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ABSTRACT 1 

The current state of quantifying uncertainty in chemical transport 2 

models (CTM) is often limited and insufficient due to numerous 3 

uncertainty sources and inefficient or inaccurate uncertainty propagation 4 

methods. In this study, we proposed a feasible methodological framework 5 

for CTM uncertainty analysis, featuring sensitivity analysis to filter 6 

important model inputs and a new reduced-form model (RFM) that couples 7 

the High-order Decoupled Direct Method (HDDM) and the Stochastic 8 

Response Surface Model (SRSM) to boost uncertainty propagation. 9 

Compared with the SRSM, the new RFM approach is 64% more 10 

computationally efficient while maintaining high accuracy. The framework 11 

was applied to PM2.5 simulations in the Pearl River Delta (PRD) region, 12 

and identified five precursor emissions, two species in lateral boundary 13 

conditions (LBCs) and three meteorological inputs out of 203 model inputs 14 

as important model inputs based on sensitivity analysis. Among these 15 

selected inputs, primary PM2.5 emissions, PM2.5 concentrations of LBCs 16 

and wind speed were key uncertainty sources, which collectively 17 

contributed 81.4% to the total uncertainty in PM2.5 simulations. Also, when 18 

evaluated against observations, we found that there were systematic 19 

underestimates in PM2.5 simulations, which can be attributed to the two-20 

product method that describes the formation of secondary organic aerosol. 21 

 22 
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1 INTRODUCTION 27 

 Atmospheric chemical transport models (CTMs) are critical tools for 28 

regulatory decision making, attainment demonstration, and air quality 29 

forecasting1, 2. However, current CTMs still have substantial bias in 30 

simulating air pollutant concentrations, particularly in reproducing PM2.5 31 

concentrations and their species compared against observations3. Various 32 

sources of uncertainty exist in developing and applying CTMs models, 33 

including the parametric uncertainty associated with input data or 34 

parameters and the structural uncertainty arising from simplifications of 35 

complex chemical and physical processes4. Uncertainty analysis is an 36 

effective mean to improve model performance by identifying and 37 

diagnosing key sources of uncertainty2, 5-7. Although some attempts have 38 

been made to characterize uncertainties of atmospheric models in recent 39 

decades,2, 8 better quantification of uncertainties in CTMs remains a top 40 

research priority for atmospheric scientists9, 10.  41 

Traditional approaches for uncertainty analysis of CTMs are 42 

computationally expensive, particularly for traditional Monte Carlo 43 

method (MCM)11, 12 or Latin Hypercube Sampling (LHS)13 to propagate 44 

uncertainties. Some approaches have been proposed to address this 45 

limitation, featuring the use of reduced-form models (RFM) including: 46 

Stochastic Response Surface Model (SRSM)1 and Probabilistic 47 

Collocation Method (PCM)14-17 based on the polymonial chaos expansions 48 

(PCEs), the reduced-form model based on High-order Decoupled Direct 49 

Method (RFM-HDDM)6, 8, 18 and the recently developed stepwise-based 50 

HDDM (SB-HDDM)7. These approaches all use an polynomial expansion 51 

instead of the original CTM to propagate uncertainties. However, the RFM-52 

HDDM has significant biases in predicting nonlinear responses when there 53 

are high uncertainties in model inputs7, 19. The SB-HDDM partly 54 
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overcomes this limitation but still has biases because it ignores the high-55 

order cross sensitivities and assumes that the interaction among inputs is 56 

linear. The SRSM and PCM can help improve the accuracy of propagating 57 

uncertainties, but its efficiency dramatically decreases with the increase of 58 

uncertainty sources, which limits its application to CTMs that have 59 

numerous uncertainty sources16, 20, 21.  60 

As the scientific understanding of atmospheric physical and chemical 61 

processes evolves, CTMs will become more comprehensive with more 62 

model inputs and detailed model structures22, 23. This will most likely bring 63 

greater challenge in conducting uncertainty analysis since it requires more 64 

data collection to quantify additional uncertainty sources and more 65 

computational cost to propagate them, even if RFM approaches are used. 66 

Therefore, in order to make it possible to conduct uncertainty analysis of 67 

CTMs, two critical issues must be addressed: how to ensure the accuracy 68 

of propagating uncertainties and how to improve the efficiency when there 69 

are many uncertainty sources.    70 

In this study, we proposed a feasible methodological framework to 71 

quantify uncertainties of CTMs. The framework uses a sensitivity analysis 72 

to filter out unimportant model inputs and make it feasible to apply RFM 73 

approaches for efficient uncertainty propagation. Additionally, it 74 

incorporates a novel approach to improve the accuracy and efficiency of 75 

uncertainty propagation. We applied the framework to a case study of the 76 

uncertainty analysis of PM2.5 modeling in the Pearl River Delta (PRD) 77 

using the CMAQv5.0.2, a widely used chemical transport model, to 78 

demonstrate its feasibility in model uncertainty analysis, and how 79 

uncertainty analysis can help model diagnosis.  80 
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2 MATERIALS AND METHODS 81 

2.1 The methodological framework for efficient uncertainty 82 

analysis of CTMs.  83 

Previous studies have explored uncertainty analysis of CTMs, but 84 

there is still no consistent integrated methodological framework to quantify 85 

uncertainty. Here, we proposed a conceptual methodological framework to 86 

help guide the uncertainty analysis of CTMs (Figure 1). The framework 87 

involves 6 steps: the use of (1) sensitivity analysis and (2) estimation of 88 

input uncertainties to select important model inputs for further uncertainty 89 

analysis, (3) propagation of uncertainty through models using a RFM 90 

approach to obtain output uncertainties, (4) quantification of model output 91 

uncertainties, (5) evaluation of output uncertainties with observations, and 92 

(6) identification of key uncertainty sources to guide model improvements.   93 

The purpose of sensitivity analysis is to filter out insensitive inputs to 94 

reduce the number of uncertainty sources for further uncertainty analysis. 95 

This is reasonable because most of the key uncertainty sources are sensitive, 96 

particularly in cases that all input uncertainties are approximately of the 97 

same magnitude24. In a few cases, an insensitive input may also be a key 98 

uncertainty source if its uncertainty is extremely large. Therefore, 99 

estimating input uncertainties is recommended to assist in selecting 100 

important inputs for further uncertainty analysis. The sensitivity of a model 101 

input is quantified using the relative sensitivity coefficient (RSC), defined 102 

as the ratio of the absolute value of the first-order sensitivity coefficient to 103 

the base-level concentration. The HDDM and the Brute-Force Method 104 

(BFM)25 are two commonly applied approaches to calculate sensitivity 105 

coefficients of CTMs. In this study, sensitivity coefficients of emission 106 

rates, lateral boundary conditions (LBCs), and chemical reaction rates were 107 

calculated using the HDDM. For other inputs that are not available in the 108 

HDDM, e.g., meteorological fields, the BFM was used.  109 
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RFM approaches are generally adopted to propagate uncertainties of 110 

CTMs due to their high efficiency. Current RFM approaches still have 111 

limitations with regards to inaccuracy and/or inefficiency. Here, we 112 

developed a new RFM approach by coupling the SRSM with HDDM. This 113 

approach can improve efficiency while maintaining accuracy in 114 

propagating uncertainty of CTMs (see Section 2.2 for more details).  115 

Comparing uncertainty with observations can evaluate whether 116 

uncertainties in CTMs are reasonably quantified in terms of the spread and 117 

probabilistic prediction. Here, we integrated several methods based on 118 

previous assessments of ensemble simulations18, 26 to evaluate the output 119 

uncertainty performance. The Fractional Error (FE) and Fractional Bias 120 

(FB)27 measured the superiority of the mean of uncertainty to a single 121 

simulation. The Probability Integral Transform (PIT)28 was used to 122 

measure the spread-skill relationship between uncertainty and simulation 123 

error. The Reliability Diagram (RD)29 quantified the reliability and 124 

resolution of a probabilistic forecast. Details of the evaluation are 125 

summarized in S3 of SI.  126 

Identifying the key sources of uncertainty provides guidance for future 127 

model improvement. Here, we used a variance-based method proposed by 128 

Huang et al.7 to assign model output uncertainties to uncertainty sources. 129 

The contribution is calculated as the ratio of the variance of model outputs 130 

induced by a single uncertainty source to the total variance of model 131 

outputs induced by all uncertainty sources (S4 of SI).  132 

Steps 2 and 4 are performed using statistical approaches and more 133 

details are available in S2 of Supporting Information (SI).  134 
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 135 

Figure 1. The framework of efficient uncertainty analysis for CTMs 136 

 137 

2.2 A novel RFM-based uncertainty propagation approach: 138 

HDDM-SRSM 139 

The PCE-based approach (SRSM and PCM) is an efficient mean for 140 

uncertainty propagation; however, its efficiency decreases rapidly as its up-141 

front model runs grow with the increase of uncertainty sources16. Isukapalli 142 

et al.20 showed that coupling the SRSM with sensitivity information can 143 

reduce the number of up-front model runs. Based on this, we developed a 144 

more efficient uncertainty propagation method, HDDM-SRSM, by 145 

coupling the SRSM with sensitivity coefficients calculated by HDDM 146 

(Figure 2).  147 

Here, we briefly described the four steps for approximating CTM 148 

using the M-order HDDM-SRSM (see S5 of SI for complete details). First, 149 

the input uncertainty is transformed into a standard random variable (SRV) 150 

to facilitate a consistent representation of the model inputs and outputs as 151 

functions of mathematically tractable random variables. Second, the model 152 

output is expressed as a PCE based on multidimensional Hermite 153 

polynomials with N unknown coefficients (eq 1). The maximum order of 154 

Hermite polynomials is M. These two steps mainly follow the methodology 155 

of the SRSM and PCM14-17.  156 

Collocation points that correspond to the roots of the Hermite 157 
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polynomial of one degree higher than the order of the PCE were previously 158 

used to obtain unknown coefficients. Typically, N collocation points (one 159 

collocation point requires one model run) were required to form N 160 

equations based on eq. 1 to solve N unknown coefficients14. However, in 161 

the HDDM-SRSM, the first-order sensitivity coefficients calculated by 162 

HDDM in each model run could also form equations according to eq. 2. 163 

Thus, eq. 1 in conjunction with sensitivity coefficients could greatly 164 

decrease the required number of collocation points, but also in turn 165 

enhances the dependence of the PCE on the choice of collocation points. 166 

To reduce the dependence and obtain a robust PCE, we used the regression 167 

method20, which recommends twice as the least required number of 168 

collocation points, to estimate unknown coefficients. The number of model 169 

runs 𝑁𝑟𝑢𝑛 in HDDM-SRSM depends on the number of inputs (m), sensitivity 170 

coefficients (k), and the order of Hermite polynomials (M) (eq. 4).  171 

Fourth, the probability distribution function (PDF) derived from the 172 

M-order HDDM-SRSM is compared with MCM-derived PDF to evaluate 173 

the accuracy of approximation. If the two PDFs agree, the approximation 174 

based on the M-order HDDM-SRSM is used for uncertainty propagation. 175 

Otherwise, a higher-order HDDM-SRSM is used and the four 176 

aforementioned steps are repeated.  177 
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where y is the model output; 𝑎𝑖1
 ,𝑎𝑖1𝑖2

 , and 𝑎𝑖1𝑖2𝑖3
  are unknown 185 

coefficients to be estimated; and 𝛤𝑚(𝜉𝑖1
, … , 𝜉𝑖𝑚

)  are multidimensional 186 
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Hermite polynomials of order m. The accuracy of approximation increases 187 

with the order of Hermite polynomials. In general, a second-order 188 

polynomial is recommended as a first attempt. 𝜉𝑖  is the SRV of model 189 

input i and n represents the number of inputs. 
𝜕𝑦

𝜕𝜉𝑖1

 denotes the first-order 190 

sensitivity coefficient to model input i1.  191 

 192 

 193 
Figure 2. A depiction of the HDDM-SRSM method. (a) The SRSM 194 

method requires at least five well-distributed model runs to accurately 195 

approximate the model response. (b) Since sensitivity coefficients can 196 

constrain the shape of model responses, coupling first-order sensitivity 197 

coefficients with concentrations can reduce the number of model runs 198 

required for approximation. Here, only three model runs are needed to 199 

obtain a similar approximation. (c) Adding second-order sensitivity 200 

coefficients can further improve the accuracy of approximation, but it 201 

might not reduce the number of model runs due to overfitting (Figure S1). 202 

  203 

2.3 A case study 204 

We applied the framework to analyze and diagnose uncertainties in 205 

PM2.5 simulations in the PRD region with the use of the CMAQv5.0.2 206 

model coupled with the WRF model. The detailed configuration for these 207 

two models are shown in S6 of SI. Because we did not intend to evaluate 208 

how model mechanisms or parameterization schemes impact model 209 

outputs, all uncertainty sources considered in this study are parametric. 210 

These sources included emissions of NOx, SO2, VOCs, PM2.5 and NH3; 211 

concentrations of PM2.5, O3, HNO3, SO2, NOx, and NH3 in LBCs; 11 212 
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meteorological fields provided by the Meteorology-Chemistry Interface 213 

Processor (MCIP) and 182 chemical reaction rates in CB05. 214 

Meteorological uncertainties for relative humidity, cloud cover, inverse of 215 

Monin-Obukhov length (MOLI), planetary boundary layer height (PBL), 216 

pressure, liquid water content of cloud (QC), precipitation, friction velocity, 217 

temperature, wind speed, and wind direction were considered. CMAQ 218 

v5.0.2 with HDDM was used to simulate PM2.5 concentrations and their 219 

first-order sensitivities to emissions, LBCs, and chemical reaction rates. 220 

The simulation period is April 10th to 20th , 2013, when local sources and 221 

cross-boundary transport had similar impacts on PM2.5 formation in PRD30. 222 

Hourly measurements of PM2.5 concentrations from the Pearl River Delta 223 

Regional Air Quality Monitoring Network (PRDRAQM) were applied to 224 

evaluate and diagnose output uncertainties. 225 

3 RESULTS  226 

3.1 Identification of important sensitivity inputs  227 

The sensitivities of PM2.5 concentrations in PRD to model inputs were 228 

analyzed (Figure 3 and Table S5). Because the target area of this case study 229 

is PRD, the model inputs considered for sensitivity analysis refer to those 230 

in domain 3 (D3) of the model system. Primary PM2.5 emission is the most 231 

sensitive emission input for PM2.5 simulations, with an RSC of 30.6%, 232 

followed by NH3 (15.7%), NOx (10.4%), SO2 (7.4%) and VOCs emissions 233 

(2.2%). NH3, NOx and SO2 emissions are key precursors of aerosol 234 

formation, and thus also have noticeable impacts on SNA (sulfate, nitrate 235 

and ammonium) formation, as expected. In contrast, VOC emissions only 236 

have slight effects on PM2.5 simulations, despite being critical precursors 237 

of SOA , which typically accounts for 9~18% of PM2.5 concentrations in 238 

the PRD (Table S8). Further discussion of uncertainties in SOA is in the 239 

following uncertainty analysis. As expected, the simulated PM2.5 240 
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concentrations in D3 exhibited larger sensitivities to the LBC PM2.5 and O3 241 

concentrations. This is consistent with previous source apportionment 242 

studies in the PRD region, which indicated that a large portion of the PM2.5 243 

concentrations attributed to LBCs31.  244 

Wind speed and temperature are the two primary meteorological 245 

inputs that impact the PM2.5 simulations in this case study, with RSCs of 246 

28.3% and 8.3%, respectively, followed by relative humidity (5.8%), wind 247 

direction (5.7%), PBL (3.3%), friction velocity (3.3%) and precipitation 248 

(2.6%). The wind speed and temperature are both negatively correlated 249 

with PM2.5 formations. Low wind speed enhances the accumulation of 250 

PM2.5 while high temperature promotes the volatility of nitrate and 251 

ammonium nitrate32. PBL height and precipitation do not have a significant 252 

effect on the simulated PM2.5 concentrations, likely stemming from the 253 

slight negative correlation between the PBL height and PM2.5 in PRD33 and 254 

the low precipitation during the simulation period. 255 

The NH3, NOx, SO2 and primary PM2.5 emissions, PM2.5 and O3 256 

concentrations in LBCs, and temperature, wind speed and relative 257 

humidity were used for further uncertainty analysis. VOC emissions were 258 

also considered due to their relatively large uncertainties and our intention 259 

to analyze how their uncertainties impact SOA simulations. According to 260 

the IUPAC and JPL database, uncertainty ranges of most chemical reaction 261 

rates are within 20%34, 35, and thus chemical reaction rates were not 262 

considered owing to their comparatively low sensitivities and uncertainties 263 

(Table S5). The uncertainties (Table S6) in these selected inputs were 264 

quantified following the methods presented in S2 of SI.  265 
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 266 

Figure 3. Relative sensitivity coefficients of PM2.5 and SNA 267 

concentrations averaged over all sites in PRDRAQM to emissions, LBCs, 268 

and meteorological fields. Their spatial patterns are shown in Figure S3-269 

S5. 270 

3.2 Evaluation of the HDDM-SRSM 271 

As introduced in Section 2.2, the HDDM-SRSM has the potential to 272 

improve efficiency while maintaining the accuracy of uncertainty 273 

propagation. Here, we evaluated the efficiency and accuracy in uncertainty 274 

propagation by comparing the second-order HDDM-SRSM, the third-275 

order HDDM-SRSM, the third-order SRSM and the traditional MCM. 276 

These four approaches involved ten important model inputs, including five 277 

emission inputs, two LBC inputs and three meteorological inputs.   278 

The second-order HDDM-SRSM is the most efficient of the four 279 

approaches tested; it only requires 28.6 hours to build a one-day PCE with 280 

ten inputs using a cluster applied in this study (Table S9), but it has large 281 

biases in uncertainty propagation (Figure 4). In comparison, the third-order 282 

HDDM-SRSM achieves a better balance between accuracy and efficiency. 283 

It requires 128.6 hours to build a one-day PCE, saving approximately 64% 284 



14 
 

of the up-front computational cost compared with the third-order SRSM 285 

(357.5 hours). Also, the PDF of simulated PM2.5 concentrations estimated 286 

by the third-order HDDM-SRSM has a good agreement with that estimated 287 

by MCM, indicating that the third-order HDDM-SRSM can precisely 288 

propagate uncertainties. The third-order SRSM is also accurate, 289 

performing slightly better than the third-order HDDM-SRSM. Although 290 

the third-order SRSM had reduced computational cost compared to the 291 

MCM, which requires at least 1000 model runs and 812.6 hours for a 292 

precise propagation, it was still more computationally expensive compared 293 

to the third-order HDDM-SRSM. Therefore, the third-order HDDM-294 

SRSM is applied to the case study. 295 

   296 

Figure 4. Comparison of the second-order HDDM-SRSM, the third-order 297 

HDDM-SRSM, the third-order SRSM and the MCM with respect to the 298 

accuracy and efficiency of uncertainty propagation. Accuracy was 299 

evaluated by comparing the PDFs, in which 200 random samples were 300 

used, of PCEs to those of MCM (the most accurate uncertainty 301 

propagation approach). Efficiency was evaluated by estimating the up-302 

front computational costs required by RFM approaches using the Intel 303 

High-Performance Computing cluster with one node (CPU: 2×E5-304 

2680V3). 305 
 306 

 307 
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3.3 Uncertainties in simulated PM2.5 concentrations  308 

Following the framework, uncertainties in the simulated PM2.5 309 

concentrations were quantified (Figure 5). The evaluation of these 310 

uncertainties is shown in S8 of SI. Overall, the relative uncertainty, which 311 

is defined as the ratio of the 95% confidence interval (CI) to two times the 312 

median (S2 of SI for details) in simulated hourly PM2.5 concentrations at 313 

all sites associated with emissions, LBCs and meteorological inputs is 60.2% 314 

on average (the 95% CI ranges from -39.5% to 91.7%) (Table S10). This 315 

uncertainty can cover approximately 80% of the hourly PM2.5 observations, 316 

indicating that uncertainties in emissions, LBCs, and meteorological inputs 317 

can account for most, but not all, of the PM2.5 simulation bias. PM2.5 318 

simulation uncertainties associated with different uncertainty sources were 319 

also quantified. Because precursor emissions are mainly concentrated in 320 

the central PRD region (Figure S3), uncertainties in emission and 321 

meteorological inputs pose more impacts in the urban sites (e.g., GZPY) 322 

and downwind sites (e.g., JMDH). In contrast, the effects of uncertainties 323 

in LBCs are larger at upwind sites (e.g., CHTH) that are located near 324 

domain boundaries.  325 

There are higher uncertainties in simulated SNA species (186.3% of 326 

relative uncertainty for nitrate, 81.3% for ammonium and 61.7% for 327 

sulfate), than in simulated PM2.5 (60.2%). In particular, the simulated 328 

nitrate has the largest uncertainty and is the most susceptible to emissions, 329 

LBCs, and meteorological inputs. This may be contributing to the poor 330 

performance of nitrate simulation in CTMs3. Despite the high SNA 331 

uncertainties, the uncertainty ranges estimated in this case study still can 332 

cover 78%, 84% and 89% of observed sulfate, nitrate and ammonium, 333 

respectively (Figure 5 d-f). Furthermore, the uncertainty means of both 334 

PM2.5 mass concentrations and SNA specie concentrations are more 335 

consistent with observations, particularly in the period of April 14 - 15, 336 
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2013, when the base estimate largely underestimates PM2.5 concentrations. 337 

This indicates that uncertainty analysis can improve the model 338 

performance in PM2.5 simulations, not only in mass concentrations but also 339 

in SNA species.  340 

The average of uncertainty in PM2.5 mass concentration improves the 341 

model performance; however, it is still systematically underestimated 342 

when evaluated with observations (Figure 5 and Figure S6). This likely 343 

arises from SOA underprediction. Based upon the uncertainty analysis, 344 

there is an overestimate of the uncertainty mean of SNA with the NMB of 345 

1.5% (Figure S8). However, the NMB of PM2.5 mass is -15.2%. Also, 346 

although the uncertainty of VOCs emissions estimated in this study ranges 347 

from -50% to +100%, the uncertainty of simulated SOA concentrations is 348 

approximately 4.2 – 5.2 μg/m3, which is significantly lower than the 349 

average of the observed SOA concentrations (7.5 – 14.2 μg/m3) estimated 350 

from field campaigns (Table S8). These two facts imply that the significant 351 

SOA underestimation can be attributed to the limitation of the two-product 352 

method applied in CMAQv5.0.2 to simulate SOA. Indeed, this finding is 353 

consistent with previous studies that revealed the systematic SOA 354 

underestimation using the two-product method36, 37. The quantitative 355 

uncertainty analysis is shown to be competent for CTMs diagnosis. 356 
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   357 

Figure 5. Time series of hourly PM2.5 concentrations at (a) Guangzhou 358 

Panyu (GZPY), (b) Jiangmen (JMDH) and (c) Conghua (CHTH). At 359 

Guangzhou Panyu site, time series of (d) nitrate, (e) ammonium and (f) 360 

sulfate are also presented. The red lines are simulated PM2.5 361 

concentrations at the base case. The blue shaded area is the 95% CI of 362 

PM2.5 concentrations associated with emissions, LBCs, and meteorology 363 

(IEBM). The green shaded area is the uncertainty range associated with 364 

emissions and LBCs (IEB). The red shaded area is the uncertainty range 365 

associated with emissions. The black points are observed PM2.5 366 

concentrations. Guangzhou, Jiangmen, and Conghua are located in the 367 

urban, rural and downwind areas of the PRD region. 368 
 369 

3.4  Uncertainty attributions of PM2.5  370 

The wind speed, PM2.5 in LBCs and primary PM2.5 emissions are key 371 

uncertainty sources for PM2.5 simulations, which together account for 81.4% 372 

of the total uncertainty in simulated PM2.5 concentrations (Figure 6). The 373 

primary PM2.5 emissions generally have high uncertainty in China due to 374 

the limited measurements of local emission factors and a dearth of detailed 375 

activity data, particularly for fugitive dust, one of the largest contributors 376 
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to primary PM2.5 emissions38. The key uncertainty sources identified in this 377 

case study have previously been uncovered by Huang et al.39. In that study, 378 

the bias in LBCs for the PRD domain (D3) was reduced using an optimized 379 

data fusion method that combines model output and observations. The 380 

evaluation showed that reducing uncertainty in LBCs improves PM2.5 381 

simulations, with fractional bias decreased by 3 – 15%. This indicates that 382 

the enhancement of key uncertainty sources can indeed improve model 383 

performances.   384 

The key uncertainty sources for SNA simulations are different from 385 

those of PM2.5 simulations. There is lower uncertainty contribution from 386 

primary PM2.5 emissions, which is reasonable considering that primary 387 

PM2.5 emissions contain fewer SNA species. Temperature and NH3 388 

emissions are the two leading key uncertainty sources for nitrate 389 

simulations. This is as expected because NH3 emissions are a critical 390 

precursor of ammonium nitrate aerosol formation, and the formation is 391 

strongly dependent on temperature32. Moreover, NH3 emissions have high 392 

uncertainties in China due to the limited activity data and less 393 

representative emission factors38. Thereby, reducing the uncertainties in 394 

NH3 emissions and temperature could improve SNA simulations.  395 
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 396 

 397 
 398 

Figure 6. Contributions of uncertainty inputs to uncertainties in simulated 399 

PM2.5 concentrations averaged at all sites in PRDRAQM. MET denotes 400 

meteorological fields, EMIS denotes emissions in D3 and LBCs denotes 401 

lateral boundary conditions.    402 
 403 

 404 

4 DISCUSSION 405 

 Quantitative uncertainty analysis is an essential approach to identify 406 

key uncertainty sources for model diagnosis. However, this approach has 407 

only been applied in specific cases in CTMs because current uncertainty 408 

analysis approaches (e.g., RFM-DDM, SRSM, and MCM) suffer from 409 

either inaccuracy or inefficiency or both in certain cases. In this study, we 410 

proposed a methodological framework for the uncertainty analysis of 411 

CTMs, featuring the use of sensitivity analysis to filter out unimportant 412 

model inputs and the use of a new coupling HDDM-SRSM approach to 413 

improve the efficiency and accuracy of uncertainty propagation. The case 414 

study of PRD region shows that the framework is feasible in efficiently 415 

identifying key uncertainty sources and accurately propagating 416 

uncertainties of model inputs through CTM models while reducing 417 

computational resources (64% saving compared to the SRSM and 90% 418 
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saving compared to the MCM). The uncertainty analysis of one-day model 419 

simulation takes 128.6 hours on one node for the case study, but the 420 

computational time can be reduced to a few hours with the use of multiple 421 

nodes (Intel CPU with 50 nodes, see Table S9), making it feasible to 422 

conduct operational probabilistic air quality forecasting. In addition, this 423 

framework can be extended to other widely used CTM models.   424 

The case study demonstrates the uncertainty analysis is effective in 425 

model diagnosis and guiding model improvements. For example, the 426 

preliminary uncertainty analysis showed a systematic underestimate from 427 

the two-product method applied to describe SOA formation in 428 

CMAQv5.0.2. Using the volatility basis set (VBS)37, a new SOA module, 429 

the simulated SOA concentrations increased by 16% which was much 430 

closer to SOA observations (Figure S11). It demonstrates the critical role 431 

of the uncertainty analysis in diagnosing and improving CTM models. 432 

With further uncertainty analysis, it is possible that other systematic biases 433 

can be diagnosed. Also, in the case study, we identified primary PM2.5 434 

emissions, PM2.5 concentration in LBCs and wind speed as key uncertainty 435 

sources. Our work validated the enhancement of these key uncertainty 436 

sources could indeed improve model performance39. However, it must be 437 

pointed out that key uncertainty sources might vary from case to case, 438 

depending on the geographic domains, simulation periods, emissions, 439 

weather conditions, and chemical processes. For example, LBCs becomes 440 

the largest uncertainty source (55.2%) of PM2.5 simulations in December 441 

when the PM2.5 formation in the PRD is affected mainly by cross-boundary 442 

transport. However, it only contributes 22.7% the uncertainty in PM2.5 443 

simulations in April (Figure S9). In this case study, PBL is a minor 444 

uncertainty source within the ten-day simulation period, but PBL might 445 

emerge as a key uncertainty source if the simulation period was extended 446 

to one-year span. This also indicates that model improvements should 447 
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focus on different model inputs in different simulation cases.  448 

Apart from diagnosing CTM models, the uncertainty analysis can be 449 

applied to improve the model performance and the reliability of air quality 450 

forecasting by using the uncertainty mean and tailoring the uncertainty to 451 

get the probabilistic information. As shown in the case study, the 452 

uncertainty mean have a better agreement with observations than 453 

deterministic estimates. Apart from the uncertainty mean, the peak of 454 

uncertainty distribution and the uncertainty median are also better 455 

predictors (Table S7). Additionally, the probabilistic information can make 456 

the air quality forecasting more reliable. Here, we used a case example 457 

(Figure S10) to illustrate this, which was calibrated by the reliability 458 

diagram (Figure S7). The simulated daily PM2.5 based on deterministic 459 

simulation on the day of April 13, 2013 was 74 μg/m3, which did not exceed 460 

the national grade II standard (75 μg/m3). Thereby, air quality was 461 

forecasted to be “good” according to the Chinese Air Quality Forecast 462 

Regulation. However, the observed PM2.5 concentration was 95 μg/m3 on 463 

that day, which was at the “slightly polluted” level. If we used the 464 

probabilistic information, the likelihood of the “good” level was only 35%, 465 

while the likelihood of the “slightly polluted” was 65%, and the uncertainty 466 

mean was 90 μg/m3, giving us sufficient confidence to forecast the air 467 

quality as “slightly polluted” level, which was more consistent with the 468 

observation. The framework has the ability to add quantitative probabilistic 469 

information to forecasts, which is feasible regarding the time requirement. 470 

Compared with traditional probabilistic air quality forecasting that heavily 471 

relies on ensemble simulation, the framework is able to consider 472 

parametric uncertainties and identify key uncertainty sources to further 473 

improve forecasting performance7. Coupled with the ensemble method, 474 

structural uncertainties can also be addressed under the framework2.  475 

Although the high-order HDDM-SRSM showed high accuracy in 476 
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propagation, it does not mean that the accuracy of PCEs developed by 477 

HDDM-SRSM is held over all CTM simulations, partly due to the 478 

overfitting issue that typically occurs in cases with many unknown 479 

coefficients but fewer collocation points, such as 286 unknown coefficients 480 

and 81 collocation points in this study (Figure S1). When a PCE is 481 

overfitting, it performances well in interpolation but generally has biases 482 

in extrapolation. In HDDM-SRSM, all collocation points for estimating 483 

unknown coefficients almost fall in the region of high probability of inputs. 484 

It means that the best performance of HDDM-SRSM is restricted to 485 

simulations within the range of input uncertainties (95% CI). Beyond the 486 

range, the PCE is not adequately represented. Therefore, if input 487 

uncertainties have substantial changes, the PCE must be rebuilt according 488 

to the new input uncertainties to secure accurate uncertainty propagations. 489 
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