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ABSTRACT 
 

Observations that insulin and adiponectin levels are related to cortical bone size in adolescents, 

independently of body composition, suggest factors related to fat metabolism directly influence 

skeletal development. To explore this question, we examined associations between a metabolic 

screen focusing on fat metabolism, and peripheral quantitative computed tomography (pQCT) 

measures of the mid-tibia, in 15 year-olds from the Avon Longitudinal Study of Parents and 

Children. Metabolic profiles were generated by proton nuclear magnetic resonance spectroscopy, 

from blood samples obtained at the same time as pQCT scans. Ordinary least squares linear 

regression was used to investigate relationships between metabolic measures and periosteal 

circumference (PC), cortical thickness (CT) and cortical (BMDC). Metabolic profiles yielded 22 

independent components following PCA, giving a Bonferroni-adjusted threshold for statistical 

significance of P=0.002. Data were available in 1121 subjects (487 males), mean age 15 years. 

Several metabolites related to lipid and cholesterol metabolism were associated with PC, CT and 

BMDC after adjustment for age, sex and Tanner stage. After additional adjustment for height, fat 

and lean mass, only the association between citrate and BMDC remained below the Bonferroni-

significant threshold [β=−0.14 (−0.18,−0.09)] (β represents a standardised coefficient). Citrate 

also showed evidence of association with periosteal circumference [PC, β=0.06 (0.03,0.10)] and 

strength strain index [SSI, β=0.04 (0.01,0.08)]. Subsequently, we investigated whether these 

relationships were explained by increased bone resorption. Citrate was strongly related to serum 

β-C-telopeptides of type I collagen (β-CTX) [β=0.20 (0.16,0.23)]. After additional adjustment for 

β-CTX the above associations between citrate and BMDC [β=−0.04 (−0.08,0.01)], PC [β=0.03 (-

0.01,0.07)] and SSI [β=0.03 (-0.01,0.07)] were no longer observed. We conclude that in 

adolescents, circulating levels of citrate are inversely related to BMDC and positively related to 

PC, reflecting associations with higher bone turnover. Further studies are justified to elucidate 

possible contributions of citrate, a constituent of bone matrix, to bone resorption and cortical 

density. 

 

Five key words: pQCT; bone resorption; β-CTX; lipids; ALSPAC 
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INTRODUCTION 
 

Acquisition of peak bone mass is influenced by a range of constitutional factors, identification of 

which may provide new opportunities to optimise this process and reduce the risk of osteoporotic 

fractures in late life. For example, whereas lean mass is strongly related to bone mass and skeletal 

development, fat mass is also thought to play an important independent role 
 
(1)

. In a previous study of adolescents from the Avon Longitudinal Study of Parents and 

Children (ALSPAC cohort), we used tibial pQCT to establish independent relationships 

between lean mass, fat mass and cortical bone size and density
(2)

. Whereas positive 

relationships between fat mass and bone parameters could reflect a response to greater 

mechanical strain caused by greater weight, we previously observed fat mass to be positively 

related to upper limb bone mass, suggesting a role of metabolic pathways independently of 

body weight 
(1)

. In terms of metabolic pathways which might mediate positive influences of 

fat mass on bone accrual, we previously found that whereas fat mass is inversely related to 

adiponectin levels, the latter is inversely related to cortical bone size 
(3)

. 

 

The availability of metabolic screens provides an opportunity to identify additional influences 

on bone development by examining multiple factors simultaneously. For example, having 

related results from a metabolic screen of 280 known metabolites to bone measures in older 

individuals, Moayyeri et al identified several new metabolites related to BMD 
(4)

. In order to 

extend understanding of the relationship between fat metabolism and bone development, we 

utilised a metabolic platform to quantify a range of measures related to fat metabolism in 

ALSPAC 
(5,6)

. Here we report associations between results from this platform and cortical 

bone size and density, obtained by pQCT of the mid-tibia in 15 year-olds from ALSPAC. To 

identify potential mechanistic pathways acting directly on the skeleton, as opposed to 

indirectly via altered body composition, additional models were analysed following 

adjustment for fat and lean mass. 
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MATERIALS AND METHODS 
 

The Avon Longitudinal Study of Parents and Children (ALSPAC) is a population-based birth 

cohort comprising 14,541 children born between 1 April 1991 and 31 December 1992 and 

their mothers from the county of Avon, UK. Full study methodology is described elsewhere 

(7,8)
 and the ALSPAC website contains details of all the data that are available through a 

fully searchable data dictionary (http://www.bris.ac.uk/alspac/researchers/data-access/data-

dictionary/). The present study is based on research clinics to which the whole cohort was 

invited and held when participants were a mean age of 15.5 years (supplementary Figure 1). 

Parental consent and child’s consent was obtained for all measurements made. Ethical 

approval for the study was obtained from the ALSPAC Ethics and Law Committee and from 

the UK National Health Service Local Research Ethics Committees. 

 

Tibial pQCT 
 

Cortical bone mineral density (BMDC) and bone mineral content (BMCC) of the mid (50% from 

the distal endplate) right tibia were obtained using a Stratec XCT2000L in conjunction with XCT 

2000 imaging software version 6.00. (Stratec, Pforzheim, Germany) during the teen focus three 

(TF3, mean age = 15.5 years) research clinic to which all ALSPAC participants were invited as 

part of a study investigating the effects of physical activity on cortical bone as previously 

published 
(3)

. Periosteal circumference (PC), endosteal circumference (EC) and cortical thickness 

(CT) were derived using a circular ring model as described in the Stratec user manual. Cortical 

bone was defined using a threshold above 650 mg/cm
3 (3)

, and cortical bone mineral density 

(BMDC) subsequently derived. Strength strain index (SSI) was calculated according to the 

formula published by Hasegawa et al 
(9)

. Within Subject coefficient of variation for pQCT 

parameters are displayed in parentheses: tibial length (4.04%), BMCC (2.71%), BMDC (1.29%), 

PC (1.58%), EC (4.03%), SSI (3.72%). For the purposes of the present study, PC, CT and BMDC 

were used as separate outcomes, on the basis that they reflect distinct and largely independent 

measures of cortical bone size (PC, CT) or density (BMDC). 

 

Metabolic Screen 
 

A high-throughput serum nuclear magnetic resonance metabolic platform was used to quantify 

metabolic measures focusing on fat metabolism 
(5,6)

, based on fasting serum samples taken at the 

TF3 clinic. Details of the experimentation have been described elsewhere 
(6,10)

. In brief, these 

measures comprise ketone bodies, glycolysis related metabolites, inflammation, fatty acids, 

amino acids, cholesterol, apolipoproteins, measures of fluid balance, glycerides and 
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phospholipids. Cholesterol (total, free and esterified) and triglycerides were measured as total 

levels and/or associated with one of 14 lipoprotein subclasses (6 VLDL, IDL, 3 LDL and 4HDL). 

Several ratios between different metabolites were also derived. Though 230 measures were 

obtained in total, analyses using this screen generally focus on a sub-sample of 73 representative 

variables classified into thirteen classes 
(11)

, (see Figure 1). Due to the correlated nature of the 

metabolites, we defined our multiple testing threshold for metabolite wide association analysis by 

principal component analysis (PCA) as previously described 
(12)

. Briefly, PCA is a mathematical 

data reduction tool that transforms a set of possibly correlated variables into a set of linearly 

uncorrelated variables (i.e. principal components). The transformation is defined such that the 

first component explains most of the variation in the sample, and each subsequent component 

explains the largest amount of variance possible, under the constraint that it is uncorrelated all 

preceding components. In this study, PCA estimated that 22 components explained > 95% of the 

variance of all 230 metabolites measured, and in the smaller set of 73 representative metabolites. 

Consequently, a type-1 error rate of α 
 
= 0.002 (0.05 / 22 components) was used to infer statistical significance for the metabolite 

screen. 

 

Other variables 
 

Height was measured using a Harpenden stadiometer (Holtain Ltd., Crymych, UK) and 

weight was measured to the nearest 50 g using Tanita weighing scales (Tanita UK Ltd, 

Uxbridge). Data on lean mass and fat mass were obtained from total body DXA scans 

performed at the TF3 clinic, using a Lunar Prodigy scanner and imaging software [version 

10.10.038 (Lunar Radiation Corp, Madison, WI)]. In view of the important influence of time 

since age of peak height velocity on pQCT parameters 
(13)

, we aimed to account for time 

since puberty in this largely post pubertal cohort. Therefore, we adjusted for age of puberty 

onset, based on results for Tanner stage at age 13.5 years as assessed by questionnaire (pubic 

hair domain), as previously found to be related to hip development as assessed by DXA 
(14)

. 

Electrochemiluminescence immunoassays (ECLIA) (Roche Diagnostics, Lewes, UK) were 

used to measure plasma concentrations of serum β-C-telopeptides of type I collagen (β-CTX) 

on fasting samples collected at the TF3 clinic visit (detection limit 0.01 ng/ml), plasma being 

separated and frozen within four hours at −80ºC. Inter- and intra-assay coefficients of 

variation (CVs) were <6.0% across the working range. 
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Statistical Analysis 
 

Prior to analysis, all outcome variables were visually inspected to ensure they were normally 

distributed. pQCT bone outcome data and metabolic exposures, the combined sample of males 

and females were standardized to z-scores with mean = 0, standard deviation = 1 by subtracting 

individual measures from the sample mean, and dividing each value by the sample standard 

deviation. Ordinary least squares (OLS) linear regression was used to investigate: (i) the 

relationship between each metabolic measure and PC, CT and BMDC adjusted for age and sex 

(i.e. model 1), (ii) the effect of further adjustment for Tanner stage (model 2), (iii) the effect of 

further adjustment for height (model 3), and (iv) for lean mass, fat mass and height (i.e. model 4). 

Fat and lean mass were adjusted for, in preference to weight, to account for the distinct 

relationship of these two compartments with cortical bone parameters 
(3)

. A type-1 error rate of 
 
α = 0.002 (0.05/22) was used to infer statistical significance for each of the three traits examined, 

following Bonferroni correction to account for the number of independent metabolic traits 

identified by PCA. Sex differences were explored by comparing standardised β coefficients 

(expressed as SD change in outcome per SD change in metabolite) between separate analyses in 

males and females and by testing for sex interactions in analyses performed in males and females 

combined. Finally, based on a hypothesis that i) lower BMDC reflects greater cortical porosity 

due to higher bone turnover and ii) higher bone turnover leads to 
 

greater periosteal expansion and strength 
(15)

; we investigated if the relationship between 

citrate and BMDC that we observed was explained by increased bone turnover, by further 

adjusting model 4 for β-C-telopeptides of type I collagen (β-CTX) and time of clinic 

attendance [whether participants attended a morning or afternoon clinic, to take account of 

diurnal variation in β-CTX (samples largely clustered to within an hour of 8 a.m. or 12 

p.m.)]. Note: When used as an outcome variable, β-CTX was log transformed to normality 

and standardised to z-scores prior to regression analysis. All regression models involving β-

CTX were adjusted for time of clinic attendance in addition to model specific covariates. 
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RESULTS 
 

Description of participants 
 

1121 participants (634 females and 487 males) were identified in ALSPAC who had valid 

measurements for serum metabolites, anthropometry, pQCT and DXA data generated at the 

TF3 clinic, and with Tanner Stage derived during the TF2 clinic (supplementary Figure 1). 

Descriptive statistics are presented in Table 1. Briefly, height, weight, lean mass and citrate 

and β-CTX were greater in males, in contrast to fat mass, which was substantially greater in 

female participants. BAC, BMCC, CT, PC, EC and SSI were larger in male participants, 

whereas BMDC was larger in females. 

 

Metabolic screen 
 

Periosteal Circumference: In our minimally adjusted model (i.e. model 1), metabolites from the 

following categories were inversely associated with PC: lipoprotein concentrations, lipoprotein 

particle size, apolipoproteins, triglycerides, phospholipids, cholesterol and fatty acids 

(supplementary Figure 2). In contrast, creatinine and the amino acid phenylalanine were 

positively related to PC. The above-mentioned associations remained largely unchanged after 

correction for Tanner stage (model 2). Further adjustment for height resulted in the partial 

attenuation of several metabolites from each of the following classes: lipoprotein concentrations, 

triglycerides, phospholipids and fatty acids (model 3). Additional adjustment for body 

composition (model 4) resulted in the attenuation of all remaining relationships, except for 

citrate, for which there was now weak evidence of a positive association (see below). 

 

Cortical thickness: Lipoproteins, lipoprotein particle size, apolipoproteins, triglycerides, 

phospholipids, cholesterol, fatty acids and citrate were inversely associated with CT in model 

1 (supplementary Figure 3). In contrast, amino acids leucine and histidine were positively 

related to CT. Associations remained largely unchanged in model 2, except for citrate, which 

was attenuated towards the null. In model 3, associations between metabolites from the 

following classes were partially attenuated: lipoprotein concentrations, triglycerides, 

phospholipids, cholesterol, fatty acids and amino acids leucine and histidine. Further 

adjustment for lean and fat mass resulted in the attenuation of all remaining associations 

(model 4). 

 

Cortical bone mineral density: In model 1, lipoproteins, apolipoproteins, triglycerides, 

phospholipids, cholesterol, fatty acids, glucose and citrate were inversely associated with 
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BMDC (Figure 1) (see Figure 2A for citrate versus BMDC scatterplot in males and females). 

Effect sizes were approximately β=−0.1, with the exception of the association with citrate 

where β=−0.21 (Figure 1 and supplementary Table 1). In contrast, creatinine and albumin 

were positively related to BMDC. In model 2, partial attenuation of several associations was 

seen, and apolipoproteins, triglycerides, glucose and albumin were no longer robustly 

associated with BMDC. In model 3, associations between the remaining various lipoprotein 

concentrations, LDL cholesterol, monounsaturated fatty acids and creatinine were partially 

attenuated, whereas the association between total, esterified and free cholesterol, and citrate 

were observed. For model 4, the beta coefficients were largely unchanged, and there was 

evidence of association in the case of lipoprotein concentrations, phospholipids, cholesterol, 

fatty acids, creatinine and citrate, however P-values only remained below the Bonferroni-

adjusted cut-off for citrate (P=2.4x10
-10

). The relationship between BMDC and citrate 

appeared linear. Specifically, a Wald test comparing regression model 1 to model 1 + Citrate
2
 

suggested that both models were similar (P=0.66) and the addition of the quadratic term did 

not significantly improve model fit. Similar results were obtained for BMDC and other bone 

outcomes when adjusting for all covariates and/or when modelling an additional cubic term. 

 

Follow-up of citrate associations 
 

Citrate versus pQCT parameters: Further analyses were performed to follow up on the 

finding that citrate was the only metabolite to show strong evidence of association in our 

fully adjusted model. First, we examined associations between citrate and all pQCT 

parameters (see Table 2). In model 4, positive associations were observed between citrate 

and: periosteal circumference [PC, β= 0.06 (0.03, 0.10)], strength strain index [SSI, β= 0.04 

(0.01, 0.08)] and endosteal circumference [EC, β= 0.07 (0.01, 0.13)] (Table 2). Analysis of 

sex interaction as per model 4 revealed that the association between citrate on BMDC was 

larger in males [(βmales= −0.18 (−0.26, −0.11)] when compared with females [(βfemales= −0.07 

(−0.12, −0.02)] (PSexInt = 3×10
-5

). No robust evidence of a sex interaction was detected 

between citrate and PC (PSexInt = 0.18) or SSI (PSexInt = 0.44), or EC (PSexInt=0.48). 

 

Serum citrate versus β-CTX: Having previously observed an equivalent divergent association 

with BMDC and PC in the case of β-CTX 
(15)

, we hypothesized that relationships between 

citrate and pQCT parameters described above also involve altered levels of bone resorption. 

Scatterplots in males and females of β-CTX versus BMDC, and serum citrate versus β-CTX, 
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are presented in Figures 2B and 2C respectively. In adjusted analyses, we observed a strong 

association between citrate and β-CTX in all four models [e.g. β= 0.20 (0.16, 0.23), model 4] 

(see Table 2). Although beta coefficients appeared slightly larger in males [(βmales= 0.22 

(0.16, 0.27)] compared to females [(βfemales= 0.18 (0.13, 0.23)], no robust evidence of a sex 

interaction was observed (PSexInt=0.23). 

 

Adjustment of citrate versus cortical bone mineral density for β-CTX: To examine whether 

associations between citrate and BMDC and other pQCT parameters involve altered levels of β-

CTX, the above associations were re-analysed following additional adjustment for β-CTX. In 

both males, females, and both sexes combined, associations between citrate and BMDC were 

attenuated when β-CTX adjustment was added to model 4 (Figure 3), as were associations in sex 

combined analyses with PC [β = 0.03 (−0.01, 0.07)] and SSI [β = 0.03 (−0.01, 0.07)]. 

 

Age of puberty onset versus citrate: To examine why associations between citrate and cortical 

thickness and BMDC showed evidence of attenuation following adjustment for Tanner stage 

at age 13.5, we examined relationships between the latter and citrate levels. As shown in 

supplementary Figure 4, citrate levels appeared to decline with increasing time since puberty. 
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DISCUSSION 
 

We report associations between a metabolic screen focused on fat metabolism, and cortical 

bone parameters of the mid-tibia measured by pQCT, in a population-based cohort of 

adolescents. Whereas many categories of lipid metabolites were associated with PC, CT and 

BMDC in minimally adjusted models, most associations were attenuated following 

adjustment for fat and lean mass. That said, several lipoproteins, phospholipids, cholesterol 

and fatty acids, were at least nominally associated with BMDC in our fully adjusted model, 

with inverse associations consistently observed. In addition, we observed an inverse 

association between citrate levels and BMDC, including in our fully adjusted model, which 

was considerably stronger than associations seen with lipid metabolites. 

 

It is well established that citrate is present in significant quantities in bone, likely originating 

from osteoblasts 
(16)

, where it has been suggested to play a role in stabilising apatite 

nanocrystals 
(17)

, and forming bridges between mineral platelets 
(18)

. Approximately 90% of 

citrate resides in bone, from which its release is suggested to be the principle determinant of 

plasma citrate levels, in line with previous studies which suggest that PTH administration 

leads to an increase in plasma citrate 
(19)

. Our finding that citrate levels were strongly related 

to the resorption marker, β-CTX, is in line with this view that circulating levels of citrate are 

derived from bone breakdown. 

 
 

Our observation that the inverse association between citrate and BMDC was no longer observed 

after adjustment for β-CTX raises the possibility that the inverse association we found between 

citrate and BMDC is mediated by increased bone resorption. This may explain, why the 

association between citrate levels and BMDC was stronger in boys compared to girls, since at age 

15, boys are closer to their pubertal growth spurt compared to girls, and consequently likely to be 

undergoing considerably higher rates of bone modelling and remodelling 
(20)

. In addition, a 

positive association between citrate levels and bone resorption would explain the positive 

association between citrate and PC, in view of our previous observations in the same cohort 

which suggest that bone resorption provides a stimulus for periosteal expansion 
(15)

. 

 
 

Given the observational nature of our analysis, we are unable to determine the causal nature of 

the relationships we observed between citrate levels, bone resorption as reflected by β-CTX, and 

BMDC. It is well recognised that greater bone resorption leads to reduced BMD. However 
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the inverse association between circulating citrate levels and BMDC might reflect not only a 

positive effect of bone resorption on circulating citrate levels, but also a positive effect of 

circulating citrate levels on bone resorption. For example, circulating citrate levels are 

influenced by a number of other factors including diet and renal excretion 
(19)

, which are 

themselves likely to influence citrate levels within bone, of which the latter could 

theoretically affect bone resorption by controlling the solubility of bone mineral (personal 

communication, Melinda Duer). To the extent that citrate levels are determined by bone 

resorption, citrate levels may reflect degradation of bone mineral as opposed to type I 

collagen, providing additional information about bone resorption over and above that 

obtained through measurement of β-CTX alone. 

 

While the present study was based on adolescents, it’s currently unclear whether the same 

conclusions apply to other age groups. In a study published recently, citrate levels were found to 

be considerably higher in young (mean age 18.8) versus older (mean age 64.5) males, which is 

expected given bone turnover (as reflected by β-CTX) was over two-fold higher in the former 

group 
(21)

. However, in a further analysis based on 87 older mixed subjects, there was only weak 

evidence of an inverse association between serum citrate and turnover markers including β-CTX 

(21)
. Moreover, the authors found citrate to be positively related to both lumbar spine and hip 

BMD in this group. Although this may suggest that the relationship between citrate and BMD 

reported here is modified with age, it should be noted that in contrast to BMDC, DXA-derived 

BMD represents an ‘areal’ density, and as such is affected by skeletal size as reflected PC, which 

we found to be positively related to citrate levels. 

 

Whereas weaker associations were observed between fat metabolites and BMDc compared to 

those seen with citrate, lipoproteins, phospholipids, cholesterol and fatty acids all showed 

evidence of inverse associations including in our fully adjusted model. These findings raise 

the intriguing possibility that fat metabolism exerts a direct influence on skeletal 

development. That lower levels of fat metabolites are associated with higher BMD is 

consistent with findings from a recent meta-analysis that cholesterol lowering agents, statins, 

improve BMD as measured by DXA and reduce fracture risk 
(22)

. 

 

Limitations 
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These analyses were only performed on a subgroup of ALSPAC participants, which may 

have differed in certain ways from the original cohort, however this is only likely to have 

introduced spurious associations if these characteristics are related in different ways to pQCT 

and metabolic results which seems unlikely. As with all cross sectional studies, our analyses 

are potentially limited by confounding. This may have applied particularly to findings 

concerning relationships with lipid metabolites, which may be influenced by a range of 

lifestyle and socio-economic factors which are also related to measures of skeletal health, 

such as physical activity. Finally, since Tanner stage data was not available at age 15 years, 

we were unable to adjust our results for current pubertal stage. 

 

Conclusions 
 

We examined associations between a metabolic screen focused on fat metabolism and 

cortical bone parameters in adolescents. Several lipoproteins, phospholipids, cholesterol and 

fatty acids showed evidence of inverse associations with BMDc in our fully adjusted model, 

consistent with the known protective effect of lipid lowering agents on BMD as measured by 

DXA. In addition, we observed a novel inverse association between citrate levels and BMDC, 

including in our fully adjusted model, which was considerably stronger than associations seen 

with fat metabolites. Further analyses revealed that citrate is also strongly positively related 

to bone resorption as reflected by β-CTX, and that when this was adjusted for, the 

relationship between citrate and BMDC is no longer observed. Based on these observations, 

further analyses are justified to explore whether citrate might prove useful as a biomarker of 

bone resorption, by reflecting the removal of bone mineral as opposed to type I collagen. 
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FIGURE LEGENDS 
 

Figure 1: Summary of relationships between 73 representative serum metabolites and 

pQCT derived cortical bone mineral density measured at the tibia. Outcome and exposure 

measures were standardised prior to analysis (mean = 0 and standard deviation = 1). Cortical 

bone mineral density [BMDC (outcome)] was regressed on 73 representative metabolites 

(exposure) correcting for age and sex (model 1). Stepwise regression involved incorporating 

additional covariates, namely Tanner stage (model 2), height (model 3), and lean mass and fat 

mass (model 4). A Bonferroni multiple testing threshold of P < 0.002 (0.05 / 22 principal 

components) was used to identify metabolites that were robustly associated with BMDC. Note: 

Point estimates of β are expressed as SD change in outcome per SD change in metabolite and 

denoted by circles with corresponding 95% CIs denoted by bars. Observations with sufficient 

strength of evidence to reject the null hypothesis of no association between the metabolite and CT 

are coloured in black and their corresponding names highlighted in black. Observations not 

meeting the significance threshold are coloured in grey. Metabolites are classified into 13 

categories, namely: Inflammation, Lipoprotein concentration, Particle size, Apolipoproteins, 

Triglycerides, Phospholipids, Cholesterol, Fatty acids, Fatty acid ratios, Fluid balance, Amino 

acids, Glycolosis related and Ketone bodies. VLDL = very low density lipoprotein, LDL = low 

density lipoprotein, IDL = intermediate density lipoprotein, HDL = high density lipoprotein, TG 

= triglycerides, C = cholesterol and FA = Fatty acids 

 

Figure 2: Bivariate scatter plots describing the unadjusted relationships between citrate, 

pQCT derived cortical bone mineral density measured at the tibia (BMDC), and β-C-

telopeptides of type I collagen (β-CTX). Data points are colored according to sex (males = dark 

grey and females = light grey). Panel A = serum citrate (x-axis) vs BMDC (y-axis); panel B = β-

CTX (x-axis) vs BMDC (y-axis), and panel C = serum citrate (x-axis) vs β-CTX (y-axis). 

 

Figure 3: Evaluating the relationship between citrate and cortical bone mineral density 
 

before after adjusting for β-CTX. Associations between citrate and BMDC (model 4) were 

attenuated after adjusting for β-CTX in the combined sample of males and females [(βcomb= −0.04 

(−0.08, 0.01)], and the female-only [(βfemales= −0.01 (−0.06, 0.04)] and male only samples 

[(βmales= −0.06 (−0.13, 0.01)]. Point estimates of β are denoted by circles and expressed as SD 

change in BMDC per SD change in serum citrate. Bars denote corresponding 95% CIs. 
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Table 1 
 

 

    FEMALES (n=634)     MALES (n=487)   
              

VARIABLE UNIT MIN MAX RANGE MEDIAN MEAN SD MIN MAX RANGE MEDIAN MEAN SD 
              

Age years 14.6 16.8 2.2 15.3 15.4 0.2 14.5 17.0 2.5 15.3 15.4 0.2 

Height cm 148.6 183.3 34.7 164.7 164.9 5.9 145.0 195.0 50.0 174.8 174.4 7.6 

Weight kg 38.4 93.2 54.8 56.7 58.3 9.2 32.3 102.4 70.1 62.0 62.7 10.0 

F-MASS kg 5.7 46.1 40.4 17.0 18.0 7.0 2.2 46.7 44.4 8.1 10.0 6.4 

L-MASS kg 28.4 49.3 21.0 36.8 37.2 3.8 26.3 74.0 47.7 50.1 49.9 6.5 

BMDC mg/cm
3 

1041.6 1188.4 146.8 1125.9 1125.0 21.8 958.1 1154.0 195.9 1076.5 1074.5 33.4 

BMCC mg 190.5 430.9 240.5 307.7 309.7 40.5 161.9 505.9 344.1 353.6 354.9 50.6 

BAC mm 169.6 379.7 210.1 273.9 275.4 36.0 162.0 460.7 298.7 330.3 330.2 44.8 

CSA mm 239.8 614.8 374.9 378.6 385.7 54.2 281.8 680.2 398.5 463.0 467.5 63.1 

PC mm 54.9 87.9 33.0 69.0 69.5 4.8 59.5 92.5 33.0 76.3 76.5 5.2 

EC mm 24.0 60.7 36.6 36.3 36.9 5.1 26.4 60.8 34.4 40.9 41.2 5.6 

CT mm 3.4 7.0 3.6 5.2 5.2 0.6 3.3 7.3 4.0 5.6 5.6 0.7 

SSI cm
3 

450.7 1543.3 1092.6 899.5 921.4 178.2 455.1 1903.1 1447.9 1158.1 1168.8 226.5 

Citrate* mmol/L 0.05 0.18 0.13 0.11 0.11 0.02 0.06 0.19 0.13 0.12 0.12 0.02 

β-CTX ng/ml 0.30 2.29 1.99 0.69 0.74 0.25 0.44 3.26 2.82 1.42 1.49 0.51 
              

 

Table showing characteristics of participants included in the analysis of metabolic and tibial pQCT-derived parameters, as minimum, maximum, range, median, 

mean, standard deviation (SD). n = Sample size; AGE = age of subject at attendance of the teen focus three clinic (TF3); F-MASS = total body fat mass; L-MASS = 

total body lean mass; BMDC = cortical bone mineral density; BMCC = cortical bone mineral content; BAc = cortical bone area; CSA = cross-sectional area; PC = 

periosteal circumference; EC = endosteal circumference; CT = cortical thickness, SSI = strength strain index, and β-CTX = β-C-telopeptides of type I collagen. 

*Normal reference range for serum/plasma citrate in adults ranges from 1.7 - 3.0 mg/dL, equating to 0.09 – 0.16mmol/L. Descriptive statistics for the combined 

sample of males and females and corresponding z-scores (parenthesis) expressed relative to the entire Teen Focus 3 cohort of 5,171 subjects are as follows: Height: 

[min = 145.0 cm (−2.89 sd), max = 195.0 (3.07), median = 168.3 (−0.112), mean = 169.0 (−0.025) and standard deviation = 8.186 
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(0.976)] and weight [min = 32.3 kg (−2.47 sd), max = 102.4 (3.47), median = 59.5 (−0.166), mean = 60.21 (−0.106) and sd = 9.80 (0.830)]. Breakdown of 

participants according to Tanner stage and sex (female/male) at age 13.5 years: Stage 1 (n=31/54); Stage 2 (n=70/118); Stage 3 (n=154/133); Stage 4 

(n=250/151) and Stage 5 (n=129/31). 
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Table 2 
 

 

STANDARDISED  MODEL 1    MODEL 2    MODEL 3   MODEL 4  
OUTCOME β CI95L CI95U P  β CI95L CI95U P  β CI95L CI95U P β CI95L CI95U P    

                   

BMDC -0.21 -0.25 -0.17  1.3×10
-21 

-0.13 -0.18 -0.09  1.9×10
-10 

-0.14 -0.18 -0.09 1.4×10
-10 

-0.14 -0.18 -0.09 2.42×10
-10 

BMCC -0.13 -0.18 -0.07  3.8×10
-6 

-0.07 -0.12 -0.01  0.02 -0.08 -0.12 -0.03 1.5×10
-3 

0.02 -0.02 0.06 0.41 

BAC -0.08 -0.13 -0.03  2.5×10
-3 

-0.03 -0.09 0.02  0.18 -0.04 -0.09 0.00 0.05 0.04 0.01 0.08 0.02 

CSA -0.03 -0.08 0.02  0.25 0.00 -0.05 0.05  0.99 -0.01 -0.05 0.03 0.65 0.06 0.03 0.10 1.2×10
-3 

PC -0.03 -0.08 0.02  0.25 0.00 -0.05 0.05  0.99 -0.01 -0.05 0.03 0.64 0.06 0.03 0.10 1.2×10
-3 

EC 0.05 -0.01 0.10  0.10 0.05 -0.01 0.10  0.12 0.04 -0.02 0.10 0.16 0.07 0.01 0.13 0.01 

CT -0.11 -0.17 -0.06  1.0×10
-4 

-0.07 -0.12 -0.01  0.02 -0.07 -0.13 -0.02 0.01 0.00 -0.05 0.05 0.94 

SSI -0.08 -0.13 -0.03  3.1×10
-3 

-0.03 -0.08 0.02  0.25 -0.04 -0.09 0.00 0.06 0.04 0.01 0.08 0.02 

β-CTX* 0.28 0.24 0.31  7.9×10
-48 

0.22 0.18 0.25  1.6×10
-32 

0.22 0.18 0.25 1.48×10
-32 

0.20 0.16 0.23 5.0×10
-27 

 

Table shows regression analyses of citrate versus pQCT variables and β-CTX in 1121 participants aged 15.4 (634 females, 487 males). Outcome and 

exposure measures were standardised prior to analysis (mean = 0 and standard deviation = 1). Model 1 = adjustment for age and sex. Model 2 = model 1 in 

addition to Tanner stage, Model 3 = model 2 in addition to height, and model 4 = model 3 in addition to lean mass and fat mass. β = SD change in outcome 

per SD increase in citrate; CI95L = lower 95% confidence estimate of β; CI95U = upper 95% confidence estimate of β; P = strength of evidence against the 

null hypothesis of no association between the outcome and exposure variable; BMDC = cortical bone mineral density; BMCC = cortical bone mineral content; 

BAC = cortical bone area; CSA = cross sectional area; PC = periosteal circumference; EC = endosteal circumference; CT = cortical thickness; SSI = strength 

strain index and β-CTX* = β-C-telopeptides of type I collagen (log transformed to normality) and standardized to z-scores prior to regression analysis. Note: 

All regression models involving β-CTX were adjusted for time of clinic attendance in addition to model specific covariates. 
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SUPPLEMENTARY DATA:  
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Figure S1. Flow diagram illustrating ALSPAC subject enrollment and the source of the data used in the present study. ALSPAC is a longitudinal 

population-based birth cohort that recruited 14,541 pregnant women resident in Avon, UK with expected dates of delivery 1st April 1991 to 31st December 1992. 

14,541 is the initial number of pregnancies for which the mother enrolled in the ALSPAC study and had either returned at least one questionnaire or attended a 

“Children in Focus” clinic by 19/07/99. Of these initial pregnancies, there was a total of 14,676 foetuses, resulting in 14,062 live births and 13,988 children who 

were alive at 1 year of age. When the oldest children were approximately 7 years of age, an attempt was made to bolster the initial sample with eligible cases who 

had failed to join the study originally. As a result, when considering variables collected from the age of seven onwards (and potentially abstracted from obstetric 

notes) there are data available for more than the 14,541 pregnancies mentioned above. The number of new pregnancies not in the initial sample (known as Phase I 

enrolment) that are currently represented on the built files and reflecting enrolment status at the age of 18 is 706 (452 and 254 recruited during Phases II and III 

respectively), resulting in an additional 713 children being enrolled. The phases of enrolment are described in more detail on the webstite 

(http://www.alspac.bris.ac.uk) and in the cohort profile paper 
(7,8)

. The total sample size for analyses using any data collected after the age of seven is therefore 

15,247 pregnancies, resulting in 15,458 foetuses. Of this total sample of 15,458 foetuses, 14,775 were live births and 14,701 were alive at 1 year of age. A 10% 

sample of the ALSPAC cohort, known as the Children in Focus (CiF) group, attended clinics at the University of Bristol at various time intervals between 4 to 61 

months of age. The CiF group were chosen at random from the last 6 months of ALSPAC births (1432 families attended at least one clinic). Excluded were those 

mothers who had moved out of the area or were lost to follow-up, and those partaking in another study of infant development in Avon. The present study is based 

on research clinics to which the whole cohort was invited and held when participants were a mean age of 13.5 years (Teen Focus 
 
2) for the Tanner stage questionnaire (N=5275 valid questionnaires) and 15.5 years for imaging and serum metabolic measures (Teen Focus 3). Numbers 

coloured in black correspond to numbers of subjects with valid imaging / serum measures and grey coloured represent number of subjects with imaging / 

serum and Tanner stage questionnaire data. 
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Figure S2: Summary of relationships between 73 representative serum metabolites and pQCT derived periosteal circumference measured at the tibia. 
 

Outcome and exposure measures were standardised prior to analysis (mean = 0 and standard deviation = 1). Periosteal circumference [PC (outcome)] was 

regressed on 73 representative metabolites (exposure) correcting for age and sex (model 1). Stepwise regression involved incorporating additional covariates, 

namely Tanner stage (model 2), height (model 3), and lean mass, fat mass (model 4). A Bonferroni multiple testing threshold of P < 0.002 (0.05 / 22 

principal components) was used to identify metabolites that were robustly associated with PC. Note: Point estimates of β are expressed as SD change in 

outcome per SD change in metabolite and denoted by circles with corresponding 95% CIs denoted by bars. Observations with sufficient strength of evidence 

to reject the null hypothesis of no association between the metabolite and PC are coloured in black and their corresponding names highlighted in black. 

Observations not meeting the significance threshold are coloured in grey. Metabolites are classified into 13 categories, namely: Inflammation, Lipoprotein 

concentration, Particle size, Apolipoproteins, Triglycerides, Phospholipids, Cholesterol, Fatty acids, Fatty acid ratios, Fluid balance, Amino acids, Glycolosis 

related and Ketone bodies. VLDL = very low density lipoprotein, LDL = low density lipoprotein, IDL = intermediate density lipoprotein, HDL = high 

density lipoprotein, TG = triglycerides, C = cholesterol and FA = Fatty acids 
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Figure S3: Summary of relationships between 73 representative serum metabolites and pQCT derived cortical thickness measured at the tibia. 
 

Outcome and exposure measures were standardised prior to analysis (mean = 0 and standard deviation = 1). Cortical thickness [CT (outcome)] was regressed 

on 73 representative metabolites (exposure) correcting for age and sex (model 1). Stepwise regression involved incorporating additional covariates, namely 

Tanner stage (model 2), height (model 3), and lean mass and fat mass (model 4). A Bonferroni multiple testing threshold of P < 0.002 (0.05 / 22 principal 

components) was used to identify metabolites that were robustly associated with PC. Note: Point estimates of β are expressed as SD change in outcome per 

SD change in metabolite and denoted by circles with corresponding 95% CIs denoted by bars. Observations with sufficient strength of evidence to reject the 

null hypothesis of no association between the metabolite and CT are coloured in black and their corresponding names highlighted in black. Observations not 

meeting the significance threshold are coloured in grey. Metabolites are classified into 13 categories, namely: Inflammation, Lipoprotein concentration, 

Particle size, Apolipoproteins, Triglycerides, Phospholipids, Cholesterol, Fatty acids, Fatty acid ratios, Fluid balance, Amino acids, Glycolosis related and 

Ketone bodies. VLDL = very low density lipoprotein, LDL = low density lipoprotein, IDL = intermediate density lipoprotein, HDL = high density 

lipoprotein, TG = triglycerides, C = cholesterol and FA = Fatty acids. 
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Figure S4. Box and whisker plot describing the relationship between Tanner stage at age 

13.5 (x-axis) and serum citrate at age 15.5 (y-axis) stratified by sex (males = dark grey, 

females = light grey). 
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Table S1. 
 

STANDARDISED                         

OUTCOME =   MODEL 1     MODEL 2     MODEL 3     MODEL 4   

BMDC                         
STANDARDISED 

β* CI95L CI95U P R2 
AIC β* CI95L CI95U P R2 AIC β* CI95L CI95U P R2 AIC β* CI95L CI95U P R2 AIC EXPOSURE 

                        

Glycoprotein acetyls1 
0.01 -0.03 0.06 5.80E-01 0.46 -693 0 -0.04 0.04 8.65E-01 0.56 -901 0.00 -0.04 0.04 9.55E-01 0.56 -901 0.01 -0.03 0.05 7.15E-01 0.56 -904 

Extremely large 

-0.03 -0.07 0.01 1.46E-01 0.47 -695 -0.02 -0.06 0.01 2.13E-01 0.56 -902 -0.02 -0.06 0.02 2.63E-01 0.56 -902 -0.02 -0.06 0.02 2.80E-01 0.56 -905 VLDL2 

Very large VLDL2 
-0.02 -0.06 0.02 3.50E-01 0.46 -694 -0.02 -0.06 0.02 3.37E-01 0.56 -901 -0.02 -0.06 0.02 3.90E-01 0.56 -902 -0.02 -0.06 0.02 3.91E-01 0.56 -904 

Large VLDL2 
-0.01 -0.06 0.03 5.09E-01 0.46 -693 -0.02 -0.06 0.02 4.09E-01 0.56 -901 -0.01 -0.05 0.02 4.65E-01 0.56 -902 -0.02 -0.06 0.02 4.54E-01 0.56 -904 

Medium VLDL2 
-0.02 -0.06 0.02 3.76E-01 0.46 -694 -0.02 -0.06 0.02 2.80E-01 0.56 -902 -0.02 -0.06 0.02 3.30E-01 0.56 -902 -0.02 -0.06 0.02 3.17E-01 0.56 -905 

Small VLDL2 
-0.04 -0.09 0 4.86E-02 0.47 -697 -0.04 -0.08 0 6.53E-02 0.56 -904 -0.03 -0.07 0.01 9.69E-02 0.56 -904 -0.03 -0.07 0.01 9.79E-02 0.56 -906 

Very small VLDL2 
-0.09 -0.14 -0.05 3.37E-05 0.47 -710 -0.06 -0.1 -0.02 1.64E-03 0.56 -910 -0.06 -0.10 -0.02 3.52E-03 0.56 -910 -0.06 -0.10 -0.02 5.43E-03 0.56 -911 

IDL2 
-0.1 -0.15 -0.06 3.71E-06 0.47 -714 -0.07 -0.11 -0.03 1.22E-03 0.56 -911 -0.06 -0.10 -0.02 2.57E-03 0.56 -910 -0.06 -0.10 -0.02 4.60E-03 0.56 -912 

Large LDL2 
-0.11 -0.15 -0.06 3.47E-06 0.47 -714 -0.07 -0.11 -0.03 1.19E-03 0.56 -911 -0.06 -0.11 -0.02 2.66E-03 0.56 -910 -0.06 -0.10 -0.02 5.60E-03 0.56 -911 

Medium LDL2 
-0.1 -0.15 -0.06 5.64E-06 0.47 -713 -0.07 -0.11 -0.03 1.48E-03 0.56 -911 -0.06 -0.10 -0.02 3.37E-03 0.56 -910 -0.06 -0.10 -0.02 7.16E-03 0.56 -911 

Small LDL2 
-0.1 -0.15 -0.06 3.68E-06 0.47 -714 -0.07 -0.11 -0.03 1.09E-03 0.56 -911 -0.06 -0.10 -0.02 2.58E-03 0.56 -910 -0.06 -0.10 -0.02 5.77E-03 0.56 -911 

Very large HDL2 
-0.08 -0.12 -0.03 8.54E-04 0.47 -704 -0.04 -0.08 0 5.57E-02 0.56 -904 -0.04 -0.08 0.00 5.96E-02 0.56 -905 -0.04 -0.08 0.00 7.06E-02 0.56 -907 

Large HDL2 
-0.05 -0.1 -0.01 1.65E-02 0.47 -699 -0.03 -0.07 0.01 1.59E-01 0.56 -903 -0.03 -0.07 0.01 1.70E-01 0.56 -903 -0.03 -0.07 0.01 1.97E-01 0.56 -905 

Medium HDL2 
-0.03 -0.08 0.01 1.35E-01 0.47 -695 -0.03 -0.07 0.02 2.25E-01 0.56 -902 -0.02 -0.06 0.02 2.94E-01 0.56 -902 -0.02 -0.06 0.02 4.16E-01 0.56 -904 

Small HDL2 
0.01 -0.03 0.05 6.48E-01 0.46 -693 0 -0.04 0.04 9.90E-01 0.56 -901 0.00 -0.04 0.04 8.63E-01 0.56 -901 0.01 -0.03 0.05 7.24E-01 0.56 -904 

VLDL diameter3 
0.02 -0.03 0.06 4.51E-01 0.46 -693 0.01 -0.03 0.05 7.19E-01 0.56 -901 0.01 -0.03 0.05 7.01E-01 0.56 -901 0.01 -0.03 0.05 7.49E-01 0.56 -904 

LDL diameter3 
0.06 0.01 0.1 1.06E-02 0.47 -699 0.04 0 0.08 4.37E-02 0.56 -905 0.04 0.00 0.08 7.40E-02 0.56 -904 0.03 -0.01 0.07 1.27E-01 0.56 -906 

HDL diameter3 
-0.06 -0.11 -0.02 5.88E-03 0.47 -700 -0.03 -0.07 0.01 1.41E-01 0.56 -903 -0.03 -0.07 0.01 1.36E-01 0.56 -903 -0.03 -0.07 0.01 1.44E-01 0.56 -906 

Apolopoprotein A-I4 
-0.09 -0.13 -0.04 1.25E-04 0.47 -708 -0.06 -0.1 -0.01 8.85E-03 0.56 -907 -0.05 -0.09 -0.01 1.41E-02 0.56 -907 -0.05 -0.09 -0.01 2.50E-02 0.56 -909 

Apolopoprotein B4 
-0.08 -0.13 -0.04 1.85E-04 0.47 -707 -0.06 -0.1 -0.02 3.66E-03 0.56 -909 -0.05 -0.09 -0.01 7.30E-03 0.56 -908 -0.05 -0.09 -0.01 1.06E-02 0.56 -910 

Total TG5 
-0.04 -0.08 0 7.29E-02 0.47 -696 -0.03 -0.07 0.01 1.14E-01 0.56 -903 -0.03 -0.07 0.01 1.53E-01 0.56 -903 -0.03 -0.07 0.01 1.56E-01 0.56 -906 

VLDL TG5 
-0.02 -0.06 0.02 3.57E-01 0.46 -694 -0.02 -0.06 0.02 2.94E-01 0.56 -902 -0.02 -0.06 0.02 3.48E-01 0.56 -902 -0.02 -0.06 0.02 3.37E-01 0.56 -905 

IDL TG5 
-0.09 -0.14 -0.05 6.89E-05 0.47 -709 -0.06 -0.1 -0.02 6.92E-03 0.56 -908 -0.05 -0.10 -0.01 1.31E-02 0.56 -907 -0.05 -0.09 -0.01 1.71E-02 0.56 -909 

LDL TG5 
-0.1 -0.14 -0.05 3.83E-05 0.47 -710 -0.06 -0.1 -0.02 7.34E-03 0.56 -908 -0.05 -0.10 -0.01 1.41E-02 0.56 -907 -0.05 -0.09 -0.01 2.06E-02 0.56 -909 

HDL TG5 
-0.05 -0.09 0 3.29E-02 0.47 -697 -0.03 -0.07 0.01 9.39E-02 0.56 -903 -0.03 -0.07 0.01 1.24E-01 0.56 -904 -0.03 -0.07 0.01 1.20E-01 0.56 -906 

Cholines6 
-0.1 -0.14 -0.05 3.53E-05 0.47 -710 -0.06 -0.11 -0.02 2.28E-03 0.56 -910 -0.06 -0.10 -0.02 4.30E-03 0.56 -909 -0.06 -0.10 -0.02 7.46E-03 0.56 -911 
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Sphingomyelin6 
-0.09 -0.14 -0.05 7.52E-05 0.47 -708 -0.06 -0.1 -0.02 3.15E-03 0.56 -909 -0.06 -0.10 -0.02 5.49E-03 0.56 -909 -0.06 -0.10 -0.01 8.30E-03 0.56 -911 

Phosphoglycerides6 
-0.09 -0.13 -0.04 2.01E-04 0.47 -707 -0.06 -0.1 -0.02 4.60E-03 0.56 -909 -0.06 -0.10 -0.01 7.98E-03 0.56 -908 -0.05 -0.10 -0.01 1.28E-02 0.56 -910 

Total C7 
-0.11 -0.15 -0.07 1.42E-06 0.48 -716 -0.07 -0.11 -0.03 6.02E-04 0.56 -912 -0.07 -0.11 -0.03 1.37E-03 0.56 -911 -0.06 -0.10 -0.02 3.19E-03 0.56 -912 

VLDL C7 
-0.06 -0.1 -0.02 7.21E-03 0.47 -700 -0.05 -0.09 -0.01 2.15E-02 0.56 -906 -0.04 -0.08 0.00 3.56E-02 0.56 -906 -0.04 -0.08 0.00 4.07E-02 0.56 -908 

IDL C7 
-0.1 -0.14 -0.05 2.04E-05 0.47 -711 -0.06 -0.1 -0.02 2.07E-03 0.56 -910 -0.06 -0.10 -0.02 4.18E-03 0.56 -909 -0.06 -0.10 -0.01 7.77E-03 0.56 -911 

LDL C7 
-0.1 -0.15 -0.06 6.85E-06 0.47 -713 -0.07 -0.11 -0.03 1.50E-03 0.56 -911 -0.06 -0.10 -0.02 3.29E-03 0.56 -910 -0.06 -0.10 -0.02 6.86E-03 0.56 -911 

HDL C7 
-0.07 -0.11 -0.02 3.07E-03 0.47 -702 -0.04 -0.08 0 6.25E-02 0.56 -904 -0.04 -0.08 0.00 7.73E-02 0.56 -904 -0.03 -0.08 0.01 1.12E-01 0.56 -906 

HDL2 C7 
-0.05 -0.1 -0.01 1.58E-02 0.47 -699 -0.03 -0.07 0.01 1.53E-01 0.56 -903 -0.03 -0.07 0.01 1.76E-01 0.56 -903 -0.03 -0.07 0.02 2.41E-01 0.56 -905 

HDL3 C7 
-0.09 -0.13 -0.04 1.39E-04 0.47 -707 -0.05 -0.1 -0.01 1.07E-02 0.56 -907 -0.05 -0.09 -0.01 1.52E-02 0.56 -907 -0.05 -0.09 -0.01 2.42E-02 0.56 -909 

Esterified C7 
-0.11 -0.15 -0.06 2.20E-06 0.47 -715 -0.07 -0.11 -0.03 7.09E-04 0.56 -912 -0.07 -0.11 -0.03 1.58E-03 0.56 -911 -0.06 -0.10 -0.02 3.52E-03 0.56 -912 

Free C7 
-0.11 -0.15 -0.06 2.07E-06 0.48 -715 -0.07 -0.11 -0.03 8.55E-04 0.56 -912 -0.07 -0.11 -0.02 1.91E-03 0.56 -911 -0.06 -0.10 -0.02 4.50E-03 0.56 -912 

Remnant C7 
-0.08 -0.13 -0.04 1.73E-04 0.47 -707 -0.06 -0.1 -0.02 3.49E-03 0.56 -909 -0.06 -0.10 -0.02 6.93E-03 0.56 -909 -0.05 -0.09 -0.01 1.06E-02 0.56 -910 

Total FA8 
-0.09 -0.14 -0.05 6.34E-05 0.47 -709 -0.06 -0.1 -0.02 2.59E-03 0.56 -910 -0.06 -0.10 -0.02 5.42E-03 0.56 -909 -0.05 -0.10 -0.01 9.88E-03 0.56 -910 

Saturated FA8 
-0.07 -0.12 -0.03 9.89E-04 0.47 -704 -0.05 -0.09 -0.01 1.26E-02 0.56 -907 -0.05 -0.09 -0.01 2.15E-02 0.56 -907 -0.04 -0.09 0.00 3.06E-02 0.56 -908 

Monounsaturated 

-0.09 -0.13 -0.04 8.93E-05 0.47 -708 -0.07 -0.11 -0.03 1.38E-03 0.56 -911 -0.06 -0.10 -0.02 2.79E-03 0.56 -910 -0.06 -0.10 -0.02 5.10E-03 0.56 -912 FA8 

Polyunsaturated FA8 
-0.08 -0.13 -0.04 2.43E-04 0.47 -706 -0.05 -0.09 -0.01 1.19E-02 0.56 -907 -0.05 -0.09 -0.01 2.30E-02 0.56 -906 -0.04 -0.09 0.00 3.92E-02 0.56 -908 

Omega-3 FA8 
-0.05 -0.1 -0.01 1.68E-02 0.47 -698 -0.03 -0.07 0.01 1.42E-01 0.56 -903 -0.03 -0.07 0.01 1.78E-01 0.56 -903 -0.03 -0.07 0.01 2.11E-01 0.56 -905 

Omega-6 FA8 
-0.08 -0.13 -0.04 2.55E-04 0.47 -706 -0.05 -0.09 -0.01 1.14E-02 0.56 -907 -0.05 -0.09 -0.01 2.23E-02 0.56 -906 -0.04 -0.09 0.00 3.87E-02 0.56 -908 

Linoleic acid8 
-0.08 -0.12 -0.03 9.70E-04 0.47 -704 -0.05 -0.09 -0.01 2.38E-02 0.56 -906 -0.04 -0.08 0.00 4.37E-02 0.56 -905 -0.04 -0.08 0.00 6.13E-02 0.56 -907 

Docosahexaenoic 

-0.08 -0.12 -0.03 7.77E-04 0.47 -704 -0.04 -0.08 0 4.19E-02 0.56 -905 -0.04 -0.08 0.00 5.65E-02 0.56 -905 -0.04 -0.08 0.01 8.94E-02 0.56 -907 acid8 

Chain Length8 
-0.01 -0.05 0.04 7.84E-01 0.46 -693 -0.01 -0.05 0.03 6.19E-01 0.56 -901 -0.01 -0.05 0.03 5.97E-01 0.56 -901 -0.01 -0.05 0.03 6.25E-01 0.56 -904 

Saturated FA %9 
0.05 0 0.09 3.83E-02 0.47 -697 0.03 -0.01 0.07 1.29E-01 0.56 -903 0.03 -0.01 0.07 1.66E-01 0.56 -903 0.02 -0.02 0.06 2.38E-01 0.56 -905 

Monounsaturated FA 

-0.04 -0.09 0 4.30E-02 0.47 -697 -0.04 -0.08 0 4.51E-02 0.56 -905 -0.04 -0.08 0.00 5.44E-02 0.56 -905 -0.04 -0.08 0.00 6.74E-02 0.56 -907 %9 

Polyunsaturated FA 

0.02 -0.03 0.06 4.93E-01 0.46 -693 0.02 -0.02 0.06 2.82E-01 0.56 -902 0.02 -0.02 0.06 2.77E-01 0.56 -902 0.02 -0.02 0.06 2.62E-01 0.56 -905 %9 

Omega-3 FA %9 
0 -0.04 0.05 8.77E-01 0.46 -693 0.01 -0.03 0.05 6.50E-01 0.56 -901 0.01 -0.03 0.05 6.89E-01 0.56 -901 0.01 -0.03 0.05 7.11E-01 0.56 -904 

Omega-6 FA %9 
0.01 -0.03 0.06 4.96E-01 0.46 -693 0.02 -0.02 0.06 3.12E-01 0.56 -902 0.02 -0.02 0.06 2.99E-01 0.56 -902 0.02 -0.02 0.06 2.80E-01 0.56 -905 

Linoleic acid %9 
0.01 -0.03 0.06 5.14E-01 0.46 -693 0.02 -0.02 0.06 3.72E-01 0.56 -901 0.02 -0.02 0.06 3.51E-01 0.56 -902 0.02 -0.02 0.06 3.83E-01 0.56 -904 

Docosahexaenoic acid 

-0.04 -0.08 0.01 9.08E-02 0.47 -696 -0.02 -0.05 0.02 4.55E-01 0.56 -901 -0.01 -0.05 0.02 4.63E-01 0.56 -902 -0.01 -0.05 0.03 5.58E-01 0.56 -904 %9 

Degree of 

0 -0.05 0.04 8.51E-01 0.46 -693 0 -0.04 0.03 8.12E-01 0.56 -901 -0.01 -0.04 0.03 7.81E-01 0.56 -901 0.00 -0.04 0.04 8.46E-01 0.56 -904 unsaturation9 

Creatinine10 
0.16 0.11 0.2 5.94E-12 0.49 -740 0.07 0.03 0.12 9.42E-04 0.56 -912 0.07 0.03 0.11 2.10E-03 0.56 -911 0.06 0.01 0.10 1.37E-02 0.56 -910 
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Albumin10 
0.07 0.03 0.12 1.08E-03 0.47 -703 0.04 0 0.08 5.38E-02 0.56 -904 0.04 0.00 0.08 6.70E-02 0.56 -905 0.04 0.00 0.08 6.85E-02 0.56 -907 

Alanine11 
-0.02 -0.06 0.03 4.80E-01 0.46 -693 -0.01 -0.05 0.03 6.29E-01 0.56 -901 -0.01 -0.05 0.03 6.43E-01 0.56 -901 -0.01 -0.05 0.03 6.07E-01 0.56 -904 

Glutamine11 
-0.06 -0.1 -0.01 1.48E-02 0.47 -699 -0.03 -0.08 0.01 9.30E-02 0.56 -903 -0.04 -0.08 0.00 7.46E-02 0.56 -904 -0.04 -0.08 0.00 5.62E-02 0.56 -907 

Isoleucine11 
-0.01 -0.06 0.03 6.33E-01 0.46 -693 -0.02 -0.06 0.02 4.39E-01 0.56 -901 -0.02 -0.06 0.02 4.15E-01 0.56 -902 -0.02 -0.06 0.02 3.97E-01 0.56 -904 

Leucine11 
0.01 -0.04 0.06 7.13E-01 0.46 -693 0 -0.05 0.04 8.55E-01 0.56 -901 -0.01 -0.05 0.04 7.27E-01 0.56 -901 -0.01 -0.06 0.03 5.24E-01 0.56 -904 

Valine11 
0 -0.05 0.04 9.26E-01 0.46 -693 0 -0.04 0.04 9.55E-01 0.56 -901 0.00 -0.04 0.04 9.08E-01 0.56 -901 0.00 -0.04 0.04 9.32E-01 0.56 -904 

Phenylalanine11 
0.04 0 0.09 5.72E-02 0.47 -696 0 -0.04 0.04 9.13E-01 0.56 -901 0.00 -0.04 0.04 9.88E-01 0.56 -901 0.00 -0.04 0.04 8.86E-01 0.56 -904 

Tyrosine11 
-0.06 -0.1 -0.01 1.20E-02 0.47 -699 -0.02 -0.06 0.02 3.78E-01 0.56 -901 -0.02 -0.06 0.02 3.43E-01 0.56 -902 -0.02 -0.06 0.02 3.52E-01 0.56 -904 

Histidine11 
-0.03 -0.07 0.01 1.59E-01 0.47 -695 -0.03 -0.07 0.01 1.26E-01 0.56 -903 -0.03 -0.07 0.01 9.43E-02 0.56 -904 -0.03 -0.07 0.01 9.08E-02 0.56 -906 

Glucose12 
-0.09 -0.13 -0.05 7.87E-05 0.47 -708 -0.04 -0.08 0 4.08E-02 0.56 -905 -0.04 -0.08 0.00 3.91E-02 0.56 -905 -0.04 -0.08 0.00 6.18E-02 0.56 -907 

Lactate12 
-0.02 -0.06 0.02 3.76E-01 0.46 -694 -0.02 -0.06 0.02 3.00E-01 0.56 -902 -0.02 -0.06 0.02 3.26E-01 0.56 -902 -0.02 -0.06 0.02 3.95E-01 0.56 -904 

Pyruvate12 
0 -0.05 0.04 8.81E-01 0.46 -693 -0.01 -0.05 0.03 6.39E-01 0.56 -901 -0.01 -0.05 0.03 7.66E-01 0.56 -901 0.00 -0.04 0.04 9.73E-01 0.56 -904 

Citrate12 
-0.21 -0.25 -0.17 1.30E-21 0.51 -784 -0.13 -0.18 -0.09 1.91E-10 0.57 -941 -0.14 -0.18 -0.09 1.42E-10 0.57 -943 -0.14 -0.18 -0.09 2.42E-10 0.57 -944 

Diacylglycerol12 
-0.03 -0.07 0.01 1.98E-01 0.47 -694 -0.01 -0.05 0.03 5.38E-01 0.56 -901 -0.01 -0.05 0.03 6.01E-01 0.56 -901 -0.01 -0.05 0.03 6.41E-01 0.56 -904 

Acetate13 
-0.01 -0.05 0.03 6.85E-01 0.46 -693 0 -0.04 0.04 8.86E-01 0.56 -901 0.00 -0.04 0.04 8.38E-01 0.56 -901 0.00 -0.04 0.04 8.45E-01 0.56 -904 

Acetoacetate13 
0.03 -0.01 0.07 1.95E-01 0.47 -694 0.01 -0.03 0.05 5.48E-01 0.56 -901 0.01 -0.03 0.05 5.14E-01 0.56 -902 0.01 -0.02 0.05 4.75E-01 0.56 -904 

Beta- 

-0.01 -0.05 0.03 6.61E-01 0.46 -693 0 -0.04 0.04 8.84E-01 0.56 -901 0.00 -0.04 0.04 9.97E-01 0.56 -901 0.00 -0.04 0.04 9.04E-01 0.56 -904 hydroxybutyrate13 

 

Table shows regression analyses of 73 serum metabolites versus pQCT derived tibial cortical bone mineral density (BMDC) measured in 1121 participants aged 

15.4 (634 females, 487 males). Model 1 = adjustment for age and sex. Model 2 = model 1 in addition to Tanner stage. Model 3 = model 2 in addition to height. 

Model 4 = model 3 in addition to lean mass and fat mass. β* = SD change in outcome per SD increase in exposure; SE = standard error of β; CI95L = lower 95% 

confidence estimate of β; CI95U = upper 95% confidence estimate of β; P = strength of evidence against the null hypothesis of no association between the BMDC 

and serum metabolite; R
2
 = variance in outcome explained by the model, AIC = Akaike information criterion. Note: A Bonferroni multiple testing threshold of P < 

0.002 (0.05 / 22 principal components) was used to identify metabolites that were robustly associated with BMDC. Observations with sufficient strength of evidence 

to reject the null hypothesis of no association between the metabolite and BMDC are bolded. Metabolites are classified into the 13 categories, namely: 

Inflammation
1
, Lipoprotein concentration

2
, Particle size

3
, Apolipoproteins

4
, Triglycerides

5
, Phospholipids

6
, Cholesterol

7
, Fatty acids

8
, 
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Fatty acid ratios
9
, Fluid balance

10
, Amino acids

11
, Glycolosis related

12
 and Ketone bodies

13
. VLDL = very low density lipoprotein, LDL = low density 

lipoprotein, IDL = intermediate density lipoprotein, HDL = high density lipoprotein, TG = triglycerides, C = cholesterol and FA = Fatty acids. 
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