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Abstract—5G mobile networks introduce Virtualized
Network Functions (VNFs) to provide flexible services for
incoming huge mobile data traffic. Compared with fixed
capacity legacy network equipment, VNFs can be scaled
in/out to adjust system capacity. However, hardware-based
legacy network equipment is designed dedicatedly for its
purpose so that it is more efficient in terms of unit cost.
One challenge is to best use VNF resources and to balance
the traffic between legacy network equipment and VNFs.
To address this challenge, we first formulate the problem as
a cost-performance tradeoff, where both VNF resource cost
and system performance are quantified. Then, we propose
an adaptive VNF scaling algorithm to balance the tradeoff.
We derive the suitable VNF instances to handle data traffic
with minimizing cost. Through extensive simulations, the
adaptive algorithm is proven to provide good performance.

Index Terms—Dynamic Auto Scaling Algorithm, Net-
work Function Virtualization (NFV), Virtual EPC, Cloud
Networks, 5G, Modeling and Analysis

I. INTRODUCTION

Network function virtualization (NFV) is one of the

key features introduced by recent 5G mobile network

standard. NFV provides flexible and fine grained so-

lutions to meet heterogeneous type and huge amounts

of user traffic demands, and is changing the way of

how mobile operators increase the capacities of their

network infrastructures. The NFV technique virtualizes

special purpose hardware resources as virtualized net-

work function (VNF) instances so that software-based

network functions can run on the general purpose equip-

ment, deployed in the mobile providers’ cloud. Different

from legacy network equipment, VNF instances can be

scaled-out/in (turned on/off) to adjust network capacity

dynamically, which can save operation cost and increase

resource utilization. The great flexibility of such VNF

autoscaling strategies forms a cost-performance tradeoff:

system performance is improved by adding more VNF

instances while operation cost is decreased by reducing

the number of VNF instances.

A design challenge for such autoscaling strategies

in 5G networks is to take legacy network equipment

into consideration. Indeed, although NFV provides such

a flexible and fine-grained property, legacy equipment

is generally more efficient with respect to unit cost,

i.e., cost-performance (c/p) ratio. In other words, legacy

equipment and virtualized equipment have different c/p

ratio (service capacity per price unit). Specifically, legacy

network equipment is usually hardware-based and is ded-

icated designed and optimized for its purpose, e.g., Bar-

racuda X Series, Juniper Networks SRX Series for stan-

dalone hardware firewalls, ternary content-addressable

memory (TCAM) in software define network (SDN)

switches, etc. Whereas, virtualized equipment is virtu-

alized as VNF instances in general purpose equipment,

which is generally slower in service rate and has less

c/p ratio than the former one [1]. Also, when allocating

hardware resources (e.g., CPU, memory, etc.) to a VNF

instance, different configuration leads to different service

capacities for a VNF instance, which has significant

impacts while designing autoscaling strategies. Existing

research in 4G/5G networks (e.g., [2]–[4]) or cloud

networks (e.g., [5]–[7]) usually ignore this issue.

In this paper we present ASA, an Adaptive Scaling

Algorithm, to well balance the cost-performance trade-

off while maintaining an acceptable level of performance

for 5G mobile networks. We first propose an analytical

model that considers and quantifies the different service

capacity issue and the impact of VNF capacities. Based

on the model, mobile operators can configure the system

parameters to evaluate their autoscaling strategies. Also,

in our proposed analytical model, we use a novel recur-

sive algorithm to reduce the computational complexity.

The computational cost to solve a Markov chain with M
states is reduced from O(M3) to O(M). The reduction is

significant so that mobile operators can quickly evaluate

the performance of their auto-scaling strategies, saving

on cost and time.

II. PROPOSED ASA: ADAPTIVE VNF SCALING

ALGORITHM

In this section, we present the system model in

Section II-A. The goal of ASA is to reduce mobile

providers’ operation cost and the probability of service

level agreements (SLAs) violations while providing ac-

ceptable levels of performance. Here, the operation cost

we focus is VNF instances power consumption while

the performance is evaluated by the performance metrics



Fig. 1: A simplified queueing model for our system.

defined in Section II-B, followed by the proposed ASA

in Section II-C.

A. System Model

A 5G core network system consists of VNFs and

legacy network entities, e.g., mobility management entity

(MME). Generally, legacy network entities are difficult

to be flexibly adjusted but are always running and have

better performance than VNF instances. In contrast, a

VNF instance can be turned on when the system needs

them, but they have to consume extra power and need

some setup time to be turned on, leading to extra cost

for the mobile provider. With finite budget, a mobile

provider should carefully plan and utilize the VNF

instances to add more capacity to the system. Here, we

consider an algorithm that VNF instances are turned on

when the workload exceeds the capacity of the servers.

Notice that a VNF instance will be closed to save the

cost if there is no job in the queue waiting for processing.

We assume that user request arrivals follow Poisson

distribution with rate λ, as shown in Fig. 1. 5G evolved

packet core (EPC) system is modeled as two parts:

(1) always-on n0 legacy network entity with average

capability μl, and (2) VNF instances each with μv

service rate. Due to finite budget, we assume that the

mobile provider can turn on at most k VNF instances at

the same time. That is, totally at most N servers, where

N = n0 + k. Each VNF instance (server) serves one

job at a time and its service rate follows the exponential

distribution. Therefore, mobile provider can set different

service rate for their legacy network equipment and

VNFs by themselves, respectively. Moreover, a VNF in-

stance needs a extra setup time to be available to process

user requests, which is assumed to be an exponentially

distributed random variable with mean value 1/α. The

system queue has limited capacity K, i.e., the maximum

of K jobs can be accommodated in the system. Also,

service discipline is First-Come-First-Served (FCFS) for

those jobs waiting for processing. A list of notations can

be found in Table I.

TABLE I: List of Notations

Notation Explanation

N The number of servers in server center
K The number of maximum jobs can be accommo-

dated in the system
k The number of VNF instances
C System cost-performance tradeoff
W Average response time per job
Wq Average response time in the queue per job
Pb Average system blocking probability
S Average VM cost
w1 Weight factor for Wq

w2 Weight factor for S
w3 Weight factor for Pb

n0 The number of permanently operative servers
Ui The up threshold to control the reserve sub-blocks
Di The down threshold to control the reserve sub-

blocks
λ Job arrival rate
μl Service rate for legacy server
μv Service rate for VNF instance
α Setup rate for each virtual server

B. Performance Metrics and Cost Function

The system performance is evaluated by two perfor-

mance factors: the average response time in the queue

per request, Wq , and the system blocking probability Pb.

The operation cost is evalueated by the average number

of VNF instance consuming power, S. We define them

as follows.

• The average response time in queue Wq is defined

as the average waiting time of a user request in

queue. In other words, it means how long time a

job request can be served.

• The average blocking probability in system Pb is

defined as the probability of a job blocked by the

system.

• The average number of running VNF instances S
denotes the operation cost of virtual equipment.

C. The Proposed ASA

According to the number of waiting user requests

in the system queue, the VNF instances will be added

(or removed) by ASA. To control the number of VNF

instances in the 5G core networks, we assume that

n1 = n0 + 1 and ni = ni−1 + 1 (i = 1, 2, . . . k),
where nk denotes k VNF instances are running. Here,

the maximum number of network entity is k + n0 = N
by the definition. That is, nk = N .

ASA utilize two thresholds, up and down, or Ui and

Di to control the number of running VNF instances,

where i = 1, 2, . . . , k.

• Ui, denote power up the i-th VNF instances: When

the i-th VNF instance is turned off and the number

of user requests in the system increases from Ui−1

to Ui, the VNF instance is powered up after a setup

time to add more capacity to the system. During

the setup time, a VNF instance cannot serve any



user requests, but consumes power (or money for

renting cloud services). Here, we choose Ui = ni.

It is equivalent to that when the number of user

requests increases from ni−1 to ni, the i-th VNF

instance is powered up.

• Di, denote power down the i-th VNF instances:

When the i-th VNF instance is operative, and the

number of user requests in the system drops from

Di+1 to Di, then the VNF instance is powered

down immediately to save the power (or money

for renting cloud services). Here, we choose Di =
ni−1. Note that it is equivalent to that when the

number of user requests drops from ni to ni−1, we

turn off the i-th VNF instance.

To address the tradeoff, we quantify the performance

metrics Wq , S, and Pb in our technique report [8]. Thus,

the system cost-performance function C has the form

C = w1Wq + w2
μv

μl
S + w3Pb, (1)

where coefficients w1, w2, and w3 denote the weight

factors for Wq , S, and Pb, respectively. Increasing w1 (or

w2, w3) emphasizes more on Wq (or S, Pb). Here, we

do not specify either w1 or w2 (w3) due to the fact that

such a value should be determined by mobile provider

and must take management policies into consideration.

With closed-form solutions in [8], formula (1) can be

rewritten as

arg min
k,μv

C = w1Wq + w2
μv

μl
S + w3Pb,

subject to 0 < β < β′ .
(2)

where β ∈ {Wq, S, Pb}. One can easily find the local

minimum when C ′′ = 1 and C ′′ > 0 hold. Algo-

rithm 1 presents how to find optimal service rate of

VNF instances μv and optimal maximum number of

VNF instances k for minimizing the cost function (2)

based on the constraints set by mobile operators.

III. SIMULATION AND NUMERICAL RESULTS

The analytical results of model are cross-validated

by extensive simulations by using ns-2, version 2.35.

Although simulation results are special case for the

model, which were used to validate our analysis model

and demonstrate the numerical results, one easily replace

these parameters with other values. In other words,

mobile operators can configure different settings to test

their autoscaling strategies, saving on cost and time.

It is important for mobile providers to maintain core

network performance and reduce SLAs violations with

given budget. In the previous sections, we have proposed

the analytical model and cross-validated with extensive

ns2 simulations. Here, we show some results of the cost

function (2) on selecting optimal k and μv .

Figs. 2, 3 show the results of performance metrics S,

Wq , and Pb with respect to k and μv according to (2).

Algorithm 1 Cost-minimization algorithm

Input: system capacity K
Output: optimal μv and optimal k

1: Initialize μv as 0.01, k as 0, ΔC as maximum integer

2: Set learning rate β, γ
3: Update S,Wq, Pb

4: Compute C = w1Wq + w2
μv

μl
S + w3Pb

5: Set μv(old) = μv , k(old) = k
6: Set μv(new) = μv(old) + 0.01, k(new) = k(old) + 1
7: while ΔC not converge do
8: if k > K − n0 then
9: break

10: end if
11: Update S,Wq, Pb

12: Compute Ĉ = w1Wq + w2
μv

μl
S + w3Pb

13: temp1 = μv(new) - β ∂P
∂μv

14: temp2 = k(new) - γ ∂P
∂k

15: Set μv(old) = μv(new), k(old) = k(new)

16: Set μv(new) = temp1, k(new) = temp2

17: ΔC =
∣
∣
∣Ĉ − C

∣
∣
∣

18: C = Ĉ
19: end while
20: return optimal μv and optimal k

The right y-axis in red color denotes β, i.e., S, Wq or

Pb configured by a mobile provider. The left y-axis in

blue color is the value of cost function C. The mobile

provider can given the constraint value β and obtain their

optimal k and μv through these figures.

Take Fig. 2(a) as an example. Note that β is S and

the constraint is S < S′. We can see that VNF cost S
increases while the number of VNF instances k grows.

Increasing k leads to higher S yet provides a smaller

average waiting time Wq and better QoS for users. This

figure shows that S is 20, which is corresponding to

minimal value of cost function C.

If the mobile provider configures the constraint value

β higher than 20, ASA sets the optimal k as 40 since

it makes the cost function C have minimal value. That

means that ASA balances the cost-performance tradeoff

with the given constraint value β. Otherwise, ASA can

find k which allows S satisfy the constraint β and let

the value of cost function C as small as possible. In

this case, ASA tries to provide acceptable performance

and meets the constraint on metric S at the same time.

Similarly, the mobile provider can apply ASA to metrics

Wq and Pb.

To find optimal VNF service rate μv , we take another

example as shown in Fig. 3(a). Here, β is S and the

constraint is S < S′. Also, the S increases as μv grows.

The curve of cost function C goes down before μv is

close to 3.3. Then it grows sharply after μv is larger than

3.3. The optimal VNF service rate is corresponding to
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Fig. 2: Optimal k in various constraints.
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Fig. 3: Optimal μv in various constraints.

minimal value of cost function C. In this case, minimal

value of cost function C needs the constraint β ≥ 13.5.

Again, if the mobile provider configures the constraint

value S < 13.5, ASA can obtain optimal μv which

minimizes C while controlling the VNF cost S under a

given budget. Otherwise, ASA will find a near-optimal

μv by following the blue curved line by decreasing the

value of μv until the VNF cost S is under the constraint

β.

Here we only demonstrate ASA on the performance

metric S due to page limit. Similar results can be

observed from Figs. 2(b)(c) and Figs. 3(b)(c). Also, ASA

can be applied on performance metrics such as Wq and

Pb in the same way.

IV. CONCLUSIONS

In this paper, we proposed ASA for addressing the

autoscaling cost-performance tradeoff in 5G mobile net-

works. It is the first work on discussing the impacts of

different service rate of legacy network and that of VNF

instances in this perspective. We quantified the impacts

and a set of performance metrics using a lightweight an-

alytical model. The model improves traditional Markov

chain method by using a novel recursive algorithm. The

computational complexity is reduced from O(k×K3) to

only O(K × k). The reduction is significant. The model

gives theoretical insights to mobile operators while de-

signing autoscaling strategies in 5G mobile networks,

saving on cost and time. Moreover, we presented a cost

function as an example on using the model to develop

optimal autoscaling strategies. It provides a guideline

for mobile provider to design optimization strategies and

analyze their core networks in a systematic way.
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