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Exploring the Future Electric Vehicle Market and its 
Impacts with an Agent-based Spatial Integrated Framework: 
A Case Study of Beijing, China 

Abstract 

This paper investigates the potential expansion and impacts of Electric Vehicle (EV) market in 

Beijing, China at the micro level with an agent-based integrated urban model (SelfSim-EV), 

considering the interactions, feedbacks and dynamics found in the complex urban system. Specifically, 

a calibrated and validated SelfSim-EV Beijing model was firstly used to simulate how the EV market 

might expand in the context of urban evolution from 2016 to 2020, based on which the potential 

impacts of EV market expansion on the environment, power grid system and transportation 

infrastructures were assessed at the multiple resolutions. The results suggest that 1) the adoption rate 

of Battery Electric Vehicle (BEV) increases over the period, whereas the rate of Plug-in Hybrid 

Electric Vehicle (PHEV) almost remains the same; Furthermore, the so-called neighbour effects 

appear to influence the uptake of BEVs, based on the spatial analyses of the residential locations of 

BEV owners; 2) the EV market expansion could eventually benefit the environment, as evident from 

the slight decrease in the amounts of HC, CO and CO2 emissions after 2017; 3) Charging demand 

accounting for around 4% of total residential electricity demand in 2020 may put slight pressure on 

the power grid system; 4) the EV market expansion could influence several EV-related transport 

facilities, including parking lots, refuelling stations, and charging posts at parking lots, in terms of 

quantity, layout and usage. These results are expected to be useful for different EV-related 

stakeholders, such as local authorities and manufacturers, to shape polices and invest in technologies 

and infrastructures for EVs.  

Keywords: Electric Vehicle Market; Agent-based Model; Environmental Impact; Power Grid System; 

Transport Infrastructure; Beijing; SelfSim 
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1 Introduction  

1.1 Background  

  Electrification of transport in cities has received increasing attention over the past few years. Many 

countries, including China (Cazzola and Gorner, 2016), the UK (The-Guardian, 2017) and Norway 

(Mersky et al., 2016), have tried to promote both the usage and purchase of Electric Vehicles (EVs) 

mainly through policies (e.g., subsidies) (Hao et al., 2014), technologies (e.g., on-board batteries) 

(Chéron and Zins, 1997) and infrastructures (e.g., charging posts) (Bakker et al., 2011). In is hoped 

that EV could become an alternative to Convectional Vehicle (CV), so as to benefit the environmental 

and energy systems at both local and global levels (Zhuge and Shao, 2019). Note that in this paper EV 

particularly refers to Battery Electric Vehicle (BEV) and Plug-in Hybrid Electric Vehicle (PHEV), as 

both of them have an on-board battery that can be recharged through charging posts (Zhuge and Shao, 

2018a; Zhuge and Shao, 2019). In order to provide EV-related stakeholders, such as local authorities 

and vehicle manufacturers, with tools, information and evidence to support their policy marking and 

investment in technologies and infrastructures, a great deal of research has been conducted, primarily 

involving in the adoption of EVs (see Section 1.2 below) and the potential impacts of the EV adoption 

on the environment, power grid system and urban infrastructures (see Section 1.3 below).  

1.2 Previous Studies of the EV Adoption 

  Essentially, the studies of the adoption of EVs were focused on the two aspects: 1) the factors that 

might influence the purchase behaviour and 2) the ways to predict the adoption rate.  

  The EV purchase behaviour could be influenced by a wide variety of factors, including vehicle price 

(Sun et al., 2017), driving experience (Degirmenci and Breitner, 2017; Matthews et al., 2017), social 

influences (Li et al., 2013), and the environmental awareness (Degirmenci and Breitner, 2017; Smith 

et al., 2017), as recently reviewed in (Biresselioglu et al., 2018; Li et al., 2017; Zhuge and Shao, 

2019). Identifying these influential factors could help to develop methods and models to predict the 

EV penetration rates, as the factors can be used as the independent variables of an EV market model.  
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  As reviewed by Al-Alawi and Bradley (2013), agent-based model, discrete choice model (e.g., 

multinomial logit model) and diffusion rate model (e.g., the Bass model) have tended to be the three 

of the most-used approaches to the EV market forecasting (or predicting the market share). The 

former two try to simulate the decision-making of individuals at the micro scale; while the latter tries 

to predict the EV penetration rate at the macro level. Agent-based modelling has been increasingly 

viewed as a promising approach to investigating complex dynamic systems (Farmer and Foley, 2009; 

Heppenstall et al., 2011; Waldrop, 2018). The EV market is such a complex system in which several 

EV-related stakeholders interact with each other, including consumers (Eppstein et al., 2011; McCoy 

and Lyons, 2014), governments (Zhang et al., 2011), manufacturers (Zhang et al., 2011), fuel 

suppliers (Sullivan et al., 2009) and urban planners (Adepetu et al., 2016), and therefore agent-based 

modelling has been widely used to investigate the EV market (Al-Alawi and Bradley, 2013). In the 

agent-based EV market models, consumer tends to be the core agent type, as it makes decision on 

vehicle purchase, and can also directly or indirectly interact with the other EV-related stakeholders. 

Utility maximization theory (Aleskerov et al., 2007) appears to be one of the most-used approaches to 

simulating the behaviour of agents in the EV market models with the assumption that consumer 

agents always choose their vehicles with the highest utilities. For example, Adepetu et al. (2016) used 

a utility function that considered the vehicle attributes (e.g., driving range) as variables to simulate the 

decision-making of consumer agents on vehicle purchase; Similarly, Brown (2013) used a discrete 

choice model (specifically a mixed logit model), which incorporated the utility maximization theory, 

to predict the vehicle choices of consumer agent.  

  As reviewed above, although a wide variety of models and methods have been developed to 

investigate the EV market expansion at both the micro and macro levels, these models were generally 

only focused on the EV market, paying little attention to the interactions or connections between the 

EV market and those associated urban elements, such as population system and land use. This could 

lead to an inaccurate estimation of the EV market penetrate rate from a dynamic perspective, as the 

changes in those associated urban elements could also influence the EV market expansion. For 

example, as the population system evolves over time, the demographic characteristics of individuals 
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could change, which would further give rise to the change in the purchase behaviour of EV. More 

importantly, all of these urban elements above interact with each other and evolve over time, making 

the studies of the EV market expansion more complex than generally expected. Therefore, an 

integrated urban model would be useful here for a better estimation of the EV penetration rate, 

considering the interactions, feedbacks and dynamics found there.  

1.3 Previous Work on Assessing the Impacts of the EV Adoption  

  The EV market expansion may benefit the environment at both global and local levels (Zhuge and 

Shao, 2019). The rising market share of EVs may reduce the CO2 emissions, but the potential 

reduction depends on the electric power plant fleet. For example, Casals et al. (2016) found that some 

EU counties, such as Germany and the UK, could not benefit immediately from the uptake of EV, as 

these countries needed to put more efforts into decarbonizing their power plant fleet. Similarly, 

Doucette and McCulloch (2011)’s findings also suggested that the reduction in the CO2 emissions 

might not occur until those highly CO2 intensive countries, such as China, could decarbonize their 

power plant fleet. Coupling renewable energy (e.g., solar and wind energy) with EVs appears to a 

promising way to reduce the CO2 emissions (Lund and Kempton, 2008), as the electricity generation 

would produce significantly less CO2 emissions. For example, Chen et al. (2018) found that a 

significant reduction in CO2 emissions could be expected at several levels of wind penetration, using 

China as a case study. At the local level, the widespread adoption of EVs may improve the local air 

quality and thus benefit human health. As found by Ferrero et al. (2016), only a high EV market share 

(e.g., 50%) could have a substantial reduction in the pollutant concentrations. However, a lower EV 

penetration rate was still helpful especially during those intense pollution episodes. In addition, 

Holland et al. (2016)’s work suggested that people with different incomes and EV subsidies could 

receive different local environmental benefits from EVs. 

   Integrating EVs into the power grid system could increase the demand for infrastructures and 

equipment for generating and transmitting the electricity (Muratori, 2018), as the grid system needs to 

accommodate the additional charging demand from EVs. In general, the potential impacts of the EV 

market expansion on the power grid system were assessed within various “what-if” scenarios, 
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including wind power scenario (Chen et al., 2018), price- and incentive-based demand response 

scenario (Shafie-khah et al., 2016), Vehicle-to-Grid (V2G) scenario (Lund and Kempton, 2008), and 

dumb grid scenario (Galus et al., 2010; Qian et al., 2011). For example, Qian et al. (2011) found that 

10% and 20% market shares of EV could result in 17.9% and 35.8% increases in peak load in a dumb 

grid scenario (where no measures were taken to optimize the integration of EV), respectively. V2G 

(Pillai and Bak-Jensen, 2011), which enables EVs to sell electricity back to the grid, has been 

increasingly viewed as a promising technology to address some critical issues in the dumb grid system, 

such as voltage problems (Clement-Nyns et al., 2011). Also, V2G could economically benefit EV 

owners through the reduction in electricity prices (Wolinetz et al., 2018).  

  In addition, the rising EV market share could also give rise to the increase of the demand for 

charging facilities, but the decrease of the demand for refuelling stations, due to the potential 

competitions and interactions between charging and refuelling facilities (Zhuge and Shao, 2018a). 

Previous studies have looked at several different charging facilities, including charging lanes (Chen et 

al., 2016), battery swap stations (Hof et al., 2017; Yang and Sun, 2015), enroute fast charging stations 

(Bae and Kwasinski, 2012), charging stations for electric taxis (Asamer et al., 2016), and show 

charging posts at parking lots (Chen et al., 2013). These studies generally tried to locate the charging 

facilities with several different objectives, including minimizing the total number of the missed trips 

of EV drivers (Dong et al., 2014), minimizing the social cost (Chen et al., 2016), minimizing the total 

cost of charging facility, and satisfying as much charging demand as possible (Asamer et al., 2016; 

Cavadas et al., 2015). Also, some constraints were also imposed on the deployment of charging 

facilities, including a limited budget (Cavadas et al., 2015; Chen et al., 2016) and a fixed number of 

charging stations to be added (Asamer et al., 2016). 

  Since the EV market expansion and its impacts are closely linked, some attempts have been made to 

simultaneously investigate the EV adoption and its potential impacts. For example, Wolinetz et al. 

(2018) pointed out that the consumer behaviour might influence the magnitude of the impact of V2G, 

and therefore tried to assess the impact within an integrated framework, which combined a vehicle 

adoption model, a charging behaviour model and an electricity system model. However, these studies 
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still did not fully connect the EV market expansion to its impact assessment, and thus were not able to 

provide the EV-related stakeholders (e.g., local authorities, utility companies and vehicle 

manufacturers) with full information for their decision-makings. Therefore, this paper attempts to 

simultaneously investigate the potential expansion and impacts of EV market within an integrated 

framework. Here, the potential impacts of market expansion on the environment, power grid system 

and urban infrastructures will be fully assessed in a dynamic way, as the EV market expands. 

1.4 Comments on Previous Work 

  As reviewed and discussed in Sections 1.2 and 1.3, the existing studies of EV market expansion and 

its impacts were limited in 1) ignoring the interactions and linkages between the EV market and those 

associated urban elements, such as land use and population systems and 2) investigating the expansion 

and impacts of EV market separately. These limitations could lead to an inaccurate estimation of the 

EV penetration rate through time and also a limited understanding of the impacts of the EV market. In 

response to these limitations, this paper attempts to simultaneously explore the future EV market and 

its impacts with an agent-based integrated urban model (SelfSim-EV) (Zhuge and Shao, 2018a; Zhuge 

and Shao, 2018b; Zhuge et al., 2016), involving in six EV-related urban sub-systems, namely 

transportation, land use, population, economy, energy and energy systems, so as to take into account 

the feedbacks, dynamics and interactions found there. It is expected that the model outcomes could be 

more systematic and comprehensive and thus would be more useful for those EV-related stakeholders 

involved, such as local authorities and vehicle manufacturers.  

  The capital of China, Beijing, will be used as a case study, as the Beijing government appears to act 

actively in promoting both the purchase and usage of EVs (Sun et al., 2017; Zhang et al., 2018; Zhuge 

and Shao, 2019). This paper will be focused on one specific scenario with the assumption that the 

Beijing urban system (including the EV market and its associated urban sub-systems) would evolve as 

before during the period from 2016 and 2020. Such a scenario could be viewed as a reference scenario 

(or baseline), which can be further compared to various “what-if” scenarios, which investigate how 

different factors, such as the EV-related policies, technologies and infrastructures, may influence the 

EV market expansion and its impacts. 
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2 An Agent-based Integrated Urban Model (SelfSim-EV) for 

Investigating the Expansion and Impacts of EV Market  

2.1 Framework of SelfSim-EV 

  Figure 1 shows the framework of SelfSim-EV, which is updated from an agent-based land use and 

transport model, SelfSim (Zhuge et al., 2016), by incorporating several EV-related modules, including 

an EV market model, a social network evolution model and a transport facility development model. 

Essentially, SelfSim-EV is composed of initialization and simulation modules: the initialisation 

module actually is a virtual city creator, which is used to generate an agent- and GIS-based virtual city 

containing individuals, households and facilities, as well as their attributes (e.g., sex and facility 

capacity) and relationships (e.g., social networks): see Zhuge et al. (2018b) and Zhuge et al. (2018a)’s 

work for more details; the simulation module comprises several spatial explicitly urban models, 

including a demographic evolution model (Zhuge and Shao, 2018b), a joint model of Residential 

Location Choice and Real Estate Price (RLC-REP) (Zhuge and Shao, 2018b), a social network 

evolution model, an EV market model, an activity-based travel demand model (MATSim-EV) (Horni 

et al., 2016; Zhuge and Shao, 2018a; Zhuge et al., 2017), an activity facility development model and a 

transport facility development model (Zhuge and Shao, 2018a), which form an annual loop to 

simulate how the urban system evolves over time, with a particular focus on the EV market expansion 

and its impacts on the environment, power grid system and transport infrastructures.  
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Figure 1 Framework of the SelfSim-EV Model (Zhuge and Shao, 2018a; Zhuge and Shao, 2018b; 
Zhuge et al., 2018a) 

  Given a virtual city generated by the creator, SelfSim-EV works in the following way: first, the 

demographic evolution model is used to simulate some typical demographic transitions such as birth, 

employment, marriage and immigration (see Zhuge and Shao (2018b)’s work for model specification 

and test); then the joint model of RLC-REP is used to simulate how purchaser, renter, investor, 

landlord and seller agents interact with each other in the dynamic housing market, resulting in new 

residential locations and also selling  prices and rents of houses (see Zhuge and Shao (2018b)’s work 

for model specification and test); Next, the social network evolution model, which is updated from a 

static social network generator proposed by Zhuge et al. (2018b), is used to simulate how individuals 

build and dissolve their friendships at the micro level, using a utility function considering the 
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similarity in individual attributes (e.g., income) and spatial closeness of their residential location and 

workplaces (Zhuge et al., 2018b); further, the EV market model is used to simulate how consumer 

agents make decision on vehicle purchase, considering the interactions among consumer, government 

and manufacturer agents (see Section 2.2 below); Then the activity-based model, MATSim-EV, 

which is an EV version of MATSim (Multi-Agent Transport Simulation) (Horni et al., 2016), is used 

to simulate how people perform their daily activities (e.g., shopping and work) and travel from one 

activity location to another using different transport modes, including both EVs and CVs (Zhuge and 

Shao, 2018a). More detailed introduction to MATSim can be found in (Horni et al., 2016); Finally, 

the activity facility development model and transport facility development model are used to develop 

(add or remove) activity and transport facilities, respectively. Note that the activity facility 

development model has not been implemented yet, so the activity facilities for each simulation will be 

input when SelfSim-EV is initialised. A detailed introduction to the transport facility development 

model can be found in the work of Zhuge and Shao (2018a).  

  The key roles of these SelfSim-EV sub-models in the investigation of the EV market expansion and 

its impacts are described as follows: 1) the outputs from the demographic evolution model are some 

key socio-demographic characteristics (e.g., age and income), which are associated with several 

behavioural rules of agents (e.g., vehicle consumer and EV driver) in SelfSim-EV. For example, some 

socio-demographic attributes have been used as the variables of discrete choice models (e.g., 

multinomial logit model) (Bierlaire, 1998) for the simulation of parking and charging behaviours of 

both BEVs and PHEVs in the MATSim-EV simulation; 2) the household residential locations can be 

obtained from the RLC-REP model and can be further used for, for example,  the spatial analysis of 

EV owners and charging demand. Also, the potential neighbour effects in the adoption of EVs (Axsen 

et al., 2009; Mau et al., 2008) can also be quantified with the residential locations; 3) the outputs from 

the social network evolution model can be further used to quantify the potential social influence on 

the adoption of EVs through individual social networks (Axsen and Kurani, 2012; Axsen et al., 2013; 

Pettifor et al., 2017), as the social influence is considered as a utility term associated with the 

decision-making of consumer agents in the EV market (see Equation (1) below). The EV market, 
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MATSim-EV and transport facility development models are directly used for simulating the EV 

maker expansion and assessing its impacts, which will be introduced in more details in Sections 2.2 

and 2.3 below.   

2.2 Simulation of the EV Market Expansion 

  As aforementioned, the agent-based EV market model is used to simulate whether consumer agents 

would purchase vehicles or not, and if yes, which vehicle type to purchase, considering the 

interactions with the government and vehicle manufacturer agents in the vehicle market. The market 

is assumed to have three vehicle types, namely BEV, PHEV and CV. As shown by Figure 2, the EV 

market model is composed of two stages: At Stage 1, each agent in the population will be firstly 

screened and only those agents passing all of the three conditions (e.g., driving license) can become 

the consumer agents entering the vehicle market; At Stage 2: these consumer agents will interact with 

the other EV-related stakeholders in the vehicle market: first, consumer agents will decide which 

vehicle type to purchase using a utility function considering four key factors, namely, social influence 

( SocialInfluenceU ), driving experience ( DailyPlanU ), vehicle purchase price (PurchasePriceU ) and 

environmental awareness (EnvironmentU ), as well as a random term (RandomU ), as presented by Equation 

(1); then the government agent will update the EV subsidies according to the EV adoption rate, and 

the vehicle manufacturer agents will update their EV and CV prices according to the purchase demand 

(or market penetration rate). The EV subsidies and vehicle sale prices will be fed back to consumer 

agents in the next simulation year, and the difference between the subsidy and sale price will be the 

purchase price ( PurchasePriceU ). 

  In the utility function for the decision-making of consumer agents, DailyPlanU  and EnvironmentU are 

calculated based on the activity-based travel demand model (MATSim-EV), which executes and 

scores the daily plans of each agent in the population, resulting in the moving trajectories of each 

agent throughout the whole day: see Horni et al. (2016)’s work for more details. A daily plans 

contains the detailed information on how the agent performs its daily activities (e.g., shopping) and 

travels from one activity location to the next using different transport modes (e.g., EVs and public 
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transport). MATSim-EV uses a utility function of travel and activity to score daily plans (see Horni et 

al. (2016) for a detailed introduction to the utility function). Therefore, consumer agents can compare 

the utilities of their daily plans (DailyPlanU ) with different vehicle types. It is worth noting that the 

limited driving range of EVs is considered in DailyPlanU : those BEV drivers, who use up electricity 

before they reach their trip destinations where charging facilities are available, would receive very 

high negative utilities. As a result, the BEV drivers will have very low DailyPlanU , and thus will be 

discouraged to purchase or use BEVs. For PHEV drivers, they will receive very low DailyPlanU  only 

when they use up both electricity and petrol. In addition, social influence has been found as an 

important factor to the uptake of EVs (Axsen et al., 2013; Pettifor et al., 2017; Zhuge and Shao, 2019), 

and thus are also considered as a utility term (SocialInfluenceU ), which is calculated based on the social 

network evolution model, as mentioned before.  

Vehicle SocialInfluence DailyPlan PurchasePrice Environment RandomU U U U U U= + + + +                        (1) 

 

Figure 2 Framework of the EV Market Model 
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2.3 Ways to Assess the Impacts of EV Market Expansion with SelfSim-EV 

  The potential impacts of EV market expansion on the environment (see Section 2.3.1), power grid 

system (see Section 2.3.2) and transport infrastructures (see Section 2.3.3) can be assessed with 

SelfSim-EV in the following ways: 

2.3.1 Impact on the Environment 

  The environmental impact can be assessed based on the simulation of individual travel behaviour (or 

the MATSim-EV simulation) (Horni et al., 2016). Specifically, the energy state of each vehicle is 

traced in the simulation when they move from one activity location to another in order to perform 

their daily activities (e.g., shopping and work) at different places, as illustrated by Figure 3. An energy 

consumption factor, which is the function of travel speed, is used here to calculate the real-time 

electricity or petrol consumption for each vehicle when they are moving on the road network (Yao 

and Song, 2013; Yao et al., 2013). Similarly, a vehicular emission factor, which is also a function of 

travel speed (Yao and Song, 2013), is used to calculate the amount of vehicular emissions when 

vehicles consume fuel (Zhuge and Shao, 2018a). SelfSim-EV considers four typical types of vehicular 

emission, namely HC, CO, CO2 and NOx. The energy consumption factor and emission factor in 

MATSim-EV are from the work of Yao and Song (2013) and Yao et al. (2013). In addition, the street-

level emissions from the model can be aggregated at the traffic zone-, district- and city- levels, so as 

to understand the environmental impacts at multiple spatial resolutions. 
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Figure 3 An Example Illustrating the Moving Trajectory of a Vehicle Agent and its Energy 

Consumption and Emission in MATSim-EV (Zhuge et al., 2018a) 

2.3.2 Impact on Power Grid System 

  As mentioned above, the energy state of each vehicle can be traced within the activity-based travel 

behaviour simulation (or the MATSim-EV simulation) (Horni et al., 2016), based on which the 

charging demand of each EV can be estimated at both the enroute fast charging stations and the 

parking lots with charging posts established (at trip destinations), as shown by Figure 3. The spatially 

and temporally disaggregate charging demand can be further aggregated at the traffic zone-, district- 

and city- levels. Such information can be used to assess the potential impacts of the integration of EVs 

on the power grid system at both micro and macro scales, and should be useful, for example, for 

electricity management and planning on charging facilities. 

2.3.3 Impact on Transport Infrastructures  

  The increasing adoption of EVs may give rise to the increase in the demand for charging facilities, 

such as enroute fast charging stations and slow charging posts at trip destinations (or parking lots). 

Meanwhile, the demand for refuelling stations may decrease because of replacing CVs with EVs 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

14 

 

(Zhuge and Shao, 2018a). In other words, the interactions and competitions between refuelling and 

charging facilities may occur, as the widespread adoption of EVs. In order to quantify the potential 

influence of the EV market expansion on those EV-related transportation facilities with the 

consideration of the interactions and competitions, the transport facility development model 

developed by Zhuge and Shao (2018a) is used here. The model considers four types of EV-related 

transport facilities, namely parking lots, refuelling stations, enroute fast charging stations and slow 

charging posts at parking lots, as shown by Figure 3. The model results, which can also be presented 

at station-, parking lot- , traffic zone-, district- and city- levels, should be helpful for local authorities 

and urban planners to locate and optimize the EV-related transport facilities, so as to promote the 

purchase and usage of EVs.    

3 Case Study of Beijing, China  

3.1 Scenario Description  

  The capital of China, Beijing was used as a case study. The scenario used 2015 as the base year, and 

simulated the EV market expansion during the period from 2016 to 2020 (which is the planning 

period of the China’s thirteenth Five-Year Plan), with a calibrated and validated SelfSim-EV Beijing 

model. Specifically, SelfSim-EV was calibrated in two ways: 1) several behaviour types of individual 

and household agents, including the purchase behaviour of consumer agents, and the parking and 

refuelling/charging behaviours of CV, PHEV and BEV, were calibrated with the data collected in two 

questionnaire surveys in Beijing from September 2015 to March 2016. For example, the empirical 

findings from the survey on vehicle purchase (see (Zhuge and Shao, 2019) for more details) was used 

to calibrate the utility function of consumer agents (see Equation (1)), which was used to simulate 

their decision-makings on vehicle type; 2) SelfSim-EV was also calibrated by fitting some macro data 

from 2011 to 2014 on vehicle prices, vehicle sales, EV subsidies, the numbers of different transport 

facilities (e.g., parking lots) and real estate prices at both district- and city-levels, using a Sensitivity 

Analysis (SA)-based method (Zhuge and Shao, 2018a; Zhuge and Shao, 2018b). Further, the 

calibrated model was validated in 2015 using the same data type. The Mean Absolute Percentage 
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Errors (MAPEs) for model calibration and validation were 5.5% and 9.6%, respectively, exhibiting a 

relatively satisfactory performance.  

  The scenario in this paper continued to run the calibrated and validated SelfSim-EV Beijing model 

from 2016 to 2020, with the assumption that the Beijing urban system would evolve as before. The 

results would be useful for attaining the goal of promoting EVs, as established in the thirteenth Five-

Year Plan of China. Note that the scenario here is not to exactly predict the future EV market, but is to 

explore the likely EV market in the near future, as well as its potential impacts on the environment, 

power grid system and transport infrastructures, as the future of such a complex urban system is rather 

difficult to predict. It is also worth noting that the SelfSim-EV model was run ten times and the 

averages of these ten simulations were used as the final results, in order to take into account the 

potential stochastic effects (or model variability). In addition, the model performance was examined 

again by comparing the predicted and observed data on the EV market and the EV-related transport 

facilities in 2016, suggesting that the ability to predict is satisfactory with a MPAE of 6.3% (see Table 

5 in Appendix 2.1 for more details).  

  The outputs of SelfSim-EV simulation in 2015 were used as the inputs of the Beijing scenario here, 

and can be viewed as an agent- and GIS- based virtual Beijing. Note that all of the facilities (including 

both transport and activity facilities) in SelfSim-EV are assumed to be located at road nodes (or 

interactions), meaning that agents need to travel from one node to another in order to perform 

activities in different node-based facilities (Zhuge and Shao, 2018a; Zhuge and Shao, 2018b; Zhuge et 

al., 2018a; Zhuge et al., 2018b). Figure 4 shows a specific element in the virtual Beijing: each dot in 

the map, which is based on road node or interaction, represents a residential building with the capacity 

information attached. 

  Apart from the virtual Beijing in 2015, the future-year SelfSim-EV simulations need the macro-level 

constraints on demographical attributes and activity facilities, which are used to simulate the 

demographic evolution and the activity facility development, respectively. The constraints were 

forecast using the Autoregressive Integrated Moving Average (ARIMA) model (Box et al., 2015; Wei, 

1994) with the time series data extracted from relevant statistical yearbooks. The forecasting was done 
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within R software package (Shumway and Stoffer, 2010). The synthetic data on demographical 

attributes and activity facilities for future-year simulations can be found in Appendix 1.  

 

Figure 4 Spatial Distribution of Residential Buildings in the Virtual Beijing in 2015 

3.2 Potential EV Market Expansion from 2016 to 2020 

3.2.1 Aggregate Results about the Market Expansion 

  Figure 5 shows the aggregate data on the EV market expansion from 2016 to 2020, including EV 

subsidies, vehicle sales and vehicle prices. For vehicle sales, the CV sale decreases at the beginning 

and starts to level off after 2018, while the BEV sale rises at the beginning and starts to level off after 

2018. This is mainly due to the constraints on both CV and BEV purchase permits (or the license plate 

lottery policy) (Yang et al., 2016; Zhang et al., 2018). Note that CV purchase permits mentioned in 

this paper refers to the permits for both CVs and PHEVs, as PHEVs are treated as CVs in Beijing in 

both the license plate lottery policy and the subsidy scheme for EVs (but PHEV purchasers do receive 

national subsidies). However, the number of PHEVs almost remains zero over the period, as PHEVs 
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are significantly less competitive than CVs when they share a fixed number of vehicle purchase 

permits. One of the main reasons is probably that PHEVs have a relatively higher price, though some 

subsidies are provided by the national government. For vehicle prices, the CV and BEV prices level 

off from 2016 to 2017, due to the specific mechanism of the EV market model (specifically, the EV 

market model updates the vehicle prices based on the difference of market penetration rates in two 

consecutive years), but their prices start to goes down and up in 2017, respectively, and then level off 

again. The changes in the prices in 2017 are caused by the changes in their penetration rates. In 

addition, the PHEV price remains the same over the period due to its penetration rates of nearly zero. 

For EV subsidies, the BEV subsidy decreases gradually over time, due to the increasing BEV 

adoption rate; while the PHEV subsidy almost remains the same due to the almost unchanged PHEV 

adoption rate over the period. In order to further examine the stochastic effects, the standard 

deviations of the 10-run SelfSim-EV results about the EV market expansion from 2016 to 2020 are 

calculated, suggesting that the simulation outcomes of the 10 runs tend to be close to the averages, 

and the model stochastic uncertainty is unlikely to heavily influence the outcomes: see Figure 18 in 

Appendix 2.2.1 for more details. 

  In addition, the ability of the EV market model to predict is somewhat evaluated with the latest 

observed figures as follows: the numbers of BEV and CV purchase permits allocated in 2017 was 

82,800 and 51,000, which are almost the same as the simulated BEV and CV sales, respectively; the 

observed BEV price in 2017 was 228,722 RMB (note that this was the average price of 25 BEV types 

sold in 2017), which is quite close to the simulated BEV price of 211,088 RMB; The simulated BEV 

subsidy in 2017 is 83,334 RMB, which was a little over the observed subsidy of 66,667 RMB. The 

predict ability in 2017 appears to become weaker, compared to that in 2016 (see Appendix 2.1). 

However, it should be noted that the scenario here was to explore the likely future EV market and its 

potential impacts, with the assumption that the urban system would evolve as before. Exact prediction 

tends to be impossible in such a dynamic complex system, and thus was not expected. The scenario 

here is planned to be used as a baseline and be further compared to “what-if” scenarios considering 
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the influence of different EV-related policies (e.g., subsides), technologies (e.g., battery capacity) and 

infrastructures (e.g., battery swap station) on the uptake of EVs and further its impacts.   

  

(a) Vehicle Sales (b) Vehicle Prices 

 

 

(c) EV Subsidy 
Figure 5 The EV Market Expansion from 2016 to 2020 

3.2.2 Spatial Analysis of the EV Market Expansion: Neighbour Effects 

  The EV marker expansion is further analysed from a spatial perspective, based on the residential 

locations of vehicle owners, in order to examine the so-called neighbour effects: For an agent, it may 

be more likely to purchase an EV if its neighbours have EVs (Axsen et al., 2009; Mau et al., 2008; 

Zhuge and Shao, 2019). By comparing the spatial distributions in Figure 6-(a) and -(b), it can be seen 

that that some clusters become bigger from 2016 to 2020, due to new added dots (or BEV purchasers), 

suggesting that the so-called neighbour effects may influence the purchase behaviour of BEVs. Such 

neighbour influences can also be found in the adoption of BEVs at the district level, as shown by 

Figure 7 that aggregates, groups and maps the numbers of vehicle owners for each district. Note that 

the numbers are grouped by a K-means clustering algorithm (Kanungo et al., 2002). Specifically, the 

BEV adopters in 2016 are mostly resident in the four districts (namely Chaoyang, Haidian, 

Shijingshan and Tongzhou) as highlighted in darker blue; whereas the number of districts highlighted 
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in darker blue grows to nine in 2020 with the five new added districts (namely Dongcheng, Xicheng, 

Fengtai, Daxing and Fangshan), which are close to the four initial districts. However, such neighbour 

influences are not significant in the adoption of PHEVs. This is likely because PHEVs are not very 

attractive, compared to BEVs.  

  More details on the spatial distributions of PHEV and CV owners at the multiple resolutions can be 

found in Appendix 2.2.2. Such spatially explicit results could be useful for both local authorities and 

electricity utilities to shape policies and invest in private charging facilities for EVs. 

  

(a) BEV Owners in 2016  (b) BEV Owners in 2020 
Figure 6 Spatial Distributions of BEV Owners in 2016 and 2020 at the Facility Level 
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(a) BEV Owners in 2016  (b) BEV Owners in 2020 
Figure 7 Spatial Distributions of BEV Owners in 2016 and 2020 at the District Level 

3.3 Impacts of EV Market Expansion on Transport Facilities: Quantity, 

Layout and Usage 

  The market expansion has little impact on neither refuelling stations nor enroute fast charging 

stations (and thus the results are not presented here), in terms of quantity. This is very likely because 

the number of added vehicles (either CV or EV) decreases over time, with a limited and relatively 

small number of vehicle purchase permits allocated each year (according to the license plate lottery 

policy). For example, the number of vehicles sold in 2010 was around 748,000 without the constraint 

on the number of purchase permits; while the number of CVs sold in 2016 was around 80,000, which 

was only about 10% of the vehicle sale in 2010. Whereas the impacts of the market expansion on the 

public parking lots and public charging posts are very significant, as shown by Figure 8. The numbers 

of public parking spaces and charging posts rise dramatically over the period. It should be noted that 

the numbers of private charging posts and parking lots are not presented here because in the SelfSim-

EV simulation, it is assumed that each vehicle owner is allocated with a private parking lot and each 

EV owner is extra allocated with a private charging post, once they purchase vehicles. This means the 

numbers are directly proportional to the numbers of vehicles added. As before, the standard deviations 

about the transport facilities are computed to investigate the model variability, suggesting that 

standard deviations are again relatively small as a fraction of the means (see Figure 21 in Appendix 

2.2.1 for more details).  

  In addition, the ability of the transport facility development model to predict is somewhat evaluated 

with the latest observed figures: the number of public parking spaces was 2,060,352 in 2017, which is 

quite close to the simulated number of 1,972,948; the simulated number of public charging posts in 

2017 is 40,398, which is a little greater than the reported number of 30,805 in January, 2018. This 

suggests that the predict ability of the transport facility development model also appears to become 

weaker, compared to that in 2016 (see Appendix 2.1).  
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(a) Number of Public Parking Spaces (b) Number of Public Charging Posts 
Figure 8 Impacts of Market Expansion on the Quantities of Transport Infrastructures 

  In addition, the EV market expansion can also somewhat change the layout of public charging posts 

at the facility- and zone-levels (see Figure 9 and Figure 10), but it has little impact at the district level 

(see Figure 22 in Appendix 2.3.2); while the EV market expansion has marginal impact on the layouts 

of the parking lots at the facility-, zone- or district-levels: one possible reason might be that those 

parking lots with higher number of parking spaces have also been allocated with more parking spaces. 

As a result, the spatial distributions do not change significantly, though the number of parking spaces 

increases heavily over the period (as shown by Figure 8-(a)). 

  In addition to the impact on the numbers and layouts of transport facilities, the EV market expansion 

could also influence the usage of the facilities, as evident from the changes in two indicators, namely 

the average number of vehicles served and average occupied time (see Appendix 2.3.3 for more 

details). 

  

(a) Public Charging Posts in 2016 (b) Public Charging Posts in 2020 
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Figure 9 Layouts of Public Charging Posts in 2016 and 2020 
 

  

(a) Public Charging Posts in 2016 (b) Public Charging Posts in 2020 
Figure 10 Layouts of Public Charging Posts in 2016 and 2020 at the Zone Level 

3.4 Impacts of EV Market Expansion on the Environment  

  Figure 11 shows the total amounts of petrol consumed and vehicular emissions in one particular 

weekday from 2016 to 2020. Overall, there are relatively slight changes in both amounts, primarily 

due to the constraint on the total number of CV purchase permits (or the license plate lottery policy). 

In addition, the total amounts of CO, CO2 and petrol consumed have similar tends over the period 

which increase in 2017 and then go down until 2020; while the amount of HC rises from 2016 to 2018 

and then levels off, but the amount of NOx goes up over the period. Although the numbers of CV and 

PHEV increase over time, the amounts of vehicular emissions change differently. This is because the 

amounts of emissions are associated with both travel speed and distance which vary over time and 

also across agents. In addition, for different types of vehicular emissions, the amount of emission has 

different relationships with travel speed. All of these can eventually change the total amount of 

emissions. Again, the stochastic effects are analysed with the standard deviations, suggesting that the 

stochastic effects are not significant (see Appendix 2.4.1 for more details). In addition, the 

environmental impacts are also assessed at the multiple resolutions: see Appendix 2.4.2 for more 

details.  
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  It is worth noting that the amounts of vehicular emissions and petrol consumed are estimated for one 

particular weekday in Beijing, and the results cannot be linearly scaled up for one year, for example, 

by simply multiplying by the outcomes by 365. A promising approach to calculating the annual 

amounts is using a day-to-day activity-based travel demand model (Habib and Miller, 2008) instead of 

the current single-day activity-based model, so as to simulate the travel behaviour of each agent 

throughout the whole year. However, such day-to-day activity-based models, in general, require more 

disaggregate input data on travel demand and also take much longer computing time.  

  

(a)Total Amount of HC (b) Total Amount of CO 

  

(c) Total Amount of CO2 (d) Total Amount of NOx 

  

(e) Total Amount of Vehicular Emissions (f) Total Amount of Petrol Consumed 
Figure 11 Amounts of Petrol Consumed and Vehicular Emissions in One Particular Weekday from 

2016 to 2020 
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3.5 Impacts of EV Market Expansion on Power Grid System  

  Figure 13 shows the total amounts of electricity provided by both private and public charging posts 

in one particular weekday from 2016 to 2020. The total amounts increase over the period due to the 

increase of the EV number, but the increasing rate gets smaller, which is likely caused by the 

decreasing number of EV purchasers (due to the decreasing number of vehicle purchase permits, see 

Figure 5-(a)). In addition, EVs are mostly charged through private charging posts, as evident from the 

significantly higher amount of electricity provided by private charging posts. For example, in 2020, 

the private charging demand is estimated to be around 1,800,000 kW⋅h in one particular weekday, 

which is about 9 times of public charging demand that is around 200,000 kW⋅h per day. In addition, it 

is estimated that the total charging demand will account for 4% of total residential electricity demand 

in 2020 and thus may put slight pressure on the power grid system. As before, the standard deviations 

are not significant (see for Figure 29 in Appendix 2.5 in more details). In addition, the day-to-day 

activity-based travel demand model mentioned above (see Section 3.4) could also be used here to 

estimate the annual charging demand in a more accurate way.   

  

(a) Total Amount of Electricty Provided by 
Private Charging Posts 

(b) Total Amount of Electricty Provided by 
Public Charging Posts 

Figure 12 Total Amount of Electricty Consumed with Charging Posts in One Particular Weekday 
from 2016 to 2020 (kW⋅h) 

 

  Figure 13 further maps the spatial distributions of both private and public charging demand based at 

parking lots (as charging posts are established at parking lots), and Figure 14 aggregates the demand 

at the district level. It can be found from the maps that most of charging demand either public or 

private is at the central districts or the central areas of the outer districts. In addition, the public 

charging demand in the central districts (e.g., Dongcheng and Xicheng districts) become relatively 
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larger, as the EV market expands from 2016 to 2020 (see Figure 14-(b) and (d); Note a K-means 

clustering algorithm was also used to group the data); while the private charging demand in the outer 

districts (such as Tongzhou district) tends to become relatively smaller from 2016 to 2020 (see Figure 

14-(a) and (c)). Again, these changes might be attributed to many factors discussed above, such as 

vehicle ownerships and travel patterns. Such spatially disaggregate results about the charging demand 

could be helpful for electricity utilities to invest in facilities and equipment for generating and 

transmitting electricity, so as to better accommodate the increasing electricity demand from EVs.  

  

(a) Private Charging Demand in 2016 (b) Public Charging Demand in 2016 

  

(c) Private Charging Demand in 2020 (d) Public Charging Demand in 2020 
Figure 13 Spatial Distributions of Charging Demand in One Particualr Weekday in 2016 and 2020 at 

the Facility Level (kW⋅h) 
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(a) Private Charging Demand in 2016 (b) Public Charging Demand in 2016 

  

(c) Private Charging Demand in 2020 (d) Public Charging Demand in 2020 
Figure 14 Spatial Distributions of Charging Demand in One Particualr Weekday in 2016 and 2020 at 

the District level (kW⋅h) 

4 Discussion  

  The SelfSim-EV Beijing scenario explores the likely future EV market from 2016 to 2020, with the 

assumption that the urban system would evolve as before. The results suggest that the BEV sale will 

go up, but the CV sale will go down, mainly due to the constraint on the number of vehicle purchase 

permits (or the license plate lottery policy). The PHEV sale will almost remain over the period mainly 

due to a relatively higher price. Accordingly, the BEV subsidies decrease over the period, because of 

its increasing adoption rate; while the PHEV subsidies almost stay the same, as its sale almost remains. 
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Another important finding in the EV market expansion is that the so-called neighbour effects appear 

to influence the adoption of BEVs, based on the spatial analyses of the residential locations of BEV 

owners at both facility- and district-levels. Both Axsen et al. (2009) and Mau et al. (2008) tried to 

investigate neighbour effects in the adoption of EV from a statistical perspective, but their results 

could not be presented spatially. With SelfSim-EV, the neighbour effects can be easily captured at 

multiple spatial resolutions, offering new insights into the neighbour effects from a spatial perspective.  

  Furthermore, the potential impacts of the EV market expansion on the environment, power grid 

system and transport infrastructures are assessed at the multiple resolutions:  

  1) Impacts on the environment: the amounts of HC, CO and CO2 have tendencies to decrease from 

around 2018; while the amount of NOx increases over the period but at a diminishing rate. This 

suggests that introducing EVs appears to benefit the environment, though the benefit is marginal 

relative to the total amount of vehicular emissions. However, with the widespread adoption of EVs, 

the environmental benefits could become significant. Compared to the existing environmental 

assessments on the adoption of EV (Casals et al., 2016; Chen et al., 2018; Holland et al., 2016), the 

assessment here can not only provide aggregate information on the changes in several typical 

vehicular emissions, but also can present their spatial distributions. Such spatially disaggregate 

information could be particularly useful for assessing the local environmental impact of EV market 

expansion: for example, with the moving trajectories of each agent in the population and also the 

spatiotemporal distributions of different vehicular emissions (which can be obtained from the 

MATSim-EV simulation, see Section 2.3.1), the time of each agent being exposed to vehicular 

emissions can be calculated and thus the human health effect can be further assessed.  

  2) Impacts on the power grid system: EV drivers tend to charge their vehicles using private charging 

facilities, and it is estimated that private charging demand in 2020 will be about 9 times of public 

charging demand. It is further estimated that the total charging demand only will account for around 4% 

of the total domestic electricity consumption in 2020. Therefore, the impact of EV market expansion 

might be slight, due to a relative small EV adoption rate in 2020 (because of the constraint on the 

vehicle purchase). The impact assessment here distinguished between the public and private charging 
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demands and also the dynamic demands were presented at very high temporal (in second) and spatial 

(at the node level) resolutions, which have received relatively scant attention in the previous studies 

(Chen et al., 2018; Muratori, 2018; Wolinetz et al., 2018).   

  3) Impacts on transport infrastructures: the EV market expansion could influence several EV-related 

transport facilities, including parking lots, refuelling stations, and charging posts at parking lots, in 

terms of quantity, layout and usage. The numbers of charging posts and parking lots increase over 

time mainly because of the increasing number of both CVs and EVs; however, the number of vehicle 

purchasers increases slightly relative to the number of existing vehicle owners. As a result, both the 

quantity and layout of refuelling stations almost do not change, but the usage of station does change, 

as evident from the varying average number of vehicles served and occupied time. Previous studies of 

EV charging facilities were only focused on one type of charging facility (Asamer et al., 2016; Chen 

et al., 2016; Hof et al., 2017) and have generally ignored the interactions and competitions between 

those EV-related facilities, including charging posts, parking lots and refuelling station; Furthermore, 

these studies were mostly focused on the quantity and layout of charging facilities, paying little 

attention to their usage. The impact assessment in this paper tried to take into account the interactions 

and competitions above and quantify the impacts of EV market expansion on the quantity, layout and 

usage of four typical EV-related transport facilities, with an agent-based transport facility 

development model for both CVs and EVs (Zhuge and Shao, 2018a). Therefore, the results tended to 

be more comprehensive and accurate and thus should be more useful.  

  The spatially and temporally explicit results above could be very helpful for different EV-related 

stakeholders involved: 1) Electricity Utilities: Since the number of EVs will still be relatively small in 

2020 (due to the license plate lottery policy), the charging demand may put slight pressure on the 

power grid system. The electricity utilities may do not need to invest in too many charging facilities at 

the current stage; on the other hand, the spatial distributions of charging demand may help the 

electricity utilities to better locate charging facilities; 2) Local Authorities: introducing EVs could 

somewhat benefit the environment. Therefore, local authorities may want to shape policies to promote 

the purchase and usage of EVs, so as to improve the local air quality; In addition, the adoption rate of 
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PHEV will remain low over the period, likely due to the high sale price. More subsides may be 

needed to for PHEV purchasers, if local authorities would make PHEVs competitive to CVs and 

BEVs. In addition, the suggestions above may also be useful for other cities in both China and the 

other countries where the development of EV is staying at the early stage. For example, subsides have 

been identified as an influential factor in Beijing, and therefore the other cities are suggested to 

carefully design financial incentives. Furthermore, the agent-based integrated framework was also 

found as useful for investigating the EV market expansion and its impacts at multiple resolutions, and 

was thus recommended, especially in those cases where a comprehensive understanding of the EV 

market expansion and its impacts is needed.   

5 Conclusions 

  This paper used a calibrated and validated agent-based spatial integrated urban model, SelfSim-EV 

to simulate how the Electric Vehicle (EV) market in Beijing, China might expand in the context of 

urban evolution at the micro scale, and then to assess the potential impacts of the market expansion on 

the environment, power grid system and urban infrastructures. As an EV version of SelfSim (an 

agent-based land use and transport model), SelfSim-EV is composed of several spatial sub-models, 

which form an annual loop to simulate how the urban system evolves over time, focusing on the EV 

market expansion and its impacts.    

  With the SelfSim-EV Beijing model, it was found that Battery Electric Vehicle (BEV) would be 

more favoured than Plug-in Hybrid Electric Vehicle (PHEV) from 2016 to 2020, and the so-called 

neighbour effects appeared to exist, as evident from the spatial differences between the residential 

locations of BEV owners in 2016 and 2020 at both facility- and district-levels. The adoption of EV 

would somewhat benefit the environment at the global level, as evident from the slight decrease in the 

amounts of HC, CO and CO2 emissions after 2017; It was estimated that the electricity demand from 

EVs would only account for 4% of the total domestic electricity demand in 2020, suggesting that the 

impact of market expansion on the power grid system might be slight too; The EV market expansions 
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appeared to have more significant impacts on the quantity, layout and usage of those EV-related 

transport infrastructures, including parking lots and charging posts.  

  The further work will be focused on the following aspects: 1) this paper explored the likely future 

EV market with the assumption that the urban system would evolve as before. However, it is 

impossible to exactly predict the future EV market with such a simple integrated model, compared 

with the complex and dynamic urban system. Therefore, it is necessary to explore the future EV 

market within different “what-if” scenarios, for example, considering various policies, technologies 

and infrastructures for EVs. Such “what-if” scenario analyses could help understand different 

possibilities about the future EV market and its impacts, using the scenario in this paper as a baseline; 

2) the SelfSim-EV model can be further extended to incorporate a dispersion model that is capable of 

simulating the movement of vehicular emissions, so as to assess the potential human health effect of 

EV market expansion at the local scale, as discussed above; Furthermore, the SelfSim-EV model can 

also be further extended to integrate a smart grid model, so as to capture the interaction between the 

EV market expansion and the power grid system. Currently, the feedback from the power grid system 

has not been considered. 
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Appendix 1 Synthetic Data for Future-Year Simulations 

Appendix 1.1 Synthetic Data on Demographic Attributes for Future-Year 

Simulations 

  The demographic input data from 2010 to 2015 was extracted from the Beijing Statistical Yearbooks, 

and the data from 2016 to 2020 was predicted using the demographic time series data with the 

Autoregressive Integrated Moving Average (ARIMA) models. The forecast results and the specific 

ARIMA models used are shown by Figure 15. The forecast demographic data from 2016 to 2020 is 

summarized in Table 1.  

Table 1 Forecast Demographic Data for Simulation Years from 2016 to 2020 

Year 2016 2017 2018 2019 2020 
Marriage Rate 0.0076 0.0076 0.0075 0.0075 0.0074 
Divorce Rate 0.0043 0.0050 0.0056 0.0063 0.0069 

Unemployment Number 101181 107758 114859 121050 126914 
Employment Number 425900 425600 425300 425000 424700 
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Death Rate 0.0049 0.0049 0.0049 0.0049 0.0049 
Birth Rate 0.0087 0.0085 0.0086 0.0086 0.0086 

Immigration Rate 0.0077 0.0077 0.0076 0.0076 0.0076 
Emigration Rate 0.0041 0.0038 0.0035 0.0030 0.0025 

Individual Yearly Income (RMB)  122,405 131,940 141,287 150,808 160,168 
 

  

(a) Marriage Rate (b) Divorce Rate 

  

(c) Unemployment Number (d) Employment Number 

  

(e) Death Rate (‰) (f) Birth Rate(‰) 
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(g) Immigration Rate (h) Emigration Rate 

 
 

(i) Individual Yearly Income (RMB) 
Figure 15 ARIMA Models for Demographic Time Series Data 

Appendix 1.2 Synthetic Data on Activity Facilities for Future-Year 

Simulations 

  As aforementioned, there are five basic activity facility types in SelfSim-EV, namely, home, work, 

education, leisure and shop. The work and education facilities were added based on the numbers of 

activity opportunities available that were the total numbers of students and jobs, respectively; the 

remainder were added based on the floor space which needed to be further converted into facility 

capacity. 

  (1) Work and Education Facilities 

  The work facilities were added based on the numbers of employment and unemployment that were 

forecast in Appendix 1.1. Specifically, the difference between these two numbers was used as the 

constraint and a specific number of work facilities were added or removed according to the difference. 
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Similarly, the education facilities were added based on both the numbers of students and schools that 

were forecast with the time series data. Figure 16 shows the ARIMA models that were used to 

forecast the number of education facilities, as well as their capacities (or the numbers of education 

opportunities available in the facilities). The education facilities were grouped into five types, namely 

Kindergarten, Primary, Middle School, High School, and College. Table 2 summarizes the forecast 

numbers of education facilities, as well as their capacities from 2016 and 2020. 

  

(a) Kindergarten Num. (b) Kindergarten Opportunity Num. 

 

(c) Primary School Num. (d) Primary School Opportunity Num. 
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(e) Middle School Num. (f) Middle School Opportunity Num. 

 

(g) High School Num. (h) High School Opportunity Num. 

  

(i) College Num. (j) College Opportunity Num. 
Figure 16 ARIMA Models for the Time Series Data on Education Facilities 

 

Table 2 Forecast Macro-Level Constraints on Education Facilities from 2016 to 2020  

Year 2016 2017 2018 2019 2020 
Kindergarten Num. 1550 1607 1669 1728 1788 

Primary Num. 952 908 864 820 776 
Middle School Num. 334 329 324 320 315 
High School Num. 427 426 425 424 423 
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College Num. 91 92 92 93 94 
Opportunity Num. of Kindergarten  164107 179172 194237 209302 224367 

Opportunity Num. of Primary 138503 131130 123757 116384 109011 
Opportunity Num. of Middle School 85380 80625 75175 69909 64594 
Opportunity Num. of High School 114897 121480 121480 121480 121480 

Opportunity Num. of College 147514 141724 136086 130407 124739 
 

  (2) Home, Shop and Leisure Facilities 

  The macro-level constraints on the home, shop and leisure facilities, which were the total numbers of 

activity opportunities available in the facilities, were forecast using the ARIMA models as well. 

Firstly, the added and removed floor space was forecast using the ARIMA models for each facility 

type; next, the forecast floor space was further converted into the number of activity opportunities (or 

facility capacity) with the ratio of floor space to activity opportunity number. The ratio varies across 

facility types and can be found in relevant statistical yearbooks. In Beijing, the ratio of floor space to 

home opportunity number was 19.49 square meters per person in 2010; the ratio for commercial 

opportunity (referring to both shop and leisure opportunities) was 1.5 square meters per person. More 

details on the ARIMA models, assumptions and calculations that were used to estimate are shown in 

Figure 17 and Table 3. Table 4 briefly summaries the forecast numbers of activity opportunities added 

or removed from 2016 to 2020. 
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(c) Removed Floor Space of Home Facilities 
Figure 17 ARIMA Models for the Time Series Data on Activity Facilities 

 

Table 3 Forecast Macro-Level Constraints on Activity Facilities from 2016 to 2020 (Unit: Million 
Square Meters) 

Year 2016 2017 2018 2019 2020 

Added Floor Space of Home Facility 12.57 10.94 9.56 7.79 6.24 

Added Floor Space of Commercial Facility 9.17 9.58 10.04 10.51 11.00 

Removed Floor Space of Home Facility 10.43 10.59 10.74 10.90 11.06 

Removed Floor Space of Commercial Facilities 4.48 4.54 4.61 4.68 4.75 

Finally Added Floor Space of Home Facilities 2.14 0.35 -1.18 -3.11 -4.82 

Finally Added Floor Space of Commercial Facilities 4.69 5.03 5.42 5.83 6.26 

Finally Added Opportunity Num. of Home Facilities 0.11 0.02 -0.06 -0.16 -0.25 

Finally Added Opportunity Num. of Commercial 
Facilities 

3.13 3.36 3.62 3.88 4.17 

Finally Added Opportunity Num.  of Leisure Facilities 1.56 1.68 1.81 1.94 2.09 

Finally Added Opportunity Num. of Shop Facilities 1.56 1.68 1.81 1.94 2.09 

(Note: The forecast figures are highlighted in italics; In addition, due to the lack of time series data on 

the removed floor space of commercial facilities, it was assumed that the removed floor space of 

commercial facilities was associated with the removed floor space of home facilities, and the former 

varied according to the latter with a fixed ratio (the ratio of the removed floor space of commercial 

facilities) which was estimated based on relevant historical data. In the Beijing scenario, the ratio was 

0.64. Another assumption here for the commercial facilities was that the shop and leisure facilities 

equally shared the total floor space of commercial facilities. ) 

Table 4 Forecast Macro-Level Constraints on Activity Facilities from 2016 to 2020 (Unit: Million) 
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Year 2016 2017 2018 2019 2020 

Number of Home Opportunities Added 0.11 0.02 -0.06 -0.16 -0.25 

Number of Leisure Opportunities Added 1.56 1.68 1.81 1.94 2.09 

Number of Shop Opportunities Added 1.56 1.68 1.81 1.94 2.09 

Appendix 2 Results about EV Market Expansion and Its Impacts  

Appendix 2.1 Validating SelfSim-EV in 2016 

  The performance of the calibrated and validated SelfSim-EV model was further examined by 

comparing the simulated and observed data on the EV market and EV-related transport facilities in 

2016, as shown by Table 5. The MAPE is 6.3%, suggesting that the performance is relatively 

satisfactory. In particular, the transport facility development model appears to have a relatively good 

ability to predict at the aggregate level.  

Table 5 Model Validation in 2016 

Model Type Data Type 
2016 

Observed 
Data 

Simulated 
Data 

Absolute Percentage 
Error (APE) 

EV Market 

BEV Price 254737 211088 17.1% 
BEV Subsidy 83333 88272 5.9% 

PHEV Subsidy 30000 34943 16.5% 
BEV Sale 51000 51000 0.0% 
CV Sale 81000 80993 0.0% 

Transport 
Facility 

Number of Public 
Parking Space 

1931479 1871520 3.1% 

Number of Public 
Charging Posts 

21940 22315 1.7% 

Appendix 2.2 EV Market Expansion from 2016 to 2020 

Appendix 2.2.1  Stochastic Effects on the EV Market Model 

  In order to further explore the stochastic effects, the standard deviations of the 10-run SelfSim-EV 

results about the EV market expansion from 2016 to 2020 are calculated and shown by Figure 18. It 

should be noted that most of the standard deviations are relatively small and are difficult to present 

error bars in the figures about results, thus they are drawn with separate figures. The following 

conclusions can be drawn: 1) the standard deviations of vehicle sale, vehicle price and EV subsidy 
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change over time. In addition, the standard deviations of vehicle price remain zero for the years of 

2016 and 2017, due to again the pricing behaviour of manufacturer agents (in the EV market model) 

that is based on the difference of market penetration rates in two consecutive years; 2) the standard 

deviations of CV and PHEV sales are the same, this is because the total numbers of CV and PHEV 

sold remain the same across the 10 runs and are equal to the total numbers of the so-called CV 

purchase permits; Furthermore, they decrease to zero in 2018, because the number of CV purchase 

permits drops significantly and all of the permits are allocated to CV purchasers; 3) the three types of 

standard deviations are relatively low, suggesting that the simulation outcomes of the 10 runs tend to 

be close to the averages, and the model stochastic uncertainty is unlikely to heavily influence the 

outcomes. 

  

(a) Vehicle Sales  
(CVSale Overlaps PHEVSale) 

(b) Vehicle Prices 

 

 

(c) EV Subsidy 
Figure 18 Standard Deviations of the 10-Run Results about the EV Market from 2016 to 2020  

Appendix 2.2.2  Spatial Distribution of Vehicle Owners 

   Figure 19 and Figure 20 show the spatial distribution of vehicle owners at the facility- and district- 

levels. Both CV and PHEV owners tend to live in the central districts and the central areas of the 

outer districts. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

43 

 

  

(a) CV Owners in 2016 (b) CV Owners in 2020 
  

  

(c) PHEV Owners in 2016 (d) PHEV Owners in 2020 
Figure 19 Spatial Distributions of Vehicle Owners in 2016 and 2020 at the Facility Level 
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(a) CV Owners in 2016 (b) CV Owners in 2020 
  

  

(c) PHEV Owners in 2016 (d) PHEV Owners in 2020 
Figure 20 Spatial Distributions of Vehicle Owners in 2016 and 2020 at the District Level 

Appendix 2.3 Impacts of EV Market Expansion on Transport Facilities 

Appendix 2.3.1  Standard deviations about the transport facilities 

  As before, the standard deviations about the transport facilities are computed to investigate the 

model variability (see Figure 21): 1) the change in the standard deviation of public parking spaces 

over the period is quite similar to that of CV (and PHEV) sales (see Figure 18-(a)). This is likely 

because the number of public parking spaces is directly associated with vehicle sales; 2) Standard 

deviations are again relatively small as a fraction of the means. 
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(b) Number of Public Parking Spaces (c) Number of Public Charging Posts 
Figure 21 Standard Deviations of the 10-Run Results about Transport Facilities from 2016 to 2020 

Appendix 2.3.2 Impacts of EV Market Expansion on Layouts of Transport Facilities  

  The EV market expansion can impact the layout of several different EV-related transport facilities, 

including charging posts and parking lots. Here, public charging posts were used as an example to 

show the spatial impacts. Specifically, Figure 22 compares the spatial distributions of public charging 

posts in 2016 and 2020 at the district level, suggesting that the spatial distributions change slightly 

over the period.  

  

(a) Public Charging Posts in 2016 (b) Public Charging Posts in 2020 
Figure 22 Layouts of Public Charging Posts in 2016 and 2020 at the District Level 

Appendix 2.3.3 Impacts of EV Market Expansion on the Usage of Infrastructures 

  In addition to the impacts on the number and layout of transport facilities, the impacts on the usage 

of transport facilities are further assessed using several indicators, such as average number of vehicles 
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served and average occupied time. Next, charging post will be used as an example to show the impact 

on the usage of transport facilities.  

  Figure 23 and Figure 24 show the impacts of the market expansion on the usage of charging posts 

using the indicators of average number of vehicles served and average occupied time. For private 

charging posts, these two indicators go up in 2017, but decrease over the remaining time; for public 

charging posts, these two indicators go up from 2016 to 2018 and fluctuate over the remaining period. 

The changes in these two indicators could be associated with many factors, as well as the interactions 

between them. For instance, the usage of charging posts could be influenced by both the number of 

charging posts added and the layout of charging posts. In addition, private charging posts tend to 

serve more vehicles than public ones, as evident from the higher number of vehicles served and longer 

occupied time of private ones.  

  

(a) Private Charging Posts (b) Public Charging Posts 
Figure 23 Average Numbers of Vehicles Served with Charging Posts from 2016 to 2020 

 

  

(a) Private Charging Posts (b) Public Charging Posts 
Figure 24  Average Occupied Time of Charging Posts from 2016 to 2020 
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Appendix 2.4 Impacts of EV Market Expansion on the Environment 

Appendix 2.4.1  Standard deviations about the environmental impact 

  Again, the stochastic effects are analysed with the standard deviations (Figure 25): all of the standard 

deviations increase over time, suggesting that uncertainty is on the rise, but the standard deviations are 

small relative to the total amounts, suggesting that the stochastic effects are not significant. Note that 

the variability between runs tends to increase even when mean values are falling, suggesting the 

increases have more to do with increase in model uncertainty over time, rather than just an increase in 

line with upward trending mean values. 

  

(a)Total Amount of HC (b) Total Amount of CO 

  

(c) Total Amount of CO2 (d) Total Amount of NOx 

  

(e) Total Amount of Emissions (f) Total Amount of Petrol Consumed 
Figure 25 Standard Deviations of the 10-Run Results about Petrol Consumed and Vehicular 
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Emissions from 2016 to 2020 

Appendix 2.4.2 Spatial Distributions of Vehicular Emissions  

  Figure 26 compares the spatial distributions of hourly link-based vehicular emissions in one 

particular weekday in 2020 at both peak and off-peak hours (one morning peak hour from 7 to 

8AMand one off-peak hour from 2 to 3 PM), suggesting that the morning peak hour tends to have 

more vehicular emissions, and the central districts and the central areas of the outer districts tend to 

have bigger amounts of vehicular emissions. This is very likely because the traffic flow either at peak 

hours or at the central districts, tend to be much heavier. According to Figure 27 that aggregates, 

groups and maps the vehicular emissions at the zone level, the spatial distribution of emissions also 

somewhat changes over the period. This could be attributed to many factors, as discussed above, such 

as the travel patterns, vehicle ownerships and activity locations. Note that the spatial distributions do 

not change at the district level, as shown in Figure 28. In addition, such spatially and temporally 

disagree results could be helpful for local authorities to shape policies and invest in infrastructures to 

reduce the emissions effectively. For example, those areas (or zones) with higher amounts of 

vehicular emissions can put forward congestion charge policies: CV drivers need to pay a fee during a 

specific period, but it is free to EV drivers.  

  

(a) 7-8 AM  (b) 2-3 PM  
Figure 26 Link-based Vehicular Emissions in One Particular Weekday in 2020 (Kilogram)  
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(a) Total Emissions in 2016 (e) Total Emissions in 2020 
Figure 27 Zone-based Vehicular Emissions in One Particular Weekday in 2016 and 2020 (Kilogram)  

 

  

(a) Total Emissions in 2016 (e) Total Emissions in 2020 
Figure 28 District-based Vehicular Emissions in One Particular Weekday in 2016 and 2020 

(Kilogram)  

Appendix 2.5 Impact on the Power Grid System 

  As shown by Figure 29, the standard deviations are also relatively small, suggesting that model 

uncertainty (or stochasticity) may not heavily influence the simulation results about the amount of 

electricity provided. 
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(a) Total Amount of Electricty Provided by 
Private Charging Posts 

(b) Total Amount of Electricty Provided by 
Public Charging Posts 

Figure 29 Standard Deviations of the 10-Run Results about Total Amount of Electricty Provided by 
Charging Posts from 2016 to 2020 (kW⋅h) 

 


