptoms included fatigue, 

headaches, dizziness, weakness, and emotional disturbances (Beard, 1869). It was originally 

associated as a result of physical isolation of farmer’s wives who were socially inactive, but 

was also attributed to stress and a busy lifestyle (Beard, 1869; Van Deusen, 1869). To that 

end it was viewed as a psychogenic, rather than organic illness which altered the behaviour 

of the individual. From 1938 up until 1955 several apparent outbreaks of an illness with 

similar symptoms to poliomyelitis were described. These followed patterns of discrete 

clusters firstly, in Los Angeles in 1938 where the disease was called “atypical poliomyelitis” 

with symptoms of muscle weakness and severe pain aggravated by exercise (Gilliam, 1938). 

In Switzerland, in 1939, 73 soldiers developed low grade fever, with autonomic 

disturbances, fatigability and loss of concentration that was labelled epidemic 

neuromyasthenia. What appeared to a case of poliomyelitis in 1948 developed into 

another outbreak, involving 488 cases in rural areas around Akureyri, Iceland leaving 

patients severely paralysed particularly within the 15-19 age group, and occurred in 49% of 

pupils resident at a high school within Akureyri. Seventy percent of these patients had 

characteristic low grade fever, muscle tenderness, whilst 30% had muscle weakness with 

pyrexia (Parish, 1978). Other areas of outbreaks of a “polio-like” illness include Denmark, 

South Africa and Australia (Patarca-Montero, 2004). 

 
1.1 Controversy of ME 
 

ME/CFS controversy is driven by the lack of a defined pathophysiology with routine clinical 

and physical examination, including blood biochemistry revealing no obvious medical 

abnormalities as a specific cause. Over the decades separate definitions have been 

generated for ME and CFS with patients who do not meet either criteria diagnosed with 

idiopathic chronic fatigue which is classified as mental and behavioural disorders (ICD 

F48.0). An apparent outbreak of this disease was reported in 1955 describing patients 

suffering from malaise, tender lymph node, sore throat, pain and appeared to be infectious 

with signs of encephalomyelitis from limb spasms (Staff, 1957). Despite the appearance of 
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an epidemic of viral encephalomyelitis, the cause was never established and a lack of 

physical symptoms in these patients convinced many doctors that they were not physically 

ill, labelling it as ‘benign myalgic encephalomyelitis’ since no one died as a result the illness 

(IOM, 2015). This along with other reported outbreaks were explained by psychiatrists as a 

“psychosocial phenomena caused by one of two mechanisms; either mass hysteria on the 

part of the patients or altered medical perception of the community” and the fact most 

patients were female fitted with the hypothesis of epidemic hysteria considered 

characteristic among females (McEvedy & Beard, 1970; IOM, 2015).  

 

Over 200 cases of this chronic illness were documented by Dr Melvin Ramsay, a physician 

at the Royal Free hospital, who later published the first criteria for ME to refute its 

proposed psychological aetiology based on apparent involvement of the central nervous 

system (Staff, 1957). Interestingly some sporadic cases were reported at the time have 

following a viral infection and had been diagnosed as post viral fatigue syndrome (PVFS) 

(Lewis Price, 1961; Speight, 2013). Similar epidemics had previously occurred in 1934 and 

1947 in Los Angeles and Nevada, respectively (Speight, 2013). These outbreaks have been 

documented in the literature as poliomyelitis and were indistinguishable from Ramsay’s 

patients, with a similar neuromuscular condition. 

 

- Psychiatry and ME 
 

Psychiatry has dominated the media and public interpretation of ME/CFS and has had 

unfortunate consequences for the treatment of patients. Patients can easily be accused of 

malingering or being ill in the mind.  Many doctors and nurses formulate their own opinion 

based on various psychiatric explanations labelling the condition as a disease of the mind 

and is largely down to the fact very little or no training is given on how to manage these 

patients. Therefore, patients are easily stereotyped as neurotic or attention seeking. Other 

suggested causes include the stress of modern day living and ‘middle class’ disease 

(Speight, 2013). In the past it is fair to say the media has marginalised campaigns for 

biomedical research and excluded their voices in favour of the psychosomatic argument 

(Blease & Geraghty, 2018).  This has created a significant amount of frustration for patients 

who are desperate for answers to this debilitating and life-threatening illness. This is not 

unusual throughout medical history which tends to favour a psychological explanation 

when there is no convincing somatic origin. Asthma was once considered one of the ‘holy 

seven’ psychosomatic illness during the 1930-50s with talking therapy as an alleged cure 
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(Opolski & Wilson, 2005). Indeed, psychiatric conditions such as depression do have a 

negative effect on symptoms in somatic illnesses, like asthma, with a reduction in quality of 

life, that are not aetiologically relevant to its pathogenesis (Opolski & Wilson, 2005).  

 

1.2 The challenge for ME/CFS Research 
 

The foundations of ME/CFS research rely on the description of self-reported symptoms and 

clinical expertise when assessing the patient before making a diagnosis of ME/CFS. The 

application of reliable and highly specific criteria would be a significant breakthrough for 

research and in primary care.  Indeed, the psychological concept for this condition is still a 

problem in front line care with 20% of staff believing CFS is all in the patient’s head.  

International agreement on how we study the ME/CFS population is not forthcoming and is 

still frequently discussed until the medical and research communities agree on how this 

heterogenous group of patients be further stratified according to specific symptoms and 

severity other than subjective categories of: mild, moderate, severe and very severe. How 

these categories are defined is still a matter of clinical opinion and varies significantly from 

country to country. Further confusion is generated by the various names that have been 

introduced to describe unexplained and persistent fatigue. ME and CFS remain the most 

frequently used, however others including post-viral fatigue or post-infectious fatigue 

syndrome are named so after the apparent infectious event triggering long-term 

symptoms. There is symptom overlap with these illnesses makes it unclear if these are 

separate conditions or all the same (Twisk, 2014). 

 
1.3 Diagnosing ME/CFS  
 

The diagnosis of ME/CFS relies entirely on the exclusion of medical or psychiatric conditions 

associated with fatigue or any other symptoms presenting in the patient (Bansal, 2016). As 

a minimum criteria, fatigue must persist beyond four months according to current NICE 

guidelines. Fatigue is a universal symptom making it difficult to distinguish patients who 

each present their own set of unique symptoms. An added complication for accurate 

diagnosis is that many of the symptoms are not disease specific and encompass marked 

variability in severity and a daily and even hourly basis (Bansal et al., 2011). It is perhaps 

more helpful to view ME/CFS as an umbrella term for a number of conditions defined by 

chronic persistent fatigue that cannot currently unexplained, that may have discrete 

pathogenic aetiologies.  
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-  Assessing fatigue 
 

Fatigue effects an individual’s ability to function physically and mentally. However, the 

concept that fatigue can manifest as illness without a pathological explanation called 

idiopathic fatigue, suggests a psychogenic cause since very little is known about the 

physiological mechanisms for the sensation of fatigue. Indeed, this makes fatigue difficult 

to assess with no objective physiological marker. Ultimately, it relies upon highly subjective 

measures and assessments including patient interviews and completing questionnaires 

regarding their perception of fatigue and how it impacts their daily functioning. Self-

reported scales of fatigue such as the Chalder Fatigue Scale (Chalder et al., 1993) and 

measures of the impact fatigue has on a patients’ function such as the Short-Form 36 item 

questionnaire (SF-36) have been used extensively in ME/CFS research (Jason et al., 2009).  

 

The “envelope theory” proposed in 1999 suggests patients pace themselves according to 

the perceived amount of total energy they have available (Jason et al., 2012). To this end, 

crashes or worsening of symptoms can be avoided my limiting energy expenditure within 

this ‘envelope’. Patients kept an activity record to provide a self-assessment report on 

feelings of fatigue, pain, type and intensity of activity and enjoyment every 30 min to build 

a comprehensive picture how CFS impacted their daily functioning. Using this method, CFS 

patients were found to experience fatigue more of the time and to spend 2.5 times more 

resting than those with major depressive disorder and 4 times longer than the healthy 

control group after low intensity activity (Hawk et al., 2007; Jason et al., 2012). 

 

However, a review of 39 measures of fatigue has highlighted that no single method 

encompasses the full nature of fatigue in ME/CFS (Whitehead, 2009). Researchers are 

challenged as to how to use this subjective information to identify potential underlying 

physiological aetiologies. However, there are some aspects of the type and severity of 

fatigue experienced in the ME/CFS population that would not be perceived as normal part 

of experiencing fatigue that appear to separate these patients from other fatigue-related 

illnesses (Bansal, 2016). This is the most significant and characteristic symptom of ME, 

described as a delayed reaction to minimal physical or mental exertion, referred to as post-

exertional malaise (PEM).  
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- alternative sickness behaviour 
  

The similarities between ME/CFS and sickness behaviour have been extensively reviewed 

(Morris et al., 2013). The behaviour responses to infection have been modelled in mice 

challenged with Lipopolysaccharide (LPS) derived from Gram-negative bacteria, which have 

shown systemic inflammation can lead to neuroinflammation and sickness behaviour 

(Biesmans et al., 2013). Behavioural disturbances seen in LPS-treated animals cause 

depressive-like symptoms and withdrawal from social interaction and the environment. 

Many ME/CFS patients present with symptoms of “infection” that may drive 

proinflammatory cytokines IL-1b, IL-6, and TNFa able to trigger vagal nerve stimulation (the 

nerve from the  gut to the brain) or activate brain microglial cell to produce 

proinflammatory cytokines locally (Hoogland et al., 2015). In humans, an extreme example 

of sickness behaviour may manifest as delirium, a common and severe neuropsychiatric 

syndrome, delirium causes confusion, agitation and attentional deficits (MacLullich et al., 

2009; Pandharipande et al., 2013). Delirium is associated with aging, a period defined by a 

declining in the microbiota and therefore insults on the intestinal microbiota may alter 

brain function causing neuroinflammation and alter a person’s behaviour or response to 

physical, mental stress or infection (Di Sabatino et al.,  2018; Vaiserman et al., 2017). 

 
The overriding issue with ME/CFS research is that patient selection still remains highly 

ambiguous with interchangeable use of ME and CFS and case definitions. In a systematic 

review evaluating the application of case definitions, the authors highlighted the existence 

of over 20 sets of case definitions with significant overlap (Brurberg et al., 2014). As a result 

healthcare providers do not feel confident in about  ME/CFS (Bowen et al., 2005; Brimmer 

et al., 2010). The lack of specificity and accuracy in the diagnosis of ME/CFS is evident in the 

fact that CFS-like fatigue has been reported in 30.5% of 9050 randomly selected adults in 

the Netherlands using the Center for Disease Control (CDC) criteria by questionnaire, 

commonly referred to as Fukuda criteria (Fukuda et al., 1994; Van’T Leven et al., 2010). 

Moreover, this application of broader case definitions has led to a lack of reproducibility in 

ME/CFS research further fuelling the perception that this illness is psychogenic. A recent 

critical review has argued that there is ‘no convincing pathogenesis model for CFS’ (Mm & 

Ssung, 2017).  
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- Case definitions 
 

In the absence of a definitive diagnostic clinical test, guidance is set out in a series of case 

definitions used to described symptoms of ME/CFS to the detriment of having a 

homogenous patient population with varying degrees of overlapping symptoms, figure 

1.1.1. This has many limitations such as selection criteria biases and methodologies to 

assess patients and will be influenced by researchers’ own preconceptions of disease 

aetiology (Morris & Maes, 2013b). Application of case definitions in an apparently 

multisystem disorder such as ME/CFS can require multiple medical specialities to assess 

each symptom meets any threshold requirements, e.g. frequency and duration. This can 

generate difficultly comparing studies using different definitions and criteria to score 

fatigue and severity. Moreover, many symptoms included in the following case definitions 

risk including groups of patients that do not suffer from the same disease, with more 

general criteria including a group of patients in some cases with very little symptom 

overlap (IOM, 2015). 
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ÜFigure 1.1.1 Overlapping case definitions can result in patients being diagnosed with ME/CFS 

with very little symptoms shared between cases. Fukuda criteria sets out symptoms required for 

diagnosing CFS and it the most widely used case definition. The larger the area within circle of each 

case definition reflects the more encompassing rather than specific it is for defining patients with 

broad number of symptoms, in addition to mandatory chronic persistent fatigue. Figure from 

(Twisk, 2017). 

 

- Ramsay (1986) 
 

The acceptance of ME as a neurological condition by the WHO was attributed to the work 

of Dr Melvin Ramsay, a clinician at the Royal Free at the time of the 1955 outbreak, who 

proposed ME was a polio-like, neuromuscular disease and refuted any argument for it 

being psychogenic based on opinion of psychiatrists reviewing patients notes. The original 

criteria proposed by Ramsay generally considered most accurate and specific to the nature 

of ME symptoms including muscle weakness/tenderness, and pain after only minor 

exertion lasting for days, concentration and memory impairment, sleep disturbance, cold 

extremities, hypersensitivity and orthostatic tachycardia. Ramsay also documented the 

fluctuating nature of many of the symptoms and the dramatic effect of exercise upon 

muscle function which are not observed in IM or ‘glandular fever’ cases (Ramsay, 1986). 

Here, ME was described as distinctive from poliomyelitis as it did not cause paralysis or 

resulted in death and was termed ‘benign Myalgic encephalomyelitis’. 

 

- Holmes (1988) 
 

In 1988 the Centres for Disease Control (CDC) introduced the name CFS and provided the 

first definition. Holmes et al. (1988) produced this criteria to standardise the population 

and distinguish CFS from potentially viral infection aetiologies that had be associated with 

outbreaks of EBV infection (Holmes et al., 1988)(Holmes et al., 1987). CFS was described as 

persistent or relapsing fatigue for at least 6 months severe enough to impair the persons 

daily activities below 50% of previous capacity before becoming ill. It also stated that 8 or 

more other symptoms from a list of 11, including ‘neuropsychologic complaints’ had to be 

present. This led to the inclusion of patients with psychiatric problems such as depression 

base on generalised overlapping symptoms (Friedberg & Jason, 1998).  
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- Oxford (Chronic Fatigue) 
 

This criteria was established in the 1990s that has been criticised since it only requires 

severe and disabling fatigue and no longer used for its lack of specificity for diagnosis of 

CFS, or any neuro-muscular symptoms of ME described by Ramsay in 1987.  

 

- Fukuda (1994) (Chronic Fatigue Syndrome) 
 

In 1994 the CDC introduced a new definition commonly referred as the Fukuda criteria 

after its primary author. Similar to the Holmes criteria, the criteria Fukuda criteria does not 

provide guidance on interpreting these symptoms and has been criticised for being too 

broad and encompassing of all cases (Reeves et al., 2003). This sets out the requirement for 

moderate or severe fatigue lasting at least 6 months in addition to four or more of eight 

symptoms: post-exertional malaise, unrefreshing sleep, impairment in memory or 

concentration, headaches, muscle pain, joint pain, sore throat, or tender lymph nodes 

(Fukuda et al., 1994). None of these symptoms are characteristics of ME are mandatory in 

the Fukuda definition of CFS; but also, are rather unspecific and potential inclusive of other 

medical and psychiatric disorders. 

 

It is still the most widely used case definition that has largely been adopted in clinical 

practice (Brurberg et al., 2014). However, this criteria is frequently judged too vague and 

polythetic, essentially highlighting a group of patients with chronic fatigue as the 

predominant factor in their illness. Not all CFS patients will have post-exertional malaise 

and memory/concentration impairment as these are not strictly required to satisfy Fukuda 

criteria. The review of the original ME criteria established by Ramsay (1987) suggest a 

distinct disease that is more than persistent chronic fatigue, with particular emphasis on 

neuro-immunological exhaustion (Dowsett et al., 1990).  In the patients from the Royal 

Free outbreak, muscular pain, autonomic symptoms and malaise following any form of 

physical or mental exertion where triggered after a flu-like illness are the hallmarks of ME 

which Fukuda does not require but help differentiate true cases of ME from ones with 

general chronic fatigue.  

 

Patients with major depression may also be misdiagnosed with CFS (Jason et al., 1999). It is 

also possible for patients which very little symptom overlap to be diagnosed with CFS, with 

the only primary feature of unexplained fatigue being shared with Ramsay’s criteria for ME. 

Further heterogeneity is introduced when some CFS patient fit the criteria for ME and vice 
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versa. ME and CFS are used interchangeable or combined as ME/CFS, given many patients 

satisfy various diagnostic criteria for both. However, there is little understanding about the 

pathophysiology of ME and how it is separate from CFS, although the delayed exhaustion 

to minimal physical or mental exertion is considered unique to ME.  

 

- Canadian Consensus Criteria (2003) for ME/CFS 
 

The 1955 definition of ME involves post-exertional malaise and impairment of memory and 

concentration as distinguishing features that are not absolutely required by Fukuda 

(Dowsett et al., 1990). Thus, the shortcomings of the Fukuda criteria lacking overall 

specificity for ME, led to the introduction of the Canadian Consensus criteria which had 

more emphasis on ME-like symptoms requiring two or more neurological/cognitive 

symptoms and at least one symptom of autonomic, neuroendocrine and immunological 

dysfunction, as well as post-exertional malaise (PEM) which often causes a delayed 

exacerbation of all symptoms. The inclusion of more core symptoms identifies patients 

overlapping with the Ramsay criteria, but also because of the increased number of possible 

symptoms, like the Holmes criteria, introduces higher rates of psychiatric co-morbidity 

(Katon & Russo, 1992; Williams, 2014).   

 

The early 2003 criteria required several other symptoms (see figure 1.1.3) in addition to 

two core symptoms referred in the previous paragraph (Jason et al., 2010). Up to 75% of 

CFS cases identified with Fukuda also satisfy the Canadian (2003) criteria for ME/CFS (Jason 

et al., 2013a; Nacul et al., 2011; Jason et al., 2012a.)  To address this problem, the updated 

Canadian Consensus Criteria (2010) introduced structured questionnaires (DePaul 

Symptoms Questionnaire; SF-36) to gather standardised information in addition to 

operational definitions for assessing symptoms that must be present within 6 categories 

(see figure 1.1.3) and must be of moderate severity for at 50% of the time as well as scoring 

sufficiently low on the SF-36 for substantial reduction in functioning  Jason et al., 2014; 

Jason et al., 2010; IOM, 2015). This is viewed as a stricter definition than Fukuda with a 

focus on more severe patients since it does require PEM and memory/concentration 

impairment and indication of minimum frequencies and severity of symptoms. Fewer 

patients met this revised definition compared with using the 2003 version and with Fukuda. 

To this end, the revised Canadian Consensus Criteria perhaps represents severe group of 

CFS patients with significantly more frequent psychiatric co-morbidity. By contrast, the 
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original 2003 Canadian Consensus highlighted patients with less psychiatric co-morbidity 

than Fukuda (Services et al., 2015).  

 
- ME International Consensus Criteria (ICC) 

  
The International Consensus Criteria (ICC) for the diagnosis of ME essentially evolved from 

the Canadian Census Criteria for ME/CFS. Introduced by Carruthers et al. in 2011 it 

recommended a distinction of ME based on recent research of “widespread inflammation 

and multisystem neuropathology” (Carruthers et al., 2011). Delayed exhaustion following 

minimal physical or mental exertion (PEM), termed post-exertional neuroimmune 

exhaustion by the authors, is an absolute requirement. In addition, neurocognitive 

impairments, pain, sleep disturbance, neurosensory, perceptual or motor disturbances 

must be present. Importantly, at least one symptom has to be present from 3 of 5 immune, 

gastro-intestinal and genitourinary categories – including flu-like symptoms, recurrent 

viral/bacterial infections, GI discomfort and sensitivities to food, medicines, odours, 

chemical sensitivities had to be present. Finally, at least one symptom associated with 

energy production/transportation impairments including cardiovascular/respiratory 

symptoms, intolerance to extremes of temperature also needs to be present (Twisk, 2017; 

IOM, 2015). 

 

- Systemic Exertional Intolerance Disorder (SEIDS) 
 

An extensive review was conducted by the Institute of Medicine, USA in 2015 of the 

published studies of ME/CFS and the implementation of case definitions and subsequent 

diagnosis made from these (IOM, 2015). As a result, the report introduced SEIDS to replace 

ME/CFS. To qualify for diagnosis of SEIDS, fatigue, PEM and non-refreshing sleep, cognitive 

deficits and orthostatic intolerance are absolute requirements. Although the application of 

this criteria is straightforward and simpler (see diagnostic algorithm, figure 1.1.2) than 

other case definitions, it can still miss symptoms attributed to neuro-immune, 

neuromuscular and neuroendocrine dysfunction that are the hallmarks of Ramsay’s original 

ME criteria meaning this definition could essentially still include cases with little symptom 

overlap. 
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Figure 1.1.2 Pathway to the diagnosis of Systemic Exertional Intolerance Disorder (SEID) produced 

by the Institute of Medicine, USA in 2015. 
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Figure 1.1.3 Common symptoms of ME/CFS shared across various case definitions Figure adapted 

from (Online, 2018) assessed 29th September 2018, with additional information included from (Jason 

et al., 2010). 

 
- Symptoms 

  
The case definitions for ME/CFS (CCC), and ME (ICC), and the IOM replacement of ME/CFS 

with SEID are not entirely satisfactory criteria since they still include patients with other 

medical and psychological illness that are not defined by neuro-muscular features, delayed 

muscle fatigability with an apparent prodromal phase that precedes a very serious chronic 

illness. The list of symptoms and references below are taken from the 2015 IOM report, 

and provide an overview of all the different symptoms that stand out across multiple 

studies implementing CFS, ME/CFS and ME criteria, these include: persistent fatigue and 

unrefreshing sleep, orthostatic intolerance, widespread pain (myalgia), cognitive 

dysfunction, and immune dysregulation, along with secondary anxiety and depression, 

contribute to the burden imposed by fatigue in this illness:  
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- Neurocognitive symptoms defined as slowness of thought; mental fog; and 

problems with concentrating, memory, or understanding (Arroll and Senior, 

2009; Hickie et al., 2009; Jason and Taylor, 2002; Ray et al., 1992).  

 

- Musculoskeletal factors: muscle or joint aches and pains and weakness 

(Brimacombe et al., 2002; Hickie et al., 2009; Nisenbaum et al., 2004; Tseng and 

Natelson, 2004); 

 

- Infectious symptoms: a “viral flu-like” factor that includes such complaints as fever, 

sore throat, and tender lymph nodes (Brimacombe et al., 2002; Nisenbaum et al., 

1998, 2004; Tseng and Natelson, 2004);  

 

- Psychological emotional distress or mood or anxiety disturbance factor (Arroll and 

Senior, 2009; Fostel et al., 2006; Hickie et al., 2009; Ray et al., 1992);  

 

Other common symptoms of the autonomic nervous system include GI disturbances, such as 

constipation, diarrhoea, nausea, increased bowel sounds, mild bloating and abdominal 

tenderness are reported by majority (92%) of patients. It is typical for symptoms of IBS to 

precede onset of ME/CFS that become closely associated with worsening of fatigue, mood, 

malaise, and severity of muscular and joint pain. 

 
 

- Post-exertional malaise (PEM) 
 

The CCC and ICC emphasise post-exertional malaise (PEM) to help clinicians rule out cases 

of idiopathic fatigue. It however can still be viewed as a symptom of ME/CFS rather than 

exclusively belonging to ME, based on its requirement in the Canadian criteria. PEM 

generally causes a global worsening of all ME/CFS symptoms for which the trigger can be 

patient specific and can take different periods for recovery.  PEM can be described as a 

“crash”, “relapse” or “collapse” of varying degrees of duration, severity, impairment, and 

symptoms that are exacerbated by minimal physical or mental activity (IOM, 

2015). Objectively testing the extent of a patients’ PEM by inducing a stressor or forcing the 

patient exercise is considered unethical given the disabling effects and pain that can last up 

to days. Therefore, self-reported experiences of PEM and associated triggers are frequently 

recorded in questionnaires of the patient’s previous experience. How these questions are 

asked and their wording can influence how the patient responds (Leonard et al., 2015). 
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PEM is considered a unique symptom of ME/CFS that distinguishes it from cases of 

idiopathic chronic fatigue, anxiety, depression and other psychiatric and/or fatiguing 

disorders fatigue-related illness, yet it is still largely an ill-defined and vague. It has been 

suggested, PEM be further described by the period of delay in its onset, and how long the 

period of the exacerbation of all ME/CFS symptoms last. For instance, PEM may be more 

immediate in some patients, as little as 3 hrs, or delayed up to 12-24 hrs after completion 

of a specific activity, and can endure longer than 24 hrs in severe cases (Bansal, 2016).  

Interestingly there is a subtle difference between PEM which entails a full-body sensation 

of malaise and post-exertional muscle weakness observed in Ramsay’s ME patients. Indeed 

it has now been proposed the PEM be categorised according to its nature either as a 

general factor of exacerbating illness, or extreme muscle pain and weakness, both 

following from minimal physical or mental exertion (McManimen et al., 2016). 
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Figure. 1.1.4 The IOM definition of SEID sits between the Fukuda cases definition for CFS and 

Ramsay’s proposed criteria for ME in 1988. SEID does not have require muscle pain (myalgia) with 

optional orthostatic intolerance. Figure from (F. Twisk, 2018) 
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- Summary 
 

There is currently no clear agreed distinction between CFS and ME. The Fukuda criteria 

upon which the majority of clinical research has implemented to date, has perhaps 

hindered consistent findings because the patients it diagnoses includes various disease 

entities which share persistent fatigue; including Chronic Fatigue, Chronic Fatigue 

Syndrome and ME – see figure 1.1.1. The 2010 Canadian definition attempts to separate 

CFS by defining more symptoms of a neurological nature but is still has considerable 

overlap with the earlier CFS definition and therefore attracts a heterogeneous ME/CFS 

patient population with varying degrees of symptom overlap. The IOM criteria for SEID has 

been suggested to replace ‘ME/CFS’ and uses simpler criteria than CCC and ICC definitions 

which should be relatively straightforward to translate into the clinic. 

 

The CDC introduction of the term CFS on the back of the Holmes criteria has led to the 

confusion of CFS and ME being the same disease (Twisk, 2018).  All it has served is to 

identify a group of patients who share persistent fatigue and does not give insight to the 

seriousness and severity of the original cases highlighted by Dr Ramsay (Dowsett et al., 

1990; FNM, 2017). The more recent Canadian and International ME criteria hybridise 

CFS/ME with emphasis on PEM and reduce the frequency of depressive disorders with this 

criteria more successfully selecting against those individuals in whom depression may be a 

significant factor in their chronic fatigue symptoms (Jason et al., 2012).  

 

The most recent SEID definition attempts to bridge together Fukuda and Ramsay criteria 

but completely lack requirement for muscle-specific symptoms and will therefore likely 

continue to represent a heterogenous patient population that remain very distinct the 

condition of ME described by Ramsay and colleagues (Dowsett et al., 1990). Many 

symptoms used by Ramsay relating to neuro-muscular pathology, including: muscle 

weakness particularly after exertion, spasms, extreme tenderness, as well as neurological 

symptoms such as light and sound sensitivities are unique to ME, yet not defined specified 

or used as absolute requirement by other case definitions.  

 

In 1990, the year of the death of Ramsay and therefore his last publication before his 

death, the criteria for ME is re-iterated: “a syndrome commonly initiated by respiratory 

and/or gastrointestinal infection, but an insidious or more dramatic onset following 

neurological, cardiac or endocrine disability occurs…features are general or local muscle 
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fatigue following minimal exertion with prolonged recover”(Dowsett et al., 1990). A table 

for this paper (reproduced as table 1.1.1) lists the symptoms and signs in 420 patients 

monitored during the Royal Free outbreak. Ramsay discusses the epidemiological evidence 

for ME being caused by “non-immune individuals of widespread subclinical non-polio 

enteroviruses (NPEV)” based on the neurological manifestations for which many NPEVs had 

been associated with. Out of the 420 cases, 205 (33%) of these had coxsakie B virus 

neutralisation tests that revealed an ongoing infection (Dowsett et al., 1990) . Of course, it 

cannot be said for certain these cases were a result of an enterovirus, but enteroviruses are 

well-known causes of acute respiratory and/or gastrointestinal infections and non-specific 

flu-like illness. Interestingly more recently enteroviruses have been suggested a common 

trigger, along with EBV, for causing ME/CFS in a subgroup of patients (Zhang et al., 2010). 

Indeed, many patients show ongoing signs of bacterial/viral infection that could explain 

their long-term sickness behaviour. These observations have led an infectious-neuro-

immune hypothesis model which will now be introduced in the next section.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1.1.1. Symptom repertoire of patients diagnosed with ME used Ramsay criteria in 1988. This 

list is presented as a summary of symptoms found in 420 patients at the Royal Free Outbreak in 

1955, highlights muscle fatigue is the defining characteristic of ME with 49% of patients experiencing 

gastro-intestinal disturbances. Table reproduced from (Dowsett et al., 1990). 
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1.4 A proposed infection-neuro-immune disease mechanism in ME/CFS 
 

ME/CFS is a complex multifaceted disease involving disruptions to the neurological, 

neuroendocrine and immune systems. An infectious aetiology can be appreciated from the 

early documented cases of a fatiguing neuro-muscular condition, that became known as 

ME.  The polio-like nature and symptom onset suggest a systemic infection, possibly 

originating from the gut which influences immune-inflammatory events responsible for 

causing sickness behaviour and other symptoms prevalent among neuro-psychiatric 

conditions where the behaviour may be a result of persistent immune activation and 

chronic stress and anxiety surrounding not getting better. Persistent infections are known 

to increase intestinal permeability. This may then explain the self-perpetuating nature of 

ME, since increased exposure of intestinal immune cells to commensal bacterial antigens 

such as LPS across the intestinal bacteria can activate the immune system and 

proinflammatory cytokines that have been documented to cause sickness behaviours but 

also trigger autoimmunity. Moreover, increased permeability is already known to occur 

during periods of stress and is significantly influenced during early colonization of microbes 

along the GI tract. In an attempt to bring order to the sequences of events, this model 

proposes a step by step process leading to intestinal barrier leakiness as a result of 

persistent immune activation and disruption to centres of the brain regulating the 

physiological response to systemic infections. 

 

The following sections of this chapter, present various aspects of this model and explore it 

in the context of the current observations in ME/CFS, but also wider studies mainly 

performed in animals attempting to unravel crossover interactions with the immune 

system, neuroendocrine system and signalling with the brain via the hypothalamus-

pituitary-adrenal (HPA) axis.  This pathway has been most studied in animal models of 

infection where in becomes activated leading to distinct physiological changes. Moreover, 

evidence is emerging of the gut microbiome providing physiological input to the regulation 

of the immune system and HPA axis during stress test situations. 
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Figure 1.1.5 Current psycho-biology model for the pathophysiology of ME/CFS. Several symptoms 

of ME/CFS, chiefly among which post-exertional malaise (PEM), are suggestive of a dysfunctional 

Hypothalamus-Pituitary-Adrenal axis during times of stress. Stressors can originate from 

psychological processing of emotions and negative thoughts. Chronic stress can also weaken 

immunity and cause susceptibility towards infection. Long term exposure stress hormones can also 

impair intestinal barrier function, causing a “leaky gut” and exposure to intestinal microbes 

(Lambert, 2009). The immune system reacts with commensal bacteria previously hidden from 

immune cells, as a result this causes inflammation and further tissue damage and low-grade 

inflammation resulting from increased exposure to endotoxin (bacterial LPS). Serum antibodies IgM 

and IgA antibodies have been detected in ME/CFS are raised against intestinal microbes and may 

potentially cross-react with the CNS engender neuroinflammation and altered behaviour (Maes, 

Kubera, Leunis, & Berk, 2012; Morris, Berk, Galecki, & Maes, 2014). Finally, health anxiety and the 

damaging social impact resulting from this illness can causing further stress and GI-disturbances 

which appear to perpetuate this cycle. 
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1.5 The Hypothalamus-Pituitary-Adrenal (HPA) axis 
 
The HPA axis is a major gut-brain pathway that protects the body from the dangers of 

stress. Components of this axis include the immune, neuroendocrine and central, 

autonomic, and enteric nervous systems, with various positive and negative feedback 

mechanisms designed to coordinate physiological and behavioural adaptations collectively 

called the stress response.  This response is governed by several pathways (figure 1.1.6) 

and by the balance of immune (cytokines), endocrine (cortisol) and neural inputs from the 

intestines (vagus pathway and enteric nervous system) (Rea, Dinan, & Cryan, 2016). Activity 

of the HPA axis is determined by the release of corticosterone-releasing factor (CRF) from 

neuro-endocrine neurons from the paraventricular nucleus (PVN) of the hypothalamus 

during stress (Watts, 2005). Neuro-anatomical tracing studies reveal the suprachiasmatic 

nucleus (SCN) found in the anterior hypothalamus contains vasopressin-releasing neurons 

in close proximity to neurons in the PVN which can strongly inhibit corticosterone release 

during daytime (Kalsbeek et al., 1992). In response to actual or perceived (psychological) 

stress, CRF stimulates release of adrenocorticotrophic hormone (ACTH) from the anterior 

pituitary triggering successive release of glucocorticoids (cortisol in humans, corticosterone 

in animals), catecholamine (adrenaline and noradrenaline), mineralocorticoids 

(aldosterone) from the adrenal cortex into the systemic circulation causing mobilisation of 

gluconeogenesis (energy production), increased awareness (hypersensitivity), increased 

heart rate and blood pressure, and altered behaviour commonly referred to as the “fight or 

flight” response (Dallman et al., 1993; Rea et al., 2016; Taub, 2008). 

 

Control of the PVN integrates signalling from catecholaminergic, glutamatergic and 

serotonergic neurotransmitters and is inhibited by the GABA-ergic neurons (Bellavance & 

Rivest, 2014). Glucocorticoid receptors (GR) expressed in the hippocampus and prefrontal 

cortex provide autoregulatory feedback to prevent HPA hyperactivity (Herman et al., 2012). 

The SCN has master control over the release of corticosteroids from the HPA axis, defined 

by the CLOCK system relying light and dark signals on photosensitive retina ganglion cells to 

coordinate circadian rhythm of peripheral CLOCKS throughout the body via humoral and 

neural connections (fig 1.1.6) (Tsigos et al., 2016). The release of CRF follows a circadian 

and ultradian rhythms measured by glucocorticoids in plasma revealing a day/night cycle 

and clustering of 6 to 9 surges in plasma cortisol in the very early hours of the morning and 

before getting up to facilitate awakening and arousal to start the day (Kalsbeek et al., 

2012). 
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Figure 1.1.6 Daylight activates the central CLOCK in the suprachiasmatic nucleus (SCN) which 

coordinates the daily circadian rhythm for releasing glucocorticoids via neural inputs to CRH/AVP-

containing neuron in the PVN of the HPA axis. Secreted glucocorticoids also synchronise 

peripheral CLOCKs by causing expression of CLOCK-related genes in local tissues. CRH: 

corticotropin-releasing hormone; AVP: arginine vasopressin; PVN: paraventricular nucleus. 

Figure from (Tsigos et al., 2016). 

- HPA disruption in ME/CFS 
 

Sleep disturbances are common in ME/CFS patients and is acknowledged this can have an 

impact on the daily rhythm of cortisol secretion (Jackson & Bruck, 2012). Circadian rhythm 

may also be perturbed in some patients who cannot withstand light and therefore disrupt 

daylight signals to the SCN via the retino-hypothalamic tract giving inadequate 

environmental cues when transitioning between day and night (Balbo et al., 2010). Low 

cortisol in CFS compared with healthy controls were reported to be related to the “low 

arousal state” in CFS patients (Demitrack et al., 1991). Generally, reduction in cortisol levels 

are more apparent in women and are associated with worse symptoms (Papadopoulos & 

Cleare, 2012; IOM, 2015). One report has found patients with more severe symptoms had 
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lower awakening cortisol and a flatter diurnal curve suggesting dysfunction within HPA 

signalling (IOM, 2015)  However, not all studies have generated consistent data to support 

blunted HPA activation in all cases of ME/CFS. Interestingly, hyperactivity of CRF-releasing 

neurons have been associated to early life exposure to stress and is a risk factor in primates 

for developing major psychiatric disorders in adulthood (Coplan et al., 1996). Early life 

stress can also be conferred by viral infections such as Epstein-Barr Virus commonly 

associated with risk for developing ME, as well as enteroviruses which may precipitate a 

pre-programmed altered HPA response. As a result of a blunted HPA axis, immune-

mediated inflammation may persist even with minor physical or psychologic stressors. 

- Intestinal microbiota programmes the HPA response 
 

There is evidence to support that stressful insults (antibiotic exposure, bacterial/viral 

infections) which impact the early intestinal microbiota composition can increase the risk 

neurodevelopmental behaviour disorders (Borre et al., 2014; O’Mahony et al., 2017).  

Excessive corticosteroid exposure during postnatal development influences the developing 

brain and neuronal complexity within areas such as the amygdala, hippocampus, and pre-

frontal cortex in addition to GR expression (Borre et al., 2014). The hippocampus has 

inhibitory effects on HPA activation, however, stress causes reduced synaptic plasticity and 

decreased expression of NR1 and NR3B subunits of the N-methyl-D-aspartate (NMDA) 

receptor contributing towards HPA hyperactivity (Farzi et al., 2018).  

Later in life stress can increase intestinal permeability and activate proinflammatory 

cytokines and prostaglandins with stimulate the HPA axis (De Punder & Pruimboom, 2015). 

Hyperactivation of HPA axis decreases GR expression and negative feedback to immune 

cells resistance to anti-inflammatory properties of cortisol which further weaken the 

intestinal barrier (Farzi et al., 2018; Kelly et al., 2015). Systemic inflammation and increased 

circulating cortisol is associated in stress-related neuropsychiatric disorders, particularly 

Major Depressive Disorder (MDD) (Doolin et al., 2017; Jacobson, 2014). Stress and negative 

emotions are also a major factor in the development of Irritable Bowel Syndrome (IBS) 

where peripheral neuro-immune interactions can contribute to abdominal hyperalgesia 

(Elsenbruch, 2011). As with ME/CFS case definition criteria is applied to the diagnosis of 

IBS, with 50-90% of patients having an associated psychiatric co-morbidity (Singh et al., 

2012). IBS has been found to increase the risk of depressive, anxiety, sleep, and bipolar 

disorders. Furthermore, gastroenteritis, prior to anxiety and depression are risk factors for 

the subsequent development of post-infectious IBS (Lee et al., 2015). 
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Figure 1.1.7 Critical windows between the development of neurons, diversity of the intestinal 

microbiota and the age of onset of neuropsychological disorders. The stability of the intestinal 

microbiota can affect development of the neural complexity of the CNS in early life. Early life 

physical and mental stressors (antibiotic treatment, psychological abuse) can impact the 

composition of the intestinal microbiota and increase the risk of developing psychiatric illnesses in 

adult life. Animal studies have shown bidirectional communication between intestinal microbes and 

the central nervous system that is essential for neurodevelopment and programming of stress-

responsivity responses governed by the HPA axis. Figure from (Borre et al., 2014). 

 
The intestinal microbiota colonisation occurs during a critical window of neurogenesis 

during which time neuronal structures within the CNS are undergoing axonal and dendritic 

growth and forming synaptic connections (fig 1.1.7). The networks of neuronal connections 

are complex and highly plastic during this development. Early insults on the intestinal 

microbiota during this process can cause life-long changes in behaviour and physiological 

response to stressors later in life. The majority of this work is pre-clinical and 

predominantly conducted on animal models with targeted manipulation to the intestinal 

microbiota to observe how these animals respond behaviourally and physiologically to a 

variety of physical and immune stressors.  

Gnotobiotic mice continue to be the most accessible tool for neurobiologists to explore the 

capacity of the intestinal microbiota to influence the HPA axis and behaviour via immune 

and neuro-endocrine systems as well as central, autonomic and enteric nervous systems, 
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(figure 1.1.8) (Cryan & Dinan, 2015; Farzi et al., 2018). High levels of ACTH and 

corticosterone concentrations are found in germ-free (GF) mice in response to restraint 

stress and are consistent with HPA hyperresponsiveness  (Sudo et al., 2004). GF mice have 

less brain-derived neurotrophic factor (BDNF) important in neuronal growth, 

differentiation and survival (Sudo et al., 2004). Some of the differences in GF mice are 

dependent on sex; for example serotonin concentration is higher in the hippocampus of GF 

mice with decreased 5-HT1A receptor expression only in female mice (Clarke et al., 2013). 

GF status appears to disrupt the programming of the HPA axis response via permeant 

reduction of GR and mineralocorticoid receptor (MR) gene expression in the hippocampus 

and increasing hippocampal volume (Luczynski et al., 2016). 

 

 

 

 

 

 

 

 

 

Fig. 1.1.8 Neural and humoral signalling pathways between the intestine and the brain. These 

pathways together represent the microbiota-immune-gut-brain axis. The architecture and formation 

of the CNS and brain occur during early life, when intestinal microbes provide external 

environmental cues at specific windows of time. Additional factors later in life, such as diet, stress, 

infections, antibiotic exposure, can also influence the microbiota and its function via the production 

of microbial specific metabolites, that mimic neurotransmitters, can impact on signalling via the gut-

brain axis. The immune system also interacted with the microbiota and can become activated in 

response to dysbiosis, causing changes in intestinal permeability and production of pro-

inflammatory cytokine that can trigger sickness behaviour and activated microglial cells in the brain 

that increase the risk of neurodegenerative disorders affecting cognition and memory. Figure from 

(Cenit et, 2017). 
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Probiotic administration of a single strain, Bifidobacterium infantis, restored normal HPA 

response to stress in GF mice, whilst reduced anxiety behaviour and increased locomotor 

activity could only be reverted in young mice, not adult mice, with adoptive transfer of SPF 

microbiota (Sudo et al., 2004). Early life disruptions to the colonisation of the intestinal 

microbiota occurs simultaneously during neurodevelopment of the brain and CNS and it 

emerges there are temporal critical windows for colonisation to ameliorate HPA 

dysfunction later in life (figure 1.1.9). 

 

 

 

 

 
 

 

 

 

 

Figure 1.1.9 Germ free mice raised without exposure to microbes display reduced anxiety-like 

behaviour which cannot be reversed by recolonization following adolescence. GF mice spend more 

time in the light and more time spent in the open arm of the elevated plus maze, suggesting they are 

less anxious. Adolescence is a critical period when the intestinal microbiota influences anxiety-like 

behaviour, that can have life-long effects. From (Foster et al., 2013). 

Altered hippocampal gene expression and increased serotonin production may explain why 

GF mice display reduced anxiety-like behaviour and increased locomotor activity compared 

with specific-pathogen free (SPF) mice with a normal microbiota (Neufeld et al., 2011). 

Antimicrobial treatment in SPF mice alters the composition of the microbiota and increased 

exploratory behaviour and BDNF expression; and transfer of stress-prone BALB/c mice 

microbiota into GF NIH Swiss mice transferred anxiety-related behaviour, while transfer of 

SW microbiota to GF Balb/C mice had an anxiolytic effect, suggesting a direct causal link 

between the intestinal microbiota and behaviour (Bercik et al., 2011).  
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Post-natal development can be influenced by antibiotic exposure during the microbial 

“colonisation window”  causing visceral hypersensitivity in adult male rats, without 

perturbing anxiety, cognition and immune-related stress responses (O’Mahony et al., 

2014). Conversely, antibiotic depletion later in life of the microbiota in rats causes 

depressive behaviour, cognitive deficits, and reduces visceral pain sensitivity (Hoban et al., 

2016). Reduction in the number of bacterial species (richness) is associated with depression 

with evidence for beneficial treatment using lactobacillus and bifidobacterial species to 

modulate depressive symptoms (Bravo et al., 2011). A stable and diverse microbiota is 

attributed to colonisation resistance to effectively limit colonisation and overgrowth of 

pathogens as well as supporting a balance of anti- and pro-inflammatory responses (Lawley 

& Walker, 2013). Transferring the intestinal microbiota from depressed patients to rats 

induced anxiety-like behaviour and anhedonia characteristic of depression which suggests 

a causal role for intestinal microbes in the pathogenesis of depression (Kelly et al., 2016). 

It seems paradoxical that GF exhibit both exaggerated HPA activity in response to stress 

and yet have reduced-anxiety and increase locomotor activity highlighting the complexity 

of microbiota-gut-brain signalling. Both the amygdala and hippocampus are enlarged in 

these animals, along with differential gene expression pattern involved in neuronal 

plasticity, neurotransmission and morphology, and evidence of  defects in a subpopulation 

of immune cells, resident in the brain, called microglial cells (Farzi et al., 2018; Stilling et al., 

2015). There is evidence that Blood-Brain-Barrier (BBB) permeability in increased in GF 

mice with a similar effect in antibiotic-induced disruption to the intestinal microbiota 

causing tight-junction defects in specific brain regions, predominantly the hippocampus 

and amygdala (Braniste et al., 2014). Antibiotic treatment has the capacity to effect brain 

neurochemistry evidenced in the depletion of the SFP mice microbiota during the human 

equivalent of adolescence causing reduced anxiety, memory impairment, altered 

tryptophan metabolism, and reduced BDNF, oxytocin, and vasopressin expression in the 

hypothalamus (Desbonnet et al., 2015).  

- Maternal Immune Activation 
 

Maternal Immune Activation (MIA) offspring display an altered composition of intestinal 

microbiota compared to control offspring (Hsiao et al., 2013). These offspring result from 

pregnant dams injected with viral mimic poly(I:C) to simulate maternal infection link to an 

increased risk of autism probably caused by elevated level of inflammatory molecules in 

the maternal blood (Hsiao et al., 2013). Altered intestinal permeability was measured in 
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MIA offspring was attributed excess leakage of gut-derived metabolites into systemic 

circulation and consequently is demonstrated to alter the serum metabolome.  

Administration of B fragilis to MIA offspring every other day for 6 days at weaning was able 

to ameliorate GI barrier defects associated with an improvement in intestinal permeability. 

The impact B fragilis has on gut barrier integrity and is shown to be through a mechanism 

involving changes in expression of claudins 8 and 15 in the colon, but not in the small 

intestine, consistent with the fact that the majority of the microbiota including B 

fragilis resides in the colon and therefore may be an effective treatment for restoring gut 

permeability defect, at least in MIA offspring. Serum metabolites significantly altered by 

MIA treatment (around 8% of all 322 serum metabolites detected in adult sera by GC/LC-

MS based metabolomics profiling) were restored by B fragilis treatment revealed the most 

dramatically affected metabolite, 4-ethylphenylsulfate (4EPS) (Hsiao et al., 2013). 4EPS 

exhibited a 46-fold increase in serum levels of MIA offspring. This is interesting because 

conventional germ-free mice do not have detectable levels of 4EPS indicating it originates 

from intestinal microbes. This work remains preclinical so its relevance to humans with 

autism and similar neurodevelopmental disorders is uncertain. 

 

- Maternal separation and stress 
 

Depressive-like behaviours are noted during maternal separation of new born mice causing 

HPA activation, immune activation and visceral hypersensitivity akin to IBS-like symptoms 

in humans (O’Mahony et al., 2011). The integrity of the intestinal microbiota is susceptible 

during maternal separation in infant monkeys; in addition to stress-related behavioural 

changes caused by elevated cortisol, these infants had significant decreases in faecal 

Lactobailli, and were more susceptible to bacterial infection and associated emotional 

behaviour, and stress to disruption to the immune system (Bailey & Coe, 1999). Maternal 

prenatal stress measured by consistent elevated salivary cortisol during pregnancy induced 

a higher relative abundance of Proteobacteria and lower Lactobacilli and Bifidobacterium 

that are hallmarks of inflammatory diseases and GI symptoms and did cause infant GI 

symptoms related to changes (Zijlmans et al., 2015). 
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- Intestinal microbiota and neural communications  
 

The autonomic nervous system (ANS) integrates the communication between the CNS and 

the gut viscera, with resident microbiota signalling interacting with enteric nervous system 

influencing the brain and the perception of abdominal pain. Primary functions of the 

enteric nervous system (ENS) include control of movement and transmucosal fluid in 

maintaining mucosal barrier function and absorption of nutrients – as well as modulation 

of the immune system through the neuroendocrine system. Several classes of 

neurotransmitters can be synthesised by specific bacterial species including g-aminobutyric 

acid (GABA), serotonin, catecholamines and acetylcholine (Cenit et al., 2017). Strains of 

Lactobacillus spp. and Bifidobacterium spp. are known to contribute to the synthesis of 

GABA; Escherichia spp. Bacillus spp., and Saccharomyces spp. produce noradrenaline; 

Candida spp., Streptococcus spp., Escherichia spp. and Enterococcus spp. produce 

serotonin; Bacillus spp. produce dopamine, while Lactobacillus have been shown to make 

acetylcholine (Barrett et al., 2012; Cenit et al., 2017; Dinan et al., 2013). Neuronal 

communication between intestinal microbes and the brain is evidenced by benefits of 

probiotic treatment of social and emotional behaviour. Administering Lactobacillus 

rhamnosus to mice had a reduction on stress-induced level of corticosterone and on GABA 

receptor regional expression in the brain. GABA-nergic neuron projecting from the 

hypothalamus to PVN inhibiting CRF neurons, serving as a gate keeper for PVN activation 

and receive projections of glutamatergic neurons from the hippocampus and prefrontal 

cortex – indeed lesions in these brain areas exacerbate responses to psychogenic stress 

(Figueiredo et al., 2003; Herman et al., 2016).  Alteration to GABA receptor expression is 

known to be implicated in anxiety and depressive states and is also the main CNS inhibitory 

neurotransmitter. Alterations in the GABAergic system have pathological implications for 

stress-related psychiatric conditions, as such; these receptors are also main targets for anti-

anxiety agents such as benzodiazepines (Bravo et al., 2011). 

 

- Immune system and HPA axis 
 

Systemic infection via pro-inflammatory cytokines can activate the HPA-axis and trigger 

release of corticosterone in animals (Dunn, 2000; Turnbull & Rivier, 1999). However, the 

HPA axis is normally tightly regulated during infection providing negative feedback to the 

immune system via immune cells  glucocorticoid receptors to downregulate CRF and limit 

pro-inflammatory cytokine production enabling host adaption to the ongoing stress and to 

effect certain behavioural changes (Silverman et al., 2005). Stress effects on the immune 
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system include reduced NK cell activity, changes in peripheral lymphocyte subsets and 

proliferation, diminished antibody production and reactivation of latent viral infection 

(Taub, 2008). Early life exposure to LPS in mice causes life-long HPA hyperresponsiveness 

measured by elevated ACTH and corticosterone reduced GR-mediated negative feedback 

(Shanks et al., 1995).  

The composition of the intestinal microbiota influences the host’s susceptibility and 

response to infection; mouse enteropathogenic Citrobacter rodentium infection is mild in 

NIH Swiss mice (resistant) compared to lethal in C3H/HeJ mice, however antibiotic 

depletion of the microbiota in resistant mice and transfer the microbiota from C3H/HeJ to 

the resistant mice made them more susceptible to infection; although not lethal, this 

highlights additional factors including genetic background, but also demonstrated the 

microbiota can influence host resistance seen by transfer of NIH Swiss microbiota into HeJ 

mice which delayed pathogen colonisation and mortality (Willing et al., 2011). C. rodentium 

can drive anxiety like behaviour in CF-1 male mice, challenged at nine weeks old their 

immune cytokine levels were unchanged, but displayed elevated c-Fos (marker of neuronal 

activity) within vagal afferent neurons suggesting vagal stimulation confers this type of 

behaviour rather than immune mediated inflammatory cytokines (Bullitt, 1990; Lyte et al., 

2006). 

E. coli a gut pathogen which elicits activation of the HPA axis and the secretion of pro-

inflammatory cytokines causing changes in the hypothalamus regulation of body 

temperature, e.g. fever. The adrenal cortex is sensitive to ongoing pro-inflammatory 

molecules, such as Prostaglandin E2 (PGE2) and correlated with rising corticosterone 

(Zimomra et al., 2011). The rise in circulating corticosterone is a product of COX-induced 

prostanoid synthesis which correlates with PGE2 production (Dinan & Cryan, 2012). 

Psychopathologies with evidence of HPA hyperactivation may therefore be associated 

immune responses to ongoing infections. Activation of the HPA may be triggered by 

increased intestinal permeability caused by stress, coupled with short term exposure to 

stress causing disruption to the microbiota (Bailey et al., 2011; Galley et al., 2014) (De 

Punder & Pruimboom, 2015).  

Neonatal immune challenge with LPS during neurodevelopment increases activity of 

tyrosine hydroxylase needed to catecholamine synthesis (Shanks et al., 1995). Stress-

induced increases in neuroendocrine hormones noradrenaline and dopamine can support 

growth of intestinal Gram negative bacteria and are a source LPS (Lyte & Ernst, 1992). 
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Infection elicits HPA activation with challenges using E.coli and LPS in rats causing IL-1 and 

neuroinflammation leading to memory impairment after a second inflammatory challenge 

in adulthood (Bilbo, 2005). Interestingly, maternal high fat diet (MHFD) increases 

circulating pro-inflammatory cytokines and negatively affects the neurodevelopment and 

microbiota of the foetus (Sullivan et al., 2014). Moreover, HFD is associated with an altered 

intestinal microbiota and increased vulnerability of anxiety-like behaviour.  

- Stress and neuroinflammation 
 

Neuroinflammation is synonymous with microglial cell activation; these are innate immune 

cells resident through the CNS and brain and undergo extreme morphological changes 

during ageing consistent with them being in an activated, pro-inflammatory state (figure 

1.1.10). Innate immune cells display pattern recognition receptors (PPRs) which recognise 

common microbial and virus structures known as pathogen associated molecular patterns 

(PAMPS) for example, bacterial cell wall components such as peptidoglycan (PGN) and 

lipopolysaccharide (LPS) recognised as non-self by Toll-like Receptors (TLR) leading to 

activation and downstream intracellular signalling associated with myeloid differentiation 

primary response gene MyoD88 and NF-kB activation of pro-inflammatory cytokines 

(Mogensen, 2009). In the absence of bacterial or viral infection, the primary function of 

microglial cells during resting state (M0) is to carry out immune surveillance within the 

brain and CNS (Kettenmann et al., 2011). The sensing of these bacterial products may 

regulate the neurodevelopment of the CNS in health as well as triggering 

neuroinflammation in pathological states.  A recent study suggests PPR interactions with 

the intestinal microbiota are needed for brain development; PGN-recognition proteins and 

NOD-like receptors are highly expressed during the postnatal window of colonisation, 

occurring simultaneously with the developing brain (fig. 1.1.7), are sensitive to changes in 

the intestinal microbiota (Arentsen et al., 2017). Fragments of PGN have been reported to 

cross the BBB in postnatal development of healthy mice (Arentsen et al., 2017). Using PGN-

recognition protein 2 knockout mice lead to the development of changes in social 

behaviour similar to GF or antibiotic treated mice (Arentsen et al., 2017). Thus 

translocation of PGN across the BBB and activation of PRRs during neurodevelopment 

appears to a mechanism for mediating early programming of neuronal circuits associated 

with emotions, cognitive and motor activity (Arentsen et al., 2017).  

GCs are also expressed on microglial cells and thus their immune status, morphology, and 

number are influenced by peripheral immune events and stress-induced HPA activity 
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(Sierra et al., 2008). Cytokine and other inflammatory markers such as PGE2 caused due to 

peripheral events, such as infection, can traverse the chorus plexus and BBB as well as 

promote prostaglandin release from endothelial cells within the vascular of the PVN and 

activate microglial cells and the stress response (Rivest, 2001). Moreover, vagal nerve 

stimulation can transmit information of peripheral inflammation in the gut to the brain to 

influence the HPA stress response and feedback to the peripheral immune system (Rea et 

al., 2016).   

- Microglia activation and polarisation 
 

Under steady state conditions (M0) microglial labelled with CX3CR1-GFP in mice, time-lapse 

two-photon microscopy shows they have multiple processes which continue to survey their 

environment (Nimmerjahn et al., 2005). Recognition of bacterial or viral PAMPS by PPRs 

will stimulate an innate immune response.  Bacterial LPS (endotoxin) binds to TLR4 which 

activates microglia (M1 polarisation) to adopt an amoeboid morphology, show increased 

motility and production of pro-inflammatory cytokines and reactive species (oxygen or 

nitrous derived) designed to engulf pathogens and mobilise CD4+ IFNg-producing Th1 cells 

and trafficking of immune cells to the brain (Nakagawa & Chiba, 2014). Microglial cells are 

a prime target for glucocorticoids to control this pro-inflammatory phenotype (Sierra et al., 

2008).  Figure 1.1.10 shows M1 activated microglial cells produce pro-inflammatory 

cytokines and chemokines such as IL-1b, IL-6, TNFa, CCL2, ROS, NO that are associated with 

sickness behaviour (Parnet et al., 2002). Depending on the cytokine milieu, Th2-derived 

cytokines, IL-4 and IL-13 can promote activation and polarisation of M2 microglia which 

express anti-inflammatory cytokine IL-10 (Nakagawa & Chiba, 2014). The lowered threshold 

for microglial activation, known as “microglial priming” is associated with ageing and 

neuroinflammation, consequently animal studies of neurodegenerative diseases find 

microglial cells are primed or activated (M1) and are more sensitive to peripheral immune 

activation (Perry & Holmes, 2014; Perry & Teeling, 2013). Thevaranjan and colleagues 

recently reported ageing in mice is also associated with decline of the intestinal microbiota 

(dysbiosis) and increased permeability of the intestinal barrier as well as the BBB triggers 

chronic systemic inflammation whilst GF mice are protected from these effects 

(Thevaranjan et al., 2017).  
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Figure 1.1.10 Polarisation and differentiation of microglial cells resident in the brain and CNS. 

Microglial cells are frequently referred to as the tissue-resident macrophages of the CNS and have 

an immunoregulatory function.  M1/M2 polarisation occurs when resting microglia are stimulated 

by pattern and/or danger associated molecular patterns, e.g. LPS, via TLR receptors. M1 microglia 

are associated with pro-inflammatory cytokine responses and release of PICs into the CNS. 

Conversely, M2 activation is stimulated by Th2-assocated cytokine IL-4 and IL-13 which causes 

microglia to secrete anti-inflammatory IL-10. Reproduced from (Nakagawa & Chiba, 2014). 

As a consequence of damage to the intestinal microbiota, caused by stress or infections, 

increased intestinal permeability may facilitate increases in plasma endotoxin which 

activate innate immune responses. Initial (primary) exposure to LPS did not increase IL-1b 

in the brain, however, long-term repeated dosages of LPS (secondary infection) in mice 

resulted in increased brain IL-1b, TNFa and IL-12 and an activated (M1) microglial 

phenotype and exaggerated response to infection with S. typhimurium (Püntener et al., 

2012). The characteristics of microglia during stress are similar to ageing, and are likely 

explained fact both lead to microglial priming, neuroinflammation and heightened 

reactivity to peripheral immune stimuli caused by low grade inflammation (Jurgens & 

Johnson, 2012). To this end, prolonged stress could be facilitating the acceleration 

microglial age-associated M1 polarisation and driving neuroinflammation. The effect of 

stress is paradoxical since under normal circumstances stress hormones releasing GCs are 

considered anti-inflammatory causing inactivation of immune cells via GRs. However, stress 

prior to immune activation in rats enhanced NF-kB activation and proinflammatory 

cytokine production in the frontal cortex and hippocampus, but was blocked by pre-

treatment of an GC receptor antagonist (Munhoz, 2006). 
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As discussed, early intestinal microbiota colonisation is necessary for postnatal 

development of the CNS and microbial-gut-brain signalling pathways in coordinating stress 

and immune responses. Defects in microglial cells are emerging as an important mediator 

of neuropsychiatric and neuroinflammatory disorders and may also be vulnerable to 

disruption in the intestinal microbiota. The importance of acquisition of the microbiota in 

early life for microglial homeostasis is apparent in GF mice which display immature neurons 

and BDNF. During early life, microglia support neuronal survival, modelling and pruning 

synaptic pruning as well as producing various neurotrophic factors to promote neuronal 

circuit development and synaptic formation (Erny et al., 2015). However, a number of 

downregulated genes required for microglial activation were discovered in GF mice 

microglial, including type 1 interferon receptors, Janus kinase 3 (Jak3) and signal transducer 

and activator of transcription 1 (Stat1) are evident compromised immune function and 

immaturity of microglia cells (Erny et al., 2015). Disruption of synaptic pruning by microglial 

cells during development is evident in mice lacking Cx3CR1 chemokine receptors, these 

mice had significant reduced number of microglial cells, and lacked functional neuronal 

connectivity, and display autism-related behaviour (Zhan et al., 2014). 

 

In addition to the variety of neurotransmitters produced by the intestinal microbiota, Short 

Chain Fatty Acid (SCFA) production can effect changes in brain neurophysiology being 

readily absorbed across the BBB and contribute to microglial homeostasis (Rea et al., 

2016). GF free mice re-introduced to a normal microbiota reversed deficits in microglial cell 

numbers, morphology and maturity, however SCFA alone were sufficient in reproducing 

this outcome (Erny et al., 2015). Moreover, mice deficient for SCFA receptor, FFAR2, also 

produce the same microglial phenotypic defects seen in GF mice with increased BBB 

permeability, yet under normal conditions FFAR2 is not expressed in any cell type in the 

brain and CNS (Braniste et al., 2014; Erny et al., 2015). Psychological stress causes 

prolonged HPA activation, and alteration in the microglial phenotype may involve 

trafficking of peripheral monocytes from the spleen (Wohleb et al., 2015). Thus, the 

intestinal microbiota may regulate microglial activation and neuroinflammation through 

trafficking of immune cells dependent on the production of SCFA (Rea et al., 2016). 

Interestingly faecal SCFAs have been reported significantly higher in children with autism 

spectrum disorder compared with control, suggesting increased fermentation process 

within the microbiota (Wang et al., 2012). 
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Studies in GF mice show their microglial cells are less efficient at mounting pro-

inflammatory responses to pathogens.  It is also revealed the intestinal microbiota can 

influence BBB permeability since butyrate-producing bacteria can increase expression of 

tight junction (TJ) protein occludin in the hippocampus and frontal cortex; in addition, 

transfer of SPF microbiota to GF decreased their BBB permeability (Braniste et al., 2014). 

Antibiotic-induced intestinal dysbiosis reduces bacterial metabolites in plasma, enhances 

HPA activity, with similar altered expression to TJ proteins seen in GF mice (Fröhlich et al., 

2016). To this end, hyperactivation of HPA and BBB permeability defects may facilitate 

circulating pro-inflammatory cytokine directly interacting with microglial cells during 

systemic infections.  

Indeed, neuropsychiatric disorder bi-polar and schizophrenia show involvement of the 

immune system as both TNFa and CRP are elevated in both conditions. Increasingly 

psychiatric disorders including these, and anxiety and depression are being characterised 

by neuroinflammation. Ageing is also associated to this immune profile and is termed 

“inflammageing” with profound effects on mood and emotion (Frasca & Blomberg, 2016) 

Recently a study collecting cerebral spinal fluid (CSF) in relation to psychiatric symptoms 

and cognitive dysfunction found CSF-resident microglia patients with schizophrenia and bi-

polar disorder have activation markers including CD14, a co-receptor for TLR4 (Johansson 

et al., 2017). Detection of soluble CD14 in CSP was associated with psychotic symptoms in 

twins with psychotic disorders compared with their un-unaffected twin (Johansson et al., 

2017). It is unclear what may be driving these differences, however, it is tempting to 

speculate increased exposure to bacterial components may drive neuroinflammation as a 

consequence of increased intestinal permeability (Kelly et al., 2015).  

- Stress impacts the intestinal barrier function 
 
Stress-induced increases in intestinal permeability are well documented in animal models 

for behaviour and in colitis where it is discussed  as causing exposure of the body to huge 

quantities of antigenic material derived from the microbiota which interacts with innate 

immune cells to drive low grade chronic inflammation (De Punder & Pruimboom, 2015; 

Fasano, 2012; Kelly et al., 2015; Visser et al., 2009). Stress-response and systemic 

inflammation in mice is dependent of PPR recognition of bacteria via TLR4 and do not 

respond to Gram negative bacteria when this receptor is knocked out (Gosselin & Rivest, 

2008). Negative emotions and stress-related hormones and neurotransmitters exert 

influence on the intestinal microbiota and alter physiological of the immune and neuro-
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endocrine pathways in complex humoral pathway and neuronal circuits (Rea et al., 2016). 

Maternal separation in rats, causes increased expression of choline acetyltransferase 

(ChAT) and hyperactivation of cholinergic neurons belonging to the ENS and is linked to 

stress-induced CFR activation of CRF-receptor 2 (CRFR2), a G-protein coupled receptor 

(GPCR) expressed on enteric neurons to induce barrier dysfunction (Gareau et al., 2007).  

The mechanism was further uncovered by the work of Overman et al., who revealed CRF 

mediated its permeability effects in this cholinergic neural pathway via activation and 

release of TNFa and proteases from mast cells, including histamines that impact tight 

junction proteins (Overman et al., 2012). The expression of PRRs (e.g. TLRs) present on 

enteric neurons suggests that microbes may interact directly with afferent nerve terminals 

belonging to the ENS and provide further feedback to the ENS and HPA axis via vagal 

stimulation (Dinan & Cryan, 2012; Rhee et al., 2009).  

 

Stress is known to induce endotoxin and low-grade inflammation by increasing intestinal 

permeability and may also cause neuroinflammation by altering permeability of the blood 

brain barrier through disruption to vascular endothelial tight junctions (De Punder & 

Pruimboom, 2015; Verma et al., 2006). The genus Lactobacillus is significantly reduced in 

mice exposed to social stress and in early life stress (Galley et al., 2014; O’Mahony et al., 

2011). In rats, probiotic treatment may offer solution to prevent increased permeability 

following oral administration of Lactobacillus farminis for 2 weeks resulted in decreased 

circulating LPS and attenuated HPA responses to acute psychological stress (Ait-Belgnaoui 

et al., 2012).  

 

Further to the work published on germ-free models and maternal separation of animals, GI 

barrier defects and alterations in the microbiota have been explored in a disease mouse 

model for autism, as well as in children (Hsiao et al., 2013; Luna et al., 2017).  Increased 

intestinal permeability appears to be an influencing factor in pathogenesis of autism; 

increased permeability was found in 36.7% of  adults patients with ASD, and in 21.2% of 

their relatives, compared to just 4.8% in healthy children (De Magistris et al., 2010). Similar 

changes in intestinal permeability have been reported to precede onset of type 1 diabetes 

in a study of 81 preclinical/new-onset/long-term patients versus 40 healthy controls using 

the lactulose/mannitol urinary excretion test (Bosi et al., 2006).  
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An alternative stress signalling  pathway may be via enterochromaffin cells which may act 

as signal transducers between the luminal microbiota and underlying enteric neuronal 

network by secreting various signalling peptides and hormones including serotonin, CRF, 

cholecystokinin and somatostatin (Rhee et al., 2009). Low-grade chronic inflammation is 

associated with an altered intestinal microbiota in depression, with low abundance of 

butyrate-producing Faecalibacterium and high levels of Enterobacteriaceae (Jiang et al., 

2015).  Targeting these changes in the microbiota may influence intestinal immunity and 

consequently the level of inflammation that is detriment to causing increased permeability 

(De Punder & Pruimboom, 2015). Potential future therapies for stress-related and 

behavioural defects may redress the microbiota’s input using probiotics in neuropsychiatric 

disorders appears promising (Dinan et al., 2013). 

 
- Summary 

 
The microbiota is essential to the development and training of neuroendocrine and 

neuroimmune pathways in neurodevelopment and the HPA axis. Early life stress 

(antibiotics, infections) can impact the intestinal microbiota and disrupt temporal 

environmental cues to this process which have life-long consequences for stress handling 

and response to infection and can lead to priming of microglia in the brain. Many of the 

symptoms of ME/CFS, such as cognitive impairment, memory deficits, sleep disturbance, 

malaise, fatigue, are synonymous with ageing, a period where a decline in the diversity of 

the intestinal microbiota is paralleled with weakened immunity, and GI functions of 

digestion and motility is often compromised. Low-grade inflammation associated with 

ageing is apparent from increased levels of TNFa, IL-6 and CRP, and are known to affect 

cognitive functions and mood (Frasca & Blomberg, 2016). Just as the intestinal microbiota 

is necessary for post-natal neurogenesis and maturation of macrophage-related microglial 

cells, perturbations of the intestinal microbiota in later years influences the state of 

neuroinflammation and risk for neurodegenerative conditions with similar symptoms of 

cognitive defects and sickness behaviours influenced by peripheral inflammatory events 

caused by progressive priming and activation of microglial cells via vagal, HPA signalling and 

inflammatory immune mediators, altering their morphology and function in the brain to 

the effect of behavioural changes and social deficits similar to anxiety and depression. 

Finally, intestinal dysbiosis and increased intestinal permeability are plausible mechanisms 

for exposing the body to non-self antigenic material, predominantly, LPS and PGN from the 

microbiota which activate innate immune responses and activate microglial cells in the  
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brain and promote the pathogenesis of neuroinflammatory disorders. Animal models are 

leading the way in deciphering the relative impact GI function has in neuropsychiatric 

disorders; GF mice for example show exaggerated stress response and depletion of BDNF 

that can be rescued with B. infantis (Bercik et al., 2011; Sudo et al., 2004); reveal SCFAs are 

required for maturity and function of microglial cells (Erny et al., 2015). 
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1.6 Immune Abnormalities in ME/CFS  
 
Immunological studies attempting to characterise immune dysfunction in ME/CFS, are 

further complicated when stress and disruption to sleep is a known impact on the immune 

system and is prevalent among the patient population. The main immunological factors 

that vary between ME/CFS and healthy individuals are serum/plasma levels of chemical of 

cytokines, which facilitate crosstalk between the innate and the adaptive immune system. 

The available literature provides a conflicting view on the status of the immune system in 

ME/CFS (Theorell et al., 2017). Despite this, imbalances in the regulation of the immune 

system of ME/CFS patients have been documented in multiple studies, ranging from 

individual case studies to moderately sized patient cohorts (Broderick et al., 2010; Fletcher 

et al., 2009)Lorusso et al., 2009). The cytokine profiles reported are more indicative of an 

ongoing immune response to an underlying infection rather than being specific to ME/CFS. 

However, more recently a specific cytokine immune profile has emerged during early onset 

of ME/CFS which may help early diagnosis. In these immunological surveys there is 

potential evidence in some patients of a persistent stimulus triggering the immune system, 

which results in activation of immune-inflammatory pathways and is highly likely to 

account for many of the symptoms of ME/CFS including sickness behaviour (Morris & 

Maes, 2013). However, individual patient cytokine profiles may also depend on patient 

subgroup and staging of the disease, acute flares versus partial remission, and render it 

difficult to study the precise nature of the immune dysfunction seen in ME/CFS. Without 

effective grouping with ME/CFS patient there is a limit the value of determining cytokine 

levels in patients’ serum due to intraindividual differences and varying methodologies to 

detect them.  

 

- Inflammation 
 

Early reports suggested ME/CFS presented with activation of a chronic low-grade 

inflammatory responses by the presence of pro-inflammatory cytokines such as TNFα, IL-

1β, IL-6 which positively correlates with symptoms of fatigue and the feeling of 

experiencing an infection, or flu-like illness (Maes et al., 2012) (Morris & Maes, 2013). It is 

known these cytokines can impact tight-junction protein causing leakiness in the gut and in 

the blood brain barrier and correlate strongly with sickness behaviour of fatigue and 

malaise commonly experienced during viral infections. (Morris et al., 2013).  
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- Cytokine network analysis 
 

In an analysis of the cytokine networks of CFS, Broderick and colleagues studied the co-

expression of interleukins: 1a, 1β, 2, 4, 5, 6, 8, 10, 12, 13, 15, 17, 23, IFNg, lymphotoxin-α 

and TNFα and found distinct modules signalling a shift in the paradigm of Th1, Th2, and 

Th17 responses of CFS patients versus healthy controls (Broderick et al., 2010). Th1 

responses promote inflammatory cytokines secreted by innate immune cells and the 

activation of cytotoxic T cells as well as natural killer cells (Segerstrom & Miller, 2004), 

Conversely, Th2 responses produce anti-inflammatory cytokines, which promote humoral 

immunity by differentiation of B cells into antibody-secreting B cells and antibody class 

switching to IgE (allergy response). Associated cytokines belong to Th1 and Th2 and 

typically inhibitory of one another and high anti-inflammatory response reduce the risk of 

inflammation but can allow existing intracellular infections to persist if there are not 

adequately cleared. 

 

The association network pattern demonstrated significant attenuation of cytokines IL-1b, 

IL-4, IFNg and TNFα promoting Th1 and Th17 responses with higher expression of Th2-

inducing cytokines to be responsible for driving the inflammatory milieu in CFS (Broderick 

et al., 2010). IL-4 concentration was observed three-fold in CFS while IL-2, IFNg and TNFα 

remained unchanged. Anti-inflammatory cytokine IL-10 also increased substantially in CFS 

in contrast to IL-13, 17 as well as IL-5 and 6 which were diminished in the CFS network 

(Broderick et al., 2010) . 

 

Interestingly this supports the bias towards a Th2 response as IL-4 demonstrates an 

antagonistic effect on Th1-inducing cytokines such as IFNg and IL-2 (Brenu et al., 2011; 

Hornig et al., 2015). Ordinarily, IL-2 is associated with Th1 response but can also act as a 

growth factor for NK-cells which is are consistency found to be diminished in CFS patients 

(Brenu et al., 2011; Broderick et al., 2010) . Moreover, the direct antagonistic role of IL-2 on 

IL-17 production maintained in healthy controls was removed in CFS and in concert with IL-

1β emerges as another network within CFS permissive of an IL-23/Th17/IL-17 inflammatory 

response (Broderick et al., 2010). A question that is remaining is what causes this 

disruption within cytokine networks? It may partially be answered by a decreased 

sensitivity to IL-12 released by macrophages and dendritic cells during viral infection. 

Normally IL-12 production stimulates Th1 differentiation driven by IL-2 and their 

subsequent release of IFNg and TNFα would consequently enhance NK activation and 
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proliferation during viral clearance. By contrast, in CFS recurrent viral infection may be as a 

result of reduced NK cell cytotoxicity and elimination of virus-infected cell as shown by the 

lower expression of activation marker CD69 associated with a reduction in IL-2 and IFNg in 

an IL-4 dominant milieu (Mihaylova et al., 2007). An earlier study in 2004 by Skowera et al. 

demonstrated increases in IL-4 producing CD4 and CD8 T cells; which together with the loss 

of Th1 antiviral responses may be a factor in decreased NK activity, a bias towards Th2 

responses, consistent with a latent viral infection (Skowera et al., 2004). 

 

- Cytokine profiles in early versus long-term ME/CFS diagnosis 
 

Pro- and anti-inflammatory cytokines have been evaluated in early cases (< 3years) of 

ME/CFS and compared with long-term patients (> 3 years) demonstrating a significance of 

disease progression in cytokine analysis (Hornig et al., 2015). An immune response was 

noted by IFNg associated with CD4+ and CD8+ T-cell, and NK cell activity in the early phase, 

with decreased CD40L expression. CD40L is necessary for B cell class switching; and its 

deficiency causes susceptibility to infection triggering  progressive neurologic and cognitive 

decline (Bishu et al., 2009).  In long-term cases many cytokines were reduced below levels 

found in healthy control (Hornig et al., 2015). Elevated TGFb has emerged as the most 

consistent finding based on a meta-analysis (Blundell et al., 2015). Montoya and colleagues 

have studied the association of 51 cytokines with disease severity and found that 13 pro-

inflammatory cytokines may contribute to long term immunological changes. None of 

these were statistically higher in ME/CFS, but measurement for severe patients were found 

to be in the higher range for controls, whereas mild/moderate cases were in the lower 

range (Montoya et al., 2017). This may explain why past studies using heterogenous CFS 

criteria have yielded confusing and conflicting analyses of the immune system.  

 

Finally, increases in TGFb in ME/CFS may have a negative effect on persistent infections, 

during an of the immune system to downregulate persistent inflammation. Despite its anti-

inflammatory properties via the induction of T(regs), TGFb has been found in the gut 

mucosa of IBD patients with active disease (Shen et al., 2015) and thus ongoing pro-

inflammatory milieu observed in ME/CFS may alters its role (Morikawa et al.2016). 

Interestingly mice with T-cell targeted inactivation of TGFb  signally develop systemic 

autoimmunity with spontaneous colitis highlights the importance of the TGFb signalling 

pathway in immunity (Gorelik & Flavell, 2000). Also the higher prevalence of Non-Hodgkin’s 

Lymphoma in older ME patients may result from immunosuppression by TGFb and 
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upregulation of CD70 expression which is found to inhibit T cell memory effector function 

referred to as T cell exhaustion (Yang et al., 2014). These defective CD8+ T cells do not 

produce cytokines such as IL-2 and lose their ability to proliferate during chronic viral 

infection (Wherry, 2011). Severity of CD8+ T cell exhaustion also depends on the viral load 

(Wherry, 2011).  Decreased CD8+ responses to the lytic phase of EBV reaction in virus-

infected B cells have been found during all stages of Multiple Sclerosis (MS) and in CFS 

patients highlighting impaired viral immunity (Loebel et al., 2014; Pender et al., 2017). 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

Fig. 1.1.11 Formal analysis of plasma cytokine networks in 40 female Chronic Fatigue Syndrome 

patients and 59 female Healthy Controls.  HC and CFS display significantly different network 

topologies than expected by chance; CFS cluster II- being more “hub-like” design integrating a 

distinct subnetwork in CFS consisting of cytokines:  Il-1b, 2, 4, IFNg, and TNFa. Note cytokine nodes 

in CFS cluster I+ are more sparsely connected compared to HC. Figure obtained from (Broderick et 

al., 2010). 

 

Macrophages stimulated by IFNg during an ongoing pro-inflammatory response produce 

neopterin, a marker of cell-mediated immunity and indicator to ongoing oxidative stress 

(Murr et al., 2002). Interestingly some evidence has been found for increased IFNg 

production and elevated neopterin in ME/CFS, as well as IL-12 associated with Th1 immune 

response and positively correlated with fatigue and flu-like symptoms (Morris & Maes, 

2013a). One study that has separated ME from CFS using PEM lasting longer than 24 hr as 
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the hallmark symptom of ME showed that ME patients had higher levels of IL-1, TNFα and 

compared to the CFS (Maes et al.,2012). 

 
 

- Natural Killer (NK) cell deficiency 
 

In addition to cytokine profiles, immunophenotyping of peripheral blood mononuclear cells 

(PBMCs) has shown various of immunological abnormalities in ME/CFS patients with 

significant increases in IL-10, IFNg, TNFα, and reduction in cytotoxic activity of NK and 

CD8+T cells (Brenu et al., 2011). Reduced cytotoxicity in NK cells has been found in ME/CFS 

and has been attributed to an ongoing virus infection, although this has not been 

consistently found across all studies (Rivas et al. 2018). This may be down to technical 

factors some as using fresh whole blood versus frozen PBMCs as well as the time taken to 

analyse the sample in which small molecule such as cytokines may diminish in 

concentration (Rivas et al., 2018). CD69 expression is lower in ME/CFS and normally 

functions to stimulate T cell and NK cytotoxicity (Mihaylova et al., 2007) . Indeed, perforin 

expression has been found lower in patient compared with healthy controls, and is intrinsic 

to NK cytotoxic effects since it enables membrane disruption to cells targeted by NK cell to 

allow granzymes to enter and cause apoptosis (Baran et al., 2009; Mihaylova et al., 2007). 

Finally, a recent article has failed to reproduce previous findings regarding altered NK 

function which brings it to question any potential use of NK activity and other 

immunological abnormalities as a diagnostic marker in ME/CFS (Theorell et al., 2017). 

 

- Virus Infection 
 

Infectious mononucleosis, IM (Glandular Fever) bears resemblance to CFS but is usually 

self-limited to recovery within 12 weeks after onset. Typically, around 25% of teenagers 

and young adults infected with the Epstein Barr Virus (EBV) will go on to develop infectious 

mononucleosis and a further subset of these cases will also develop CFS after recovery 

from initial infection, suggesting that CFS may be a prolonged mononucleosis syndrome.  

EBV infection is common across the population, but the infection usually passes silently in 

most people without any obvious clinical symptoms. The virus initially targets mucosal 

epithelium before gaining entry to memory B cells, after which life-long latency usually 

ensues and is controlled by NK and CD8+ T cell responses. However, the virus may be 

reactivated and emerge in immune suppressed individuals. The frequency of EBV detection 

in those with no history of infectious mononucleosis shows that most individuals acquire 
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adaptive immunity, with the frequency of detection in CFS being no different to the rest of 

the general population. The idea that EBV is responsible for causing CFS remains 

controversial. Moreover, viral load and serological responses detected in CFS are 

inconsistent and are not helped by the use of different viral antigens in different serological 

assays (Bansal et al., 2011). CFS patients have demonstrated a mixture of enhanced and 

diminished specific antibody titres towards EBV suggesting possible latent reactivation 

caused by immune dysfunction in these patients. Diminished NK cytotoxicity and reduced 

NK-derived perforin production remain concurrently reported and specific to CFS (Brenu et 

al., 2013), suggesting chronic immune activation by viral infection may be responsible for 

clonal exhaustion and subsequent depletion of memory T cells (Maher et al., 2005). 

Regulatory T cells are seen to be increased in ME/CFS and may hinder antigen presentation 

by dendritic cells through interaction with CD80 and CD86 markers on the surface of DCs. 

Furthermore, this may contribute to the altered pattern of cytokine secretion by Th cells, 

favouring a type 2 immune response (Brenu et al., 2014) (Corthay, 2009; Serra et al., 2003).  

 

Despite scepticism surrounding EBV infection as a cause of ME/CFS, some evidence 

suggests underlying immune abnormalities and stress can promote reactivation of the virus 

and would likely contribute to the relapsing nature of ME/CFS. Circumstantially, the onset 

of symptoms with viral infections, apparent outbreaks of the illness, persistence of 

infections in ME/CFS individuals and beneficial treatment of EBV and human herpesvirus 6 

infection is consistent with an immune response to infection. Abnormalities within the HPA 

axis occur in CFS and can be affected by physical and psychological stressors e.g. anxiety 

and depression. This could play a role in ME/CFS pathogenesis as glucocorticoids secreted 

as part of the signalling axis are known to drive Th2 polarity and furthermore could support 

the latent reactivation of EBV leading to chronic recurrent viral infection (Webster et al., 

2002). Relentless exposure to virus infection is likely to drive CD8+ T cells to exhaustion and 

may be further exacerbated by high levels of IL-10 (Angelosanto & Wherry, 2010).  An 

example is HIV infection where IL-10, IFNg, and TNFα correlate with chronic infection and 

viral load (Couper et al., 2008).  

 

A recent publication exposed deficient EBV-specific B- and T-cell responses in CFS patients 

[Loebel et al, 2014]. Serum IgG derived from long-lived plasma cells can persist years after 

primary infection. Therefore, the authors looked at the memory B cell function, in vitro, 

toward specific EBV antigens and found low to undetectable antibody responses against 
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EBNA-1 and VCA antigens in 76% of CFS patients despite normal titres of IgG antibodies to 

VCA found in serum. This could represent an inability to generate significant numbers of 

EBV-specific memory B-cells during primary infection or loss of memory B cells in ME/CFS. 

EBV-specific T cell responses were analysed after stimulation with fragments consisting of 

overlapping 15-mer peptide derived from EBNA-1 protein normally expressed during early 

latency phase. Frequency of EBV-specific CD4 and CD8 triple producing TNFα+, IFNg+, IL-2+ 

memory T cells were significantly lower in 58% of cases (n=23) than the non-fatigued 

control group (n=17). 

 

Vast numbers of studies have assayed for sero-prevalence of viral DNA using RT-PCR and 

conducted sero-analysis of antibodies to different viral antigens leading to mixed results 

(Bansal et al., 2011). However, no evidence linking a single pathogen, viral or bacterial, to 

causing ME/CFS pathology has been found. Instead, CFS may be caused by an aberrant 

response to infection (Hickie et al., 2006) therefore, multiple viral infections may 

perpetuate a chronic persistent immune activation by exploiting the Th2 bias and 

disruption to NK cytotoxic function.  

 

- Summary 
 

There is no consistent cytokine profile in ME/CFS. Nevertheless, there is a tendency for IL-1, 

IL-2, IL4, IL-10, IL-17A, IFNg and TNFα to be elevated in ME/CFS patients particularly with 

respect to illness (Hornig et al., 2015) . Given the high prevalence of GI symptoms in 

ME/CFS it is interesting to note proinflammatory cytokines, IL-1, TNFα are also found at 

high levels in patients with inflammatory bowel disease (Strober & Fuss, 2011). Reduced 

natural killer (NK) cell activity is a common observation in ME/CFS, with multiple studies 

reporting elevations in FoxP3+ Tregs which may further limit NK cell activity (Brenu et al., 

2013b).  The cause for this elevation Tregs and heightened IL-10 production is unknown but 

could represent a counter mechanism to attenuate pro-inflammatory responses during 

chronic persistent infection in ME/CFS. 
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1.7 Autoimmunity in ME/CFS 
 
No consistent autoantibodies have been identified in all ME/CFS patients, with those that 

have been identified overlapping with other autoimmune disorders. Mild to moderate 

improvement in 67% CFS patients (10/15) was seen treated with Rituximab®, an anti-CD20 

B cell depletion therapy (Fluge et al., 2011). This drug works but causing targeted 

depletions of the CD20 B cell population with a delayed response of 2-7 months before 

both self-reported and physician-assessed fatigue scores were significantly improved. The 

trial authors speculate delay in clinical response is due to the gradual elimination of serum 

autoantibodies (Fluge et al., 2011). Prior to this finding, increases in the naïve/transitional B 

cell population had been reported in a study by Bradley and colleagues, as well as marked 

depletion in the plasmablasts.  

 

Blood taken from 56 ME/CFS patients and 37 healthy controls, show ME/CFS may be 

characterised by increased levels of plasma peroxides and serum oxidised LDL (oxLDL) 

antibodies which demonstrate ongoing oxidative stress caused by chronic immune 

activation (Maes et al.,, 2011). Evidence is emerging that many ME/CFS patients have 

increased levels of oxidative stress following exercise (Jammes et al., 2005). Interestingly 

there have been reports of autoimmune responses in some ME/CFS patients against self-

epitopes as a result of damage caused by intermediate reactive oxygen species (ROS) from 

immune processes. These include components of lipid membrane, palmitic, myristic and 

oleic acid, and anchorage molecules, S-farnesyl-L-cysteine which undergo conformational 

changes, presenting to the immune system as neoepitopes (Maes et al., 2006; Morris & 

Maes, 2014). ROS are essential for killing of bacterial pathogens, however overproduction 

or inadequate removal of these intermediates by redox pathways may cause significant 

tissue damage and disruption to the intestinal epithelial barrier (Aviello & Knaus, 2017).  

These observations in ME/CFS posit the theory that chronic immune activation and ROS 

cause self-epitopes to be damaged and become a target for the immune system (Morris et 

al., 2014; Morris & Maes, 2013a). Microbial infection may drive chronic inflammation and 

cause autoimmune cross-reactivity by a process of molecular mimicry explained by sharing 

of amino acid sequence homology between bacterial antigens and host self-antigens 

leading to autoantibodies targeting both (Morris & Maes, 2013a). Increased bacterial 

translocation is increasingly evident as a result of increased intestinal permeability now 

demonstrated several human diseases including Crohn’s disease and in liver cirrhosis 

(Pastor-Rojo et al., 2007; Pijls et al., 2013).    
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Autoimmune reactions lead to inflammation, increased permeability of blood vessels and 

migration of lymphocytes to sites of injury that contribute towards patient fatigue and 

malaise (Maes et al., 2013). The nature of the stimuli and antigen(s) responsible for 

generating any auto-antibodies in ME/CFS remains to be determined. Several autoantibodies 

have been documented in ME/CFS patients however, the profiles vary between patients. The 

most interesting are anti-5-HTA receptor antibodies since the majority of serotonin is 

produced in the gut (Maes et al., 2013). Additional evidence supports a subset of ME/CFS 

(29.5%) patients have antibodies against one or more M acetylcholine and b adrenergic 

receptors (Loebel et al., 2016). Remarkedly those patients with elevated antibody levels pre-

treatment of Rituximab were the majority of clinical responders; their total IgG, IgA and IgM 

levels post-treatment were lower, but not significantly different compared to non-

responding patients (Loebel et al., 2016). The presence of these antibodies is not disease 

specific but have been found in autoimmune diseases that share common features with 

ME/CFS including fatigue and autonomic dysfunction. An example is postural orthostatic 

tachycardia syndrome (POTS) is estimated to affect 10-20% of CFS patients, where b1 and 

b2 adrenergic receptor antibodies have also been reported, as well as in orthostatic 

hypotension cases (Thieben et al., 2007; X. Yu et al., 2012).  

  
- Infection elicited autoimmunity 

  
It is known that microbial-derived stimuli can influence the nature and function of immune 

cells in the intestinal mucosa, and when dysregulated can lead to systemic inflammation 

(Strober, 2013; Maloy & Powrie 2011; Tanoue et al., 2010). For example, Guillain-Barre 

(GB) syndrome has been associated with certain bacterial infections including 

Campylobacter jejuni, Haemophilus influenza and Mycoplasma pneumonia (Heikema et al., 

2010). LPS exhibit structural homology to human gangliosides, found chiefly on neuronal 

ganglia that are major constituents of neuronal cell membranes, and are possible target for 

cross-reactive antibodies found in the serum of GB patients in response to bacterial 

infection (Nishimura, 1996).  Reactive arthritis (ReA) has been strongly associated with the 

HLA-B27 allotype and is triggered by diverse bacteria (Alvarez-Navarro 2013). HLA-B27-

restricted epitopes of bacterial and self-antigens cross-react to activate cytotoxic 

lymphocytes and therefore play a role in ReA. The role of HLA-B27 in inflammatory 

rheumatic diseases also highlights the importance of HLA allotypes being factors in 

autoimmune disease. 
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Both viral and bacterial infections have long been associated with pathogenesis in 

autoimmunity, notably mycoplasma infection in Rheumatoid Arthritis (RA). Mycoplasma-

derived antigens are capable of generating cytotoxic cross-reactive effector lymphocytes, 

which upon isolation from the synovial tissue of RA patients bear the same receptor-

targeted specificity to Mycoplasma arthritidis antigen (MAM) (Oldstone, 1998; Cole et al., 

2000; Sherbet, 2009). The occurrence of viral infection preceding onset of autoimmunity 

has been recognised in ME/CFS patients (Morris et al., 2013), and in type 1 diabetes (van 

der Werf et al., (2007). However, it is difficult to dissect and validate the mechanisms, e.g. 

molecular mimicry, by which viruses generate autoimmunity.  

 

Reduced cytotoxic T-cell responses to EBV can also increase activating autoreactive B cells 

as a result of exposure to gut-derived microbial antigens that induce chronic inflammation 

and T cell exhaustion (Loebel et al., 2014). Blomberg and colleagues have reviewed various 

aspects of the ME/CFS and suggest a mechanism of microbial infection driving autoimmune 

processes which impacts on the severity of ME/CFS symptoms (Blomberg et al., 2018).  

Emerging data supports disruption to intestinal microbiome in ME/CFS and changes in 

intestinal permeability that are likely to have negative consequences for mucosal tolerance 

to commensal bacteria as well as wider implications for the immune system that have not 

yet been explored in ME/CFS. 

 

1.8 The Human Intestinal Microbiota 
 
Intestinal microbes represent the greatest concentration of microbes than any other area 

on or in the human body whose genetic repertoire (the microbiome) is estimated between 

2-20 million genes which vastly exceeds the genetic information of the ~20,000 genes 

representing the human genome (Kurokawa et al., 2007). Most are bacteria, consisting of 

more than 1000 different species whose inhabitancy affording functional benefits have 

become fully integrated with biological pathways controlling our metabolism, immune 

system, neuro-endocrine system, and development of the brain and central nervous 

system (Heijtz et al., 2011; Kawamoto et al., 2014; Qin et al., 2010; Round & Mazmanian, 

2009; Sudo et al., 2004). Initial colonisation of the intestinal tract occurs immediately after 

birth and is dominated by Bifidobacterium species belonging to the phyla Bacteroides and 

runs in parallel with the developing mucosal immune system (Rodríguez et al., 2015). Data 

from the Human Microbiome Project classifies intestinal bacteria into 5 distinct phyla, 

listed here from highest to lowest proportional abundance: Firmicutes, Bacteriodetes, 
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Actinobacteria, Proteobacteria and Verrucomicrobia, the only representative of this last 

phyla in humans  being an intestinal species called Akkermansia muciniphila (Li et al., 

2014). Members belonging to Firmicutes (F)and Bacteroides (B) contribute approximately 

92% of the microbiota (Eckburg et al., 2005). The ratio of F:B in infants begins at 0.4 (3 

weeks to 10 months) , evolving to 10.9 in adulthood (25-45 years old) and declining 

towards 0.6 in the elderly (70-90 years old) (Mariat et al., 2009). The average person’s 

faecal samples contains approximately 160 different species and regardless of the variation 

in diversity and composition of the intestinal microbiota between different people, there is 

similarity in their metabolic statuses, which may be more important in defining aspects of 

health (Huttenhower et al., 2012; Moya & Ferrer, 2016; Rodríguez et al., 2015). For 

example, a core microbiota of 57 species has been reported to exist in more than 90% of 

individuals which suggests these species have critical metabolic functions (Qin et al., 2010). 

However, defining the composition of a ‘healthy’ microbiota is complex due to variations in 

host genetics, diet, lifestyle, age, fitness, stress, geographical location, antibiotic exposure 

and history of infections, between individual persons (Huttenhower et al., 2012). This 

variability in the composition of the microbiota from person to person and in disease 

versus healthy will influences it the metabolic and immunological functions and has driven 

interest in defining the role of individual species involved in these processes (Rowland et 

al., 2018). Specific members of microbiota stimulate an equilibrium between pro- and anti-

inflammatory immune responses to control diversity and growth of bacterial populations. 

Altering the composition of the microbiota, through diet, stress, mediations, antibiotics 

exposes it to possible pathogenic bacteria which promote inflammation and outgrowth 

over members of the community (Baümler & Sperandio, 2016).  

 

Compositional differences within the profile of gut bacteria have been observed in several 

human diseases, including ME/CFS, when compared to healthy subjects ( Bajaj et al., 2014; 

Carding et al., 2015; Clemente et al., 2018; Giloteaux et al., 2016; Joossens et al., 2011; 

Norman et al., 2015; Quigley, 2018). Most strikingly, these observations are not limited to 

GI disorders such as IBD and IBS (Carding et al., 2015). There is increasing evidence to 

suggest intestinal bacteria contribute towards systemic chronic inflammatory-based 

disorders such as obesity, metabolic disorders have now been linked to changes in gut 

permeability, immunity and the composition of this microbiota referred to as gut dysbiosis 

(Carding et al., 2015; Fasano, 2012).  
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The function of the intestinal microbiota is largely mediated through diet. The composition 

of the diet can substantially alter growth of specific members microbiota as well as its 

metabolic activity which influences availability of bacterial-derived metabolites to the host. 

For example, SCFAs are the products of fermentation of dietary fibres which can reduce the 

pH affecting the growth of pH-sensitive species (Escherichia coli and Salmonella spp.) 

within the intestine (Cherrington et al., 1991). SCFA production is reduced by the 

consumption of high levels of animal saturated fats from meat, and low complexity 

(refined) carbohydrates (David et al., 2014). Moreover, refined sugars increases the risk of 

opportunistic pathogen colonisation, e.g. Clostridium difficile and Clostridium perfringens 

(Brown et al., 2012). High sugar consumption has been shown to elevate 

Enterobacteriaceae associated with brain and intestinal inflammation and deficits in 

cognitive capabilities in hepatic encephalomyelitis which is seen as a complication of liver 

cirrhosis associated with endotoxin exposure and increasing intestinal barrier dysfunction ( 

Bajaj et al., 2012). SCFAs are relevant to inflammatory disorders since the can support 

immune tolerance by promoting anti-inflammatory responses towards commensals of the 

intestinal microbiota and have been shown to reduce inflammation in the dextran sulfate 

sodium (DSS)-induced colitis mouse model (Atarashi et al., 2011). As we age the 

composition of the microbiota changes towards an increased abundance of Bacteroidetes 

and Clostridium cluster IV, however, the capacity to produce SCFAs appears to be reduced 

and is understood to contribute to the increasing pro-inflammatory tone as we age (Biagi 

et al., 2010; Claesson et al., 2011; Frasca & Blomberg, 2016). SCFAs also act as signalling 

molecules via activation of GPCRs, GPR41 and GPR43 also called FFAR2 which have been 

associated with in reducing pro-inflammatory cytokines; and affecting pathway involved in 

epithelial integrity, fatty acid oxidation via the activation HDAC (Kimura et al., 2014; 

Vanhoutvin et al., 2009; Waldecker et al., 2008). 

 

- Intestinal microbiota and mucosal immunity 
 

The gut-associated lymphoid tissue (GALT) is home to the majority of immune cells in the 

body, containing over 70% of the immune system (Vighi et al., 2008). A key function of the 

immune system is to discriminate between the threat of pathogens and commensal (non-

pathogenic) members of the microbiota. To that end, there are several mechanisms the 

immune system employs which help shape the intestinal microbiota and limit pathogen 

colonisation.  
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GF mice has proven valuable in understanding how the intestinal microbiota influences the 

developing immune system and sets the inflammatory tone through mediating the balance 

of pro and inflammatory mechanisms. GF mice are more susceptible to pathogen infections 

compared to conventional mice and have fewer intestinal antigen-presenting cells (APCs) 

and defects in gut-associated lymphoid tissues (GALT) compared with SPF mice (Kim et al., 

2017). Lymphocytes structures for presentation of antigen, for example Peyer’s Patches 

(PP) and mesenteric lymph nodes (MLN) are sites for , are missing in GF mice but can be 

restored with intestinal bacteria, or PGN derived from Gram-negative bacteria (Bouskra et 

al., 2008; Falk et al., 1998). 

  

The microbiota regulates the differentiation of T helper (Th) cells and therefore the balance 

of T(reg) and Th1/Th2/Th17 subsets which respond accordingly to the presentation of 

bacterial protein antigens via MHC complexes on dendritic cells (DCs) and macrophages 

(Mf) patrolling the lamina propria (Kim et al., 2017). Figure 1.1.12 summaries the functions 

of each T cell subset and its associated cytokine profile and transcription factors. TLRs are 

also present on the apical surface of intestinal epithelial cells exposed to bacterial antigens 

and are themselves significant producers of cytokines contributing to the cytokine milieu 

(Akira & Hemmi, 2003). The cytokine environment is important as it will influence the 

activation of a particular T cell subset upon antigen presentation. For example, under 

normal circumstances, antigen presenting cells (APCs) reside within PPs and produce 

significant amounts of anti-inflammatory IL-10 to promote T(reg) differentiation and 

immune tolerance (Iwasaki & Kelsall, 1999). Moreover, Mf cells do not produce pro-

inflammatory cytokines upon activation of TLRs by common bacterial antigens such as LPS 

(Smythies et al., 2010).  

 

In addition to the defects in secondary lymphoid structures, GF mice have significantly 

fewer CD4+ T cells in the lamina propria which an imbalance towards a Th2 immune 

response (H. J. Wu & Wu, 2012). In addition to SCFA production, specific members of the 

microbiota are known to induce T(reg) cells which include those belonging Clostridia 

clusters IV and XIVa (Atarashi et al., 2011), polysaccharide A of Bacteroides fragilis 

(Telesford et al., 2015), and Faecalibacterium praunitzii (Qiu et al., 2013). However, there 

are also certain groups of bacteria such as segmented filamentous bacteria (SFB) are 

capable of elicit higher numbers of Th1 and Th17 cells critical in the induction of 

autoimmune pathogenesis and the acceleration of experimental autoimmune 
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encephalomyelitis (EAE) (Forbes et al. , 2016; Lee et al., 2011). Further close protection of 

the epithelial barrier is afforded by a specialised class of immune cells, called innate 

lymphoid cells (ILCs) whose role includes the release of IL-22 during infection and in 

addition to its association with Th17-mediated inflammation, is it protective and counter-

active in IBD of mice (Zenewicz et al., 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
1.1.12 Commensal bacteria induce T cell differentiation. Each T cell subset is defined by its own 

transcription factor associated cytokine production. Th1 responses are critical in responding to 

intracellular infections, whereas Th2 is associated in allergy responses. Th17-mediated inflammation 

controls infection but also has been attributed to the pathophysiology of several chronic auto-

inflammatory disorder, including IBD. T(reg) cells induce tolerance and inhibit T cel differentiation 

into the other subtypes. Several beneficial intestinal bacteria are known to stimulate T(reg) 

responses which control inflammation. Figure reproduced from (Wu & Wu, 2012). 

 

In addition to stimulating T(regs), secretory IgA (sIgA) enables the immune system to 

coordinate a response without causing inflammation and protect the epithelial barrier from 

invasion. Further evidence that single strains of bacteria can alter the balance of pro- and 

anti-inflammatory responses was demonstrated in probiotic treatment with Lactobacillus 
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kefiri CIDCA 8348 in Swiss mice for 21 days increased the production of faecal IgA and 

moreover stimulated IL-10 (Carasi et al., 2015). The production sIgA can occur through T 

cell-dependent and T cell-independent pathways. DCs and Mf present antigen to naïve B 

cells at Germinal Centres (GCs) for interaction with Th cells in order to effect differentiation 

and class switching to become IgA secreting plasmablasts before homing to the intestinal 

lamina propria as resident IgA producing plasma cells, figure 1.1.13 (MacPherson et al., 

2008; Macpherson & Uhr, 2004). IgA production is another feature compromised in GF 

mice as a result of poor maturation of naïve B cells and underpins the requirement for 

exposure to intestinal microbes to coordinate commensal-specific IgA production and may 

also contribute to intestinal barrier defects (Kim et al., 2017). IgA responses are induced 

following the introduction of commensal bacteria to a reversible colonisation of GF mice 

however, following repeated dosage of commensal bacteria, IgA responses were in 

recognition of the exposure of microbes at that time and therefore IgA induction lacks 

immunological memory or prime boost effect as is the case with systemic vaccination 

(Hapfelmeier et al., 2010). 

 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



       

 
 74 

Ü Figure 1.1.13 Induction of Immunoglobulin A at Peyer’s Patches (PP). Specialised epithelial cells, 

called M cells, capture luminal antigens at PPs for uptake by CD103+ dendritic cells which migrate 

within the PP to establish contact with CD4+ T(regs) cells which remain tolerant to the commensal 

microbiota and support IgA-production. This response requires DC-derived retinoic acid, TGFb, IL-10 

for T(regs) to differentiate into T-follicular (Tfh) helper cells which interact with antigen-specific 

naïve B cells to become activated. Once activated B cells then migrate towards the follicle (blue 

area) where they interact with follicular dendritic cells which retain antigen, enabling rapid 

expansion of B cells and induction of SHM, IgA CSR and affinity maturation in response to CD40L, IL-

21 and TGF-b secreted by Tfh cells. IL-10, retinoic acid further enhances this process and IgA 

production within the germinal centre by inducing gut-homing markers on B cell, such as a4b7 and 

CCR9. B cells eventually differentiate into plasmablasts and long-lived plasma cells within the lamina 

propria that secrete IgA which following pIgR-mediated transcytosis across the epithelial barrier 

comes into contact with luminal microbes. Figure and description adapted from (Gutzeit, Magri, & 

Cerutti, 2014). 

 

- Microbial-neuro-immune interaction 
 

Afferent vagal neurons are in close contact with the mucosal and display receptors for 

common signalling molecules such as cytokines that are released from activated immune 

cells such as macrophages. The explanation therefore for sickness behaviour during 

infection is best explained as cytokine-mediated activation of the vagus nerve in response 

to inflammatory changes. In these instances, peripheral cytokines influence the CNS are 

coupled with mucosal production of other inflammatory mediators many effective upon 

receptors expressed on enteric neurons such as TNFα receptors, overall facilitating 

sensitization and perception of abdominal pain via afferent neurons which innervate the 

gut wall (Mayer, 2011). The basic mechanisms of sensing the microbiota, primary neurons 

of the ENS, immune cells and enteroendocrine cells are at the forefront of signalling in the 

gut-brain axis linking functionality of the HPA axis, the neuroendocrine system and the 

immune system together in gastrointestinal function.  

 

Neuronal signalling is a vital component for modulating immune responses at the intestinal 

epithelial barrier - particularly controlling mucosal inflammation. Enteric neurons express 

TNFα receptors (TNFR1 and R2), but neuropeptide Y (NPY) KO mice produce less 

endogenous TNFα compared with wild-type mice; which has been shown to activate 

expression of NYP in the ENS leading to changes in intestinal permeability 

(Chandrasekharan et al., 2008). NPY has a role for pro-inflammatory effects in the GI tract 
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and is shown to induce changes in permeability via tight-junction protein, claudin-2 

(Chandrasekharan et al., 2008). Enteric neurons also express PPR immune signalling 

receptors, including Toll-like receptors 2, 3, 4 and 7. Mice lacking expression of TLR2 and 

TLR4 exhibit defects within the architecture of their ENS, abnormal mucosal secretion and 

reduced motility, where similar to mice with a depleted microbiota; however Tlr2(-/-) mice 

developed more severe form of colitis than wild-type mice following SSD treatment (Brun 

et al., 2013) As a consequence of an underdeveloped ENS, TLR2 KO mice exhibited severe 

colitis supporting the notion that intestinal microbes are necessary for enteric 

development and maturation of the mucosal immune system later in life (Sharkey & 

Savidge, 2014). 

 

1.9 Stress and neuroendocrine manifestations in ME  
 
Psychological stress is a critical factor in the pathological development and maintenance of 

ME/CFS symptoms. As well as reports of flu-like illness preceding ME, significant life events 

hyper-activate the stress response through cortisol production as well as from the pressure 

to perform well at work or school and to succeed. Individuals of this kind are highly 

ambitious and competitive and have a desire to feel in control with a direction in their lives. 

However, many ME/CFS patients appear to reach a state of burnout and are unable to fully 

recover and become increasingly distressed and anxious as well as physically exhausted in 

pursuit of great expectations. Emotions and negative thoughts lead to further stress, 

underpinning a psycho-biological mechanism (figure 1.1.5, page 40), this is likely to become 

self-perpetuating as the stress of not being able to recover and return to normal life will 

have negative effects on the immune system and consequently the gut microbiota and gut 

barrier. Thus, the characteristics of inability to rest and unwind, may represent dysfunction 

within the negative feedback pathways integrated with HPA axis, immune system and the 

central nervous system.   

 

Further symptom-based evidence for altered stress-responsivity manifests within post-

exertional malaise, the main symptom of ME/CFS which highlights the effect physical and 

psychological stressors endure on patients. Patient’s undertaking any form of physical or 

mental challenge can expect severe worsening of their symptoms after an initial delay of 12 

hours or more in severe ME/CFS. Interestingly, the delay in the effect of PEM is an unusual 

phenomenon as it is not symptom that has been associated with any other disease, other 

than ME. Speculatively, PEM may represent a variation of stress response regulated by the 
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HPA axis. Dysfunctional HPA-axis is also substantiated further by symptoms of cold hands 

and feet since the hypothalamus regulates the body temperature. Usually body 

temperature is elevated in response to peripheral infection, but is not in ME/CFS, 

potentially a weakness in developing infections or allowing reactivation of latent infections 

such as EBV (Bansal, 2016). Finally, HPA dysfunction is also implicated in the 

pathophysiology of anxiety and depression and ongoing low-grade chronic inflammation in 

these conditions.  

 

1.10 Intestinal microbiota impacts neuropathology 
  
Neurological and neuropsychiatric illnesses are strongly linked to intestinal dysbiosis and 

physical and emotional stressors (Cryan & Dinan, 2015). In addition to immunomodulation, 

intestinal microbiota can influence the ENS and communicate with the CNS to alter animal 

behaviour and social stress. This has been demonstrated by faecal microbiota 

transplantation (FMT) from depressed patients into GF rats inducing alterations in 

tryptophan metabolism and characteristics of depression, such as increasing anxiety and 

anhedonia (Kelly et al., 2016). For instance, lactic acid producing bacteria (LAB) are known 

produces of GABA. Moreover, Lactobacillus rhamnosus (JB-1) induces GABA receptor 

expression throughout the brain, but is dependent of neuronal transmission between the 

intestine and brain via the vagus nerve, just as the effect of Bifidobacterium longum since 

its anxiolytic action was blocked in vagotomised mice (Bercik et al., 2011; Bravo et al., 

2011). Stress is implicated in hyperactivity and hyperresponsivity of the amygdala (the 

brain centre for emotions and emotional behaviour) and upregulation of CRF expression 

and is concomitant with a lack of inhibitory control by GABA neurotransmitter signalling. 

Such dysfunctional GABAergic signalling is associated with anxiety, depression and 

schizophrenia and abnormal HPA dysfunction (Wang et al., 2016). Glucocorticoid 

production by the HPA regulates GABA receptor expression and induces atrophy in 

GABAergic neurons in early life development, thus chronic activation of the HPA 

contributes to stress and mood disorders by blocking inhibitory GABA feedback in the 

amygdala (Wang et al., 2016).  

There are other factors that may compound dysbiosis such as leakiness of the gut epithelial 

barrier which is known to be impacted by chronic stress. The enteric nervous system 

responds to CRF to change gastrointestinal functions during stress events which include 

during response to pathogen infection. This can heighten visceral pain perception, and to 
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stimulate inflammatory responses within the gut and CNS. In addition to vagal nerve 

stimulation, sensory neurons within the ENS can sense specific molecular patterns of 

molecules expressed on commensal bacteria via TLRs, providing feedback to the brain and 

immune system.  Given the high frequency of GI disease in neurological and 

neuropsychological disorders these microbiota-derived physiological inputs are emerging 

critical to the formation of pro-inflammatory conditions as a requisite to developing (and 

progressing) autoimmune disorders affecting the brain and CNS.  

 

MS is a chronic autoimmune inflammatory disease driven by autoreactive T cells causing 

demyelination of the CNS.  It manifests with similar neurological impairment and gradual 

degeneration presented in ME/CFS with symptoms including muscle weakness, 

paresthesia, fatigue, cognitive impairment, numbness and relapsing (flares) and remitting 

nature affecting the CNS. In addition to genetic susceptibly, the state of the composition 

intestinal microbiota is emerging as a contributor towards risk of developing autoimmune 

disease. Clinical studies on patients with relapsing-remitting (RR) onset Multiple Sclerosis 

(MS) exhibit differences in the composition of intestinal microbes at the taxonomic level 

compared with healthy controls (Chen et al., 2016; Jangi et al., 2016; Miyake et al., 2015). 

In a cohort of Japanese patients, these taxa comprise of significant changes to 21 species, 

of which a depletion of 19 was in RR MS samples; 14 belonging to Clostridia clusters XIVa 

and IV. 

In terms of the richness, the number of species the MS patients (a-diversity) did not differ 

from healthy controls, unlike in IBD which is characterised by significantly lower species 

richness (Gong et al., 2016). Therefore, intestinal dysbiosis in MS appears distinct from 

other inflammatory disorders which have lower a-diversity.  In a separate study, species 

richness also did not separate RR MS from healthy controls, rather active disease patients 

compared to RR MS showed decreased species richness and warrants further longitudinal 

studies to determine if and how compositional changes within the intestinal microbiota 

relate to progression of MS or enhance its severity, or frequency of relapses (Chen et al., 

2016).  

Interestingly there is very little overlap between the Clostridia species found reduced in RR 

MS and those that have been documented in IBD (Atarashi et al., 2013). Clostridia are 

known producers of Short Chain Fatty Acids (SCFAs), particularly butyrate which is a used 

as an energy source and stimulates anti-inflammatory responses and induction of colonic 
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T(regs) in the support of immune tolerance towards commensal bacteria (Zhang et al., 

2016). In experimental colitis models, SCFAs effect epigenetic changes via inhibition of 

histone deacetylase 1 (HDAC-1). In particular, Faecalibacterium prausnitzii, one of the most 

abundant bacteria in the intestinal microbiota found less abundant in RR MS, has been 

identified to regulate Th17/T(reg) differentiation by inhibition of HDAC-1 which blocks IL-

6/signal transducer and activation of transcription 3 (STAT3)/IL-17 pathway,  causing Foxp3 

induction of T(regs) and differentiation (Zhou et al., 2018). T(regs) can produce TGFb an 

anti-inflammatory cytokine in order to suppress pro-inflammatory Th1/Th17 cell responses.  

Peripheral events leading up to, or during the onset, and progression/exacerbation of 

neurological diseases are being studied. In a recent pilot study comparing the intestinal 

permeability of RR MS patients with 18 age and sex-matched healthy controls, the ratio of 

lactulose/mannitol measured in urine was significantly higher in 16/22 patients (p=0.0284) 

(Buscarinu et al., 2017). Increased intestinal permeability is a proposed mechanism for 

developing autoimmune disease that develops over time and in response to intestinal 

dysbiosis (Fasano, 2012).  The interactions between intestinal microbes and the immune 

system in MS remain unclear and challenging to study in humans. Experimental 

Autoimmune Encephalomyelitis (EAE) is generated in rodents through peripheral 

immunisation with CNS antigens including; myelin basic protein (MBP) and myelin 

oligodendrocyte glycoprotein (MOG). As a result, pro-inflammatory infiltration of 

autoreactive T cells into the brain and CNS of mice, causing chronic inflammatory 

demyelination that resembles clinical aspects of MS in humans (Stromnes & Goverman, 

2006).  

In addition to exposure to MOG peptide, T-cell mediated neuroinflammation in EAE 

requires IFNg producing Th1 cells and IL-17 and expression of a4b1 integrin for 

extravasation across the BBB. There is some evidence to suggest systemic infections 

increased the chances of relapse in MS patients (Correale et al., 2006). Systemic challenge 

with lipopolysaccharide (LPS) is used to model systemic inflammation. The induction of 

proinflammatory cytokines including IL-1b, IL-6 and TNFa can influence sickness behaviour 

and delirium commonly associated with CNS disorders. Pro-inflammatory stimuli and 

ongoing CNS neuroinflammation induce cyclooxygenase-2 (COX-2) which causes astrocytes 

supporting the BBB to secrete prostaglandin E2 (Font-Nieves et al., 2012). The induction of 

fever during infection is described by the IL-6-COX2-PGE2 axis which culminates in the 
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activation of EP3 receptors expressed in thermoregulatory neurons within the 

hypothalamus to induce fever and malaise (Eskilsson et al., 2017; Evans et al.,, 2015). 

B cell mediated autoimmunity may also influence RR MS since the intestinal microbiota has 

been shown necessary to drive autoantibody-producing B cells and for stimulating myelin-

specific CD4+ T cells in the process of spontaneous RR EAE (Pöllinger et al., 2009). RR mice 

are transgenic SJL/J mice predisposed to spontaneously developing EAE due to increased 

TCR expression specific for MOG peptide 92-106 (Pöllinger et al., 2009). In contrast to 

induced EAE, RR mice develop the characteristic remission and relapsing nature of RR MS in 

humans which leads to neuroinflammation causing demyelination throughout the CNS. B 

cell autoantibodies  enhance demyelination and severity since mice deficient in MOG 

antigen or with depleted B cells do not develop spontaneous RR EAE (Pöllinger et al., 2009). 

Latent EBV reaction have been documented to cause serious neurological complication in 

paediatric patients, with long term consequences including cognitive impairment and 

epileptic seizure and symptoms of Alice in Wonderland Syndrome affecting sense of vision, 

sensation, touch, hearing and perception of one’s own body (Fine, 2013). The lytic phase of 

EBV infection is reactivated when memory B cells undergo differentiation into plasma cells. 

Normally EBV-specific CD8+ T cells target EBV-infected B cells. However, defective control 

of EBV reactivation may facilitate generating autoreactive B cells in MS who display 

defective T cell control of EBV infection with a reported decrease of CD8+ T cells against 

lytic phase EBV (Pender et al., 2017).  

B-cell targeted therapies have been trialled in CNS autoimmune disorders MS and 

neuromyelitis optica (NMO) despite being considered T-cell mediated (Fillatreau, 2018). 

Anti-CD20 therapy called Rituximab® has been successful in reducing inflammatory brain 

lesions and clinical relapses in RR MS during a 48-week trial in 104 patients (Hauser et al., 

2008). B cell are potent cytokine produces and also antigen presenting cells, thus 

engagement with T cells through CD40 and produce IL-6 that enhances Th17 differentiation 

(Barr et al., 2012). Depletion of B cells may reduce ongoing proinflammation cytokine 

production as well as removing auto-reactive B cells that may contributing towards 

pathogenesis. For example, NMO, also called Devic’s disease, is a variant of MS that 

represents demyelination restricted to the optic nerve and spinal cord. However, IgG1 

autoantibodies produced by B cells target AQP4, an aquaporin, expressed in astrocytes to 

attack myelin. These autoantibodies belong to the class IgG1 and require direction of T-

follicular helper cells for class switching and maturation of plasma cells of this antibody 
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isotype. Rituximab® clinical trials in NMO deplete B cells decreased rate and severity of 

relapses (Etemadifar et al., 2017). 

Analysis of the intestinal microbiota in NMO patients identified enrichment at the species 

level of Clostridium perfringens, compared with healthy controls (Cree et al., 2016). AQP4-

reactive T cells are elevated in NMO patient and specificity mapped to amino-acid residues 

63-76. This immunodominant region revealed 90% sequence homology (207-216) to an 

adenosine-triphosphate binding cassette transporter permease (ABC-TP) expressed by C. 

perfringens (Zamvil et al., 2018). To put this finding into perspective, myelin-specific T cell 

responses in MS, reveal less sequence homology between immunodominant T-cell targeted 

epitopes in myelin and microbiota-derived antigens (Zamvil et al., 2018).  

 

Figure 1.1.14 Pathogenesis of NMO arises from Clostridium perfringens molecular mimicry driving 

autoantibodies against AQP4 channels in the central nervous system. Bacteria become internalised 

by M cells at the PPs and delivered to dendritic cells which in a healthy microbiota promote anti-

inflammatory cytokines and naïve T cells to different into regulatory T cells and T follicular cells 

which support the induction of IgA secretion. Specific IgA responses to members of the intestinal 

microbiota can protect against disease and inflammation (Kawamoto et al., 2014; Kubinak & Round, 
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2016). Overgrowth of C. perfringens is thought to contribute to the development of NMO, which 

becomes internalised by M cells for presentation to immune cells. ABC-TP(p204-217) shares 

sequence homology with Aquaporin 4, AQP4 (p63-76) and leads to the activation and expansion T 

cells which recognise both antigens (Oldstone, 1998). Dysbiosis may alter the balance between pro 

and anti-inflammatory T cell responses in the immune system, causing Th17-polarisation and 

expansion of auto-reactive ABC-TP/AQP4-specific Th17 cells which promote B cells to differentiate 

into antibody secreting plasma cells. These pathogenic antibodies further mediate destruction of 

AQP4 within the CNS causing inflammation of the optic nerves and spinal cord. Figure from (Zamvil 

et al., 2018). 

Clostridia strains from clusters IV, XIVa and XVIII are considered as producers of SCFA and 

promote TGFb (Atarashi et al., 2013). C. perfringens is not included within these clusters 

and may well contribute to long-chain fatty acids, similar to Segmented Filamentous 

Bacteria (SFB) which promote Th17 differentiation (Ivanov et al., 2009). Indeed, CD4+ T 

cells isolated from NMO patients are characterised by IL-17 production as well as IFNg and 

IL-6, inducing Th17 differentiation (Ochoa-Repáraz & Kasper, 2018; Varrin-Doyer et al., 

2012).  

 

The intestinal microbiota strongly influences the balance between proinflammatory and 

anti-inflammatory immune reactions, leading to either protection or induction/progression 

of disease. Mice SFB induce fewer Th17 cell in the small intestine (Ivanov et al., 2009).  

Commensal members of the microbiota influence the balance of T(regs)/Th17 in the 

intestine and so it can be seen the dysbiosis would potential altered this balance. GF mice 

are in fact protected against EAE producing lower IFNg and IL-17 as well as having more 

FoxP3+ T(regs). Re-colonisation with B. fragilis producing capsular polysaccharide Ag 

maintains protection against EAE , as well as some Clostridia species through enhanced 

stimulation of IL-10 producing FoxP3+  T(regs) (Atarashi et al., 2013; Ochoa-Reparaz et al., 

2010). B. fragilis has also been shown to be effective at correcting IP in MIA offspring, and 

alters microbial composition to the benefit of ameliorating ASD-like behaviour and GI 

complications in these mice (Hsiao et al., 2013).  

 

Intestinal permeability determined by histological sectioning of duodenum, jejunum and 

ileum of EAE mice show they develop increased intestinal barrier permeability preceding 

the onset of neurological symptoms (Nouri et al., 2014). Indeed there have been 

observations of increased intestinal permeability preceding clinical onset and relapses in 

Crohn’s Disease and type 1 diabetes (Bosi et al., 2006; Fasano, 2011; Irvine & Marshall, 
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2000). Th1 associated proinflammatory cytokines, TNFa and IFNg in combination with IL-17 

may trigger overexpression of zonulin and disorganisation of TJs to increase intestinal 

paracellular transit (Nouri et al., 2014). Metabolic disorders have been well studied with an 

association between low-grade chronic inflammation sustained by systemic endotoxin 

measured in obese and diabetic mice with evidence of dysbiosis characterised by increased 

Proteobacteria abundance which are Gram negative bacteria with presence of endotoxin 

on their outer membrane (Rizzatti et al., 2017). Endotoxin-induced inflammation is driven 

microbiota dysbiosis in these animals recognised by the fact that antibiotic treatment 

reduced circulating endotoxin, improved insulin sensitivity, and lowered systemic 

inflammation and oxidative stress caused by the immune system (Cani et al., 2008; Rizzatti 

et al., 2017).  

 

Epithelial tight junctions in the intestine are similar to the endothelial tight junctions of 

microvascular in the brain and are equally susceptible to endotoxin.  Circulating endotoxin 

can disrupt the blood-brain-barrier (BBB) and activate microglia in the brain via PRRs 

leading to the recruitment of leukocytes during neuroinflammation. Preventing the 

extravasation of autoreactive T-cells by blocking a4b1 integrin disrupts trafficking across 

the BBB and has yielded some clinical benefit in the treatment of RR MS. 

- aging microbiota and neurodegeneration  
 

There is a striking parallel between the onset of neurodegenerative disorders such as 

Parkinson’s Disease and Alzheimer’s and age-related changed within the intestinal 

microbiota. Age-related decline of the intestinal microbiota is associated with increasing 

proinflammatory cytokines and deteriorating IP in mice (Thevaranjan et al., 2017). The 

ageing intestinal microbiome appear to alter in composition with a reduction in alpha 

diversity, and increased presence of proteobacteria (Rizzatti et al., 2017). Significant 

decreases have been reported in Bifidobacteria, Bacteroides, and Clostridium cluster IV 

(Zwielehner et al., 2009). 

Enrichment of Proteobacteria are a common observation in inflammatory conditions 

(Rizzatti et al., 2017). Age-associated intestinal dysbiosis may arise as a consequence of an 

ageing immune system (immunosenescence) and potentially enhanced susceptibility 

towards infections, inflammation and autoimmunity.  Risk of neurological inflammatory 

driven pathologically increase as we age, susceptibility to diseases and increased morbidity 

and mortality due to low-grade inflammation caused by endotoxemia (Singh & 
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Newman 2011; Freund et al. 2010). The intestinal microbiota is potentially a large source of 

endotoxin. Concomitantly, ageing causes priming of microglial cells in the brain making 

them more sensitive to a secondary inflammatory stimulus (Perry & Holmes, 2014).  It is 

not understood why this occurs during a process what is termed inflammageing; however 

microglial susceptible to activation by circulating pro-inflammatory cytokines caused by a 

systemic trigger (i.e. infection) may facilitate a leaky blood-brain barrier (BBB) and 

trafficking of pathogenic T cells that promote various neurogenerative conditions 

(Bachstetter et al., 2015; Dilger & Johnson, 2008)(Blaylock & Maroon, 2011).  

- Parkinson’s Disease (PD) 
 

Sleep disorder, cognitive impairment and mood disturbance are common non-motor 

symptom in PD (Yu et al., 2018). However, the origins of Parkinson’s Disease (PD) may 

begin in the intestine. It has been suggest that GI symptoms, particularly constipation can 

precede motor symptoms up to 20 years prior to diagnosing PD and may predict onset of 

PD (Yu et al., 2018).  The production of SCFAs by the intestinal microbiota are known to 

modulate microglia and enhance PD in genetically susceptible mice (Sampson et al., 2016). 

Overexpression of a-synuclein (aSn) in these mice causes aggregation within neurons and 

culminates in progressive deficits in motor function as well as intestinal motility 

dysfunction (Sampson et al., 2016). 
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Figure 1.1.15 Microglial activation is induced by systemic inflammation and contributes towards 

behaviour adaptions to infection. Ageing and low-grade systemic inflammation causes progressive 

priming of microglial cells in the brain that alters their morphology and neural function. Later in life, 

viral/bacterial infections may cause irreversible activation of microglial cells that increases the risk of 

illnesses affecting memory, and cognition such as dementia, characterised by neuronal dysfunction, 

and activated of pro-inflammatory cytokines in the brain. From (Perry & Holmes, 2014). 

 

Microbial production of SCFAs during viral infection have been described as activating 

microglial cells, the resident tissue macrophage in the brain and CNS (Erny et al., 2015).  

Indeed, transfer of faecal material from human PD patient donor into aSn-overexpressing 

mice revealed an altered profile of SCFAs, which was capable of activating microglia alone 

within  PD disease-susceptible GF mice (Sampson et al., 2016). Activation of microglia 

passes the threshold known as priming of microglial, and induces neuroinflammation 

observed through morphological changes, including on specific administration of SCFAs in 

this experiment.  

 
- Increased intestinal permeability in Major Depression 

 
Major depression is a psychiatric disorder with a defined abnormal immune component 

and suspected changes in intestinal permeability. Patients display high serum IgM and IgA 

antibodies reactive with LPS (endotoxin) of multiple Gram-negative enterobacteria. The 

levels of these antibodies are associated with a global worsening of symptoms, including 

fatigue, autonomic and gastro-intestinal symptoms (Maes et al., 2008). These results also 

suggest ‘leaky gut’ plays a role by increasing the exposure of bacterial LPS causing an 

inflammatory immune response marked by proinflammatory cytokines IFN-γ and IL-6. 

Chronic low-grade inflammation or immune activation that underlies the aetiology of IBS is 

also a driving risk factor in mood disorders (O'Malley et al., 2011). 

- Increased intestinal permeability in ME/CFS 
 

Increased serum IgM and IgA responses have also been documented in CFS patients against 

the LPS of enterobacteria using an ELISA method (Maes et al., 2007). Given the year of 

publication of this article it is important to note that the Canadian ME/CFS and/or 

international ME criteria could not have been applied. As discussed earlier, Fukuda CFS 

criteria has significant overlap with psychiatric comorbidities. 

More recent studies that have assayed for surrogate markers of intestinal permeability, 

Including LPS, LBP, sCD14, I-FABP as well as surveying a number of pro-inflammatory 
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cytokines conclude that bacterial translocation in ME/CFS may be stimulating the immune 

system (Giloteaux et al., 2016). Together with recent data showing a reduction in the 

diversity of the ME/CFS microbiome appear to add further support to this concept, 

however, there is no additional information related to differences in local gut immune 

reactions towards intestinal microbes, or how these permeability markers reflect severity 

of ME/CFS. 

1.11 Leaky gut hypothesis in ME/CFS 
 
‘Leaky gut’ is an informal term used to described increase intestinal permeability that may 

result in bacterial translocation and exposure to the host immune system. It has been 

suggested that ‘leaky gut syndrome’ is a mechanism for immune dysfunction and auto- 

inflammation and autoimmunity (Fasano, 2012).  Indeed, there have been several reports 

of changes in intestinal permeability that are frequently in tandem with evidence for 

dysbiosis in a selection of  neurological and autoimmune diseases (Bosi et al., 2006; Fasano, 

2012; Manfredo Vieira et al., 2018; Pijls et al., 2013; Rojo et al., 2007; Sapone et al., 2006). 

Of course, details for how the microbiota cause the immune system to produce 

autoantibodies is unclear and in to response to which particular microbes in the gut. It is 

tempting to speculate an unknown infection in ME/CFS initiates neurological complications 

in some patients, similar to Guillain-Barré (GB) syndrome where LPS derived 

from Campylobacter jejuni elicit cross-reactive antibodies through molecular mimicry of 

host gangliosides (Yu et al., 2006). From this, the pathological consequences to the CNS and 

effects on behaviour appear to be precipitated by immune dysregulation driven by 

bacterial infection. However, serial pieces of evidence are missing to support this 

hypothesis.                                     

 
 
 
 
 
 
 
 
 
 
Figure 1.1.16 An explanation for ME/CFS incorporating intestinal dysbiosis, intestinal permeability 

and autoimmunity. Our hypothesis is that the pathogenesis of ME/CFS is driven by intestinal 

dysbiosis that results in increased Th1/Th17 immune responses towards intestinal microbes and 

ME/CFS 
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increased intestinal permeability. Increased anti-microbial reactivity to luminal microbes may 

engender cross reactivity through molecular mimicry with the CNS and brain that so far has not been 

established in ME/CFS. Identifying intestinal dysbiosis and alterations in intestinal permeability are 

plausible mechanisms for induction of autoimmunity and have been associated with several 

autoimmune diseases (Fasano, 2012).  

 

- Concluding remarks 
 
The cause(s) of ME/CFS is not known but is suspected to involve cytokine infiltration of the 

brain, neuro-inflammation, low NK cell function and frequently follows viral infections 

suggesting a link with the immune system. Environmental and/or microbiological triggers 

originating from the gastrointestinal tract are thought to be a cause of the disease or 

perpetuate symptoms and pathological illness.  

 

Autoimmune reactions lead to inflammation, increased permeability of blood vessels and 

migration of lymphocytes to sites of injury. Microglia within the brain can be primed during 

chronic inflammatory diseases but can then induce inflammation in the brain when they 

are triggered by a second inflammatory challenge such as a systemic microbial infection 

(Blaylock & Maroon, 2011). This raises the possibility that the damaging neuro-

inflammation seen during ME may be triggered by systemic infections. Indeed, several 

autoantibodies have been documented in some but not all ME/CFS patients. An interesting 

example are anti-5-HTA receptor antibodies since the majority of serotonin is produced in 

the gut (Maes et al., 2013b).  

Many ME patients have gastrointestinal disturbance, are more likely to develop irritable 

bowel syndrome, and may have a “leaky” gut barrier (Lakhan & Kirchgessner, 2010) 

Together these observations suggest that changes in intestinal barrier integrity, which may 

be driven by or are a consequence of intestinal dysbiosis, as a result, for example, of a gut 

infection could contribute to ME by increasing exposure of host mucosal and systemic 

immune cells to microbe-derived antigens and drive systemic inflammation and/or 

influences the microbiota-gut-brain axis. 
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1.1.12 Overall study aim, hypothesis & objectives 
 
 

- Central Hypothesis 
 
Severe ME/CFS patients have a compositionally and functionally altered intestinal 

microbiota compared to their house-hold relative, which promotes ongoing intestinal 

epithelial permeability and systemic, chronic (auto)-inflammation. 

 

- Thesis Aim 
 
The first aim was to recruit an apparently healthy, house-hold control participant to match 

with their respective house-bound, severe ME relative; the second, to characterise the 

composition and metabolic of activity of the intestinal microbiome and to test for evidence 

of intestinal epithelial permeability in these patients. 

   
Recent metagenomic and metabolomic studies have focussed exclusively on mild to 

moderately affected ME/CFS patients with respect to conventional age and gender 

matched healthy controls. If these findings translate into severe, house-bound ME/CFS 

patients in unknown. 

 
- Specific Objectives: 

 
Chapter 3: To compare metagenomic sequencing methods to characterise the composition 

of the intestinal microbiota in severe, house-bound patients, in order to determine: 

 

i) if there is evidence for intestinal dysbiosis; 

 

ii) the identify of key bacterial species belonging to a novel “microbial 

signature” which may help define severe, ME patients from those mild to 

moderately affected; 

 

iii)  the effect of the contribution of external environmental factors known to   

influence population-level microbiome variation by using house-hold 

controls 
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Chapter 4: To define the faecal and serum metabolome of severely affected ME/CFS 

patients, in order to determine if: 

 

i) altered microbial composition (dysbiosis) influences the faecal and blood 

serum metabolism;  

 

ii)  there is any evidence for alterations in aerobic energy metabolism or of a 

hypometabolic state, which have recently been reported in studies on mild 

to moderately affected ME/CFS patients; 

 

iii) severe, ME patients have a distinct bile acid metabolic profile using 

targeted HPLC-mass spectrometry. 

 
Chapter 5: To evaluate methods for detecting anti-microbial antibodies using solid phase 

and liquid phase assays by establishing: 

 

i)  if lab-cultured bacterial isolates, representative of the human intestinal 

microbiome, can be immobilised onto nitrocellulose-coated glass slides; 

 

ii) a whole cell bacterial microarray to rapidly screen serum using microarray 

scanner detection; 

 

iii)  the relative abundance of IgA-coated faecal microbes in severe ME/CFS 

patients versus matched house-hold controls using faecal flow cytometry; 

 

iv) the intestinal permeability status of severe ME patients versus house-hold 

controls based on serum detection of lipopolysaccharide (LPS) and LPS-

Binding Protein (LBP); 

 

v)  if IgA reactivity towards faecal microbes correlates with these existing 

measures of intestinal permeability. 
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  Chapter Two 
 
 
2 Overall study design 
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2.1 General study rationale 
 
This thesis project is a pilot study focussed on severe ME/CFS patients who were identified 

as being house and/or bed-bound. Housebound and bedbound ME/CFS patients account 

for approximately 25% of the patient population, yet fewer than 0.5% of studies carried out 

to date include these patients (Pendergrast et al., 2016). Studies of the intestinal 

microbiota of ME/CFS patients suggest a reduction in microbiota diversity and the number 

of species of bacteria (Fremont et al., 2013; Giloteaux et al., 2016; Nagy-Szakal et al., 2017).  

Other culture-based studies using the Fukuda criteria to identify patients, described an 

increased number of D-lactate producing Enterococcus and Streptococcus spp. in ME/CFS 

patients providing a plausible explanation for  neurological impairment (see symptoms fig 

1.1.3) in ME/CFS similar to patients with D-lactic acidosis (Sheedy et al., 2009).  

 

Relatively few studies compare the microbiota of patients with healthy same house-hold 

individuals as controls despite the benefit of controlling for important environmental 

factors. Various factors affect the microbiota, chiefly among are diet and lifestyle 

(Zhernakova et al., 2016). It is a reasonable assumption that members of the same house-

hold will share food and be exposed to similar habitat associated factors and microbes. To 

this end, house-hold members act as a useful environmental control. Finally, the majority 

of house-hold controls used in this study were relatives of the patient and share a similar 

genetic background which contributes to microbiota diversity shaping of the host immune 

response to commensal intestinal microbes.  

 

At the time of writing, this work represents the first insight of the intestinal microbiota of 

house-bound ME/CFS patients and disease-free members of the same house-hold. The 

data from this analysis is presented in the following chapter, chapter 4. Host and 

microbiota metabolism analysed through metabolomics-based approaches has identified 

alterations energy and lipid metabolism, amino acids and products of microbial metabolism 

including lactate and SCFAs (butyrate) derived from fermentation of dietary carbohydrates. 

However, none of these studies have included severe patients or healthy house-hold 

controls (Armstrong et al., 2015; Germain et al., 2017; Naviaux et al., 2016). In chapter 5 

detection of faecal IgA-coated bacteria is determined using flow cytometry as a surrogate 

for intestinal permeability that has previously been applied to assessing intestinal barrier 

dysfunction in colitis (Palm et al., 2014). 
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In total seventeen home visits were carried out across the South of London and 

neighbouring counties (see heatmap, figure 2.2.1) to collect faecal samples from 17 severe 

patients and 10 house-hold controls (two being full-time carers). Of these, additional faecal 

samples were provided by seven patients and five house-hold controls.  

 

During 2015 faecal samples were obtained from twenty-five mild/moderate severity 

ME/CFS patients recruited from the Chronic Fatigue Service (CFS) at the Epsom & St Helier 

NHS Foundation Trust University Hospital, Carshalton, UK. 

 
2.2 Study Participants 
 
All patients were registered at the St. Helier CFS service under direct supervision of Dr 

Amolak Bansal, Consultant Immunologist and Director of the CFS service. This has over 

more than 10 years registered more than 7000 patients enabling it to establish a 

substantial clinical history and clinical definition of ME/CFS leading to the development of a 

13-point scoring system (figure 1.2.1) based on the most frequent symptoms of ME/CFS 

(Bansal, 2016) and an absolute requirement for PEM symptom, which scores a maximum of 

3 points.  

 

 Since 2008 over 2000 patients have been diagnosed using this system and it has remained 

a robust and rigorous in that during the past decade with no other explanations for fatigue 

being forthcoming in any patients diagnosed with ME/CFS (Bansal, 2016). Common 

symptoms in the vast majority (>90%) of patients within this service includes aching 

muscles and muscles weakness, stress aggravated fatigue, impaired concentration and non-

restorative sleep (Bansal, 2016). Additional symptoms include an increased respiratory rate 

with 70% of moderate to severe and very severe patients presenting with persistent cold 

hands and feet (Bansal, 2016).  
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Table 2.2.1 Adapting Fukuda, CCC and ICC case definitions into a 13-point scoring system used by 

Epsom and St Helier CFS service List of symptoms and respective scores to characterise CFS/ME.  

 

- Inclusion criteria 
 

Patients diagnosed with ME/CFS must fulfil the Canadian, International Consensus and 

Fukada criteria to be part of the St. Helier CFS service. The selection of patients from this 

service for inclusion in this study were identified by Dr Bansal as described above (Bansal, 

2016) with symptoms persisting for a minimum 50% of any period (Jason et al., 2014). 

Patients must also score a minimum of 8 using this system. The results of previous clinical 

investigations including blood tests were used to exclude other common causes of 

persistent tiredness, including psychiatric illness. These tests include full blood counts, 

levels of C-Reactive Protein (CRP), Erythrocyte Sedimentation Rate (ESR), tests for renal, 

hepatic (LFT) and thyroid (TFT) function, presence of anti-nuclear antibodies (ANA) to 

exclude systemic lupus erythematosus (SLE), and serum immunoglobulin levels and gluten 

sensitivity tested. The patient's clinical and psychiatric history were also examined to 

identify potential causes for fatigue. The Hospital Anxiety Depression Scale (HADS) was 

used to assess any underlying depression and anxiety.  The Chalder Fatigue Scale and 

additional fatigue scale are used routinely to assess the degree of fatigue. 

 

Factor Score 
Delayed prolonged post-exertion malaise after increases in physical, mental 
and emotional activity 
 

3 

Non-restorative sleep with frequent difficult initiating and/or maintaining 
sleep 
 

2 

Impaired concentration that is reduced further by external stimuli 
 

1 

Reduced short term memory with word finding difficulty 
 

1 

New onset headaches (>2/mth and different in character from previous 
headaches) 
 

1 

Sore throat with cervical tenderness/recurrent flu-like episodes 
 

1 

Arthralgia affecting several joints with stiffness > 1 hr but no swelling 
 

1 

Myalgia affecting multiple groups and exacerbated by mild exertion 
 

1 

Postural instability feeling unstable on standing or sitting 
 

1 

Hypersensitivity to sounds and lights (smells and to a lesser degree taste 
also) 

1 
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- Exclusion criteria 
 
Antibiotic usage 4 weeks prior to enrolment was the only major exclusion criteria with 

patients given the opportunity to be recruited to the study after completing their antibiotic 

treatment and after recommendation by Dr Bansal. The other specific exclusion criteria 

was a HADS score of greater than 7. Anxiety and depression are known to affect the 

immune system causing stress and disturbances in sleep. Nonetheless, given the chronic 

state of this illness a degree of depression and anxiety, and stress, is likely to feature in all 

patients but is distinct from major depressive symptoms including guilt and low motivation. 

Probiotic consumption was not an exclusionary criterion as this would have restricted 

patient recruitment.  

 
 

- Disease severity  
 

Patients were grouped based on the severity of their ME/CFS defined by the St. Helier CFS 

service. Mild/moderate patients were distinguished from severe (house/bed-bound) 

patients by their ability to attend to repeat hospital visits. This is reflected by descriptions 

of daily living (ADL) activities used by the service (table 2.2.2).  Patients beyond the level of 

moderate severity cannot or rarely leave the house and are defined as severe in this study.  

 
Table 2.2.2 Definitions of Activities of Daily Living (ADL) determining the level of severity of 
symptoms in ME/CFS patients 
 
 

- Eligibility of House-Hold Controls (HHC) 
 

With the exception of 2 out of 10 HHCs, who were full-time carers of the patient, all these 

individuals were family relatives of each respective severe ME/CFS patient living in the 

same house-hold. These participants were recruited on the basis of their ‘apparent’ healthy 

status and could not be clinically assessed, or medical records obtained prior to their 

inclusion in the study. However, HHCs were advised not to participate with any known 

medical or psychiatric history, particularly associated with gastrointestinal symptoms. 

Mild Moderate Severe Very Severe 

Still working, mobile, 
reduction in family 

and leisure activities 

Not working, sleeping 
in daytime. Reduced 

mobility, but can leave 
the house 

House-bound, (rarely leaves 
house) with severe worsening 
of symptoms under physical 

and mental exertion 

Bed-bound, light and 
noise sensitivities. 

Requires someone else 
to wash and feed them 
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Figure 2.2.1 Heatmap of location of patient home visits 2016-2017 using Google Maps. A total of 

17 home visits were completed to severe, house-bound ME/CFS patients registered at the CFS 

service in Epsom and St Helier, Surrey.  

 
2.3 Research Ethics Approval 
 

The original study proposal was reviewed by the University of East Anglia Faculty of 

Medicine and Health Sciences (FMH) Research Ethics Committee in 2014 and subsequently 

approved (reference FMH20142015-28). This approval allowed for the inclusion of faecal 

and blood samples collected from patients within the Epsom and St Helier CFS Service using 

the Norwich Biorepository, approved from the Cambridge East Committee of the National 

Research Ethics Service (NRES). Copies of approval letters from the committee and the 

research and development department are provided in supplementary figures 2.1 and 2.2. 

 

The original research proposal included recruitment to assess the intestinal permeability of 

140 ME/CFS patients including 35 mild/moderate, 35 patients defined as severe, 35 

controls, and 35 ME/CFS with specific GI symptoms. It became apparent that this target 

was ambitious and could not be completed in the time allowed and it was later revised to 

focus exclusively on home visits severe patients.  
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- Informed consent 
 

Patient information sheets containing information about the study were provided to 

patients upon request at the St. Helier CFS service or discussed in routine consultation with 

Dr Bansal (see appendix). Severe patients were informed of the study by telephone 

consultation with Dr Bansal who forwarded the information and advised patients 

interested in participating to contacted myself using email or the study dedicated 

telephone number. Patients expressing an interest in participating were mailed study 

documents in advance of any home visit and advised to contact myself via email or 

telephone to discuss the study further. 

 

- Inclusion of House-Hold Controls (HHCs) 
 

The inclusion of a same household control was not an absolute study inclusion criteria in 

order to enable severe, house-bound patients to participate in this research. Prospective 

HHCs were approached by the patients themselves before contacting myself to discuss the 

research and provided with a stool samples kit. 

 

- Ethical considerations 
 

The study’s ethical approval did not allow any data collection such as the use of 

questionnaires for assessing level of functional GI disorders or clinical history to be 

obtained. As a researcher, it was not possible to conduct a physical examination of the 

patient to ascertain parameters such as an individual response to painful stimuli or 

sensitivity to light and sound. There were also several occasions where it was not physically 

possible to obtain a blood sample for patients. ME/CFS patients can exhibit collapsed or 

inaccessible veins. In other instances, blood samples could not be acquired without causing 

distress to the patient and therefore it was deemed unethical to obtain these samples. For 

example, in severe patients with extreme light sensitivity or with heightened sensitivity to 

touch and pain stimuli. 

 

2.4 Sample collection & Storage 
 
Samples were collected and stored within 1-6 h at -800C at St Helier prior to transfer to the 

Norwich Biorepository at a later date. All samples were processed and analysed together.  
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- Mild/moderate ME/CFS patients 
 

Twenty-five mild/moderate ME/CFS patients were recruited in 2015 from St Helier CFS 

service.  

 

- Home visits  
 

A minimum of 2 visits were carried out between 2016-2017 to each of the 17 severe 

patients, first to consent patient and provide them with the stool sampling kit and 

instructions for collection (see appendix).  

 
 

- Stool sample 
 

All study participants were instructed to collect their intact faecal sample in a FECOTAINER® 

(AT Medical B.V., Enschede, Netherlands), figure 2.2.2 no later than 24 hours prior to a 

scheduled home visit. Samples were stored at 40C prior to collection from the patient home 

and transported on ice to St. Helier hospital. Participants donating stool in 2017 collections 

were also provided with an AnaeroGenä Compact anaerobic sachet (Cat No. AN0010, 

Oxoid Ltd., United Kingdom) to activate as soon as they produced their sample to eliminate 

environmental oxygen conditions and promoting the survival of obligate anaerobic 

microbes. On return to the hospital, samples were manually homogenised with a sterile 

autoclaved metal spatula, aliquoted and either processed immediately or stored at -800C 

for future use.  

 

 

 

 
 

 

 

 

 

 

Figure 2.2.2 FECOTAINER® collection device used to collect stool sample. (Reproduced 

image accessed via www.fecotainer.eu on 12th September 2018). 
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- Blood sample 
 

Where possible patients and house-hold controls (HHC) were also bled using S Monovette® 

Z-Gel for serum collection (Cat No. 02.1388.001, Sarstedt AG & Co., Nümbrecht, Germany). 

For home visits, it was not always possible to attempt to collect blood from severe patients 

and HHCs due to unavailability of a phlebotomist to accompany myself.  
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 Chapter Three 
 

3 Characterising the composition of the gut microbiome 
associated with severity of ME/CFS 
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3.1.1 Introduction 
 
There is an urgent need to identify validated biomarkers for the diagnosis of ME/CFS. 

Altered intestinal microbiota composition (dysbiosis) has emerged as a feature of neuro- 

and immuno-inflammatory diseases, suggesting a causal relationship (Round & 

Mazmanian, 2009). Gastrointestinal inflammation is associated with abdominal pain and 

altered bowel movements (Neufeld, 2013). Stress, anxiety and depression are well known 

psychological disorders, which frequently make GI symptoms worse, particularly in IBS. 

Intestinal dysbiosis may be a driver of altered gut-brain signalling and pain perception. 

Thus, IBS is described as a functional disorder, and like ME/CFS appears absent of physical, 

structural or biochemical abnormalities and is instead identified by characteristic 

symptoms (Häuser et al., 2012). IBS-like symptoms are common among ME/CFS patients 

with as many as 92% of all ME/CFS having IBS at some time during the development of 

ME/CFS  (Lakhan & Kirchgessner, 2010). The mechanism for IBS-related abnormal pain and 

discomfort is thought to be driven by inflammatory derived immune signals, such as 

cytokines and release of prostaglandins in response to an infection and through direct 

bacterial activation of the nervous system.  

 

Chui and colleagues have shown that infection by  S. aureus activates nociceptors causing 

mechanical and thermal hyperalgesia in mice, the severity of which correlated with 

bacterial load (Chiu et al., 2013). Furthermore, LPS stimulation of afferent sensory neurons 

require TRPA1 ion channel mediated calcium influx and release of neuropeptides which 

enhance local inflammation and hyperalgesia (Meseguer et al., 2014).  Although sensory 

neurons express the receptor for LPS, TLR4, the sensory responses to LPS in tlr4-deficient 

mice did not differ (Meseguer et al., 2014). Visceral pain perception has become a target 

for pharmacological intervention using drugs to block or alter gut-brain signalling and 

neuroimmune pathways to alleviate symptoms (Farzaei et al., 2016).  Increased intestinal 

permeability in a subset of IBS patients with diarrhoea symptoms enhances severity and 

hypersensitivity to visceral stimuli (Zhou et al., 2009). Increased bacterial translocation 

would therefore facilitate direct contact with afferent sensory neurons, which further 

stimulate visceral hypersensitivity through engagement of bacterial antigens.  Given the 

role of intestinal bacteria in activating nociceptors, management of visceral hypersensitivity 

in IBS and other disorders with GI symptoms may benefit from targeting the intestinal 

microbiota as well as the (“leaky”) intestinal epithelial barrier.  

 



       

 
 100 

The intestinal microbiota is significant in the development of post-infectious IBS in mice 

where probiotic preparation of Bifidobacterium and Lactobacillus strains ameliorate IP and 

inflammatory cytokine production, reducing intestinal inflammation and alleviating 

hypersensitivity (Wang et al., 2014). An overlapping profile of plasma cytokines has been 

reported in IBS and ME/CFS driven by IL-6, IL-8 IL-1ß and TNF (Scully et al., 2010). Systemic 

circulation of these cytokines to the brain induces sickness behaviour causing symptoms of 

extreme malaise and severe fatigue (Dantzer et al., 2008). 

 

- Dysbiosis linked to low-grade chronic inflammation 
 

Intestinal inflammation and bacterial translocation can lead to systemic infection and low-

grade chronic inflammation in ME/CFS (Lakhan & Kirchgessner, 2010). Changes in the 

intestinal microbiota in metabolic disorders are associated with higher plasma 

concentrations of LPS and development of endotoxemia (Cani et al., 2008). It is well 

documented that the relative abundance of Firmicutes exceeds Bacteroidetes in metabolic 

disorders. However, the increased prevalence of Proteobacteria is a potential microbial 

signature for inflammatory-dependent intestinal and extra-intestinal diseases (Rizzatti et 

al., 2017). In addition, the aging microbiota is represented by an increase in Proteobacteria 

and decrease in Bifidobacteria and may alter the balance between anti- and pro-

inflammatory responses of Treg/Th17 immune cells in the intestine (Biagi et al., 2010). 

 

Proteobacteria are Gram-negative and a potential source of LPS which could induce 

endotoxemia in the development of metabolic disorders. Beyond metabolic disorders, a 

more recent study has shown that Parkinson’s Disease patients have increased abundance 

of Proteobacteria, but it is unclear how dysbiosis enhances progression and impairment of 

motor control and decline in neurocognitive functioning. A possibility is that increased 

intestinal permeability may expose Proteobacteria to the internal environment. Indeed, 

faecal markers for intestinal inflammation and intestinal permeability, (including zonulin 

overexpression) are significantly elevated in a cohort of PD patients compared to age-

matched healthy controls (Schwiertz et al., 2018). Moreover, intestinal biopsies taken from 

9 PD patients showed a positive correlation between intestinal asynuclein aggregation and 

serum endotoxin in early PD in response to increase exposure to intestinal bacteria 

(Forsyth et al., 2011). Whilst these pathological features do not distinguish PD patients 

from other (neuro)-inflammatory disorders associated with GI barrier dysfunction, it does 

lead to speculation of a common cause for generating low-grade inflammation and 
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increased physiologic input from the microbiota in the activation innate immune receptors 

such as TLR4 and nociceptors in afferent sensory neurons behind a compromised intestinal 

barrier.  

 

- Microbiota-derived intestinal metabolites 
 

It is not known if or how intestinal dysbiosis influences the pathogenesis of ME/CFS. 

Many of the symptoms of ME/CFS, severe fatigue, malaise, unrefreshing sleep, cognitive 

impairment, memory deficits, autonomic disturbances including blood pressure changes, 

orthostatic intolerance, overlap with neurodegenerative and neuropsychiatric disorders, as 

discussed above. Significantly, an altered microbiota will impact on the profile of microbial 

products, particularly those with the capacity to act as neurotransmitters and modulators 

of inflammation. For example, secondary bile acid metabolism (see next chapter) is 

regulated by certain intestinal bacteria with specialised enzymes (bile salt hydrolases, BSH) 

modifying structural and chemical changes to primary bile acids produced by the liver. 

These secondary bile acids are lipophilic and can be absorbed across the intestinal barrier, 

interacting with cells beyond the intestinal epithelial barrier via TGR5 which has emerged 

as a key receptor in the mediation of bile acid neural-humoral signalling with an impact on 

energy homeostasis and inflammation (Bunnett, 2014).  

 

Altered microbiota in PD patients has been associated with alterations in the proportions of 

SCFAs (Unger et al., 2016). SCFA are significant metabolites produced by the microbiota, 

the most abundant of which are acetate, propionate and butyrate that are an important 

source of energy for intestinal epithelial cells. Understanding how the intestinal microbiota 

changes in disease states will help understand the impact dysbiosis may have on disease 

pathogenesis.  For instance, Bacteroides thetaiotaomicron is a major producer of acetate 

and propionate. Clostridium tyrobutyricum produces high levels of butyrate that inhibits 

HDAC activity and upregulation of TJs proteins such as zonulin, which if dissociated from 

the TJ complex leads to increased serum levels which is a useful marker for altered 

intestinal permeability (Bordin et al., 2004; Sapone et al., 2006). However, PD patients have 

an overall reduction in faecal SCFAs (Unger et al., 2016). In PD patients, members of the 

phyla Bacteroidetes which includes the family Prevotellaceae were reduced with increased 

abundance of Enterobacteriaceae which includes Proteobacteria (Unger et al., 2016). 

Significantly ASO mice, engineered to overexpress a-synuclein are genetically susceptible to 

PD, but do not develop the PD-like phenotype if maintained under germfree conditions or 
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are treated with antibiotics to eliminate gut microbes. Conventionalisation of these 

germfree or antibiotic-treated mice restored the PD phenotype, with the transplantation of 

faecal microbiota from PD patients greatly exacerbating the PD phenotype compared to 

animals conventionalised with faecal microbiotas of healthy individuals (Sampson et al., 

2016). Moreover, SCFAs derived stool samples from PD patients were sufficient alone to 

enhance motor dysfunction and activate microglial in GF ASO mice (Sampson et al., 2016).  

 

Defects in Blood Brain Barrier (BBB) permeability in the offspring from germfree mice have 

been observed after intravenous administration of Evans blue dye which accumulates in 

the brain parenchyma (Al-Asmakh & Hedin, 2015). However, the prior introduction of 

SCFAs producers, C. tryrobutyricum (butyrate) and B. thetataiotaomicron 

(acetate/propionate), enhanced BBB integrity via unknown effects on TJ complexes 

(Braniste et al., 2014).  SCFAs activate the GPR41 and GPR43 G-protein coupled receptors, 

with physiological effects including of reducing GI transit, energy balance, and anti-

inflammatory signals (Al-Asmakh & Hedin, 2015). Gpr43 deficient mice develop colitis, 

arthritis and asthma (Maslowski et al., 2009). Moreover, butyrate has a neuroprotective 

effect limiting neuronal damage and prevents a-synuclein accumulation by enhancing 

autophagy (Liu et al., 2017).  

 

Although the role of SCFAs in the pathophysiology of inflammatory diseases is unclear, 

associated intestinal dysbiosis appears to have a role in driving pathology in various 

neurodegenerative diseases (Mulak, 2018). a-synuclein aggregates form in the enteric 

nervous system many years prior to the onset of PD which raises the question, do 

neurodegenerative disease begin in the intestine? Mouse models demonstrate that the 

intestinal microbes contribute to driving neuropathology, further highlighting the need to 

understand how microbial compositional changes impact microbial metabolite production, 

for example SCFAs, that may contribute to pathogenesis.  

 
Unlike PD, RR, MS, NMO introduced earlier in chapter 1, there is no animal model for 

ME/CFS. The observations that the intestinal microbiota can have a wide range of 

physiology input in metabolic disorders, to neuro-immune and neurodegenerating 

disorders with similar symptoms including severe fatigue, cognitive deficits, visceral 

sensitivity and GI disturbances, warrants investigation into ME/CFS to establish potential 

aetiological causes.  
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- Treating intestinal dysbiosis 
 

Faecal Microbiota Transplant (FMT) is the practice of transferring a healthy donor stool 

sample into a patient in an attempt to treat intestinal dysbiosis by restoring a diverse 

intestinal microbiota (Borody & Khoruts, 2012). In clinical practice it has proven to be very 

effective in the treatment of recalcitrant Clostridium difficile infection (CDI), which arises as 

a result of antibiotic treatment leading to the loss of many members of the microbiota, 

leading to germination of C. difficile spores and bacterial overgrowth. 

 

Bacteriotherapy involving trans-colonoscopic infusion of 13 anaerobic enterobacteria has 

been trialled in 60 ME/CFS patients. Amongst the ME/CFS patients, 52 had IBS comorbidity. 

Just over half of these patients responded to an initial infusion, of which 88% no longer 

experienced GI symptoms. Ten patients that did not respond with significant improvements 

in refreshing sleep, lethargy, fatigue, did see some improvement in their GI symptoms. 

Although the initial success rate was encouraging, this trial did not adequately follow up 

the long term benefit this treatment in these patients. Twelve patients that were followed 

up of which 7 remained cured of CFS which the other 5 describing relapsing CFS symptoms 

between 18 months to 3 year following bacteriotherapy (Borody et al., 2012).  

 

3.1.2. Profiling the intestinal microbiota 
 

The relatively few studies that have profiled the composition of intestinal bacteria in 

ME/CFS are summarised in Table 2.2. It must be appreciated that these studies rely on a 

small number of patients defined by the use of the Fukuda (1994) criteria for CFS. 

Moreover, these studies have varied in their experimental approach and according to the 

technical capabilities at the time. Prior to recent advances in DNA sequencing technology, 

traditional culture-based techniques were used to study the human intestinal microbiota. 

In fact, the concept that the composition of the microbiota changes in health is not new 

and was first reported in 1973 using culture techniques (Tannock & Savage, 1974). 

However, in the past decade improvements and cost reductions in sequencing technology 

have made it possible to profile the bacterial composition across different microbiotas on 

and inside the human body. This is evidenced by the rapidly increasing number of 

publications shown as year on year increases in figure 3.1.1, as the technology has 

improved and reduced in cost.  
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The introduction of high-throughput (HTP) next-generation sequencing (NGS) technology 

has allowed researchers to exploit the highly conserved bacterial 16S gene for their reliable 

identification without the necessity of isolating and culturing them, on a massively parallel 

scale. Sequenced-based molecular identification of bacteria entails a choice 9 hypervariable 

regions of 16S rRNA gene using universal primers flanking these regions to amplify the DNA 

prior to high-throughput next generation sequencing. This generates sequences that are 

typically 250 base-pairs long, referred to as reads. Each read can then be processed and 

collectively analysed using bioinformatics software to such as Qiime, to assign each of the 

reads to their operational taxonomic units (OTUs) (D’Amore et al., 2016). The software 

utilises reference databases to identify each OTU.  

 

 
Figure 3.1.1 The rise in the number of microbiome-based studies between 2005 – 2016 Scientific 

Figure on ResearchGate. Available from: https://www.researchgate.net/Bibliometric-parameters-of-

microbiome-studies-Representations-were-limited-to-the-four_fig1_320728834 [accessed 10 May, 

2018] 

 
- Limitations of 16S gene-based sequencing studies 

 
16S rDNA gene amplicon sequencing has become the most widely used method of NGS to 

profile of the human gut microbiota. However, its domain is restricted to bacteria and 

archaea and it is limited to profiling bacteria at the genus level and therefore it is not 

possible to discriminate bacteria at a species or strain level (Jovel et al., 2016; Ranjan et al., 

2016). Furthermore, the choice of 16S hypervariable region and primers introduce a bias 

for particular bacteria taxonomic groups (Ghyselinck et al., 2013).  
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- Faecal DNA extraction 
 

Faecal samples are the most complex and diverse microbiome samples that can be isolated 

from on or inside the human body and therefore obtaining a good quality and high yield of 

DNA from all faecal bacteria can be challenging when studying such a diverse and complex 

community of microbes which have varying cell membrane and cell wall strengths 

encapsulating their DNA context. To that end, commercially available DNA extraction kits 

have been shown to vary in efficiency and quality of DNA extraction. A recent study 

compared 6 of these kits, including the MP Biomedicals FastDNA® Spin kit for soil used in 

this study (Turlej-Rogacka et al., 2017). For 16S-based studies all kits produced adequate 

DNA for PCR amplification, sufficient to provide a product which could be sequenced. 

However, the kits did vary significantly in obtained DNA concentration and purity using 

(A260/280) ratio (Turlej-Rogacka et al., 2017). For shotgun metagenomic studies high-

molecular weight genomic DNA will maximise the quality of output for downstream 

applications (Bag et al., 2016). However, total recovery of genomic DNA is a significant 

challenge for commercially available kits using minimal amounts (~250 mg) of faecal 

material and naturally these methods can have different biases towards the efficiency of 

DNA extraction from different bacterial species (Brooks et al., 2015). Accurately quantifying 

the concentration DNA in your sample can depend on the method of choice with more that 

10-fold higher DNA concentrations using NanoDrop versus Qubit (Turlej-Rogacka et al., 

2017). 

 

- Evidence of intestinal dysbiosis in ME/CFS using culture-based techniques 
  

Before the advent of NGS technology, investigators relied on traditional microbiology and 

bacterial cultures to grow and identified individual isolated bacteria. During an early 

investigation by Sheedy and colleagues, they likened the neurological impairments of 

ME/CFS to another condition where lactic acid producing bacteria are responsible for 

severe cognitive dysfunction. D-lactic acidosis is a metabolic disorder, which usually 

manifests in patients as a complication of having short bowel syndrome (SBS). SBS 

describes the inadequate absorption of nutrients by the small intestine, diarrhoea and 

dehydration enabling colonic bacteria to ferment carbohydrates causing excess D-lactic 

acid to accumulate in the blood. The effects of D-lactic acid on the CNS are apparent from 

other studies where it causes neurological impairments such as confusion, slurred speech, 

muscle weakness and inability to think. Faecal bacteria were grown in selective cultures 

from 108 CFS patients and 177 controls to generate viable counts (Sheedy et al., 2009). The 
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number of D-lactic acid producing Enterococcus and Streptococcus species were 

significantly higher in patients than controls (p=0.01) (Sheedy et al., 2009). The possible 

cause or mechanism for the accumulation of these bacteria is unclear, though their 

presence will lower the intestinal pH and may explain intestinal permeability increases 

associated with systemic endotoxemia (Henriksson et al., 1988; Maes & Maes, 2009). 

 

Another report in the same year, outlines the effect of a 4-week programme of 

administering twice daily (x2 20ml) probiotics containing 108 CFU/ml of Lactobacillus F19, L. 

acidophilus NCFB 1748 and B. lactis Bb12 in 15 CFS patients with high fatigue and disability 

scores (Sullivan et al., 2009). During the four-week follow up, 6 patients reported significant 

improvement in cognitive function, but not in fatigues or physical activity scores compared 

to pre-treatment, with no significant changes found in their intestinal microbiota PCR-

based methods for identification Lactobacilli and CFU counts (Sullivan et al., 2009). The 

authors remarked on the high variability in patient responses demonstrating the 

heterogeneity of the study group, moreover, the benefits were on a case by case basis, 

with those benefitting reporting sustainable improvement to cognitive function up to 70 

days later (Sullivan et al., 2009). 

 

The depression and anxiety characteristics in 39 CFS were studied in a separate cohort 

following an 8 week intervention consuming a daily dose of  2.4 x 1010 CFU of L. casei strain 

Shirota (LcS) spread across 3 smaller doses of 8 x 109 CFU after each meal (Rao et al., 2009). 

Overall, a significant rise in Lactobacillus and Bifidobacteria spp. was seen in patients 

receiving the probiotic treatment (n=19), as well as a reduction in levels of anxiety, versus 

those patients (n=16) who have received the placebo control (Rao et al., 2009). 

 

- 16S rDNA-targeted amplicon sequencing in ME/CFS 
 

Fremont and colleagues published the first ME/CFS study using HT 454 pyrosequencing 

performed on 16S V5-V6 region generating reads of at least 240 bp long (Fremont et al., 

2013). On average, 6000-7000 reads were obtained for each patient/control of which 98% 

could be assigned to specific phyla, and 129 different bacterial genera identified (Fremont 

et al., 2013). This ME/CFS cohort included patients from Norway and Belgium with 

respective healthy controls from the same countries. The majority of patients were female 

and diagnosed by Fukuda criteria. Dysbiosis was more significant in the Norwegian patients 

with a reduction in firmicutes: Roseburia, Syntrophococcus, Holdmania, Dialister and a x20 
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increase in Lactonifactor, and a 3.8 increases in Bacteroidetes genus, Alistipes (Fremont et 

al., 2013). Interestingly reduction of Roseburia, a Gram-positive butyrate producer, is 

reported to be a defining characteristic of dysbiosis in ulcerative colitis patients, and thus 

consistent with intestinal inflammation (Machiels et al., 2014). Moreover, Alistipes (and 

Enterobacteriaceace) were over-represented in patients with depression (Jiang et al., 

2015). In contrast, Belgian patients were less distinct from their respective healthy 

controls, except for x45 increase in Lactonifactor in patients thus remarkedly similar to the 

20 -fold increase of this genera in Norwegian patients (Fremont et al., 2013). 

 

Since this 2013 study, Roche® 454 sequencing has been replaced by the Illumina® MiSeq 

platform. The fundamental difference is an ability of 454 sequencing to achieve longer 

reads (up to 700 bp with 99.9% accuracy and 0.7Gb/run) compared on average with 

Illumina® NGS, between 150-300 bp (L. Liu et al., 2012). However, the Illumina® MiSeq v2 

platform offers 2 x 250 bp (paired-end, PE) reads yielding a total coverage of 44-50 million 

reads equivalent to 7.5-8.5 Gb of data per run (Goodwin et al., 2016). Thus, Illumina® 

provides much more sequencing depth and number of reads than earlier Roche® 454, as 

well as a more rapid turnaround time of as little as 4 h making it more cost-effective. It can 

now produce up to 15 Gb output making it the most widely used NGS platform to date 

(Ravi et al., 2018). 

 

High-throughput is further achieved by multiplexing and pooling samples in an individual 

sequencing run; allowing a large number of samples, up to 384, to be analysed 

simultaneously (Illumina, 2014). During DNA library preparation of each samples, 

specialised DNA adaptors and bar codes (or sequencing indexes) are hybridised to each 

DNA fragment. Each read sequenced is identified to a particular library representing a 

unique sample. For example, the Nextera XT library preparation kit manufactured by 

Illumina® provides 40 unique indexes; two are used in unique combination per DNA 

fragment enabling up to 384 samples to be analysed in a single sequencing run (Illumina, 

2014).  

 

A recent application of NGS Illumina® MiSeq sequencing performed in ME/CFS compared 

the 16S rDNA V4 sequences from faecal samples of 48 patients compared with 39 healthy 

controls (Giloteaux et al., 2016). Most of these patients (n=34) reported GI symptoms 

including constipation, diarrhoea, and abdominal pain/sensitivity (Giloteaux et al., 2016). In 
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total, 8,534,117 reads were obtained with an average of 98,093 reads per sample 

(Giloteaux et al., 2016). The primary finding was a reduction of bacterial diversity in 

ME/CFS patients, (P=0.004, W=1268; figure 2.2). To define the diversity of a sample, 

sufficient number of sequences must be obtained from each sample to identify all present 

bacterial taxa. The rarefaction curve in figure 2.2 shows as the number of reads increase 

the number of identifiable taxa increases up to a plateau. Beyond this point despite 

increasing the vast number of additional reads, very few or no additional taxa will be 

identified (Hanson & Giloteaux, 2017). However, too few reads (below 5000, green area) 

will cause underestimation of bacterial diversity.  This puts into perspective the relatively 

low number of reads achieved by Fremont and colleagues in the earlier study, where 6000-

7000 reads per sample did not distinguish a-diversity within ME/CFS samples compared to 

controls using the same indices of diversity within a sample (Shannon H evenness, Chaos1 

and PD richness). 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 3.1.2 Sequence-based rarefaction curve of Phylogenetic diversity across ME/CFS and 

Control samples using 16S targeted rRNA sequencing. Based on the same number of sequences per 

sample, the diversity of assigned bacterial taxa (observed species) is higher in controls compared 

with ME/CFS patients. Figure reproduced from (Hanson & Giloteaux, 2017)). 

 

 

Gilateaux et al. reported a reduction in Bifidobacterium and Faecalibacterium species in 

ME/CFS patients (figure 2.3) (Hanson & Giloteaux, 2017). Individually the genera in fig. 2.3 

represent only 1% of the gut microbiome. At the phylum level, firmicutes were reduced in 

patients at 35% relative abundance (RA) versus 46% in controls with a relative increase in 

the abundance of proteobacteria, belonging to the family Enterobacteriaceae; 6% in 

ME/CFS versus 3% in controls (Giloteaux et al., 2016). 
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Figure 3.1.3 Comparison of relative abundances of bacterial genera between ME/CFS patients and 

Healthy Controls. Shows relative abundance on a log10 scale. Figure reproduced from (Hanson & 

Giloteaux, 2017). 

 

The majority of 40 OTUs found to be different in ME/CFS were within Firmicutes; including 

Ruminococcaceae family members Oscillospira spp, F. prausnitzii, Ruminococcus; and 

Lachnospiraceae such as Coprococcus spp. (Giloteaux et al., 2016).Although butyrate 

production was not measured in this cohort, a reduction in butyrate producers and lactic 

acid promoting bacteria (beneficial to barrier function) is similar to individuals with IBD and 

IBS and will influence the production of PICs and consequently the risk of immune 

activation and increases in intestinal permeability demonstrated by higher levels of LPS, 

sCD14 and LBP in the plasma of ME/CFS patients (Giloteaux et al., 2016).  

 
- Whole-Genome ‘Shot-gun’ (WGS) sequencing 

 
 Whole genome sequencing, WGS (also called Shotgun metagenomics) is unrestricted to 

specific target amplicons, like 16S, and is able to resolve the microbiota beyond the genus 

level, including sequencing information derived from other members of the microbiota 

such as fungi and viruses.  WGS can determine low abundance species as well as functional 

capacity of the sample microbiome based on the mapping of individual genes (Ranjan et al., 

2016). From this, the potential metabolic pathways that enable the microbiota to function, 

and more critically identify pathways that are disrupted in disease can be deduced. This in 

combination with other ‘omics technologies, particularly metabolomics (in the next 

chapter) may provide a more informative description of intestinal dysbiosis in ME/CFS 



       

 
 110 

patients according to the metabolic function of their intestinal microbiota rather than just 

changes in composition.  

 

The first WGS-based study was performed in ME/CFS sub-grouped according to the 

presence of IBS symptoms. Out of the 50 ME/CFS patients recruited, 21 had been 

diagnosed with IBS with no cases of IBS in 50 healthy controls. Shotgun metagenomic 

sequence data collected from this cohort is fundamentally different to earlier ME/CFS 

microbiome studies in that it will not be subject to amplification biases of 16S based 

sequences; furthermore species-level assignments are possible using MetaPhlan taxonomic 

assignment, in addition to identification of biological pathways. Increases in unclassified 

Alistipes and Faecalibacterium emerged as microbial markers of ME/CFS with IBS, whist 

robust statistical testing agreed decreased RA of B. vulatus defined ME/CFS without IBS 

(Nagy-Szakal et al., 2017). Differences with bacterial species in ME/CFS were driven by IBS 

co-morbidity including a reduction in RA of Faecalibacterium species, R. obeum, E. hallii, 

and C. comes (Nagy-Szakal et al., 2017). Table 2.1 lists the bacterial species taken from the 

Nagy-Szakal et al. (2017) study that are the strongest predictors for subgroups of ME/CFS 

with/without IBS.  

 

 

 

 

 

 

 

 

 

Table 3.1.1 Lists of bacterial species extracted from text of Nagy-Szakal paper, relevant to their 

predictive model to distinguish ME/CFS subgroups from controls  

 

Interestingly, there were significant correlations between certain bacterial species and 

symptom severity scores using the SF-36 and Multidimensional Fatigue Inventory (MFI). 

Decreased RA of Faecalibacterium spp, R. obeum, E. hallii, C. comes and Coprococcus spp 

were associated with IBS-like hypersensitivity, bloating and abdominal discomfort (Nagy-

Szakal et al., 2017).  

 

“ME/CFS” “ME/CFS + IBS” “ME/CFS – IBS” 

C. catus 
P. capillosus 

D. formicigenerans 
F. prausnitzii 

C. asparigiforme 
Sutterella wadsworthensis 

A. putredinis 
Anaerotruncus colihominis 

 

 

Faecalibacterium cf. 
Bacteroides vulgatus (decreased 
RA distinguishes from ME/CFS – 

IBS, on all statistical tests) 
 

Additional 9 added: 
F. cf. 

F. prausnitzii 
B. vulgatus 

A. putredinis 
C. catus 

A. caccae 
D. formicigenerans 

A. colihominis 
C. asparagiforme 

Bacteroides caccae 
P. capillosus 
P. distasonis 

Bacteroides fragilis 
Prevotella buccalis 

Bacteroides xylanisolvens 
D. formicigenerans 
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- Summary 
 

Both Giloteaux et al. (2016) and Nagy-Szakal et al. (2017) have used different methods to 

produce lists of bacteria at various taxonomic levels (partly on whether the data is 16S or 

shotgun) which are putatively overrepresented in either patients or controls. Both studies 

assess the size of the effect that each taxon has on the difference between groups, using 

the same method of Linear Discriminant analysis Effect Size, (LEfSE). Significant differences 

were found in 40 OTUs (out of ~1,330 OTUs per sample), but only appear to name 

corresponding species for some of them despite this being 16S data. Moreover, even if all 

taxa were distributed randomly between patients and controls, you are likely to get a small 

number, which appear, by chance, markedly more abundant in one group compared to the 

other. To that end, if this study were to be repeated it would be surprising if all of these 

genera listed were found to be significantly more/less abundant in ME/CFS again because 

of major environmental factors, such as diet known to contribute to population-level 

variation of the microbiota on a daily basis. Figure 2.4 is taken from Fig. S2 in this paper, to 

highlight the difficultly in equating these taxa to differences for separation of ME/CFS from 

Controls in these plots. 

 

The 2017 study additionally presents functional pathways overrepresented in ME/CFS with 

or without IBS compared with controls. In their statistical analyses, “ME/CFS” is referred 

distinctly from “ME/CFS + IBS”, and “ME/CFS – IBS”, and “controls” (no ME/CFS, no IBS), 

suggesting the “ME/CFS” is a supergroup being compared with subsets of itself. Critically 

this paper lacks an IBS-only disease control group. Parts of the methods to this work suffer 

ambiguity, particularly with respect to the tools used to create the topological data analysis 

(TDA) and machine learning approach to identify difference across groups; the lack of detail 

here does not makes this easily reproducible. The machine learning approach was 

successful in the Giloteaux et al. (2016) study as a way to see what combination of 

microbial taxa and various plasma markers could successfully predict whether a subject is a 

patient or control, using most of the data as a training set and then making predictions on 

the remaining samples. Finally, there is consistency between TDA, the rank-based test, the 

LEfSe, and features identified by machine learning for species belonging to 

Faecalibacterium, Roseburia, Dorea, Coprococcus, Clostridium, Ruminococcus, and 

Coprobacillus as significantly different in “ME/CFS” compared with “controls” (Nagy-Szakal 

et al., 2017). 
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Figure 3.1.4 Principal Coordinate Analysis (PCoA) plot of healthy controls versus ME/CFS based on 

32223 sequences per sample using targeted 16S rRNA gene sequencing. 16S rRNA derived 

microbial community analysis reveals no difference in beta-diversity between patients and controls.  

Clustering distances calculated with weighted UniFrac (a) and unweighted UniFrac (B). Figure 

reproduced from (Giloteaux et al., 2016), supplementary figure S2. 

 
- Confounders of microbiome diversity 

 
The differences found between Norwegian and Belgium ME/CFS patients highlight the 

importance influences the environment, diet and genetic background have on the 

composition of the intestinal microbiota (Fremont et al., 2013). Most studies offer gender 

and age matching of healthy controls to their patients, with no consideration of the above 

factors. Cohousing mice is a routine and regular practice in studying the effects of the 

intestinal microbiota and to control for dietary influences. Interestingly a recent paper 

studying the enteric virome in IBD in humans demonstrates the importance of having 

house-hold controls to increase the power of detecting disease-associated changes.  Then 

natural variability in intestinal bacteria and viruses in non-household controls and patients 

makes it more difficult to see such disease-specific alterations (Norman et al., 2015). It is 

also expected house-hold controls will more likely share a similar diet and will normally 

share a similar genetic background mother-daughter or father-son. In these circumstances 

age of course cannot be matched; however, researchers have to decide which factors to 

give the priority towards controlling and will depend upon individual study design and the 

hypothesis. So far, no study investigating the microbiome in ME/CFS has attempted to 

recruit house-hold controls. 
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Indeed, comparison of multiple studies in microbiome research is complicated by the fact 

that different researchers opt for different study designs, extraction methods, sequencing 

platforms and favour different bioinformatic tools to interpret the data (D’Amore et al., 

2016). Nagy-Szakal et al. (2017) acknowledge that their work cannot be directly compared 

to the earlier 16S rDNA analyses but support intestinal dysbiosis in ME/CFS based on 

increases/decreases of the RA of specific bacterial species (table 2.1). However, they have 

made a first attempt to correlate specific symptoms and severity with patterns of dysbiosis 

in ME/CFS although their study design did not make severity a focus. Impact of severity 

included scores associated with emotional wellbeing, motivation, fatigue and pain, 

however the relatively small cohort make it difficult to predict ME/CFS severity using their 

microbiome data in this study. 
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Table 3.1.2 Summary of microbiome studies performed in ME/CFS with relevant findings and overview of methods to determine these differences Up 

arrows denote increased relative abundance; down arrows denote reduction in relative abundance of bacterial taxa.

Study Sequencing 
method 

Recruitment 
criteria 

Sample size Platform Av. number 
of reads 

16S 
rRNA 
variable 
region 

Significant 
Observations/Conclusions 

Sheedy  
et al. 
(2009) 
 

Culture-based 
assays 

Holmes (1988) 
/Fukuda (1994)/ 
Canadian (2003) 

108 ME/CFS 
 
177 controls 

N/A N/A N/A   D-lactate Enterococcus and Streptococcus spp. 
 
 
 

Fremont 
et al. 
(2013) 
 

16S targeted 
amplicon 

Fukuda (1994) 43 ME/CFS 
 
36 controls 

454 
FLX 
(Roche®) 

6000-7000 per 
sample, min 
240 b.p.  

V5-V6 Belgian patients:  
x45 < Lactonifactor genus 
 
Norwegian patients:  
x20  <  Lactonifacor genus 
3.8 fold < in Bacteroidetes genus Alistipes 
Decreased Firmicute sub-populations 

Hanson 
et al 
(2016) 
 

16S targeted 
amplicon 

Fukuda (1994) 48 ME/CFS 
(34 report GI 
disturbances) 
 
39 controls 

Illumina® 
MiSeq 
2x250 bp 
 

98,093 ± 29,231 
reads per sample 
 

V4 Reduced Bifidobacteria and Faecalibacteria spp. 
 
Positive plasma markers for increased intestinal 
permeability: LPS, LBP, sCD14 
 
PD metric: ME/CFS less diverse than Healthy Controls 

Lipkin 
et al. 
(2017) 
 

Shotgun 
Metagenomic 

Fukuda (1994)/ 
Canadian (2003) 

50 ME/CFS 
 
50 controls 

Illumina® 
HiSeq 4000 
2x100 bp 

~35 million 
reads per sample 
 
10 samples/pool 
350 million reads 
per pool 

N/A Family level:     Lachnospiraceae &    Porphyro- 
monadaceae in ME/CFS 
 
Genus level:    Dorea,    Faecalibacterium,   
Coprococcus,    Roseburia, &    Odoribacter 
 
Clostridium and    Coprobacillus in ME/CFS 
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3.1.3 Aim and Objective 
 
There is limited evidence to suggest ME/CFS is associated with an altered intestinal 

microbiota and increased permeability. It is not known how well these findings replicate in 

other patient cohorts or according to disease severity. Existing published ME/CFS research 

has made no attempt to stratify patients based on specific symptoms and severity. Often 

such studies are indirectly comparable due to lack of protocol standardisation and 

agreement on the best inclusion and exclusion criteria to recruit patients.  

 

The aim for this first results chapter was two-fold. The first, to focus recruitment on 

patients who are house-bound with severe symptom severity, postulating that the severity 

of gut dysbiosis may be directly linked to extreme fatigue and neurological symptoms in 

these patients. The second, to compare house-bound patients with a house-hold control in 

order to: 

 

- control for environmental factors known to cause population-level variations in 

microbiome data; 

- use 16S targeted gene marker sequencing and whole genome “shotgun” 

metagenomic sequencing to assess for evidence of or any pattern of intestinal 

dysbiosis that may; 

- support conclusion from existing metagenomics studies in ME/CFS, and; 

- identify key bacterial species belonging to a novel “microbial signature” which may 

help define severe ME patients from those mild to moderately affected. 

 

3.3.4 Hypothesis 
 
Severe, house-bound ME/CFS patients have a distinct microbial signature for dysbiosis that 

is reflected by their profile of gut bacteria; the composition and reduction of diversity of 

which, separates them from house-matched healthy controls and when compared to 

existing metagenomics data from the general ME/CFS population.   
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3.2 Materials & Methods 
 

3.2.1 Patients 
 
For the work presented in this chapter, a total of 52 individuals (42 ME/CFS and 10 

controls) were recruited and consented between 2015-2017 to provide faecal samples to 

this study. Of these ME/CFS patients, 17 were severe, house-bound and 25 mild/moderate. 

An additional faecal sample one year on was available in 2017 from 8 previous participants 

(4 severe ME matched to 4 house-hold controls), bringing the total to 60 faecal samples 

processed for microbial DNA extraction and sequencing across 16S and whole genome 

metagenomic platforms.  

 

Prior to any home visits, mild/moderate ME patients were the first participants to be 

recruited and sequenced in 2015 using 16S rDNA V4 sequencing generating “Dataset A”. 

Home visits to severe patients were conducted in 2016 (“Dataset B”) and 2017 (“Dataset 

C”) with modifications made to stool sample collection method that have been used for 

mild/moderate patients (described below). All samples were initially stored at -80oC at St 

Helier Hospital, Carshalton, London. At the end of the study recruitment phase, all samples 

were packaged in dry ice containment and collected by an authorised courier for them to 

be deposited within the Norwich Biorepository. Samples were the accessible from the 

Biorepository to be used in experiments. 

 

- Stool sampling kits 
 

The original stool kit used for recruitment of mild/moderate patients included the following 

items: a ProtocultTM collection device (Product #500 Ability Building Centre, Rochester, MN, 

USA), OMNIGene® GUT stool device (OMR-200, DNA Genotek, ON, Canada), x4 30 ml 

Universal tubes with spatulas, and zipped bags for packaging. Using this method patients 

took samples from their own stool and equally divided as much of the sample as possible 

across the four tubes. As per instructions on the package insert of the OMNIGene® (figure 

3.1.1), patients were asked to transfer equivalent of a pea-sized amount of faeces into the 

yellow tube top and scrape horizontally. After replacing the purple cap, the device is 

shaken back and forth as hard as possible by hand, for a minimum of 30 seconds to allow 

mixing with the stabilising liquid. 
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Figure 3.2.1 Instructions for OMNIGene® GUT collection device used to collect mild/moderate 

ME/CFS samples in 2015. Patients collected their stool using the paper Protocult™ collection device 

(A), and then taking a ‘pea-sized’ spot sample from their stool transferred this to an OMIGene™ 

GUT® tube (B) and followed the visual instructions (1-4) as shown in this figure. The rest of the faecal 

sample was then divided equally across four 30 ml Universal tubes. Images obtained from: 

https://www.dnagenotek.com/us/products/collection-microbiome/omnigene-gut/OMR-200.html 

[assessed 10 March 2019]. 
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- Improvements to stool sample collection in 2017 
 

In 2017 changes were made to improve faecal sample collection to facilitate entire stool 

sample collection for the purposes of homogenisation. This step was particularly necessary 

for preparation of faecal water samples, as spot sampling from different areas of the same 

stool sample has been shown to produce varying results (Gratton et al., 2016a). Severe and 

house-matched participants were instructed to collect their entire faecal sample into a 

device called a FECOTAINER® (AT Medical B.V., Enschede, The Netherlands), figure 2.2.2 no 

sooner than 24 hours before a scheduled home visit, and to keep it in the fridge at 40C in 

double containted in plastic bags provided. This kit also contained an AnaeroGenä 

Compact anaerobic sachet (Cat No. AN0010, Oxoid Ltd., United Kingdom) to activate as 

soon as participants produced their sample to minimise oxygen conditions limiting any 

aerobic growth and activity. On return to the hospital, samples were manually 

homogenised with a sterile autoclaved metal spatula and processed according to their 

downstream application and stored at -80oC until required.  

 

3.2.2 Faecal DNA extraction 
 

The method for DNA extraction from human faeces was obtained from the Hall Lab at 

Quadram Institute Bioscience, with minor adaptions to the manufacturer’s kit protocol. 

Prior to experimenting, faecal DNA extracts were prepared from frozen faecal aliquots that 

had been pre-weighed (~250mg) into a sterile Lysing Matrix E tubes from the FastDNA SPIN 

kit for Soil (Cat. No. 116560200, MP Biomedicals, UK). Samples were stored at -80oC as 

soon as possible on the same day of collection. Earlier samples obtained using the 

OMNIGene GUT device began the exact same process to be described here, instead taking 

250 µl of faecal homogenate. 

 

On the day of the experiment, faecal aliquots were thawed, after which 978 µl sodium 

phosphate buffer and 120 µl MT buffer was added and homogenised using the FastPrep® 

Instrument for a duration of 45 seconds and repeated for a total of 3 cycles. Each cycle was 

separated by placing each sample in ice for 60 seconds to reduce heat. Following the 

mechanical destruction of bacteria cells within the faeces, cell debris and other faecal 

particulate were removed by centrifuging at 14,000 x g, for 15 min. The supernatant was 

transferred into a sterile 2.0 ml Eppendorf tube, to which 250 µl of PPS was added to 

precipitate protein from the solution. The supernatant was transferred in 15 ml tubes 
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containing 1 ml of Binding Matrix and inverted by hand for 2 minutes to allow DNA binding. 

Tubes where then placed in a rack and allowed to settle for 3 minutes after which 500 µl of 

the supernatant was discarded with care not to disturb the settled Binding Matrix. The 

remaining resuspended Binding Matrix solution containing bound DNA was passed through 

a SPIN filter tube at 14,000 x g, for 1 minute. DNA captured on the column was washed 

using DNase-free salt/ethanol wash (SEWS-M). Subsequently, a second dry spin was 

performed and each SPIN filter air dried for 10 minutes at room temperature to remove 

excess alcohol. Finally, DNA was eluted in 50 µl of DNase/Pyrogen free DNA water (DES) 

pre-incubated at 50 degrees to enhance DNA recovery and stored at 4oC short term, or at -

20oC for a longer period. DNA was quantified using Qubit® and Agilent Tapestation. 

 

3.2.3 Acquisition of 16S rRNA gene sequence data 
 
V4 16S rRNA gene sequencing was performed in two batches for mild/moderate patients in 

2015 and severe and house-hold controls in 2017. Following microbial DNA was extraction 

as described above, these samples were sent to sequencing companies for further 

downstream processing as described below:  

 
- Mild/moderate ME/CFS (n=25) 

 

DNA extracted from 25 faecal samples from mild/moderate ME/CFS patients was 

submitted to Animal Health and Veterinary Laboratories Agency (AHVL) for PCR 

amplification of the V4-V5 region of the 16S rRNA gene (primers: U515F, 5’-

GTGYCAGCMGCCGCGGTA-3’; U927R, 5’-CCCGYCAATTCMTTTRAGT-3’) and (Illumina MiSeq) 

sequencing. 16S rRNA gene sequence data were processed using QIIME 1.9 (Caporaso et 

al., 2010). Demultiplexed read files were supplied by the sequencing provider. For each 

read file, paired-end reads were joined using fastq-join (Aronesty, 2011); minimum 

acceptable Phred quality score was Q20; primers were removed from reads using cutadapt 

leaving reads of ~370 nt in length (Martin, 2011). The read files were concatenated and 

OTUs picked using usearch (99 % mapping, similarity, gg_13_8), which also performs 

chimera checking (Edgar, 2010). Sequences were aligned using PyNAST (Caporaso et al., 

2009). Taxonomy was assigned using gg_13_8 (99 %), with annotations for the 

representative sequence set checked and corrected where necessary (e.g. in Greengenes, 

members of the family Rikenellaceae are poorly annotated and newly described 

prokaryotes are not annotated). Singletons and reads representing < 0.001 % of total reads 

were filtered from the OTU table. For descriptions of data in terms of abundance, 
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rarefaction was performed on the OTU table (n = 8,750) so that the number of reads 

compared per sample was identical. 

 

- Severe ME/CFS (n=21) and House-hold controls (n=12) 
 
Faecal DNA extracted from severe house-bound patient and their respective house-hold 

controls were submitted to Novogene® for 16S sequencing. DNA concentration and purity 

were checked on 1% agarose gels. According to the concentration, DNA was diluted to 

1ng/μL using sterile water. The V4 region of the 16S rRNA gene were amplified using 

specific primers, U515: F, 5’-GTGYCAGCMGCCGCGGTA-3’; and U806, R, 5’-

CTACCRGGGTATCTAATCC-3’ (Caporaso et al., 2011). All PCR reactions were carried out with 

Phusion® High-Fidelity PCR Master Mix (New England Biolabs). PCR products stained with 

Sybr Green nucleic acid stain were separated on a 2% agarose gel and bands selected 

between 400-450bp of length. These PCR products were mixed in equidensity ratios. Then, 

the mixture of PCR products was purified with Qiagen Gel Extraction Kit (Qiagen, Germany). 

Libraries were generated using the NEBNext® UltraTM DNA Library Prep Kit for Illumina 

and sequencing performed on the Illumina® MiSeq platform. Paired-end reads was 

assigned to samples based on their unique barcode and truncated by cutting off the 

barcode and primer sequence. Demultiplexed read files were supplied by the sequencing 

provider. 

 

Acquisition of Shallow Shotgun Metagenomic sequence data 
 

- Dataset B 
 

DNA extracted from 11 severe ME/CFS patients and 8 house-matched controls were 

quantified using Qubit® Broad Range Assay and submitted to Dr Gemma Kay at the Bob 

Champion Biomedical Research Building, University of East Anglia, UK, for library 

preparation. An additional sample of containing 20 µl DES H2O was processed alongside the 

faecal samples to act a negative control and to highlight potential kit contamination. 

Illumina library construction was prepped using the Nextera XT DNA kit (Illumina Inc. USA) 

containing barcoding sequences and i5 and i7 primer adaptors. Raw sequencing reads were 

pre-processed using Trimgalore (v 0.4.4) for end trimming and filtered to exclude low-

quality and low-complexity reads. Adaptor sequences were removed using cutadapt 

contained with the Trimgalore wrapper. Human sequences were subtracted from the 

dataset using BBMap 38.06 to align them against the Human reference (hg38), keeping 
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only unaligned reads for further processing. Bacterial composition (relative abundance) 

was obtained from raw sequencing data using MetaPhlAn (v1.7.8). 

 

 



       

 
 122 

 
Table 3.3.1 Summary and descriptions of metagenomic datasets (A-C) collected in 2015, 2016 and 2017.

Dataset Year Study type Sample Size  ME/CFS 
status 

Platform Av. number 
of reads 

Analytical methods & bioinformatics 
tools 

A 2015 16S rRNA 
targeted 
amplicon 
 
U515F, U927R 

n = 25 ME/CFS 
 
No controls 

Mild/ 
moderate 

Illumina® MiSeq 
x2 300 bp 
 
V4 region 

70,769 
(rarefied to 
8,750) 

16S rRNA gene sequence data were processed using 
QIIME 1.9, species annotation by Greengenes 
assigned 99% similarity OTU clustering  
Few Actinobacteria (Bifidobacteria and 
Coriobacteria 

B 2016 “Shallow” 
shotgun 
metagenomics 

n = 19 
 
11 female ME/CFS 
 
8 house-matched 
control 
(7 female, 1 male) 

Severe, 
bed bound 

Illumina® MiSeq  
 
x2 300bp  

960,260 
 
(ranges 253,000 
- 2,168,000) 
 

MetaPhlAn 2.0. 
 
Capacity to determine species level and functional 
capacity  
 
Microbial community analysis performed using 
MEGAN 6.0 

C 2017 16S rRNA 
targeted 
amplicon 
 
U515F; U806R 

n = 33 
 
21* females 
ME/CFS 
 
12* house-matched 
controls 

Severe, 
bed bound 

Illumina® HiSeq 
2500 
x2 250 bp 
 
V4 region 

150,882 
(rarefied to 
47,985) 

QIIME 1.7 
 
97% similarity OTU clustering, species annotation by 
SILVA database 
 
Microbial community analysis performed using 
MEGAN 6.0 
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Sample Summary: 
Dataset A (2015) 

 
 
 

 Status Sex Age DV** Reads Observed OTUs 
28 Mild/Moderate M 54 22 68,165 310 
30 Mild/Moderate F 28 15 58,752 289 
31 Mild/Moderate M 41 24 48,775 142 
32 Mild/Moderate F 65 17 66,839 278 
33 Mild/Moderate M 48 18 65,459 222 
35 Mild/Moderate M 37 21 64,504 284 
37 Mild/Moderate F 60 1 140,262 238 
38 Mild/Moderate F 43 2 91,835 352 
39 Mild/Moderate F 39 3 82,192 338 
40 Mild/Moderate F 44 4 118,137 283 
41 Mild/Moderate F 54 5 77,531 238 
42 Mild/Moderate F 45 6 87,229 318 
43 Mild/Moderate M 47 7 77,101 366 
44 Mild/Moderate F 25 8 106,107 113 
45 Mild/Moderate F 48 10 58,552 332 
46 Mild/Moderate F 72 11 71,712 345 
47 Mild/Moderate F 30 12 61,424 225 
48 Mild/Moderate F 55 13 54,967 336 
49 Mild/Moderate F 33 14 46,834 306 
50 Mild/Moderate M 58 16 68,534 300 
51 Mild/Moderate F 53 19 9,064 229 
52 Mild/Moderate F 27 20 75,622 235 
53 Mild/Moderate F 32 23 76,883 327 
54 Mild/Moderate F 21 26 57,916 216 
55 Mild/Moderate F 59 27 34,851 171 

 
Table 3.3.2 Sample summary of dataset A containing 25 mild/moderate patients (44.72 ± 13.40 

years old). Note: these samples were processed using OMNIGENE gut collection tube prior to DNA 

extraction and 16S gene sequencing. 
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Sample Summary:  
Datasets B & C 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3.3.3  Sample summary of datasets B & C consisting of 17 Severe, house-bound patients 

(42.88 ± 15.16 years old) and 10 house-hold control (55 ± 13.62 years old). Samples obtained 

during 2016 and 2017. This table also highlights the cross over between datasets B and C in terms of 

DNA sequencing technology used to survey the ME microbiome. 

 
 

 Status Sex Age ‘Shallow” 
Shotgun 

      2016 

16S (V4 region) 
 

   2016          2017 

1 Severe F 63 ME_8 F26  
2 Severe F 56 ME_5  F15 
3 Control F 55 CTR_4 F31 F6 
4 Control F 69 CTR_17 F30 F4 
5 Severe F 44   F3 
6 Control F 70   F20 
7 Control F 55 CTR_18  F19 
8 Severe F 38 ME_13  F2 
9 Severe F 21 ME_3 F33 F10 

10 Severe F 37   F9 
11 Control F 64   F11 
12 Severe F 18 ME_12 F27 F7 
13 Severe F 61   F1 
14 Severe F 40   F17 
15 Severe F 54   F18 
16 Severe F 58 ME_1 F21 F13 
17 Control M 60 CTR_2 F22 F14 
18 Severe F 27 ME_6 F23 F12 
19 Control F 60 CTR_16 F28 F8 
20 Severe F 63   F5 
21 Severe F 32 ME_7 F24  
22 Severe F 31 ME_11 F25  
23 Control F 54 CTR_15   
24 Control F 29 CTR_14   
25 Severe F 56 ME_10 F32  
26 Severe F 30 ME_19 F29  
56 Control F 34 CTR_9 F34  
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3.3 Results 
 

3.3.1 16S phylogenetic abundance in mild/moderate ME patients (n=25) 
 

- Dataset A 
 

Phylogenetic abundance data was generated from 21 females and 6 male mild/moderate 

patients. It was not possible to obtain samples from suitable control subjects. Raw 

sequences were trimmed using cutadapt to remove primers. In total, 1, 769, 247 reads 

were generated across 25 samples.  The mean number of paired end (PE) reads at 250bp 

long obtained was 70,770 ±25,581 S.D. per sample. Reads which clustered together with 

99% sequence homology generated a total of 686 Operational Taxonomic Units (OTUs) 

across all samples. Sequenced-based rarefaction curves were produced at 8750 (figure 

3.3.1) and 34000 reads per sample, which demonstrated diversity of all 25 samples was 

covered by sampling at 8750 reads. A minimum number of 2 samples were required for 

each particular OTU to be observed in order for that OTU to be retained. After filtering 

OTUs of less than 0.01% relative abundance, on average, 272 ± 52 SD OTUs were obtained 

per sample. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3.1 Rarefaction curve for the intestinal microbiota of 25 mild/moderate ME patients 

recruited from walk-in appointment at the CFS service. Each sample has been rarefied to 8750 

reads. As the gradient of each curve increases less species are discovered within each sample. The 

higher the curve the greater number of species have been found within that sample. 
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Figure 3.3.2 Alpha diversity plots showing community evenness (Shannon H) A, and richness 

(Chao1, and PD), B and C, of 25 mild/moderate ME/CFS faecal samples derived from dataset A. As 

the gradient of each curve decreases and reaches a plateau the diversity (number of species 

identified) within that sample does not increase.  

  
All samples were rarefied to 8750 reads, which was below the sample with the least 

number of reads, sample DV19 (table 3.3.3). The number of observed “species” 

represented by number of reads clustering with 99% sequence similarity to form unique 

OTUs was used to calculate the alpha diversity within the mild/moderate ME/CFS group. 

Figure 3.3.2 shows the respective curves for community evenness using the Shannon H 

index, and indices for community richness; Choa1 and Phylogenetic Diversity (PD). These 

plots show as the number of reads increases the curve approaches a plateau beyond which 

the diversity of each sample does not increase with increasing number of sequence reads. 

Based on rarefying to 8750 read per sample, Shannon indices produced a value of H = 5.68 

± 0.70 SD, whilst indices for community richness produced 309.92 ± 59.12 SD, and 12.18 ± 

2.20 SD for Choa1 and PD respectively. 

A B 

C 
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Of the 686 OTUs found across all samples, 62 were assigned to bacterial genera using the 

Greengenes database. OTUs which could not be assigned were classified as unknown. The 

relative abundance of all OTUs and assigned OTUs were outputted into Microsoft™ Excel® 

to provide tables at each different taxonomic level from kingdom to the genus level.  Four 

samples DV2,6,7,23 had detectable Archaea ranging from 0.01% - 0.38% of all 

classifications. 

 

- Phylum level observations 
 
Compositional taxonomic analysis based on bacterial phyla (figure 3.3.3) identified 

Firmicutes and Bacteroides as the most abundant members of the microbiota at 49.02% 

and 47.80% respectively. Tenericutes were found in relative high abundance in two samples 

DV7 and DV23, 5.94% and 14.56% respectively. 

 

 
 
Figure 3.3.3 Relative abundance (%) of bacterial phyla provides a community composition profile 

of 25 mild/moderate ME/CFS patients. Bacteroidetes (red) and Firmicutes (turquoise) are the most 

dominant bacterial phyla within all samples 
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- Genus level observations 
 
Genus abundance is the highest taxonomic level that can be achieved in 16S-based 

microbiome studies. On average 41.12 ± 3.62 SD genera (figure 3.3.4) were identified per 

sample, ranging from the lowest, 32 genera in sample DV27, to the highest, 47 genera in 

sample DV2. Four samples were distinguished by high abundance of Prevotella, particularly 

DV4 at 60.27% of all genera present. Few Actinobacteria which include members of 

Bifidobacterium (0.04%), Coriobacteria (0.19%) and Eggerthella (0.02%) were identified 

across all samples. On average, 12.27% ± 8.61 SD of genera (purple bars, fig 3.3.4) were 

classified as unknown. 

 
 

Figure 3.3.4 Genus-level abundance data produced sampling at 8750 reads per sample from faecal 

samples obtained from 25 mild/moderate ME/CFS patients collected in 2015.  
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Figure 3.3.5 Summary of 34 top genera observed in 25 mild/moderate ME/CFS patients based on 

16S V4 region sequencing identification. Circle size relative to percentage abundance. 

 
 
The raw abundance tables were imported into MEGAN 6.0 for composition community 

analysis to visualise and compare each sample with the rest of the group. The top 34 most 

abundant genera are presented in figure 3.3.5. Bacteroides was the most abundant genus 

present in 24 samples at 28.06% ±12.60 SD. This genus was not detected in sample DV27; 

however, this sample had the third lowest number of reads. Faecalibacterium was 

prevalent in almost all samples at 9.27% ± 3.86 SD. No healthy sample control group 

processed at the same time of this sequencing to compare this data to. However, this data 

highlights some qualitative difference between patients that may influence the ME/CFS 

microbiota. For example, Roseburia is more abundant (6.01% ± 4.82 SD) in some patients 

than others ranging from 0.38% to 22.42% RA of the total ME/CFS microbiome. A similar 

pattern was seen for Oscillospira and Ruminoccoccus observed at 3.06% ± 2.04 SD and 

3.54% ± 1.96 SD RA respectively. 

 

Taxonomic profiles for all 25 samples was analysed using MEGAN which performed analysis 

of overall compositional differences samples within the group using multiple comparison 

tests for beta-diversity and applied to Principal Coordinate Analysis (PCoA) using Bray-

Curtis dissimilarity. Near-neighbour network representation was generated to reveal any 

sample grouping (fig 2.3.6).  
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Figure 3.3.6 Principal Co-ordinate Analysis using Bray-Curtis dissimilarity and Nearest-Neighbour 

network analysis comparing all 62 genera across 25 mild/moderate ME/CFS patients. Figures 

created using MEGAN 6.0. Left, PCoA separates samples into clusters, the closer samples cluster 

together the more compositionally similar they are. Right, Nearest-neighbour network groups. 

 
Bray-Curtis is influenced by the most abundant taxa within a sample. For example, DV4, 

DV18, DV19 and DV20 form a discrete cluster due to the higher RA of Prevotella in these 

samples 45% ± 19.72 SD. Other outliers include DV7 represented by 41.39% of unknown 

genera, and DV8 with the highest (35.93%) RA across all samples for Alistipes.  

 

3.3.2 Shallow shotgun metagenomics 
 

- Dataset B 
 

Shotgun metagenomic sequencing of 11 severe, house-bound ME/CFS patients and 8 same  

house-hold healthy controls (HHC) relatives generated FASTQ files accumulating to 19.24 

GB of sequence data from 300 bp, paired end reads from a single lane on the Illumina™ 

MiSeq® platform.  The range of sequence reads obtained was between 230,000 and 

2,168,000 for these samples.  After QC clean up, there were no reads associated with 

sample CNEG-20 which was a blank control to exclude any DNA extraction kit 

contamination and ‘kitome’ effect. A high number of human-associated reads were found 

in all samples ranging from 7-44% of all reads and removed before analysing sequences 

using MetaPhlAn. A total of 152 species of bacteria were observed across all samples of 

which 143 were from within the severe ME/CFS groups compared to 88 found in the HHC 

group. On average the number of species per sample was 38.64 ± 6.28 and 34.62 ± 8.97 in 

ME/CFS and HHCs respectively. 
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- Phylum level observations 
  
Firmicutes were the most abundant bacterial phyla within most samples for patients and 

HHCs, in figure 3.3.7 (turquoise bars) at 58.17% ± 21.6 in ME and 56.11% ± 12.92 SD in 

HHC. Bacteroides were less dominant at 17.90% ±  15.26 SD in ME versus 26.66% 13.54 SD 

in HHC. Actinobacteria (blue bars) were more abundant in ME compared with HHC, at RA of 

14.59% ± 8.41 SD versus 11.72% ± 6.72 respectively. Euryarchaeota (yellow bars) were 

found in 3 ME/CFS samples, the highest RA in 1_ME at 15.89%, and in a single HHC sample, 

4_HHC at 2.05% RA. These samples were not from the same house-hold. Sample 4_HHC 

was also notable for having the highest number of human reads at 43.77% of all 253, 484 

reads generated. After filtering human reads only 169,707 were useable for metagenomic 

characterisation. Table 2.3.2 present summary of number of reads associated with each 

sample. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3.7 Relative abundance of bacterial phyla observed across all 19 samples (severe ME=11, 

HHC=8) using Illumina™ MiSeq® sequencing platform. There are no proportional differences in 

these bacterial phyla  between both groups.
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Figure 3.3.8 Statistical plots for bacterial phyla: Bacteroides, Firmicutes and Actinobacteria in ME 

and HHC. Top left, box plot of all phyla observed, central line represents median percentage of 

group severe vs. house-hold control; error bars indicate max and min values for each observation. 

Top right and bottom, each dot represents a single sample; central line is mean percentage, error 

bars are the standard error (SE). No significant differences.  

  
The RA of Bacteroides, Firmicutes and Actinobacteria were plotted in graphs (figure 3.3.8) 

and statistically analysed with the non-parametric Mann-Whitney test for differences 

between ME and HHC. There were no statistically differences for observed relative 

abundances across the bacterial phyla between ME and HCC at 5% significance level. 
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Figure 3.3.9 : Comparison of relatives abundance (%) of bacterial genera in severe (n=11), 

mild/moderate (n=25) ME/CFS compared with HHCs (n=8).  
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- Genus level observations 

 
Genus-level abundance detail of the severe ME microbiome is of qualitative comparative 

interest to the earlier mild/moderate ME/CFS dataset (figure 2.3.9). A total of 57 bacterial 

genera were identified across severe ME and HHC samples. These observations were 

correlated with bacterial genera observed in mild/moderate ME/CFS, of which 29 genera of 

these were not identified in either severe ME or HHCs. Table 2.3.4 lists the 57 bacterial 

genera found and their RA in Severe ME and HHCs. This approach highlighted possible 

genus-level trends across sample groups. For example, Bacteroides (fig. 3.3.9, brown) 

abundance is follows for the trend M>H>S, at 28.06%, 16.14% and 13.1% respectively.  
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Table 3.3.4 Genus-level abundance data from dataset B. Values expressed in this table are an 

average percentage (%) of the relative abundance (RA) of genera across groups: severe, house-hold, 

mild/moderate A total of 58 genera were observed across all samples from severe patients and 

house-hold controls. Of these, only 34 out of 62 matched to genera from 16S analysis of 

mild/moderate patients (dataset A). ND, not detected 

Bacterial Genus Severe House-Hold Mild Moderate 
Acidaminococcaceae_unclassified 0.0063 0.0000  ND 
Acidaminococcus 0.1592 0.0000 0.09 
Adlercreutzia 0.0927 0.1505  ND 
Akkermansia 3.4569 1.4131 0.01 
Alistipes 2.5854 7.4204 5.17 
Alloscardovia 0.1686 0.0000  ND 
Anaerostipes 0.2074 0.1067 1.23 
Atopobium 0.0192 0.0000  ND 
Bacteroidales_noname 0.2808 0.7948  ND 
Bacteroides 13.110 16.140 28.06 
Barnesiella 0.7925 1.1171 0.49 
Bifidobacterium 10.186 6.5995 0.04 
Bilophila 0.2289 0.0921 0.01 
Blautia 5.9221 5.7447 3.30 
Burkholderiales_noname 0.0000 0.0888  ND 
Butyricicoccus 0.0014 0.0000 0.10 
Butyrivibrio 0.0000 0.6657  ND 
Citrobacter 0.0183 0.0000  ND 
Clostridium 0.9115 0.0079 0.69 
Collinsella 2.7422 4.5425 0.06 
Coprobacillus 0.0822 0.0000 0.02 
Coprococcus 2.8474 2.4623 1.13 
Coriobacteriaceae_noname 0.1021 0.0000  ND 
Dialister 0.8483 0.5147 0.56 
Dorea 1.9255 3.2903 0.37 
Eggerthella 0.9899 0.4304 0.02 
Enterobacter 0.3085 0.0000  ND 
Enterobacteriaceae_noname 0.0177 0.0000  ND 
Enterococcus 0.0285 0.0000  ND 
Epsilon15likevirus 0.0700 0.0000  ND 
Erysipelotrichaceae_noname 0.4662 0.1554  ND 
Escherichia 0.4830 3.1811 0.33 
Eubacterium 12.152 11.868  ND 
Faecalibacterium 2.9294 10.233 9.27 
Flavonifractor 0.0028 0.0000 0.27 
Gordonibacter 0.1350 0.0148  ND 
Holdemania 0.0374 0.0000 0.07 
Klebsiella 2.6349 0.0706  ND 
Lachnospiraceae_noname 0.6953 0.6304 1.39 
Lactobacillus 0.6840 0.0000  ND 
Methanobrevibacter 1.9334 0.5275 0.03 
Methanosphaera 0.0421 0.0000  ND 
Odoribacter 0.0112 0.0076 0.28 
Oscillibacter 0.4695 0.0797  ND 
Parabacteroides 0.9784 1.0373 2.43 
Paraprevotella 0.1379 0.1425 0.18 
Parasutterella 0.0000 0.0079 0.37 
Peptostreptococcaceae_noname 0.2556 0.0000  ND 
Roseburia 2.1468 1.3018 6.01 
Ruminococcaceae_noname 0.0569 0.1169 0.01 
Ruminococcus 11.931 8.5893 3.54 
Scardovia 0.0344 0.0000  ND 
Slackia 0.1176 0.0000  ND 
Streptococcus 2.3592 1.2583 0.39 
Subdoligranulum 10.799 9.0340 0.09 
Sutterella 0.1550 0.1134 0.48 
Turicibacter 0.0208 0.0000 0.06 
Veillonella 0.2164 0.0451  ND 
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The Faecalibacterium genus, shown in pink in this figure, was found lowest in severe ME 

(2.93%) compared with mild/moderate and HHCs at RA of 10.24% and 9.27% respectively. 

Finally, Alistipes spp. (fig. 3.3.9 pale blue) were diminished in Severe ME at 2.59% versus 

7.42% in HHC and 5.17% in the mild/moderate 16S-derived microbiota. 

 

Using the 25 most abundant genera found in severe ME and HHCs, a heatmap was 

generated in MetaPhlAn. In this figure (3.3.10), samples to the right of ME-3 tend to 

feature more controls (6) versus samples to the left are more dominated by ME samples 

with the exception of 2 HHCs. Based on the low number of samples collected in this cohort 

is difficult to identify any findings that distinguish the severe ME microbiome separate from 

HHC. The Bacteroides genus tends to be more abundant in HHCs, whilst Collinsella spp. is 

absent in some ME samples and at low-high abundance in HHCs. In addition, Coprococcus 

spp. is identifiably more abundant (dark blues) in at least 4 of severe ME patients and one 

ME patient higher (red). Notably, Oscillibacter spp. was found present in 8 of the severe ME 

patients whilst only one HHC had this genus. 
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Figure 3.3.10 Heatmap of 25 most abundant bacterial genera seen in severe ME (n=11) and 

matched house-hold controls, HHC (n=8). Genera list (g_name) on the right of map. Red colours 

indicate this genus is present at a higher RA in samples, whereas blue genera are less abundant and 

black indicates absence of this genera. CNEG-20 is water, used as a kit control (kitome) for 

sequencing. 
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- Species level observations 

 
A total of 152 species were classified across all samples using MetaPhlAn 1 in 2016. The 

same raw sequencing data was re- analysed with the more update version of MetaPhlAn 

2.0 in 2018. However, this did not significantly alter the outcome of this data. Table 3.3.5 

summaries the total number reads associated with each sample and the total number of 

species observed in it. DNA concentration was measured and recorded prior to dispatch to 

the sequencing provider who also performed in-house QCs checks for DNA fragment 

length. The lowest quantity of DNA sent for sequencing was 700 ng of total DNA in 20µl 

water, in sample CTR-15. The highest number of observed species was 52 in ME-10, and 

the lowest number 20 in CTR-9.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3.3.5 Sample sequencing statistics for extracted DNA concentration from 250 mg of raw 

faecal stool and number of paired end reads obtained following QC and trimming. This data was 

generated from 20µl of undiluted DNA sent to an external sequencing provider. Number of reads 

obtained after removal of human sequences. Number of species assigned to reads using MetaPhlAn 

2.0. 

Sample DNA (ng/µl) Reads Species 
ME-1 172 1,188,807 44 
CTR-2 196 765,785 40 
ME-3 372 818,307 43 
CTR-4 73 169,707 24 
ME-5 294 1,324,046 41 
ME-6 548 1,468,535 38 
ME-7 76.4 1,258,690 46 
ME-8 468 480,512 23 
CTR-9 137 345,280 20 
ME-10 300 1,038,416 52 
ME-11 47 990,786 37 
ME-12 270 1,222,374 40 
ME-13 65.2 1,267,583 39 
CTR-14 199 344,530 24 
CTR-15 35 1,185,795 40 
CTR-16 324 1,090,871 40 
CTR-17 264 1,511,959 47 
CTR-18 144 873,110 42 
ME-19 78 899,956 22 
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Ü Figure. 3.3.11 Bubble chart summary of 59 bacterial species and 9 genera in 11 severe ME 

patients versus 8 House-Hold Controls. Colours representative of individual genera or species. (A) 

Size of circle is proportional to the relative abundance (RA) of that genus or species with the 

individual total microbiota. (B) Size of circle represent RA values on a square-root scale to reveal 

differences between less abundant and minor members of the intestinal microbiota. 

 
Figure 3.3.11 A and B were produced using MEGAN 6.0 to summarise composition 

differences between species in ME and HHC; which reveals several HHCs had a higher RA of 

Faecalibacterium prausnitzii (pink circles) 10.23% ± 6.04 SD versus 2.93% ± SD 3.15 in 

HHCs. Ruminococcus bromii (brown circles) was higher in 3 of the ME patients; 41.24%, 

23.04% and 33.15% respectively in figure 3.3.11B. This part of the figure also shows 

Bacteroides vulgatus (pale blue circles) was missing is 6 patients compared to just two in 

the HHCs. However, ME-19 had a RA of 36.79% for this species compared to an average of 

2.70% ± 1.62 in across all HHCs. Almost half of the relative abundance of species within 

ME-12 was attributed to Bifidobacterium adolescentis (orange circles, fig.  3.3.11B) at 

45.39% which was absent in most ME patients and only appear in a single HHC at RA of 

3.71% (CTL-17). 
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Ü Figure 3.3.12 Twenty-five most abundant bacterial species across all samples identified using 

MetaPhlAn 2.0 in 2018.  

 

Sequnce read originally analysed in 2017 were re-analysed using a more recent version of 

MetaPhlAN. Additional species were identified in most samples; however, this did not 

exceed 12 per sample. It is important to note that these were not new species and instead 

represented assigning of previously identified species to more samples across both groups. 

A heatmap was generated in Figure 3.3.12 from MetaPhlAn 2.0 to compare the RA of the 

top 25 species which varied the most between patients and HHCs.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.3.13 Status by bacteria genus reveals differences between severe ME and house-matched 

controls for Eggerthella, Faecalibacterium & Oscillibacter. Statistical analysis and graphical output 

completed using RStudio®. 

Genus P value 
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- Statistical comparison of bacterial genera in severe ME versus HHC 
 

Taxonomic abundance tables were analysed using R Studio for significance testing between 

ME and HHC at the genus level. Figure 3.3.13 presents the statistical plots generated for 

this analysis using an unpaired Mann Whitney U test with Benjamin Hochberg p value 

adjustment. This identified three bacterial genera with a p value <0.05. Members of 

Oscillibacteria spp. and Eggerthella spp. were statistically more abundant (p values 0.0183 

and 0.0466, respectively) in the severe ME microbiota compared with the HHC group. 

Conversely, the genus Faecalibacterium were significantly lower (p=0.0184) within the 

severe ME microbiota compared to HHCs. No species belonging to the genus of 

Oscillibacteria or Eggerthella were identified whilst F. prausnitzii was the only species 

found within Faecalibacterium spp.  

 
- Bray-Curtis Dissimilarity Analysis 

 
The beta-diversity between the microbiotas of severe ME and HHCs was calculated using 

MEGAN 6.0. PCoA of taxonomy using Bray-Curtis distances are based on measures of the 

most abundant bacterial taxa within that sample. Figure 3.3.14 the direction of clustering 

of samples and has been labelled with the dominant species within these samples driving 

this spatial separation. Significantly, Facalibacterium prausnitzii emerges as the main 

principle component in most CTR samples. Other discrete clusters are for ME samples 

driven my Ruminoccus bromii and Bacteroides uniformis however, these are explained by 

typically one of two outlier ME samples compared to the rest of the group, see fig. 3.3.11b. 
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Ü Figure. 3.3.14 PCoA analysis using Bray-Curtis dissimilarity to compare compositional 

differences in beta-diversity between severe ME and HHCs groups. Analysis draws conclusion of 

most abundant bacterial species (annotated in figure) associated with separations of samples, e.g. 

Faecalibacterium prausnitzii is more abundant in CTR-2, CTR-4, CTR-9 & CTR-16.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3.15 PCoA analysis using Hellinger distances to measure the difference in compositional 

taxa between severe ME and HHCs. Plot annotated with bacterial species relevant to driving 

separation of samples. 

 

PCoA analysis was also performed using Hellinger distances to separate samples based on 

proportions of taxa observed between each dataset and is considered more representative 

of proportional differences between taxa between groups of samples. Sample which 

cluster together are more compositional similar. Another standard tool for microbial 

community analysis is Unweighted Pair Group Method with Arithmetic Mean (UPGMA) 

based on UniFrac distances which is a hierarchical clustering method for sample 

classification used in ecology studies. Samples with the closest distance cluster together as 

a node. Unweighted UPGMA (figure 3.3.16A) considers the clustering of samples on 

composition alone, whilst the weighted version (figure 3.3.16B) consider both abundance 

and composition. 
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Figure 3.3.16 UPGMA clustering unweighted (A) versus (B) weighted UniFrac distances performed 

in MEGAN using severe ME and HHC samples. Matched severe ME (red circles), unmatched severe 

ME (blue circles); matched house-hold controls (green triangles); negative control (yellow circle). 

 
 

- Comparison of severe ME and HHC core microbiomes 
  

Core microbiomes were calculated as a feature of MEGAN 6.0 using a sample threshold of 

50% and class threshold of 1%. This analysis provided an interesting output and revealed a 

distinct difference in the number of species determining the core microbiome in patients 

compared with HHCs. Patients have 6 members of a core microbiota (fig 3.3.17A), 

represented by Bacteroides uniformis, Verrucomicrobiales, Bifidobacterium longum, 

Eubacterium spp., Dorea spp., Ruminococcus spp. and Subdoligranulum spp. Figure 3.3.17B 

shows there are 8 members within the core microbiome of HHCs distinct from ME and 

include Bacteroides vulgatus, Alistipes putredinis, Streptococcus salivarius, Coprococcus 

comes, Dorea longicatena, Ruminococcus bromii, Faecalbacterium prausnitzii, and 

Ruminococcus bromii. 
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Figure 3.3.17 Phylogenetic trees featuring the members of bacterial taxa identified as part of a 

core microbiome within 11 severe ME sample and 8 HHCs. Size of circle is proportional to the 

relative abundance of taxa within these samples. A: represents common features shared between 

11 severe, house-bound ME patients. B: represents 8 house-hold controls related to severe, house-

bound patients. 

 

A 
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Figure 3.3.18 Phylogenetic tree representative the comparison between the shared core 

microbiome of 11 severe patients and 8 house-hold controls. Colours and size of circles are 

proportional of the RA contributing to the microbiome. Patients are in light blue versus HHCs in 

purple.  

 
Figure 3.3.18 provides shared features of a core microbiome in patients and HHCs 

compares the compositions of these members between groups. For example, ME (light 

blue) is less abundant in Bacteroides vulgatus, Alistipes putredinis, Coprococcus comes, 

Faecalibacterium prausnitzii, and Ruminococcus bromii but highly more represented by 

Eubacterium spp.  
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16S phylogenetic abundance in severe ME and HHCs 
 

- Dataset C 
 

This final data provided insight into the 16S V4 region microbiome of 17 female severe, 

house bound patients and 8 HHCs recruited in 2016/2017 using the enhanced methods for 

faecal sample collection which required the entire intact stool and was protect using 

Anaerogen™ Compact® sachet to limit oxygen exposure. Left over sample from the 

previous year (2016) in conjunction with additional samples produced in 2017 available 

from 4 patients and their respective HHCs bringing the total number of samples to 21 ME 

versus 12 HHC.  

 

Table 2.3.6 shows faecal DNA extraction yield was notably lower in samples that had been 

stored in the -800C freezer. The minimum concentration yielded was 12 ng/µl in a total 

volume of 65 µl of ddH2O.  The average number of reads per sample was 150,882 ± 35,890.  

A total 2520 OTUs were observed across all samples. Of these 2282 (figure 3.3.19) were 

clustered together with ≥97% DNA sequence similarity and annotated to 866.15±75.80 SD 

bacterial genera across both groups. OTU abundance was normalised corresponded to 

sample F4 with the least number of reads at 47,985. On average the number of genera 

observed per sample in each group was 877±56.40 SD in ME versus 847±108 SD in HHCs. 
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Table 3.3.6 Summary of sample status and number of paired-end reads, including quality score 

(Q20 and Q30), DNA concentration, GC% content obtained per sample from 33 samples supplied 

to sequencing provider.  

 
 
 
 
 
 
 
 
 
 
 

Sample Status DNA 
(ng/µl) 

Year Reads Ave 
Len(nt) 

Q20 Q30 GC% Assigned 
OTUs 

F1 ME 803 2017 243,161 253 99.34 98.68 53.14 910 
F2 ME 466 2017 163,179 253 99.37 98.71 53.9 926 
F3 ME 731 2017 223,279 253 99.36 98.71 53.39 877 
F4 HHC 448 2017 47,985 253 99.34 98.68 55.47 467 
F5 ME 648 2017 222,044 253 99.4 98.77 54.03 932 
F6 HHC 610 2017 182,173 253 99.37 98.73 52.68 825 
F7 ME 515 2017 150,931 253 99.36 98.72 54.25 865 
F8 HHC 544 2017 195,424 253 99.39 98.74 52.95 903 
F9 ME 403 2017 117,136 253 99.36 98.7 53.04 934 
F10 ME 526 2017 109,282 253 99.37 98.71 52.67 842 
F11 HHC 2154 2017 172,826 253 99.4 98.78 53.13 1265 
F12 ME 244 2017 166,377 253 99.35 98.7 52.21 805 
F13 ME 171 2017 213,772 253 99.33 98.65 53.12 896 
F14 HHC 978 2017 135,073 253 99.34 98.66 53.49 935 
F15 ME 326 2017 188,528 253 99.34 98.68 53.41 915 
F17 ME 233 2017 219,965 253 99.37 98.71 55.02 881 
F18 ME 822 2017 163,722 253 99.37 98.72 52.89 799 
F19 HHC 576 2017 116,316 253 99.36 98.71 53.56 884 
F20 HHC 476 2017 171,177 253 99.35 98.68 53.21 894 
F21 ME 336 2016 107,094 253 99.36 98.68 53.18 876 
F22 HHC 385 2016 101,151 253 99.36 98.69 52.99 849 
F23 ME 147 2016 150,529 253 99.38 98.75 53.47 1215 
F24 ME 90.2 2016 148,620 253 99.34 98.67 52.56 812 
F25 ME 66.5 2016 196,539 253 99.35 98.68 53.86 830 
F26 ME 44.9 2016 141,569 253 99.36 98.7 54.11 823 
F27 ME 466 2016 190,187 253 99.33 98.66 53.85 785 
F28 HHC 454 2016 92,279 253 99.38 98.73 53.18 782 
F29 ME 12 2016 159,789 253 99.4 98.77 53.21 859 
F30 HHC 351 2016 144,861 253 99.38 98.73 52.91 732 
F31 HHC 672 2016 101,084 253 99.37 98.71 53.35 812 
F32 ME 237 2016 159,332 253 99.37 98.71 53.25 794 
F33 ME 183 2016 91,557 253 99.35 98.68 53 843 
F34 HHC 29.2 2016 84,446 253 99.36 98.7 52.89 816 
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Figure. 3.3.19 Venn diagram of observed OTUs in severe ME (n=21) and HHCs (n=12) samples. 

Values in overlapping parts represent common OTUs. The numbers refer to specific OTUs unique to 

that sample group. 

 

Rarefaction curves were plotted for each sample (figure 3.3.20A) using reads rarefied to 

47,985 reads. As the number of sequenced reads increases the number of observed species 

gradually reaches a plateau. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3.20 Rarefaction curves per sample (A) and averaged species abundance (B) and alpha 
diversity (C) measured using the Shannon Index, H.  

Severe ME 
HHC 
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Figure 3.3.21 WPGMA cluster analysis using weighted UniFrac distances to reveal hierarchical clustering of samples based on composition and relative abundance of bacterial 
phyla in 21 severe ME patients and 12 House-Hold Controls. Weighted pair group method with arithmetic mean (WPGMA) is a hierarchical clustering tool used in ecological studies 
to classify samples.  The clustering tree (left) is constructed on the basis of sequence similarity among different samples. The Weighted Unifrac Distance is calculated as an average 
between clusters of samples with similar sequences forming a node, followed by branching and clustering of samples with more distant sequences.

Severe ME 
 

House-hold control 
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Figure 3.3.22 Box plot of Alpha Diversity indices between 21 severe ME patients and 12 House-

Hold Controls using the Shannon (H) index. Plot highlights no intra-individual sample differences for 

species diversity within patient and control groups. Diversity of severe ME appears no different from 

house-hold control samples. 

 
Alpha diversity is used to assess the diversity of microbial composition. This was performed on this 

dataset using the cut-off of 45,995 reads per sample assigned to OTUs at 97% similarity in DNA 

sequencing. Classification of these OTUs provides microbial composition. The Shannon H index 

measures microbial composition in each individual sample (figure 3.3.20C). The difference in H 

indices obtained from samples within both groups, severe ME and HHCs are presented in figure. 

3.3.22.T-test and Wilcox tests were performed on this data and showed no significant difference 

between these groups in terms of microbial composition. 

 
- Phylum level observations  

 
Weighted UniFrac distances were applied to PGMA to visualise clustering of samples at the 

phylum level. Figure 3.3.21 is the output from this analysis and shows a proportion of 

severe ME patients cluster at this level. However, averaging the RA of phyla between 

groups shows there were no significant observations in terms of RA at the phylum level. 

Firmicutes, Bacteroides, Proteobacteria and Actinobacteria were observed the most 

abundant bacterial phyla in that order within both groups (figure 3.3.23).  

 

 

 



 

 
 

153 

 

 

 
 
 

 
 
 

 
 
 
 
 

 
 
 

 

Figure 3.3.23 Relative abundance ratio of bacterial phyla observed in severe ME versus HHC. 

“Healthy” refers to House-Hold Controls (HHCs). There is no significant or observable difference in 

the proportions of bacterial phyla comparing severe ME with a respective house-hold control. 

 
 

- Genus level observations  
 

The abundance of the most dominant 35 genera among all samples was investigated in 

terms of distribution between severe patients and HHCs. The majority of the most 

dominant genera were found within Firmicutes. This was based on the analysis of clustering 

of samples as well as taxa.  Interestingly the most abundant dominant genera were found 

in individual severe ME samples, including Holdemanella, Streptococcus, Anaerostipes, 

Prevotella, Dialister, Bifidobacterium, Subdoligranulum, Collinsella, Lachnospiraceae, Dorea, 

Escherichia-Shigella and Mucilaginibacter. 
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Figure 3.3.24 Heatmap of relative abundance of the most dominant genera in 21 severe ME versus 

12 HHCs. The abundance distribution of the dominant 35 genera among all samples was displayed in 

this species abundance heatmap. Based on the clustering results of samples and taxa, samples may 

be clustered or not according to their similarity or differences, observed in this heatmap. Names on 

right side of heatmap represent bacterial genus. The absolute value of Z represents the distance 

between the raw score and the mean of the standard deviation across all samples in that group. Z is 

negative (blue) when the raw score is below the mean and vice versa when the score is above the 

group mean (red) for that sample. 

 
 

- Statistical analyses 
 
Principle component analysis (PCA) uses complete multivariate data based on OTUs from 

each sample to compare the structure of the data from the two groups. PC1 (17.19%) and 

PC2 (PC 7.42%) in figure 3.3.25 show the maximum variation in this data. The similar the 

microbial composition between samples, the closer the distance corresponding to their 

position of the plot. Most samples cluster together suggesting a similar microbial 

composition is shared in both groups. However, four patients and one HHC are 

compositional distinct from this cluster and appear as outliers. 
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Figure 3.3.25 Principal Component analysis based on differences of composition of assigned OTUs 

to bacterial taxa in 21 severe ME patients and 12 HHCs. Each dot represents a sample plotted 

against principal components, PC1 (17.19%) versus PC2 (7.42%). Samples which share a similar 

community composition of bacteria, the closer they are represented on the plot. Based on similar 

group clustering of ME and HHC samples, plot reveals no difference between the beta-diversity of 

patient and control group. 

 
 
A series of comparisons between patients and HHCs using ecological indices explored in 

PCoA plots using Bray-Curtis dissimilarity, Chi-Square and Goodall similarity index to 

determine pair-wise similarity between observations of composite multivariate OTU 

datasets in the two groups. As discussed earlier, Bray-Curtis measures focus on the most 

abundant bacterial taxa, which were found to be Bacterdoides vulgatus, Turicibacter spp. 

and Clostridium celatum. Patients in the plot (figure 3.3.26) are represented by dark blue 

red are matched, whilst un-matched ME patients are the dark blue circles. All HHCs (green 

triangles) are matched to their respective severe ME patients.  
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Figure 3.3.26 PCoA using Bray-Curtis distances to separate 21 severe ME patients from 12 HHCs 

High species composition similarity between samples are plotted closer together. There appears to 

be a reduced similarity comparing between severe ME patient samples, compared to both 

unmatched and house-hold controls which appear much more similar to one another. Red circles, 

matched severe ME; dark blue circles, unmatched severe ME; green triangles, house-hold controls. 

Plot annotated with bacterial species relevant to driving separation of samples. 

 
MEGAN 6.0 was also used to compute PCoA plots using Chi-Square distances and the 

Goodall’s similarity index. The former (figure 3.3.27) has the added advantage over Bray-

Curtis for considering the differences in proportions of the taxa instead of summarising the 

most abundant. Using this method, the same bacterial taxa emerge samples in the 

respective region of the plot. In both methods, un-matched ME patients cluster more 

closely as do HHCs with exception to CRL-4, -22 and -34. 
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Figure 3.3.27 PCoA plot using Chi-Square distance separation between 21 severe ME patients and 

12 HHCs. Conventional unmatched controls (blue) cluster together revealing similar proportions of 

bacterial taxa. Contrastingly, severe ME samples (red) display more dissimilarity within their own 

group and with their respective House-Hold control (HHC), green triangles. Fewer than expected 

HHCs share similar proportions of the same bacterial taxa identified in their ME patient counterpart. 
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Figure 3.3.28 PCoA plot using Goodall’s similarity index to compare 21 severe ME patients and 12 

HHCs. This measure assigns greater similarity between severe ME (red) and HHCs (green) identifying 

the sharing of rarer bacterial genera regardless of the high abundance of other genera. These less 

represented genera found in severe ME and HHCS are much less likely to be found in samples from 

the conventional (unmatched) control group. 

 
Goodall’s similarity index (figure 3.3.28) is an non-parametric measure designed to examine 

pairwise similarity between observations of composite multivariate data and is used to give 

more weight to differences between rarer bacterial taxa rather than comparing the most 

abundant genera within a group (Mitra et al., 2010). This had the dramatic effect of 

reducing the clustering of samples compared to the other PCoA plots. Finally, UPGMA was 

used to visualise the distances between the clustering of samples according to the 

unweighted and weighted UniFrac method and is frequently used to compare 

microbiological community structures. In contrast to Bray-Curtis, the relative relatedness of 

community members by observation of phylogenetic distances between observe species 

within a sample is used to compare samples. This analysis was performed using MEGAN 6.0 

and presented in figures 3.3.29A (unweighted) and 3.3.29B (weighted). Unweighted only 

accounts for clustering of OTUs compared to weighted which considers the RA in addition.  
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A,    Unweighted 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B,    Weighted 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3.29 UPGMA clustering based on unweighed (A) and weighted UniFrac (B) distances 

between 21 severe ME patients and 12 HHCs. Analysis represents the comparing of microbial 

ecological communities across all samples using phylogenetic distances to generate a tree. 

Unweighted corresponds to differences in low-abundance taxa, whereas weighted calculates branch 

length according to the observed abundance of shared and unshared bacterial taxa across both 

groups and is less sensitive to lower abundance taxa.  Red circles, matched severe ME; dark blue 

circles, unmatched severe ME; green triangles, house-hold controls. 
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A 

B 

- Species variation between severe ME and HHC 
 

T-test was performed to determine species with significant variation between groups (p 

value < 0.05) at various taxonomic ranks including phylum, class, order, family, genus, and 

species. 

 

Figure 3.3.30 shows the significant species variation in abundance between both groups. 

The class of Bacilli spp. appear more (p = 0.004) in severe ME. Conversely, the phylum 

Sphingobacteria was higher (p = 0.045) in the HHC group.  Significant intra-group variation 

were detected using MetaStat produced in RStudio which used multiple hypothesis-test for 

sparsely sampled features and Benjamin Hochberg false discovery rate (FDR). Fusobacteria 

spp. emerged from this analysis as significant (q < 0.05) in severe ME patients.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 3.3.30 The bacterial phylum, Fusobacteria are significantly more varied in ME and absent in 

HHCs (A) Intergroup variation: left panel, each bar represents the mean value of the abundance in 

each group of the species showing significant between group variation. The right panel shows the 

confidence interval between these group variations. The centre each circle represents the difference 

of the mean value. (B) Intra-group variation detected Fusobacteria were significantly (q <0.05) more 

varied within patient compared to HHCs were they were absent. 
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As a final summary of this data, MEGAN was used to generate a phylogenetic tree (figure 

3.3.31) of the top 10 most RA genera across also samples and to highlight the relative 

contribution these have within the two groups. This revealed Collinsella spp., Blautia spp. 

and Lachnospiraceae spp. were more common in some patients (fig. 3.3.32). Conversely, 

Bifidobacterium spp., Subdoligranulum spp. were more common in HHCs. Interestingly, 

Faecalibacterium spp. was similarly abundant in both groups. 
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Figure 3.3.31 Top 10 bacteria genera found common in 21 severe ME patients and 12 HHCS. The size of circle 

represents the size of its relative abundance in samples. Each colour represents a sample group and the 

proportion of dominance that taxa has within the sample group. The first number below the taxonomic name 

represents the percentage in the whole taxon, while the second number represents the percentage in the 

selected taxon.  Tree highlights no observable differences between these top 10 genera in patients and HHCs; 

Collinsella; Bifidobacterium; Bacteroides; Clostridium; Blautia; Lachnospiraceae; Roseburia; Faecalibacterium 

Subdoligranulum; Turicibacter.

Severe ME 
 

House-Hold Control 
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Ü  Figure 3.3.32 Bubble plot summary of 21 selected genera across 21 severe ME patients and 12 

HHCs. Analysis provides individual sample summary of bacterial abundance. There are no obvious 

differences in abundance of these shared genera between patients and HHCs. Plot generated using 

MEGAN 6.0. Colour corresponds to bacterial genera listed to the left. Size of bubble given 

proportional the square root scale of the relative abundance in each sample.  

 
3.4 Discussion 
 
The initial design and concept for this microbiome study was conceived in late 2013. At this 

time there was very little published guidance on designing the perfect microbiome study. 

The overwhelming majority of intestinal microbiome research uses faecal samples 

collected by the participant and DNA extracted using a range of commercially available kits.  

Since 2013 several reports have highlighted that sample collection represents a crucial step 

in ensuring uncompromised sample integrity and that stability is maintained for 

downstream application of Next-Generation Sequencing (NGS) (Panek et al., 2018). Prompt 

downstream processing of faecal samples should be completed within 2-3 hours with 

immediate stabilisation for longer term storage (Panek et al., 2018). Relatively short term 

exposure to room temperature for up to 2 h prior to DNA extraction does not affect the 

stability of the microbiota composition according to comparison with samples that had 

been frozen immediately (Guo et al., 2016).  

 

Freezing the faecal sample at -800C as soon as possible after collection is regarded as the 

most appropriate method for preserving microbial composition (Choo et al., 2015). This 

was not possible considering the majority of samples were obtained from house-bound 

patients who had collected their sample within 24 hrs of a scheduled home visit. Last 

minute house visits could not be conducted to minimise this time because of the 150-mile 

distance between the research laboratory and patients living in the South London area. 

Instead patients were asked to store their sample in the fridge until collection. 

Refrigeration of up to 72 hours has been shown not to adversely affect the microbiota 

diversity of composition and is reassuring that this covers the time required to collect the 

faecal samples from the patients home (Choo et al., 2015). However, all samples were left 

without refrigeration between collection from the patient’s home and delivery to the 

hospital laboratory, before storing at -800C. The time delay was dependent on a number of 

factors including traffic delays and distances between patient’s homes and the hospital and 

could be between 1-6 hrs until the sample was frozen may contribute to changes microbial 

composition. This study also praised OMNIgene GUT® as an alternative method to 
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refrigeration. These devices contain a patented stabilisation mixture and where initially 

used in 2015 for the collection of faecal samples from 25 mild/moderate patients in dataset 

A. Early attempts to extract faecal DNA from  -800C frozen OMNIgene GUT devices failed to 

produce a readable concentration of DNA using the MOBIO Powersoil® DNA extraction kit 

and Nanodrop. Instead, the FastDNA® Spin kit for soil was found to extract the minimum 

5ng/µl for PCR 16S V4 amplification performed by the sequence provider. 

 

Storage of the OMNIGene GUT at -800C is only recommended up to 1 month (DNAGenotek, 

2017). Samples from mild/moderate patients (dataset A) were kept at the hospital at -800C 

for much longer (~9 months) before they were received at the institute for DNA extraction. 

Notably, these samples have very low abundance of Actinobacteria which includes 

members of Bifidobacterium spp. and Coriobacteria spp. This observation was found not to 

be the case in dataset C (fig. 3.3.7) in severe ME patients who had 14.59±8.41% RA of 

Actinobacteria and may be regarded as a technical artefact.  The turnaround time dataset C 

was much quicker, as these samples had their DNA extract within 3 months of being stored 

at -800C. Interestingly Table 3.3.6 shows some of samples from 2016 collections yielded a 

lower DNA concentration compared to 2017 samples. Studies of long-term storage of 

faecal material at -800C has been investigated for samples stored for 2 years and 14 year 

showing they can be used for 16S but with a reduction in observed OTUs and increased 

abundance for Lactobacillus spp. and Staphylococcus spp., none of which were detected in 

our mild/moderate ME patients (Kia et al., 2016; Shaw et al., 2016; Vandeputte et al., 

2017). Long term freezing causes substantial DNA shearing compared to fresh faecal 

extractions and may have greater implications for shotgun metagenomic studies which 

require high quality input DNA (Kia et al., 2016).  

  

Following sample collection and storage, several processing steps can introduce data bias 

caused by the DNA extraction protocol and during 16S rDNA library preparation (Rintala et 

al., 2017). For example, detection of Gram-positive bacteria, particularly Bifidobacterium 

spp. requires adequate bead-beating during sample DNA extraction and optimisation using 

modified primers targeting V1-V3 regions (Walker et al., 2015). 16S microbiota profiles are 

based on the reported relative read abundances of OTUs derived from 16S amplicons; thus 

PCR amplified DNA can only be representative of the quantitative abundance of all bacteria 

in faeces if this step is efficient for all strains of bacteria (Wintzingerode et al., 1997). 

Universal primers U515F and U927R/U806R in datasets A and C respectively, were chosen 
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to span the 16S V4-V5 region for highest taxonomic resolution of bacterial and archaeal 

ribosomal gene (Wang & Qian, 2009). This leads to the assumption that the PCR primers 

have equal access for hybridisation to a specific 16S-targed V region in all bacteria, 

however DNA extraction also determines this property depending on how sufficiently the 

extraction kit causes bacterial cell disruption in order to access the genetic material 

(Wintzingerode et al., 1997).  

 

Since 16S-based microbiome studies are restricted to short nucleotide (nt) read lengths 

(100-300bp) on the Illumina platform (compared to 250-400bp using 454 methods), the 

outcome of the relative abundance of amplicons can also favour different bacteria 

depending which variable region of the 16S gene is targeted and the specificity of primer 

sets used. For example, primers spanning hypervariable regions V1-V2 do not adequately 

reproduce proportional abundance of reads that reflect the contribution of all species in 

the female genital tract compared to the V3-V4 region which identifies a greater number of 

taxa (Graspeuntner et al., 2018). There is also consensus that targeting V4-V5 regions in 

intestinal microbiome studies produces a greater number of recognised OTUs and 

observed microbial diversity compared to V3-V4 using the Shannon H index (Rintala et al., 

2017).  Elsewhere, sequencing regions V4-V6 have been suggested to represent the 

majority of diversity of bacterial phyla for taxonomic classification (Yang et al., 2016).  

 

Amplicon sequencing is suggested to be more sensitive to lower abundant species since 

utilities a PCR application step in preparation of a library of amplicons to be sequenced 

(Edgar, 2017). However, primer bias and mismatches can occur during PCR amplification 

and can bias the relative abundances of amplicon produced in the library (Robinson et al., 

2016). Although datasets A and C are 16S-derived sequencing of the same V4 region they 

were collected by different methods and do not contain overlapping samples to determine 

the batch effect and therefore cannot be directly compared. Moreover, the library 

preparation of these datasets use different PCR protocols provided by the sequencing 

provider at the time. It has been suggested PCR primer length, amplicon length, reaction 

temperatures and number of cycles, and different polymerases can influence the efficiency 

for amplification and shown to provide contrasting estimates for community structure (Wu 

et al., 2010).  
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The design of the perfect 16S study cannot be achieved because different microbiotas have 

vastly different microbial structures which makes deciding the most suitable V-region, set 

of optimal primers and recommended read length a substantial challenge to accurately 

reflect the correct community profile. Mock microbial community analysis using 16S 

amplicon read abundances have been independently compared with shotgun metagenomic 

sequences showing significant deviation away from the 16S estimated bacterial 

composition compared to the known community structure (Edgar, 2017). To obtain 

accurate measurement of the full taxonomic diversity within a complex community sample 

such as human faeces, near complete characterisation of the 16S gene is needed to assign 

specific bacterial species (Yarza et al., 2014). Therefore species-level abundances using 16S 

have no meaningful use because they are based on such short read lengths of 250-300bp 

compared to the available length of the 16S rRNA is around 1400-1900bp (Karst et al., 

2018) Closely related bacteria are more difficult to resolve using V4 alone. To that end the 

species-level assignment given in figure 3.3.31 are not reliable based on this sequence 

information. Another problem encountered can be 16S copy number variation which will 

bias the PCR amplification step and influence the predicted microbial composition (Edgar, 

2017). Moreover, the choice of storage method, DNA extraction protocol, primer design 

and sequencing platform will influence the outcome of the result. For consistency, the 16S-

derived microbiota in datasets A and C were processed using the same extraction kit and 

targeted at the V4 of 16S PCR amplification. In future, to avoid any batch effects samples 

must be analysed together using the same experimental PCR protocols, conditions and at 

the same time.  

 

Dataset C produced on average 80,122 more reads per sample than those in dataset A, 

which allowed over 4 times the number of classifiable OTUs to be taxonomically assigned. 

This fact demonstrates how the collection method, primer sequences, PCR protocols and 

sequencing length can affect data output and has been explored more in depth using mock 

microbial populations highlight a need for a standardised approach (Fouhy et al., 2016).  

Alpha diversity (figure 3.3.22) and beta diversity measurements were not found to be 

significantly different between Severe ME patients and HHCs. Actinobacteria were present 

in all samples (figure 3.3.21), as they were also in the “shallow” shotgun, dataset B (figure 

3.3.7), adding further convincing evidence that the lack of these species in dataset A, 

mild/moderate patients is not a genuine finding. In contrast to findings from Giloteaux et 

al. (2016), the number of observed species in patients was higher than in HHC (figure 
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3.3.20A and 3.3.20B). A key difference between this study and theirs are the inclusion of 

controls living within the same house-hold of the patient. It was expected that similar 

features in microbiota populations would be shared between the microbiotas of patient 

and their respective HHC. It was expected PCoA analysis would show closer distances 

between patient and their matched control based on overall community composition. The 

reverse is found in figures 3.3.26 and 3.3.27 which show house-hold controls are more 

compositionally related to un-matched ME patients. Goodall’s similarity test was chosen as 

it specifically considers the fact these samples are paired. It can be seen from figure 3.3.28 

that the patient and HHC group are positioned in an overlapping ring formation with some 

unmatched patients within the centre of the plot. To that end, given the description of this 

analysis by (Mitra et al., 2010), Goodall dissimilarity more accurately reflects the 

relationship between severe ME and HHCs. The lack of forming discrete clusters within this 

PCoA plot also demonstrates how compositionally diverse both patients and HHCs from 

other members within their respective group. UPGMA UniFrac considers the presence or 

absence of OTUs distances and did show clustering of some severe ME patient that 

matched HHCs (fig. 3.3.29) (Jovel et al., 2016). However, UniFrac is a method of 

determining the phylogenetic relationship tree structures compared between samples, and 

so given the shallow sequencing and number of observed OTUs this method is perhaps not 

the most suited to this data, whereas non-phylogenetic measures of ß-diversity, including 

Bray-Curtis (fig 3.3.26) which does account for zero abundances within the raw data, but is 

still heavily influenced by more dominant OTUs which overshadow smaller changes in less 

abundant, rarer OTUs (see supplementary S2.1 and S2.2) (Bray & Curtis, 1957; Jovel et al., 

2016). Among the top 10 genera highlighted from MEGAN in figure 2.3.31 that shared 

between ME and HHC, includes Lachnospiraceae, Roseburia, and Faecalibacterium, that 

have previously been associated with the ME/CFS (Giloteaux et al., 2016; Nagy-Szakal et al., 

2017). Lachnospiraceae the family to which the genus Lactonifactor belongs, found to 

increased x20 in Norwegian CFS patients and x40 in Belgian CFS patient compared to 

healthy controls, did not differ between patients and HHCs in dataset B (table 3.3.4) and 

dataset C (fig. 3.3.11B) (Fremont et al., 2013).  

 

Finally, dataset C did not reproduce findings from dataset B, for significant changes in the 

relative abundances for Faecalibacterium prausnitzii, Oscillibacter and Eggerthella. 

Fusobacteria were associated with 1-3 OTUs (figure. 2.3.30) per sample, in patients only. 

These were samples ME_5, ME_17, ME_27 and ME_29. Fusobacterium are increased in 
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colorectal cancer (CRC) and have diagnostic relevance as an additional microbial marker for 

faecal immunochemical testing patient faeces increasing sensitivity of testing to 92.3% 

from 73.1% to supplement diagnosis of advanced  CRC (Wong et al., 2017). 

 

- Shotgun metagenomics attempt 
 

In order to overcome the potential biases of 16S gene marker approaches and achieve 

better taxonomic resolution, shotgun metagenomics (dataset B) was attempted from 2016 

visits to 11 house-bound patients. Unfortunately, the term “shallow” shotgun 

metagenomics was adopted to describe the low sequencing depth of reads with this 

dataset. Lipkin et al. 2017, acquired on average 7GB of sequence data per sample 

equivalent to around 35 million reads, compared to our lowest sample which had 253, 484 

raw sequencing reads (Nagy-Szakal et al., 2017). This may partly be due to MiSeq platform 

used to sequence these samples which is limited to 15GB of data with a maximum output 

of 44-50 million 300bp PE sequencing reads with the MiSeq Reagent Kit v3 (Illumina, 2015). 

It is difficult to advise exactly how many reads are required to generate an accurate 

representation of the total microbiome which also includes members of archaea, fungi and 

viruses. Cost is a significant factor per sequencing run, individual coverage of these samples 

is balanced by the total number of samples processed simultaneously in each run by 

multiplexing up to 96 or 384 samples at a time using dual indexes (barcodes) during library 

preparation (Quince et al., 2017). Based on the number of reads obtained, this dataset 

exceeds both average number of reads for 16S in the other datasets. Significantly as it is 

SMS, it is not restricted to the 16S gene and therefore contains random sequencing across 

the total microbiome which MetaPlAn has compared against reference genomes available  

from (www.bitbucket.org/biobakey/metaphlan2). This has had some benefit in being able 

to apply a species-level identification to dataset B.  

 

As highlighted already, application of SMS to metagenomic studies of diverse microbiotas 

requires high-quality molecular weight DNA. This aspect was not considered during 

preparation of dataset B; at the time DNA was quantified using Qubit, which uses a 

fluorescent dye to hybridise with the sample DNA and is considered superior at providing 

more accurate concentration than the NanoDrop. Added to this, lack of sequencing depth 

has since been explained by the fact that libraries were prepped using Illumina® Nextera 

XT, which is recommended for use in low-biomass starting material of 1ng/µl. As with 16S 

studies, the choice of method for preparation of library preparation for shotgun 
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metagenomic sequence data has been evaluated in faecal samples which show Nextera XT 

performs poorly in these samples with 28% low quality reads compared the more expense 

Illumina TruSeq PCR-free kits  (Jones et al., 2015). The low DNA input for Nextera XT is 

possible because of a whole genome amplification (WGA) step, but given the diversity of 

the intestinal microbiome, there will be the familiar amplification biases that will also cause 

the RAs of different bacteria to change (Probst et al., 2015). It has been proposed that PCR-

free approaches to metagenomic library prep are implemented, however, these are more 

expensive but will likely be more representation of the true community structure of the 

faecal microbiota (Quince et al., 2017). 

 

Another explanation for the loss of sequencing depth may be a result of the beat betting 

used by the FastDNA® spin kit which would create shortened DNA fragments that are 

suitable enough for 16S, but not for shotgun library preparation with the Nextera XT kit 

which uses a technique called “tagmentation” (Quince et al., 2017). This causes enzymatic 

fragmentation of sample DNA and transfers transposons (tags) onto the both ends of 

dsDNA to allow partial overhang of Illumina® sequencing adaptors. The concentration of 

the kit’s reagents and the concentration of sample DNA can limit transposome complex 

transposase activity (figure 3.4.1) and tagging of DNA fragments. Thus, the distribution of 

tagged DNA within the library will influence the proportion of the library that gets 

sequenced. For example, samples that are >1ng can therefore lead to under-tagmentation 

(Caruccio et al., 2009; Holmes et al., 1988; Illumina, 2014; Syed et al., 2009). Prior to 

sending samples to the sequencing provider for dataset C, they were analysed on the 

Bioanalyzer™ Tapestation® which produces gel images to assess DNA fragment sizes. 

Although this dataset produced 16S data, DNA quality can also affect tagmentation. The 

Nextera XT transposome requires minimum of 300bp to efficiently cut the DNA into 

fragments for transposon tagging and therefore if the sample DNA is degraded this will 

cause few tagmented fragments to be sequenced and will cause an under-representation 

of species diversity (Illumina, 2014).  
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Figure. 3.4.1 Nextera XT fragmentation causes breaks within dsDNA and transposon tagging across 

the sample DNA. Diagram adapted from, (Caruccio et al., 2009) 

 

Despite the technical issues with this data, there were some interesting findings comparing 

severe patients with HHCs. The first is the lower RA of Faecalibacterium prausnitzii in 

patients shown in figure 3.3.11. This is in agreement with another report of this species 

being significantly reduced in ME/CFS patients with IBS (Nagy-Szakal et al., 2017). It is 

suggested to account for 5% of the total bacteria resident in the intestinal microbiota and a 

reduction in this species in linked to dysbiosis in intestinal inflammatory diseases such as 

Crohn’s Disease (Miquel et al., 2013). Significantly higher RA of Eggerthella spp. 0.98% ME 

versus 0.43% HHC (table2.3.4) was seen comparing across the genus level using non-

parametric Mann-Whitney U test in figure 3.3.13. The abundance tables for this dataset are 

included in the supplementary section (S3.1 and S3.2).  Eggerthella spp. are Gram-positive 

anaerobes belonging to the phylum Actinobacteria normally found in the human intestinal 

microbiota but have been associated with abdominal sepsis (Gardiner et al., 2014).This 

finding in severe ME patients was also something reported by Lipkin et al (2017) in ME/CFS 

without IBS (Nagy-Szakal et al., 2017).  
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- Summary 

Seventy-seven samples were analysed using next generation sequencing to determine 

differences in the composition of the intestinal microbiota between ME/CFS patients and 

house-hold controls. The composition of the intestinal microbiome of ME/CFS patients has 

been suggested to be less diverse than that of healthy controls (Fremont et al., 2013; 

Giloteaux et al., 2016; Nagy-Szakal et al., 2017).  We compared and contrasted sequencing 

of the V4 hypervariable region of the 16S gene, a single genetic marker against recovery of 

non-targeted, random 150bp DNA sequences representing the entire (meta)genome 

content extracted from faeces. The data generated from these two methods did not show 

variation in the diversity of species identified in ME/CFS and HHCs.  However, using shallow 

shotgun sequences, patients had a 5-fold reduction in Faecalibaterium prausnitzii 

compared to HHCs. Other significant differences were at the genus level included increased 

abundance of Oscillibacter and Eggerthella in severe ME compared to HHC.  Comparison of 

the members of the core microbiota (defined by bacterial taxa appearing in 50% of all 

samples) revealed qualitative and quantitative differences between severe ME and HHCs 

based on 16S sequencing. Severe ME patients have few members of the core microbiota 

than HHC. No evidence for increased abundance of Proteobacteria (a source of bacterial 

LPS) was found in any of the datasets. The genus contains several known human pathogens 

and is suggested as a microbial signature for low-grade inflammation sustained by 

exposure to LPS (Rizzatti et al., 2017).  

 

A recent review highlights the need for best practices for designing and analysing 

microbiome studies which address some of the issues surrounding reproducibility of 

microbiome data (Knight et al., 2018). Several sources of confounding factors are 

generated through every step of a microbiome study. Every microbiome study faces 

challenges for establishing an experimental design to generate the best source of data and 

relies on the of methods of sample collection, protocols to standardise faecal DNA 

extraction and library preparation and PCR biases, choice of sequencing platform, pre-

processing of reads, and bioinformatics pipelines to analyse sequence data to generate a 

microbial profile. Therefore, the output of multiple metagenomics studies is very difficult 

to compare without establishing good practices to address these differences.  

 

In conclusion, the total data in this chapter represents a pre-screening of the composition 

the intestinal microbiota of severe ME patients compared to HHCs.  We have shown the 
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taxonomic capabilities of 16S sequencing does not allow sufficient taxonomic resolution to 

reveal differences between patients and house-hold controls. Our shallow shotgun data 

utilised non-targeted, random “shotgun” sequencing of the intestinal microbiome but 

failed to provide adequate coverage based on the low number of sequence reads 

generated. Despite this, the number of reads generated far exceed the output of both 16S 

datasets and were processed using MetaPlAn to compare sequences against known 

bacterial reference genomes. Here, we did reveal a significant reduction in the relative 

abundance of Faecalibacterium and increased Eggerthella and Oscillibacteria in severe ME 

compared to HHCs. This study represents the first of its kind to explore the microbiota 

composition in severe patients matched with their respective healthy house-hold control. 

We consider this an important strength to this study, but future work should sample from 

patients diagnosed with IBS to exclude to possible dysbiosis by this cause. Our analysis did 

not sufficiently replicate those of other ME/CFS metagenomic studies carried out in mild to 

moderately affected ME/CFS patients. Given the known impact diet has of the microbiota, 

future studies should give consideration to recording food intake. Future work should also 

resolve both technical and logistical concerns raised throughout this discussion.  
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 Chapter Four 
 
 
4 Profiling the faecal and serum metabolome in house-

bound, severe ME patients 
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4.1.1 Introduction 
 
The human metabolome is complex, particularly within the gut since factors including diet, 

lifestyle, age, medications, and environmental contact with microbes influence 

experimental data and outcome. Metabolomics, a major contributor among the ‘omics’-

based technologies, is being exploited to better understand the role of the functional 

capacity of gut microbes in the context of health and disease. The majority of research on 

the intestinal microbiota has focused on genome-based studies that have led to 

associations of changes in the composition of intestinal bacteria in a broad spectrum of 

(auto)-immune/inflammatory disorders from: obesity, type II diabetes, cancer, and (neuro)-

immune/endocrine pathologies such as multiple sclerosis, autism and depression and 

anxiety-based disorders. Gradually metagenomics has started to become integrated with 

metabolomics to functionally annotate the microbiota and characterise its metabolic 

activity and relative contributions in health and disease. The advent of NGS metagenomics 

over the last decade has evolved in its high-throughput capacity to identify thousands of 

targets within the complex samples such as human faeces for a comprehensive sequenced-

based identification of a diverse range of bacterial species. Previously it was suggested 

bacteria outnumber cells in the human body by a ratio of 10:1, however this estimate has 

been downgraded to be in the same order of the number of cells in the body (Sender et al., 

2016). The Human Microbiome Project and MetaHIT have shown the taxonomic diversity of 

the human microbiota through the number of bacterial species varies enormously from 

person to person  (Ehrlich, 2011; Human Microbiome Project, 2012). However, a number of 

different communities of bacteria as well as individual bacterial species within the 

microbiota are able to perform exactly the same metabolic biochemical functions in a 

healthy microbiome. This functional redundancy allows the microbiota to adapt to 

environmental changes, or perturbations by changing gene expression to continue to 

deliver the same functional benefits to the host (Heintz-Buschart & Wilmes, 2018). Nearly 

10 million genes have been catalogued from the human gut microbiome with little known 

about their biochemical function and contribution towards host metabolism (Li et al., 

2014). The functional benefits of the microbiota are being recognised in faecal microbiota 

transplants from healthy donors and has been suggested to be successful in treating some 

ME/CFS patients (Borody & Khoruts, 2012). Understanding the composition of intestinal 

bacteria alone is not enough to understand the complex relationship between the 

intestinal microbiota and host. Depending on the method of prediction between 40-70% of  
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the protein-coding metagenome has unknown function and is a limitation to metagenomic 

approaches to unravel disease mechanisms (Heintz-Buschart & Wilmes, 2018). The shift 

towards shotgun metagenomic provides an overview of the genetic information encoded 

by the microbiota however, additional ‘omics technologies need to become integrated with 

this strategy to address the expression of this metagenomic material and characterise its 

metabolic features which interact with the host and relate to its functions in health and in 

disease.  

 

The principle technologies of metabolomic profiling uses a combination of platforms 

including Nuclear Magnetic Resonance (NMR), Gas Chromatography /Mass Spectrometry 

(GS/MS) and Liquid Chromatography/Mass Spectrometry (LC/MS) in non-targeted and 

targeted experiments to cover a range of metabolites with accuracy and sensitivity. The 

aim of this is to combine metabolite profiles with a functionally annotated intestinal 

microbiome to help identify diagnostic biomarkers as well as unravel diseases mechanisms 

associated intestinal dysbiosis with limited bias and data-driven approach to biomarker 

discovery.  The biggest challenge remains in the extent of metabolite coverage in a single 

experiment. In fact multiple methodologies are needed because of the physical 

biochemical diversity of metabolites ranging from hydrophilic to hydrophobic compounds 

(Dias & Koal, 2016). The experimental design and choice of workflow to quantify 

metabolites, as well as differences in the range of signal detection, when comparing NMR 

data derived from a 600 MHz  versus 750 MHz magnetic field strength machine,  will alter  

the signal to noise ratio in NMR spectra and sensitivity towards metabolite detection. 

Indeed, this can make inter-study comparison difficult not least because of the 

heterogenous patient cohorts used in ME/CFS research but also differences in size of 

reference compound libraries to compare against experimental spectra can vary between 

studies. This is made further difficult in non-targeted experiments when it is not clear 

which metabolites are of particular interest to that cohort. A combination of targeted and 

non-targeted approaches using multiple metabolic platforms is for example preferred to 

identify and quantify as many metabolites as possible. As a result, studies often examine 

different sets of metabolites and number of metabolites that can be identified can make it 

challenging to compare studies linking metabolites variation to a particular disease state. 
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4.1.2 The metabolome in ME/CFS 
 

Suppression of general energy metabolism and mitochondrial dysfunction are thought to 

be involved in the aetiology and long-term maintenance of the two most significant and 

highly debilitating symptoms in ME/CFS patients: chronic persistent fatigue and post-

exertional malaise (Fluge et al., 2016). Whilst onset of ME/CFS is often described by a flu-

like illness, many potential pathogens that have been linked with the disease are not 

consistently found in all patients, suggesting that they may be acting as a potential trigger 

to a series of pathological events yet to be defined rather than being a direct cause in itself 

(Buckwold et al., 1996). The gut acts as a major player within the immune system, since its 

epithelial cell surface barrier remains exposed to the microbiota. Microbial dysbiosis 

resulting in altering the diversity profile of gut bacteria has been reported in ME/CFS, but it 

is unknown how microbial metabolites may conspire to alter local intestinal (and systemic) 

homeostasis or contribute to the severity of fatigue.  

 

Given that a key microbiota function is in digestion and extracting energy from food and 

current research highlighting metabolic disruption in energy and lipid metabolism in ME; 

additional insights may be obtained from studying the severest, most fatigued patients, 

would provide a test for reproducibility and further substantiate confidence in these 

findings. Severe patients represent the most fatigue and disabled individuals within the ME 

spectrum and may represent a subset of patients whom fundamental changes have 

occurred within their energy metabolism as a product of immune activation (Hornig et al., 

2015), on-going inflammation, neuroendocrine dysregulation, autonomic dysfunction 

and/or cardiovascular anomalies. This highlights the complexity of multi-system 

dysfunction that have been found to occur in ME/CFS. It is a reasonable assumption to 

suspect that blood metabolism may be exerting homeostatic shifts across these systems. 

Moreover, blood metabolism is influenced by gut metabolism and diet, and in general, 

increasing evidence suggests gut health plays a significant part in many extra-intestinal 

diseases, including neuro-psychological and neuro-inflammatory disorders (Carding et al., 

2015; De Punder & Pruimboom, 2015; Kelly et al., 2016; Moos et al., 2016; Sampson et al., 

2016). For example, a study between the relationship of the intestinal microbiota and 

plasma metabolites show strong correlations, (e.g. microbiota-derived plasma levels of 

Trimethylamine N-oxide (TMAO)) with microbial community structures and an individual’s 

body mass which influenced the risk of developing glucose tolerance (Org et al., 2017). 
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4.1.3 Faecal metabolome in ME/CFS 
 

The relationship between host and changes in gut bacterial populations within the ME/CFS 

are currently at the correlation level with very little previous reports to comment on the 

faecal metabolome in these patients. One study by Armstrong et al. (2017) examined the 

faecal metabolites from 34 female patients using 750MHz 1H-NMR (see table 4.1.1) to 

correlate the data with changes in bacterial populations and systemic metabolism by taking 

blood serum and urine samples (Armstrong et al., 2017). Their findings were consistent 

within ME/CFS for a decrease in faecal lactate and increase in faecal butyrate, isovalerate 

and valerate. Small Chain Fatty Acids (SCFAs) such as these, particularly butyrate are 

utilised by intestinal epithelial cells as an energy source as a by-product of the 

fermentation of indigestible food in the colon (Inoue et al., 2014). They act by binding to G 

protein-coupled receptors (GPR41 and GPR43) to signal conversion of adenosine 

monophosphate-activated protein kinase (AMPK) to the phosphorylated (pAMPK) (Kimura 

et al., 2014). This facilitates increased fatty acid oxidation and expression of glucose 

transporter (GLUT4). Moreover, increased gut permeability thought to be present in 

ME/CFS, and may be exacerbated by higher levels of SCFAs and will enter the blood 

circulation in increased concentration and have further influence on systemic energy 

metabolism, but particularly in liver and muscle cells (Armstrong et al., 2017; Giloteaux et 

al., 2016) . Armstrong’s observations support this idea, since propionate from the gut can 

enter gluconeogenesis via succinyl-CoA in the liver to generate aspartate and glucose which 

were positively correlated within serum and urine metabolomic profiles, respectively 

(Armstrong et al., 2017).  

 

To summarise, the faecal metabolite differences found SCFAs in ME/CFS suggest increased 

bacterial fermentation that appears facilitated by changes within the microbiome profile. 

Armstrong used traditional culture methods to simultaneously analysis bacterial species, as 

such, Clostridium spp. were increased and are interestingly shown to ferment lactate and 

amino acids in the production of butyrate (Smith & MacFarlane, 1998). Indeed, acetate,  

propionate and butyrate were all increased in the ME/CFS faecal metabolome, with 

butyrate being the most significant. Lactate was unexpectedly found to have decreased 

despite an earlier finding which found an increase in lactic acid producing bacteria in 

ME/CFS (Armstrong et al., 2017; Sheedy et al., 2009). 
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4.1.4 Systemic metabolome in ME/CFS 
 
Blood serum and plasma have previously been studied in ME/CFS using NMR and LC-MS 

and produced intriguingly consistent results that is even more surprising given the extreme 

heterogeneity which is normally a drawback in studies of these sizes, (see Table 4.3.1) 

(Armstrong et al., 2015; Germain et al., 2017; Naviaux et al., 2016). Such consistency may 

be indicative of the blood metabolome being fundamentally different in ME/CFS. 

Armstrong first reported anomalous energy and oxidative stress pathways in ME/CFS 

derived from serum NMR experiments 2015 (Armstrong et al., 2015). Using this 2015 data 

of 29 metabolites identified and quantified in sera, these were later combined with faecal 

metabolite concentrations in 2017 to conclude SCFAs maybe entering the circulation, 

especially propionate to cause mitochondrial dysfunction and oxidative stress and may 

further be exacerbated by increased gut permeability ME (Armstrong et al., 2015, 2017; 

Giloteaux et al., 2016). Further correlations were made between the faecal and blood 

metabolomes summarised in table 4.1.1. 

 

In conclusion, current evidence points towards suppression of energy metabolism, fatty 

acid metabolism and oxidative stress as common pathways altered in ME/CFS and to which 

there is some consistency within the literature. But it is not clear how these pathways 

relate to the context of severity of ME or from observations of the faecal microbiome or 

why these observations are so consistent given the heterogeneity of the ME population 

included in these studies so far. Naviaux et al. published a landmark paper in 2016 detailing 

abnormalities within 20 metabolic pathways from plasma, including reduced lipid 

metabolism, amino acid metabolism, and purine metabolites, and mitochondrial 

metabolism (Naviaux et al., 2016). Another study using the Fukuda CFS criteria suggested 

that the ratios of plasma metabolites pyruvate/isocitrate and ornithine/citrulline, related 

to the TCA and urea cycles, respectively, may have diagnostic relevance (Yamano et al., 

2016). Germain et al., who later published from a much smaller pilot cohort using distinct 

mass spectrometry techniques (see Table 4.1.2), supported the vast range of conclusions 

drawn from Naviaux’s earlier work targeting 612 metabolites in total. Among the 361 

detected, 74 metabolites were significantly different with a similar trend to Naviaux’s 

finding for a hypometabolic state with 80% of these altered metabolites being lower in 

ME/CFS versus controls. 
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4.1.5 Investigating bile acid metabolism in ME 
 

As a follow up to NMR, targeted High-Performance Liquid Chromatography-mass 

spectrometry (HPLC-MS) was used in faecal water and serum to accurately quantitate 26 

bile acids – based on previous observation of decreased taurine in ME/CFS plasma (Niblett 

et al., 2007). Taurine conjugates with bile acids to form bile salts necessary for lipid 

absorption which were also found to be negatively affected in patients belonging to the 

Germain study (Germain et al., 2017). To date, no other studies have targeted the role of 

bile acids within ME/CFS metabolism; especially in severe, house-bound patients. 

Moreover, the gut microbiota provides a functional role in the regulation of bile acid 

metabolism which is vitally important in host lipid and energy metabolism. 

 

Bile acids (BA) are steroidal compounds synthesised in the liver from cholesterol and 

regulated via negative feedback through their binding to nuclear farnesoid X receptors 

(FXRs) in the liver and gut, see figure 4.1.1.  There are two pathways that have been 

identified for BA synthesis: the “classical” and “alternate” pathways also shown in figure 

4.1.1. The classical pathway is responsible for most BA synthesis and is controlled by the 

enzyme cholesterol 7α-hydroxylase (CYP7A1) which is inhibited by FXR activation through 

expression and binding of FGF15/19 to FGF4/ßKlotho receptor. As much as 95% of the total 

BAs secreted are reabsorbed from the gut and delivered to the liver via the hepatic portal 

vein. Chenodeoxycholic acid (CDCA) and cholic acid (CA) are the two most abundant 

primary bile acids produced by humans in the liver which serve to facilitate lipid 

emulsification and digestion. Upon secretion into the duodenum, the bile acid pool may be 

further altered by the gut microbiota to produce secondary bile acids (Wahlström et al., 

2016). Indeed, the gut microbiota can therefore alter the distribution of bile acids as a 

consequence of dysbiosis within its community structure. In fact, several disease states 

including inflammatory bowel disease (IBD), liver disease, C. difficile infection, metabolic 

syndrome, and various cancers are now associated with changes to bile acid metabolism 

(Staley et al., 2017). Thus, alterations within bile acid metabolism may be indicated by 

changes of the ratio of primary to secondary bile acids, could be indicative of a disease-

associated microbiome.    
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Figure. 4.1.1 Bile acid synthesis is dependent on expression of CYP7A1 in the liver and is regulated 

by a negative feedback loop mediated by the induction of FXR. Primary acids are produced in the 

liver. CYP7A1 codes for the enzyme 7a-hydroylase which converts cholesterol to 7a-

hydroxycholesterol. FXR activation inhibits CYP7A1 and is activated by hydrophobic (non-polar) 

primary and secondary bile acids (CDCA, CA, DCA, LCA). Intestinal activation of FXR induces the 

release of FGF15/19 into enterohepatic circulation back to the liver where it binds to GFR4/bKlotho 

receptors on hepatocytes to inhibit CYP8B1, another hydrolase involved in BA synthesis. FXR – 

farnesoid X receptor; FGF -fibroblast growth factor. (Shapiro et al., 2018) 
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Figure 4.1.2 Summary of “Classical” and ‘Alternative” pathways for bile acid synthesis in humans 

and mice. Classical pathway occurs in hepatocytes and accounts for 90% of total bile acid production 

in humans. Cholic acid (CA) and chenodeoxycholic acid (CDCA) are the predominant primary BAs in 

humans; whereas CDCA is converted in muricholic acids (MCAs) in mice. Whilst in the liver, BAs are 

conjugated to either glycine or taurine regulated by bile acid-amino acid transferases (BAT) and bile 

acid CoA ligase (BAL) prior to bile secretion into the duodenum. Genes coloured in red have been 

identified as being under the regulation of the intestinal microbiota. The major difference in mice is 

the conversion of CDCA into αMCA and b-MCA in the mouse liver. Figure has been reproduced from 

an open access publication – access to this is available from: 

https://www.researchgate.net/Schematic-overview-of-pathways-involved-in-the-hepatic-synthesis-

of-primary-bile-acids-in_fig2_317376112 [accessed 11 Jul, 2018]. 

 

BA composition differs significantly in mice, due to the conversion of CDCA through 

hydroxylation at the 6b-position to form alpha-muricholic acid (αMCA), whereas bMCA is 

formed from ursodeoxycholic acid (UDCA) (Takahashi et al., 2016). Whilst UDCA is a 

secondary bile acid in humans, in mice produce is as a primary bile acid (Wahlström et al., 

2016). It has been shown in the absence of a microbiota in germ-free mice, the bile acids 

pool is largely made up of primary conjugated bile acids, including MCAs such as T- αMCA 

and T-bMCA which are typically more hydrophilic in comparison to human BAs where the  
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total bile acid pool is more hydrophobic (Wahlström et al., 2016).  However, the 

biochemical pathway for this conversion from CDCA to MCA is unclear; but a recent report 

suggests Cyp2c70 is a gene required for MCA synthesis in mice which leads to this  

 

 

species variation (Takahashi et al., 2016). Human primary bile acids are mostly conjugated 

to glycine in the liver but can also include taurine (more frequently in mice), via an 

enzymatic step involving bile acid-amino acid transferase (BAT) before they are released in 

the duodenum (Claus et al., 2008). The human gut microbiota influences the bile acid pool 

from a functional perspective by providing enzymes for deconjugation, dehydrogenation 

and dehydroxylation of primary bile acids. In the liver primary BAs are found to have 

hydroxyl groups attached  at the 3, 7, 12-carbon positions under regulation of at least 14 

enzymes, of which some of these are shown to be under the regulation of unknown factors 

derived by the gut microbiota.  (Sacquet et al., 1983; Sayin et al., 2013). Further 

biochemical modifications can involve oxidation of these hydroxyl groups and reversible  

Fig. 4.1.3 Secondary bile acid metabolism. Microbial metabolism facilitates transformation of 

primary bile acids via deconjugation and 7a/b-dehydroxylation. Further heterogeneity can be 

introduced into the BA pool through step-by-step epimerization, oxidation and reduction by 7a/b-

hydroxysteroid dehydrogenases to produce stereochemical distinct oxo-bile salts. Upon 

recirculation to the liver, DCA and LCA are conjugated to glycine or taurine just as primary bile acids 

are synthesised before being reintroduced into the bile acid pool. In mice, CDCA is converted to 

muricholic acids (MCAs) and contributes to a distinct secondary bile acid profile compared with 

humans. Figure has been reproduced from an open access publication – access to this is available 

from: https://www.researchgate.net/Schematic-overview-of-pathways-involved-in-the-hepatic-

synthesis-of-primary-bile-acids-in_fig2_317376112 [accessed 11 July, 2018]. 
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epimerization by microbial enzymes which alter their stereochemical orientation during 

transformation providing a heterogenous secondary bile acids pool within the gut (Staley et 

al., 2017). The biochemical steps involved in secondary bile acid metabolism is summarised 

in figure 4.1.3. The small quantity of BAs that do not get reabsorbed, undergo 

deconjugation of taurine and glycine by hydrolases ubiquitous throughout the microbiota, 

and various oxidation steps which serve to alter the chemical properties, particularly the 

toxicity and hydrophobicity of each bile acid.  For example, deoxycholic acid (DCA) is a 

secondary BA transformed in the large intestine following deconjugation to free cholic acid 

(CA) and subsequent 7α-dehydroxlyation by intestinal clostridia. Deconjugation enhances 

detergent properties which lead to the greater disruption of bacterial cell membrane 

potential (Ridlon et al., 2014). Furthermore, accumulation of DCA has been reported to be 

associated with a “Western diet” (Dermadi et al., 2017).  

 

Increased concentrations of bile acids appear to favour gram-positive bacteria belonging to 

the firmicutes which also include Clostridium cluster XVIa bacteria capable of 7α- 

dehydroxylation to generate secondary bile acids, DCA from CA, and LCA from CDCA. 

Conversely, gram-negative bacteria are less resistant to bile acids and prefer lower BA 

concentrations (Ridlon et al., 2014). Such observations are based on patients presenting 

with hepatic encephalopathy. These patients exhibit certain neuro-psychiatric 

abnormalities as a result of liver failure during its severe stages. During these stages, 

bacterial dysbiosis was observed and linked to low bile acid concentrations and reduction 

of gram-positive bacteria Blautia and Rumminococcaceae (Bajaj et al., 2014). 

 

BAs are also recognised as important signallers, which act as steroid hormones associated 

in the regulation of triglyceride and glucose homeostasis. To that effect, BA metabolism has 

come under increasingly scrutiny to better understand how microbial dysbiosis may 

contribute in various disease states including type 2 diabetes, cardiovascular disease, non-

alcoholic fatty liver disease and cancers. However, a substantial amount of research on BA 

metabolism to date has been performed in germ-free, specific knock-out and conventional 

mice; and given the differences between mice and humans, these experimental outcomes 

limit any translation benefit in human disease and future development of therapies 

targeting bile acid metabolism. For this reason, it was decided to explore the BA profile for 

the first time in severe, house-bound ME patients. 
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4.1.6 Experimental design overview 
 

Various platforms (NMR versus MS) and methods lead to great differences in the power of 

discovery in the field of metabolomics (Dias & Koal, 2016).  Greater accuracy for 

quantification of metabolites is needed, but it is also desirable being able to detect a 

greater number of metabolites in a single run. For instance, at the time of writing, the 

Serum Metabolome database contains 4651 small molecules identified in human serum 

(Psychogios et al., 2011). The expanse of metabolites which can be targeted falls 

dramatically short of expectation in comparison to genomics-based technologies which can 

identify millions of target genes in a single experiment, although 40-70% of their 

biochemical function is not known (Heintz-Buschart & Wilmes, 2018). This makes current 

observations and consistencies within the ME/CFS metabolome even more interesting 

given its heterogenous nature. Here, the result of a small pilot study is presented 

examining the faecal and serum metabolome profiles from 11 severe, house-hold ME/CFS 

patients using 600 MHz 1NMR spectroscopy.  

 

Where possible, each patient was matched with a house-hold control, and both samples 

collected and processed for analysis simultaneously. Only samples collected during 2017 

were included in this work due to changes made to sample collection protocols requiring 

faecal homogenisation and faecal water extraction on the day of sample collection. It is  

important to note that sample preparation and processing were performed in accordance 

to the methods described by Armstrong et al., 2017. It is highly important to make every 

endeavour to control for method variation to give more power in comparing studies and 

towards unravelling multiple aetiologies conspiring to cause ME/CFS symptoms.  
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Table 4.1.1 Summary of publications relating to the study of the metabolome in ME/CFS *Hydrophilic Interaction Liquid Chromatography-ElectroSpray Ionization-Tandem 

Mass Spectrometry 

Study Selection Criteria Cohort Size Biofluid Type Metabolites 
targeted 

Observations/Conclusions 

Naviaux et al.  
(2016) 

IOM (2015), Canadian 
(2003), & Fukuda 
(1994)  

 

45 ME/CFS (n = 22 men and 
23 women)  

CFS males were 53 (±2.8) y 
old vs. females 52 (±2.5) y old  

39 control subjects (n = 18 
men and 21 women) age- and 
sex-matched.  

Blood 
Plasma 

HILIC-ESI-
MS/MS* 

612 (from 63 
biochemical 
pathways) 

Abnormalities in 20 metabolic pathways – 80%       
consistent with hypometabolic syndrome:  

   plasma sphingo- and glyco- sphingolipids in patients who 
had CFS  

Diagnostic accuracy in males using 8 metabolites versus 13 
in female. Posit ME is hypermetabolic response to stress 
from environment similar to dauer. 

Germain et 
al. (2017) 

Fukuda (1994) 17 female ME/CFS 
(age 53.9±8.6y) 
 
15 female controls (age 
51.9±6.2y) 
 

Blood 
Plasma 

Q-Exactive ME 
(QE-MS) 
method  
 

361 (74 altered in 
ME) 

20% of metabolites disrupted in ME/CFS 
 
31 metabolites    in ME incl. lipid metabolism and several 
amino acids,     glucose,     ATP,     ADP 
 
   primary bile acids & taurine,     palmitate 

Armstrong et 
al. (2017) 

Canadian (2003) 34 females with ME/CFS 
(34.9±1.8 SE) y old 
 
25 female controls (33.0±1.6) 
y old 

Faeces, 
Blood 
serum & 
urine 
 

1H NMR – 
(800MHz) 
Bruker Avance II 
US 

Total of 83 
identified 
metabolites in: 
faeces (24), urine 
(30) & serum (29)  

14 metabolites altered,    faecal lactate,    faecal butyrate 
   microbial fermentation of fibre and amino acids to 
produce SCFA  
 

Vipond 
et al.  
(unpublished) 

Canadian (2003), 
International 
Consensus (2011) & 
Fukuda (1994) 

11 severe female ME/CFS 
 
8 house-matched controls (7 
female, 1 male) 
 
14 mild/moderate CFS 

Faeces 
& blood 
serum 

1H NMR 
(600MHz) 
 
Targeted 
HPLC-MS 

45 in faeces 
53 in serum 
 
 
26 Bile Acids 

Faecal gamma-butyrobetaine notably    in 3 patients 
Faecal taurine detected only in 2 patients 
   Glycocholate in severe patients (p=0.03)  
 
No significant findings from serum.  
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4.1.7 Aim & Objective 
 

The aim of this chapter was to define the faecal and serum metabolome of severely 

affected ME/CFS patients compared to house-hold controls, in order to understand how 

metabolic features may be related to neurological and behavioural aspects associated with 

greater severity compared to mild and moderately affected patients.  

 

Three recent independent studies on the general ME/CFS population have contributed 

consistent data revealing various biochemical pathways and metabolites in patients that 

are associated with a reduction in lipid and energy metabolism (Armstrong et al., 2017; 

Germain et al., 2017; Naviaux et al., 2016). Whilst these metabolomics-based studies of 

mild to moderately affected ME/CFS patients have identified such alterations, it is not 

known if these findings translate to severely affected ME/CFS patients.  In order to 

determine this, the following objectives were established: 

 

- to address the functional capacity of the severe ME/CFS microbiome using NMR 

spectroscopy to measure low molecular weight metabolites;  

- by preparing faecal water and serum samples in accordance to methods set out by 

a previous NMR study by Armstrong and colleagues in 2017; 

- to determine if an altered microbial composition (dysbiosis) influences faecal and 

serum metabolism in severe ME compared with house-hold controls; 

- to determine if severe ME patients display a distinct bile acid metabolic profile 

using targeted HPLC-mass spectrometry which may described altered energy 

metabolism in these patients.  

 

4.1.8 Hypothesis 
 
The functional capacity of the intestinal metabolome in severe ME/CFS patients is altered 

through a decline in the compositional diversity of intestinal bacteria to the detriment of 

host metabolism, causing the faecal and serum metabolomes of severe, house-bound 

ME/CFS patients to reflect a hypometabolic state in accordance with altered energy and 

bile acid metabolism. 
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4.2. Materials & Methods 
 

4.2.1 Sample preparation and storage 

 
Briefly, the entire stool sample was collected in a FECOTAINER® collection device (AT 

Medical B.V., Enschede, Netherlands), figure 2.2.2 no sooner than 24 hrs before visiting the 

patient’s home for collection. During this time before our arrival to collect, patients were 

advised to keep their sample inside the fridge in double containment using the packaging 

provided. An AnaeGenTM Compact anaerobic sachet (Cat. No AN0010, Oxoid. Ltd.) was also 

provided for insertion and activation inside the FECONTAINER® as soon as the sample was 

produced by the patient. 

  

On return to the hospital the entire stool sample was homogenised manually using a sterile 

autoclaved metal spatula. Faecal water was extracted from homogenate of each sample 

with a 2:1 ratio of molecular grade water. It is recommended ~15g of faecal material is 

used with 30 ml of water but is dependent of amount of original sample provided. This 

mixture was vortexed for 5 min and centrifuged at 18,000 x g, for 10 min, or 3,500 x g, for 

30 min. The supernatant is then divided in to multiple aliquots and stored at -80 degrees 

prior to analysis. 

 

4.2.2 Preparation for 1H NMR spectroscopic Analysis 
 

- Preparation using serum samples 
 

Samples were prepared for NMR using a method modified from a previous study (Armstrong et al., 

2017). Serum samples were thawed from -800C, from which 250µL of serum was added to 

250µL ice cold deuterated chloroform and 250µL ice cold deuterated methanol and mix by 

vortexing. Samples were then left on ice for 15 mins before centrifuging (16100 x g) at 40C 

for 10 mins to produce hydrophilic phase of water/deut. methanol and lipophilic phase of 

deuterated chloroform. 300µL of the top hydrophilic layer was transferred to 300µL of 

NMR buffer (0.26g NaH2PO4,1.44g K2HPO4,17mg TSP, 56.1mg NaN3 in 100 ml D2O), and 

mixed mix before transferring 550µL to NMR tube. In addition, 0.9% saline solution (0.9g 

NaCl in 100ml D2O) was made to combine with serum, using 200µL serum mixed with 

400µL saline solution, before transferring 550µL in to NMR tubes. 
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- Preparation using faecal water extracts 

 
Samples were prepared for NMR using a method modified from a previous study 

(Armstrong et al., 2017). One millilitre aliquot from each sample were thawed from -800C. 

250µL faecal water was transferred in 250µL ice cold deuterated chloroform and 250µL ice 

cold deuterated methanol. Samples were mixed by vortexing and left on ice for 15 mins 

before centrifuging at 16100 x g at 40C for 10 mins to produce hydrophilic phase of 

water/deuterated methanol and lipophilic phase of deuterated chloroform. 300µL of the 

top hydrophilic layer was transferred in to 300µL of NMR buffer (phosphate buffer, pH 7.4 

in D2O, containing 1mM d4-TSP), and mixed thoroughly before all samples were transferred 

into NMR tubes. Additional faecal extracts were prepared without chloroform/methanol 

extraction from 300µL of faecal water in 300µL NMR as described above.  

 
- Acquisition of NMR data 

 
High resolution 1H NMR spectra of faecal water extracts were recorded on a 600 MHz Bruker 

Avance III HD spectrometer fitted with a 5 mm TCI cryoprobe and a 60 slot autosampler 

(Bruker, Rheinstetten, Germany). Sample temperature was controlled at 3000K and the D2O 

signal was used as lock. Each spectrum consisted of 1024 scans of TD = 65,536 data points 

with a spectral width of 20.49 ppm (acquisition time 2.67 s). The noesygppr1d presaturation 

sequence was used to suppress the residual water signal with low power selective irradiation 

at the water frequency during the recycle delay (D1 = 3 s) and mixing time (D8 = 0.01 s).  A 

900 pulse length of approximately 8.1 µs was used, with the exact pulse length determined 

for each sample by the Bruker automation routine (au_prof1d). Spectra were transformed 

with 0.3 Hz line broadening and zero filling and were automatically (proc_prof1d) phased and 

referenced (to TSP) using the TOPSPIN 3.2 software. The noesygppr1d sequence avoids the 

need for a first order (PHC1) phase correction or for baseline correction. The resulting Bruker 

1r files were converted to Chenomx (.cnx) format using the ‘Batch Import’ tool in the 

Processor module of Chenomx NMR Suite v8.12. The only additional processing during 

conversion was a shim correction to remove any line-shape irregularity and the 

concentration of the reference compound, TSP, was set to 0.5 mM.NMR spectra of serum 

extracts were recorded and processed in exactly the same way except that the number of 

scans was 512 and the 900 pulse length was approximately 8.6 µs. NMR spectra of the serum/ 

saline solution samples were also obtained using the diffusion edited pulse sequence to 

emphasise signals from lipoproteins and other large molecules.  
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Metabolites were identified from the Chenomx library (337 compounds) with in-house 

additions (ca. 40 compounds), the HMDB database (http://www.hmdb.ca), literature and 

by use of the 2D-NMR methods, COSY, TOCSY, HSQC and HMBC on selected samples. The 

2D methods were useful in obtaining precise chemical shifts which could differ slightly from 

literature values since the samples contained some methanol in addition to water. 

Concentrations of up to 45 compounds per sample were obtained using the Chenomx 

Profiler module and the concentrations of all samples were exported to an excel file. 

Diffusion edited spectra were analysed using variable width buckets (added graphically to 

spectra using Bruker AMIX software). 

 

- Data analysis 
 

Statistical analysis for individual compounds was carried out in GraphPad Prism v5.01 

(GraphPad Software, San Diego, CA) using the Mann-Whitney test for comparison of two 

groups or the Kruskal-Wallis test for three groups, followed in the latter case by Dunn’s 

Multiple Comparison test for pairwise comparison. Data plots were also produced for the 

compounds showing the median and interquartile range for each group.  

 

Multivariate statistical analysis (Principal Component Analysis, PCA) was carried out using 

the PLS Toolbox v8.01 (Eigenvector Research Inc., Wenatchee, WA) running within Matlab 

R2015a (The Mathworks Inc., Natick, MA). For the PCA any missing values (zero 

concentrations) in the data table were replaced with a very small value, the rows were 

normalised (sum of concentrations made the same for each sample) and the columns 

(compound concentrations) were scaled to unit variance. 
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4.2.3 Targeted bile acid quantification by mass spectrometry 

 
Faecal water extracts and serum were analysed using HPLC – mass spectrometry operated 

in multiple reaction monitoring (MRM) mode. Each sample (5 µl) was analysed using an 

Agilent 1260 binary HPLC coupled to an AB Sciex 4000 QTrap triple quadrupole mass 

spectrometer.  HPLC was achieved using a binary gradient of solvent A (Water + 5mM 

Ammonium Ac + 0.012% Formic acid) and solvent B (Methanol + 5mM Ammonium Ac + 

0.012% Formic acid) at a constant flow rate of 600 µl/min. Separation was made using a 

Supelco Ascentis Express C18 150 x 4.6, 2.7µm column maintained at 40°C.  Injection was 

made at 50% B and held for 2 min, ramped to 95% B at 20 min and held until 24 minutes.  

The column equilibrated to initial conditions for 5 minutes. 

 

The mass spectrometer was operated in electrospray negative mode with capillary voltage 

of -4500V at 550°C.  Instrument specific gas flow rates were 25ml/min curtain gas, GS1: 40 

ml/min and GS2: 50 ml/min. Dwell time for each MRM was 20 ms. Quantification was 

applied using Analyst 1.6.2 software to integrate detected peak areas relative to the 

deuterated internal standards. 
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4.3. Results 
 

4.3.1 Patient cohorts and datasets obtained 
 

This chapter presents various datasets using faecal water and blood serum samples 

collected from 2016- 2017. Table 4.3.1 summarises the types of samples collected and from 

which group of participants. This has given rise 4 distinct datasets (4A-4D), which have 

displayed and described in table 4.3.2. Each dataset here is presented in its order collection 

and the result of each described in the following text in that order. All samples within each 

dataset have been included in the same experiment. 

 

4.3.2 Identification of faecal metabolites using NMR  

 
Proton Nuclear magnetic resonance (1H-NMR) spectroscopy was used to identify 

metabolites within faecal water from 11 female severe house-bound ME patients (42.1 ± 

4.8 SE years) versus 6 house-matched controls (63 ± 2.4 SE years). The resultant cohort was 

matched on the basis of each healthy control living with a patient. With the exception of 

one matched healthy control, paired samples were gender matched and typically represent 

mother as control, and daughter as patient. Due to this relationship it was not possible to 

control for age differences. A total of 45 compounds were examined and quantified as 

absolute concentrations down to the low micromole per litre range. Figure 4.3.1 shows the 

multiple spectra obtained using AMIX (Bruker) to colour individual spectra by group (e.g. 

patient/control). The peaks were used to determine concentrations of individual 

metabolites by fitting the spectra of known single compounds from the reference library to 

the experimental spectra. Ice cold methanol/chloroform was mixed with serum to create 

biphasic separation of upper hydrophilic layer containing low molecular weight 

metabolites. It is this fraction in which the data has generated from. 

 

Prior to statistical testing no assumption was made on distribution of individual metabolite 

concentration; to this end p-values were determined with the non-parametric Mann-

Whitney test in GraphPad prism. In some samples the compound concentrations were 

below the limit of detection were set at 0.0001 mM to avoid having zeroes for the 

statistical analyses. The outcome of these p-values is summarised with the table included 

as part of figure 4.3.2. 
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Table 4.3.1  Summary of participant samples acquired for metabolic profiling.  

15 Severe (age 42.9± 4.04 SE years), 15 Mild/Moderate (age 44.7±3.49 SE years), and 9 

Control (age 57.3±4.04 SE years). Status for each participant is given. ‘X’ identifies year 

sample was collected and the analysis performed.  

 

 

 Status Sex Age Faecal 
water 

Serum NMR           
2016        2017 

Bile Acid analysis 
faeces        serum 

1 Severe F 63  X   X 

2 Severe F 56 X X X X X 

3 Control F 55  X X  X 

4 Control F 69 X   X X 

5 Severe F 44 X  X  X 

6 Control F 70 X  X X X 

7 Control F 55 X  X X X 

8 Severe F 38 X X  X X 

9 Severe F 21 X X X X X 

10 Severe F 37 X     

11 Control F 64 X   X  

12 Severe F 18 X  X X X 

13 Severe F 61 X   X  

14 Severe F 40 X   X  

16 Severe F 58 X X  X X 

17 Control M 60 X X  X X 

18 Severe F 27 X X  X X 

19 Control F 60 X X  X  

20 Severe F 63 X  X X X 

22 Severe F 31  X   X 

23 Control F 54  X   X 

24 Control F 29  X   X 

25 Severe F 56  X   X 

26 Severe F 30  X   X 

27 Mild ME F 30  X   X 

28 Mild ME M 54  X    

29 Mild ME F 26  X   X 

30 Mild ME F 28  X   X 

31 Mild ME M 41  X   X 

32 Mild ME F 65  X   X 

33 Mild ME M 48  X   X 

34 Mild ME M 43  X   X 

35 Control M 37  X   X 

36 Mild ME F 43  X   X 

37 Mild ME F 60  X   X 

49 Mild ME F      X 

50 Mild ME M 58     X 

57 Mild ME F 60     X 

58 Mild ME M 54     X 

59 Mild ME F 27     X 



 
  

 
194 

 
Table 4.3.2 Overview of datasets presented in this chapter and metabolite coverage generated using NMR and HPLC-MS metabolomic profiling of 

participants recruited between 2015-2017. Datasets are organised in chronological order for each experiment: “A” represents the first dataset; and “D” 

being the final dataset to be completed.  

Dataset Biofluid Platform Sample size ME/CFS  
status 

Sample prep. Metabolite  
coverage 

Summary of findings 

 
 

4A 

 

 

Faecal 

water 

 

 

1H-NMR 

(600MHz) 

 

n=17 
11 ME/CFS, 

6 House-matched 

controls 

 

 

Severe 

Ice-cold deuterated 

Methanol/chloroform 

Extraction of hydrophilic phase 

 
As described by Armstrong et al. 2015 

 

 

45 

Increased glycocholate (p=0.03) 

Hypoxanthine (p=0.05) 

Methylsuccinate (p=0.06) 

 
 

4B 

 

 

Faecal 

water 

 

 

HPLC-MS 

 

n=14 
8 ME/CFS 

6 House-matched 

controls 

 

 

 

Severe 

200µl faecal water  

 

26 

Bile acids 

No significant findings 

Kruskal-Wallis 

 

Traces of muricholic acids 

High concentration of HDAC in some patients 

 
 

4C 

 

 

Blood 

Serum 

 

 

1H-NMR 

(600MHz) 

 

n=34 
25 ME/CFS, 

9 House-matched 

controls 

 

 

Severe (n=14), 

Mild/moderate 

(n=11) 

Ice-cold deuterated 

Methanol/chloroform 

Extraction of hydrophilic phase 

 

Diff. edited NMR: 

Saline-diluted serum 

 

 

53 

No significant findings 

Kruskal-Wallis with Dunn’s test 

 
 

4D 

 

 

Blood 

Serum 

 

 

HPLC-MS 

 

n=46 
26 ME/CFS, 

7 House-matched 

6 IBD  

 

Severe (n=14) 

& 

Mild/moderate 

(n=14) 

 

 

200µl undiluted serum 

 

 

26 

Bile acids 

Significant variances across samples within dataset 

Traces of muricholic acids 

HDCA higher in some severe ME patients 
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- dataset 4A 

Scatter dot plots were generated in GraphPad Prism for each metabolite for comparison 

between the severe ME group and matched healthy controls. These have been summarised 

and presented as supplementary figures (S4.1 and S4.2) included within the appendix.  The 

horizontal lines indicate the max, median and min.  

 

In an attempt to separate severe ME (S) from House-Hold Controls (H), principal 

component analysis (PCA) was performed to identify any metabolites as a source of 

variation between the two groups (figure 4.3.5). The first principal component 

(PC1(41.69%)) represents the largest possible variance. This is determined to a large extent 

by interindividual differences, particularly samples with unusually higher values, although 

an attempt was made by normalising the sum of concentrations in each sample to the 

same value. PC3(8.92%) versus PC4(6.80%) in the right plot of figure 4.3.5 shows severe (S) 

in red separates from house-matched (H) in green. The numbers refer to the individual 

samples driving these differences. In order to understand the source of this variation, 

figure 4.3.6 provides an annotated PCA plot with specific faecal metabolites. This is useful 

in identifying specific metabolites within individual samples causing the variance. Here 

compounds: formate, ethanol, lactate, succinate, methylamine, glutarate, methylsuccinate, 

taurine and 3-phenylpropionate are found higher in patients 6, 14 and 15 and not in the 

severe (S) groups in general. To that end, there is very little statistical power based on the 

observations made in this experiment. For many compounds there are one or two samples 

with very high values – often these come from the same sample, for example sample 9 

(and 12) is high in amino acids and sample 15 is very high in succinate and lactate, (figures 

4.3.7 & 4.3.8). 

  

The conclusion is that a weak separation is found between patients and control. Of the 45 

compounds examined only one showed p<0.05. This compound was the nearest calibrated 

standard that was available in our reference library, which was “glycocholate”, although it 

should be considered of as a general bile acid signal. The inclusion of this compound along 

with another seen in very high concentration in 3 of the severe patients was g-

butyrobetaine. This present in very low concentration in patients and controls and is a gut 

metabolite of L-carnitine and intermediate in the conversion of carnitine to trimethylamine 

and TMAO (Koeth et al., 2014). L-carnitine is associated with a lot of meat in the diet, 

however it is more likely that these patients have been taking L-carnitine supplements. PCA  
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separation with the addition of these compounds is included in figure 4.3.7. In this plot, 

PC1(39.99%) demonstrates that severe (S) samples 6, 9, 12, 14, 15 in red, are the source of  

this variation of which, the compounds have been annotated to the plot in figure 4.3.8. 

Metabolites shown in the positive region f PC3 are more likely to be in higher 

concentration in severe (S) patients, versus the negative region which reveals compounds 

more likely to be higher in house-matched (H) control. A more detailed analysis of the bile 

acids by mass spectrometry in a targeted analysis appears later in this chapter as a follow 

up to the apparent bile acid signal detected significantly higher in patients. The next 

nearest significant difference was hypoxanthine (p=0.05) and methylsuccinate (p=0.06), see 

box plot in figure 4.3.3. 

  

A box plot summary presents the entire dataset was and highlights the lack of evidence for 

differences in individual metabolites (figure 4.3.3). Some of the trends identified are at 

variance with earlier publications suggesting short chain fatty acids are in higher 

concentration within the ME/CFS populations. The data obtained for this in figure 4.3.4 

shows no evidence of this in severe ME patients. No differences were found for pyruvate or 

ornithine or any of the detected amino acids in this experiment. Alas, these other studies 

had more participants, but nevertheless the clinical severity of patients used in our study 

made this finding even more disappointing. From Armstrong et al. (2017), table in Fig 1e 

and Sec 3.4 in this paper find significant differences between patients and controls for 

isovalerate, lactate and valerate – in each case with a higher level in patients. Although not 

significant they also report a higher level of total SCFA in patients. Although none of these 

are found to be significant in this small cohort of severe patients there does appear to be a 

trend for all of them to be higher in controls (isovalerate, valerate, acetate, butyrate, 

propionate), but not in patients. The PCA loadings with figure 4.3.8 agree with this since all 

these metabolites appear in the negative region of PC3 and are likely to be higher in house-

matched (H) samples, according to this experiment.  
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Faecal Water 1H-NMR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.1 Partial 600 MHz 1H-NMR spectra from faecal water extractions used for biphasic separation in methanol/chloroform to extract the 

hydrophilic layer for small metabolites quantification.  1-17 are shown. Severe (S) are in blue. House-Matched (H) are green. g-gain increased to reveal 

smaller peaks. All metabolites assigned to the reference spectra using Chemomx software. “BA” = bile acid peak, quantified as “glycocholate”.  
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Metabolite p-value 

1,3-Dihydroxyacetone 0.3361 

2-methylbutyric 0.2913 

3-Phenylpropionate 0.2901 

5-Aminopentanoate 0.9599 

Acetate 0.8016 

Alanine 0.5804 

Aspartate 0.8802 

Butyrate 0.725 

Caprate 0.6537 

Caproic acid 0.3112 

Ethanol 0.0779 

Formate 0.9599 

Fumarate 0.8404 

Glutamate 0.9599 

Glutarate 0.6503 

Glycerol 0.8397 

Glycine 0.451 

Hypoxanthine 0.0561 

Isobutyrate 0.2478 

Isoleucine 0.3654 

Isovalerate 0.3397 

Lactate 0.7992 

Leucine 0.1193 

Lysine 0.3397 

Methionine 0.6468 

Methylamine 0.5136 

Methylsuccinate 0.0628 

Nicotinate 0.222 

Phenylacetate 0.2913 

Phenylalanine 0.0786 

Proline 0.3549 

Propionate 0.9599 

Serine 0.5947 

Succinate 0.1193 

Taurine 0.3237 

Threonine 0.9195 

Trimethylamine 0.5804 

Tyrosine 0.2478 

Uracil 0.58 

Valerate 0.2478 

Valine 0.3397 

Glucose 0.2657 

p-Cresol 0.2823 

Gammabutyrobetaine 0.2478 

“Glycocholate” 0.0347 

* (p=0.03) 
 “Bile Acid” 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3.2  The 45 metabolites detected across 
faecal water samples using 600 MHz 1H-NMR 
spectroscopy. Table (left) provides the name of each 

metabolite compound and p-value generated from 

the Mann Whitney test. Out of the 17 faecal water 

samples from (11) severe, house-bound ME/CFS 

patients and (6) house-matched control, the only 

significant difference was reported from a potential 

bile acid signal. The scatter plot for this compound 

display the absolute concentrations in mM from 

individual samples. Severe mean = 0.015mM vs 

control = 0.0058mM 
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Figure 4.3.3 Box plot representation of 42 out of 45 faecal water low molecular weight 

metabolites in severe (s) red, versus House-matched (H) green samples. The magnitude of the 

concentration of the other 3 metabolites could not be presented in this plot. Each household control 

(H) is matched to an individual severe (S) ME patient. Both samples were collected and analysed 

simultaneously on a 600MHz 
1
H-NMR Bruker machine. Central line of each box represents the 

median. Width denotes the interquartile range, with error bars positioned to show Min and Max  
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concentration detected across that group. “Glycocholate” has been labelled with inverted commas 

as the closest assigned bile acid fitting the experimental spectra. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.4 Summary of Short Chain Fatty Acid (SCFA) compounds whose range of concentrations 

detected across all samples were too extreme to include with other low molecular weight 

metabolites quantified using NMR spectra. Box plot with whiskers. Concentrations were analysed 

using the Mann-Whitney test at 5% significance level. Severe (n=11) versus House-Matched (n=6). 

Acetate: severe mean = 4.21±0.64 SE mM versus House-Matched mean = 5.00±1.25 SE mM. 

Butyrate: severe mean = 0.97±0.19 SE mM versus House-Matched mean = 1.21±0.38 SE mM. 

Propionate: severe mean 1.15±0.19 SE mM versus House-Mathced mean = 1.14±0.21 SE mM. P 

values were 0.80, 0.73 and 0.96 respectively. 
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Figure 4.3.5 PCA plots showing interindividual variation of faecal water NMR metabolomic profiles 

based on 45 absolute concentrations for low molecular weight metabolites. PC1 vs PC2 & PC3 vs PC4 

scores. Severe (S), red, House-Matched (H), green. Separation between severe and control group is 

seen on PC3. Data Row normalised and autoscaled.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.6 Metabolite labelled PCA plot identifying metabolite compounds influencing 

spatial separation. Row normalised and autoscaled. PC3 vs PC4 Loadings. 
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Figure 4.3.7 PCA plot showing a weak separation between severe (S) and House-Match (H) groups 

including glycocholate and gammabutyrobetaine. Row normalised and autoscaled. PC1 vs PC3. 

Severe (S), red, House-Matched (H), green. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.8  Metabolite labelled PCA plot showing individual metabolites influencing group 

separation between severe (S) and House-Match (H). Analysis includes glycocholate and 

gbutyrobetaine. Row normalised and autoscaled. PC1 vs PC3 Loadings. Metabolites in the positive 

part of PC3 are expected to be higher in patients and those in negative part to be higher in controls. 



 
  

 203 

 

4.3.2. Serum metabolome 

 
- dataset 4C 

 

Direct quantification of a total of 53 metabolites was conducted in a slightly larger patient 

cohort representing 14 severe (S), as well as 11 mild/moderate (M) ME patients and 9 

house-matched (H) controls. Table 4.3.1 highlights that paired samples 3 and 9 where 

included twice in this dataset due to the availability of further serum collected 

approximately one year later.  

 

A similar and more comprehensive set of metabolites were measured using the same 

method of extraction in methanol/chloroform, producing a biphasic with a top hydrophilic 

layer, as in Armstrong et al., (2015). They found significant difference for acetate, glucose, 

glutamate, hypoxanthine, lactate and phenylalanine. Scatter plots presented in figure 4.3.9 

highlight the fact that none of these findings were replicated within severe (S) patients. 

Indeed, following a log transformation of all absolute metabolite concentrations across 

groups and summary of the distribution of all data points within a box plot demonstrates a 

lack of evidence for differences, figures 4.3.12 and 4.3.13. Many of the bars show extreme 

overlapping variation in all groups: (S), (M) & (H). The three groups were analysed 

statistically according to the response variable of absolute metabolite concentration in 

millimolar (mM). As with the earlier data on the severe ME faecal metabolome, no 

assumption was made about the distribution of concentration values. In order to not 

assume statistical significance by chance, a non-parametric analysis of variance was carried 

out using the Kruskal-Wallis (KW) test. A post-hoc Dunn’s multiple comparison test was 

applied since the response variable in this case in ordinal (severe(S)/mild-moderate 

(M)/house-matched (H)) rather than nominal, i.e. treatment. This allows for determination 

of which pairs of groups (S v M, S v H, M v H) is significantly different from the other.  

 

Out of all the tests only one was found to be significant – 2-hydroxyisovalerate, which had 

a p value of 0.02 with S v M as the pair that was significantly different (M>S). This has been 

identified in urine and is associated with lactic acidosis, where lactic acid accumulates in 

the body and can result in the lowering of blood pH. It is also among several 

hydroxycarboxylic acids which form ketone bodies from the ketogenesis of amino acids 

valine, leucine and isoleucine (Liebich & Först, 1984). Unfortunately, none of the other  
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observations for these amino acid concentrations were helpful in supporting any form of 

hypothesis surrounding this finding, except that is likely that these patients were in a 

fasting period during the sample was taken. Although no diet information or pattern of 

eating was recorded during the study. 

 

With respect to glutamate, one of the healthy samples appeared as an obvious outlier at 

0.15mM. In figure 4.3.10 this sample has been removed to resolve any visible separation 

across the groups. On repeat of a KW test, there was a significant difference across the 

groups for glutamate (p=0.03), however Dunn’s multiple comparison did not confirm which 

paired groups were significantly different. An attempt to view the data with other clear 

single outliers within scatter plots for hypothanthine (within the Mild group) and 

phenylalanine (within House-Matched group) were excluded and re-plotted (not shown). 

These outliers did not make any difference to reveal at specific trend.  Tau-methylhistidne 

included in this figure, is another increased metabolite that may be slighter higher within 

some severe (S) patients, however, given the distributions of concentrations derived from 

house-hold controls (H) and the small ranges in concentration difference it is hard to 

conclude anything from this. Suffice to say, Tau-methylhistinde is an amino acid largely 

present in actin and myosin, and can be used as a surrogate for indirect determination of 

muscle myofibrillar protein degradation (Lowry et al., 1985; Röuthig et al., 1984). Indeed, in 

the context of severe, house-bound patients, this is not a surprising finding. 

 

Two other metabolites from serum did appear interesting based on the possible subset 

distribution of concentration in severe (S). Figure 4.3.11 presents the scatter plots for an 

unknown metabolite at 2.69ppm, and for acetoacetate. In both these plots, there appears 

to be an emergence of two discrete, severe (S) patient populations. Higher levels of 

acetoacetate are indicative of ketosis during a fasting state. Indeed, many of the severest 

patients, who remain bed-bound the entire time, eat very little and at inconsistent times of 

the day. Dehydration is also common among them and is reflected by the Bristol scores, 

most which score 1, being the most dehydrated stool presenting difficult to pass for the 

patient.  

 

Finally, as a statistical summary for all metabolite concentrations measured in serum, table 

4.3.3 provide mean concentrations (mM) and the standard error for each of 53 metabolites  
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measured in serum along with their respective p value for KW test performed with Dunn’s 

multiple comparison test. Despite a more comprehensive overview of the coverage of 53  

serum metabolites none of the previous findings based of just 24 serum metabolites could 

be replicated (Armstrong et al., 2017). Armstrong et al. acknowledged no investigation was 

performed on their serum samples using the apolar layer extracted during 

methanol/chloroform extract. In the next result section, for the first time in ME/CFS 

research, an attempt has been made to study the lipid profile of ME/CFS serum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.9 Selected scatter plots of 8 metabolites previously reported to be altered within the 

ME/CFS patient population but were not observed to be significant altered in this study. Plots 

were generated using GraphPad Prism. Each dot represents a single participant. Horizontal line 

represents the median concentration (mM) value. Error bars represent the Max and Min values 

observed from each experimental group. 
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Figure 4.3.10 Amended scatter plots excluding extreme values included in the initial plot (Fig. 

4.3.11) for Glutamate and Tau-MeHis. Glutamate (p=0.03, M>H). Tau-MeHis (p=0.07) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.11 Scatter dot plots for unknown small metabolite and acetoacetate. Significance tested 

using Kruskal-Wallis test with Dunn’s post-hoc test, no significances observed. Distribution of 

concentrations (mM) plotted appear to indicate a trend in metabolite concentration across groups, 

S>M>H for both metabolites. (p=0.81 and p=0.66 respectively). 
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Figure 4.3.12 Box plot summary including 25 of 53 serum metabolites detected using 600MHz 1H-

NMR. Frozen storage (-80
o
C) serum collected from severe (S), mild/moderate (M) and House-

Matched (H) were analysed simultaneously. Analysis was performed blinded using experimental 

spectra compared with reference spectra of known small compounds. Absolute concentrations were 

obtained in milli-molar (mM) before undergoing log transformation and plotting data using 

GraphPad Prism. Three groups S, M, & H were analysed for statistical significance using the Kruskal-

Wallis test with Dunn’s post correction. *(2-hydroxyisovalerate, p=0.02). 
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Figure 4.3.13 Remaining 26 out of 53 metabolites found in serum. All samples were analysed 

simultaneously using 600 MHz 
1
H-NMR. Central line of boxes represents median value for each 

compound; error bars show samples were the max and min concentration was detected. Width of 

box shows the interquartile range. Absolute concentrations were determined from measurement of 

peak intensity. Compounds were identifiable based on comparison of the experimental spectra with 

known reference spectra in the library. No significant differences were observed across groups: (S), 

(M) & (H). 
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Metabolite    P 
value 

Severe 
  

Mild/moderate 
  

House Matched 
  

    Mean   St. Err       Mean   St. Err.         Mean St. Err. 
2-Aminobutyrate 0.95 0.0062 0.00082 0.0062    0.00077 0.0063 0.001247 

2-Hydroxybutyrate 0.94 0.0106 0.00149 0.0104    0.00155 0.0117 0.002476 

2-Hydroxyisovalerate 0.02* 0.0017 0.00013 0.0030    0.00046 0.0018 0.000260 

2-Oxoisocaproate 0.25 0.0076 0.00066 0.0092    0.00076 0.0075 0.001112 

3-Hydroxybutyrate 0.75 0.0179 0.00385 0.0125    0.00353 0.0151 0.005106 

3-Hydroxyisobutyrate 0.57 0.0039 0.00052 0.0043    0.00061 0.0043 0.000524 

3-Methyl-2-oxovalerate 0.13 0.0056 0.00052 0.0070    0.00054 0.0055 0.000684 

3-methyl-2-oxobutyrate 0.65 0.0034 0.00021 0.0037    0.00031 0.0034 0.000352 

Acetate 0.62 0.0144 0.00203 0.0143    0.00149 0.0362 0.020025 

Acetoacetate 0.66 0.0056 0.00106 0.0041    0.00058 0.0041 0.001024 

Acetone 0.58 0.0019 0.00025 0.0016    0.00022 0.0014 0.000305 

Alanine 0.29 0.1264 0.00800 0.1493    0.00994 0.1420 0.024365 

Arginine 0.67 0.0171 0.00115 0.0178    0.00244 0.0236 0.006239 

Asparagine 0.36 0.0128 0.00065 0.0123    0.00099 0.0102 0.001357 

Aspartate 0.76 0.0092 0.00086 0.0081    0.00067 0.0105 0.002707 

Betaine 0.78 0.0096 0.00090 0.0103    0.00095 0.0094 0.000712 

Carnitine 0.75 0.0128 0.00047 0.0116    0.00151 0.0130 0.001132 

Choline 0.99 0.0057 0.00042 0.0060    0.00052 0.0542 0.048057 

Creatine 0.09 0.0124 0.00140 0.0087    0.00151 0.0128 0.002179 

Creatinine 0.82 0.0153 0.00092 0.0168    0.00088 0.0168 0.000576 

Dimethylamine 0.2 0.0005 4.93681E-05 0.0006    3.9207E-05 0.0005 5.34522E-05 

Ethanol 0.53 0.0103 0.00224 0.0364    0.01350 0.0505 0.029978 

Formate 0.49 0.0083 0.00048 0.0079    0.00053 0.0092 0.000870 

Glutamate 0.03* 0.0230 0.00242 0.0274    0.00238 0.0343 0.016630 

Glutamine 0.39 0.1460 0.00552 0.1354    0.00807 0.1312 0.019423 

Glycerol 0.35 0.0262 0.00242 0.0218    0.00398 0.0807 0.054000 

Glycine 0.47 0.0855 0.00669 0.0980    0.00886 0.1034 0.017186 

Histidine 0.57 0.0250 0.00084 0.0238    0.00082 0.0284 0.004210 

Hypoxanthine 0.94 0.0035 0.00038 0.0041    0.00111 0.0035 0.000429 

Isoleucine 0.48 0.0184 0.00238 0.0194    0.00166 0.0193 0.002131 

Isopropanol 0.08 0.0014 0.00030 0.0008    0.00010 0.0022 0.001138 

Lactate 0.11 0.7062 0.06555 0.8540    0.06157 0.7263 0.105928 

Leucine 0.58 0.0385 0.00372 0.0400    0.00324 0.0493 0.011746 

Lysine 0.88 0.0440 0.00237 0.0434    0.00272 0.0481 0.008200 

Mannose 0.29 0.0157 0.00095 0.0131    0.00099 0.0162 0.002826 

Methylamine 0.45 0.0026 0.00044 0.0020    0.00043 0.0021 0.000534 

Ornithine 0.06 0.0145 0.00148 0.0179    0.00145 0.0148 0.003233 

Phenylalanine 0.76 0.0190 0.00081 0.0192    0.00095 0.0251 0.005307 

Proline 0.34 0.0635 0.00616 0.0678    0.00618 0.0575 0.006659 

Propylene glycol 0.97 0.0039 0.00232 0.0016    0.00094 0.0014 0.000472 

Pyruvate 0.19 0.0157 0.00369 0.0177    0.00249 0.0124 0.003852 

Sarcosine 0.23 0.0004 3.69564E-05 0.0004  4.52724E-05 0.0005 4.9099E-05 

Serine 0.39 0.0435 0.00304 0.0391    0.00392 0.0519 0.010921 

Threonine 0.84 0.0387 0.00267 0.0366    0.00354 0.0434 0.008674 

Tryptophan 0.31 0.0139 0.00042 0.0154    0.00086 0.0160 0.001569 

Tyrosine 0.42 0.0237 0.00222 0.0244    0.00253 0.0295 0.003739 

Urea 0.19 0.1878 0.01646 0.1940    0.01734 0.2247 0.015689 

Valine 0.85 0.0672 0.00392 0.0695    0.00463 0.0695 0.005800 

Citrate 0.12 0.0158 0.00102 0.0166    0.00136 0.0203 0.001703 

Glucose 0.1 1.0639 0.06742 1.1821    0.08797 1.2798 0.134884 

β-Alanine 0.44 0.0012 0.00065 0.0010    0.00022 0.0013 0.000386 

τ-Methylhistidine 0.07 0.0027 0.00086 0.0009    0.00020 0.0024 0.000827 

 

Table 4.3.3 Summary statistical for absolute concentration (mM) of low molecular weight 

(hydrophilic) metabolites in serum.   Mean values and standard error were calculated using 

Microsoft Excel. Data was plotted using Prism (see scatter plots in supplementary materials). 

Kruskal-Wallis test was applied for determining level of significance at 5% followed by Dunn’s 

multiple comparison test to compare across groups: (S) vs (M) vs (H).
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4.3.4 Diffusion edited NMR using saline diluted serum 

 

- dataset 4C 
 

A separate dataset was collected using saline-diluted serum to explore spectral 

contributions from lipoproteins and other macromolecules as opposed to small molecular 

metabolites. Diffusion edited NMR spectra were analysed by summing the intensities 

within each variable width bucket. As far as possible each bucket was assigned by 

comparing spectral features with reference spectra in the literature. At the time of writing, 

no previous data using 
1
H-NMR has looked at the contribution of lipoproteins in this 

disease.  Blood serum contains various proteins and lipoproteins which contribute strongly 

to 
1
H-NMR spectra with smaller metabolites such as amino acids superimposed as sharp 

peaks. The larger molecules generate much broader resonances figure 4.3.14 compared 

with the earlier NMR generated spectrum (figure 4.3.1). This is characteristic of larger 

macromolecules such as lipoproteins due to their faster relaxation properties of protons 

associated with aromatic and aliphatic chemical groups. By alternating the NMR pulse 

sequence during the acquisition of the samples this generates a diffusion edited NMR 

spectrum (figure 4.3.15). This approach utilises an echo phenomenon to recover certain 

signals after a delay in diffusion - as such, macromolecules behave as ‘sluggish’ movers.   

 

The data provides a spectral overview of CH groups of lipids within lipoprotein particles, 

table 4.3.4. This was then analysed by summing the intensities within each variable width 

bucket, shown as black bars along the chemical shift axis in figure 4.3.15.  Each bucket is 

labelled with a chemical shift at the centre of each bucket (ppm). The integrated intensities 

from each sample are presented in dot plots comparing Severe (S), Mild/moderate (M) and 

House-Matched (HM) – see supplementary figure (S 4.3) in appendix.  These intensities 

were normalised by setting the sum of intensities in each spectrum to 1 to allow for 

concentration difference. Table 4.3.4 presents the identities of the chemical shifts relating 

to each variable width bucket. These have been assigned using the resonances  observed 

from high resolution 750 MHz 
1
H-NMR using normal human blood plasma (Foxall et al., 

1995).
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Figure 4.3.14 600 MHz 1H diffusion edited NMR spectra of all serum samples (n=34) with patient codes and colouring: severe (S) – blue; mild (M) – green; healthy (H) – 

red.  
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Figure 4.3.15 600 MHz 1H ‘diffusion edited’ NMR spectrum of saline diluted serum (sharp lines from low mol. wt. metabolites are suppressed). The data are analysed by 

summing the intensities within each variable width bucket (black bars below the spectrum). Each bucket is labelled with the chemical shift at the centre, e.g. the arrowed 

bucket is labelled ‘2.03’ in the supplementary statistical plots. 
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Table 4.3.4  Experiment spectra peak assignment based on observed chemical shift and reference to known lipid molecules detected in normal human plasma. Using 

750MHz 1H-NMR.

Metabolite Chemical Structure Chemical shift 

(ppm) 

Assigned Observed 

Unsaturated lipid =CHCH2CH2 5.31690001 5.31 1D, COSY, HMQC 
Glyceryl of lipids  CHOCOR 5.1967001 5.2 COSY 
Glyceryl of lipids  CH2COR 4.26854992 4.25 HMQC 
myo-inositol  CH2 4.08055019 4.06 JRES 
Unknown 

 
3.98484993 3.98 JRES 

Unknown 
 

3.93875003 3.93 JRES 
Glycerol C2H 3.88940001 3.87 JRES, COSY 
Unknown 

 
3.81389999 3.83 JRES, COSY, HMQC 

Choline (lipid)  NCH2 3.67209995 3.66 JRES, COSY, HMQC 
Glycerol 

 
3.56110001 3.56 1D, COSY, HMQC 

Choline  N(CH3) 3.22959995 3.21 JRES, HMQC 
Albumin lysyl  e-CH2 3.000000 3.01 1D, JRES, COSY, HMQC 
Lipid  C=CCH2C=C 2.74849999 2.72 1D, COSY, 
Lipid  CH2CO 2.23970008 2.23 COSY 
Unknown 

 
2.07934999 2.08 1D, JRES, COSY  

Glycoprotein (acetyls)  NHCOCH3 2.03464997 2.04 1D, COSY, HMQC 
Lipid  CH2C=C 1.98540002 2 COSY 
Lipid  CH2CH2C=C 1.71249998 1.69 COSY, HMQC 
Lipid  CH2CH2CH2CO 1.3513 1.32 JRES, COSY, HMQC 
Lipid (mainly VLDL)  CH2CH2CH2CO 1.29580003 1.29 1D, CPMG, JRES, COSY 
Lipid  CH3CH2CH2 1.23405004 1.22 HMQC 
Cholesterol C21 C21 0.89815 0.91 HMQC 
Lipid (mainly VLDL)  CH3(CH2)n 0.8364 0.84 1D, JRES, COSY, HMQC 
Cholesterol C18 C18 0.70524999 0.7 HMQC 
Lipid (mainly VLDL)  CH2CH2CO 1.57999998 1.57 JRES, COSY, HMQC 
Unknown 

 
1.509 
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The only significant difference discovered was across two groups (p=0.009, S>H) for a signal 

at 2.03ppm. This signal was identified as N-Acetyl groups from a1-acid glycoprotein (figure 

4.3.16). The next closest significant signals were detected at 2.24ppm, 1.23ppm and 

1.58ppm. The signal at 1.58ppm (figure 4.3.17) appears to follow a trend (S>M>H) and 

appears to correspond to citrulline based on the observed resonances recorded in 

Nicholson & Foxall, (1995). However, in this particular experiment small molecules such as 

citrulline are known to be excluded. The earlier set of samples processed using 

methanol/chloroform extraction would have detected low molecular weight metabolites 

such as this, but unfortunately did not detect citrulline either.  

 

 

 

 

 

 

 

 

 

 
 
Figure 4.3.16  N-acetyl group from glycoproteins The points in the statistical plot shows the 

integrated intensities of the bucket labelled with a chemical shift of 2.03ppm. These intensities have 

been normalised i.e. the sum of intensities in each spectrum has been set to 1 to allow for 

concentration differences. (p=0.009). 

 

 
 
 
 
 
 
 
 
 
 
 

* p = 0.009 
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Figure 4.3.17 Integrated signal intensities within bucket width at 1.58ppm. No significant 

p value. There appears to be a trend (S>M>H). 

 
Citrulline was detected in2D NMR experiments used for signal identification but it was too 

low in concentration and lacked clear-cut signals that could be used for quantification by 

NMR. Armstrong et al., claim to have quantified it using the same method as they had 

access to a 900 MHz NMR, the 600 MHz machine. Citrulline has previously been suggested 

as a surrogate marker for increased intestinal permeability as well as intestinal insufficiency 

relating to short bowel syndrome in patients (Curis et al., 2007; Fragkos & Forbes, 2018). In 

a 2018 review, the authors conclude citrulline is ‘quite reasonably’ a marker of intestinal 

function and absorption (Fragkos & Forbes, 2018). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
  

 216 

 
4.3.5 Targeted bile acid mass spectrometry 
 

- dataset 4B 

As an extension to the 45 metabolites identified using 1H-NMR in severe ME faecal water; 

additional aliquots for available samples were used for a targeted analysis of 26 bile acids 

(Table 4.3.5) using Liquid-Chromatography – Mass Spectrometry (LCMS) in multiple 

reaction mode (MRM). A total of 14 samples were analysed including 8 severe ME (S) 

patients versus 6 House-Matched (H) controls. The range of concentrations observed 

across the 26 bile acids varied dramatically and for the purposes of summarising this data 

across the two groups (S v H), log transformation of absolution bile acid concentrations 

enabled visualisation on a box plot (figure each bile acid, 4.3.18). Individual metabolites 

were compared between severe (S) and house-matched (H) using the Mann-Whitney test, 

except where multiple samples gave zero concentrations, using GraphPad Prism. Beta-

muricholic acid (b-MCA), a primary bile acid that is one of the main forms of major bile 

acids found in germ-free mice, was significantly higher in severe patients, p value = 0.0416) 

(Eyssen et al., 1976). The literature is clear that the presence of this bile acid is not expect 

in humans but been reported to be detected in low concentrations in urine (Goto et al., 

1992). Tauro-conjugated forms of alpha- and beta- muricholic acids were also detected in 

(S) and (H) faecal metabolomes. Table 4.3.5 provides statistical summary of mean bile acid 

concentrations (ng/ml) and standard errors and respective p value.  

 

The bile acid, temporarily designated as ‘glycocholate’ based on earlier collected NMR 

spectra which showed a weak separation between severe (S) and house-matched (H), did 

not produce any significant result, with a recorded p value of 0.4162. For some bile acids, 

one or two severe ME (S) samples were observed to have unusually higher concentration 

values outside the rest of the group (see Figure 4.3.19).  
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Figure 4.3.18 26 Bile Acid targeted Mass Spectrometry analysis of faecal water from 8 

severe (S) and 6 House-matched controls (H) Box plot used to compare range of log of 

concentrations (mM) detected within (S) and (H) groups. Line inside each box represent the 

median. Error bars indicate the extreme Max and Min values.  
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Figure 4.3.19 Summary scatter plot for 8 out of the total 26 Bile Acids (BA) targeted faecal water in 
8 severe ME patients versus 6 House-Matched controls. Horizontal lines indicate the max, median, 
and min. Patient numbers 12 and 15 were consistency revealed as outliers across at least 3 BAs. 
Data was analysed by Mann-Whitney test at the 5% significance level. Plots are labelled with the 
abbreviated name of each BA listed in Table 4.3.5. 
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Figure 4.3.20 Faecal metabolome concentration of HDCA (ng/ml) in severe (S) ME versus House-

Matched controls. No significant different report by Mann-Whitney test (p=0.15). 

 

Hyodeoxycholic acid (HDCA) showed a cluster of patients with almost double the 

concentration detected within the House-matched (H) group. The scatter plot in figure 

4.3.20 has been annotated with a red box to highlight these patients. It has been 

documented that HDCA is formed from muricholic acid and hyocholic acid by an unknow 

Gram-positive rod shaped bacterium originating from the gut of rodents (Eyssen et al., 

1999). It is therefore considered to be a secondary bile acid formed in humans as a 

metabolic by-product of intestinal bacteria. It is not normally present in the urine of 

healthy humans (Almé et al., 1977); but most interesting has also been cited as being 

absorbed well across the gut barrier based on its excretion in urine (Sacquet et al., 1983) in 

patients with cholestatic disease and others with purported intestinal malabsorption (Almé 

et al., 1977; Summerfield et al., 1976) . Interestingly, HDCA has been shown to be effective 

in treating rodents for metabolic disorders and a diet enriched in HDCA was protective of 

atherosclerotic plaque formation in LDL receptor knockout mice by reducing intestinal 

absorption of cholesterol (Shih et al., 2013).  
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Bile Acid Abreviation Type   Faeces Un-paired t test            
            Severe (S) 

 
     House-Matched (H)      

P value Mean St. Err. Mean St. Err. 
 

alpha-muricholic acid a-MCA Primary (mouse) 
 

0.0631 21.90 9.20 7.0 3.60 
 

beta-muricholic acid b-MCA Primary (mouse) 
 

0.0416* 43.75 20.37 5.6 3.30 
 

Cholic acid CA Primary (mouse) 
 

0.3948 661.90 20.00 59.4 36.50 
 

Chenodeoxycholic acid CDCA Primary (mouse) 
 

0.3397 355.40 16.60 19.7 9.10 
 

Deoxycholic acid DCA Secondary 
 

0.8786 639.80 373.20 1076 615.10 
 

Glycocholic acid GCA Glyco-conjugated 
 

0.4162 165.10 3.10 24.6 12.50 
 

Glycochenodeoxycholic acid GCDCA Glyco-conjugated 
 

… 3.00 1.40 3.30 1.60 
 

Glycodeoxycholic acid GDCA Glyco-conjugated 
 

0.2583 17.20 3.60 4.60 2.50 
 

Glycocholic acid GHCA Glyco-conjugated 
 

… 0.00 0.00 4.20 2.50 
 

Glycohyodeoxycholic acid GHDCA Glyco-conjugated 
 

… 5.70 0.00 1.10 0.70 
 

glycolithocholic acid GLCA Glyco-conjugated 
 

… 0.00 0.00 0.00 0.00 
 

Glycoursodeoxycholic acid GUDCA Glyco-conjugated 
 

… 11.70 0.50 0.00 0.00 
 

Hyodeoxycholic acid HDCA Secondary 
 

0.1511 1128.50 598.90 757.7 422.3 
 

Lithocholic acid LCA Secondary 
 

0.7645 621.50 287.70 681.9 409.7 
 

Muricholic acid MCA Primary (mouse) 
 

… 53.60 12.00 0.00 0.00 
 

Tauro-a-muricholic acid Ta-MCA Tauro-conjugated 
 

0.3989 27.10 18.90 78.6 47.70 
 

Tauro-b-mucricholic acid Tb-MCA Tauro-conjugated 
 

0.983 169.70 130.90 128.1 69.20 
 

Taurocholic Acid TCA Tauro-conjugated 
 

0.9303 127.50 91.60 97.3 50.30 
 

Taurochenodeoxycholic acid TCDCA Tauro-conjugated 
 

… 5.60 3.50 29.9 18.00 
 

Taurodeoxycholic acid TDCA Tauro-conjugated 
 

… 7.20 2.20 165.9 99.6 
 

taurodehydrocholic acid TDHCA Tauro-conjugated 
 

… 0.00 0.00 0.00 0.00 
 

trihydroxycoprostanic acid THCA Secondary 
 

… 0.00 0.00 0.83 0.50 
 

Taurohyodeoxycholic acid THDCA Tauro-conjugated 
 

… 0.00 0.00 3.80 2.10 
 

Taurolithocholic acid  TLCA Tauro-conjugated 
 

… 0.00 0.00 7.20 4.30 
 

Tauroursodeoxycholic acid TUDCA Tauro-conjugated 
 

… 8.25 5.70 5.70 2.60 
 

Ursodeoxycholic acid UDCA Secondary 
 

0.2567 179.10 116.00 49.20 30.1 
 

 
Table 4.3.5 Statistical summary table for 26 bile acids (BA) quantified in faecal water samples from severe (S) ME patients versus house-matched (H) controls. Mean 

concentrations are provided in ng/ml with standard error in measurements. Both groups were compared for statistical significance at the 5% level using the Mann-Whitney 

test, p values are displayed in table 
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Table 4.3.6 Statistical summary of serum bile acid concentrations (nM) in Severe (S), Mild/moderate (M), Healthy, and IBD. Included 26 targeted bile acids quantified 

using mass spectrometry. Significant p values are in bold. Colour shading for ease of separation of values corresponding to 12 severe ME (red), 14 mild/moderate ME 

(yellow), 7 healthy (green) and 6 IBD (blue) samples. Mean concentrations and standard error per metabolite, per group. P values calculated using Kruskal Wallis test at 5% 

significance: *denotes p < 0.05, ** denotes p < 0.01.

Bile Acid Abbreviation Type P value Severe (S)  Mild (M)  Healthy  IBD  
   KW Mean St. Err Mean St. Err Mean St. Err Mean St.Err 

alpha-muricholic acid a-MCA Primary (mouse) 0.55 30.12 2.77 25.21 1.91 27.5 1.98 33.00 6.01 

beta-muricholic acid b-MCA Primary (mouse) 0.16 11.12 9.21 0.00 0.00 11.25 4.81 9.67 9.67 

Cholic acid CA Primary (mouse) 0.01* 78.29 14.79 102.21 29.43 155.91 58.29 240.33 54.77 

Chenodeoxycholic acid CDCA Primary (mouse) 0.003** 57.21 12.11 109.5 37.65 137.00 49.06 233.00 65.45 

Deoxycholic acid DCA Secondary 0.33 267.07 106.47 189.5 55.78 230.25 54.37 130.67 24.05 

Glycocholic acid GCA Glyco-conjugated 0.47 143.64 23.58 185.57 49.04 188.75 33.51 172.83 27.00 

Glycochenodeoxycholic acid GCDCA Glyco-conjugated 0.59 354.86 67.04 553.86 107.18 453.33 85.75 439.17 105.08 

Glycodeoxycholic acid GDCA Glyco-conjugated 0.19 270.00 60.85 225.64 44.62 267.33 68.02 87.83 21.28 

Glycocholic acid GHCA Glyco-conjugated 0.02* 0.64 0.64 6.92 2.49 1.00 1.00 0.00 0.00 

Glycohyodeoxycholic acid GHDCA Glyco-conjugated 0.27 14.29 0.54 11.36 1.34 13.42 1.48 9.67 3.15 

glycolithocholic acid GLCA Glyco-conjugated 0.16 16.07 2.04 16.42 1.94 21.67 4.72 10.83 1.28 

Glycoursodeoxycholic acid GUDCA Glyco-conjugated 0.15 15.21 1.33 13.71 0.79 16.00 1.00 16.67 0.92 

Hyodeoxycholic acid HDCA Secondary n/a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Lithocholic acid LCA Secondary 0.10 59.57 47.91 1.71 1.71 32.42 24.22 0.00 0.00 

Muricholic acid MCA Primary (mouse) 0.84 75.5 16.87 136.29 38.63 105.41 28.43 88.67 32.71 

Tauro-�-muricholic acid T�-MCA Tauro-conjugated 0.21 17.86 8.69 2.07 1.42 5.50 3.00 20.83 9.51 

Tauro-�-mucricholic acid T�-MCA Tauro-conjugated 0.06 319.93 126.3 124.93 18.66 220.08 48.64 122.83 28.32 

Taurocholic Acid TCA Tauro-conjugated 0.11 123.21 24.16 77.14 10.36 149.5 32.2 147.83 56.52 

Taurochenodeoxycholic acid TCDCA Tauro-conjugated 0.93 90.71 24.22 81.5 18.8 98.25 25.88 79.17 24.36 

Taurodeoxycholic acid TDCA Tauro-conjugated 0.13 85.43 17.71 50.57 8.32 73.67 21.79 30.50 6.17 

taurodehydrocholic acid TDHCA Tauro-conjugated 0.30 0.00 0.00 2.07 2.07 0.00 0.00 6.50 6.50 

trihydroxycoprostanic acid THCA Secondary n/a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Taurohyodeoxycholic acid THDCA Tauro-conjugated 0.13 15.07 0.66 12.57 12.3 13.58 0.50 15.17 1.08 

Taurolithocholic acid TLCA Tauro-conjugated 0.17 16.00 0.94 13.79 1.41 17.00 1.79 12.33 1.02 

Tauroursodeoxycholic acid TUDCA Tauro-conjugated 0.60 21.21 2.89 15.00 2.13 16.83 1.98 15.67 3.61 

Ursodeoxycholic acid UDCA Secondary 0.36 17.57 4.35 39.93 11.77 30.67 6.95 36.50 10.89 
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4.3.6 Bile Acid analysis of ME serum 
 

- dataset 4D 
 

Targeted HPLC mass-spectrometry of the same 26 bile acids was accurately quantified in a 

total of 46 serum samples collected between 2015-2017. This represents the largest and 

final dataset (designated 4D, Table 4.3.2) acquired during the study. Twenty-six ME/CFS 

patients where included in the experiment were categorised as follows: 12 severe (S), 14 

mild/moderate (M). In addition, 7 House-Matched (H) and 6 IBD serum samples were also 

included. Sera collected the previous year (2016) was available at the time, for 2 of the 

severe patients (n=12+2, severe) and their respective House-Matched control (n=7+2). A 

further 3 conventionally healthy samples were provided as a gift along with the 6 IBS serum 

samples kindly given by Dr Alistair Noble (Imperial College London, UK), bringing the total 

sample size to 46. 

 

The synthesis of primary bile acids takes place within the liver where major bile salts are 

produced when conjugated with taurine and glycine, forming tauro-chenodeoycholate 

(TCDCA) and glycochenodeoxycholate (GCDCA) respectively (Germain et al., 2017). Both of 

these have been reported significantly reduced in ME/CFS patients. In contrast, within 

severe (S) and Mild/moderate (M) patients there was no statistically relevant difference for 

either. However, upon review of the scatter plot for GCDCA (fig. 4.3.21), it does appear as if 

severe patients have a lesser concentration compared with the other groups which would 

be in agreement with these previous reports. Although it is worth noting that this trend 

was not identified in the faecal water metabolome of the same participants (figure 4.3.19). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3.21 Concentration (ng/ml) of glycochenodeoxycholic acid (GCDCA) across 4 groups. KW 
test revealed no significant differences at 5% significance.  
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Figure 4.3.22 Mass Spectrometry targeting on 26 bile acids in serum. Four groups compared: 14 

severe (S), 14 Mild/moderate (M), 14 House-Matched (H) and 6 IBD serum. Statistical analysis was 

performed in GraphPad Prism using one-way ANOVA with Dunnett’s Multiple comparison to House-

Matched (H). No significance was observed. 

Serum BA

Concentration (ng/ml)

B
ile

 A
ci

d

0 200 400 600 800 1000

a-MCA

b-MCA

CA

CDCA

DCA

GCA

GCDCA

GDCA

GHCA

GHDCA

GLCA

GUDCA

LCA

MCA

T-a-MCA

T-b-MCA

TCA

TCDCA

TDCA

TDHCA

THDCA

TLCA

TUDCA

UDCA

Severe ME
Mild/moderate ME

House-matched
IBD



  
 
 

 
 224 

 
 
 

 
 

 
 
 

 
 

 
 

 
 

 
Figure. 4.3.23 Scatter plots summarising concentrations found of tauro-deoxycholic acid 
(TDCA) found across the 4 groups labelled. Kruskal-Wallis with Dunn’s multiple comparison 
test reveal the following values (left plot) p= 0.132, (right plot) p=0.047.  
 
Another interesting trend emerged from a primary bile acid produced in the liver called 

taurodeoxycholic acid TDCA. The initial Kruskal-Wallis (KW) test performed for this bile acid 

did not show significant differences in accumulation between different groups. Review of 

the scatter plot highlighted 3 healthy outliers. These samples were subsequently removed 

from the plot (figure 4.3.23), given the limited criteria for the condition of healthy was 

based on participants ‘apparently healthy’. After which, the KW test re-applied to show 

higher, significant difference between groups, at a p value of 0.047. Alas, Dunn’s multiple 

comparison was unsuccessful is demonstrating which pair of groups were significantly 

different, but the trend appears to be S>M>H. Tauro-congutated bile acids are more 

typically found in mice, compared to human bile acids which more frequently conjugate 

with glycine.  
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** 

* 

A B 

C D 

In an attempt to summarise this work, as with previous datasets 4A-C, a box plot was 

constructed comprising serum bile acid concentrations (ng/ml) across severe (S), 

mild/moderate (M), house-matched (H) and IBD groups. Statistical summary of the data is 

provided by Table 4.3.6 with mean BA concentrations and standard errors, including p 

values determined by individual KW tests.  As with the faecal metabolome, several 

muricholic derived bile acids were detectable and quantified in serum, with possibly the 

highest concentrations detected in a few of the severe (S), see table 4.3.6. However, in a 

recent metabolomic study profiling bile acids in human plasma from patients with 

Alzheimer’s disease (AD) various muricholic acid forms were below the limit of detection 

(Pan et al., 2017). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3.24 Selected scatter plots for absolute bile acid concentration across 4 bile acids in 

serum. Consistently the same patients are the represented as outliers within their respective group 

(S), (M), (H) for these particular bile acids. No clinical information was provided for IBD serum 

samples used in this analysis. KW test revealed GHCA group differences generative p value of 0.02, 

but failed Dunn’s multiple comparison. CDCA **p=0.003 CA *p= 0.01 
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Chenodeoxycholic acid (CDCA) and cholic acid (CA) are considered primary bile acids that 

undergo synthesis in both the livers of humans and mice before conversion by intestinal  

microbes to lithocholic acid (LCA) and deoxycholic (DCA) respectively (Hu et al., 2014). 

CDCA is usually abundant in human bile, but is not compared with mice where is it 

converted to muricholic acids (Zhang & Klaassen, 2010). Higher serum concentration of 

CDCA and other bile acids such as GCA, GCDCA, TCDCA are noted with respect to liver 

injury and disease (Luo et al., 2018). No evidence, as such, is presented within these data to 

suggest severe (S) ME or mild/moderate (M) patients display signs of liver injury or disease.  

On the contrary, the CDCA scatter plot presented in figure 4.3.24 was highly significantly 

different (p=0.003) based on KW test and Dunn’s multiple comparison, for the following 

trends, S<IBD, M<IBD. CDCA is normally abundant in human bile compared with mice 

where is converted to muricholic acid. Indeed, the earlier observation of higher faecal 

HDCA is also intriguing as it can be formed from MCAs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  
 
 

 
 227 

4.4 Discussion 
 
Metabolomics was used to profile metabolites derived from serum and the faecal 

microbiota of ME/CFS patients compared to HHCs. The composition of the intestinal 

microbiota was explored in the previous chapter in ME/CFS using metagenomics 

increasingly interprets the functional gene diversity, rather than its taxonomic profile, 

needed to carry out important functions including vitamin, short chain fatty acid 

production, amino acid synthesis, secondary bile acid metabolism and fermentation of non-

dietary carbohydrates (Vernocchi et al., 2016). Metabolomics is able to compliment 

functional metagenomic interpretations, by providing a metabolic profile as an 

intermediate between microbiota-host interactions.  Until now recent metabolome studies 

to date, have suggested some consistencies for alterations with the ME/CFS faecal and 

blood metabolome. These findings have been substantiated by independent research 

groups and by the application of different metabolomics methods using 1H-NMR and Mass 

Spectrometry (MS). Based on this, it was expected that the severe ME patient cohort 

examined here would exhibit similar metabolic disturbances relating to their energy and 

lipid metabolism. Furthermore, given their severity of clinical status it was hypothesised 

that the scale of such metabolic difference may be accentuated in severe ME compared 

with the general mild/moderate ME patient population. The data presented in this chapter 

based on serum did not support this hypothesis. Indeed, the lack of any particular finding in 

either faecal and serum metabolome was surprising and appear to reject our hypothesis.   

 

Faecal water collected from 11 severe ME patients and 6 house-matched controls were the 

first samples to be examined. These samples were collected in 2017 following changes 

made to sample collection where the patient was asked to provide samples from their own 

stool specimen which, did not allow for control of location of the sample from the entire 

stool. In an attempt to address the issues around the lack of standardisation frequently the 

case in microbiome-based studies, it was decided to collect the entire stool sample from 

each participant. Gratton et al. (2016) show that faecal homogenisation is an important 

step in overcoming sample variability according to where you sample even within same 

stool specimen (Gratton et al., 2016b). Transport time was also an additional factor when 

attempting to conduct patient home visits. There was considerable journey time for some 

sample collections depending on where they lived with respect to the site of sampling 

processing.  
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There may be a consensus regarding reduced butyrate production in the faecal 

metabolome in ME/CFS patients, although this was not seen in this study. No assumptions 

were made about the distribution of metabolite concentrations prior to statistical testing. 

To that end, a conservative approach was made in the decision to use non-parametric 

testing to compare differences across different groups. In contrast to parametric testing, 

this approach is more stringent, with less assumption but also does not account for the fact 

that each house-matched control is paired with a severe ME patient. However, this does 

not negate that upon review of the data in figures 4.3.3. there is great overlap in individual 

metabolite concentrations between the groups. Earlier work by Armstrong et al., (2017) 

using 900MHz 1H-NMR, provided the most relevant incite in to the ME systemic 

metabolome since it also used ME/CFS serum, but only had the capacity to detect 29 

metabolites. With the emphasis on the severity of ME with our patient cohort, the lack of 

any result is puzzling given that in the analysis of serum 53 metabolites there were 

detected and quantified in severe ME, again, no significant conclusions can be justified. 

 

The lack of reproducibility continues to be a challenge for ME research, however this is 

layered with further challenges when considering potential methodological differences 

may be contributing dramatically to the outcome of the result. As discussed, sample 

collection and processing must also be controlled. Review of table 4.1.1 highlights serum 

versus plasma as the most obvious factor in accounting for variability with respect to small 

metabolites that appear to be more stable in plasma than in serum based on the lack of 

any consistent findings that have previously reported. Both serum and plasma analyses 

have been performed in ME patients using mass spectrometry but only those done using 

plasma highlight significant overlap in observed differences in metabolic pathways. 

Unfortunately, it was not possible to include plasma in this work since serum collection was 

originally prioritised for the purposes of identifying the presence of (auto)-antibodies 

towards gut microbes in future work. Serum is the preferred standard for antibody-based 

discovery. Moreover, serum collected from house-bound patients experienced variable 

delays (1-4 hrs) in transport to the laboratory for processing and storage at -80oC. It is 

unknown if this causes further enhanced loss of some metabolites or if plasma would be 

more resilient. For future sample collection is would be highly preferably to include mobile 

refrigeration during transportation to maintain constant temperature of all samples.  
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Other methodological difference include NMR platform technology and equipment used. 

Armstrong et al. produced their data on a 900 MHz 1H-NMR machine – which is 1.5 times 

stronger than the 600 MHz machine used in this chapter. Briefly, when a sample is placed 

in a strong magnetic field the nuclear spins allocate themselves to two energy levels: low 

(‘spin up’) and high (‘spin down’). The energy level difference is small compared with 

thermal energy so the difference in number of nuclei in the lower and upper energy levels 

is very low e.g. 1 in a million. It is only this difference that we can detect. The difference in 

energy levels is greater and more detectable using 900 MHz machine versus 600 MHz. 

Moreover, signals are 1.5x more spread out at 900MHz, across 0-10 ppm, the full range of 

signals for hydrogen. For these reasons, a signal of interest that is overlapped with an 

interfering signal at 600 MHz may be better resolved at 900 MHz. 

 
Contrary to Armstrong et al. (2017), no evidence has been found for increased 

fermentation within this severe patient cohort. Particularly no difference was found for 

faecal butyrate or any other SCFAs. Often the faecal specimen provided by the patient was 

significantly less than that from house-matched control and appear very hard and 

dehydrated. Taking into account the disabling nature which confines these patients to the 

house and bed, often patients eat very little and do not drink enough. This most likely 

decreases gut transit and is a process that is known to increase the pH in the gut 

environment (Thursby & Juge, 2017). Studies have documented the effect of higher pH to 

show increased SCFA production and a decrease in lactate concentration, another 

metabolite in which no significant difference was observed (Belenguer et al., 2007). 

 

One interesting metabolite detected was gbutyrobetaine. This could be measured at a low 

level in most samples (patients and controls) but was notably higher in 3 of the patients. It 

is a gut microbial metabolite of L-carnitine (Koeth et al., 2014) and an intermediate in the 

conversion of carnitine to trimethylamine and TMAO. L-carnitine is found in meat, fish and 

eggs, however could also suggest these patients are taking a supplement with carnitine. 

Another possible explanation could be these patients lack bacteria that effect the 

conversion to TMA or TMAO. Increased Lactonifactor spp. belonging to the family 

Lachnospiraceae spp. and Ruminococcus spp. can produce TMAO, whilst Bacteroides spp. 

has been found to be less abundant in its presence (Wang et al., 2015).   Another 

metabolite that was only found in two patients was taurine. Taurine may be relevant since 

it is known to conjugate to primary bile acids in the liver whose function is important in 

lipid metabolism and consequently energy homeostasis. Like, L-carnitine, taurine is also 
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found in many health and energy supplements which we were unable to obtain any 

information regarding their consumption by ME or control subjects included in this study. 

 

The liver is the site for bile acid synthesis from cholesterol. Tauro-chenodeoxycholate 

(TCDCA) and glyco-chenodeoxycholate (GCDCA) have already been reported to be reduced 

in ME/CFS, which may suggest potential liver damage, although more the status of more 

conventional markers for this are unknown in ME/CFS (Germain et al., 2017). Bile acids are 

an important aspect to lipid metabolism since they facilitate the digestion and absorption  

of lipids within the small intestine. Interestingly, high fat diets may lead to partial intestinal 

permeability dysfunction; thus, bile acid metabolism was explored in these severe ME  

patients in the context of a role for a leaky gut in ME/CFS as providing a potential 

mechanistic role in these circumstances. Moreover, an unidentifiable suspected ‘bile acid’, 

to which the closest reference match was glycocholate, appeared significantly higher in 

severe patients (fig. 4.3.2) based on NMR resonances observed from their faecal water. Out 

of the 45 metabolites, this unknown bile acid was the only significantly different metabolite 

(KW, p=0.03).  

 

Global metabolite profiling uses an untargeted approach in the field of biomarker discovery, 

however different platforms can be limited to the size and chemical properties of 

metabolites they detect.  Increasing the number of metabolites identified requires 

authenticated standards included in the analysis to compare mass spectra and retention 

time with sample metabolites (Roessner, 2001). The choice of sample extraction solvent can 

allow for separation of polar and apolar metabolites. With our NMR work, 

chloroform/methanol was used for biphasic solvent extraction, thus our focus was on small 

soluble metabolites in serum and faeces. The sensitivity and resolution of NMR is considered 

inferior the MS-based methods, therefore better coverage of the metabolome uses both of 

these in combination. Together 1H-NMR and MS are the most powerful metabolomic 

techniques that define the number of metabolites in clinical samples (Collino et al., 2013). 

Other published ME/CFS studies have been able to detect a wide variety of metabolites with 

a range of physical chemical properties. Germain and colleagues used plasma to quantify 361 

metabolites using Q-Exactive MS (QE-MS) and found ADP, ATP, pyrimidines and many amino 

acids were significantly decreased in ME (Germain et al., 2017). Indeed, it would be 

interesting to undertake similar sophisticated workflows and MS, as previously described, to 

examine these pathways in severe ME patients. However the majority of the “signature” 
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metabolites identified from the analysis of much larger numbers of metabolites (Armstrong 

et al., 2017; Germain et al., 2017; Naviaux et al., 2016) whose abundance was altered in mild 

and moderately affected ME/CFS patients; whilst of those metabolites overlapping with our 

study were found unaltered in severe ME/CFS patients. 

 

The previous chapter discovered that severe ME patients tended to have less F.prausnitzii 

compared to HHCs.(fig. 3.3.11B). A reduction in this species has been well-established with 

IBD and considered an important contributor to intestinal health (representing 5% of the 

total  microbiota) providing energy to colonocytes through butyrate production and 

simulating anti-inflammatory signalling pathways (Arumugam et al., 2011; Cao et al., 2014; 

Miquel et al., 2013; Qiu et al., 2013). Our expectation was to find a reduction in faecal 

butyrate. However, Armstrong and colleagues suggested ME/CFS patients to display 

increased microbial fermentation correlated with Clostridium spp. and Bacteriodes spp. 

producing higher levels of SCFAs, valerate, isovalerate and butyrate (Armstrong et al., 

2017). None of these were found any different between our severe patients and HHCs, 

(figure 4.3.3) or from our sequencing data. Microbial volatile organic acids may be better 

targeted using GS/MS compared to NMR as the current agreement between metabolic 

studies in ME/CFS have been focused on using MS techniques (Germain et al., 2017; 

Naviaux et al., 2016). 

 

Targeted bile acid mass spectrometry did not reveal any significant changes in bile acid 

composition between patients and controls and was not helped by the relatively low 

sample group sizes. This was in exception to serum CDCA found significantly lower in 

severe ME patient serum and is known to be reduced in fasting states (J. Zhang et al., 

2017). Surprisingly, the alpha and beta forms, as well as tauro-conjugated murichoIic acids 

were detectable across all samples in faecal water and serum even though it has been 

suggested that the human gut microbiota is unable to metabolize CDCA into βMCA (Martin 

et al., 2007, 2008; Sacquet et al., 1984, 1985). Conversely, mice can hydroxylate 

chenodeoxycholic acid (CDCA) in the liver at the 6β-position to form α-muricholic acid 

(MCA) and ursodeoxycholic acid (UDCA) to form βMCA. Cyp2c70 is the principal enzyme 

involved in MCA production and is responsible for the differences in bile acid metabolite 

profile between humans and mice with further heterogeneity introduced in secondary bile 

acid metabolism by intestinal microbiota where taurine/glycine conjugated primary bile 

acids undergo deconjugation by intestinal bacteria using bile salt hydrolases (BSHs).  Tauro-
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alpha/beta-muricholic acids (T- α/βMCAs) were also detected in patients and controls, 

despite also normally being considered as species-specific primary bile acids in mice that 

are lacking in humans. Notably, tauro-beta-muricholic acid has been studied as a farnesoid 

X receptor (FXR) antagonist in mice models for metabolic disorders including obesity and 

insulin resistance, where reduction of bacteria with BSH activity protected against obesity 

and improved insulin sensitivity (Prawitt et al., 2011). Further work is needed to explore 

the BA profile in ME/CFS due to it roles in participating in different signalling pathways 

involved in lipid, glucose, and energy metabolism. 

 

Targeted analysis conducted in this way does have a drawback in that other less abundant, 

minority isoforms may go unnoticed in humans, such as muricholic acids. For instance, 

(García-cañaveras et al.,, 2012) were able to detect for the first time T-αMCA in healthy 

human serum using UPLC MRM MS, where in mice MCAs form >80% of the total primary 

acid pool (García-cañaveras et al., 2012). Analysis of faecal bile acid composition  

also revealed high levels of a mouse secondary bile acid, hyodeoxycholic acid (HDCA) 

shown in figure 4.3.20, in some severe ME patients. Although this result is not statistically 

significant, it appears convincingly higher in concentration for five severe patients (red 

box), at over twice the median concentration compared to the control group. In fact the 

conventional mouse gut microbiome is able to convert T-βMCA through bile salt hydrolase 

(BSH) and bile acid 7α-dehydroxlase forming β-MCA and hyodeoxycholic acid (HDCA; 

3α,6α-Dihydroxy-5β-cholan-24-oic acid) respectively (Ridlon et al., 2014) . The higher levels 

of HDCA in severe patients is unusual and obscure when reviewing the current published 

literature which purport hydroxyl groups in human primary bile acids to mainly occupy the 

3, 7, 12-position, whilst only mice can also add hydroxyl groups at the 6-postion forming 

HDCA and α/β/y-MCAs (Sacquet et al., 1983).  Indeed, the only difference between 

deoxycholic acid (DCA) and HDCA is the position of the hydroxyl group, which is at the 12-

postion in DCA.  To that end, HDCA is considered to be a major murine secondary bile acid, 

absent in humans, that is microbially generated from the primary bile acids αMCA and 

βMCA (Studer et al., 2016).  

 

The microbiome is a source of various bile salt hydroxylases (BSHs) that can perform 

deconjugation of glycine and taurine to liberate free primary bile acids and 7α-

dehydroxylating bacteria facilitating bile acid conversion. Member of Lactobacillus spp. and 

Bacteroides spp. are known to produce BSH, none of which we found correlations in our 
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earlier discussed sequencing of the ME/CFS metagenome (De Smet et al., 1995; Stellwag & 

Hylemon, 1976).  An unidentified Gram-positive rod-shaped bacteria capable of 

dehydroxylation of the 7β-hydroxy group and epimerization of the 6β-hydroxy group into a 

6α-hydroxy group converting βMCA into HDCA was isolated from rat intestines (Eyssen et 

al., 1999). Therefore, this makes the higher levels on detection in some severe samples, in 

tandem with low levels of MCAs a possible interesting finding. HDCA does not appear to be 

used as a substrate for further conversion by intestinal bacteria and has been reported to 

be well absorbed in the human intestine, although serum levels were unremarkable in 

severe ME serum (Sacquet et al., 1983). 

 

Thus, mice and humans have different bile acid pools that may affect signalling through bile 

acid receptors and host physiology very differently across species further highlighting the 

microbiome’s role interaction in host species metabolism. This warrants caution when 

translating the bulk of research literature performed in mice to explain human disease 

states.  For instance, germ-free mice have revealed that a lack of a gut microbiota not only 

changes the bile acid pool within the entero-hepatic circulation and serum but also reduces 

availability of SCFAs, such as butyrate used as an energy substrate by colonocytes (Bäckhed 

et al., 2007; Wichmann et al., 2013).  Consequently, these animals display hyperglycaemia 

and insulin resistance causing disruption to glucose metabolism. SCFAs are considered 

necessary for gut health, since lack of butyrate-producing bacteria has been associated 

with type 2 diabetes. Furthermore, in a recent report using mice with a disrupted 

microbiota caused by antibiotic treatment there was improved glucose homeostasis and 

insulin sensitivity compared to their GF counterparts. (Zarrinpar et al., 2018). Conflicting 

reports such as these and the known metabolic difference between mice and man highlight 

the complexities of microbial metabolic interactions with host metabolism and physiology. 

More observation led studies must be applied in human disease states, such as this work in 

severe ME to decipher how apparent changes in the gut microbiota may be altering host 

metabolism and physiology particularly with respect to host lipid and energy metabolism.  

 

Our data is most relevant for comparison with Armstrong and colleagues, based on 1H-NMR 

measurements in faecal water and serum, whereas the other studies use plasma and MS in 

in combination with different workflows. Serum versus plasma is another consideration 

that has to be made when comparing studies and the respective metabolomic profile will 

be different (Yu et al., 2011). The coagulation and separation of serum within the gel 
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collection tube can alter the metabolite profile and, as with metagenomic research, 

highlights the important for sample collection and processing standardisation (Liu et al., 

2018). Moreover, blood transport time and storage were significant cofounding factors 

given that these samples were obtained from home visits and had various delays in 

processing for long term storage (Jobard et al., 2016). The drawback is that we have been 

unable to detect and quantify a large number of metabolites that have been reported to 

alter various aspects of ME/CFS metabolism. Targeted acquisition of metabolites in these 

pathways can be sought with more sophisticated workflows using MS, as previously 

described (Germain et al., 2017). As an example, we targeted bile acids in our analyses, and 

acknowledge their biological importance to energy metabolism and glucose homeostasis 

(Shapiro et al., 2018; Wahlström et al., 2016). Blood serum levels of BAs are difficult to 

interpret given the known impact diet and the time of taking the sample. However, TDCA 

was significantly higher (p = 0.047) in severe ME (fig. 4.3.22) and may directly inhibit colon 

motility and slow intestinal transit time and gastric emptying as shown in mice (Abdu & 

Albaik, 2016). Interestingly, bile acids can inhibit LPS-induced TNFa secretion, while 

conjugated bile acids can act as signalling molecules for TGR5 pathways to modulate 

inflammation (Chang et al., 2018). Moreover, TCDA may also decreases systemic 

inflammatory cytokines  by increasing immune-regulatory cells (Chang et al., 2018). 

 

In conclusion, despite the adoption of similar sample processing and acquisition of NMR 

metabolic profile, we were unable to replicate the observations reported by Armstrong and 

colleagues. Despite the relative reduction in F. prausnitzii in severe ME patients reported in 

the previous chapter, faecal butyrate concentration was not decreased compared to house-

hold controls. Of note, the levels of muricholic acid and their derivatives cholic acid and 

chenodeoxycholic acid (CDCA), which are the most important human primary bile acids, were 

significantly lower in the serum of severe ME/CFS patients. Analysis of faecal bile acid 

composition also revealed high levels of a mouse-associated secondary bile acid, 

hyodeoxycholic acid (HDCA) in severe ME. HDCA is considered to be a major murine 

secondary bile acid, absent in humans, that so far, has only reported to be microbially 

generated within the rat intestinal microbiome from primary bile acids αMCA and βMCA 

(Eyssen et al., 1999; Studer et al., 2016). Further work exploring the significance of specific 

alterations of bile acid profile in ME/CFS may yield new mechanistic insights into how the 

alterations in primary bile acids impacts on signalling pathways involved in lipid, glucose, and 

energy metabolism that are a general feature of ME/CFS. 
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 Chapter Five 
 

5 Detection of IgA-coated faecal bacteria in severe 
ME/CFS patients 
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5.1 Introduction 
 
Increased intestinal permeability, or “leaky gut” is not currently recognised as a standalone 

medical disorder that can be diagnosed and treated. In health, the intestinal epithelial 

barrier acts as a physical barrier protected by a immunologically active mucus layer with 

bacteriostatic and bactericidal properties, such as anti-microbial peptides, called defensins, 

to stop invasion and translocation of harmful microbes and toxins that may elicit 

inflammatory damage from infection injury (Khounlotham et al., 2012). Increased gut 

permeability represents a major loss of this barrier function causing increased exposure of 

intestinal microbes to the intestinal immune system with the risk of translocating bacteria 

entering the systemic circulation and other sites in the body triggering widespread systemic 

immune system activation (Fasano, 2012). Finally, the intestinal microbiota represents an 

entity that can be manipulated with diet and pre-/probiotic interventions, and in extreme 

cases with faecal transplantation of the microbiota in an attempt to treat a “leaky gut” and 

ameliorate inflammatory-driven intestinal barrier tissue damage.  

 

Bacterial and viral infections are commonly reported prior to, and during the onset of 

autoimmune disease where intestinal permeability may increase the exposure of immune 

cells to intestinal microbes and environmental triggers (e.g. food, medications) which does 

not normally occur in good health (Fasano, 2012). This can then be contributing to a 

mechanism where reactivity against foreign bacterial and viral antigens leads to cross-

reactive antibodies towards self-epitopes which share a common protein sequence 

similarity during a process referred to a molecular mimicry (Oldstone, 1998). The concept 

of molecular mimicry was first described in 1983 where monoclonal antibodies to measles 

virus P protein (MV-P) were found to react with intermediate filament protein, vimentin 

(Fujinami et al., 1983). Neurological symptoms are triggered during Campylobacter jejuni 

infection in some individuals. This food-borne pathogen is a major cause of gastroenteritis 

that can trigger Guillain-Barre syndrome (GBS). During the infection antibodies are made 

reactive to lipooligosaccharide (LOS) structures on the outer surface membrane of C. jejuni. 

Structural analysis of LOS includes sialyated moieties homologous to human gangliosides 

leading to antibody cross-reactivity directed against peripheral nerves as well as 

Campylobacter (Heikema et al., 2010).  Infection appears to initiate these pathological 

events, but after pathogen clearance autoimmunity persists suggesting there are additional 

perpetuating factors which drive this phenomenon, which may be explained by long lived 

auto-antibodies and/or persistent regeneration of new autoantibodies. 
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Less than 10% of persons with a genetic risk for developing type 1 diabetes develop 

disease. Antigen presenting cells, such as macrophages and dendritic cells, are in close 

proximity to the intestinal barrier and their responsiveness is dependent on individual 

genotypes of HLA class I and II molecules for presentation of antigen to T cells. To that end, 

a genetic predisposition is not sufficient for disease development. Increased intestinal 

permeability may have a key role in a pre-autoimmune mechanism which initiates or 

progresses autoimmunity in T1D patients causing auto-destruction of insulin producing 

pancreatic b cells (Visser et al., 2009).  

 

Evidence for existence of leaky gut in patients with type 1 diabetes (T1D) and their 

relatives, is based on expression of the tight junction protein, zonulin which is frequently 

upregulated in autoimmune disease and causes disassembly of tight junctions between gut 

epithelial cells (Fasano, 2011; Sapone et al., 2006). This is further correlated with increased 

intestinal permeability measurements of sugar absorption greater in 42% out of 339 

diabetic patients in comparison to age-matched controls (Sapone et al., 2006). A separate 

independent study also found increased intestinal permeability preceding clinical onset of 

T1D by comparing the intestinal permeability to sugars in 18 preclinical subjects with 28 

new onset and 35 long-term with 40 healthy controls (Bosi et al., 2006). These findings 

underpin the concept that a leaky gut may shift the balance towards contribution of 

various environmental factors including changes in the gut microbiota, in conjunction with 

genetic factors and immune responsiveness which conspire to cause the pathogenesis of 

T1D. However, the detail of the precise order these events following increased intestinal 

permeability is not known and therefore in the various conditions associated with 

increased permeability it is not known how important altered intestinal permeability 

relates as a cause or consequence across these disease pathologies. 

 

T1D patients have also shown high titres of antibodies against glutamate decarboxylase 

(GAD), an enzyme found in pancreatic b cells, which has sequence similarity to coxsackie B 

viral protein p2-C suggesting a viral trigger for this disease. Interestingly, PBMCs isolated 

from patients with autoantibodies to islet cells proliferated in response to GAD and this 

viral peptide. However, it is unclear what are the most significant environmental triggers 

are or the sequences of such events in the development of T1D although there is some 

evidence that diabetogenic T cells are initially primed in the intestine in response to dietary 
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gluten and is therefore associated in pathogenesis (Antvorskov et al., 2014; Visser et al., 

2009).  

 
- Measuring intestinal permeability in patients 

 
The current method to assess intestinal permeability in patients is not routinely used in 

NHS clinical practice because it is invasive and requires medical supervision with delayed 

sample collection of urine to measure the rate of excretion of low to high molecular weight 

sugars, lactulose/mannitol/sucralose (Andre et al., 1988). High molecular weight molecules 

such as lactulose rely on much slower transcellular uptake across the epithelial barrier as 

opposed to paracellular transit of smaller sugar probes such as mannitol into the 

circulation. Determining the ratio between the concentrations of these two molecules in 

the patient’s urine after 5-6 hrs requires sophisticated analytical equipment such as 

HPLC/MS not found in conventional NHS hospital laboratories.  Moreover, results obtained 

generally reflect changes in small intestinal permeability as lactulose is degradable by 

bacteria in the colon (Bischoff et al, 2014). 

 

In their review Bischoff et al., 2014 described at almost 100 publications linking intestinal 

permeability to disease. In the 4 years since their review on this topic the majority of the 

methods used to assess intestinal permeability have not advanced in attempt to address 

their limitations. Another common choice of method is to examine patient serum/plasma 

for levels of bacterial endotoxin (LPS) using the lysate from horseshoe crabs, which is highly 

sensitivity to bacterial endotoxins forming a gel clot. This is known as the Limulus-

Amoebocyte Lysate (LAL) assay. Such assays can be technically challenging to perform since 

the enzymes in the clotting cascade in this crab can be inhibited by various protein factors 

in human blood in addition to EDTA and heparin anticoagulants found in blood collection 

tubes can all effect endotoxin recovery. Manufactures of LAL kits do not recommend its use 

in clinical samples without undertaking special precautions to minimise these effects. In 

addition to circulation levels of LPS, other surrogate markers such as soluble CD14 and LPS-

Binding Protein (LPB) which bind help to and sequester LPS have been documented for 

many diseases (Buscarinu et al., 2017; De Kort et al., 2011; Irvine & Marshall, 2000; Maes et 

al., 2007; Rojo et al., 2007). LPS measurement may be the preferred surrogate marker for 

intestinal permeability for its obvious advantages over the L/M test which requires 

significant patient intervention. Despite the technical complications assaying for LPS in 

plasma, data published comparing the disease activity of IBD patients correlated increased 
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LPS with clinical worsening of the patients’ condition (Rojo et al., 2007). Plasma LPS level 

could also separate patients in inactive and active Crohn’s disease which had significantly 

higher circulating LPS compared with inactive and active Ulcerative Colitis (UC) patients.  

In the pursuit of diagnostic biomarkers, systemic antibodies reactive towards intestinal 

microbes, as well as autoantibodies resulting from intestinal inflammation, have been 

explored in the context of leaky gut in IBD where increased intestinal permeability has 

been associated in the onset of pathology as well as the relapse or progression of disabling 

symptoms (Macpherson et al., 1996; Mitsuyama et al., 2016; Palm et al., 2014; Sapone et 

al., 2006; Tibble et al., 2000). A predisposition to increased intestinal permeability may 

explain why certain individuals are prone to developing IBD since mice genetically 

engineered to lack junctional adhesion molecule A (JAM-A) and adaptive immune cells 

develop colitis (Khounlotham et al., 2012). Whereas JAM-A deficiency alone did not cause 

colitis because of compensatory mechanism leading to an enhanced adaptive immune cell 

response and increased IgA secretion (Khounlotham et al., 2012). The combined loss of 

barrier and adaptive immune cells exaggerated acute mucosal injury in these mice 

(Khounlotham et al., 2012). Many IBD patients report stressful life events prior to episodes 

of illness. Stress has been implicated with negative consequences for the immune system 

and increasing intestinal permeability and may be an etiological factor in promoting a leaky 

intestinal barrier (Ait-Belgnaoui et al., 2012; Glaser & Kiecolt-Glaser, 2005; Vanuytsel et al., 

2014). 

It has been proposed that autoantibodies reactive with the intestinal microbiota and 

intestinal epithelial tissue be useful markers in IBD patients and provide insight to its 

immune-mediated pathogenesis. Indeed, a diagnostic test to differentiate IBD from non-

IBD, and Crohn’s from Ulcerative colitis, has been commercialised by Prometheus® 

Laboratories (Nestlé Health Science) called IBD sgi Diagnostic®. Now its 4th generation of 

this screening panel including 9 serological markers (Prometheus Laboratories, San Diego, 

CA). The test uses the ELISA platform to quantify anti-microbial antibodies such as anti–

Saccharomyces cerevisiae antibody (ASCA), antibody to Escherichia coli outer membrane 

porin C (OmpC), antibody to Pseudomonas fluorescens–associated sequence (anti-I2), and 

antibody to flagellin Cbir1 (anti-CBir1) (Targan et al., 2005).  A report by Benor et al. in 2010 

highlighted an earlier version of this test, IBD7, based on 7 serological markers without any 

genetic or inflammatory markers now included in the up-to-date version, was not 

successful at predicting IBD in children referred for suspected IBD and initial clinical 
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evaluation and diagnostic by conventional endoscopy and histopathology (Benor et al., 

2010); Here, detection anti-flagellin antibodies only had a specificity of 53%. Elevated IgG 

antibody titres have been reported in 120 Crohn’s patients compared with 120 non-IBD, 

age-matched controls, against a cocktail antigen preparation derived from B. vulgatus and 

another using 20 mucosal-associated gut bacteria, and is consistent with loss of barrier 

function causing increased exposure to microbial antigens and an altered immune response 

(Adams et al., 2008).  It still remains that clinical diagnosis of IBD requires invasive 

endoscopy and histopathology to inform differential diagnosis of clinical forms such as 

Crohn’s Disease and Ulcerative Colitis. 

 

- Antimicrobial antibodies to assess intestinal permeability 
 

Despite substantial evidence for increased intestinal permeability in 

neurological/neuropsychiatric pathologies such as MS, Parkinson’s disease, stress, anxiety, 

depression, autism spectrum disorders, as well as in ME/CFS, there is limited data available 

on systemic antibody responses towards intestinal commensal bacteria in health and 

disease  (Hollander, 1999; Vanuytsel et al., 2014). How intestinal permeability contributes 

towards a disease mechanism is poorly understood in these conditions although there is 

some evidence to suggest increase intestinal permeability precede years before onset of 

diabetes and Parkinson’s Disease and first degree relatives of these patients also have 

higher intestinal permeability (Bosi et al., 2006; Forsyth et al., 2011). Anti-microbial 

antibodies may be more informative and evident of decreased compartmentalisation 

between the local intestinal immune system and systemic immunity, which may increase 

the presence of anti-microbial antibodies to intestinal bacteria in samples of peripheral 

blood. Indeed, systemic IgA, IgG and IgM antibodies reactive against E.coli, E. faecalis, E. 

coli Nissle, B. fragilis, K. pneumoniae, and B. thetaiotaomicron have been measured in 29 

IBD patients (a combination of mild/active and active CD and UC) and 19 controls using live 

bacterial fluorescence activated cell sorting (FACS) (Haas et al., 2011). It is perhaps not 

surprising that severe chronic enteropathy is associated with IBD patients to have higher 

antibody titres in IBD patients probably due to increased exposure in the gut arising from 

damage caused to the intestinal barrier. The same study highlights chronic HIV-1 infection 

association with enteropathy and B cell disturbances, with data suggesting bacterial 

translocation arises from circulating LPS, sCD14 and butyrate potential driving chronic 

immune activation. However, comparison of systemic antibodies to gut commensals in 

these patients to healthy controls were no different and did not support their hypothesis 
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for gut bacteria driving this chronic immune activation. The authors acknowledge lack of 

data on local immune responses in the gut of these patients since faecal samples were not 

available to study IgA-responses to gut commensals where distinct reactivity to certain 

members of the intestinal microbiota provides an IgA +/- index of specific antibodies that 

have been identified in IBD (Palm et al., 2014). As a result, the earlier reports of increased 

bacterial translocation and LPS exposure in HIV-1 appear misleading since Haas et al. did 

not replicate increased LPS or endoCAb levels. To that end, increased intestinal 

permeability does not appear relevant cause for immune activation in chronic HIV-1 

infection.  

 

The gut bacteria in the lumen do not normally cause a systemic immune response as the 

gut is considered a separate closed compartment (MacPherson & Uhr, 2004).  On the basis 

a leaky gut reduces the compartmentalisation between the gut immune system and 

systemic immunity, blood serum is becoming an attractive sample for quantifying 

antibodies against gut commensals. Previously where elevated LPS, sCD14, LPS-bind 

protein (LBP) in serum has indicated leaky gut, by identifying high titres of commensal 

antibodies in peripheral blood as well as confirming a series of specific Here there is a 

requirement for a rapid, high-throughput method for simultaneous detection of multiple 

commensal antibodies in a single serum sample.  

 

Current methods such as live bacterial FACs and traditional ELISA can only quantify 

antibody titres towards a select number of commensal isolates whilst it is estimated that 

there are 1000 species of gut bacteria present in a healthy gut (Qin et al., 2010). In an 

attempt to address this problem, in this chapter a new technique for a leaky gut microarray 

chip is presented as well as a flow cytometry to measure anti-microbial antibodies to faecal 

bacteria. This technique uses existing DNA microarray printers to deliver whole cell bacteria 

onto a glass slide coated with substrate designed to immobilise cells. Following incubation 

with a minimal amount of patient serum, such slides can be screened with a secondary 

anti-human IgG antibody for reactivity against several candidates of the microbiota, figure 

5.1.1 using a standard microarray scanner. 
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Figure 5.1.1 Comparison of methods used in this chapter for detecting antibodies against intestinal 

microbes in faeces (top) and serum (bottom). Top: isolated faecal bacteria suspended in liquid can 

be incubated with IgA-specific and binding detected using a flow cytometer. Bottom: in adaptation 

to a method reported by Thirumalapura et al., 2006 simultaneous screening of serum against 

multiple intestinal bacteria immobilised onto nitrocellulose can be assessed using a conventional 

DNA microarray scanner and microarray printing equipment. 

 

 
Bacteria have previously been immobilised onto nitrocellulose-coated glass slides used for 

the detection of antibodies in sera of dogs infected with Francisella tularensis 

(Thirumalapura et al., 2006).  The method used both Gram positive and Gram-negative 

bacteria and reported successful immobilisation onto commercially available nitrocellulose-

coated glass slides. An immunoassay of this kind has not been reported for use in human 

serum antibody detection. As a platform, microarrays offer high-throughput capability that 

would favour screening multiple serum samples for reactivity against potentially hundreds 

of bacterial isolates from the human gut microbiota. In a single experiment this format 

would aid simultaneous antibody and help identify specific titres of antibody relevant to 

disease pathology and the status of the immune system. This assay would not only be 

useful for ME/CFS research but may also facilitate other areas of research with difficultly in 

establishing a causative role for increased gut permeability.  
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- Evidence of increased intestinal permeability in ME/CFS 
 

Evidence of raised concentrations of serum IgA and IgM against LPS in CFS patients for a 

limited number of enterobacteria isolates has been obtained in several studies, concluding 

that serum IgA levels to selected isolated bacterial species also correlated with severity of 

illness using the Fibro-fatigue scale (Maes et al., 2007). These isolates include Hafnia alvei, 

Pseudomonas aeruginosa, Morganella morganii, Proteus mirabilis, Pseudomonas putida, 

Citrobacter koseri, and Klebsiella pneumonia (Maes et al., 2007). It has been proposed that 

severity of symptoms of fatigue, IBS symptoms, and failing memory/concentration in some 

ME/CFS patients originated from having a leaky gut which drives inflammation and cell 

mediate immune activation and altered cytokine production (Maes & Maes, 2009). In a 

case report on a 13 year old girl who showed high titres for IgM against LPS of 

enterobacteria, normalisation of leaky gut led to complete remission of her symptoms 

using a combination of antioxidants, zinc and glutamine, with immunoglobulin therapy 

(Maes et al. 2007).  Maes also report higher serum antibody titres for the same 

enterobacteria in patients with major depression disorder (MDD). In 2013, Maes reported 

autoimmunity in some ME/CFS patients and increased IgA responses towards commensal 

enterobacteria, all of which were associated with increased fatigue, neurocognitive and 

autonomic symptoms, sadness and a flu-like malaise (Maes et al., 2013). Leaky gut may 

well support autoimmunity but with limited data of the types of antibodies made to only a 

few commensal bacteria it is difficult to decipher the source of this phenomenon. 

 

In summary, the current methods for defining intestinal permeability are not without 

limitation, open to misinterpretation, and are not widely used in clinical practice. Without 

improved methods to assess intestinal permeability and the role of the microbiota in 

disease, current therapeutics such as prebiotic and probiotics, and especially faecal 

microbiota transplantation may be ineffective. Detection of systemic IgG and gut mucosal 

IgA antibodies towards commensal bacteria as a surrogate for intestinal permeability in 

patients has yet to be explored in ME/CFS.  
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- The role of mucosal IgA antibody in protecting the intestinal barrier 
 

The intestine generates several grams of IgA per day, secreted from large numbers of 

plasma cells from beneath the surface of the layer of epithelial cells which form the 

intestinal barrier and is the main mediator of intestinal mucosal immunity (Pabst, 2012).  

IgA antibody responses can be produced by T cell dependent and independent pathways 

(Macpherson et al., 2012).  The majority of commensal bacteria have been found to mostly 

stimulate IgA production in a T cell independent manner resulting in low affinity or non-

specific “natural” IgA antibodies which contribute to the shaping of the gut microbiota 

(Bunker et al., 2015; Rescigno, 2014). In contrast, T-cell dependent mechanisms for IgA 

production lend towards reactivity against non-self, bacterial derived specific antigenic 

proteins presented by dendritic cells and macrophages in Peyer’s patches and mesenteric 

lymph node (mLNs) during infection (Bunker et al., 2015). Mucosal IgA also appears to have 

as significant role in immune compartmentalisation between the local and the systemic 

immune system since mice deficient in IgA produce higher serum antibodies towards gut 

commensals (Macpherson & Uhr, 2004; Sait et al., 2007).  

 

More recently, in mice, the majority of the reactivity of sIgA appears to be naturally 

polyreactive against the commensal microbiota instead of being specific to individual 

bacteria taxa (Bunker et al., 2017). Whilst its primary function is to promote immune 

exclusion of intestinal pathogens by neutralising them for phagocytosis, the commensal 

member B. fragilis adapts it outer-membrane surface structures to promote IgA-binding, to 

gain access and colonise mucosal niches providing intimate contact with gut barrier 

epithelial cellular innate immune receptor such as TLRs (Donaldson et al., 2018).  Another 

study found a proportion of the IgA repertoire contains reactivity towards specific 

commensal antigens that appears to be dependent on T cell pathways (Benckert et al., 

2011). T cell independent pathways obliterated by MyD88/TRIFF double KO mice are 

deficient in ‘naturally’ polyreactive IgA antibodies and instead show systemic antibodies 

reactivity towards the intestinal microbiota (Slack et al., 2009). Supportive of systemic 

antibody production are Th1 and Th2 cytokines IFNγ and IL-4 known to trigger CSR to IgG1 

and IgG2a and IgE in allergy, respectively (Mitsdoerffer et al., 2010) Finally, in the event of 

increased intestinal permeability, we hypothesis exposure to the intestinal microbiota will 

initiate pro-inflammatory T cell mediated responses that are known support B cell 

proliferation and affinity maturation within the gut-associated lymphoid tissue (GALT) 

enhanced antibody production (Mitsdoerffer et al., 2010). In humans, CD27+ and CD27- 
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IgA+ circulating memory B cells are known to exist which operate under T-cell dependant 

and independent pathways, respectively (Berkowska et al., 2015). T cell dependent CD27+ 

IgA+ circulation memory B cells may become activated in a pro-inflammatory milieu and 

secrete more sIgA. Conversely, CD27- IgA- circulating memory B cells are T cell independent 

and their IgA reactivity profile has shown to be polyreactive towards commensal members 

of the intestinal microbiota (Berkowska et al., 2015). Under normal homeostatic conditions, 

T(reg) and DCs derived cytokines IL-10 and TGFB would favour T cell independent B cell 

proliferation and CD27- IgA+ memory B cell production of “natural” polyreactive antibodies 

against the commensal microbiota, thus support the immunological barrier against 

bacterial translocation (Berkowska et al., 2015).  

 

Based on studies carried out in animal models in a healthy gut microbiota, Foxp3+ T 

regulatory cells promote immune tolerance toward the commensal microbiota by 

supressing inflammation and regulating the diversity of IgA repertoire through selection in 

Peyer’s patches enriched with antibody secreting B cells  (Kawamoto et al., 2014). Foxp3+ T 

cells differentiate into T-follicular helper (Tfh) cells in germinal centres where they interact 

with naïve B cells to stimulate differentiation into gut homing IgA-secreting plasma cells 

whose quantity of IgA antibody production and specificity influences the composition of 

the gut microbiota (Kawamoto et al., 2014; Rescigno, 2014). Absence or dysregulation of 

IgA production severely impacts the composition of the gut microbiota (Kawamoto et al., 

2012; Suzuki et al., 2004; Wei et al., 2011). M cells have a major role in the uptake of 

luminal antigens presented by APCs in Peyer’s Patches and in their absence GCs in mice fail 

to maturate causing a decline in the total production of sIgA (Rios et al., 2016). Tolerogenic 

DCs suppress Th7/Th19 inflammatory responses through releasing retinoic acid, IL-10 and 

TGF-B with promote Foxp3+ T regulatory cells and can further differentiate into Tfh cells 

with express CD40L and IL-21 to induce B cell mediated IgA production in the germinal 

centres (GCs) (fig 5.1.2) (Gutzeit et al., 2014). A disrupted microbiota can also lead to 

altered antigen presentation and loss of tolerance potentially overwhelming the regulatory 

T cell maintenance of GCs and instead activate pro-inflammatory Th1/Th17-cell dependent 

IgA production. Further, increased intestinal permeability would facilitate increased uptake 

of bacterial luminal antigens by DCs which migrate to LNs where they interact with naïve T 

cells to trigger clonal expansion and differentiation into Th1/Th2/Th17 T cell subsets with 

their associated cytokine profiles influencing B cell interactions.  
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Elevated levels of secretory IgA are an apparent compensatory mechanism for 

compromised intestinal permeability and has been reported in mice deficient in junctional 

adhesion molecule A (Khounlotham et al., 2012). Interestingly in IBD the identification of 

taxa-specific levels of IgA-coating faecal bacterial has revealed distinct patterns of the 

colitogenic microbiota in IBD (Palm et al., 2014). Therefore, measurement of IgA-coated 

bacteria may be a future diagnostic marker for the outcome of the interactions between 

the immune system and gut bacteria. The status of IgA+/IgA- coated bacteria in addition to 

specific systemic antibody responses to gut microbes are not known in ME/CFS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.2. A healthy intestinal microbiota promotes Foxp3+ regulatory T cells to interact with B 

cells to undergo class switch recombination (CSR) and somatic hypermutation (SHM) in germinal 

centres to generate polyreactive or “natural” IgA antibodies to maintain microbial diversity. B cells 

residing in germinal centres interact with T-follicular cells which migrate to germinal centres (GCs) 

by expressing CXCR5 chemokine receptor (King et al., 2008) to stimulate B cell maturation into long-

lived IgA-secreting plasma cells. Graphical abstract taken from Kawamoto et al., 2012 

 

- Experimental approach 
 

Observations of IgA-coated faecal bacteria can be easily assessed with minimal 

invasiveness to the patient since no blood extraction is needed. Intestinally secreted IgA 

antibody can be visualised using an anti-human IgA secondary antibody conjugated to APC 

and measured by flow cytometry as a proportion of total faecal bacteria (Palm et al., 2014). 
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With the necessary antibody isotype control for excluding nonspecific binding, flow 

cytometry has a major advantage over traditional ELISA methods and western blotting 

techniques, which usually test single bacterial antigen (LPS) extracted from bacterial lysate 

as opposed to whole cell bacteria which maintain the integrity and full complement of 

bacterial cell antigens to which the host immune system would be exposed to in vivo.  

 

Patient antibodies which target bacterial surface antigens in pure culture and in human 

faeces have been explored using flow cytometry (Moor et al., 2016; van der Waaij et al., 

1994). This has an added advantage over more traditional techniques such as an ELISA 

since the bacteria are in liquid suspension and do not require immobilisation to a micro-

titre plate or glass slide. It is also much easier to adjust bacterial densities in liquid phase 

and to detect discrete bacteria populations within a faecal bacteria suspension to which 

antibodies have bound to. Moreover, faecal flow cytometry examines the entire faecal 

bacteria cell population unique to that individual which can lead to the identification of 

specific bacterial subpopulations.  Until now, faecal IgA production has not been explored 

in the ME/CFS population and may be useful additional marker for increased intestinal 

permeability. The benefit being this is a potential non-invasive method that can determine 

this status without the need a blood sample. 
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5.1.2 Aims & Objectives 
 

The first aim of this chapter was to determine the suitability of a whole-cell bacterial 

microarray (“chip”) to assess ME/CFS patient serum antibody reactivity against 

representatives of the intestinal microbiota using immunofluorescence and high-throughput 

microarray scanning.   

 

In order to achieve this aim, the following objectives were set out: 

 

- to determine the stability of lab-cultured intestinal bacteria once immobilised onto 

nitrocellulose-coated glass microscopy slides; 

- establish an assay protocol using a microarray scanner to detect polyclonal anti-

microbial antibodies generated in rabbit from a stool sample provided from a 

healthy donor (positive control); 

- following validation of the microarray, screen blood serum from severe ME/CFS 

patients and house-hold controls; 

- to detect serum antibody reactivity against this microarray to determine intestinal 

permeability status in ME/CFS versus house-hold controls. 

 
The second aim of this chapter was to assess intestinal IgA reactivity against faecal 

microbes, isolated in a faecal liquid suspension from patients and house-hold controls using 

a modified method of flow cytometry:  

 

- to exclude faecal contaminants by using a nuclei acid stain to resolve microbes; 

- in order to determine if severe ME patients have a higher relative abundance of 

IgA-coated faecal bacteria compared with their house-hold controls; 

- to assess faecal IgA reactivity against intestinal bacteria with serological markers 

such as LPS and LBP, to see how IgA-bound faecal bacteria may serve as a surrogate 

marker for interpreting intestinal permeability in patients. 
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5.1.3 Hypothesis 
 
Patients with severe ME/CFS have increased intestinal permeability, which causes a loss of 

compartmentalisation between the intestinal and systemic immune systems (fig. 5.1.4). 

This exposes the intestinal microbiota to the immune system leading to increased T-cell 

dependant mucosal IgA production and reactivity towards faecal bacteria. Secretory IgA is 

therefore a potential biomarker for intestinal dysbiosis and increased barrier permeability 

(fig 5.1.3).  

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.1.3 Secretory IgA regulates gut microbiota composition and protects the intestinal 

barrier. IgA is the predominant antibody isotype found in the intestine and recognises a broad range 

of members of microbes. Levels of IgA coating intestinal bacteria may be a marker for increased 

intestinal permeability in an attempt to neutralise commensal bacteria as well as enteric pathogens 

that may be relevant to ME/CFS pathophysiology. Increased IgA-bound bacteria may also indicate 

dysbiosis resulting from the interactions between intestinal microbes and the immune system in 

these patients.
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 Ü Figure 5.1.4 Increased intestinal permeability facilitates translocation of bacterial endotoxin 

(LPS) and exposure of mucosal-associated bacteria.  Antigen presenting cells (APCs) interact with 

members of the microbiota to present bacterial antigens to T-helper cells which stimulates 

polyclonal B cells activation and expansion to produce antibodies towards these members of the 

intestinal microbiota.  Flow cytometry can be used to identify IgA-bound bacteria within mixed 

faecal bacterial suspensions obtained from patients and their house-matched control.  Higher levels 

of IgA-coated bacteria may a valid indicator of intestinal permeability in accordance with other 

serological marker for evidence of bacterial translocation. Diagram created in Microsoft® 

PowerPoint® by Daniel Vipond 
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5.2 Materials & Methods 
 
5.2.1 Solid versus liquid phase assay for bacterial antibody detection 
 
The methods used in this chapter attempt to probe human serum and faeces to elucidate 

immunoreactivity against whole cell faecal bacterial surface antigens presented on a solid 

slide and in liquid suspension. 

 
5.2.2 Bacteria Microarray  
 
The protocol for a whole cell bacterial microarray was based on the method of 

Thirmulalapura and colleagues using Gram positive and Gram negative bacteria 

immobilised onto nitrocellulose-coated glass slides to detect antibodies in canine infected 

serum (Thirumalapura et al., 2006).  

 
- Strain preparation 

 
Bacterial cells were resuscitated from a -800C glycerol stock and grown for 16 h under 

appropriate growth conditions. Cells were harvested by centrifuging at 6000 x g for 10 min. 

Cells were washed in PBS and adjusted to an optical density (OD) of 1.0 ± 10% at 600 nm 

and plated onto solid agar media for CFU counting. For visualisation purposes, bacteria 

were fluorescently stained using 1μl/ml Baclight® Red or Sybr Green nuclei acid (x10,000) 

stain, diluted 1:10,000 for 30 min. Bacteria were inactivated by fixing in 1% 

paraformaldehyde (PFA) for 15 min to preserve whole cells structure before use in 

experiment. Based on colony counting experiments, one millilitre of cell suspension 

represents approximately 108 cells.  

 

- Microarray construction and use 
 
The ProPlate® microarray slide module (Grace Bio-Labs, Sigma cat. GBL204839) was 

inserted onto the surface of a SuperNitro Microarray substrate glass slide containing a 150 

µm layer of nitrocellulose (Arrayit® item no. SNM) to create 64 discrete wells for pipetting 

sample. 50 μl of fixed bacterial cells in PBS suspension was pipetted into each well and any 

remaining wells filled with PBS. The slide coupled with its silicone gasket was held in place 

with snap clips before being placed into a makeshift polystyrene block enclosed within a 

centrifuge swing bucket and monitored whilst operating at 700 rpm (99xg) for 15 min to 

pull down cells onto the slide surface. The slide was left overnight at 40C to facilitate 

binding of bacteria to the nitrocellulose coating on the slide.  
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Figure 5.2.1 Grace-Biolab ProPlate® 64-well microarray slide module to create wells on a 

nitrocellulose glass microscope slide. Dimensions are given in millimetres (mm).  

 
 

- Primary antibody/rabbit serum slide incubation 
 

The printed bacterial microarray was blocked with 2-10% BSA (Sigma cat. no. 05470) in PBS 

(pH 7.4) for 1 h on a gently shake at 4oC inside sterile a Petri dish. If using serum, the 

sample was heated to 560C in a heat block for 30 min to inactive complement proteins and 

kept on ice afterwards.  All primary antibody/rabbit serum dilutions were performed in 

sterile-filtered PBS, 2%BSA, typically at dilutions of 1:50, 1:100, 1:200. Primary antibody or 

rabbit serum was pipetted into each well and left overnight at 40C.  The next day, the slide 

was washed twice with sterile-filtered PBS in Petri Dish for 5 min, while gently shaking.  

 
In later experiments, the slide was spin dried using a makeshift polystyrene insert for swing 

bucket modules designed for that specific centrifuge. These slides were then incubated with 

the rabbit OmpA monoclonal antibody or rabbit serum samples for 30 min at room 

temperature. After incubation, the slides were washed twice for 10 min each with PBS-T.  

 

Bound antibody was detected using 50 μl/well secondary goat anti-rabbit-IgG antibody 

conjugated to Dylight® 550 (5µg/ml) at 1:200 in PBS, 2% BSA for 30 min. The ProPlate® 

gasket was retained on the glass slide throughout the entire experiment and through a 

single PBS wash bath step and dried at 500C. The slides were then immediately scanned for 

fluorescence on the GenePix® 4000B Microarray Scanner using 635 nm and 532 nm lasers, 

and the images acquired using the scanner’s native GenePix® Pro 6.0 software. 
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- Anti-faecal microbe anti-sera 
 
Rabbit polyclonal antibodies were generated by CovalAb UK (Cambridge, United Kingdom) 

against faecal bacteria isolated from a single healthy human stool sample. Two female 

rabbits were immunised accordingly to the regime over 67 days in table 5.2.1 and included 

four injections per animal.  

  
 
 
 
 
 
 
  
 

 

 

 
 
 
 
Table 5.2.1 67-day immunisation protocol used in rabbit to generate polyclonal antibodies against 
human faecal bacteria isolated from a single healthy donor.  
 
Faecal bacteria were extracted from 1g of fresh human stool by homogenisation with PBS 

and centrifuging at 300 x g for 5 min to remove large particulates. One millilitre of the 

bacterial supernatant was taken and washed twice in PBS (3,500 x g, 10 min) to produce a 

biomass of 400 μg for immunisations. 

 

- Validating of rabbit sera anti-microbial activity 
 

Faecal bacteria from the same donor were extracted in PBS and diluted across the slide in a 

series of 1:10 dilutions and blocked with 2% BSA for 1hr before being incubated with serum 

at a dilution of 1:100 for a further 1hr. Slide washes were performed for removal of 

blocking and after each primary and secondary antibody incubation using a 0.5l PBS bath 

The slide was developed with a secondary goat anti-rabbit IgG-conjugated to Dylight®650 

for 1 hr. Dylight® 650 provides far-red fluorescence with excitation/emission at 652/672 

nm respectively. 

 

 

 

Day 0 
Pre-immune bleed (4 - 5 mL) and storage at -20°C 

Intradermal injection (1 mL / rabbit) 
0.5 mL of 106 fixed bacteria + 0.5 mL incomplete Freund's adjuvant 

Day 14 Intradermal injection (1 mL / rabbit) 
0.5 mL 106 fixed bacteria  + 0.5 mL incomplete Freund's adjuvant 

Day 28 Intradermal injection (1 mL / rabbit) 
0.5 mL  106 fixed bacteria + 0.5 mL incomplete Freund's adjuvant 

Day 39 Test bleed (4 - 5 mL) and storage at +4°C Dispatch of sera D0 & D39 - 
15/09/2015 

Day 42 Subcutaneous injection (1 mL / rabbit) 
0.5 mL of 106 fixed bacteria  + 0.5 mL incomplete Freund's adjuvant 

Day 53 Test bleed (10 - 15 mL) and storage at +4°C Dispatch of sera D53 - 
29/09/2015 

Day 67 Terminal bleed (50 - 70 mL) and storage at +4°C 
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- Microarray assay validation  
 

Polyclonal antibody generated in rabbit for outer-membrane protein A (OmpA) 

(1.74mg/ml) was kindly provided by Dr Régis Stentz (Quadram Institute Bioscience, 

Norwich). OmpA is widely expressed among Gram-negative bacteria. In addition, a strain of 

Bacteroides thetaiotaomicron engineered to lack OmpA protein, GH290, was also made 

accessible as a negative control species for immobilisation on the microarray in 

experiments to enable determination of optimal assay conditions as well as the limit of 

antibody detection. In a further attempt to provide proof-of-concept an E.coli RaFC “deep 

rough” mutant was also immobilised and used as an additional control, onto a slide and 

probed used an anti-E coli FITC antibody (1:500) for 1hr at RT. The slide was imaged 

immediately using the 532 nm (green) laser on the microarray scanner and signal gain 

adjusted in relation to wells left as blanks.   

 
5.2.3 Patient and control serum 

 
Bacterial endotoxin (LPS) and LPS-Binding Protein (LBP) were quantified in patient and 

house-hold control (HHC) serum samples collected into 9 ml polypropylene blood collection 

tube using the S-Monovette® Z system containing a clotting activator (Sarstedt, Germany, 

order: 02.1063.001).  Collection tubes were centrifuged 2000 x g for 15 min to extract the 

serum. Serum samples were kept stored at -800C until required.  

 

- Serum Endotoxin 
 

Endotoxin testing was performed on severe ME (S), House-Hold Control (HHC) and earlier 

Mild/moderate ME/CFS (M) samples using the same batch of reagents provided the 

Kinetic-QCL Limulus-Amoebocyte Lysate (LAL) kit manufactured by (Lonza Ltd., Switzerland, 

Cat. No. 50-650U). Serum was diluted 1:10 in LAL water certified as pyrogen-free and 

inactivated by heating to 560C for 30 min. After cooling, serum was then kept on ice and 

stored overnight at 40C. Endotoxin standards were made using E. coli 055:B5 by 

reconstituting the supplied vials in a volume of LAL water provided on the certificate of 

analysis. All serum samples, endotoxin standards and a negative control (LAL water) were 

dispensed in a volume of 100 µl into wells on endotoxin-free microplate and preincubated 

in the microplate reader at 370C for 10 min. Reconstituted LAL reagent was prepared by 

adding 2.6 ml of LAL water to lyophilised mixture of lysate prepared from circulation 

amoebocytes from the horseshoe crab and kept at 40C and used on the same day. 100 µl of 



  
 
 

 
 256 

LAL reagent into each well on the microplate as quickly as possible before activating the 

microplate reader. This assay has been designed to measure DOD over time, (Reaction 

Time, RT) to increase the initial absorbance measurement by 200 mOD. To this end, each 

well was simultaneously measured for absorbance OD at 405 nm every 50 seconds for 2 hr 

on the BioRad® Benchmark Plus plate reader using Microplate Manager software. 

Individual OD readings for each well was then exported to a Word® Excel® file and kinetic 

plots generated for each sample and controls. A standard curve of known endotoxin 

concentration ranging from 0.005 EU/ml to 50.0 EU/ml was established. Using a four-

parameter linear regression model, a mathematical formula representing the kinetic plots 

from each serum sample was generated to calculate the precise Reaction Time (RT) for a 

DOD of 200mOD. The concentration of endotoxin is inversely proportional to the RT.  

 

- Serum LPS-Binding Protein (LBP) 
 

The same aliquots of serum analysed for endotoxin that had been kept at 40C overnight 

were used to measure LPS-binding protein (LBP) by a Human LBP ELISA kit according to kit 

instructions (RayBio® Inc., item code: ELH-LBP). Briefly, serum samples were diluted in LAL 

water to a final 1:100 concentration. Duplicate testing was performed on 100 µl of diluted 

serum per sample well and concentrations of LBP ranging from 0.819 ng/ml to 200 ng/ml 

and a zero standard after transferral to the LPB microplate immobilised with anti-human 

LBP. Following a 2.5 hr incubation at room temperature, a secondary biotinylated anti-

human LBP antibody was added for 1 hr at room temperature with gently shaking. The 

plate was then washed four times before incubating with HRP-streptavidin for 45 min at 

room temperature. After plate washing, 100 µl of the supplied 3,3,5,5’-

tetramethylbenzidine (TMB) was added as a substrate for 30 min in the dark. 50 µl of 0.2M 

sulfuric acid was added per well to stop the reaction, and readings for each well measured 

at 450 nm using the BioRad® Benchmark Plus and native Microplate manager software. 
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5.2.4 Faecal bacteria flow cytometry  
 

- Sample preparation 
 

Stool samples were homogenised manually using a metal spatula for 5 min. Six aliquots 

containing 100 mg of raw faecal pellet was prepared from each stool sample and 

designated use in flow cytometry experiments. These were stored at -800C before the  

experiment. On the day of the experiment, a single 100 mg aliquot of raw faeces was taken 

for each study participant and initially thawed whilst resting on wet ice and then gradually 

up to room temperature to mitigate any protease activity causing degradation of IgA 

antibody. It is estimated that 1g of healthy stool contains anywhere between 109-1010 

bacteria cells. Based on this, all 100 mg faecal homogenates were diluted to 1:100 which is 

equivalent to 106 cells in a final volume of 4 ml and stained with Sybr Green (1:10,000) and 

anti-human IgA-APC (1:100). To do this, 1ml of sterile-filtered Dulbecco’s phosphate-

buffered saline (Sigma, cat. D8537) was used to homogenise each 100 mg of faeces using a 

plastic pestle and mot for 5 min. This faecal homogenate was then centrifuged at 300 x g 

for 5 min to produce a faecal bacterial suspension. This suspension was then further 

diluted 1:10 in PBS before staining. Sybr green nuclei acid stain was provided as a gel stain 

at a x10,000 concentration in DMSO (Sigma, cat. S9430) and diluted in each sample to a 

final concentration of 1/10,000 and added to 20 µl sample of the faecal bacterial 

suspension in PBS to a FACS tube containing 80 µl PBS containing SYBR green to make a 

further 1:10 dilution.  To this, 1 µl of anti-human IgA-APC antibody (Miltenyi Biotec, order 

no. 130-116-879) was incubated at room temperature for 30 min before fixing in 350 µl of 

1% PFA and temporarily placed onto ice whilst awaiting to be analysed.  

 

- Flow cytometry data acquisition  
 

Flow cytometric analysis was performed on faecal bacteria suspensions stained with Sybr 

green (1:10,000) and anti-human IgA-APC (1:100) using the BD FACSCanto™ II and BD FACS 

Diva software for data acquisition. Forward and side scatter voltages were adjusted to 

capture events within the space of the plot. Non-fluorescently labelled cells were used to 

set PMT voltages for APC (IgA-detection) and FITC (Sybr Green) and position these events 

on the bottom left area of the plot. Events captured in the bottom right of the plot were 

positive for Sybr green, and events observed top left were IgA-APC position. Anti-human 

IgG-APC (1:100) was used in each sample as an isotype control for non-specific binding. 
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5.3 Results 
 
5.3.1. Sample acquisition  
 
Home visits were conducted during May 2016 and at the end of February 2017. A total of 

17 severe ME patients were recruited and included in this chapter (Table 5.3.1) Nine house-

hold controls were recruited and linked to their respective ME participant. It must be noted 

that out of these nine house-matched controls, two were unrelated full-time carers of 

these severe ME patients. This was the best achievable environmental control in these 

instances, since these carers worked long hours in close contact with the patient and in the 

preparation of meals. 

 

Figure 5.3.1 shows a map of the locations of the 11 home visits carried out in 2016.  Due to 

the availability of a suitably trained medical profession, it was not possible to obtain blood 

samples from all these home visits.  Blood taking from these patients proved difficult for 

most severe patients and was deemed unethical to pursue further attempts to take blood. 

The difficulties in obtaining blood was another turning stone to switch strategies from 

systemic microbial antibody detection, to using less invasive faecal samples to access IgA 

reactivity in faecal bacteria. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure. 5.3.1 Maps of locations for 11 home visits attended across South London, UK, during 2016  
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Sample Collection Summary 

 
Sample Status Age Sex Collection year 

2016      2017 
Paired samples 

1 Severe ME 63 F X X  
2 Severe ME 56 F X X  
3 House Control 55 F X X 1 
4 House Control 69 F X X 2 
5 Severe ME 44 F  X 3 
6 House Control 70 F  X 3 
7 House Control 55 F X X 4 
8 Severe ME 38 F X X 2 
9 Severe ME 21 F X X 1 

10 Severe ME 37 F  X 5 
11 House Control 64 F  X 5 
12 Severe ME 18 F X X 4 
13 Severe ME 61 F  X  

     14 Severe ME 40 F  X  
15 Severe ME 54 F  X  
16 Severe ME 58 F X X 6 
17 House Control 60 M X X 6 
18 Severe ME 27 F X X 7 
19 House Control 60 F X X 7 
20 Severe ME 63 F  X  
21 Severe ME 32 F X  10 
22 Severe ME 31 F X  8 
23 House Control 54 F X  8 
24 Carer 29 F X  9 
25 Severe ME 56 F X  9 
26 Severe ME 30 F X   
56 Carer 34 F X  10 

 
Table 5.1.1 Patient Demographics: Severe ME (n=17) plus House-Hold controls (n=9) 

“X” denotes sample collected. Severe ME (age 42.9±13.2 years) and House-matched controls (age 

57.3±8.8 years). Yellow highlights patients followed up for a second sample 

 
 
In 2017, additional faecal samples were made available from 7 of the original severe ME 

patients recruited in 2016, with another 6 new severe ME patients included in final home 

visits to conclude the entire study. Again, owing to the difficulties of organising a suitable 

trained clinical professional to take blood as well as these patients being exceptionally 

challenging to acquire a suitable vein for bleeding, not all severe ME patients and their 

controls contributed blood serum to this study.  
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5.3.2 Bacterial Microarray 
 
Attempts to design and develop a useful bacterial microarray for patient systemic serum 

antibody detection was carried prior to research ethics approval and therefore these 

experiments were conducted in advance of any patient or control sample collections.  The 

rationale for its design was to allow for ease of detection of serum antibodies in human 

serum against multiple faecal bacterial isolates and for the simultaneous detection of these 

antibodies using high-throughput microarray printing and array scanning. 

 

Early attempts used single cultured intestinal isolates immobilised onto a nitrocellulose-

coated slide. Bacteroides thetaiotaomicron VPI 5482 was chosen for its ability to withstand 

oxygen exposure on the lab bench and due to the availability from within the research 

group culture collection and that of an outer-membrane protein A deficient strain, GH290 

(OmpA-). This was also one of the species used for anti-microbial detection by Haas et al., 

2011 in HIV-1 infection and IBD patients (Haas et al., 2011). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3.1. Bacteroides thetaiotaomicron OmpA+ and OmpA- can be immobolised onto a 

nitrocellulose-coated glass microscope slide. Baclight Red® stain was incubated with cells before 

transfer of 10 μl to slide. Slide was dual laser imaged on the GenePix Microarray scanner. Fluorescence 

cells appear detectable, read at wavelength of 635 nm versus 532 nm .   

 

In preparation to access the effect of CFU numbers on the detectability of Baclight® Red 

signal during the microarray scan; PBS suspended VPI5482 (109 cells/ml) and GH290 (109 
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cells/ml) cells were stained with Baclight® Red (100 μM, working dye solution) in a final 

1:1000 dilution. The desired cell number (ranging from 109, 108, 107 or 106 cells per array 

spot) was achieved by serial dilution in PBS.  Figure 5.3.1 shows an example of these cells 

deposited onto the microarray using a 10 μl printing volume. The Baclight® red fluorescence 

intensity was recorded using the red laser (λ = 635 nm).  The slide was also scanned for 

fluorescence on the green channel of the microarray scanner (λ = 532 nm) and shows 

background fluorescence may interfere with downstream signal detection of antibodies on 

this channel. It was difficult to quantitate the intensity of Baclight® fluorescence at this stage, 

however OmpA- cells did appear more fluorescent from this image.  

 

In slide-independent studies using flow cytometry (figure 5.3.2), Baclight® Red was 

demonstrated to only have fluorescent properties when it was associated with both Gram 

positive and negative bacterial cells, confirmed also by the manufacturer’s protocol and gave 

reassurances that Baclight® detection was a reliable visual indicator of the presence and 

location of cells on the microarray slide. Figure 5.3.2 shows E. gallinarum (Gram positive) and 

A. muciniphila and B. thethaiotoamicron (both Gram negative) cells can be sort for 

fluorescence using Baclight signal intensity. 

 

 

 

 

 

 

 

Figure 5.3.2 Visualising bacteria stained using Baclight® red by flow cytometry. Threshold set to a 

minimum of <100 ets/s based on sterile-filtered PBS (left plot). Bacterial cells were positioned within 

the plot using forward (FSc) and side scatter (SSc) light properties which are proportional the size of 

SS
C-

A 

FSC-A 

E. gallinarum A. muciniphila 

B.thetaiotaomicron 
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C-

A 

FSC-A 

Sterile-filtered PBS 

Pure culture faecal isolates 
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individual cells (FSc) and intracellular complexity (SSc). Histogram measured the Baclight® intensity, 

cells accumulate to the right of this plot are positively stained. Pseudo-colour represents 

concentration of cells where a region of interest (gate) has been added to exclude culture debris and 

non-specific events. Number inside gate is a percentage of all events processed. These were then 

gated and measured for Baclight signal in the histogram (red). 

 
- Microarray assay validation 

 
Immobilisation of OmpA+/- strains of Bacteroides thetaiotaomicron on nitrocellulose-coated 

glass slides was used to optimise the antibody detection protocol using a polyclonal anti-

OmpA antibody and a secondary goat anti-rabbit-IgG conjugated to Dylight®550 (Thermo-

Scientific) for green fluorescence that could be detected on the microarray scanner’s second 

laser at 532 nm. To facilitate multiple antibody conditions on single glass slide, a multiarray 

chamber (fig. 5.2.1), was integrated with the glass slide to produce 64 individually spaced 

wells similar to a microtiter plate. Binding of the OmpA antibody would be expected using 

the wild-type VPI5482 strain, with GH290 (OmpA-) representing a negative control.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.3.3 Slide washing causes loss of bacterial cells. 10 μl of bacterial suspension (109 CFU/ml) 

of stained and unstained VPI5482 and GH290 cells per well (108 cells) was air dried onto slide and 

subjected to three separate washing steps by submersing slide in a 5L bath of PBS-T (0.05% Tween 

20) and left to dry in between each wash. After the final wash the slide was left to dry at 370C before 

scanning. 
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An experiment was required to test if immobilised bacteria can withstand a minimum of 

three PBS-T wash steps to allow for application and removal of (1) a suitable blocking 

reagent, (2) serum/antibody, and (3) removal of unbound primary/secondary antibody. 

Bacteroides thetaiotaomicron strains remain partially immobilised onto the slide after three 

washing steps (figure 5.3.3). Efficiency and stability of cells immobilisation appears to vary 

across different regions of the slide since loss of fluorescence occurs more to wells at the 

ends of the slide. There appeared to be no differences between OmpA+ or OmpA- cells.  

Using the ProPlate 64-well gasket configuration, VPI5482 and GH290 cells were immobilized 

onto separate slides with the application of primary OmpA antibody concentrations (1:100, 

1:200, 1:500) titrated against secondary goat anti-rabbit IgG-Dylight®550 (1:100, 1:100, 

1:500). Figure 5.3.5 shows two slides with annotations for antibody incubated against 

OmpA+/- Bacteroides. Cells incubated with antibody were not stained with Baclight® Red to 

avoid any signal bleed over onto the 532 nm laser used to detect secondary antibody binding. 

Both slides contained 108 cells per well which were deposited onto the slide in 10 μl 

volume/well in an attempt to coat the entire well surface. Six wells did contain 109 cells 

stained with Baclight® Red as a control and for the purposes of monitoring following slide 

washing.  
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Figure 5.3.4 Polyclonal rabbit OmpA antibody was used to test for specificity and reactivity against 

immobilised VPI5482 bacteria. 

 
Several attempts were made using OmpA antibody to provide proof-of-concept for this 

method of antibody detection. A makeshift polystyrene insert for a centrifuge swing bucket 

was created to introduce centrifugal force to maximise contact between cells and the slide 

surface. Blocking with BSA was attempted at 2% and increased to 10% to minimise slide 

background signal in fig. 5.3.4. However, scanning of both slides at 532 nm did not reveal 

specific binding of antibody to the wild-type (OmpA+) Bacteroides. 

BT VPI5482 (OmpA+) 

BT GH290 (OmpA-) 
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Figure 5.3.5 Reactivity of polyclonal anti-microbial rabbit serum tested against faecal bacteria 

extracted from human faeces. Donor faecal bacteria used to immunise rabbit was used on this slide, 

starting at 108 cells diluted across the slide using PBS. Top: slide map shows the position of cell 

dilutions and antibody staining concentration. (A) single (red)laser, λ = 635 nm, scan of slide to 

detect secondary antibody binding produced no reactivity. (B) single (green) laser, λ = 532 nm 

measures background fluorescent activity. (C) dual laser (λ = 635/532 nm) with increased gain show 

no specific antibody reactivity to faecal bacteria. 

 

λ = 635 nm 

λ = 532 nm 

Ratio λ = 635/532 nm 

A 
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Rabbit sera raised against faecal bacteria isolated from a single human donor was tested 

using this microarray format in figure 5.3.5. However, no fluorescence was detected on the 

array scanner at 635 nm.  

 

An attempt using pooled serum from rabbits “17” and “20”. In this experiment, blocking was 

increased by using 10% BSA and the serum was left overnight at 40C. The slide was then 

processed and developed as previously performed and scanned for fluorescence (figure 

5.3.6). Detection using the green channel shows the slide surface to be highly auto-

fluorescent. Combined post-immune sera was compared directly with the pre-immune bleed 

for anti-microbial activity to donor faecal bacteria titrated against cell number, but this 

produced little or no detectable antibody binding (fig. 5.3.6, right). 
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Ü Figure 5.3.6 Post-immunised rabbit sera shows no anti-microbial reactivity using donor faecal 

bacterial immobilised onto a nitrocellulose-coated glass microscope slide. Anti-microbial reactivity 

towards faecal bacteria was compared using pre- and post-immune rabbit sera. Faceal bacteria were 

diluted from 109 – 101 cells using PBS only as a negative control. Slide was imaged on separate laser 

channels, λ = 635 nm, green (left) and λ = 635 nm, red (right). Regions of interest (boxes) indicate 

wells created to deliver cells onto slide.  

 

- Automated microarray printing 
 

A microarray printer was used to deliver cells onto the nitrocellulose-coated slide in the same 

fashion described by Thirumalapura and colleagues. To that end, a microarray printing buffer 

was recreated using PBS containing 20% Ficoll 400 and 4% glycerol to suspend VPI5482 

bacterial cells at a density of 109 cell/ml.  Figure. 5.3.7 shows example of cells printed with 

each array spot representing ~25,000 cells. PBS/Ficol/Gycerol was compared with PBS alone, 

which provided a better quality of array spot. The bottom image in fig. 5.3.7 shows a scan of 

the entire slide surface and the differences in the quality of spotting. During imaging of the 

slide, signal gain was adjusted in relation to areas of the slide out of range of the microarray 

printer and was kept constant during re-imaging of the same slide following slide washing.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A 

B C 
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Ü Figure 5.3.7 Automated microarray printing of Baclight® Red stained Bacteroides 

thetaiotaomicron VPI5482 (OmpA+). Cells were robotically printed onto a nitrocellulose-coated 

glass slide and imaged using a microarray scanner. (A) Entire slide surface imaged using single (red) 

laser, λ = 635 nm. (B) represents enlarged view of area in white box in A. (C) Compared Baclight® 

signal intensity (λ = 635 nm) from bacterial cells suspended in either PBS and PBS/Ficol/Glycerol 

printing buffer  

 

Baclight® signal was quantified using pre-defined analysis modes within the native 

GenePix® software on the array scanner. Based on the microarray printing pattern, regions 

of interest could be placed around each array spot and its fluorescent signal recorded and 

exported into an Excel file.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 5.3.8 Washing causes the majority of cells to be lost from the microarray slide surface. Two 

printing buffers, PBS and PBS/20%Ficol/4% glycerol were used to robotically print bacterial cells 

from Bacteroides thetaiotaomicron (Gram negative), Enterococcus gallinarum (Gram positive), E.coli 

(Gram negative), and Akkermansia muciniphilia (Gram negative) on to a nitrocellulose glass slide. 

Cells were stained with Baclight® Red according to different conditions; either before or after fixing 

cells overnight or staining unfixed cells and printing on the same day. Blue bars indicate Baclight® 

Red fluorescence pre-wash, compared to the red bars at post-wash. Mean fluorescence values were 

recorded in arbitrary units (AU) following scanning of entire slide surface. Error bars give the range 

of standard deviation. 
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Figure 5.3.8 (blue bars) compares the intensity of Baclight® signal in PBS versus PBS/20% 

Ficoll/4% Glycerol. Given the final version of this assay would require tens or even 

hundreds of different representatives of the human gut microbiota, such an assay would 

require advanced preparation and staining of these bacteria before they could be 

immobilised onto the array. Baclight® intensity was a third higher in cells printed in PBS 

alone for B. thetataiomicron. However, it did not make any notable difference if cells have 

been stained the previous day and kept at 40C compared to staining these cells the same 

day to be printed. The order of fixing cells before or after Baclight® staining did not make a 

difference for B. thetaiotaomicron or E.gallinarum; with the exception for E.coli that was 

more advantageous to stain these cells on the same day of printing. Interestingly the 

difference in fluorescence between the printing buffers for Akkermansia muciniphila was 

the least in contrast to the other strains that performed better in PBS, highlighting optimal 

printing and staining conditions are dependent on the bacterial strain. Reimaging the slide 

following washing revealed complete loss of Baclight® signal from all strains suggesting 

these cells have been lost from the slide surface.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 5.3.9 Anti-E.coli-FITC antibody reactivity towards for wild-type E.coli ATCC 700926 and 

DRaFc ‘deep rough’ mutant E.coli immobilised onto nitrocellulose-coated slide. 5x106 cells 

transferred onto slide and diluted in series 10-1-10-5. Each row of the slide indicates condition of cells 

prepared (1) unstained and unfixed, or Baclight® Red stained in unfixed (2) and 2% formalin (3).  
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A final attempt was made to generate a working slide assay using a ‘deep rough’ mutant 

raFC mutant E.coli. A FITC-conjugated goat polyclonal anti-E.coli antibody was tested 

against ATCC 700926 cells, including a K-12 like E.coli strain and a ‘deep rough’ mutant 

E.coli. This antibody reacts with most E.coli given the 95% homology across all strains. It 

was anticipated this experiment would work based on reducing the number of washing 

steps since no secondary antibody was required, however figure 5.3.9 is a scan of result of 

this experiment at 532 nm and show no specific antibody reactivity towards wild-type 

E.coli. Non-specific binding appeared to have occurred but was due to bleed over of 

Baclight® Red signal, as previously observed in figure 5.3.1. Fixing did appear to reduce this 

effect. Based on independent experiments using rabbit serum, OmpA and E.coli antibodies 

it was determined that this assay, in our hands, was not suitable to continue for future 

detection of serum antibodies in patient samples. At this time in the study it became 

apparent an alternative method was needed to evaluate anti-bacterial antibodies in patient 

samples. 

 

5.3.3 Faecal detection of IgA-coated faecal microbes  
 

Sybr green was used to label faecal bacteria isolated from homogenised stool samples of 

patients and house-hold controls. Figure 5.3.10 is an early experiment with faecal bacteria 

isolated from a single healthy donor stool. The flow plots reveal a subpopulation of cells 

that are Sybr green positive. Bacterial cells can also be identified using light scatter 

characteristics alone providing an adequate threshold of detection has been established so 

that no more than a rate of 100 events per second are detected using sterile-filtered PBS 

alone. PBS containing unstained/stained bacterial cells were diluted to an approximate 

range of 5000 events per second to minimise risk of clogging the cytometer.  

 
The protocol for visualising faecal bacteria using Sybr green in a flow cytometer was based 

on a protocol used by Dr Alistair Noble (Imperial College London) to stain intra-epithelial 

microbes isolated from biopsy samples of patients with inflammatory bowel disease (IBD). 

Here, Sybr green staining has been used as a refinement to earlier published work using 

faecal flow cytometry where no attempts have been made to separate faecal bacteria from 

other particulates within stool (Palm et al., 2014).   
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   FSc vs. SCc       30 min        60 min 

Figure 5.3.10 Optimisation of concentration required to visualise faecal bacterial cells with Sybr 

Green nucleic acid staining using flow cytometry.  Faecal bacteria were extract from a single donor 

provided as 100 mg aliquot for homogenisation and diluted 1:100 in PBS. FSc and SSc properties 

were used to identify faecal microbes from faecal debris. Identifying faecal bacteria was enhanced 

with with Sybr green staining diluted to 1/10,000 versus 1/100,000 for 30 min or 60 min and 

inspected on the flow cytometer.  

 

Further optimisation of Sybr green was performed with anti-human IgA and compared 

against faecal bacteria in an ME and HHC sample, by 1:100 and 1:1000 dilution of faecal 

bacteria in sterile-filtered PBS. We found 1:100 dilution most suitable for staining (see 

supplementary figures 5.1 and 5.2). 

 

A total of 19 samples were analysed from 2016 collections. The method for faecal IgA 

detection presented here was tested in an early experiment using a single matched severe 

ME patient and house-hold control. The percentage of IgA+ bacteria in the severe ME (57, 

F) patient was 21.3% compared to 6.37% in the HHC (60, M) (figure 5.3.11). The percentage 

of non-specific binding was 0.16% and 0.27% from patient and HHC respectively. The Sybr 

green staining was recorded at 52.7% in the patient versus 81.9% in the HHC. Although the 

percentage of Sybr Green is higher in the control, this should not make any difference to 

the percentage recorded for IgA detection.  
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The effectiveness of the Sybr green positive staining appeared to vary in both patients and 

HHCs. As an example, Sybr green staining pattern did not appear consistent in identifying 

bacteria within the faecal homogenate shown in the house-hold control (HHC), although 

the percentages suggested more were identified in the ME (21, F) patient compared to the 

HHC (55, F) at 54.8 % in ME and 66.4% in HHC (figure 5.3.12). In this pair, the percentage of 

isotype non-specific bind was recorded at 0.17% for the patient and 3.60% for the HHC. The 

percentage of IgA+ bacteria was the second highest in its group at 36.6%, over double the 

percentage compared to 16.5% measured in the HHC.  This pair represented the greatest 

difference in percentage between patient and HHC. This patient is also the second 

youngest at 21 years old and remains entirely bed-bound. 

 

As a third example of this dataset, another female ME (38, F) and HHC (69, F) pair showed 

more consistent Sybr+ green positive staining for faecal bacteria at 51.8% versus 70.1% in 

ME and HHC respectively (figure. 5.3.13). This patient presents the third highest percentage 

at 31.8% IgA+ bacteria compared with 17.0% IgA+ in the HHC control.  Sybr Green positive 

staining was 51.8% versus 70.1% for ME and HHC respectively. Non-specific bind with 

isotype antibody was 4.85% in ME versus 0.72% in HHC.
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Figure 5.3.11 Flow cytometry data using faecal bacteria isolated from severe ME patient (top row) and their house-hold control (bottom row). Bacteria are gated using 
Sybr green fluorescence and measured for anti-IgA-APC binding to these cells recorded in the top right quadrant of IgA plots. Isotype control provides indicator for non-
specific binding events. Pseudo-colour shows areas of increasing cell numbers.  Numbers within each gate, represent the percentage out of total events recorded. 

Isotype Control Anti-IgA-APC 
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ME, F (21)  IgA+ 36.6%  
  Control, F (55)  IgA+ 16.5%  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.3.12 Flow cytometry data using faecal bacteria isolated from severe ME patient (top row) and their house-hold control (bottom row). Bacteria are gated using 
Sybr green fluorescence and measured for anti-IgA-APC binding to these cells recorded in the top right quadrant of IgA plots. Isotype control provides indicator for non-
specific binding events. Pseudo-colour shows areas of increasing cell numbers.  Numbers within each gate, represent the percentage out of total events recorded. 

Isotype Control Anti-IgA-APC 
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Figure 5.3.13 Flow cytometry data using faecal bacteria isolated from severe ME patient (top row) and their house-hold control (bottom row). Bacterial are gated using 
Sybr green fluorescence and measured for anti-IgA-APC binding to these cells recorded in the top right quadrant of IgA plots. Isotype control provides indicator for non-
specific binding events. Pseudo-colour shows areas of increasing cell numbers.  Numbers within each gate, represent the percentage out of total events recorded. 

Isotype Control Anti-IgA-APC 
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Figure 5.3.14 Summary of the relative abundance of IgA-coated faecal bacteria in 8 pairs of severe, 

house-bound ME/CFS patients versus house-hold (control) and 3 unmatched patients. Right, 

paired and unpaired samples; left, lines indicate pairing between patient and house-hold control, 

red line represents patient 9, see table 5.3.1. Paired t-test did not show any significance difference 

between the two groups. 

 
 
In summary, the percentage of IgA-coated faecal bacteria all 19 samples analysed was 

determined by subtracting non-specific antibody staining as measured using isotype 

antibodies (figure 5.3.15). The average percentage of IgA+ bacteria found in severe ME 

patients was 25.87 ± 7.42% SD versus 20.32 ± 7.35% SD in HHC. Although the differences 

with mean IgA+ coated bacterial was not significant when using a paired t test (p = 0.09). 

Non-specific binding events were similar across both groups at 3.56 ± 2.40% SD for ME 

versus 2.67 ± 2.35% in HHC. When matching patient with their HHC in figure 5.3.14 (right-

side plot), there appears to be an emerging trend for severe patients to have more IgA-

coated faecal microbes than that of their designed house-hold control. The red line in 

figure 5.3.14 highlights a severe patient (21, F), and HHC (55, F) (flow data plots shown in 

figure 5.3.12), which had greatest difference between measured IgA+ bacteria compared 

the other pairs.  

 

- Proportion of observed IgA+coated faecal bacteria changes with time  
 

In 2017 an additional 20 faecal samples were studied including some samples from a 

second stool sample collected from patients and their house-hold control almost a year 

since the previous collection and analysis. Table 5.1.1 summaries 12 of the original 19 

samples visited in 2016 (highlighted in yellow) that were revisited almost a year later 

n.s. 

 2016 collection 

9 
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(2017). In addition, 6 new severe ME patients were recruited in 2017 as well as 2 new 

house-hold controls contributing 2 matched pairs. 

 

In the following chosen examples of this flow data the acquisition of samples has been 

adapted to show proportions of Sybr green negative (Sybr-) events to establish the 

proportion of IgA antibody reactivity in each sample that may have occurred in instances 

where Sybr green staining has been less effective. The percentage of IgA+ bacteria in figure 

5.3.15 shows 27.3% IgA+ in ME (27, F) compared to 11.3% IgA+ in the HHC (60, F). Review of 

the first samples from this pair in 2016 (supplementary S5.2) revealed a profile of 21.5% 

versus 26.5% IgA+ in patient and control, respectively.  The percentage of Sybr- IgA+ events 

were 6.56% in ME and 10.6% in HHC. Isotype antibody reactivity was higher in HHC at 

5.71% compared to 1.54% in ME. 

 

The youngest ME patient within this group was 19 years old in 2017. The patient had also 

previously donated to this study alongside the same HHC. The samples they provided in 

2017, showed similar profile of IgA+ coated bacteria within both persons, figure 5.3.16. The 

percentage of IgA+ bacteria was closely similar, as before, at 11.8% in ME (18, F) and 13.0% 

in HHC (55, F).  In 2016, both these samples had a higher proportion of IgA-coated faecal 

bacteria with the patient’s sample profile was recorded at 29.5% compared to 21.1% in the 

control (supplementary figure S5.6). Once again, the Sybr+ green staining in figure 5.3.16 

appears greater in HHC at 66.7% versus 53.1% in ME. Interestingly, 11.2% of IgA+ events for 

HHC were recorded in the Sybr- region, compared to 4.48% in ME (fig. 5.3.16). Non-specific 

binding is also higher in HHC sample at 3.95% versus 1.24% in ME.  

 

Figure 5.3.17 is another example of a follow up a year later showing the profile of IgA+ can 

change from sample to sample. In this most recent sample, the percentage of IgA+ bacteria 

was recorded at 5.09% in ME (38, F) compared with 6.56% in HHC (69, F). The HHC has a 

greater proportion of Sybr- IgA+ events at 11.5% compared with 8.45% in the patient. This is 

contrasted to the 2016 data obtained for this pair shown previously in figure 5.3.13 which 

showed 31.8% in the patient compared to 17.0% IgA+ in the control. Both samples showed 

low non-specific antibody reactive: 0.27% ME versus 0.55% HHC. Less non-specific antibody 

binding was seen in the HHC compared to 4.85% in the previous year (figure.5.3.13) 
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Two non-paired severe ME patients revealed interesting IgA+ antibody staining patterns. 

The percentage of Syb+ IgA+ in the first patient (40) was 17.9% compared to 2.40% Sybr- 

IgA+ events (figure 5.3.18A). The Sybr+ IgA+ pattern was the clearest from all samples 

demonstrating an obvious subpopulation of IgA+ faecal bacteria. The percentage of non-

specific antibody reactivity was all low at 1.03%. This other patient (54) who entirely bed 

bound (figure 5.3.18B) showed a similar percentage of Sybr+ IgA+ bacteria at 17.3% and 

more Sybr- IgA+ events recorded 11.4%. Although the staining in this patient was not as 

discrete as in the previous patient. Isotype antibody reactivity was slightly higher at 4.83%. 

No data had been collected for these patients the previous year since these patients had 

not yet been recruited part of the study.
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Figure 5.3.15 Flow cytometry data using faecal bacteria isolated from severe ME patient (top row) and their house-hold control (bottom row). Bacteria are gated using 
Sybr green fluorescence and measured for anti-IgA-APC binding to these cells recorded in the top right quadrant of IgA plots. Isotype control provides indicator for non-
specific binding events. Pseudo-colour shows areas of increasing cell numbers.  Numbers within each gate, represent the percentage out of total events recorded. 

Anti-human IgA Isotype Control 
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A  ME, F (18)   11.8%  
B  Control (55)   13.0%  
 

 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.3.16 Flow cytometry data using faecal bacteria isolated from severe ME patient (top row) and their house-hold control (bottom row). Bacteria are gated using 
Sybr green fluorescence and measured for anti-IgA-APC binding to these cells recorded in the top right quadrant of IgA plots. Isotype control provides indicator for non-
specific binding events. Pseudo-colour shows areas of increasing cell numbers.  Numbers within each gate, represent the percentage out of total events recorded. 
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A  ME, F (38)    5.09%  
B  Control, F (69)    6.56%  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.3.17 Flow cytometry data using faecal bacteria isolated from severe ME patient (top row) and their house-hold control (bottom row). Bacteria are gated using 
Sybr green fluorescence and measured for anti-IgA-APC binding to these cells recorded in the top right quadrant of IgA plots. Isotype control provides indicator for non-
specific binding events. Pseudo-colour shows areas of increasing cell numbers.  Numbers within each gate, represent the percentage out of total events recorded.

Anti-human IgA Isotype Control 
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Figure 5.3.18 Discrete IgA-coated bacterial subpopulations measured from faecal suspensions in 

two unpaired, severe ME patients recruited in 2017. Top (A), F (40) bottom (B), F (54).  

 

The flow cytometry data from the 2017 collections is summarised in figure 5.3.19. The 

range of IgA-coating of faecal bacteria in severe ME is greater than for house-hold control 

samples. This is due to one particular ME patient (highlighted as the red line in figure 

5.2.19B. The data for this HHC (60) and patient (27) pair is presented in figure 5.3.15. This 

pair previously studied in 2016 (see supplementary figure 5.2) revealed 26.5% (ME) versus 

21.5% (HHC) IgA+. Comparison of the two time points for the ME patient show the profile is 

similar at 26.5% in 2016 compared to 27.3% in 2017. Conversely, the HHC decreased from 

21.5% in 2016 to 11.3% in 2017. Unfortunately, as can be seen from figure 5.3.19, a reverse 

trend is found in 2017 showing most ME patients have less of a percentage of IgA+ faecal 

bacteria compared to their HHC: mean % IgA+ in ME was 10.72 ± 4.95 SD versus 9.73 ± 4.14 
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SD in HHC. There was very little difference on average between non-specific antibody 

reactivity in ME (1.87 ± 1.15% SD ME compared to 1.46 ± 2.90% SD in HHC). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.3.19 Summary of the relative proportion of IgA+ faecal bacteria detected in 14 severe, 

house bound ME patients versus 6 House-Hold Controls (HHC) recruited during 2017. (A) 

Percentage abundance of IgA-coated faecal bacteria in samples collected in 2017. (B) lines indicated 

pairing between severe ME patient and house-hold control. 

 
 
5.3.4 Serological markers of a leaky gut 
 

Thirty-eight complement inactivated serum samples were used to measure endotoxin (LPS) 

concentration and LPS-binding protein (LBP) as surrogate markers for intestinal 

permeability. Both screening assays were performed consecutively on same aliquot of 

serum per patient and house-hold control sample. The endotoxin screen was performed 

firstly, followed by the LBP assay within 24hrs on serum kept at 40C.  The serum samples 

had undergone one freeze-thaw cycle in total. Samples from mild/moderate ME/CFS were 

more freely available since these patients were able to attend the hospital during a pre-

arranged visit during 2015. The data obtained for LPS and LPB in these samples showed no 

clear differences between these groups (figure 5.3.20).  

 

 

 

 

 

 2017 Collection 

18 
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Figure 5.3.20 Serum endotoxin activity and LBP concentrations measured in 14 Severe (S), 14 

Mild/moderate ME (M) and 10 House-Hold Controls (HHC) as markers for bacterial translocation. 

The horizontal bars in both plots for LPS and LPB in figure 5.3.20 represent the median values for 

reaction time (RT) and concentration (μg/ml) respectively. Error bars represent the standard 

deviation 
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5.4 Discussion 
 

The results from this chapter provides a new insight into the pattern of IgA-coated faecal 

microbes in severe, house-bound ME patients. To date, there are no clinical biomarkers 

reflecting the status of the intestinal immune system and its interactions with luminal microbes. 

Previous studies have assessed the composition of the ME/CFS microbiome with data limited to 

the general ME/CFS population and no information about how changes in the microbiome may 

relate to severity of ME. Giloteaux et al. and others have reported a general reduction in 

microbial diversity in the general ME/CFS population as well as increases in Gram negative 

Proteobacteria which are more abundant in inflammatory environments such as IBD and 

provide source of bacterial LPS (Giloteaux et al., 2016; Sartor, 2011). Based on the current 

available data, there is a lack of consensus on the precise pattern of dysbiosis and how this is 

related to causality in ME/CFS. Indeed, any disturbances within the ME microbiome will alter 

dynamic feedback mechanisms with the gut immune system and reactivity to certain microbes 

that may give indications of underlying mechanisms driving changes in the immune system. This 

needs to be addressed in further studies of additional immune parameters for possible 

additional biomarkers, such as leaky gut.  

 

We hypothesised that severe ME patients have increased intestinal permeability which can 

impact immunity by allowing intestinal microbes to be exposed directly to the local and 

subsequently systemic immune systems. The mucosal immune response was examined for 

production of secretory IgA (sIgA) reactive with faecal bacteria isolated from the patient’s own 

stool. Indeed, faecal bacterial flow cytometry has been established for some time with different 

variations in faecal sample preparation and staining (van der Waaij et al., 1994). To refine the 

method used by Palm et al., 2014, faecal microbes were stained with Sybr Green nucleic acid 

stain to exclude faecal debris, electronic noise and small bubbles registering as events within the 

flow cytometer. This appeared to work well in most samples, however IgA+ reactivity was also 

apparent in Sybr green negative fractions suggesting some microbes may not stain as effectively. 

The effectiveness of Sybr green staining it likely to depend on the stool consistency and the 

composition of an individual’s microbiota as many bacteria have differences in the structure and 

design of their cell wall. This is a similar problem to the one discussed earlier regarding DNA 

extraction from bacteria within complex samples such as human faeces where the diversity and 

complexity of the community structure of the microbiota is the greatest compared to any other 

site in or on the human body.  
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The protocol for detection of IgA-bound faecal bacteria was trialled and optimised with 

Sybr green staining using one of the first patient/house-hold control samples collected in 

2016. The IgA profile in this patient and house-hold control (fig 5.3.11) showed a higher 

proportion of IgA+ coated bacteria in ME: 21.3% versus 6.37% in the HHC. This result was 

encouraging and demanded further investigation using more samples, since potentially, 

IgA-coating might be a useful immune marker to describe interactions between microbes 

and the immune system and may have relevance in the context of the status of the 

integrity of the intestinal barrier. On the latter point, inflammation in active IBD causes 

tissue damage and destruction of the intestinal barrier and as discussed in the introduction 

to this chapter, anti-microbial antibodies may have some diagnostic relevance in this 

process (Mitsuyama et al., 2016; Strober & Fuss, 2011). The integrity of the intestinal 

barrier is essential for innate immunity via PPRs displayed on the epithelial cells to which 

commensal bacteria can bind and signal anti-inflammatory immune responses as well as 

producing anti-inflammatory molecules such as butyrate which further enhance T(reg) 

responses and HDAC activity to promote changes in gene expression that support epithelial 

barrier integrity and tolerance to intestinal bacteria (Bordin et al., 2004; Vanhoutvin et al., 

2009; Zhou et al., 2018). Without the proper regulation and exclusion from the luminal 

environment, commensal bacteria can infiltrate the intestinal epithelial barrier providing 

non-self antigen simulating inflammation and tissue damage by increasing activation 

immune cells such as DCs and macrophages to produce pro-inflammatory cytokines which 

favour Th1/Th17 proliferation.  

 

Under normal conditions in the intestine, T-cell independent IgA production is supported 

through interaction of B cells with DCs which produce retinoic acid inducing α4β7 integrins 

and chemokine receptor 9 expression on circulating B cells to home to the intestinal 

mucosa and differentiate within the lamina propria into plasma cells secreting sIgA 

(Fagarasan et al., 2010; Mora et al., 2006).  DC-derived factors such as BAFF and APRIL 

further bind to B cells and enhance class switch recombination (CSR) from IgM to the IgA 

isotype (Berkowska et al., 2015).  However, an altered pro-inflammatory T cell environment 

driven by increases in intestinal permeability could led to more T cell dependent 

production of mucosal IgA secreted by plasma cells in the lamina propria governing somatic 

hypermutations and enhancing antibody affinity towards specific microbial antigens in the 

intestine. For example, T-follicular helper (Tfh) cells interact with B cells in the GCs of the 

lamina propria through CD40L presented on activated CD4+ T cells increasing CD40 
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intracellular signalling which causes activation-induced cytidine deaminase (AID) within B 

cells to undergo affinity maturation and CSR to IgA antibody production (Berkowska et al., 

2015; Muramatsu et al., 2000; Rescigno, 2014; Shulman et al., 2013). Moreover, Th17 cells 

and their associated cytokines IL-17, IL21, and IL22 have been shown to induce strong 

proliferative responses in B cells triggering CSR and increased antibody production with 

blockading of IL-17 signalling leading to reduction in the size and number of germinal 

centres where naïve B cells encounter antigen and undergo affinity maturation 

(Mitsdoerffer et al., 2010). IL-17 has been shown to promote intestinal IgA responses to 

intestinal infection although it did not affect the development of IgA+ memory B cell 

responses (Huang et al., 2017). Under homeostatic conditions, DC and Treg cell derived 

cytokines,  TGFβ and IL-10, represent a major T cell independent pathway which leads to 

the differentiation of B cells into antibody secreting plasma cells with affinities for lipid and 

carbohydrate structures on bacterial cell surfaces that are consider to be ‘natural’ of innate 

antibodies which help stop microbial translocation across the epithelial barrier (Berkowska 

et al., 2015; Litinskiy et al., 2002; Macpherson et al., 2000). Finally, it has been documented 

that serum level of IgM and IgA reactive antibodies against bacterial LPS have been found 

to be higher in patients with CFS as well as in major depression disorder (Maes et al., 2012; 

Maes, Mihaylova, et al., 2007).  

 

Leaky gut is commonly associated in IBD as a consequence rather than a direct cause with the 

majority of current IBD therapies target inflammatory pathways with limiting degrees of efficacy 

(Shimshoni et al., 2015). Potential therapies directed at modulating the microbiome and 

restoration of the gut barrier are highly likely important targets in future treatments.  This is 

further substantiated by the fact that a high percentage of IgA-coated microbes have been 

reported in IBD patients and subsequently isolated and sequenced to identify specific bacterial 

taxa associated with driving inflammation in germ-free mice (Palm et al., 2014). Whilst IBD is an 

extreme example of loss of intestinal barrier integrity; the increases in the proportion of IgA-

coated bacteria may be a new marker for intestinal permeability that can be applied to other 

diseases associated with permeability and intestinal immune system defects. 

 

A total of 11 severe ME patients and 8 house-hold controls were recruited in 2016. The original 

recruitment target of 35 patients had previously been determined using a statistical power 

calculation based on the differences in endotoxin measurements found serum from IBD patients 

versus healthy controls (Rojo et al., 2007). Home visits required a significant amount of 
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organisation and coordination to ensure samples were collected and processed as quickly as 

possible. Unfortunately, it was not possible to perform experiments on fresh samples, so faecal 

aliquots were processed and stored at -800C on the day of collection and examined at the end of 

the recruitment phase. Simultaneous processing of all these samples occurred in a single day 

and were analysed in a blinded fashion.  An emerging trend for increased IgA-coating was found 

in the majority of severe ME patients compared with their respective house-hold control (HHC), 

fig. 5.3.14. Most interestingly is patient 9 in this figure which had the second highest proportion 

of Sybr+ IgA+ bacteria (36.6%) and the biggest increase compared with the HHC. This patient was 

visited in a completely darkened room and was highly sensitive to any light and sound and 

speech was difficult. Even though all the patients considered in this work are referred to as 

severe, there is still considerable variation between them. Whereas, some have no sensitivity to 

light or sound and are able to manoeuvre around the house, others are almost entirely bed-

bound. It is important to note that the conception of this study occurred prior to the 2015 when 

the Institute of Medicine gave a recommendation to change ME to systemic exertional 

intolerance disorder (SEID) (IOM et al., 2015). New diagnostic criteria are continuously being 

reviewed with no consensus on the best criteria to use in ME research. 

 

With the exception of one matched pair, all samples used in this work were gender matched, 

see table 5.2.1. Age is a confounding factor in this study and is known to be important for the 

immune system (Magrone et al., 2013), but emphasis should be given to the fact that 

environmentally matched samples obtained from the same house-hold were made a priority for 

microbiome analysis. Unlike mice, diet and housing factors are almost entirely difficult to control 

in humans. Therefore, the inclusion of healthy same house-hold controls was an attempt to 

control for important co-variants of microbiome variation, lifestyle, diet and behaviours. Many 

of the paired samples are relatives of one another therefore share genetic similarities as well as 

exposure to the same house-hold environment. Joosens et al. were the first to show unaffected 

relatives of patients living with Crohn’s disease exhibit distinct pattern of intestinal dysbiosis 

with evidence for decreased species Collinsella aerofaciens and Escherichia coli-Shigella group 

and increase RA of Ruminococcus torques compared with healthy controls (Joossens et al., 

2011). Intestinal permeability has been reported at a two-fold increase in Crohn’s and relatives 

compared to conventional healthy controls suggesting this to be a contributing factor and 

potential disease mechanism (Hollander et al., 1986). Indeed, first degree relatives of IBD 

patients have a 1 in 10 risk of developing the condition and taking together with current 
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microbiome data indicate a significant role for gut dysbiosis and leaky gut in causing disease 

(Russell & Satsangi, 2004). 

 

The availability of a second stool sample from some of the patients studied in 2016 gave 

opportunity to re-examine IgA reactivity to faecal microbes in these patients and their HHCs. 

The level of IgA+ microbes was similar or decreased in ME. Out of the 12 ME patients revisited, 

only 6 were included with a HHC. Patient 18, a daughter aged 27 matched with her mother aged 

60 in figure 5.3.16 was convincingly higher on this occasion but had previously showed no 

difference the previous year (supplementary figure 3). The result highlights the dynamic nature 

of IgA production against intestinal microbes and raises significant questions. For example, are 

there qualitative differences in the bacterial taxa coated with IgA in severe ME compared with 

HHC; do systemic IgG antibodies exist against these IgA-coated bacteria? This list is not 

extensive; however, further work is needed to see how faecal IgA-coated bacteria proportional 

differ over time and if this can be attributed to disease worsening. 

 

Many of the severe ME patients produced visibly smaller amounts of stool which were compact 

and hard to manipulate indicating dehydration. This will have an impact of the total number of 

bacteria within the sample, however IgA measurements are provided as a percentage of total 

faecal bacteria is not affected by the variation of the numbers of events recorded in each 

sample. Other research has examined the role of serum IgA against a limited number of 

enterobacteria using an indirect ELISA containing the LPS of 7 different species (Maes et al., 

2007). This work has been further extended to suggest that treatment of a leaky gut can 

improve ME symptoms based a ‘leaky gut diet’ and supplementation with L-carnitine, CoQ10, 

lipoic acid and taurine (Maes et al., 2007). In this case study, this diet focused on exclusion 

certain dietary allergens, such as dairy, as well as adherence to low-carbohydrate and gluten-

free food in a single 13 year old girl who was already lactulose intolerant (Maes et al., 2007). 

 

During the process for obtaining research ethical approval, a new method was explored to 

help determine if alterations in intestinal barrier permeability exist in ME/CFS patients. 

Using a novel whole cell bacterial microarray-based approach to screen patients’ serum for 

antibodies against intestinal bacteria immobilised onto a nitrocellulose-coated glass slide. 

Bacteroides thetaiotaomicron, Enterococcus gallinarum, Escherichia coli and Akkermansia 

muciniphila were assessed for their ability to be printed on a microarray, figures 5.3.8 & 

5.3.9. Microarray printing offers huge scope to include hundreds of representatives of the 
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human gut microbiota compared with relative few microbes have been targets for 

seroreactivity using flow cytometry (Haas et al., 2011). The growth kinetics for each strain 

enabled calculation of the growth rate, μ, and estimation of the time-point at which cells 

had reached mid-exponential growth phase for subsequent immobilisation on to the 

microarray (data not shown). Mid-exponential growth phase was chosen for the purposes 

of obtaining a high cell viability count so that upon fixing cells in 4% formaldehyde the 

majority of cells would remain intact (“whole-cell”) when screened against patient serum. 

Thus, any serum antibody reactivity detected will be against bacterial surface antigens such 

a LPS, fimbriae, or pili etc. 

 

The rationale for using whole cell bacteria immobilised onto a microarray slide, follows that 

the bacterial cell surface is decorated with an array of molecules such as outer membrane 

proteins, lipopolysaccharide, flagella (H-antigens), capsules and fimbriae or pili and that the 

surface molecules are involved in bacterial adherence and are important in establishing an 

infection (Thirumalapura et al., 2006). Finally, antibodies directed against the bacterial 

surface antigens can neutralise the bacteria and afford protection particularly against 

invading extracellular bacteria leaking from the gut.  

 

Systemic priming to intestinal microbes has been documented in IBD and suggested to drive 

chronic immune activation and consequently disease progression via translocation of intestinal 

bacteria, including their products such as LPS (Haas et al., 2011; Elkadri et al., 2013). 

Experiments performed in specific-pathogen free mice demonstrate compartmentalisation 

between the intestinal mucosal immune system and systemic immunity where IgG responses to 

commensal bacteria are undetectable unless these mice have been engineered with deficiencies 

in bacterial sensing through toll-like receptor signalling (Slack et al., 2009). On the contrary, 

antimicrobial antibodies have been measured healthy humans against a limited number of 

representatives of commensal bacteria using flow cytometry (Haas et al., 2011). More evidence 

suggests gram-negative commensals can stimulate systemic immune responses to produce IgG 

antibodies reactive against commensal antigens, and murein lipoprotein (MLP) on Gram 

negative bacterial cell walls (Zeng et al., 2016). MLP was found as a major source for stimulating 

IgG responses in mice and humans. Passive transfer of anti-MLP IgG antibodies in mice to 

demonstrated protection against Salmonella infection (Zeng et al., 2016). This study underpins 

commensal driven immune response have widespread systemic consequence for the protection 

against pathogens. 
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Failed attempts to successfully validate the bacterial array using wild-type OmpA positive 

and negative stains was further compounded by the time home visits became underway 

with challenges confronted in obtaining blood necessary to perform this type of screening 

assay. To that end, the solid phase bacterial microarray assay was abandoned in favour for 

the ease of availability of stools samples to explore anti-IgA responses to faecal bacteria. 

LPS-Binding Protein (LPB) is another indicator of LPS leakage into systemic blood serum 

which could be an effect of microbial translocation. LBP increases binding of circulating LPS 

to soluble CD14, but its quantification can be more advantageous than detection of LPS 

alone, since it does not suffer of interference from blood that have been well documented 

using LAL assays. We found no evidence of these markers being any different in ME 

patients compared to house-hold controls. This result is in contrast to an earlier report 

which suggests ME patients have increased bacterial translocation based on elevated 

plasma LPS, CD14 and LBP concentration in 48 ME/CFS patients and 39 controls, compared 

to just 12 severe patients and 10 HHCs (Giloteaux et al., 2016). Interestingly we observed 

much less LBP in both patients and HHC ranging from 8 ng/ml to 4.38 μg/ml compared to a 

median of 12.38 μg/ml for healthy controls in this previous study. However, our 

observations for LBP concentration are within the range of healthy humans reported to be 

between 1.85 – 17.4 μg/ml in serum in a study of serum LBP concentration analysed in 63 

severe sepsis and septic shock patients whose level of LBP was found to increase 10 fold in 

range from 11.8 μg/ml to 275 μg/ml which also reduced LPS activity as expected (Zweigner 

et al., 2001). 

 

To conclude, the representation of anti-microbial antibodies in patients compared with healthy 

controls is proposed as an additional marker for interpretation and understanding of how the 

intestinal microbiota interacts with the immune system in pathological circumstances. Flow 

cytometry is a well-established technique, shown in this chapter to be suitable for measuring 

anti-IgA-coating in faecal samples. Skill of the flow cytometer operator is needed to confidently 

lower the threshold voltages to determine the relatively small size of bacterial cell within the 

area of the data plot. Bacteria are approximately 1 µm with pure cultures successfully 

demonstrating light scatter characteristics that were used to examine faecal suspension of 

bacteria.   This can be achieved using forward and side scatter light properties alone, although it 

is worth noting particles of a similar size that or not microbial, e.g. food particles may also be 

detected. Thus, the data here has shown that Sybr green appears to be a useful refinement to 

examine faecal microbes and should be used regularly, but it must also be acknowledged that 

composition of the microbiota will also impact the success of this labelling. Where possible we 
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have tried to include data for Sybr- IgA+ fractions of the microbiota. From our analyses the 

differences between the percentage of IgA+ coated to total faecal bacteria between severe ME 

patients and HHCs is inconclusive but quantitative differences are distinct from qualitative 

differences.  Therefore, an outstanding question remains, what are these IgA antibodies specific 

towards? Future work is needed to isolate these bacteria and identify their taxonomic profile as 

well as the status of IgA-coated microbes in relation to worsening of symptoms severity for 

ME/CFS. In the first dataset, from collections made during 2016, we identified a non-significant 

trend of increased IgA-coated faecal microbes in severe ME compared to house-hold controls. 

Repeat sample collection, in 2017, reversed this trend. Whilst sample collections for both years 

were conducted during the season of spring/summer, it is worth noting age, gender and 

seasonal variations influence SIgA and are indeed reported lower in females, increasing in both 

genders with age (Weber-Mzell et al., 2004). Certainly, faecal IgA concentration and microbial 

specificity appear relevant in the context of IBD pathology and gut permeability defects in these 

cases (Adams et al., 2008; Hollander et al., 1986; Palm et al., 2014; Targan et al., 2005; 

Viladomiu et al., 2017). The data presented here in severe ME warrant further investigation in 

larger, better defined patient cohort, preferably taking multiple samples to assess the dynamics 

of intestinal secreted IgA reactivity over time.  
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6 General Discussion 
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6.0 General Discussion 

 

The original hypothesis for this study suggested increased intestinal permeability exposes 

the local intestinal immune system to a quantity of non-self-bacterial antigens that 

facilitates low-grade chronic inflammation and possible autoimmunity (Kelly et al., 2015). 

The mechanism behind this theory is that chronic immune activation in ME/CFS causes 

oxidative and nitrosative stress (O&NS) and prolonged levels of pro-inflammatory cytokines 

via activation of NF-kB (Morris & Maes, 2014).  Serum IgM levels against damaged lipid cell 

membrane components such as palmitic and myristic acid present as neo-epitopes, 

previously hidden from the immune system (Maes et al., 2006).  ROS such as peroxides and 

superoxides (H2O2 and 2O2
-) are generated by the immune system to kill pathogens injected 

by phagocytes (Fang, 2011). Recently a linked has been proposed between chronic immune 

activation of ROS in serum causes mitochondrial dysfunction (Blomberg et al., 2018). 

Critically, oxidation of cysteine residues in pyruvate kinase M, an enzyme associated with 

the pyruvate dehydrogenase complex (PDC) can block production of pyruvate which 

supplies energy in to the citric acid cycle (Anastasiou et al., 2011). 

 

We anticipated to replicate recently reported disturbances in severe patients, in particular 

aerobic energy metabolism affected in ME/CFS with increased lactate production (arising 

from pyruvate) and breakdown of amino acids as an alternative energy source for the citric 

acid cycle to produce ATP (Fluge et al., 2016; Germain et al., 2017; Naviaux et al., 2016; 

Yamano et al., 2016). Many individual serum metabolites others have reported were found 

to be no different in our severe ME patients. In some cases, one or two samples were 

distinctly separate from the rest of the group and these have been marked with their 

sample number. Our study is most comparable with Armstrong and colleagues who also 

used 1H-NMR to analyses serum and faecal water metabolomes (Armstrong et al., 2015, 

2017). They, and others, have suggested disturbed energy metabolism through inhibition of 

glycolysis that may be linked to mitochondrial dysfunction through chronic immune 

activation of oxidative stress pathways (Armstrong et al., 2017; Fluge et al., 2016). We did 

not find elevated glucose, or reduced lactate (fig. 4.3.11), glutamate and pyruvate in 

patients as suggested by Armstrong et al, and therefore cannot conclude glycolysis is being 

affected. Another metabolite we were expecting to find reduced was hypoxantine, a 

breakdown product of ATP. Several amino acids were expected to be reduced in the event 

of them being used as an alternative to carbohydrate energy sources (gluconeogenesis) for 

the citric acid cycle, but this was not replicated either. To this end, serum citrate 
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concentration was the same for all groups, (table 4.3.3). Interestingly, faecal y-

butyrobetaine was notably higher in 3 severe ME patients, and is a metabolite of L-

carnitine which is essential for transfer of acetyl-CoA into the mitochondrial matrix for 

energy production from the beta oxidation of fatty acids. Increased lactic acid producing 

bacteria have been reported in CFS patients, but we did not measure any differences in 

both faecal and serum concentrations for lactate (Sheedy et al., 2009). Based on the serum 

profile we cannot provide evidence for increased intestinal permeability since microbial-

derived metabolite butyrate was not detected. The suggestion of increase amino acids in 

serum was also not replicated in our cohort, nor were they reduced due to increased 

bacterial fermentation to reproduce SCFAs (Armstrong et al., 2015).  

 

Both our faecal water and serum metabolome profiling used a small number of samples. 

Fourteen was the maximum group size, used in serum, for severe ME compared to 34 

ME/CFS patients included in Armstrong and colleagues work. The number of patients we 

analysed the faecal metabolome in was just 11 severe patients and 6 HHC as these samples 

were collected in 2017. Again, we found no significant changes in the faecal metabolome of 

ME/CFS patients with respect to increased SCFA production entering energy metabolism, 

as previously reported (Armstrong et al., 2017).  The sequence data (dataset C) for these 

samples also provided no significant findings, based on 16S V4 amplicon sequences (fig 

3.3.32). Earlier collections in 2016 analysed using shotgun metagenomics did provide some 

significant changes for reduced F. prausnitzii and increased Eggerthella spp. and 

Oscillibacter spp. in severe ME. Table 3.3.2 compares the overlap of the same patients and 

HHCs providing samples in 2016 and 2017 to produce both datasets. We had expected to 

find the opposite of increased SCFAs, particularly the anti-inflammatory mediator butyrate, 

given its production is associated with F. prausnitzii and protection against colitis in rodents 

(Zhou et al., 2018). Despite re-analysing a different aliquot from some of the same samples 

collected in 2016 from the same patient, and repeated collections from these patients in 

2017 as well as recruiting brand new patients, we did not see a reduction of F. prausnitzii in 

patients based on 16S amplicon sequencing. Many of the patients and HHCs did appear to 

associate according to their respective pairing based on 16S composition (fig. 4.3.28), 

which does reflect house-hold exposure and a degree of shared diet can influence the 

microbiota, although we could not request dietary information. 
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To perform correlations between the composition of the ME/CFS intestinal microbiome 

and the faecal and serum metabolomes, we would have needed to compare dataset C with 

our NMR data, as samples in these datasets were collected at the same time. To that end, 

we found insufficient difference between severe patients and controls for concentration of 

metabolites and differences in microbial composition to use a machine learning approach 

to produce a predictive model for diagnosing severe ME patients from house-hold controls. 

The relevance here to explain how the structure and metabolic role of the microbiota in 

various pathophysiological mechanisms, likely to exist in ME/CFS, may more severely 

disrupt host metabolism in some patients more than others. Such an approach would 

require many more data points, and a different study design integrating shotgun 

metagenomics with mass spectrometry to cover ten times more the number of metabolites 

based on comparison of the number of observations made by Germain and Naviaux. Under 

half the number of species of bacteria were observed in our shotgun metagenomic dataset 

compared to Nagy-Szakal and colleagues. The reasons for this were explained earlier, 

however, it is worth noting we observed 38.64±6.28 SD and 34.62±8.97 SD species in 

ME/CFS and HHCs, respectively, compared to 74.24±1.67 SE and 77.5±2.07 SE in their 

ME/CFS cohort and controls, respectively. We were unable re-perform shotgun 

metagenomics and instead produced dataset C using 16S-targeted amplicon sequencing. 

The two methods cannot be compared but it is apparent that 16S sequencing does not 

provide detailed functions of the microbiome and should be replaced with more 

informative shotgun metagenomic studies which provide functional pathway information 

that others have reported disturbed in ME/CFS which can then be better integrated with 

interpretation of faecal and blood metabolomes in patients.  

 

Nagy-Szakal and colleagues reported IBS status significantly altered the composition of the 

intestinal microbiome in ME/CFS. We did not objectively assess the IBS symptoms in our 

patients, but it is worth mentioning that all patients did have IBS-like symptoms, 

particularly abdominal pain and dietary intolerances in most cases to diary. Stress and 

anxiety are cofounding factors which influence the microbiota and are highly prevalent in 

ME/CFS patients and may predispose them to IBS (Lakhan & Kirchgessner, 2010).  At the 

genus level, Faecalibacterium, Roseburia, Dorea, Coprococcus, Clostridium, Ruminococcus 

and Coprocobacillus were associated  with ME/CFS with an emphasis on Faecalibacterium 

and Alistipes (Nagy-Szakal et al., 2017). Although, dataset A contains no controls, figure 

3.3.5 showed the biggest differences in RA for individual mild/moderate ME/CFS patients 
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was in the genera, Faecalibacterium, as well as Roseburia, Alistipes, and Oscillospira. 

Interestingly, we found the Eggerthella genus was more abundant in our severe ME 

patients (figure. 3.3.13A) which Nagy-Szakal and colleagues report one of its members 

Eggerthella lenta may be a marker for patients with IBS (Nagy-Szakal et al., 2017). We did 

not find a significant difference in the relative abundance of the genus Blautia between 

severe patients and HHCs (figure. 3.3.32) despite this being reported to drive separation of 

ME/CFS without IBS from controls (Nagy-Szakal et al., 2017). Blautia can account for 

anywhere between 2.5% to 16% of the total intestinal microbiota but is usually more 

abundant in IBS due to higher levels of gases produced as by-products of bacterial 

fermentation (Eren et al., 2015; Rajilić-Stojanović & de Vos, 2014; Vernocchi et al., 2016). 

Higher abundance of Blautia may also be reflective of Dorea spp. as a major contributor of 

hydrogen and carbon dioxide gas production, which Blautia can convert into acetate 

(Rajilić-Stojanović & de Vos, 2014). To that end, it is important to separate IBS co-morbidity 

as a cofounding factor influencing the ME/CFS microbiota and makes it more likely an 

ME/CFS associated profile will be influenced by low in abundance individual species. In 

addition to the lack of being able to reproduce increased SCFA production in ME/CFS we 

did not find any evidence for increased microbial fermentation based on relative 

abundances of Clostridium spp. or Bacteroides spp. either. Finally, we cannot conclude 

there is any difference in the diversity or number of bacteria found in ME/CFS and HHCs. 

 

Germain and colleagues performed pathway analysis on 74 altered metabolites they found 

using mass spectrometry. This showed taurine metabolism had the highest impact factor in 

ME/CFS given its decrease in patients, 3 end products in primary bile acid biosynthesis in 

this metabolic pathway that were also found reduced in ME/CFS patients (Germain et al., 

2017).  In our severe patient cohort, faecal taurine was only found in 3 patients in high 

concentration (supplementary 4.1), and importantly none of the HHCs. In these patients it 

may suggest increased bile salt hydrolysis. Bile salts enable emulsification and digestion of 

dietary fat, uptake of vitamins, and maintenance of intestinal barrier function, but can 

become metabolised into secondary and tertiary bile acids by members from diverse 

genera including  Bacteroides, Clostridium, Lactobacillus, Bifidobacterium, Enterobacter, 

Eubacterium and Escherichia (Vernocchi et al., 2016). Microbial deconjugation of taurine is 

the first step which prevents active uptake to the liver for recirculation. High concentration 

of free bile acids can then become metabolised into secondary bile acids that are able to 

diffuse lipid bilayers causing disruption to the cell membrane and regeneration of ROS 
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which can cause DNA damage and mutation and mitochondrial dysfunction that have been 

associated with a risk of colon cancer (Ajouz et al., 2014; De Boever et al., 2000). 

Observations of changes in bile acids metabolism in ME/CFS are relevant given they 

participate in energy regulation, glucose and lipid metabolism (Wahlström et al., 2016). 

CDCA was lowest in severe ME serum (fig. 4.3.32A) but compared with HHCs does not 

support evidence of liver toxicity damage as suggested by Germain and colleagues. 

Conversely active IBD serum provide in the same experiment was statistically higher for 

CDCA and CA compared to the other groups and may reflect increased bile acid re-uptake 

due to intestinal barrier breakdown. CDCA concentration may well be expected to be 

lowest in the severe group given these patients undergo significant periods of fasting or 

eating very little. This was also reflected by on average less faecal material provided at 

sample collection compared with HHCs. 

 

In summary, we have been the first to achieve shot metagenomic sequencing in severe, 

house-bound ME/CFS patients. The rapid evolution of next generation sequencing, 

guidance in designing the perfect microbiome study from methods of sample collection to 

analysis have arrived largely after they could be applied to this work. In the previous 

discussion chapters, it has emerged designing a study on ME/CFS is not straightforward and 

must be carefully thought out as there are many possible cofounders in these types of 

studies and is further complicated by the range of symptom complexes within ME/CFS 

which patients could be selected for and against, e.g. patients with or without IBS or PEM. 

The choice of these is dependent of the nature of the study and the available resources and 

methods to clinical assess these patients. The work presented in this thesis attempts to 

explore the impact of severity of ME/CFS symptoms. How these symptoms are objectively 

measured along with interpretation of symptoms questionnaires is not agreed 

internationally. Arranging home visits to patients and coordinating sample collections was 

enormously time consuming and expensive but did reveal severity of ME/CFS is still largely 

dependent on a matter of opinion and can have different interpretations and meaning 

from patient to patient. For example, out of the 17 patients visited, 4 demonstrated 

extreme hypersensitivity to light and sound. One patient in particular was bed-bound living 

in the basement to avoid sources of natural or artificial light and was extremely sensitivity 

to the quietest of sounds. Other severe patients were more mobile around the house, with 

symptoms vary from day to day. 
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Our efforts to minimise cofounding factors influencing the microbiome are demonstrated 

by the inclusion of house-hold controls. We have also taken the approach to adopt a more 

functional understanding of the microbiome in ME/CFS with the acquisition of 1H-NMR 

metabolomic profiling from faecal water and serum in an attempt to re-produce findings 

that have only recently populated the ME/CFS literature in the last two years. Again, these 

recent findings have come at a time when they could not influence our study design, 

particularly targeting known compounds in energy and lipid metabolism, as well as 

controlling for sampling methods and standard operating procedures used in these studies. 

For example, we originally set out to use serum for anti-microbial detection instead of 

plasma, which is the biofluid of choice in mass spectrometry studies. To address our 

hypothesis patients with ME/CFS have increased intestinal permeability we measured the 

proportion of IgA-coated faecal bacteria, based on the assumption increased IgA 

production to neutralise intestinal bacterial in a mechanism known as immune exclusion.  

Although we measured surrogate markers, LPS and LBP, and found no evidence of 

increased permeability, we gained an insight into the immune system interactions with the 

intestinal microbiota through sIgA interaction with the patient’s own faecal material versus 

microbes cultured and LPS alone. These results initially showed a trend for increased IgA-

coated bacteria in ME/CFS versus HHCs. Almost a year later this trend appeared to reverse. 

Further work is needed to measure the abundance of bacterial taxa with IgA+ and IgA- and 

to see if these correlate with increased antibodies in serum. This analysis recently been 

performed in adults versus the elderly and found differences in abundances of 

Clostridiaceae and Enterobacteriaceae were lower in the IgA+ for the elderly group 

(Sugahara et al., 2017).   

 

- Summary  

We draw this thesis work here to a conclusion with the suggestion that more focus is 

needed for longitudinal shotgun metagenomic studies in ME/CFS to see how functional 

pathways change in the ME/CFS microbiome and impact the disease with an emphasis of 

symptom severity and recommendation for the inclusion of house-hold controls. We set 

out to replicate existing findings of mild to moderately affected ME/CFS patients and to 

identify significant evidence for intestinal dysbiosis This is the first metabolome-based 

study of severely affected ME/CFS patients that incorporates the unique feature of same 

household healthy control subjects to mitigate against major environmental factors that 

contribute to population-level microbiome variation. On contrary to previous reports in 
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ME/CFS, our findings fall short of a reduction in the diversity of the severe, house-bound 

ME microbiome when we compared them with this form of control. Indeed, several applied 

indices for measuring similarity between groups showed both severe ME and house-hold 

controls were more compositionally heterogenous than unmatched controls. Based on the 

current sample size, no clear pattern emerged from this data to suggest a role for specific 

members on the intestinal microbiome, except for the low abundance of F. prausnitzii. 

However, this species is not specific to ME/CFS and is well associated with IBS symptoms, 

also highly prevalent amongst the ME/CFS patient population. For that reason, more 

functional based studies examining the relationship between microbes and the host are 

encouraged, particularly with respect to microbial-immune and gut-brain signalling. As 

such, transcriptomic and proteomic analyses may further probe the metabolic activity, 

beyond the  predictive capability of whole-genome sequencing analysis. 

 

Based on comparing more than 50 metabolites in serum and faecal samples our findings do 

not replicate those of other ME/CFS metabolomics studies. Indeed, the lack of any 

particular finding consistent with altered metabolism in either faecal and serum 

metabolome of severe ME/CFS patients was surprising and appears to reject our earlier 

hypothesis. The only significantly altered serum metabolite we detected was the N-Acetyl 

groups from a1-acid glycoprotein which was significantly (p=0.009) increased in severely 

affected ME/CFS patients. This has previously been identified as a circulating biomarker 

predictive of the short-term risk of death and of possible relevance to ME/CFS, has been 

implicated in various pathophysiological mechanisms including inflammation, lipoprotein 

metabolism, and metabolic homeostasis (Fischer et al., 2014). 

 

Other methodological divergencies include the use of serum, in which small metabolites 

may be less stable than in plasma, and mass spectrometry in combination with different 

workflows with the capability of detecting much higher numbers (up to 600 or more) of 

metabolites (Germain et al., 2017; Naviaux et al., 2016). Targeted acquisition of 

metabolites in the future should be undertaken using more sophisticated workflows and 

MS, as previously described (Germain et al., 2017). Our targeted bile acid mass 

spectrometry analysis and quantitation in ME/CFS patients is a unique aspect of our study 

and has not been the focus of metabolome studies carried out to this date. However, 

consideration should be given to food intake and timing of the sample. Therefore, it is 

recommended integration of targeted metabolomics to characterise the status of energy, 
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lipid, and amino and bile acid metabolism in severe ME/CFS should also be a priority for 

future investigation. 

Finally, the pathogenesis of ME/CFS is likely to involve disruption of neural, neuro-

endocrine and immune signalling pathways communicating along the gut-brain axis. 

Indeed, GI symptoms and intestinal dysbiosis co-associate in several neurological and 

(auto)immuno-inflammatory disorders, including ME/CFS. It is apparent the difficulty 

excluding environmental influences known to cause microbiota population-level changes 

which make it challenging to identify specific ‘diagnostic’ microbial signatures. More 

information is needed to establish models for interaction between microbes and host 

physiology. Of interest for future studies, are microbial-immune interactions as a key 

regulator of microbiota-gut-brain communication. To that end, the final chapter of this 

thesis has shown it is possible to isolate faecal microbes from stool, to evaluate the 

proportion of faecal microbes bound by intestinal IgA which, we suggest, may be cell sorted 

and extracted for DNA sequence-based identification.  A future objective may be to 

elucidate specific members of the ME/CFS microbiota eliciting strong mucosal derived and 

systemic antibody production found in serum, compared with house-hold relatives. A 

reasonable aim would be to determine the subset phenotype and specificity of T cells for 

reactivity towards intestinal microbes.  Various assays can be used to measure cytokines 

associated with T-cell induction and proliferation in response towards the patient’s 

endogenous microbiota extracted from faecal samples. Indeed, we hypothesise a leaky gut 

causes induction and priming of immune cells within the intestinal submucosa which 

stimulates trafficking of encephalitogenic T cells to cross the blood-brain barrier in to the 

CNS. Here, flow cytometry would be a powerful method to explore the expression of 

gut/brain homing markers expressed on the cell surface of these immune cells. This would 

be a significant attempt to go beyond the descriptive nature of high-throughput ‘omics 

technologies to better understand the potential for microbial-immune interactions to 

influence ME/CFS pathology, in addition to the metabolism as a feature of the intestinal 

microbiota.  
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Chronic Fatigue Syndrome – Symptom list   Date…….……… 
 
 

Name..…………………………………………     DoB…………………………… Occupation………...................... 
 
Onset of Fatigue:    Acute or Gradual onset  Viral symptoms   

 
 
Brief history of Fatigue: 
 
 
 
Main worries now:  Getting better Finances    Work    Serious illness    Wasting 
life   
Employment/School                          F/T P/T – hours/wk……. Nil….….since………….  
 
 

SYMPTOMS Y/N COMMENTS 

Post Exertional Malaise 

(PEM) 

 Time to onset                        Duration                        Severity 

 

Non-Restorative sleep  Difficulty getting off to sleep                Frequent wakening 

Early morning wakening                        Daytime sleeping 

Obstructive Sleep Apnoea                      Restless Legs 

New Headaches  Frequency              Severity              Location 

Sore throat +/- LN  Frequency 

Fever and Sweats  Frequency                         Mild    Mod    Severe 

Impaired 

Concentration 

 Brain fog 

Reduced STM   

Arthralgia  Joint swelling                                              Joint stiffness 

Myalgia  Never           Sometimes         All the time          Any muscle 

tenderness? 

Intol of sound & light  Overload 

Postural instability   

Depression  Mood                Anhedonia            Libido         Appetite            

Worthlessness             Tearful 

Anxiety  Persistent Anxiety                                   Episodic anxiety 

Panic attacks 

Fibromyalgia  Severity                                   How many areas 
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Activities               How far can you walk at maximum? 
   

Can you prepare a meal?   Y    N 
   

Can you wash yourself    Y    N 
Any leisure activity?Walking / Cinema / Eating out  / Visiting friends / Other 
For how long can you read a book?                      Watch a film?  

 
Personality before CFS: 
 
 
Treatments used to date: 
 
GET Yes No  When:   Helpful:  Yes No 
CBT Yes No  When:   Helpful:  Yes No 
SSRI Yes No  Which drugs  When  How long  
 

Alternative Therapies 

 
Reflexology Homeopathy Acupuncture Pilates      Meditation   Head Massage 
          
Yoga 
 
Dietary manipulation: No Yes What was this? 
 

Echinacea  Ginseng  INADA  CoQ10  Others 

 

Past Medical History 
 
 
 
 
Past Psychiatric History 
 
 
 
Systems Inquiry  CVS  Resp  GI  UG  NS
  
 
 
Smoke   Alcohol  Illicit drugs 
 
 

Present Medication      Allergies 
 
 

Social Support       Pets 
 
 

Family History 
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Examination 
 
Pulse  bp  Temperature   
 
Throat  Lymphadenopathy   
 
Joint swelling   Fibromylagia 
 
Heart   Lungs   Abdomen  Neurology 
 

Investigations 
 

FBC Hb WBC Platelets   

ESR      

AANT ANA GPC AMA SMA  

Ig’s IgG IgM IgA IMEP  

CRP TSH U/E LFT   

Anti-EM abs Positive 

Negative 

    

ANA Positive 

Negative 

Pattern Level     

      

 

Assessment 
 
 
Severity of Fatigue: Mild       Moderate        Severe   Very Severe 
 
 
Mild – mobile, self caring, light domestic duties, may be working but to detriment of social, family 
and leisure activities.   
 
Moderate – Reduced mobility, not working, reduced ADL, sleeping in daytime, peaks and troughs of 
activity.    
 
Severe – few ADL, severe cognitive difficulties, wheelchair dependent for mobility, rarely leave 
house, often significant worsening of symptoms with any mental or physical exertion  
  
Very severe – no ADL, bedbound most of time, unable to tolerate any noise & are light sensitive, 
require someone else to wash, toilet and feed them.  
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Recommendations 
 

Treatment Comments Treatment Comments 
GET    

CBT    

SSRI    

Low T4    

    
 
 

REVIEW: As needed 3 months 6 months 1 year          Discharge 
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Supplementary Data 
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Supplementary figure S3.1: Raw abundances of bacterial genera belonging to severe ME 

patients (dataset B, chapter 3). 
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Supplementary figure S3.2: Raw abundance table for bacterial genera belonging to HHCs 
(dataset B, chapter 3) 
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Caprate
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Supplementary figure 4.1: Metabolomic profile of faecal water using 1H-NMR revealed 45 

metabolites in 11 house-bound ME patients and 6 HHCs 
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Supplementary figure 4.2: Metabolomic profile of serum using 1H-NMR revealed 53 

metabolites in 25 ME/CFS patients (14 severe (S); 11 mild/moderate (M)) and 9 HHCs. 
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Supplementary figure 4.3: Metabolomic profile of saline diluted serum using diffusion 

edited spectrum obtained from 1H-NMR revealed 45 metabolites in 14 severe ME, and 11 

mild/moderate ME patients and 9 HHCs. 
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Supplementary figure 4.4: Individual bile acid concentrations in faecal water from 8 ME/CFS patients versus 6 HHCs 
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Supplementary figure 4.4: Individual bile acid concentrations in serum of 14 severe ME, 14 mild/moderate 
ME/CFS, 10 house-hold control & 6 IBD samples 
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Isotype control IgA-APC       

Supplementary figure 5.1 Optimisation of faecal bacterial cell suspension for staining with Sybr green using ME patient faeces. Sybr 
green concentration (1:10,000) stained 1:100 (top row) versus 1:1000 (bottom row) dilution of faecal bacteria in PBS. 
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Isotype control IgA-APC       

Supplementary figure 5.2 Optimisation of faecal bacterial cell suspension for staining with Sybr green using faeces from ME patient’s house-
hold control. Sybr green concentration (1:10,000) stained 1:100 (top row) versus 1:1000 (bottom row) dilution of faecal bacteria in PBS. 
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Paired samples #1 
Control, F (30)  12%   
ME, F (57)  20%   
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

Isotype control IgA-APC 

S2 
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Paired Sample #3 
Control, F (60)  26.5%  
ME, F (27)  21.5%  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Isotype control IgA-APC 

S3 
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Paired samples #4 
ME, F (31)  41.2%  
Control, F (55)  33.2%  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Isotype control IgA-APC 

S4 
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Paired samples #6 
Control, F (35)  29.9%  
ME, F (33)  16.0  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Isotype control IgA-APC 
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Paired samples #8 
Control, F (55)  21.1%  
ME, F (18)  29.5%  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Isotype control IgA-APC 
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Non-paired sample 
15TB100   ME, F (63)  31.1%  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Isotype control IgA-APC 
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15TB0096     ME, F (56)  23.7% Jones 
 
 
 
 
 
 
 
 
 
 
 
 
 
Non-paired samples 
15TB0076 ME, F (31)  11.9%  
 
 
 

 
 
 
 
 
 

Isotype control IgA-APC 

S10 Isotype control IgA-APC 
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2017 Severe ME, F (37) – Paired 1 

2017 House-Hold Control, F (64) – Paired 1 

2017 Severe ME, F (27) – Paired 2 

2017 House-Hold Control, F (60) – Paired 2 

2017 Severe ME, F (63) – New, unpaired 
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2017 Severe ME, F (21) – Paired 3 

2017 House-Hold Control, F (55) – Paired 3 

2017 Severe ME, F (58) – Paired 4 

2017 House-Hold Control, M (60) – Paired 4 

2017 Severe ME, F (56) – Unpaired 
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2017 Severe ME, F (63) – Unpaired 

2017 Severe ME, F (18) – Paired 5 

2017 House-Hold Control, F (55) – Paired 5 

2017 Severe ME, F (38) – Paired 6 

2017 House-Hold Control, F (69) – Paired 6 
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2017 Severe ME, F (44) – Paired 7 

2017 Severe ME, F (61) – Unpaired 

2017 Severe ME, F (40) – Unpaired 

2017 Severe ME, F (70) – Paired 7 

2017 Severe ME, F (40) – Unpaired 

2017 Severe ME, F (54) – Unpaired 
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