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Abstract

Unsteady response of an ice cover in a channel with vertical walls is studied for large times. The ice deflection

is caused by a load moving along the frozen channel at a constant speed. The ice cover is modelled as a

thin elastic plate clamped to the walls of the channel. The time-dependent problem is solved by using the

Fourier transform along the channel and the method of separating variables. In the system moving along

the channel together with the load, the large-time deflection of the ice cover consists of steady deflection

and standing waves in front and behind the load. The number of waves, their frequencies and wavenumbers

depend on the speed of the load and the values of the critical speeds for the channel. The number of the

waves and their amplitudes are calculated for a given load and its speed. The maximum stress in the ice as

a function of the load speed is estimated.
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1. Introduction

The ice responses to loads moving along an unbounded ice cover are well studied for water of both infinite

and constant depth (see an excellent review in [1]) by using the linear theory of hydroelasticity. It is known

that the ice response strongly depends on the speed of the load. If the speed is below a certain critical value,

the ice deflection is localized near the load and quickly decays with the distance from the load. For higher5

speeds of the load, outgoing waves are formed in the far field if viscous damping in the ice is small and

not included in the mathematical model. At the critical speed, the linear theory of hydroelasticity without

damping predicts unbounded ice response. To obtain estimates of the ice response for the critical speed of

the load, either non linear effects [2] or viscous damping [3], or both are included in the ice model.

Viscoelastic models of the sea ice were studied by Tabata [4]. He performed experiments with rectangular10

floating ice beams under given loads to obtain the bending stresses as functions of time. By analysing the

measured stresses Tabata concluded that viscoelastic properties of the ice are well described by a rheological

model with a Maxwell unit and a Voigt (Kelvin) unit connected in series. The model includes four parameters.

A two-parameter viscoelastic model of ice was used by Hosking et al. [3]. The Maxwell and Kelvin-Voigt

models of viscoelastic ice were employed in [5], where the theoretical predictions of ice response within these15

two viscoelastic models and their combinations were compared to available experimental results with moving
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loads. It was shown that a simple one-parameter model with a retardation time τ , the so-called Kelvin-

Voigt model, gives very reasonable results, see [5] and [6]. The retardation time is difficult to determine.

In experiments [6], the retardation time varied from 3 to 10 seconds, in order to approximate the measured

deflections for different loadings. Note that the water viscosity gives negligible contribution to the damping20

of ice response for channels with dimensions of order of a metre and load speeds of order of several metres

per second.

The presence of walls and obstacles complicates the problem of moving loads. There are many critical

speeds for a frozen channel, in contrast to the ice sheet of infinite extent with just two critical values of

the load speed [7]. Each critical speed for an ice cover in a channel corresponds to a mode of hydroelastic25

wave propagating along the channel with a certain profile across the channel and its own dispersion relation.

These waves were studied by Korobkin et al. [7]. The problem of a load moving along a frozen channel

was studied in [8] within the Kelvin-Voigt viscoelastic model of the ice cover. The steady state solution of

the problem was derived in the coordinate system moving together with the load. This approach does not

require initial data. The problem was solved numerically. Both the deflection and strain distributions in the30

ice plate were investigated. The deflections and strains quickly decay with the distance from the load within

the viscoelastic ice model. The rate of decay is related to the retardation time τ . This is correct even for

small values of the retardation time. The value τ = 0.1 s was used in most of the calculations performed

in [8]. The effects of the channel width, the ice thickness and the speed of the load on the ice response

were studied. Both deflections and strains were given by infinite series and integrals. Decreasing viscous35

damping, higher strains in the ice cover and longer region of significant deflections along the channel were

obtained for speeds of the load different from the critical values. Numerical integration was challenging for

small damping. Small values of the retardation time could lead to inaccurate results. To estimate the strains

accurately, we need to know them for zero damping, where the approach of [8] does not work.

Another approach to estimating the stationary response of ice cover to a load moving steadily along a40

frozen channel is used in this paper. This approach was introduce in [9] for a load moving along an ice plate

of infinite extent. The approach does not rely on a viscoelastic model of ice. Models of ice response without

damping are less physical. However, they may provide helpful estimates of maximum strains and bearing

capacity of the ice cover. The ice cover is modelled as an elastic thin plate of constant thickness. In this

model, stationary ice response is obtained as the limit of unsteady solution for large times. At t = 0 the load,45

which is modelled by an external localised pressure over the ice plate, is at rest. The initial ice deflection

satisfies the stationary equation of thin elastic plate with corresponding boundary conditions on the walls

of the channel. The external pressure is symmetric with respect to the central line of the channel in the

present study. Then the load starts to move at a constant speed U along the channel. The ice deflection

decays far ahead and far behind the moving load for finite times. The resulting problem of unsteady linear50

hydroelasticity is solved in this paper by using the Fourier transform along the channel and the normal-

mode method, see [10], [11], [12], for the ice deflection. Second-order differential equations in time for the

principal coordinates of the normal modes are derived and solved analytically. As a result, the ice deflection

is presented by an infinite series of regular Fourier integrals. The limiting values of the integrals as t→∞,
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in the coordinate system moving together with the load, are obtained by the asymptotic methods similar to55

those used in [9]. The limiting values of the integrals depend on the speed of the load with respect to the

critical speeds of the propagating-sloshing waves along the channel. It is shown that for large times the total

ice deflection consists of symmetric deflection localized near the load and a system of waves in front and

behind the load. The number of these waves is obtained and the wave amplitudes are evaluated numerically.

Each wave propagates along the channel with the speed of the load U . The waves are stationary in the60

coordinate system moving together with the load.

This study is motivated by experiments in ice tanks, operations on ice in rivers and channels such as

cargo transportation or ice breaking to avoid flooding, and ice-structure interaction. The strains calculated

with zero damping are higher than the real ones. For safe transportation on ice, one needs to compare the

computed strains with a strain critical value, and determine safe conditions of transportation. By using the65

computed amplitudes of the waves generated by the moving load, we can find places of the highest strains

far ahead and behind the load and estimate their values. It can be expected that there are such speeds

of the load that the maximum strains behind and/or in front of the load are achieved at the walls of the

channel, see [7]. It is possible also that the yield strain value is achieved in the waves in front of the moving

load. Then the load moves actually along the broken ice in the channel or along the plate detached from the70

channel walls, see [13].

The problem formulation and general assumptions are given in Section 2. The method of solution by

using the Fourier transform and normal mode decomposition is presented in Section 3. Numerical results

are reported and discussed in Section 4. The conclusions are drawn in Section 5.

2. Formulation of the problem75

The unsteady hydroelastic waves generated by a load moving along a channel covered with ice are

considered in the Cartesian coordinates x, y, z. The channel is of rectangular cross section with finite depth

H, −H < z < 0, and width 2L, −L < y < L, see Figure 1. The channel is infinitely long, −∞ < x < ∞,

and occupied with an incompressible and inviscid liquid of density ρl. The liquid is covered with an ice plate

of density ρi, constant thickness hi, and rigidity D = Eh3i /[12(1 − ν2)], where E is the Young’s modulus80

of the ice and ν is the Poisson’s ratio of the ice. The ice cover is modelled as a thin elastic plate within

the Kirchhoff-Love plate theory [14]. The ice plate is clamped to the channel walls. The load is modelled

by a localized smooth pressure distribution which moves at a constant speed U along the central line of the

channel in the positive x–direction. The flow and the ice deflection are symmetric with respect to the plane

y = 0. Initially, t = 0, the ice cover, the liquid and the load are at rest. The moving load causes the ice85

deflection around the load and may generate unsteady hydroelastic waves propagating from the load. The

cases without waves in the ice cover are also studied. The flow in the channel caused by the ice deflection is

potential. We shall determine the vertical displacement of the ice sheet, w(x, y, t), and the stresses in it for

the given characteristics of the channel, the ice cover, and the load.

The problem is formulated within the linear theory of hydroelasticity [1]. The vertical displacement of90
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Figure 1: The frozen channel with the moving load.

the ice cover, w(x, y, t), satisfies the equation of a thin elastic plate,

Mwtt +D∇4
2w = p(x, y, 0, t)− P (x− Ut, y) (1)

(−∞ < x <∞, −L < y < L, z = 0),

where ∇4
2w = ∇2

2 · (∇2
2w) = ∂4w/∂x4 + 2 ∂4w/(∂x2∂y2) + ∂4w/∂x4, M = ρihi is the mass of the plate per

unit area, p(x, y, 0, t) is the hydrodynamic pressure acting on the lower surface of the ice plate, P (x−Ut, y)

is the external pressure which simulates the load moving along the upper surface of the ice plate.

The hydrodynamic pressure, p(x, y, 0, t), on the ice/water interface is given by the linearized Bernoulli95

equation,

p(x, y, 0, t) = −ρl ϕt(x, y, 0, t)− ρlg w(x, y, t) (2)

(−∞ < x <∞, −L < y < L, z = 0),

where g is the gravitational acceleration and ϕ(x, y, z, t) is the velocity potential of the flow in the channel.

The velocity potential, ϕ(x, y, z, t), satisfies Laplace’s equation in the flow region,

∇2ϕ(z, y, z, t) = 0 (−∞ < x <∞, −L < y < L, −H < z < 0), (3)

linearized kinematic condition on the ice/water interface, and the impermeability conditions on the channel

walls and the bottom,100

ϕz = wt (z = 0), ϕy = 0 (y = ±L), ϕz = 0 (z = −H). (4)

The velocity potential decays far from the load at each finite time instant,

ϕ→ 0 (|x| → ∞, t <∞), (5)

and satisfies the initial conditions,

ϕ = 0, ϕt = 0 (t = 0). (6)
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The positive symmetric external pressure, P (x − Ut, y), acts on the upper surface of the ice plate and

moves along the central line of the channel at the constant speed U , P (x− Ut,−y) = P (x− Ut, y). In the

coordinate system moving together with the load, (X, y, z), where X = x−Ut, the external pressure P (X, y)105

does not depend on time and is described by the following equations,

P (x− Ut, y) = P0P1

(
X

L

)
P2

( y
L

)
(−∞ < x <∞, −L < y < L), (7)

P1

(
X

L

)
=


(

cos(πc1X/L) + 1
)
/2 (c1|X|/L < 1),

0 (c1|X|/L ≥ 1),

P2

( y
L

)
=


(

cos(πc2y/L) + 1
)
/2 (c2|y|/L < 1),

0 (c2|y|/L ≥ 1),

in the present study, where P0 is the magnitude of the load, 0 ≤ P1(X/L) ≤ 1, 0 ≤ P2(y/L) ≤ 1, and c1

and c2 are parameters of the load. Equations (7) are used only in numerical calculations. The asymptotic

analysis of section 3 is valid for any integrable function P (X, y).

The ice deflection w(x, y, t) satisfies the clamped conditions on the channel walls,110

w = 0, wy = 0 (−∞ < x <∞, y = ±L), (8)

the condition in the far field at each finite time instant,

w → 0 (|x| → ∞, t <∞), (9)

and the initial conditions at t = 0,

w = w0(x, y), wt = 0, (10)

where w0(x, y) satisfies the static equation for a floating thin elastic plate,

D∇4
2w0(x, y) = −ρlg w0(x, y)− P (x, y), (11)

and the conditions (8) and (9).

In the linear theory of hydroelasticity, the strains vary linearly through the ice thickness and are zero at115

the middle of the plate thickness. At any location, the maximum strain is achieved at the surface of the ice

plate. We are concerned only with positive strains which correspond to elongations of the ice surface and

tensile stresses in the ice. The strain tensor is given by

E(x, y) = −ζ hi
2

 wxx wxy

wxy wyy

 , (12)

where ζ is the non-dimensional coordinate across the ice thickness, −1 ≤ ζ ≤ 1. The tensor (12) describes

the strain field in the ice sheet. To find the maximum strain in the ice sheet we need to find the eigenvalues120

of the strain tensor at each location. The strains are proportional to the magnitude P0 of the external load

within the linear theory. The linear theory of hydroelasticity can be used when w2
x +w2

y � 1 and the strains

are below the yield strain εcr of the ice. The yield strain of a material is defined as the strain ε = εcr at
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which a material begins to deform plastically [15]. Any strains greater than the yield strain εcr are assumed

to lead to ice fracture. The fracture strain in experiments of [16] with ice was reported as 3 · 10−5, and the125

theory predicts ice fracture when the strain reaches 4.3 ·10−5. In this study we use the estimate εcr = 8 ·10−5

(see [17] and discussion of this value there).

The solution of the unsteady problem (1) – (11) depends on the density of the liquid, ρl, parameters of the

ice, ρi, hi, D, parameters of the channel, H, L, and parameters of the load, P0, U , c1, c2. We shall determine

the large time behaviour of both the ice deflection, w(x, y, t), and the distribution of the maximum strains130

in the ice plate, ε(x, y, t), for some given values of the parameters of the problem. Asymptotic analysis is

presented for a rectangular channel and a given form of the load (7), but it can be extended to non-rectangular

channels and different distributions of the external load.

The solutions of the problem (1) – (11), where P (X, y) = 0 and the initial conditions and the conditions

at |x| → ∞ are dropped, in the forms of linear sinusoidal waves propagating along the channel were studied135

in [7]. The dispersion relations between the wave frequencies ωn and the wave number k were determined

numerically together with the profiles of the waves across the channel. There are infinitely many of these

waves for a frozen channel, n ≥ 1. The waves are the so-called sloshing-propagating waves. They are standing

waves across the channel and propagating waves along the channel. In the coordinate system moving along

the channel with the phase speed, cn(k) = ωn(k)/k, of the n-th wave, this wave is stationary and periodic.140

We shall use the properties of these waves in the present analysis, to determine the asymptotic behaviour of

the ice deflection, w(x, y, t).

3. Ice deflection and its behaviour for large times

The Fourier transform in x,

wF (ξ, y, t) =
1√
2π

∞∫
−∞

w(x, y, t)e−iξxdx,

w(x, y, t) =
1√
2π

∞∫
−∞

wF (ξ, y, t)eiξxdξ,

applied to the equations of the formulated problem (1) – (11) provides the plate equation,

MwFtt +D
(
wFyyyy − 2ξ2wFyy + ξ4wF

)
=

= −ρlϕFt (ξ, y, 0, t)− ρlgwF − PF (ξ, y)e−iξUt, (13)

and the initial and boundary conditions for the deflection,145

wF = wF0 (ξ, y), wFt = 0 (t = 0), wF = 0, wFy = 0 (y = ±L), (14)

where wF0 (ξ, y) is the Fourier transform of the initial ice deflection, w0(x, y). The potential ϕF (ξ, y, z, t)

satisfies the modified Helmholtz equation,

ϕFyy + ϕFzz = ξ2ϕF (−L < y < L, −H < z < 0), (15)
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and the initial and boundary conditions,

ϕFz = wFt (ξ, y, t) (z = 0), ϕFy = 0 (y = ±L),

ϕFz = 0 (z = −H), ϕF = 0, ϕFt = 0 (t = 0). (16)

The Fourier transform reduces the number of the independent variables by one and introduce one new

parameter, which is the parameter of the transform ξ.150

The ice deflection, wF (ξ, y, t), is obtained by the method of separating variables. This method separates

the variables y and t:

wF (ξ, y, t) =

∞∑
n=1

an(ξ, t)ψn(ξ, y). (17)

At this stage of the method, both functions ψn(ξ, y) and an(ξ, t), which also depend on the index n and the

parameter ξ, are unknown and should be determined as part of the solution. The clamped conditions (14)

on the wall of the channel and the symmetry of the deflection caused by the symmetric load provide155

ψn(ξ,±L) = ψ′n(ξ,±L) = 0, ψn(ξ,−y) = ψn(ξ, y) (18)

for any ξ and |y| < L.

The kinematic condition on the ice/water interface, z = 0, see the first equation in (16), suggests the

following form of the velocity potential,

ϕF (ξ, y, z, t) =

∞∑
n=1

an,t(ξ, t)Φn(ξ, y, z). (19)

The functions Φn(ξ, y, z) satisfy equation (15) and the boundary conditions (16), where the kinematic con-

dition should be changed to Φn,z(ξ, y, 0) = ψn(ξ, y).160

Substituting the series (17) and (19) in equation (13), we obtain

∞∑
n=1

an,tt [Mψn + ρlΦn(ξ, y, 0)] +

+

∞∑
n=1

an
[
D
(
ψn,yyyy − 2ξ2ψn,yy + ξ4ψn

)
+ ρlgψn

]
= −PF (ξ, y)e−iξUt. (20)

Here the expressions in the square brackets are functions of y only. In order to separate the variables y and

t in (20), these expressions are set to be proportional one to another,

ω2
n(ξ) [Mψn + ρlΦn(ξ, y, 0)] = D

(
ψn,yyyy − 2ξ2ψn,yy + ξ4ψn

)
+ ρlgψn, (21)

where ω2
n(ξ) is a proportionality factor. This equation together with the conditions (18) and the correspond-

ing equations and conditions for the functions Φn(ξ, y, z) form a spectral problem for the functions ψn(ξ, y).

In this problem, ω2
n(ξ) plays a role of the spectral parameter which should be determined together with the

real functions ψn(ξ, y). The solutions of the spectral problem are known also as eigen-functions, and the

spectral parameter as the eigen-value of the problem. It can be shown that the eigen-values corresponding

to non-trivial eigen solutions of the formulated spectral problem are positive. This explains the notation
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ω2
n(ξ) of the eigen-values. The notation ωn assumes that the square root of the eigen-value has a meaning of

frequency. Equation (21) provides that the dimension of ωn(ξ) is sec−1, which is the dimension of frequency.

The physical meaning of these frequencies will be revealed below, when we derive equations for the functions

an(ξ, t) appeared in (17). The eigen-functions ψn(ξ, y) are numbered in such a way that the correspond-

ing eigen-values satisfy the inequality ωn < ωn+1, where n ≥ 1. It can be shown that the eigen-functions

ψn(ξ, y), where n ≥ 1, are orthogonal in the following sense,

L∫
−L

[Mψn + ρlΦn(ξ, y, 0)]ψmdy = δnmσn(ξ),

σn(ξ) =

L∫
−L

[Mψn + ρlΦn(ξ, y, 0)]ψndy. (22)

In the present study, the functions ψn(ξ, y) are normalized by the condition165

max
−L<y<L

ψn(ξ, y) = 1. (23)

This normalisation suggests that the functions ψn(ξ, y) are non-dimensional. The deflection w(x, y, t) and

the coordinates x, y, z are measured in metres. Then in the Fourier transform, ξ is in m−1 and wF (ξ, y, t) in

m2. The functions an(ξ, t) in (17) are in m2.

The functions ψn(ξ, y) describe the water/ice/channel system. They are independent of the load and its

speed. These functions were calculated and studied in [7] in non-dimensional variables. The linear hydroe-170

lastic waves investigated in [7] are described by the equations w(x, y, t) = Aψn(ξ, y) cos[ξx− ωn(ξ)t], where

ψn(ξ, y) is the solution of the spectral problem (21) with the spectral parameter ω2
n(ξ), n ≥ 1, ξ is now the

wavenumber and A is the wave amplitude, in the notations of the present paper. The phase speed of the

n-th wave is equal to c(n)(ξ) = ωn(ξ)/ξ. The speeds c(n)(ξ), where ξ ≥ 0, achieve their minimum values,

c
(n)
min = minξ≥0[c(n)(ξ)], at single wavenumbers ξ

(n)
min, where c

(n+1)
min > c

(n)
min for n ≥ 1. Therefore, hydroelastic175

waves cannot propagate at speeds less than c
(1)
min. The results of [7] imply that ω1(0) = 0 and ωn(0) > 0 for

n ≥ 2. Correspondingly, c(1)(ξ) tends to a finite limit and c(n)(ξ) are unbounded as ξ → 0. Only waves with

n = 1 can propagate along the channel at speeds between c
(1)
min and c

(2)
min. Typical cases are depicted in Figure

2 for particular parameters of the water/ice/channel system. For a given speed U , where c
(1)
min < U < c

(2)
min,

there are two wavenumbers ξ
(1)
1 and ξ

(1)
2 , ξ

(1)
1 < ξ

(1)
min < ξ

(1)
2 , such that c(1)(ξ

(1)
1 ) = U and c(1)(ξ

(1)
2 ) = U with180

c(n)(ξ) > U for n ≥ 2 and any ξ. In general, for c
(N)
min < U < c

(N+1)
min with n ≥ 3 there exist 2N − 1 waves

with wavenumbers ξ
(1)
2 , ξ

(n)
1 and ξ

(n)
2 , where 2 ≤ n ≤ N , which propagate at speed U . There are four waves

if c
(2)
min < U < c(1)(0), see Figure 2.

The functions ψn(ξ, y) are shown in Fig. 7 of the paper [7] as functions of y/L for particular characteristics185

of water/ice/channel system. The functions ψn(ξ, y) and ωn(ξ) are considered as known in the analysis below.

Substituting (21) in the equation (20),

∞∑
n=1

(
d2an
dt2

+ ω2
n(ξ)an

)
[Mψn + ρlΦn(ξ, y, 0)] = −PF (ξ, y)e−iξUt, (24)
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Figure 2: Phase speeds of even hydroelastic waves in a frozen channel. Note the number of waves propagating at different

speeds U .

multiplying both sides of (24) by ψm, integrating the result in y from −L to L, and using (22), we arrive at

the infinite system of ordinary differential equations of the second order for the principal coordinates an(ξ, t),

d2an
dt2

+ ω2
n(ξ)an = Hn(ξ)e−iξUt n = 1, 2, ...,

Hn(ξ) = − 1

σn(ξ)

L∫
−L

PF (ξ, y)ψn(ξ, y)dy, (25)

It is seen that ωn(ξ), which were introduced in (21) as square roots of the eigen values of the spectral problem

(21), are the natural frequencies of the modes ψn(ξ, y), n ≥ 1. The initial conditions for equations (25) follow190

from (14),

an(ξ, 0) =
Hn(ξ)

ω2
n(ξ)

,
dan
dt

(ξ, 0) = 0. (26)

The solution of the problem (25) – (26) reads

an(ξ, t) =
ξUHn(ξ)

2ω2
n(ξ)

[
eiωnt

ωn + ξU
− e−iωnt

ωn − ξU

]
+

Hne
−iξUt

ω2
n − (ξU)2

. (27)

The terms in (27) are singular at ±ξ(n)1 and ±ξ(n)2 if the speed of the load U is large enough, U > c
(n)
min.

Additionally, a1(ξ, t) can be singular at ξ = 0 because ω1(ξ) = O(ξ) as ξ → 0. However, it can be shown that

σ1(ξ) = O(ξ−2) in (22) and then H1(ξ) = O(ξ2) as ξ → 0. Therefore, an(ξ, t) have finite limits as ξ → 0 for195

any n. Also, at any conditions, the singular terms in (27) balance each other and then the functions an(ξ, t)

are finite for any n, ξ and t.

In the moving coordinate system, x = X+Ut, the ice deflection, w(X, y, t), is given by the inverse Fourier

transform applied to series (17),

w(X, y, t) =
1√
2π

∞∑
n=1

wn(X, y, t),

wn(X, y, t) =

∞∫
−∞

eiξUtan(ξ, t)ψn(ξ, y)eiξXdξ. (28)

Equations (15) and (21) show that ψn(ξ, y), ωn(ξ) and σn(ξ) depend actually on ξ2 and, therefore, they are

even functions of the Fourier transform parameter ξ. In the present case with the external load (7) being
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even in x, the function Hn(ξ) defined in (25) is even. The integrals in the series (28) can be transformed

to integrals from zero to positive infinity by using properties of the involved functions of ξ and the solution

(27),

wn(X, y, t) =

0∫
−∞

an(ξ, t)ψn(ξ, y)eiξxdξ +

∞∫
0

an(ξ, t)ψn(ξ, y)eiξxdξ =

=

∞∫
0

Hn(ξ)ψn(ξ, y)
( 2 cos(ξX)

ω2
n(ξ)− ξ2U2

+ (29)

ξU

2ω2
n(ξ)

[
eiξX

ei(ωn(ξ)+ξU)t

ωn(ξ) + ξU
− eiξX e

−i(ωn(ξ)−ξU)t

ωn(ξ)− ξU
+

+e−iξX
e−i(ωn(ξ)+ξU)t

ωn(ξ) + ξU
− e−iξX e

i(ωn(ξ)−ξU)t

ωn(ξ)− ξU

])
dξ.

The first, third and fifth terms in (29) can be singular for some values of the speed U and the mode number200

n but the singularities balance each other. The integrals wn(X, y, t) can be evaluated numerically for finite

t providing time-dependent deflection of the ice cover. In the present study, we are concerned with the

behaviour of the integrals (29) and finally the deflection (28) for large times, when t→∞ and X = O(1).

The integral (29) can be decomposed into five integrals which are, in general, understood as principal

value Cauchy integrals. For large n such that c
(n)
min > U , these five integrals are regular with ωn(ξ)± ξU > 0,205

where ξ > 0. The first integral is independent of t. The phase, ωn(ξ)+ξU , in the second and fourth integrals

is monotonic with positive derivative. By the method of integration by parts, we find that these two integrals

are of order of O(t−1) as t → ∞. The phase, ωn(ξ) − ξU , in the third and fifth integrals potentially may

change the sign of its derivative in the interval, 0 < ξ < ξmin. These integrals also decays with time but

slower that O(t−1) [18]. Finally,210

wn(X, y, t) = 2

∞∫
0

Hn(ξ)ψn(ξ, y)
cos(ξX)dξ

ω2
n(ξ)− ξ2U2

+ o(1), (30)

where t → ∞, c
(n)
min > U , and o(1) stands for the terms approaching zero with increase of time t. The

integrals (30) are evaluated numerically in the present study.

The asymptotic behaviour of the integral (29) as t→∞ and X = O(1) is more complicated if U > c
(n)
min.

In this case, the equation ωn(ξ) − ξU = 0 has two positive roots ξ
(n)
1 and ξ

(n)
2 , where ξ

(n)
1 < ξ

(n)
min < ξ

(n)
2 ,

see Figure 2. Note that the integrals of the second and fourth terms in (29) are not singular and their

contributions are estimated as O(t−1) as t→∞. Then (29) provides

wn(X, y, t) = 2V.p.

∞∫
0

Hn(ξ)ψn(ξ, y)
cos(ξX)dξ

ω2
n(ξ)− ξ2U2

−

V.p.

∞∫
0

Hn(ξ)ψn(ξ, y)
cos[ξX − t(ωn(ξ)− ξU)]

ωn(ξ)− ξU
ξUdξ

ω2
n(ξ)

+O(t−1), (31)
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where V.p. stands for Cauchy principal value integrals. To find the asymptotic behaviour of the second

Cauchy principal value integral, the interval of integration in (31) is divided into five subintervals:

V.p.

∞∫
0

dξ =

ξ
(n)
1 −b

(n)
1 (t)∫

0

dξ + V.p.

ξ
(n)
1 +b

(n)
1 (t)∫

ξ
(n)
1 −b

(n)
1 (t)

dξ+

+

ξ
(n)
2 −b

(n)
2 (t)∫

ξ
(n)
1 +b

(n)
1 (t)

dξ + V.p.

ξ
(n)
2 +b

(n)
2 (t)∫

ξ
(n)
2 −b

(n)
2 (t)

dξ +

∞∫
ξ
(n)
2 +b

(n)
2 (t)

dξ, (32)

where the functions b
(n)
1 (t) and b

(n)
2 (t) tend to zero together with their products with t

1
2 , and their products

with t tend to ∞ as t → ∞. The first, third and fifth integrals in (32) are regular integrals approaching

zero as t → ∞. Asymptotic behaviours of these three integrals as t → ∞ are obtained by integrating the

integrals by parts. The analysis is demonstrated below for the first integral, I(1)(X, y, t), in (32) with the

integration interval (0, ξ
(n)
1 − b(n)1 (t)). We introduce the regular function

Tn(ξ, y) = Hn(ξ)ψn(ξ, y)
ξ − ξ(n)1

ωn(ξ)− ξU
ξU

ω2
n(ξ)

,

which is finite in the interval [0, ξ
(n)
1 − b(n)1 (t)] including its ends. Integrating I(1)(X, y, t) by parts, we find

I(1)(X, y, t) =

ξ
(n)
1 −b

(n)
1 (t)∫

0

Tn(ξ, y)

ξ − ξ(n)1

cos[ξX − t(ωn(ξ)− ξU)]dξ =

=

ξ
(n)
1 −b

(n)
1 (t)∫

0

Tn(ξ, y)

(ξ − ξ(n)1 )(X − t[ω′n(ξ)− U ])
d {sin[ξX − t(ωn(ξ)− ξU)]} =

= O

(
1

tb
(n)
1 (t)

)
= o(1)

as t → ∞. Only second and fourth integrals in (32) may give non-zero contributions for large times. We

shall consider the second integral. The fourth one is evaluated in a similar way. In the second integral,

I(2)(X, y, t), we change the variable of integration to µ, where ξ = ξ
(n)
1 + b

(n)
1 (t)µ,

I(2)(X, y, t) = V.p.

∫ 1

−1
Tn(ξ

(n)
1 + b

(n)
1 (t)µ, y) cos[ξX − t(ωn(ξ)− ξU)]

dµ

µ
,

and estimate elements of the integral for large t,

Tn(ξ
(n)
1 + b

(n)
1 (t)µ, y) = Tn(ξ

(n)
1 , y) + o(1),

Tn(ξ
(n)
1 , y) =

Hn(ξ
(n)
1 )ψn(ξ

(n)
1 , y)

(ω′n(ξ
(n)
1 )− U)ξ

(n)
1 U

,

ξX − t(ωn(ξ)− ξU) = ξ
(n)
1 X − µ(ω′n(ξ

(n)
1 )− U)tb

(n)
1 (t) + o(1).

These estimates provide

I(2)(X, y, t) = Tn(ξ
(n)
1 , y) V.p.

∫ 1

−1
cos[ξ

(n)
1 X − µ(ω′n(ξ

(n)
1 )− U)tb

(n)
1 (t)]

dµ

µ
+ o(1) =

11



= 2Tn(ξ
(n)
1 , y) sin[ξ

(n)
1 X]

∫ 1

0

sin[µEn(t)]
dµ

µ
+ o(1),

where En(t) = (ω′n(ξ
(n)
1 )− U)tb(n)(t) is large as t→∞. Here∫ 1

0

sin[µEn(t)]
dµ

µ
= sgn(En)

∫ |En(t)|

0

sin(µ)dµ

µ
=

=
π

2
sgn(ω′n(ξ

(n)
1 )− U) + o(1),

where sgn(En) = 1 for En > 0 and sgn(En) = −1 for En < 0 , and t → ∞. The derivative ω′n(ξ) is known

as the group speed of the n-th mode for the wavenumber ξ. We use the notation c
(n)
gm = ω′n(ξ

(n)
m ), where

m = 1, 2. It can be shown that c
(n)
g1 < U and c

(n)
g2 > U . Then

I(2)(X, y, t) = −πTn(ξ
(n)
1 , y) sin[ξ

(n)
1 X] + o(1),

215

I(4)(X, y, t) = πTn(ξ
(n)
2 , y) sin[ξ

(n)
2 X] + o(1). (33)

Therefore, equation (31) for large times provides

wn(X, y, t) = 2V.p.

∞∫
0

Hn(ξ)ψn(ξ, y)
cos(ξX)dξ

ω2
n(ξ)− ξ2U2

+

+πTn(ξ
(n)
1 , y) sin[ξ

(n)
1 X]− πTn(ξ

(n)
2 , y) sin[ξ

(n)
2 X] + o(1). (34)

Therefore, the second, time-dependent integral in (31) converges to two waves which propagate along the

channel at the speed equal to the speed of the load. The formula (34) gives clear pattern of the stationary

deflection wn once the integral in it is decomposed into local and far-field response of the ice cover.

The integral in (34) is decomposed into five integrals as in (32) but now b
(n)
j , where j = 1, 2, are

independent of time. The value of the integral in (34) is independent of the values of b
(n)
1 and b

(n)
2 . The first,

third and fifth integrals are regular. They are evaluated numerically and their sum is denoted by J
(R)
n (X, y).

They decay as O(X−1), where |X| → ∞, and contribute to the local deflection near the load. The second

and fourth integrals are evaluated by using the definition of the Cauchy principal value integrals [19]. We

introduce two regular functions,

R(j)
n (ξ, y) =

2Hn(ξ)ψn(ξ, y)

ωn(ξ) + ξU

ξ − ξ(n)j

ωn(ξ)− ξU
,

where Rn(ξ
(n)
1 , y) = Tn(ξ

(n)
1 , y). Then using the definition of Cauchy principal value integrals,220

2V.p.

∞∫
0

Hn(ξ)ψn(ξ, y)
cos(ξX)dξ

ω2
n(ξ)− ξ2U2

=

ξ
(n)
1 +b

(n)
1∫

ξ
(n)
1 −b

(n)
1

R
(1)
n (ξ, y)−R(1)

n (ξ
(n)
1 , y)

ξ − ξ(n)1

cos[ξX]dξ+ (35)

+R(1)
n (ξ

(n)
1 , y) V.p.

ξ
(n)
1 +b

(n)
1∫

ξ
(n)
1 −b

(n)
1

cos[ξX]dξ

ξ − ξ(n)1

+

ξ
(n)
2 +b

(n)
2∫

ξ
(n)
2 −b

(n)
2

R
(2)
n (ξ, y)−R(2)

n (ξ
(n)
2 , y)

ξ − ξ(n)2

cos[ξX]dξ+

+R(2)
n (ξ

(n)
2 , y) V.p.

ξ
(n)
2 +b

(n)
2∫

ξ
(n)
2 −b

(n)
2

cos[ξX]dξ

ξ − ξ(n)2

+ J (R)
n (X, y).

12



The first and third integrals in (35) are regular. They decay as O(X−1), where |X| → ∞, and contribute

to the local deflection near the load similar to the term J
(R)
n (X, y). These two integrals are evaluated

numerically and their sum with J
(R)
n (X, y) is denoted by w

(loc)
n (X, y), see (31). Note that w

(loc)
n (X, y) is

an even function of X and y, and it decays as O(X−1) with the distance from the load, where |X| → ∞.

The Cauchy principal value integrals in (35) are evaluated by using the substitution ξ = ξ
(n)
j + b

(n)
j σ, where

j = 1, 2,

V.p.

ξ
(n)
j

+b
(n)
j∫

ξ
(n)
j
−b(n)

j

cos[ξX]dξ

ξ − ξ(n)j

= V.p.

∫ 1

−1
cos[ξ

(n)
j X + b

(n)
j Xσ]

dσ

σ
=

− sin[ξ
(n)
j X]

∫ 1

−1
sin[b

(n)
j Xσ]

dσ

σ
= −2 sin[ξ

(n)
j X]sgn(X)

∫ b
(n)
j
|X|

0

sin(u)
du

u
(36)

Substituting equations (35), (36) and the functions R
(j)
n (ξ

(n)
j , y) and Tn(ξ

(n)
j , y) in (34), we obtain the

deflection wn(X, y, t) for large times t as the sum of the deflection w
(loc)
n (X, y) localised near the load and

two waves propagating from the load,

wn(X, y, t) = w(loc)
n (X, y)−A(n)

1 ψn(ξ
(n)
1 , y) sin[ξ

(n)
1 X]G

(n)
1 (X)−

−A(n)
2 ψn(ξ

(n)
2 , y) sin[ξ

(n)
2 X]G

(n)
2 (X), (37)

A
(n)
j =

2πHn(ξ
(n)
j )

(ω′n(ξ
(n)
j )− U)ξ

(n)
j U

(j = 1, 2), (38)

G
(n)
1 (X) =

1

π
sgn(X)

∫ b
(n)
1 |X|

0

sin(u)du

u
− 1

2
,

G
(n)
2 (X) =

1

π
sgn(X)

∫ b
(n)
2 |X|

0

sin(u)du

u
+

1

2
. (39)

The products ψn(ξ
(n)
1 , y) sin[ξ

(n)
1 X] and ψn(ξ

(n)
2 , y) sin[ξ

(n)
2 X] in (37) correspond to the n-th mode of the wave225

propagating along the frozen channel. The wavenumbers of these waves are such that their phase speeds are

equal to the speed of the load U . The absolute values of A
(n)
1 and A

(n)
2 given by (38) are the amplitudes of

these waves. The amplitude A
(n)
j tends to infinity when the group speed ω′n(ξ

(n)
j ) approaches the speed of the

load, U . For such a wavenumber ξ, the phase speed and the group speed are equal, which is possible only at

the wavenumber for which the phase speed is minimum. This is, for the speed of the load being equal to the230

critical speed of the n-th wave. The linear theory of hydroelasticity without damping is not valid for the crit-

ical speeds of the load motions. The cut-off function G
(n)
1 (X) tends to minus one as X → −∞ and to zero as

X → +∞. The function G
(n)
2 (X) tends to one as X → +∞ and to zero as X → −∞. Note that these func-

tions depend on b
(n)
1 and b

(n)
2 , correspondingly. Therefore, the long wave, A

(n)
1 ψn(ξ

(n)
1 , y) sin[ξ

(n)
1 X]G

(n)
1 (X),

exists behind the load and the short wave, A
(n)
2 ψn(ξ

(n)
2 , y) sin[ξ

(n)
2 X]G

(n)
2 (X) is in front of the load. Both235

waves are stationary in the system moving together with the load at speed U .

The total deflection of the ice cover is the sum of the contributions from each mode, see (28). The

contributions of higher modes with c
(n)
min > U are the localised and even in x deflections (30) without

waves. Each mode with c
(n)
min < U contributes two waves, see (37), in addition to the localised contribution

13



w
(loc)
n (x, y), except of the lowest mode with n = 1 for which the long wave behind the load can be missing,240

see Figure 2 for explanations. The local contributions, w
(loc)
n (X, y), are calculated numerically for n ≥ 1.

The large-time asymptotic solution (28), (37) is for a load of a constant magnitude moving along the

channel at a constant speed. If the load is time dependent, then Hn(ξ, t) in (25) depends on time. If the

speed of the load is time-dependent, then the power of the exponent in (25), −iξUt, should be changed to

−iξs(t), where s(t) is the distance travelled by the load. In general, the problem of time-dependent moving245

load and the strain field caused by such a load are complex and difficult to analyse. Some progress can be

achieved for oscillating magnitude of the load,

P0(t) = P00(1 +A cos(ω′t)), (40)

where ω′ is the frequency and A is the relative amplitude of the oscillations, see [20]. It is convenient to show

the dependence of the solution (27) on the speed U and the load magnitude P0(t) explicitly, an(ξ, t, U, P0),

and notice that ξ is a parameter of the solution. Then the solution of the problem with the time-oscillating

load (40) can be obtained as the following combination of the solutions (27),

an(ξ, t, U, P0(t)) = an(ξ, t, U, P00)+

+
1

2
A
{
an(ξ, t, U − ω′/ξ, P00) + an(ξ, t, U + ω′/ξ, P00)

}
. (41)

The first term in (41) provides to the large-time deflections (37). The second and third terms are proportional

to the relative amplitude of the oscillation A and describe new systems of waves, which are not stationary250

in the moving coordinate system. These waves prorogate from the load at the relative speeds ±ω′/ξ. Each

term in (41) contributes to the localised deflection in the place of the load as t→∞.

In the problem of the load of constant magnitude P0 moving at time dependent speed U(1 + ε sin(ω′t))

which oscillates with a relatively small amplitude εU and frequency ω′, the distance travelled by the load is

s(t) = Ut− ε U
ω′

cos(ω′t).

Then the right hand side in (25) reads

Hn(ξ) exp
{
− iξ(Ut− ε U

ω′
cos(ω′t)

}
≈

≈ Hn(ξ)e−iξUt
{

1 + ε iξ
U

ω′
cos(ω′t) +O(ε2)

}
and can be interpreted as that one for a time-dependent load with the magnitude (40), where A = iξUε/ω′.

Then the decomposition (41) can be approximately used for the load moving with the oscillating speed. Note

that we do not consider here the critical conditions of the motion, when the linear theory of hydroelastic255

waves is not applicable.

4. Numerical results

Calculations are performed for the laboratory ice tank at the Sholem Aleichem Amur State University.

The length of the tank is 14 m. The tank is 1 m deep, H = 1 m, and 3 m wide, L = 1.5 m, with a typical
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ice thickness hi = 3 mm (see [21]). The water density is equal to ρl = 1024 kg/m3, and the ice density is260

ρi = 920 kg/m3. The Young modulus is taken as E = 4.2 · 109 N/m2 and Poisson’s ratio as ν = 0.33. The

rigidity of this ice sheet is D = 10.6 Nm and the characteristic length of the sheet is Lc = (D/ρg)
1
4 ≈ 18

cm. The external load (7) is applied over the square 20× 20 cm, which gives c1 = c2 = 15, moving along the

centre line of the tank.

The tank is infinitely long in the present calculations. Only even in y modes are considered. The265

calculated phase speeds, c(n)(ξ), for n = 1, 2, 3 are shown in the Figure 2. Here c
(1)
min = 1.81 m/s, c

(2)
min = 2.321

m/s and c
(3)
min = 3.446 m/s. The phase speed for the first mode and long waves is c(1)(0) = 3.44 m/s, which

should be compared with the critical speed of water waves in the tank,
√
gH = 3.13 m/s. It is seen that

long hydroelastic waves propagate at slightly higher speed than the water waves without the ice cover. This

effect is due to the rigidity of the ice cover and the presence of the side walls of the channel. Note that there270

is a single phase speed of flexural-gravity waves without the side walls, which approaches the critical speed

of waves in open water for long waves.

The elements of the large-time deflection in the coordinate system moving together with the load are

analysed for the load magnitude P0 = 100 N/m2 and the speed of the load U = 2 m/s. For this speed of the

load, only the waves corresponding to the first even mode are generated, see Figure 2 and equations (30) and275

(37). The wavenumbers of the corresponding waves of the first mode, which phase speeds are equal to the

speed of the load, are ξ
(1)
1 = 2.77 m−1 and ξ

(1)
2 = 5.96 m−1. These wavenumbers correspond to wavelength

of 2.29 and 1.06 m. The critical speed of the first wave mode is achieved at ξ
(1)
min = 4.25 m−1. The group

speeds of the generated waves are c
(1)
g1 = 1.23 m/s and c

(1)
g2 = 3.22 m/s. The amplitudes of these waves are

given by (38) and are equal to |A(1)
1 | = 9.66 · 10−4 m and |A(1)

2 | = 5.83 · 10−4 m. Note that the dimension280

of Hn(ξ) is m2/s2. Here A
(1)
1 is positive and A

(1)
2 is negative. The local contributions of the even modes,

w
(loc)
n (X, y), to the total deflection are shown in Figure 3 for for centre line of the channel, y = 0. These

contributions are even in X and quickly decay with the mode number.

Figure 3: Contributions of the second, third, fourth and fifth modes to the total deflection.

The cut-off functions G
(1)
1,2(x), see (39), for two cases, b

(1)
1 = b

(1)
2 = 0.5 and b

(1)
1 = b

(1)
2 = 1.5, and the

local contribution of the first mode, w
(loc)
1 (X, 0), for these two cases are depicted in Figs. 4 and 5. Note285

that the constants b
(1)
1 and b

(1)
2 in (39) are very different in those cases resulting in different elements of the
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Figure 4: (a) Cut-off functions G
(1)
1,2(x) given by (39) for b

(1)
1 = b

(1)
2 = 0.5. Thick lines are for the long wave behind the load,

G
(1)
1 (x), and the thin lines are for short wave in front of the load, G

(1)
2 (x). (b) Corresponding contribution w

(loc)
1 (X, 0).

Figure 5: The same as Fig. 4, but for b
(1)
1 = b

(1)
2 = 1.5.
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Figure 6: The total deflection of the ice by the present analysis along the centre line of the channel, y = 0, near the moving

load for large times with P0 = 100N/m2 (solid line). The corresponding deflection by the visco-elastic model of ice [8] with the

retardation time τ = 0.004 s is shown by the dotted line.

first-mode contribution. However the total deflection (28) along the centre line of the channel is the same,

see the solid lines in Fig. 6, as expected. The dotted line in Fig. 6 shows the ice deflection at the centre line

predicted for the same load by the visco-elastic ice model from [8] with the retardation time τ = 0.004 s. It

is seen that the deflection predicted by the present analysis without dissipation agrees with the visco-elastic290

solution very well. In the visco-elastic model, the short waves in front of the load decay quicker than the

longer waves behind the load.

The large-time strain distribution over the ice cover scaled with the yield strain of the ice, εcr, is shown

in Fig. 7 as a contour plot (a) and 3D plot (b). It is seen that the strains are maximum in front of the load

at the centre line of the channel.295

The directions of the maximum strains on the ice surface at different points are shown in Fig. 8. If the

local maximum strain at a point exceeds the yield strain, εcr, then a crack may appear at this location being

perpendicular to the shown direction. Possible cracks are parallel to the walls in the close proximity of the

wall and are perpendicular to the direction of the load motion far from the walls.

Fig. 7 shows that the maximum strains occur at the centre line of the channel in front of the moving300

load. The strains far from the load are described by the wave components given by the second and third

terms in (37). By using these wave components, we can readily calculate the maximum strains at different

locations across the channel for different loads and different speeds, see Fig. 9. This figure shows the scaled

maximum strains for the load (7) and speed of its motion from the critical speed of the first mode to the

critical speed of the third mode. The linear theory of hydroelasticity predicts unbounded strains for the305

critical speeds. It is interesting to note that the strains at the centre line in front of the load are always

greater that the strains on the wall. However, behind the load, the strains on the wall are greater than at

the centre line. The strains in front of the load are greater than behind the load even the amplitude of the

long wave behind the load is higher than the amplitude of the short wave in front of the load, see Fig. 7.

Therefore, the model of ice without dissipation predicts that the ice always breaks in front of the load. Even310

small dissipation, see Fig. 7, significantly reduces the strains in front of the load.
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Figure 7: Strain distribution over the ice cover.

Figure 8: Directions of maximum strains over the ice cover.
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Figure 9: The scaled strain maxima far from the load at different locations as functions of the load speed starting from the

lowest critical speed. The maximum strain far ahead the load at the centre of the channel is shown by the thick solid line, and

on the wall by dashed line. The maximum strain far behind the load at the centre of the channel is shown by the thin solid

line, and on the wall by dotted line.

The deflection of the ice cover for the speeds of the load below the first critical speed are shown in Fig.

10 together with the strains along the centre line of the channel and the walls. The figure confirms that the

deflections quickly decay with the distance from the load. Both the deflections and strains increase when

the load speed approaches the first critical speed from below. Even there are no wave components in the315

deflection for subcritical speeds, the deflection approaches the wave form with the wavenumber of the critical

speed of the first mode, ξ
(1)
min = 4.25 1/m. Note that only the absolute values of the strains are shown in the

figures.
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Figure 10: Distributions of ice deflections and strains in the ice plate for subcritical speeds of the load: (a) deflection of the

ice cover along the centre line of the channel, (b) scaled strain along the centre line of the channel, (c) scaled strain along the

wall of the channel.
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5. Conclusion

Large time asymptotic solution of three-dimensional problem of hydroelasticity for a channel covered320

with ice sheet has been studied. The deflection of the ice cover is caused by a load moving along the centre

line of the channel at a constant speed. The ice sheet is clamped to the vertical walls of the channel in this

study. It has been shown that the ice response strongly depend on the speed of the load and the value of the

speed with respect to the critical speeds of the flexural-gravity waves propagating along the channel. These

waves were studied in [7]. It was shown that, for the speed of the load below the lowest critical speed, the ice325

response to the moving load is localised near the load. When the load speed approaches the lowest critical

speed, the ice response grows in magnitude and exhibits hydroelastic wave corresponding to the lowest mode

with the length at which the phase speed of this wave is minimum. The present linear analysis does not

work for the load speed close to a critical speed of the hydroelastic waves in the channel. For the load speed

greater than the lowest critical speed but below the second critical speed, two systems of waves are formed330

in front and behind the moving load. Both waves propagate at the phase speed equal to the speed of the

load. The wave in front of the load is shorter and the wave behind the load is longer than the wave of the

lowest critical speed.

The short wave in front of the load has smaller amplitude but larger curvature than the longer wave

behind the load. The asymptotic analysis of the ice response, which is valid for long time after the load335

started its motion, provides the structure of the ice deflection near and far from the load. The large-time

ice response consists of the symmetric response localised near the load and two wave systems modulated

by smooth cut-off functions. The amplitudes of the waves in the far field were obtained analytically, which

simplifies the calculations of ice deflection and strain distributions at a distance from the load.

Once the load speed increases further, it becomes greater than the second critical speed. Then two new340

wave system corresponding to the second mode of hydroelastic propagating waves appear in addition to the

existing systems. The number of waves behind and in front of the load has been obtained for any speed of

the load.

The distribution of strains in the ice cover has been investigated. It was concluded that the ice breaks in

front of the moving load at the centre of the channel. This conclusion is valid for ice sheets with relatively345

small dissipation, when waves generated by the load can be observed well ahead of the load. Behind the

load, the strains are maximum on the vertical walls of the channel and are relatively low close to the centre

of the channel.

The obtained results without account for any dissipation are in good agreement with the results obtained

earlier [8] within the Kelvin-Voight model of visco-elastic ice, when the retardation time is small. The ice350

deflection and strains are difficult to compute numerically by this visco-elastic model for small dissipation

but can be easily estimated within the asymptotic analysis of this study. The strains computed without

account for dissipation effects are larger than actual strains. They can be used to estimate conditions of safe

transportation along frozen channels.

The load moves along the central line of the channel in this paper. One can expect that the strain in355

the ice cover are smaller, where the load moves closer to one of the channel walls. Therefore, the present
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estimates of the bearing capacity of the ice cover in the channel could provide the upper bound of strains for

any distance of the load motion from the walls. This problem should be carefully investigated in the future

studies of hydroelastic waves.
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