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Abstract 
 

Acute Myeloid Leukaemia (AML) and Multiple Myeloma (MM) are currently 

incurable malignancies which have devastating effects on patients who develop 

them. Chemotherapeutic regimens have remained largely unchanged over recent 

decades, it is therefore apparent that there is a need for novel therapeutic 

interventions. It is thought that these new treatments will come to fruition through 

a better understanding of the biological processes which underpin these 

diseases. Cancer cells have classically been thought to generate ATP through 

the non-mitochondrial based Warburg hypothesis, however it is becoming 

apparent that malignant cells are equally reliant on mitochondrial oxidative 

phosphorylation to fuel their rapid proliferation. Mitochondria were thought to 

remain in their somatic cell for their lifetime; however, ground-breaking research 

from the Gerdes laboratory has shown that mitochondria can move between 

somatic cells. In my thesis, I aimed to examine whether mitochondria were 

transferred between non-malignant bone marrow stromal cells (BMSC) and 

AML/MM cells. 

 

Mitochondria were shown to move from BMSC to AML blasts and MM cells, this 

process enhanced the proliferation of these malignancies. AML-derived NOX2 

superoxide was shown to stimulate mitochondrial biogenesis in BMSC, allowing 

mitochondria to move to AML blasts through tunnelling nanotubes. In the MM, it 

was found that CD38 expression on MM cells was able to form tunnelling 

nanotubes which facilitated the trafficking of mitochondria. Inhibition of NOX2 and 

CD38, in AML and MM respectively, reduced disease progression in vivo in part 

by reducing the quantity of mitochondria which move to the malignant cell.  

Furthermore, it was shown that AML/MM hijack this process from normal 

haematopoiesis as mitochondria move in vivo to haematopoietic stem cells in 

response to bacterial infection. Taken together I have presented a novel biological 

process in haematopoietic malignancies, which may be exploited to treat AML 

and MM. 
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LT-HSC - Long Term haematopoietic stem cell 
MACS - Magnetic activated cell sorting 
MAPK - Mitogen-activated protein kinase 
MAT - Marrow Adipose Tissue 
MDS - Myelodysplastic syndrome 
MEP - Megakaryocyte-erythroid progenitor 
MFI - Mean fluorescence intensity 
MGUS - Monoclonal gammopathy of unknown significance 
MIF - Macrophage inhibitory factor 
Miro1 - Mitochondrial Rho-GTPase  
MM - Multiple myeloma 
MMP-2 - Metalloproteinase-2  
MOI - Multiplicity of infection 
MPP - Multipotent progenitor 
MSC - Mesenchymal stem cells 
mtDNA - Mitochondrial DNA 
MYH - Myosin heavy chain gene 
NAC - N-Acetyl Cysteine 
NAD+ - Nicotinamide adenine dinucleotide 
NFκB - Nuclear factor-κB  
NGS - Next generation sequencing  
NK Cell - Natural killer cell 
NKP - Natural killer cell progenitor 
NNUH - Norfolk and Norwich University Hospital 
NOX2 - NADPH oxidase 2 
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NPM1 - Nucleophosmin 1 
NSG - NOD SCID Gamma 
OCR - Oxygen consumption rate 
OXPHOS - Oxidative phosphorylation 
PBS - Phosphate buffered saline 
PCL - Plasma cell leukaemia 
pCMV - Cytomegalovirus promoter 
PDK1 - Phosphoinositide-dependent kinase 1  
PGC-1α - Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 
PIP3 - Phosphatidylinositol-3,4,5-triphosphate  
PPR - PTH/PTH-related receptor  
PVDF - Polyvinyladine fluoride  
qRT -PCR - Quantitative real time polymerase chain reaction 
RANK - Receptor activator of nuclear factor κ-B  
RANKL -Receptor activator of nuclear factor κ-B ligand 
RIPA - Radioimmunoprecipitation assay  
RISC - RNA-induced silencing complex 
RNA - Ribose Nucleic Acid 
ROS - Reactive oxygen species 
RT- Room temperature 
RTK - Receptor tyrosine kinase 
SCF - Stem cell factor 
SCID - Severe combined immunodeficient  
shRNA - short hairpin RNA 
SMM - Smoldering MM 
SNP - Single nucleotide polymorphism 
ST-HSC - Short Term haematopoietic stem cell 
TAE - Tris acetate EDTA 
TAP - TNT-anchor point  
TCA cycle – Tricarboxylic acid cycle 
TCR - T cell receptor 
TET2 - Ten-eleven translocation oncogene family member 2  
TNT - Tunneling nanotube 
TSP - Thymus-seeding progenitor  
VCAM-1 - Vascular cell adhesion molecule 1  
VEGF - Vascular endothelial growth factor 
VIC - 2′-chloro-7′phenyl-1,4-dichloro-6-carboxy-fluorescein  
VSV-G - Vesicular stomatitis virus glycoprotein  
WHO - World Health Organisation 
5hmC – 5-hydroxymethylcytosine 
5mc - 5-methylcytosine  
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1 Introduction 
 

1.1 Haematopoiesis  
 

To understand haematopoietic malignancies such as Acute Myeloid Leukaemia 

(AML) and Multiple Myeloma (MM), it is of paramount importance to explore the 

development of normal blood cells. Haematopoiesis is a complex process which 

generates blood cells within the bone marrow (1). The blood is a highly 

regenerative tissue with approximately 1 x 106 mature blood cells generated every 

second (2). Haematopoiesis initiates from a pluripotent stem cell, the 

haematopoietic stem cell (HSC) (3). Despite its complexity, extensive animal 

experimentation means that haematopoiesis is the one of the best understood 

and described processes within the human body (4). Pioneering work by Till, 

McCulloch and colleagues in the 1960s paved the way for the discovery of the 

HSC (5). Mice treated with a lethal dose of irradiation, were rescued from death 

via the transplantation of bone marrow cells from a non-radiated mouse. 

Interestingly, small splenic lumps were observed in the irradiated mice following 

transplantation (6). Extensive analysis determined these colonies were formed 

from a single cell, capable of multi-lineage differentiation (7). The specific isolation 

of HSCs and other blood progenitor cells, using specific surface markers, allowed 

the complex hierarchical structure of haematopoiesis to be elucidated (8). In this 

system, mature blood cells are generated from a specific lineage multipotent 

progenitor cell which, in turn, have been derived from HSCs (9). Figure 1.1 

highlights the hierarchical structure of haematopoiesis which is further described 

below. 

 

1.1.1 Haematopoietic Stem Cell (HSCs) 
 

The work by Till and McCulloch demonstrated a single cell type had the ability to 

differentiate into and re-constitute all cells within the bone marrow (5, 7, 10). This 

cell was termed the HSC, a pluripotent stem cell with the ability to self-renew (9). 

Under basal conditions the number of HSCs remains relatively constant with the 

majority of cells residing in the G0 phase of the cell cycle (11). The HSC is a very 
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rare cell type - early studies that purified HSCs from mice found that only 0.05% 

of the total BM cells were HSCs (12, 13). These HSCs were isolated by the then 

relatively new technology fluorescence-activated cell sorting (FACS) using 

monoclonal antibodies, which revolutionised the field. Early HSCs were sorted 

using two surface markers; Thy-1low lineage marker (Lin) and Sca-1, with HSCs 

being Lin- and Sca-1+ (12, 13). These Lin-Sca-1+ HSCs were the only cells found 

to re-populate the entire haematopoietic system of irradiated mice (13), with 

Lin+Sca-1+ and Lin-Sca-1- cells unable to re-populate the bone marrow (14). More 

extensive purification, using additional surface markers CD117/c-Kit and CD34, 

highlighted that the HSC population isolated by Spangrude and colleagues (13) 

contained at least 3 multipotent populations; long term HSCs (LT-HSCs), short 

term HSCs (ST-HSCs) and multipotent progenitors (MPPs) (15). Through the use 

of additional surface markers, CD150 and CD48, these populations are now well 

defined (16).  

 

LT-HSCs are pluripotent and can undergo asymmetric cell division, differentiating 

into ST-HSCs in addition to self-renewing and maintaining the pool of HSC (17). 

ST-HSCs are multipotent and can differentiate into MPPs, which produce the 

common myeloid and lymphoid progenitors (see section 1.1.2 and 1.1.3). LT-

HSCs are able to sustain haematopoiesis for more than 11 months, compared to 

the relatively short time of 6-10 weeks of ST-HSCs (18).  

 

Mouse models have been critical in the evolution of our understanding of the 

human haematopoietic system. The development of mice lacking mature T and 

B cells has allowed the creation of xenograft models that incorporate human 

haematopoietic cells, which can specifically analyse human haematopoiesis in 

vivo (19). Using this model, it was found that human peripheral blood leukocytes 

were able to generate human T and B cells (20). More recently the specific 

transplantation of HSCs isolated from umbilical cord blood, into a modified SCID 

NOD-SCID-Gamma (NSG) mouse, has been used for the analysis of human 

haematopoiesis (21). Engraftment of human CD45+ cells was found in the bone 

marrow and spleen, along with mature human blood cells in the peripheral blood 
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(22). These experiments have resulted in the well understood hierarchical system 

of haematopoiesis (Figure 1.1). 

 

 

 
Figure 1.1. A schematic overview of the hierarchical system of haematopoiesis. 

The process of haematopoiesis starts with the pluripotent LT-HSC which differentiates into the 
ST-HSC whilst self-renewing to maintain the HSC pool. The ST-HSC then differentiates into the 
MPP, which gives rise to the CMP and CLP starting the myeloid and lymphoid lineages. Through 
a number of intermediate progenitors, the wide range of mature blood cells are generated. This 
figure is modified from Marlein and Rushworth 2017 (18). 
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1.1.2 Myeloid Lineage 
 

Haematopoiesis diverges into two distinct cell lineages; the myeloid and lymphoid 

lineages (23). The MPP has the ability to differentiate into either the common 

lymphoid progenitor (CLP) or the common myeloid progenitor (CMP), which is the 

first cell of the myeloid lineage and is capable to generating all of the cells that 

make up this lineage (24). The immediate differentiation step of the CMP is to 

create either the megakaryocyte-erythroid progenitor (MEP) or the granulocyte-

erythroid progenitor (GMP) (25). Through a range of intermediates, the GMP can 

generate basophils, neutrophils, eosinophils and macrophages via monocytes 

whereas the MEP can generate erythrocytes (red blood cells) and thrombocytes 

(platelets) (25).  There has also been recent evidence suggesting there is a 

progenitor, separate to the CMP/CLP lineage, which lacks the ability to generate 

cells of the MEP lineage (26).  

 

There are a number of different transcriptional regulators which cause the 

commitment to either the GMP or MEP lineage. For commitment to the GMP fate, 

the transcription factor CCAAT/enhancer-binding protein (C/EBPα) is crucial (27). 

HSCs express low levels of C/EBPα but levels increase upon differentiation of 

CMPs to GMPs (27). Artificially expressing C/EBPα in B cells of the lymphoid 

lineage causes them to differentiate into monocytes of the myeloid lineage (28), 

highlighting that this transcription factor is crucial for generation of cells 

downstream of the GMP. In addition, when C/EBPα is conditionally removed from 

mice, these mice lack the ability to generate GMPs from CMPs (29).   

 

There is also a key transcription factor involved in commitment of the CMP to the 

MEP lineage, this transcriptional factor is GATA-1 (30). Again GATA-1 expression 

levels are low in HSCs, with higher expression found in MEP and erythroid 

precursors. The importance of this transcription factor has been shown in mice 

lacking GATA-1, where these mice are unable to generate mature red blood cells 

(31). 
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1.1.3 Lymphoid Lineage 
 

As well differentiating into the CMP, MPPs also have the ability to generate the 

CLP. The CLP can then differentiate into the T cell, B cell and natural killer (NK) 

progenitor cells, which in turn creates mature T cells, B cells and NK cells (32). 

Mature T and B cells form the adaptive immune response (33, 34) whilst NK cells 

contribute to the innate immune system (35). T and B cells acquire a single 

antigen specific receptor through somatic DNA re-arrangements of T Cell 

Receptor (TCR) and Ig genes, creating a vast repertoire capability of recognising 

a wide range of antigens (36). Expression of the IL-7 receptor is critical for the 

commitment to the lymphoid lineage (37).  

 

The majority of B cell maturation takes place within the bone marrow, originating 

from the B cell progenitor which is irreversibly committed to the B cell lineage 

(38). Initiation of B-cell development requires two key transcription factors; E2A 

and early B cell factor (EBF). In the absence of either of these transcription 

factors, B cell development is arrested at the first stage of development (39, 40). 

On their surface, mature B cells have a specific B cell receptor (BCR) which is 

comprised of two heavy chains and two light chains (41). This receptor is capable 

of binding to specific antigens generating an immune response. The key step in 

creating this receptor is the re-arrangement of the heavy chain upon the activation 

of recombination-activating genes, which occurs between the pre-pro B cell and 

pro-B cell stage (42). Upon the generation of the late pre-B cell the light chain of 

the BCR is rearranged (V to J), if the resulting joints are in a continuous open 

reading frame the rearrangement is classed as “productive” (43).  

 

A fully functional follicular B cell (FoB) is made after a negative selection process, 

to remove autoreactive B cells (44). These cells can then migrate from the bone 

marrow to join the pool of circulating B cells. Upon activation by a foreign antigen, 

the FoB cell differentiates into an effector plasma cell which secretes specific 

antibodies to eliminate pathogens. Memory B cells are also created upon FoB cell 

activation, for use in subsequent exposure to the same antigen (45).  
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Contrary to B cell maturation, only a limited part of the T cell maturation occurs 

within the bone marrow with T cell progenitors migrating to the thymus for 

maturation (46). Bone marrow-derived thymus-seeding progenitors (TSPs), 

which include MPPs and CLPs (47), migrate to the thymus to differentiate into 

mature CD4+ (helper) and CD8+ (cytotoxic) T cells capable of mounting an 

immune response to pathogens. The number of TSPs in the peripheral blood is 

relatively small, with less than a total of 1000 found in the peripheral blood of mice 

(48).  

 

TSPs enter the thymus and differentiate into double negative cells (CD4-CD8-), 

which in turn generate double positive (CD4+CD8+) cells (49). After the re-

arrangement of the α and β chains of the TCR the double positive cells become 

single positive cells (either CD4+ or CD8+), which enter the cortex of the thymus 

for positive selection (50). Here single positive cells are selected on their ability 

to engage host MHC complexes (51). Upon the successful completion of positive 

selection, the single positive cells move to the medulla of thymus to undergo 

negative selection - here cells that recognise self-antigens are eliminated (52). A 

critical signalling pathway in the development of T cells is the Notch1 signalling 

pathway, activated by ligands of the Jagged family (53). Ectopic expression of the 

intracellular domain of the Notch1 receptor in haematopoetic progenitors resulted 

in T cell maturation in the bone marrow, which completely blocked B cell 

development (54).  

 

Unlike B and T cell development, NK cell development does not include the 

somatic rearrangement of genes encoding for antigen specific receptors. This is 

mainly due to their role in the innate immune whereby they secrete IFNγ and 

TNFα, rather than adaptive antigen sensing (55). The pre-NKP (natural killer 

progenitor) is the first committed cell to this lineage and IL-15 is crucial in the 

formation of this cell from the CLP (56). A key process in the maturation of the 

NK cell is the acquisition of CD56 and CD16 (57) along with the S1P5 receptor, 

which allows egress of the mature NK cell from the bone marrow (58).   
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1.2 Bone Marrow  
 

The bone marrow is the site of the majority of steps in haematopoiesis, whilst also 

being the location where malignant haematopoietic cells proliferate and 

accumulate. Therefore, it is important to discuss the anatomy and the complex 

microenvironment within the bone marrow. 

 

1.2.1 Bone Marrow Anatomy  
 

Human bone is composed of trabecular bone surrounded by a layer of cortical 

bone and a range of connective tissues (59), as shown in Figure 1.2. The 

trabecular bone is made up of four regions (endosteal, subendosteal, central and 

perisinusoidal) and is made up of a lattice filled with blood vessels, along with red 

and yellow bone marrow (60). In haematopoiesis, the most important region of 

trabecular bone region is the endosteal as it forms the point of contact between 

the bone marrow and bone (61). This region contains a range of non-

haematopoietic cells that are involved in the maintenance and regulation of both 

normal and malignant blood cell development (62). In addition, within the 

endosteal there are thin-walled blood vessels called sinusoids whose role is to 

aid blood cell migration away from the bone marrow (63).  

 

The bone marrow is made up of both haematopoietic red marrow and the fatty 

non-haematopoietic yellow marrow (64). All bone marrow at birth is composed of 

red marrow and is converted slowly to yellow marrow as we age. However, yellow 

marrow has been shown to be able to revert back to red marrow under certain 

stress stimuli such as severe blood loss (65). Red marrow contains the 

parenchyma, the location of haematopoietic stem cells and resultant progenitors, 

and the vascular component which comprises of supporting stromal cells (59). 

The yellow marrow is made up of fat cells, which serve as the energy reserve and 

can be used in times of severe starvation (66). 
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Figure 1.2. Schematic representation of the structure of the human bone. 

Human bone is made up of three regions; the epiphysis, metaphysis and diaphysis. Each region 
contains trabecular bone surrounded by cortical bone. The bone marrow is located within hollow 
regions of the trabecular bone, with the endosteum forming the divide between bone and bone 
marrow. Adapted from Marlein and Rushworth (18). 
 
 
1.2.2 Bone Marrow Microenvironment 
 

The expansion and differentiation of the HSC population occurs within a well-

controlled environment containing a number of different cell types and secretory 

molecules (62). Through the 3D imaging of mouse bone marrow, it was seen that 

there were high concentrations of HSCs in specific micro-domains or “niches” 

(67). The vascular component of the red bone marrow contains a vast array of 

stromal cells, which are present in HSC niches. These stromal cells arise from a 

multipotent stem cell, the bone marrow mesenchymal stem cell (BM-MSC), which 
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has the ability to differentiate into adipocytes, chondrocytes, osteoblasts, 

endothelial cells and myocytes (68, 69). The differentiation hierarchy of the BM-

MSC is schematically represented in Figure 1.3.  

 

There is still great debate as to the actual identity of BM-MSCs within the bone 

marrow. In 2006, the Mesenchymal and Tissue Stem Cell Committee of the 

International Society for Cellular Therapy introduced a minimum criteria for the 

identification of BM-MSCs using cell surface marker expression. Under these 

guidelines, BM-MSCs must be positive for CD73, CD90 and CD105 whilst being 

negative for CD31, CD34 and CD45 (70). These criteria are not perfect in defining 

BM-MSCs (due to the difficulty in reliably characterizing the stemness of 

populations expressing the above surface markers (71)), however these 

parameters are utilized in my thesis to define the BM-MSC stromal population. 

The aim was to isolate the BM-MSC population from human bone marrow 

aspirates, however during in vitro culture the BM-MSC may differentiate into early 

multipotent progenitors. Therefore, I define the heterogeneous “stromal” 

population used in this study as bone marrow stromal cells (BMSC) (Figure 1.3). 

 
 

Figure 1.3. The vascular (stromal) component of the red bone marrow. 

BM-MSC have the ability to differentiate into osteoblasts, endothelial cells, chondrocytes, 
adipocytes and myocytes via intermediate mesenchymal stromal cells. BM-MSC were isolated 
from human bone marrow aspirates for this study, however during culture it is likely that this cell 
will differentiate. Therefore, the heterogeneous “stromal” cell population used in my thesis are 
defined as bone marrow stromal cells (BMSC). 
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1.2.3 Bone Marrow Stromal Cells (BMSC) 
 

Bone marrow stromal cells (BMSC) encompass the BM-MSC and early 

multipotent progenitors prior to mature differentiation. BMSC line the sinusoids 

within the endosteal region of the trabecular bone (72) and provide cytokines and 

chemokines that are required for the maintenance of the HSC pool (62). One such 

chemokine, CXCL12 (or SDF-1), stimulates the attraction and retention of HSCs 

within the niche via its CXCR4 receptor (73). Deletion of CXCL12 in BMSC (74), 

or CXCR4 on HSCs (75), can result in a drastic loss of HSC numbers within bone 

marrow niches - highlighting the crucial role of this chemokine in HSC 

maintenance. Recently, it has been found that circadian oscillations can control 

the secretion of CXCL12 by BMSC (76). In this study, noradrenaline was released 

by sympathetic nerve fibres, causing BMSC to downregulate their CXCL12 

secretion and results in HSC egress from the bone marrow.  

 

Another key cytokine in the regulation of the HSC niche is stem cell factor (SCF), 

which again is produced by BMSC (77). SCF has both membrane-bound and 

soluble forms which bind to the receptor tyrosine kinase c-KIT (CD117) on HSCs, 

regulating maintenance and proliferation (78, 79). The membrane-bound form is 

crucial in maintaining haematopoiesis, as mice which only express the soluble 

form (Sl/Sld mutant mice) are completely devoid of HSCs and resultant 

downstream haematopoietic cells (80). 

 

Recently, three distinct populations of highly CXCL12-expressing perivascular 

BMSC have been identified; CXCL12-abundant reticular (CAR) cells, nestin-

GFP+ stromal cells and leptin receptor+ stromal cells (77). These populations 

were identified by transgene expression using stromal promoters; GFP was 

knocked into the CXCL12 locus and the Nestin promoter to identify CAR cells and 

nestin-GFP+ stromal cells respectively (81, 82). The Leptin receptor+ stromal cells 

were identified using lineage mapping using Cre-recombinase expressed under 

the control of leptin receptor elements (83). CAR cells are mesenchymal 

progenitors which have the ability to differentiate into adipocytes and osteoblasts, 

removal of these cells results in depleted HSC numbers associated with a 
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reduction of CXCL12 and SCF levels (84). Nestin-GFP+ cells express CXCL12 

and SCF at comparable levels, however, a reduction in these cells only caused a 

modest loss of HSC numbers (77). Finally, leptin receptor+ stromal cells also 

express CXCL12 and SCF whilst having the ability to differentiate into adipocytes, 

but lack the ability of osteoblastic differentiation (84). It is apparent that these 3 

distinct stromal cells types have commonalities, especially in SCF and CXCL12 

expression, therefore it is still widely accepted to class these distinct populations 

as BMSC. 

 

1.2.4 Osteoblasts 
 

BMSC have the ability to differentiate into bone forming osteoblasts (85). This 

differentiation process is controlled by the transcription factor Runx2 and is 

achieved through a pro-osteoblast intermediate (86). Heterozygous and 

homozygous Runx2 knockout mice have severely disrupted osteogenesis, with 

homozygous knockout animals dying at birth (87). Mature osteoblasts undergo a 

three-step process; proliferation, matrix maturation and mineralisation which 

results in the formation of bone (88).  

 

Like BMSC, there is evidence that osteoblasts contribute to the regulation of 

proliferation of HSCs. This was initially proposed after analysing the proximity of 

HSCs and mature haematopoietic progenitors to osteoblasts - HSCs were found 

close to osteoblasts with mature progenitors positioned further away (89). 

Conditional knockout of osteoblasts within the bone marrow resulted in the 

inability of the bone marrow to support normal haematopoiesis (90, 91). In a later 

study, the number of osteoblasts was increased through genetic manipulation of 

the PTH/PTH-related receptor (PPR) which is located on osteoblasts themselves 

(92). It was found that the increase in osteoblast number resulted in secretion of 

high levels of Notch ligand jagged 1. This caused an expansion of the HSC 

population within the bone marrow and this process can be reversed with the 
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administration of a γ-secretase inhibitor. Osteoblasts can also secrete CXCL12, 

albeit 1000-fold less than BMSC, but they lack the ability to secrete SCF (93). 

 

1.2.5 Bone Marrow Endothelial cells 
 

BMSC can differentiate into bone marrow endothelial cells, which also regulate 

the trafficking and homing of HSCs (94). Early studies using a conditional deletion 

of the gp130 receptor on endothelial cells resulted in a reduction of HSC numbers 

in bone marrow HSC niches (95). Like BMSC and osteoblasts, endothelial cells 

secrete CXCL12 – however this is at a level 100-fold less than BMSC and 10-fold 

greater than osteoblasts (96). Stimulation of endothelial cells with IL-1 or TNFα 

results in the production of cytokines (including G-CSF, GM-CSF and IL-6) that 

are crucial in the maintenance of the HSC pool (97). Endothelial cells also express 

the vascular cell adhesion molecule 1 (VCAM-1) (98) which binds to VLA-4 on 

HSC, enabling HSC retention within preferable bone marrow niches. 

Furthermore, endothelial cells synthesise soluble and membrane bound forms of 

SCF - knockout of this factor results a depletion of HSC numbers (83). 

 

1.2.6 Adipocytes 
 

Adipocytes present within the bone marrow also originate from BMSC and form 

marrow adipose tissue (MAT) (99). These cells make up approximately 15% of 

the bone marrow and are shown to increase in number during aging, reaching up 

to 60% by the age of 65 (100). Differentiation of adipocytes from BMSC is an 

intricate process controlled mainly by the PPARγ transcription factor (101) - 

PPARγ knockout mice were shown to lack terminally differentiated adipose tissue 

(102). In addition, the C/EBPα transcription factor is crucial in forming adipocytes 

with C/EBPα knockout mice lacking the ability to generate MAT (103). Adipocytes 

have been shown to produce and secrete SCF (104) whilst having the ability to 

produce CXCL12, IL-8 and IL-3 (105); which contributes significantly to the 

maintenance of the HSC niche.  
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1.2.7 Chondrocytes and Myocytes 
 

Another cell type which is formed from the differentiation of BMSC are 

chondrocytes, which in turn forms cartilage (106). Chondrocytes are metabolically 

active and can generate large quantities of extra cellular matrix (ECM) 

components including collagen, proteoglycans and glycoproteins. A major 

transcription factor involved in the generation of chondrocytes is Sox9, 

inactivation results in failure of chondrocyte differentiation (107). There is very 

little evidence to suggest that chondrocytes are involved in the maintenance of 

the HSC pool within the bone marrow, however downstream ECM components 

generated by chondrocytes make up key parts of the HSC niche.  

 

Myocytes form muscle tissue and are also formed by differentiation of BMSC - 

under the control of the transcription factor MyoD (108). As with chondrocytes, 

myocytes do not readily contribute to the maintenance of the HSC niche.  

 

1.2.8 Osteoclasts 
 

Although not part of the BMSC differentiation cascade, osteoclasts are a very 

important component of the bone marrow microenvironment. The process of bone 

formation is a highly dynamic remodeling process involving bone forming 

osteoblasts (see 1.2.4) and bone resorbing osteoclasts (109). Osteoclasts are 

generated in the haematopoietic component of the bone marrow from the GMP 

in the myeloid lineage (110).  Two haematopoietic factors are required for the 

formation of osteoclasts, the cytokine RANKL and CSF-1 (111).  Osteoclasts are 

crucial in generating the HSC niche; functional niches are not present in oc/oc 

mice (which lack osteoclasts) due to defects in HSC homing (112). Reduced 

osteoblasts are present in oc/oc mice, therefore the role of osteoclasts in HSC 

maintenance is likely to be indirectly through osteoblasts. Soluble and membrane 

forms of SCF are not synthesised by osteoclasts and only small quantities of 

CXCL12 are secreted.     
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1.2.9 Non-malignant Bone Marrow Disorders 
 

As with any other organ in the body errors can occur in the bone marrow which 

lead to disorders with varying degrees of severity. As haematopoiesis is the major 

process which occurs within the bone marrow, it is not surprising that the majority 

of non-malignant and malignant disorders arise from defects in this process.  

 

The most common non-malignant disorder of the bone marrow in which medical 

treatment is sought is anaemia. Anaemia is characterised by the reduction of 

functional erythrocytes in the bone marrow and peripheral blood, or by a decrease 

in the amount of haemoglobin in the erythrocyte (113). Errors in erythrocyte 

production or reduced functionality of haemoglobin synthesis can ultimately 

impact the ability of the blood to transport oxygen - the major symptom of anemia. 

Iron deficiency anaemia is a very common subtype which, as the name suggests, 

is caused by a lack of intake of iron in the diet (114). A more severe type of 

anaemia is aplastic anaemia where the bone marrow is unable to produce both 

functional red and white blood cells in addition to platelets (115). Here mature 

immune cells attack HSCs which inhibits haematopoiesis and increases the 

number of fat cells.  

 

Another non-malignant disorder of the bone marrow that affects cellular 

homeostasis is myelodysplastic syndrome (MDS) - however in this case MDS 

causes an increase in the number of cells. This disorder results in the 

overproduction of myeloid cells resulting in cytopenia lowering the number and 

production of normal blood cells. This disorder can manifest into a far more severe 

malignant disorder, acute myeloid leukemia (AML), if not managed properly (116).  

 

1.2.10 Malignant Bone Marrow Disorders 
 

Although non-malignant disorders of the bone marrow have profound effects on 

individuals who suffer from them, they are very manageable in the clinic. 

However, malignant disorders of the bone marrow are by far more severe and 

are very difficult to treat by clinicians. There are multiple malignant disorders that 
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can arise in the bone marrow, whereby blood cells generated at various points 

can become cancerous and proliferate without control.  

 

Haematological cancers are classed into three groups; Leukaemia, Myeloma and 

Lymphoma (although lymphoma is not present in the bone marrow) (117). The 

incidence of these cancers can be seen in Figure 1.4. The term leukaemia can 

be further split into four sub-types; acute myeloid leukaemia (AML), chronic 

myeloid leukaemia (CML), acute lymphoblastic leukaemia (ALL) and chronic 

lymphoblastic leukaemia (CLL). As the names suggest AML and CML effect cells 

of the myeloid lineage and ALL and CLL effect the lymphoid lineage, with the fast 

progressing acute conditions being more severe than the slower chronic 

conditions. Leukaemia of the lymphoid lineage has a favourable survival outcome 

compared to leukaemia of myeloid lineage (118).  

 

Myeloma is a clonal chronic malignancy that specifically effects the plasma cell 

of the lymphoid lineage (119). Leukaemia and myeloma are liquid malignancies 

that are present within the bone marrow and peripheral blood, whereas lymphoma 

is a solid tumour which resides within the lymphatic system and comprises of 

lymphocytes. This malignancy can be split into Hodgkin and Non-Hodgkin 

lymphoma; Hodgkin lymphoma is characterised by the cancerous Reed-

Sternburg cells whilst Non-Hodgkin encompasses the remainder of lymphomas 

(120). My thesis is focused on AML and multiple myeloma and these 

malignancies will be discussed further in sections 1.3 and 1.4. 
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Figure 1.4. National Cancer Institute Incidence Statistics 2018. 

The estimated incidence of specific cancers in 2018 is presented as a percentage of total cancers 
diagnosed. (A) Shows an overview of all types of cancers diagnosed, of note haematological 
malignancies make up 10% of total cancers diagnosed. (B) Shows a breakdown of the specific 
haematological subtypes. In relation to my thesis the most important values are that AML and 
Myeloma make up 12 and 18% of the haematological malignancies diagnosed in 2018. This data 
was accessed on August 2018 from the Surveillance, Epidemiology, and End Results Program 
statistics generated by the National Cancer Institute; https://seer.cancer.gov/statfacts/. 
 
 

A 
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1.3 Acute Myeloid Leukaemia (AML) 
 

1.3.1 Overview of AML 
 

AML is an aggressive neoplasm characterised by the accumulation of immature 

haematopoietic myeloid progenitor cells (blasts) in the bone marrow (121). These 

blasts increase their proliferative rate whilst halting their differentiation capacity. 

AML disease is maintained by a small pool of leukaemic stem cells (LSCs), which 

have the ability to survive chemotherapy and cause disease relapse (minimal 

residual disease) (122). AML is a very heterogeneous disease due to the fact that 

there are multiple differentiation points down the myeloid lineage (from CMP to 

mature myeloid cells) where the blast can arrest differentiation and start to 

proliferate. In addition, there are various chromosomal translocations present in 

AML (123). Therefore, specific subtypes of AML have been classified to aid 

diagnosis and treatment, these will be discussed in section 1.3.3.  

 

 
Figure 1.5. Comparison of new cases to deaths in Leukaemia and Myeloma. 

This figure shows the number of new US cases of leukaemia and myeloma compared to the 
number of deaths, highlighting the less treatable diseases. The lowest case/death ratio, which 
highlights poor prognosis, is AML followed by myeloma. The highest case/death ratio, showing 
good survival, is CML. This graph was generated from data from the Surveillance, Epidemiology, 
and End Results Program statistics, accessed August 2018; https://seer.cancer.gov/statfacts/. 
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AML is a disease of the elderly with the median age of patients at diagnosis being 

71 - it is very uncommon to be diagnosed in patients less than 45 years of age 

(124). The survival rate of patients with AML is poor, with only 27.4% of patients 

surviving 5 years post diagnosis (125). In addition, the number of US deaths 

expected in 2018 (10670) compared to number of new cases (19520) is elevated 

compared to other leukaemias, this is shown graphically in Figure 1.5. The 

incidence of AML is higher in males, with 5.2 cases per 100,000 in men compared 

to 3.6 cases per 100,000 in women (125). It has also been reported that AML is 

more common in Caucasian populations compared to populations of African 

descent. The incidence of AML is lower in Asian populations followed by Hispanic 

and American Indian populations. The frequency of AML is increasing in 

developed countries such as the Canada and Australia (126), in addition to the 

UK where the number of AML cases has increased by 8% over the last decade 

(127). However, this increase is most likely due to a combination of an aging 

demographic and the development of more sophisticated detection techniques. 

Within the UK, AML incidence is more common in males living in deprived areas 

whereas there is no link in females (127).  

 

1.3.2 Symptoms, Diagnosis and Treatment 
  

Like any other disease, the symptoms of AML vary from patient to patient. A 

recent study compared a cohort of AML patients to determine the frequency of 

known AML symptoms. It was found that the most common symptom was fatigue 

followed by bruising, weakness, dizziness, shortness of breath and bleeding 

(128). Due to the un-specific nature of these symptoms there is a need for a 

diagnostic procedure to confirm the presence of AML.  

 

The initial procedure for diagnosing leukaemia used by clinicians is a blood test - 

where a high abnormal white blood cell count or very low blood count could 

indicate the presence of leukaemia (129). A bone marrow aspirate is then 

conducted where a small sample of bone marrow is taken from the patient and 

analysed for the presence and sub-type of leukaemia (130). Flow cytometry and 

Wright-Giesma staining are used to diagnose AML (131). AML blasts are myeloid 
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cells therefore they express the myeloid markers CD13 and CD33; secondly AML 

blasts have large nuclei with very little cytoplasm in addition to containing 

azurophilic granules, which can be determined using Wright-Giesma staining. To 

fully diagnose AML, greater than 20% of the total cells in the bone marrow must 

be AML blasts (132). Non-malignant MDS may be diagnosed if there are less than 

20% blasts in the bone marrow.  

 

The treatment of AML has not changed in over 40 years and involves an intense 

regime of chemotherapy, the primary goal is to induce remission where blast 

levels are reduced to less than 5% (133). This chemotherapy regimen is called 

7+3 and involves a continuous infusion of cytarabine (Ara-C) for 7 days, with an 

anthracycline such as daunorubicin given on days 1, 2 and 3 (134). There are 

variations in this procedure; at the Norfolk and Norwich University Hospital 

(NNUH) 10+3 is used, where Ara-C is given for 10 days with daunorubicin given 

at days 1, 3 and 5 (Information provided by Dr Charlotte Hellmich, NNUH 

Haematology Registrar). While over 70% of patients treated with intense 

chemotherapy enter remission, a number enter disease relapse (131). Therefore, 

there is a need for consolidation/curative therapy, which is most commonly an 

allogenic haematopoietic stem cell transplant (HSCT). In this process donor 

HSCs with the same human leukocyte antigen (HLA) are administered to AML 

patients after myeloablative conditioning of the bone marrow usually with 

cyclophosphamide (135). In this process, the patient’s bone marrow is ablated 

and replaced with the donors haematopoietic system, thereby reducing the 

chance of relapse. A side effect of this process is graft vs host disease (GVHD), 

whereby T cells differentiated from donor HSCs can attack non-haematopoietic 

host cells within the bone marrow. This can be managed using 

immunosuppressant medication such as cyclosporine (136), therefore HSCTs 

remain a common treatment regime in the treatment of AML. Autologous 

transplants are also used if an appropriate donor is not found, although this is 

rare. 

 

The current treatments of AML are highly aggressive and consequently they are 

not well tolerated by the elderly patients that generally develop AML and results 
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in the poor 5-year survival rate. Therefore, new research into the biology of the 

disease is needed to develop new treatments which are tolerable to the 

demographic of the disease, which may increase patient survival duration. 

 

1.3.3 Classification of AML 
 

As AML is a very heterogeneous disorder, the French-American-British (FAB) 

classification was developed in 1976 based on the type of cell which the 

leukaemia developed and the degree of maturity, with AML initially split into six 

subtypes (M0-M6) (137). Updates to this system were introduced in 1985 and 

1987, which added two more classifications the M7 and M0 respectively (138, 

139). Acute basophilic leukaemia was proposed as M9 in 1999, however this has 

not been widely accepted (140). Table 1.1 presents the FAB AML classification 

system. 
Table 1.1. FAB classification of AML. 

Data from (141). 

 
 

More recently (2002) the World Health Organization (WHO) proposed an 

alternate classification system, which could be more clinically useful and produce 

more meaningful prognostic information that the FAB system (142). This included 

4 major classifications of AML with specific subtypes located within these major 

classifications. An updated version of this classification was published in 2008 
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(143) and currently the WHO classifications are used interchangeably with FAB 

classifications. The current WHO classification of AML is presented in Table 1.2. 

 

Table 1.2. World Health Classification of AML. 

 
 

1.3.4 Molecular basis of AML 
 

Nonrandom cytogenetic chromosomal translocations have been identified in 

roughly 52% of total cases of AML and have long been considered the genetic 

events that drive the formation of the disease (144). The first chromosomal 

translocation identified was the t(8;21)(q22;q22), which fuses AML1 (RUNX1) on 

chromosome 8q22 with ETO (MTG8) on chromosome 21q22 (145). This 

alteration is one of the most frequent, found in approximately 6% of patients with 

AML (144), and forms the AML1-ETO protein which interferes with the tumour 

repressor p14(ARF) (146). Another common translocation that occurs in AML is 

the inv(16)(p13;q22) which fuses the myosin heavy chain (MYH) gene at 16p13 

with the core binding protein β (CBPβ) gene at 16q22 (147) - this fusion protein 

has been shown to impair neutrophil development (148). These two 

translocations have a good prognostic outcome, whereas translocations which 

involve the 11q23 (MLL) gene have poor prognosis (149). A specific example is 
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the t(9;11)(p22;q23), which produces the MLL-AF9 fusion protein resulting in 

aberrant transcription of MLL target genes (150). 

 

40-50% of diagnosed AML cases are deemed cytogenetically normal (CN) when 

assessed using conventional band analysis (151); therefore it is important to 

analyse the effect of alternate molecular events. With the advent of next 

generation sequencing (NGS) the genetic landscape of CN AML patients has 

been more clearly defined, leading to the discovery of mutations which contribute 

to AML disease progression. Each CN AML case is seen to have an average of 

13 mutations - 5 of which are driver mutations and 8 being random passenger 

mutations (152). Key driver mutations found in AML patients will be discussed in 

more detail below. 

 

The most common mutation in AML are mutations of Nucleophosmin 1 (NPM1), 

which occurs in between 25 and 30% of patients diagnosed with AML (153). 

These mutations result in the aberrant expression of the NPM1 protein in the 

cytoplasm (which usually resides in the nucleus) promoting myeloid proliferation 

and the development of AML (154). Patients with NPM1 mutations have a 

favourable prognosis due to the sensitivity of the AML blasts to intense 

chemotherapy (155). NPM1 mutations are often associated with other key 

mutations that are involved in the development and progression of AML, including 

DNA Methyltransferase 3A (DNMT3A), Fms-Like Tyrosine Kinase 3 (FLT3) and 

Isocitrate Dehydrogenase (IDH) mutations (156).  

 

Missense mutations affecting the arginine codon 882 of the DNMT3A gene are 

present in approximately 18 to 22% of AML cases and result in a defect in normal 

haematopoiesis and proper methylation (157). These mutations have recently 

been identified as pre-leukaemic mutations and are persistent at times of 

remission, therefore the prognostic outcome of these mutations is adverse (158). 

FLT3 was found in 1993 to be strongly expressed in haematopoietic cells and 

important for cell survival and proliferation (159). Internal tandem duplications 

(ITD) in the juxtamembrane domain of FLT3 are present within 20% of all AML 

cases and results in the constitutive activation FLT3 signaling promoting blast 
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proliferation (160). FLT3-ITD mutations have been associated with increased 

chance of relapse (161). Gain-of-function mutations of the IDH1/2 genes are 

oncogenic and result in the loss of normal enzyme function, creating a new ability 

of the enzyme to convert α-ketoglutarate into 2-hydroxyglutarate. Mutations of the 

highly conserved arginine residue at codon 132 in IDH1 and codon 140 of IDH2 

have been identified in around 15-20% of AML patients (162). IDH1/2 mutations 

are found more frequently in older patients and confer a poor overall survival 

(163).   

 

In addition to the most frequent mutations described, there are other mutations 

that are present in AML patients which contribute to disease progression. One of 

these is a mutation of the ten-eleven translocation oncogene family member 2 

(TET2), which is found to be mutated in around 9-13% of AML cases (164). TET2 

is an enzyme involved in DNA methylation where it converts 5-methylcytosine 

(5mC) to 5-hydroxymethylcytosine (5hmC) in DNA; the role of loss of function 

mutations (in regard to overall AML patient survival) are not clear and still debated 

(165). The runt-related transcription factor (RUNX1 or AML1) is crucial in normal 

haematopoiesis and is frequently involved in the AML1-ETO chromosomal 

translocation leading to AML disease progression (166). In addition to 

chromosomal translocations, mutations of RUNX1 are present and are found in 

5-13% of AML cases and are found to be resistant to conventional induction 

chemotherapy regimens (167). Other mutations involving the CCAT enhancer 

binding protein α (CBPα), additional sex comb-like 1 (ASXL1) and p53 have also 

been described as driver mutations within AML cases (165).  

 

1.3.5 Key Signaling Pathways in AML 
 

Chromosomal translocations and genetic mutations (described in 1.3.4) can lead 

to the aberrant activation of key intracellular signaling pathways – resulting in 

leukaemogenesis. In addition, the overexpression of key secretory cytokines 

within the bone marrow microenvironment (BMM) can have a similar effect on 

signaling cascades. The majority of intracellular signaling cascades that are 

aberrantly activated in AML originate from a receptor tyrosine kinase (RTKs), 
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which are significant components in the pathogenesis of this malignancy (168). 

The most commonly affected RTK in AML is FLT3, which as discussed previously, 

is mutated in approximately 20% of cases and causes constitutive activation of 

this specific RTK (169). Other members of this class of receptor exist (c-kit, c-

fms, vascular endothelial growth factor (VEGF) receptor and Brutons tyrosine 

kinase (BTK)) and all are implicated in AML progression, where mutations again 

cause the aberrant constitutive expression of the receptor (170-172).  

 

The MAPK/ERK pathway is a key process in cellular homeostasis that links 

extracellular stimuli with proliferation, differentiation and survival of the cell (173). 

In this process, the receptor tyrosine kinase activity of the epidermal growth factor 

receptor (EGFR) is activated by external stimuli promoting Ras to bind to GTP 

causing activation. Ras then activates RAF kinase, which phosphorylates and 

activates MEK which in turn phosphorylates and activates mitogen-activated 

protein kinase (MAPK). MAPK can then activate transcription factors (such as c-

myc and c-Jun) which promote protein synthesis and cell cycle progression. This 

signaling process is constitutively activated in AML blasts, resulting in disease 

progression (174). FLT3-ITD mutations have also been shown to activate MAPK 

in AML blasts (175). In addition, AML blasts have been shown to be susceptible 

to small molecule MAPK inhibitors (176).  

 

Another key intracellular signaling pathway that is abnormally activated in AML is 

the PI3K/AKT/mTOR pathway, this pathway is crucial to many aspects of cell 

growth and survival (177). Activation of growth factor receptor protein kinases 

results in the auto-phosphorylation and recruitment and activation of 

phosphatidyl-inositol-3-kinases (PI3Ks) (178). Activation of PI3K causes the 

production of the second messenger phosphatidylinositol-3,4,5-triphosphate 

(PIP3) which in turn activates phosphoinositide-dependent kinase 1 (PDK1) and 

Akt/protein kinase B (PKB) (179). Akt has the ability, through mTOR and glycogen 

synthase kinase-3 (GSK3), to regulate several cell processes which result in cell 

survival and cell cycle progression. This pathway is over-activated in over 50% of 

patients with AML and AML blasts have been shown to be susceptible to PI3K 

pathway inhibitors (180). 
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The JAK/STAT (Janus associated kinase-signal transducer and activator of 

transcription) signaling pathway has also been implicated in AML disease 

progression. This pathway includes four tyrosine kinases (JAK1-3 and Tyk2) 

(181) and upon the binding of its ligand, the receptor activates through 

dimerization and phosphorylation of its cytoplasmic domain (182). Activated JAK-

cytokine receptor complexes recruit specific cytoplasmic transcription factors 

called STAT proteins (183). STAT proteins dimerize and translocate to the 

nucleus, where they regulate the transcription of a wide range of genes controlling 

cell division and cell cycle progression. A strong expression of JAK/STAT proteins 

is observed in AML blasts along with constitutive expression of this signaling 

pathway (184). Inhibitors of the JAK/STAT pathway have been shown to 

decrease the proliferation of AML blasts (185).  

 

The three major signaling pathways implicated in AML disease progression have 

been discussed. Other pathways are also aberrantly expressed in AML, including 

the Wnt/ β-catenin (186) and NF- κB pathways (187). The combination of all these 

pathways result in the aberrant expression of genes that increase protein 

synthesis, cell cycle progression and cellular survival - subsequently this could 

simulate the formation and progression of AML.  

 

Although these pathways may provide a novel therapeutic window for disease 

intervention, it is also important to note that there is a vast amount of cross-talk 

between the pathways. Therapies targeting a single cellular pathway in AML may 

be ineffective, as other compensatory pathways may still generate the same pro-

tumoral aberrant activation of key genes. 

 

1.3.6 Current clinical trials 
 

As discussed earlier the treatment of AML has not changed in over 40 years, 

therefore new therapies are required as the overall survival of patients with AML 

is poor. There are current clinical trials ongoing which are analysing the 

effectiveness of therapies that target some of the ideas discussed in this section, 

along with other novel therapeutic targets. An overview of the current clinical trials 
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occurring in AML is presented in Table 1.3. In my opinion, one of the most 

promising new therapeutics in clinical trials for AML is Venetoclax (ABT-199), 

which targets the anti-apoptotic Bcl-2 protein within the mitochondria (188). 

Venetoclax has achieved a durable response in elderly AML patients ineligible for 

induction therapy, with 73% reaching complete remission (189). 

 
Table 1.3. An overview of current clinical trials ongoing for the treatment of AML. 

Data in the table is from a combination of (190) and from https://clinicaltrials.gov/ct2/home 
 

 
 

1.4 Multiple Myeloma (MM) 
 

1.4.1 Overview of MM  
 

The second haematological malignancy my thesis will focus on is Multiple 

Myeloma (MM) which is a neoplastic disorder of plasma cells, the terminal 

differentiation stage of a B cell. This disease is characterised by the accumulation 

and proliferation of monoclonal plasma cells within the bone marrow and 
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accounts for approximately 10% of all diagnosed haematological disorders (191, 

192). In addition, MM is the second most commonly diagnosed haematological 

malignancy behind lymphoma (see Figure 1.4). In MM malignant plasma cells are 

unable to produce functional antibodies, instead producing monoclonal or light 

chain only (Bence Jones protein) immunoglobulins (193). There are numerous 

clinical stages of this disease, which will be discussed in 1.4.3. 

 

Looking back at Figure 1.5, it can be seen that MM has the second worst 

prognostic outcome behind AML. The number of US MM deaths predicted in 2018 

(12770) compared to number of new cases (30770) is elevated compared to other 

haematological malignancies (125). Like AML, this disease affects primarily the 

older demographic with the average age at diagnosis being 66 (194) and only 

50.7% of patients survive 5 years (125). When analysing the likelihood of 

developing MM in various geographic locations, it appears that the frequency of 

MM cases is far greater in the western world (such as North America and Europe) 

compared to traditionally weaker economic countries (such as Africa) (195). 

However, it is important to consider the predicted life expectancies in these 

countries - on average people are only expected to live to about 50-year-old in 

weaker economic countries. Therefore, as MM patients are generally diagnosed 

at around 66, the chance of developing MM is lower in these younger populations 

in developing countries. When analysing the prevalence of MM in those of African 

descent compared to Caucasians, MM is twice as common in those of African 

descent compared to Caucasians (196). When these results were normalized 

with economic factors the difference is still observed, implying there is a biological 

difference for the observed results (197). In addition, MM is 40-50% more 

commonly diagnosed in males compared with females (198).  

 

1.4.2 Clinical Stages of MM 
 

Plasma cell disorders cover a plethora of disease states ranging from the 

asymptomatic premalignant proliferation of plasma cells (monoclonal 

gammopathy of unknown significance (MGUS)) and asymptomatic MM 

(smoldering MM (SMM)) to symptomatic malignant disease (MM and plasma cell 
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leukaemia) (199). Research has determined that almost all cases of MM evolve 

from MGUS (200), however only around 1% of MGUS cases progress to 

malignant disease (201).  

 

Abnormal immunoglobulin protein (paraproteins) are found in the blood of MGUS 

patients, first noted by Waldenström in 1960 when abnormal gamma-globulin 

bands were found when carrying out protein electrophoresis on the serum from 

healthy patients (202). There are three distinct clinical subtypes of MGUS 

depending on the abnormal monoclonal protein secreted; non-IgM, IgM and light-

chain MGUS (203). In 2003, the International Myeloma Working Group (IMWG) 

developed a diagnosis classification for known monoclonal gammopathies (204). 

For MGUS to be diagnosed there must be <30g/L monoclonal immunoglobulin in 

the patient’s serum, with fewer than 10% monoclonal plasma cells in the bone 

marrow. An update of these criteria in 2010 added the absence of end stage 

organ damage to the classification of MGUS (205). There are vast variations in 

the speed of progression from MGUS to malignant MM, with some progressing 

swiftly and others not at all. The risk of progression is effected by a number of 

factors including type of monoclonal Ig that is secreted (206). Patients with MGUS 

are monitored yearly and there are currently no therapeutic interventions for this 

stage of the disease. 

 

The progression of MGUS disease can lead to SMM, which is the intermediate 

stage to malignant MM. SMM is also a disease with elevated monoclonal plasma 

cells which produce paraproteins. It is diagnosed when the number of monoclonal 

plasma cells in the bone marrow increases to over 10%, paraprotein 

concentration in patient serum exceeds 30g/L and there is no sign of end organ 

damage (207). The risk of developing malignant MM from SMM is far greater 

compared with MGUS, 10% of patients diagnosed with SMM will develop MM 

within 5 years (208). SMM is biologically heterogeneous as it contains a subset 

of late MGUS patients and early MM patients who have not developed end organ 

damage (209). As this is the case, treating patients in the SMM stage provides 

an opportunity to decrease the cases of MM - although currently there are no 

treatment regimens for this condition. A recent study showed that treating SMM 
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patients with approved MM therapeutics (Lenalidomide and Dexamethasone) 

increased the 5-year MM progression free time from 30 to 77% compared to no 

treatment (210).  

 

 
 

Figure 1.6. The clinical stages of Multiple Myeloma disease progression. 

 

SMM can lead to symptomatic MM upon the detection of tissue damage using the 

CRAB criteria; Calcium, Renal insufficiency, Anaemia and/or Bone lesions (211). 

The symptoms, diagnosis and treatments of symptomatic MM will be described 

in section 1.4.3. The rare disorder of plasma cell leukaemia (PCL) can arise from 

Symptomatic MM (212). This condition is very aggressive and is characterised by 

the presence of circulating monoclonal plasma cells in the peripheral blood. PCL 

is diagnosed when there are more than 20% monoclonal plasma cells in the 

peripheral blood and an absolute plasma cell count of greater than 2x109/L (213). 

There are two types of PCL (primary and secondary) where primary PCL is 

diagnosed in patients with no history of MM, whereas secondary PCL is observed 

as a leukaemic transformation of relapsed or refractory MM disease in MM 

patients (204). The incidence of primary PCL is greater than secondary PCL - 60-

70% compared to 30-40% respectively. 
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1.4.3 Symptoms, Diagnosis and Treatment 
 

Symptomatic MM is diagnosed when CRAB criteria have been reached, as 

mentioned above. Of the CRAB criteria, the most common symptoms in MM are 

fatigue (often caused by anaemia) and bone pain (119). 90% of MM patients 

present with bone disease at some point during the MM progression (214), 

ultimately due to an imbalance of osteoblast and osteoclast production (215). The 

bone damage can often lead to hypercalcemia resulting in renal failure in around 

50% of all MM patients (216).  

 

To diagnose MM numerous clinical procedures are carried out - one of these is a 

test to detect paraprotein levels in serum/urine. To achieve this either a serum 

protein electrophoresis assay, serum immune-fixation assay or serum FLC assay 

is carried out in parallel to a 24-hour urinary protein electrophoresis (217). The Ig 

type of the paraproteins can be detected using these methods: 50% of MM 

patients are IgG, 20% are IgA, 20% are light chain only, 2% are IgD and 0.5% 

are IgM (194). In rare cases (2-3% of patients) no detectable paraprotein is 

detected and these patients are deemed non-secretory MM (218). Bone marrow 

biopsies are also carried out in patients suspected of having MM, this test will 

determine the number of monoclonal plasma cells in the bone marrow. Additional 

tests, such as FDG-PET (fluorodeoxyglucose positron emission tomography) and 

CT scans of the entire skeleton, are utilised to diagnose bone lesions. MRI scans 

are sometimes carried out when it is difficult to distinguish between SMM and MM 

(219).  

 

The first case of MM was first described in 1844 (220), however the first working 

treatment was not discovered until 100 years later. The nitrogen mustard 

alkylating agent melphalan was the first drug shown to have beneficial effect on 

MM patient survival - 50% of patients treated showed improved survival (221). 

Melphalan was then combined the corticosteroid prednisone, which increased 

MM patient survival by 6 months compared to patients treated with melphalan 

alone (222). This treatment was used as a MM core therapy for decades until a 

study presented the idea that thalidomide, used very famously for morning 
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sickness in the 1950s, had anti-MM properties reducing bone marrow plasma cell 

number along with reducing levels of paraproteins (223). Thalidomide was 

approved for use in MM, commonly in combination with melphalan and 

prednisone, along with the thalidomide derivative lenalidomide. The proteasome 

degradation pathway is very important for MM survival (see section 1.4.6), 

therefore the anti-MM effect of proteasome inhibitors such as bortezomib and 

carfilzomib was studied. 35% of patients treated with bortezomib had complete or 

partial response to bortezomib (224), and when combined with melphalan and 

thalidomide the median patient survival increased from 16 months to 24 months 

(225).  

 

The most important phases of MM therapy are the initial therapy, stem cell 

transplant and consolidation/maintenance therapy.  Initial therapy depends on the 

risk factor of the patient, but all contain a regimen of three drugs: a proteasome 

inhibitor, a thalidomide derivative and a corticosteroid (119). Patients with low or 

medium risk are given 4 cycles of bortezomib, lenalidomide and dexamethasone 

- followed by an autologous stem cell transplant (ASCT). Patients at high risk are 

given a slightly modified 4 cycles of carfilzomib, lenalidomide and dexamethasone 

- followed by an ASCT. Maintenance therapy for low, medium and high-risk 

patients is lenalidomide, bortezomib or carfilzomib respectively. Only around 50% 

of MM patients survive 5 years after diagnosis as they become refractory and 

resistant to treatments - there is therefore a need for alternate therapeutic 

interventions. It is envisaged that these will arise from a better understanding of 

the biology of MM pathogenesis. 

 

1.4.4 Plasma Cell Immunoglobulins 
 

The most important function of a non-malignant plasma cell is to its ability to 

produce immunoglobulins in response to encountering foreign pathogens (226). 

These immunoglobulins can be secreted or bound to the cell membrane and are 

composed of two heavy (α, γ, δ, ε or μ) and two light chain (κ or λ) peptides that 

form a tetrameric complex (Figure 1.7) (227). Based on the specific peptide 

sequence in the heavy chain, the immunoglobulin can be sub-divided into 5 



	 48	

different classes; IgA, IgG, IgD, IgE and IgM. Monoclonal plasma cells in MM 

secrete large quantities of one specific type of immunoglobulin and, as discussed 

in 1.4.3, there is variation in the percentage of patients with each type of Ig heavy 

chain. Each type of heavy chain Ig confers a different prognostic outcome; with 

the rare IgD having a poor prognosis (21 months) and IgG patients having a more 

favourable prognosis (61.8 months) (194, 228).  

 

 
Figure 1.7. Schematic representation of an immunoglobulin (Ig). 

The structure of an immunoglobulin is presented that is either secreted or present on the cell 
surface of a normal or malignant plasma cell. MM cells secrete large quantities of monoclonal 
immunoglobulins with a specific heavy chain peptide sequence, these are defined as 
paraproteins. 
 
 
1.4.5 Molecular Basis of MM 
 

Multiple myeloma is classified as a single disease, however within this disease 

there are various different cytogenetically distinct plasma cell neoplasms (229). 

Using fluorescence in situ hybridization studies, 40% of all MM cases were shown 

to have the presence of trisomies in the malignant cell (230). In the majority of the 
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remaining cases, chromosomal translocations were found involving the 

immunoglobulin heavy chain (IgH) on chromosome 14q32 (231). In a small 

number of cases both trisomies and chromosomal translocations were found, 

along with a minimal number of cases having no genetic abnormalities. These 

trisomies and chromosomal translocations (highlighted in Table 1.4) are 

considered primary cytogenetic abnormalities’ and are present from the 

development of MGUS (119). Other cytogenetic abnormalities can occur 

throughout the progression of MM are defined secondary cytogenetic 

abnormalities. A number of key MM driver mutations have also been found in key 

proto-oncogenes and tumour suppressors, including KRAS, NRAS, BRAF and 

TP53, which promote MM cell proliferation and survival (232).  

 
Table 1.4. Genetic abnormalities present in MM and their associated prognostic outcome. 

Table modified from (119). 
 

 
 

1.4.6 Key Signaling Cascades in MM 
 

There is much overlap in key signaling cascades that are promoted in AML and 

MM disease progression. Pathways include the PI3K/AKT/mTOR, MAPK/ERK 

and JAK/STAT (described in 1.3.5), whose aberrant activation also leads to an 

increased proliferative drive and survival of MM (233). These pathways are also 

able to stimulate osteoclast production and suppress osteoblasts, leading to the 

bone lesions observed in MM pathogenesis (234). Inhibitors of the PI3K, MAPK 
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and JAK/STAT pathways have been shown to reduce MM disease progression 

(235-237); however, like AML these have not translated to the clinic as there are 

multiple compensatory mechanisms which can recover the observed phenotype. 

 

One current therapy used in the treatment of MM, however, does target a key 

signaling pathway that is aberrantly activated in MM disease pathogenesis - the 

nuclear factor-κB (NFκB) pathway. This pathway is a major regulator of immune 

and inflammatory responses within the cell and it’s activation leads to the 

expression of genes such as IL-6 and TNFα (238). The NFκB pathway is activated 

by external signals including VEGF (which is in some cases secreted by 

supporting cells in the BMM), but more importantly by A proliferation-inducing 

ligand (APRIL) and B-Cell-Activating Factor (BAFF) which are two of the most 

crucial survival factors for healthy plasma cells and MM cell alike (239, 240). TACI 

and BCMA are the common receptors that these factors bind to activating the 

NFκB pathway, however BAFF can also activate an alternate pathway through 

the BAFF-R receptor.  

 

The NFκB transcription family composes of a number of transcription factors 

including NFKB1 (p50 and p105), NFKB2 (p52 and p100), RelA (p65), RelB and 

c-Rel (241). The transcription factors are held in their inactive form by their 

inhibitory protein IκBα and after stimulation of TNFR-associated factors, IκBα is 

activated by phosphorylation leading to its degradation by the proteasome (242). 

This results in the accumulation of homodimers and heterodimers of NFκB 

transcription factors within the nucleus, leading to the expression of genes 

including those involved in cell survival and cell cycle progression. Inactivation of 

the NFκB pathway, via the inhibition of IκBα degradation, can cause dividing cells 

to be more susceptible to apoptosis (243). Proteasome inhibitors (such as 

bortezomib and carfilzomib) can exploit this mechanism and have shown to be 

successful in treating MM. Proteasome inhibitors were approved by the FDA in 

2003.  

 

Another key molecule in the pathogenesis of multiple myeloma is CD38, also 

known as cyclic ADP ribose hydrolase, which is found uniformly of the surface of 
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MM cells (244). CD38 is a multi-functional 48 kDa type II glycoprotein discovered 

by Reinhertz and colleagues in 1980 (245), and it plays a role in the activation 

and proliferation of mature lymphocytes as well as malignant plasma cells (246). 

CD38 is presently known to have two main functions, firstly as an ectoenzyme 

catalysing the conversion of nicotinamide adenine dinucleotide (NAD+) to cyclic 

adenosine diphosphate-ribose (ADPR) - which is a potent intracellular calcium 

releaser (247). Secondly, CD38 functions as a receptor which mediates leukocyte 

migration through the endothelium via its co-receptor CD31 (248). Preclinical 

studies of CD38 inhibition shows that it mediates MM cytotoxicity in the presence 

of the protective bone marrow (249). More recently early phase clinical trials of 

Daratumumab (a CD38 targeting antibody) in MM patients has demonstrated a 

favourable safety profile and encouraging efficacy in patients with heavily pre-

treated and refractory disease (250, 251). Daratumumab has now been FDA 

approved for the treatment of relapse refractory myeloma in combination with 

bortezomib or lenalidomide (252). Although highly promising in the treatment of 

MM, the actual mechanism of MM cytotoxicity through inhibition of CD38 is 

relatively unknown.  

 

1.4.7 Current Clinical Trials in MM 
 

The treatment of multiple myeloma has progressed over the last 20 years, 

however due to the still relatively poor 5-year survival rate other novel therapies 

are required. It is envisaged that survival rates will improve due to the FDA 

approval of the CD38 monoclonal antibody Daratumumab, however this is only 

used in relapse MM patients and is not currently a front-line treatment. Having 

said this there is always a need for new therapeutics and there are a number of 

clinical trials ongoing in the treatment of MM. In my opinion, the most promising 

novel therapeutic for the treatment of MM is Daratumumab. Although already 

approved for the treatment of relapsed/refractory patients, I believe this drug will 

become a front-line therapy in the years to come. 

 

Table 1.5 summarises the current clinical trials ongoing in MM. It can be seen that 

the majority of clinical trials ongoing are focusing on the relapsed/refractory 
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patients, most probably due to the high rates of relapse within MM patients after 

successful front-line treatments described in 1.4.3. 

 

Table 1.5. An overview of current clinical trials occurring in Multiple Myeloma. 

Clinical trial data was collected from https://clinicaltrials.gov/ct2/home accessed August 2018. 

 
 

1.5 Malignant Bone Marrow Microenvironment 
 

It is envisaged that novel therapeutics in the treatment of AML and MM will arise 

from a better understanding of the biology that underpins disease pathogenesis 

and proliferation. A key factor that requires further investigation is the interaction 

the malignant haematopoietic cell has with its microenvironment and how this 

interaction promotes the survival and proliferation of the disease. The “seed and 

soil” hypothesis was first postulated in 1889 (253) and describes how metastatic 

tumours only grow in a distant organ if that organ offers the correct “soil” or 

microenvironment. This theory was largely forgotten until the last couple of 

decades (254), and due to revised interest we now know that the “seed and soil” 

hypothesis may be true for tumour initiation and proliferation itself (255). Not only 

does the microenvironment play a role in disease initiation and proliferation, it is 

also a key player in the development of chemo-resistance and disease relapse 

(256) - two major concerns in haematopoietic malignancies. The vast majority of 
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chemotherapeutics used today to treat a plethora of cancers target the malignant 

cell itself, rather than the microenvironment in which the malignancy resides. The 

BMM is a highly specialised niche that comprises of a variety of cell types 

including BMSC, osteoblasts and endothelial cells which are comprehensively 

reviewed in section 1.2.   Finely elucidating the complex interactions between 

tumour “seed” and microenvironment “soil” will hopefully give rise to novel 

therapeutic interventions and increase the survival of patient with AML and MM. 

 

1.5.1 AML 
 

Isolated AML blasts undergo high levels of apoptosis when cultured ex vivo, 

signifying the important role that the bone marrow microenvironment has on the 

survival of AML (257). AML patients have high levels of relapse caused by 

minimal residual disease, where small numbers of AML blasts are sequestered 

within the bone marrow. Compared with the understanding of the genetic 

abnormalities that contribute to AML disease progression (see section 1.3.4), little 

is understood about the complex interactions between the AML blasts and its 

BMM. The role of the microenvironment first came to the forefront when the level 

of apoptosis within AML blasts was shown to reduce when cultured with a layer 

of BMSC ex vivo (258). This was followed by a study that showed culturing the 

AML blasts with the BMSC cell line HS-5, provided protection against 

chemotherapy treatments (259).  

 

Our understanding of how the BMM confers chemo-resistance and protects 

against apoptosis is increasing as we elucidate the complex mechanisms 

involved. It has been found that AML blasts can shape their own 

microenvironment to favour their survival and proliferation (260, 261), which 

involves direct contact or stimulating cells of the BMM to secrete key soluble 

factors.  

 

As discussed in section 1.2.3, BMSC secrete high levels of CXCL12. AML blasts 

express CXCR4 and hijack the CXCR4/CXCL12 axis – allowing homing to 

favourable niches within the BMM (262). After the migration of AML blasts to 
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these niches, they are able to manipulate cells of the BMM to their advantage. 

BMSC continue to secrete CXCL12 in the BMM and this chemokine has been 

shown to activate the PI3K/Akt signaling pathway, promoting the survival and 

proliferation of AML blasts (263). The direct co-culture of AML blasts with BMSC 

was shown to up-regulate the master transcription factor c-Myc in BMSC, which 

contributed to chemo-resistance via the downregulation of apoptosis related 

genes (264). Furthermore, this chemo-resistance was overcome upon the 

addition of a small molecule inhibitor of c-Myc. BMSC have increased levels of 

IL-6 secretion in the presence of AML blasts which has been shown to protect 

AML blasts through activation of the JAK/STAT pathway, through the IL-6 

receptor (265). In another example of AML manipulating the BMM; AML blasts 

have been shown to secrete the macrophage inhibitory factor (MIF), which in turn 

stimulates BMSC to secrete IL-8 (266). IL-8 can activate the PI3K/Akt and MAPK 

signaling pathways to promote survival and proliferation (267). 

 

Other cells within the BMM can contribute to the survival and proliferation of AML 

blasts. Endothelial cells express VCAM-1, which binds to the VLA-4 on AML cells 

and maintains their retention within favourable niches (268). The matrix 

metalloproteinase-2 (MMP-2) is an endopeptidase-like enzyme which remodels 

the ECM and has been shown to contribute to tumour progression (269). 

Endothelial cells and fibroblasts express MMP2 and are activated by the 

extracellular metalloproteinase inducer (EMMPRIN), also known as CD147, 

located on AML blasts (270). The interaction of receptor activator of nuclear factor 

κ-B ligand (RANKL) and receptor activator of nuclear factor κ-B (RANK) is 

important in osteoblast regulation of osteoclasts (271). AML blasts express RANK 

and utilise RANKL (secreted by osteoblasts) to activate the NFκB pathway and 

impair NK cell anti-leukaemic immunosurveillance (272). Finally, adipocytes have 

been shown to transfer free fatty acids (FFA) to AML blasts (273), through CD36 

(274) - increasing fatty acid oxidation (FAO). As a result, AML blasts have been 

shown to be susceptible to the FAO inhibitor Avocatin B (275).  

 

Comparable with the non-malignant HSC niche, AML resides in a 

microenvironment with low oxygen (<1%) levels defined as hypoxic (276). 
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Residing in hypoxic environments minimises the exposure to chemotherapeutic 

drugs as well as activating key signaling cascades such as the PI3K/Akt/mTOR 

pathway (277). AML blasts generate high levels of reactive oxygen species 

(ROS), which contribute to the hypoxic niche, through the overexpression of 

NADPH oxidase 2 (NOX2) (278). NOX2 is an enzyme present on the surface of 

myeloid cells and catalyses the conversion of molecular oxygen to superoxide - 

used by phagocytic cells to neutralise pathogens (279). In the context of AML, the 

overexpression of NOX2 has been shown to increase AML disease progression 

through the activation of the MAPK pathway (278). 

 

Taken together, the BMM plays a significant role in the progression of the AML 

and may provide favourable places of therapeutic intervention. The BMM 

protection of AML is summarised schematically in Figure 1.8. 

 

1.5.2 MM 
 

Multiple myeloma is also a disease heavily reliant on its bone marrow 

microenvironment for migration, survival, proliferation and drug resistance. Many 

of the aspects of the AML BMM are also apparent in the microenvironment of MM. 

Direct contact between BMSC and MM cells, or through BMSC derived soluble 

factors, has been shown to aid MM cells evade chemotherapeutic drugs (280). 

MM cells migrate to favourable niches very similarly to AML blasts, whereby they 

exploit the CXCR4/CXCL12 axis (281) and remain in these niches due to the 

VLA-4/VCAM-1 interaction (282). The adhesion of MM cells to BMSC stimulates 

the Notch signaling pathway in both cell types, subsequently stimulating the 

production of IL-6 and VEGF (283). VEGF promotes angiogenesis which has 

been shown to be crucial for MM disease progression (284). This interaction also 

promotes the NFκ-B pathway in BMSC and again leads to the production of IL-6, 

which stimulates MM cells to produce VEGF (284). Recently, BMSC have been 

shown to release exosomes containing miRNA which can be sequestered by MM 

cells, promoting disease progression (285).  
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Of the factors released by BMSC, IL-6 is most arguably the most crucial for MM 

cell proliferation and survival. Also produced by osteoblasts, IL-6 paracrine 

production by BMSC has been shown to be reliant on MM stimulation. The 

cytokine IL-1β, released by MM cells, has been shown to stimulate the production 

of IL-6 within BMSC (286). In addition, the secretion of MIF by MM cells results in 

the same increase in BMSC IL-6 secretion (287). Upon IL-6 binding to the IL-6 

receptor, many key signaling pathways (such as PI3K/Akt, MAPK, and 

JAK/STAT) are activated - leading to MM proliferation and survival (288). 

Increased IL-6 levels in the serum of patients with MM has been shown to confer 

a poor overall prognosis (289).  

 

Other cells within the BMM are also crucial in MM disease progression. The 

increased number of osteoclasts in MM patients leads to characteristic bone 

lesions found in the disease. Activation of osteoclasts occurs through the RANK 

ligand which is produced upon MM cells binding to BMSC; blocking of the RANK 

receptor on osteoclasts can result in reduced tumour burden (290). In addition, 

osteoclasts can constitutively release proangiogenic factors, such as VEGF 

(291). MM cells express the MMP-2 inducer EMMPRIN which causes endothelial 

cells and fibroblasts to remodel the ECM to the advantage of MM cells (292). 

More recently, MM cells have also been shown to release microvesicles which 

contain high levels of EMMPRIN (293). Osteoblasts have the ability to secrete IL-

6 (294), however the suppression of osteoblast function is found in MM patients. 

This is achieved through the Wnt signaling antagonist DKK-1 secreted by MM 

cells, which inhibits osteoblast differentiation promoting osteoclast generation 

(295). The interactions the MM cell has with its BMM, described in this section, 

are summarised schematically in Figure 1.8. 

 



	 57	

 
Figure 1.8. The bone marrow microenvironment of AML and MM. 

A schematic representation of how the BMM provides protection from chemotherapeutics and 
promotes proliferation of survival of AML and MM cells. AML blasts are shown in blue and MM 
cells in orange, with cells of the BMM in the centre of the schematic. 
 
 
 
1.6 Metabolism 
 

1.6.1 Metabolism Overview 
 

Metabolism is defined as the sum of the biochemical processes (more than 8,700 

reactions and 16,000 metabolites) which transduce or consume ATP (296). Core 

metabolism involves the utilisation of nutrients such as carbohydrates, fatty acids 

and amino acids through numerous biochemical processes defined in the “Golden 

Age of Biochemistry” (1920s to 1960s). Cells require energy in the currency of 

ATP to function and maintain cellular homeostasis. The vast majority of this ATP 

is generated through aerobic respiration, using glucose as the energy source 

(297). The first stage in this process is glycolysis, whereby glucose is converted 

into two molecules of pyruvate - which yields two molecules of ATP. Pyruvate is 

then fed into the tricarboxylic acid cycle (TCA) cycle within mitochondria (after 
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conversion to acetyl-coA) which reduces nicotinamide adenine dinucleotide 

(NAD+) to NADH and flavin adenine nucleotide (FAD) to FADH2 (298). Only one 

ATP molecule is generated in the TCA cycle, however 3 molecules of NADH and 

one molecule of FADH2 are produced - which provide electrons for the next stage 

of the process. As the TCA cycle occurs twice per glucose molecule, these values 

can be doubled. 

 

The final stage of glucose metabolism is oxidative phosphorylation which involves 

the transfer of electrons (from NADH and FADH2) along four protein complexes 

(I, II, III and IV) located on the inner membrane of mitochondria (297). Electrons 

are passed from Complex I (NADH/ubiquinone oxidoreductase), which removes 

electrons from NADH, to Complex II (Succinate dehydrogenase), which removes 

electrons from FADH2, to ubiquinone. This reduces ubiquinone to ubiquinol, which 

in turn transfers electrons to cytochrome C via Complex III 

(ubiquinone/cytochrome c oxidoreductase). The final complex electrons are 

transferred to is cytochrome c oxidase - here electrons are passed to oxygen 

reducing it to water. As the electrons are moved through the four protein 

complexes, protons are transported into the inner membrane space of 

mitochondria - generating a difference in electrical potential (299). This creates a 

proton motive force which drives protons across the mitochondrial inner 

membrane through the ATP synthase, triggering a rotation of the F0 subunit to 

produce ATP (300).  

 

The 1978 and 1997 Nobel Prize in Chemistry were awarded for the elucidation of 

chemiosmosis and the underlying enzymatic mechanisms of ATP synthase 

respectively.  The number of protons required to generate one molecule of ATP 

is highly debated, one study suggested four protons are required (301). This study 

however did not examine the mammalian ATP synthase, this is an important point 

as there are likely to be species variations in regard to the number of protons 

required to produce ATP molecules. One NADH molecule has the ability of 

releasing 10 protons to the inner membrane space; four by Complex I, four by 

Complex III and two by Complex IV (297). FADH2 only releases 6 protons as it 
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skips Complex I. Therefore, a large number of ATP molecules can be generated 

from the metabolism of each glucose molecule.  

 

1.6.2 Mitochondria  
 

During aerobic respiration, the TCA cycle and electron transport chain both occur 

in a specialised organelle - the mitochondrion. Mitochondria evolved as the result 

of a symbiotic relationship between aerobic bacteria and eukaryotic cells, where 

ancient bacterial symbionts were acquired by eukaryotic cells enabling the 

utilisation of aerobic respiration (302). Mitochondria are double membraned 

organelles, which are capable of highly efficient ATP production.  The inner 

membrane forms cristae, which enhance the surface area of the electron 

transport chain allowing enhanced ATP production. The structure of the 

mitochondrion is presented in Figure 1.9, with an overview of the process of 

aerobic respiration.  

 

As mitochondria originated from bacteria they contain a unique genome 

(mitochondrial DNA (mtDNA)) that is distinct from nuclear genomic DNA (gDNA) 

and inherited on the maternal line (303). The mitochondrial genome is made up 

of a 16 kilobase circular mtDNA which contains 37 genes, 12 of which encode 

protein subunits of the electron transport chain proteins (304). The remaining 

proteins encoded are made up of mitochondrial tRNAs and rRNAs; in addition, 

there are still 900 proteins encoded on gDNA. The biogenesis of new 

mitochondria is a tightly controlled process, facilitated by the master transcription 

factor peroxisome proliferator-activated receptor gamma coactivator 1-alpha 

(PGC-1α) (305).  
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Figure 1.9. The structure of the mitochondrial organelle. 

A schematic representation of the structure of the mitochondrial organelle with key biochemical 
pathways involved in aerobic glycolysis highlighted. These include glycolysis, the TCA cycle and 
OXPHOS. The electron transport chain is also highlighted (enlarged image) showing the 
movement of protons across complex I, III and IV into the intermembrane space, followed by the 
generation of ATP through ATP synthase (shown in the schematic as S). 
 

1.6.3 Cancer Metabolism 
 

Cancer cells have been shown to have atypical respiration whereby they utilise 

the non-mitochondrial based process of aerobic glycolysis to generate ATP. This 

mechanism was first discovered by Otto Warburg and is deemed the Warburg 

effect (306). In this process cancer cells generate pyruvate from glucose (as with 

aerobic respiration), however they use fermentation to generate lactate from 

pyruvate rather than generate acetyl-CoA. This effect results in the increased 

consumption of glucose, as glycolysis is far less efficient than oxidative 

phosphorylation (OXPHOS) at generating ATP. The increased glucose 

consumption has proved a valuable tool in cancer diagnosis; FDG-PET scans can 

detect the increased glucose consumption of a cancer cell (307).  

 

The reason why cancer cells utilise aerobic glycolysis is highly debated. Initially it 

was thought that mitochondria within cancer cells are defective and this resulted 
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in an impairment of OXPHOS, therefore non-mitochondrial ATP generation 

methods were employed. However, it was later found that the OXPHOS capacity 

of cancer mitochondria is intact (308). The reason for the switch to aerobic 

glycolysis is therefore more likely to be due to a number of other factors including 

the tumour microenvironment and activation of oncogenes. As the tumour 

increases in size, the tumour microenvironment becomes hypoxic - leading to the 

stabilization of hypoxia inducible factor (HIF). As the dependence on aerobic 

respiration becomes less, there is a switch in metabolism towards glycolysis 

(309). In addition, the activation of certain oncogenes including Ras drive a 

change in tumour metabolism; Ras activates mTOR, which in turn induces HIF 

which promotes glycolysis (310).  

 

Not all tumours, however, are dependent on the Warburg hypothesis: for 

example, AML blasts require OXPHOS for survival. The THP-1 AML cell line has 

been shown to be more sensitive to OXPHOS inhibitors compared to glycolysis 

inhibitors (311). Also, there are AML blasts which have a high OXPHOS gene 

signature and these cells are less sensitive to the chemotherapeutic Ara-C when 

compared to low OXPHOS AML cells (312). In another study, AML blasts were 

shown to utilise OXPHOS to generate an antioxidant response (313). 

Furthermore, AML blasts have been shown to have increased mitochondrial 

levels compared to HSCs (314), which makes them more susceptible to the 

mitochondrial translation inhibitor tigecycline (315). 

 

Multiple myeloma appears to be a “Warburg cancer” relying predominantly on 

glycolysis. MM is susceptible to glycolysis inhibitors such as dichloroacetate 

(DCA) (316) and has an elevated glycolysis gene profile (317). However, these 

studies were conducted solely on MM cells and did not take into account the effect 

of the protective microenvironment. MM cells do however have the ability to utilise 

OXPHOS under ritonavir treatment (318) and HIF-1a suppression (319). 
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1.6.4 The Transfer of Mitochondria between Somatic Cells 
 

The mitochondrion organelle was classically thought to reside in its somatic cell 

for its lifetime, where they undergo fission and fusion to generate mitochondrial 

networks and are ultimately turned over by the specific type of autophagy - 

mitophagy (320). However, recently it was found that this was not the case - 

mitochondria were found to move between cells. In a landmark paper by the 

Gerdes Lab in 2004, intercellular mitochondrial transfer was first shown to occur 

between PC12 rat pheochromocytoma cells, normal rat kidney cells and HEK239 

human embroyonic kidney cells (321). This study opened up the idea that 

intercellular mitochondrial transfer could occur in a range of non-malignant and 

malignant settings, an overview of which is shown in Table 1.6.  

 
Table 1.6. Overview of intercellular mitochondrial systems described in literature. 

 
 

The use of cells devoid of mtDNA (rho0 cells) has been a useful tool in studying 

intercellular mitochondrial transfer, as restoration of mtDNA within the rho0 cell 

highlights the acquisition of external mitochondria. These cells can be generated 

in cell lines using long term culture with ethidium bromide (322). Ethidium bromide 
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specifically intercalates with mtDNA (over genomic DNA) causing shearing and 

degradation. Using these cells, mitochondrial transfer was seen to occur from 

mesenchymal stem cells (MSC) to a number of difference malignancies both in 

vitro and in vivo. Mitochondria have been seen to move to both A549 (lung 

adenocarcinoma) (323) and 143B (osteosarcoma) (324) rho0 cells in vitro from 

MSCs. In vivo, B16 (melanoma) and 4T1 (breast cancer) rho0 cells were shown 

to acquire mitochondria from MSCs (325). The latter study used single nucleotide 

polymorphisms (SNP) in mtDNA to determine the host origin of mitochondria 

acquired by the malignant cells. 

 

The intercellular transfer of mitochondria has been shown to occur from MSC to 

other cancer cells, including SKOV3 cells (ovarian cancer) and MCF7 (breast 

cancer); however, in this study the authors found increased mitochondrial transfer 

occurred from endothelial cells over MSCs (326). Mitochondria have also been 

shown to be transferred within cancer cell populations and not from a specific 

mitochondrial donor such as MSCs. This was seen to occur between human 

mesothelioma cells populations (327) and between human laryngeal squamous 

cell carcinoma populations (328). Mitochondria were also found to move between 

T24 and RT4 bladder cancer cells (329). To date there has been no literature 

describing intercellular mitochondrial transfer within a haematological setting. 

 

This biological phenomenon is not unique to malignancies - intercellular 

mitochondrial transfer has also been shown to occur in non-malignant settings. A 

study by Islam and colleagues in 2012 described the transfer of mitochondria from 

airway instilled BMSC to lung epithelial cells under lipopolysaccharide (LPS) 

treatment (330). In a separate study mitochondria were observed to move from 

astrocytes to injured neurons in a CD38 dependent mechanism (331).  

 

Mitochondria have been shown to move between cells in various independent 

ways. Firstly, and most commonly, mitochondria have been shown to move 

between cells via tunneling nanotubes (TNT). TNTs are continuous cellular 

projections of the cytoskeleton, which are actin based and also contain 

microtubules (332). Mitochondria have been shown to move via TNTs from MSCs 
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to lung adenocarcinoma (323), ovarian and breast cancer cells (326); in addition 

to between pheochromocytoma PC12 cell (321, 333), bladder cancer cells (329) 

and mesothelioma cell populations (327). The mitochondrial Rho-GTPase (Miro1) 

aids in the coupling of mitochondria to the actin cytoskeleton and overexpression 

results in increased mitochondrial transfer. Mitochondria have also been shown 

to move through connexin43 gap junctions (330) and extracellular vesicles (331). 

Apart from the methods of mitochondrial movement, little is known about the 

underlying mechanisms that control this biological process.  

 

There have been numerous biological consequences of intercellular 

mitochondrial transfer described. Firstly, the transfer of mitochondria has been 

shown to rescue cells from stress induced apoptosis (333). Furthermore, chemo-

resistance has been shown to occur in malignant cells that have acquired 

mitochondria (326). Restoration of tumourigenic potential has also been shown 

in cancer cell lines that lack mtDNA (rho0 cells) in which mitochondrial transfer 

has occurred. This was mainly through reinstatement of the ability to utilise 

aerobic respiration to generate ATP (323, 334) - which is evidence to suggest that 

the Warburg effect may not occur in all cancers. In addition, intercellular 

mitochondrial transfer between bladder cancer cell populations increases 

invasiveness of the recipient cell (329). Finally, mitochondrial transfer occurs in 

non-malignant settings to protect against disease; mitochondria moved to lung 

epithelial cells from BMSC to protect against lipopolysaccharide induced acute 

lung injury (330), whereas mitochondria moved from astrocytes to recover injured 

neurons after stroke (331). Overall it can be seen that there are many biological 

consequences of mitochondrial transfer, all of which benefit the recipient cell and 

ultimately lead to cell survival.  
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1.7 Research Rationale and Objectives/Aims 
 

1.7.1 Rationale 
 

AML and MM are incurable diseases with the two poorest survival rates within 

haematological malignancies. Treatment of these cancers has hardly changed 

over recent decades, accounting for the lack of improvement in patient survival 

compared to other malignancies. Therefore, novel therapeutic interventions are 

required to improve overall survival of patients. It is envisaged that these new 

therapies will evolve from a better understanding of the biological processes that 

underpin the malignancies. AML and MM have been shown to rely heavily on their 

BMM to develop, proliferate and evade current chemotherapy regimens - this may 

be therapeutically targetable in combination with low-dose chemotherapy.  

 

This study aims to further dissect underlying mechanisms within the BMM that 

contribute to the protection of AML and MM. Research will focus on whether 

intercellular mitochondrial transfer occurs within AML and MM – aiming to 

elucidate mechanisms which may control this biological phenomenon. 

 

1.7.2 Objectives/Aims 
 

1. Investigate intercellular mitochondrial transfer within AML. Establish the 

underlying mechanisms that stimulate and facilitate the transfer. 

 

2. Determine the metabolic state of MM within the BMM, analyse intercellular 

mitochondrial transfer and determine control mechanisms. 

 

3. Determine whether intercellular mitochondrial transfer is tumour specific or 

a process hijacked by cancer to fuel its metabolic requirements. 
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2 Materials and methods 
 

2.1 Materials 
 

Materials and reagents used in my thesis will be highlighted in the experimental 

procedures described in the methods below and in Table 2.1. All reagents were 

sourced from Sigma Aldrich (St Louis, MO, USA), unless otherwise stated.  

 
Table 2.1. Reagents used in my thesis, with the manufacturer and catalogue number. 

Agilent (Santa Clara, CA, USA), BioLegend (San Diego, CA, USA), Cell Signaling Technologies 
(Danvers, MA, USA), Clontech Takara Bio, Saint-Germain-en-Laye, France), Detroit R&D 

(Detroit, MI, USA), Fisher Scientific (Hampton, New Hampshire, USA), GE Healthcare (Little 
Chalfont, UK), Machery-Nagel, Duren, Germany), Merck Millipore (Burlington, MA, USA), 

Miltenyi Biotec (Bergisch Gladbach, Germany), New England BioLabs (Ipswich, MA, USA), PCR 
Biosystems (London, UK), Promega (Madison, WI, USA), Qiagen (Hilden, Germany), Santa 

Cruz Biotechnology (Dallas, TX, USA), Sigma Aldrich (St Louis, MO, USA) and ThermoFisher 
(Waltham, MA, USA). 
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2.2 Cell culture 
 

All cells described below were cultured in a humidified culture incubator 

(ThermoFisher, Waltham, MA, USA) at 5% CO2 and 37 ˚C. 

 

2.2.1 Cell lines 
 

AML cell lines; OCI-AML3, MV4-11, THP-1 and U937 were obtained from the 

American Type Culture Collection (ATCC) and were maintained in RPMI-1640 

medium, supplemented with 10% foetal calf serum (FCS), 2mM L-glutamine, 

100U/ml penicillin and 10µg/ml streptomycin (pen-strep). Cells were cultured at a 

concentration of 0.5 x106 cells/ml and split accordingly on a weekly basis. The 

MM cell lines; MM1S, MM1R, U266, RPMI and H929 were obtained and cultured 

as per the AML cell lines (335).  

 

293T cells were provided by Dr Ariberto Fassati (University College London, UK), 

which were derived from human embryonic kidney (HEK) 293 cells. These cells 

are a highly transducable cell line used in lentiviral production. 293T cells were 

cultured in 10mm tissue culture dishes at a 50-90% confluency, in Dulbecco’s 

Modified Eagle’s Medium (DMEM) supplemented with 10% FCS and without pen-

strep as previously described (336). Cells were split 1:3 when they reached a 

90% confluency. Briefly, 0.25% Trypsin was diluted 1:3 using PBS and 7.5ml was 

added to the 293T cells. The cells were incubated at room temperature for 2-3 

minutes before gently swirling the dish to remove the cells. 5ml of DMEM was 

added to inactivate the trypsin and the cell suspension was transferred to a 50ml 

falcon tube, where a vigorous mixing step occurred to ensure no clumps of 293T 

cells remained. The suspension was topped up to 32ml and aliquoted into 3 fresh 

10mm plates. 

 

2.2.2 Primary cell isolation 
 

Bone marrow aspirates from patients with AML and MM were obtained by 

haematology registrars at the NNUH, following informed consent under approval 
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from the UK NHS Health Research Authority (LCREref07/H0310/146) as 

previously described (273). Primary cell isolation was achieved using Histopaque 

density centrifugation. Briefly 10ml of Histopaque-1077 was added to a 50ml 

falcon tube and 15-20ml of bone marrow was layered on top. This was centrifuged 

at 1400rpm for 20 minutes with brakes and acceleration removed, which ensured 

successful separation of the different blood components. The mononuclear cells 

formed a “buffy coat” on top of the Histopaque layer and were isolated using a 

Pasteur pipette. A schematic overview of the density separation can be seen 

below in Figure 2.1. 

 

 
Figure 2.1. Schematic of the Histopaque density centrifugation of primary bone marrow. 

Bone marrow aspirate was layered on Histopaque-1077 and centrifuged to produce the “buffy 
coat” containing AML/MM cells along with BMSC. 
 
 
PBS was added to the isolated buffy coat to a final volume of 15ml and centrifuged 

at 1400rpm for 5 minutes, with the acceleration and brakes turned on. Any 

remaining red blood cells were removed by the addition of 1X red cell lysis buffer 

(1ml) (ThermoFisher, Waltham, MA, USA) to the cell pellet for 5 minutes, prior to 

the addition of 14ml of PBS. Pelleted mononuclear cells, after centrifugation, were 

cultured for 24 hours in DMEM supplemented with 10% FCS and penstrep. 

Suspension cells were removed at this time and fresh DMEM was added to the 

remaining adherent cells in the flask. 

 

Malignant AML and MM cells were located in the suspension cell fraction after 

the 24-hour incubation. AML samples with <90% purity were purified using CD34 

microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany) and magnetic-
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activated sorting (MACS). All MM samples were purified using CD138 

microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany) with MACS. Up to 

200 million AML/MM cells were centrifuged at 1400rpm for 5 minutes and re-

suspended in MACS buffer (PBS pH 7.4 supplemented with 0.5% BSA and 1mM 

EDTA). Magnetically labelled CD34/CD138 antibodies were added to the AML 

and MM cell suspension respectively and incubated at 4˚C for 30 minutes. After 

another centrifugation step, as above, the cells were re-suspended in MACS 

buffer and added to a MS column (Miltenyi Biotec, Bergisch Gladbach, Germany) 

attached to a magnet. Three column washes in MACS buffer were carried out 

before CD34/CD138+ cells were eluted by removal of the MS column from the 

magnet. 

 

Non-malignant BMSC were located in the adherent fraction. Fresh DMEM 

medium was added to the flask twice weekly until patches of adherent BMSC 

were visible. At this point the BMSC were removed from tissue culture plastic 

using the serine protease trypsin. Briefly, medium was removed from the flask 

and cells were washed with 10ml of PBS followed by the addition of 3ml 0.25% 

Trypsin. After a short incubation in a humidified culture incubator, the flask was 

lightly tapped to remove the adherent cells followed by the addition of 5ml DMEM 

medium to inactivate the Trypsin. 20ml of DMEM was added to the cell 

suspension and was placed back in the incubator, allowing the cells to re-adhere 

to the tissue culture plastic.  This formed of a uniform layer of BMSC which were 

expanded for around 2 weeks until 80% confluency then passaged again prior to 

use in experiments. BMSC were characterised by the expression of surface 

markers CD73, CD90 and CD105 whilst being negative for the myeloid marker 

CD45. 

 

Non-malignant CD34+ HSCs were isolated from peripheral blood venesections 

from haemochromatosis patients at the NNUH. One pint of blood was initially 

centrifuged in multiple 15ml falcon tubes for 20 minutes at 1400rpm, with brakes 

and acceleration turned off. This allowed the separation of the red blood cells 

from the serum, shown in Figure 2.2. A small buffy coat of cells, including HSCs, 

formed on top of the red cells and was removed with a Pasteur pipette and pooled 
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together obtaining ~50ml per pint of blood. This cell solution was diluted 2-fold in 

PBS and 25ml was layered on top of 15ml of Histopaque-1770. A further buffy 

coat of cells was obtained using Histopaque density centrifugation, as described 

above, and these cells were washed in PBS twice before suspension in MACS 

buffer. CD34+ cells were then isolated using CD34 microbeads and MACS, as 

per AML primary samples. These cells were used in experimental procedures at 

the time of purification.  

 

CD34+ HSC were also isolated from umbilical cord blood of babies born via 

caesarean section, using an adapted protocol by Hogan and collegues (337). 

Cord blood was isolated by Dr Charlotte Hellmich and Dr Genevra Pillinger at the 

NNUH. Roughly 50ml of cord blood was layered onto 2 x 15ml of Histopaque-

1770 and density separated using centrifugation as described above. CD34+ 

cells were isolated using MACS as per the venesection blood. Purified cord blood 

CD34+ HSC were injected into NSG mice to create “humanised” NSG mice (22) 

to analyse in vivo non-malignant mitochondrial transfer.  

 

 
Figure 2.2. Schematic representation of CD34+ HSC isolation from venesection blood. 

The buffy coat generated is then taken and purified by CD34+ MACS, resulting in a pure 
population of CD34+ HSCs. 
 
 
2.2.3 Cryopreservation of primary cell and cell lines 
 

Aliquots of primary AML and MM samples were frozen at the point of extraction 

prior to CD34/CD138 MACS purification. Total mononuclear cells (buffy coat) 

were frozen at a 5x106 cells/ml concentration in FCS supplemented with 10% 

DMSO. Cells were slowly frozen in a cryo-freezing container (ThermoFisher, 
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Waltham, MA, USA) to a temperature of -80˚C. AML and MM cell lines were also 

frozen in this way. 

 

To thaw the aliquots, the vial of cells was removed from the -80˚C freezer and 

placed in a 37˚C incubator to defrost. The cells were then transferred into a 15ml 

falcon tube and topped up to 15ml with fresh culture medium to dilute the DMSO 

concentration, which ensured maximum cell viability after thawing. Cells were 

centrifuged at 1400rpm for 5 minutes, supernatant was discarded and the cells 

were re-suspended in 15ml of fresh DMEM (primary samples) or RPMI-1640 (cell 

lines). Primary samples were then cultured as per fresh primary samples; removal 

of suspension cells and purification of the malignant cell along with expansion of 

the adherent BMSC.  Cell lines were cultured for 1 week prior to splitting and 

maintenance at a 0.5 x106 cells/ml concentration.  

 

2.2.4 Counting cells via Trypan Blue exclusion 
 

Trypan Blue exclusion was used to determine cell concentrations. Briefly, 10µl of 

cell suspension was mixed with 10µl Trypan Blue and 10µl of this solution was 

pipetted onto a haemocytometer. Healthy living cells did not take up the Trypan 

Blue stain as their cell membrane was intact; however, dead or dying cells took 

up the stain as their cell membrane was fractured. The number of healthy cells in 

the four outer quadrants of the haematocytomer were counted and the cell 

concentration (cells/ml) was calculated, see Figure 2.3.  

 
 

  

Figure 2.3. Determining cell concentrations using Trypan Blue exclusion. 
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The calculated cell concentration was used throughout my thesis to calculate the 

number of cells needed per experimental procedure. The equation below was 

used to determine this. 

 

Number	of	cells	required

Cell	concentration
= Volume	of	cell	suspension	required	(ml) 

 

2.2.5 Generation of a cell line depleted of mitochondria (rho0 cells) 
 

To assess mitochondrial transfer to AML cells, I attempted to generate a cell line 

that was severely depleted of mitochondria, as per the protocol by Tan and 

colleagues (325). Here the OCI-AML3 cell line was cultured in RPMI-1640 

medium (10% FCS and penstrep) supplemented with 50ng/ml ethidium bromide, 

100µg/ml sodium pyruvate and 50µg/ml uridine. The ethidium bromide was used 

to specifically intercalate with and deplete mtDNA, the addition of pyruvate and 

uridine allowed the cell line to enhance glycolysis to generate the ATP required 

for cell survival. The medium was changed twice weekly by centrifuging the cells, 

discarding the supernatant and adding fresh medium. After a 40-day culture the 

mtDNA content in these cells was analysed by qPCR. 

 

2.3 Cell culture assays 
 

Primary and cell line AML and MM (along with BMSC) were cultured as above 

prior to use in the cell culture assays described below.  

 

2.3.1 Co-cultures of AML/MM and BMSC 
 

Co-culture systems were used to show that mitochondrial transfer occurred 

between BMSC and AML/MM cells. Primary BMSC were plated on 6, 12 and 24 

well plates at a density of 2x105, 5x104 and 2x104 respectively. The medium was 

replaced 24 hours after plating, BMSC were ready to use after 48 hours. At this 

point primary or cell line AML/MM cells were added to BMSC in a volume of 2, 

1.5 and 1ml for 6, 12 and 24 well plates respectively. AML/MM were added to 

BMSC in a ratio of 5 malignant cells per BMSC. At various time points, the two 
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cell types were separated by gentle mixing (as BMSC are adherent cells and 

AML/MM are suspension cells) and analysed independently.  

 

2.3.2 MitoTracker based mitochondrial transfer assay 
 

Mitochondrial transfer was shown to occur between BMSC and AML/MM using 

three independent methods. Firstly, a MitoTracker based staining method was 

developed to show the specific movement of BMSC mitochondria to malignant 

AML/MM. The specific mitochondrial stain MitoTracker Green FM (ThermoFisher, 

Waltham, MA, USA) was utilised for this method. BMSC plated on 24 well plates 

were stained for 1 hour with 200nM MitoTracker, in 500µl FluoroBrite DMEM 

medium (ThermoFisher, Waltham, MA, USA) supplemented with 10% FCS. After 

the incubation, BMSC were washed 3 times with PBS to remove any un-bound 

probe. AML/MM were then added to the stained BMSC for 24 hours and levels of 

MitoTracker in AML/MM cells were then analysed by flow cytometry, compared 

with mono-cultured cells.  

 

Naïve un-labelled AML/MM cells were initially added to stained BMSC, however 

results were un-convincing as very large increases in MitoTracker fluorescence 

were observed in AML/MM cells. I found this was due to MitoTracker dye leaking 

from BMSC and staining AML/MM mitochondria. To eliminate this, I additionally 

stained AML/MM cells with 200nM MitoTracker Green for 30 minutes before they 

were added to BMSC. This saturated AML/MM mitochondria with MitoTracker, 

therefore any dye leakage will have a negligible effect on the MitoTracker 

fluorescence within the malignant cell. This change achieved more believable 

increases in MitoTracker fluorescence in the AML/MM, which was attributed to 

BMSC derived mitochondria moving into AML/MM cells. 
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Table 2.2. Pharmacological agents used to assess mitochondrial transfer levels. 

 
 

This method was also used to quantify levels of mitochondrial transfer. Stained 

AML/MM in mono-culture were compared to when they were cultured with stained 

BMSC, this achieved a baseline level of transfer. The effect of pharmacological 

compounds (seen in Table 2.2) on mitochondrial transfer levels could then be 

determined by comparing mitochondrial transfer between drug treatment and 

baseline transfer.  

 

2.3.3 rLV.EF1.mCherry mitochondrial transfer assay 
 

For the second method, I used a stable lentiviral transfection of BMSC 

mitochondria with a red mCherry fluorescence in order to track BMSC 

mitochondria. A rLV.EF1.mCherry-Mito-9 lentivirus was purchased from Clontech 

and was used to transduce human BMSC. 0.5µl of the virus (0.5x106 virus 
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particles) was added to 5x105 BMSC in 500µl of penstrep free 10% FCS DMEM 

medium. 1ml of DMEM medium was added after 24 hours, BMSC were then 

cultured for a further week. At this point, successful transduction was assessed 

by the detection of mCherry fluorescence in the BMSC using fluorescent 

microscopy. If successful transduction was observed, AML/MM cells were added 

to BMSC for 1 week. Mitochondrial transfer was observed by acquisition of the 

Mito-9 mCherry fluorescence in AML/MM cells using fluorescent microscopy. 

Microscopy with AML blasts was carried out with live cells, the protocol was 

however optimised with MM. The co-culture was carried on tissue culture 

coverslips, with the cells fixed in 4% Paraformaldehyde and mounted with 

ProLong™ Gold Antifade Mountant containing DAPI (ThermoFisher, Waltham, 

MA, USA).  

 

2.3.4 Visualisation and quantification of tunnelling nanotubes 
 

To visualise TNTs formed between BMSC and AML/MM cells, the 1,1'-

Dioctadecyl-3,3,3',3'-Tetramethylindocarbocyanine Perchlorate (DiI) stain 

(ThermoFisher, Waltham, MA, USA) was utilised. DiI is a lipophilic membrane 

stain that diffuses laterally staining the whole cell. 1x106 AML/MM cells in a 

volume of 1 ml were stained with a DiI concentration of 5µg/ml for 15 minutes. 

The cells were washed thrice in PBS and incubated for 30 minutes in culture 

medium. BMSC were also stained with MitoTracker Green FM (200nM) for 1 hour 

before washing thrice in PBS. The stained AML/MM were combined with the 

BMSC for 24 hours before fixing with 4% Paraformaldehyde. Cells were imaged 

by confocal microscopy. 

 

A second method was utilised for the MM study, whereby MM cell plasma 

membranes were labelled with GFP using stable lentiviral transduction. The 

rLV.EF1.AcGFP1-Mem-9 lentivirus was purchased from Clontech. 0.5µl of the 

virus (0.5x106 virus particles) was added to 5x105 MM1S/U266 MM cell lines in 

500µl of penstrep free RPMI medium supplemented with 10% FCS. After 

confirmation of lentiviral transduction, these cells were added to BMSC stained 
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with 200nM MitoTracker Red CMXRos (ThermoFisher, Waltham, MA, USA) as 

above. TNT visualisation was carried out using confocal microscopy. 

 

Only a very small number of TNTs were visualised as they form and dissociate 

very rapidly. To quantify TNTs formed between AML/MM cells and BMSC I 

utilised the TNT-anchor points (TAPs) formed on the BMSC. These TAPs were 

residual DiI stain remaining after AML/MM derived TNTs had dissociated. These 

TAPs were not present on BMSC when AML/MM cells were cultured in a 0.4µM 

trans-well system, they are therefore specific to the cell-cell contacts observed. 

 

2.4 Cell viability assays 
 

2.4.1 CellTitre-Glo 
 

The viability of AML, MM and BMSC was assessed using the CellTite-Glo assay 

(Promega, Fitchburg, WI, USA), as previously described (338).  Addition of the 

CellTitre-Glo substrate causes cell lysis and a luminescent signal proportional to 

the amount of ATP present, which is a representation of the number of 

metabolically active cells (summarised in Figure 2.4). For the reaction, 5x104 cells 

were plated on a white 96 well plate in a 50µl volume. 50µl of CellTitre-Glo 

substrate was added, followed by a 10-minute incubation in the dark. 

Luminescence at an emission wavelength of 560nm was detected using the 

LUMIstar Omega microplate reader (BMG LABTECH, Ortenberg, Germany). This 

assay was also used to determine the levels of ATP produced by AML/MM after 

co-culture with BMSC.   

 

 
Figure 2.4. An equation showing the CellTitre-Glo reaction. 

In the presence of ATP, the CellTitre-Glo substrate is converted to Oxyluciferin. This reaction 
produces light which can be detected by luminescence at a wavelength of 560nm. 
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2.4.2 Annexin V/PI 
 

Cell viability was also assessed using the eBioscienceTM Annexin V/PI detection 

kit (ThermoFisher, Waltham, MA, USA), as previously described (339). The 

annexin V FITC antibody binds to phosphatidylserine externalised on apoptotic 

cells. Propidium iodide (PI) stains DNA of necrotic and apoptotic cells, healthy 

cells are not stained as PI cannot cross their membrane. To perform the assay, 

2x104 AML/MM cells were centrifuged and re-suspended in 800µl of 1X 

annexin/PI binding buffer containing 2µl of annexin V FITC antibody and 4µl of 

PI. The cells were incubated in the dark for 15 minutes before washing in ice-cold 

PBS. The cells were then run on the Sysmex Cube 6 flow cytometer and results 

analysed using FCS Express 5 software (De Novo Software, Glendale, CA, USA). 

An example of a flow cytometry plot generated from this assay is shown in Figure 

2.5.  

 

 
Figure 2.5. Representative flow cytometry plot of an Annexin V/PI viability assay. 

Cells were stained with PI and Annexin V and analysed by flow cytometry. Live cells (PI- Annexin 
V-), Apoptotic (PI- Annexin V+) and Dead (PI+ Annexin V+) cells can be determined. 
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2.5 Detection of reactive oxygen species 
 

2.5.1 DCFDA / H2DCFDA (DCF) assay 
 

To determine ROS levels in BMSC the DCF assay (ThermoFisher, Waltham, MA, 

USA) was utilised as per the manufacturers protocol. For this assay H2DCFDA 

was added to the cell of interest which is taken up and deacetylated by cellular 

esterases to a non-fluorescent compound H2DCF. This compound is oxidised in 

the presence of ROS to the highly fluorescent compound 2’, 7’ –dichlorofluorescin 

(DCF). This compound has an emission wavelength of 529 nm and can be 

detected by flow cytometry in the FITC channel. A schematic overview of this 

reaction is shown in Figure 2.6. 

 

 
Figure 2.6. Overview of the DCF assay to detect ROS. 

The H2DCFDA reagent is taken up by cells and converted to H2DCF by cellular esterases. In the 
presence of ROS H2DCF is oxidised to form the fluorescent DCF. 
 

To perform the reaction 1x105 BMSC were stained with 10µM H2DCFDA in 500µl 

FluoroBrite DMEM medium (ThermoFisher, Waltham, MA, USA) - supplemented 

with 10% FCS for 15 minutes at 37 °C. BMSC were removed from tissue culture 

plastic with trypsin prior to staining. The cells were washed three times in PBS 

after staining, the cells were then run through the Sysmex Cube 6 flow cytometer. 

Results were analysed using FCS Express 5 software.  

 

2.5.2 AmplexTM Red superoxide detection assay 
 

The DCF assay described above has the capability of measuring total ROS in 

cells – which includes superoxide, peroxide, hydroxyl radicals and hydroxyl ions. 

In the AML study superoxides were of interest as NOX2 on the surface of the 

AML blasts generates large amounts of superoxide. The AmplexTM Red 

superoxide detection assay (ThermoFisher, Waltham, MA, USA) was used to 

specifically measure superoxide levels generated (as per the manufacturers 
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protocol). This assay is a one-step reaction where (in the presence of horseradish 

peroxidase (HRP)) the Amplex Red reagent (10-acetyl-3,7-

dihydroxyphenoxazine) reacts with superoxide forming Resurfin. This product 

fluoresces at an emission wavelength of 585nm and is designed to be detected 

in a 96 well plate format. This reaction was carried as per the manufacturer’s 

specifications.  

 
Figure 2.7. Overview of the AmplexTM Red reaction used to detect superoxides. 

In the presence of superoxides the Amplex Red Reagent to converted to the fluorescent 
compound Resurfin. 
 

To perform the reaction 2x105 AML blasts were plated on a black 96 well plate 

with a transparent base in a volume of 50µl FluoroBrite DMEM medium 

supplemented with 10% FCS. A master mix was created by mixing 0.5µl Amplex 

Red reagent, 1µl HRP and 48.5µl 1X reaction buffer per sample. 50µl of this 

master mix was added to the cell suspension and fluorescence was measured 

using the FLUOstar Omega microplate reader (BMG LABTECH, Ortenberg, 

Germany). A hydrogen peroxide standard curve was performed on each 96 well 

plate measured to determine an accurate superoxide concentration in the 

samples tested. 

 

2.6 Microscopy 
 

2.6.1 Confocal Microscopy 
 

To visualise TNT formations between BMSC and AML/MM cells (along with TAPs 

on BMSC) confocal microscopy was carried out using a Zeiss LSM 800 Axio 

Observer.Z1 confocal microscope with 40X and 63X water objectives (Carl Zeiss, 

Oberkochen, Germany). Cells were prepared as described in section 2.3.4. Fixed 

cells on 24 well black walled imaging plates (Ibidi, Munich, Germany) were placed 
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on the microscope using a plate holder. ZEN Blue imaging software (Carl Zeiss) 

smart setup was used to define fluorophore wavelength acquisition parameters 

of DiI stain and MitoTracker Green FM or GFP and MitoTracker CMXRos. TNT 

formations were infrequently observed, TAP formation on BMSC was therefore 

used to quantity the number of TNT formation per culture. Multiple images were 

taken for TAP quantification. ImageJ software was used to achieve accurate 

quantification and for image processing. Confocal microscopy was also used to 

detect CD38 expression on BMSC after MM co-culture, whether CD38 localised 

to TAPs and whether CD38 was found on TNTs. Cells were prepared as per 

section 2.3.4 with the addition of 2µl of anti CD38-Alexa Fluor 647 antibody prior 

to fixing (Miltenyi Biotec, Bergisch Gladbach, Germany). Another smart setup was 

carried out in ZEN Blue imaging software to incorporate the extra fluorophore. 

ImageJ was used for image processing. 

 

2.6.2 Fluorescent microscopy 
 

Fluorescent microscopy was carried out on a Zeiss Axio Vert.A1 microscope with 

20X and 40X air objectives (Carl Zeiss, Oberkochen, Germany). This microscope 

was used to detect mCherry-Mito-9 in AML/MM cells after co-culture with 

rLV.EF1.mCherry-Mito-9 transduced BMSC. Cells were prepared on 24 well 

black walled imaging plates (or coverslips as described in 2.3.3) and placed on 

the plate/slide holder on the microscope. ZEN Blue imaging software was used 

to acquire fluorescent and light images. Image processing was achieved using 

ImageJ software. 

 

2.7 Flow Cytometry 
 

Flow cytometry was used in my thesis for a number of different applications: 

• To analyse mitochondrial levels in AML/MM/BMSC in addition to 

mitochondrial transfer levels (using MitoTracker Green Fluorescence). 

• To detect cell surface receptors with antibodies conjugated to a 

fluorophore. 

• To sort a specific cell population based on its cell surface receptors. 
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To achieve the above applications a range of flow cytometers were used based 

on the number of fluorophores they can detect in a single sample and whether 

they had cell sorting capabilities. Table 2.3 shows a comparison of the flow 

cytometers capabilities. Table 2.4 shows all antibodies used in the analysis, 

purchased from Miltenyi Biotech (Bergisch Gladbach, Germany) and BioLegend 

(San Diego, CA, USA). 

 

2.7.1 Sysmex Cube 6 
 

The Cube 6 flow cytometer (Sysmex, Gorlitz, Germany) is a multi-channel flow 

cytometer with 2 lasers - the blue 488nm and red 633nm. This laser combination 

can detect the following fluorophores: FITC, PE, PERCP and APC. The Cube 6 

flow cytometer was used in my thesis for single colour flow cytometry only, due 

to the lack of sophisticated colour compensations - cross-over of emission spectre 

therefore could not be controlled and accounted for. The MitoTracker based flow 

cytometry assay was performed on this cytometer as only the FITC channel (in 

which MitoTracker Green is detected) was required. 

 

Prior to use an automated priming sequence was performed to ensure no 

blockages or air bubbles were present in the system. To run the samples, ~1x105 

cells were re-suspended in 1ml of PBS and transferred into a flow cytometry 

analysis tube. The flow cytometry tube was attached to the cytometer and the 

analysis was started through the FCS software - 1x104 cells were analysed in a 

pre-defined gated region. An automated cleaning cycle was carried out after all 

sample tubes had been analysed. Sample data was exported as an FCS file and 

analysed using FCS Express 5 software. For the MitoTracker based staining 

assay this analysis determined the mean fluorescence intensity (MFI) of 

MitoTracker Green in AML/MM cells.  

 

 

 



	 85	

2.7.2 Beckman Coulter CytoFLEX 
 

The Beckman Coulter CytoFLEX flow cytometer (Brea, CA, USA) also is a two-

laser flow cytometer (488 and 633nm) capable of detecting FITC, PE, PERCP 

and APC (as per the Cube 6 flow cytometer). This cytometer is however more 

sophisticated as bandpass filters allows the further detection of PE-cy5, PE-cy7 

and APC-cy7. Colour compensation also allows the detection of up to four 

fluorophores within the same sample tube. In my thesis, this flow cytometer was 

used when multiple fluorophores were assessed (<4) in the same sample tube. 

An example of this is the confirmation of CD34+ HSC engraftment into NSG mice, 

whereby human CD45-FITC and mouse CD45-APC were used to detect human 

and mouse cells in the peripheral blood of mice. 

 

Prior to use the automated daily clean process was carried out to ensure the flow 

cytometer was cleaned and primed. A compensation matrix was calculated by 

running single stained samples and a dual/tri/quad stained sample. This matrix 

determined the level of spectre cross over and created a compensation to account 

for the overlap in future samples tested. This compensation was applied prior to 

running the “real” test samples. 1x105 cells were stained with the antibodies of 

interest (along with appropriate isotype controls) in 50µl PBS for 15 minutes 

before the addition of a further 300µl of PBS. These stained samples were 

transferred to a flow cytometry tube and placed in the CytoFLEX for analysis. 

1x104 cells were analysed in a pre-defined region. Data analysis was performed 

using the CytExpert 1.2 software. 

 

2.7.3 BD FACSCanto II 
 

The FACSCanto II flow cytometer (BD, Franklin Lakes, NJ, USA) is a three-laser 

flow cytometer (405, 488 and 633nm) capable of assessing up to 7 different 

fluorophores within the same sample. These fluorophores included FITC, PE-

Cy5, PE-Cy7, APC, APC-Cy7, BV421 and BV510. A colour compensation (for 

each antibody panel used) was carried out using single stained samples to 

calculate fluorophore emission cross-over. This compensation was applied to 
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each experiment prior to running the samples. In addition, fluorescence minus 

one (FMO) controls for each fluorophore were carried out to determine the 

positive and negative gates for each marker. This flow cytometer was used to 

detect mitochondrial levels in various cell populations within mouse bone marrow 

- antibodies panels used can be seen in Table 2.5. This flow cytometer was 

located in the Pathology Laboratory at the NNUH and was maintained by Dr 

Allyson Tyler and Dr Ian Thirkettle.  

 

To perform the analysis 5x106 mouse bone marrow cells were stained for 15 

minutes with 200nM MitoTracker in 500µl Flurobrite DMEM - with 10µl Lineage 

depletion cocktail bound to biotin (Miltenyi Biotec, Bergisch Gladbach, Germany). 

The cells were centrifuged at 1400rpm for 5 minutes and re-suspended in 50µl of 

PBS. A master mix of antibodies was made (where a 1X mix contained 2µl of 

each antibody) and was added to the cells. After a subsequent 15-minute 

incubation, 300µl of PBS was added and the cells were transferred to a flow 

cytometry tube. The samples were run on the FACSCanto II using the automated 

carousel function. Sample data was analysed using a combination of FCS 

Express 5 and FlowJo software. 

 

2.7.4 BD FACSAria II 
 

The FACSAria II (BD, Franklin Lakes, NJ, USA) has the same flow cytometry 

abilities as the FACSCanto II with the additional capability of cell sorting. This flow 

cytometer was used to sort a pure population of OCI-AML3, MV4-11, MM1S, and 

U266 luciferase cells used for in vivo studies. Cell sorting was carried out by Dr 

Zhigang Zhou. 

 

2.7.5 BD FACSMelody 
 

The FACSMelody (BD, Franklin Lakes, NJ, USA) also has the same capabilities 

as the FACSCanto II and has the sorting capabilities of the FACSAria II. This flow 

cytometer was located at the Earlham Institute and was used to sort human HSCs 
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from the bone marrow of “humanised” NSG mice. This sorting was carried out by 

Dr Iain Macaulay and Dr Laura Mincarelli.  

 

Table 2.3. Capability comparison of the flow cytometers used. 

 
 

Table 2.4. Antibodies used in flow cytometry assays. 

 
 

Table 2.5. Antibody panels used to detect human and mouse HSCs. 
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2.8 Seahorse Extracellular Flux Assay 
 

To analyse the metabolic activity of AML and MM cells the Seahorse XFp 

Analyzer (Agilent Technologies, Santa Clara, CA, USA) was used with the 

Seahorse XFp Cell Mito Stress Test Kit (as per the manufacturers protocol). 

Levels of OXPHOS (mitochondrial respiration) and glycolysis (non-mitochondrial 

respiration) in a cell of interest can be determined using this method, through the 

analysis of oxygen consumption rates (OCR) and extracellular acidification rates 

(ECAR) respectively. In my thesis, this method was used primarily to observe the 

changes in mitochondrial respiration between mono and co-cultured AML and 

MM cells, along with respiration dynamics in BMSC post culture with malignant 

cells. Not only can this assay determine basal mitochondrial respiration rates it 

can also determine the maximum respiration, spare capacity of a cell, proton leak 

and ATP production (Figure 2.8). This was achieved using periodic injections of 

Oligomycin (inhibiting ATP synthase reducing OCR), FCCP (increases H+ ion 

permeability of the lipid bilayer facilitating H+ transport across the hydrophobic 

mitochondrial inner membrane independently of ATP synthase - increasing OCR) 

and Rotenone/Antimycin A (targeting complex 1 and 3 reducing OCR).  

 

 
Figure 2.8. The Mito Stress test experimental profile. 

Periodic injections of Oligomycin, FCCP and Rotenone/Antimycin A allowed basal and maximum 
respiration to be determined using oxygen consumption rate (OCR). ATP production, spare 
capacity and proton leak were also able to be analysed. Source: Agilent Technologies, 
https://www.agilent.com/cs/library/flyers/public/5991-7118EN.pdf, accessed May 2018. 
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To run the assay AML and MM cells were first cultured for 72 hours with or without 

BMSC. Specific numbers of cells were then plated on Seahorse XFp cell culture 

plates (coated with Poly-D-Lysine) in Seahorse XFp Base Medium supplemented 

with 2.5mM Glucose, 2mM Glutamine and 1mM Pyruvate. To analyse BMSC, 

these cells were plated on coated seahorse plates prior to AML co-culture. 1x105 

AML/MM cells were plated in triplicate in 50µl volumes, followed by centrifugation 

at 1400rpm for 5 minutes to ensure a confluent mono-layer of cells is achieved. 

24 hours prior to the assay the Seahorse Extracellular Flux analyser was switched 

on to allow it to equilibrate at 37˚C. Seahorse XFp sensor cartridges were also 

hydrated in XFp Calibrant overnight at 37˚C. To run the assay Oligomycin, FCCP 

and Rotenone/Antimycin A were loaded into the pre-calibrated sensor cartridge 

in 1µM, 1µM and 0.5µM concentrations respectively. The sensor was loaded into 

the extracellular flux analyser and the pre-defined MitoStress protocol was run.  

After a 20-minute sensor equilibration the cell plate (with wells topped up to 180µl 

of Seahorse Base Medium) was loaded into the analyser. Results obtained were 

analysed using Graphpad and Microsoft Excel.  

 

2.9 Genetic knockdown of AML, MM and BMSC 
 

To analyse the effect of NOX2, PGC-1α and CD38 on mitochondrial transfer 

genetic knockdown was carried out with short hairpin RNA (shRNA) targeted to a 

gene of interest (GOI) using a lentiviral system. The cell type of interest is 

transduced with a lentivirus containing RNA which encodes shRNA targeting a 

GOI. This RNA is incorporated into the genome of the cell resulting in shRNA 

being transcribed by RNA polymerase III machinery. This shRNA mimics pri-

miRNA and is modified by Drosha and Dicer enzymes to produce double stranded 

RNA, removing the short hairpin. This is then loaded into the RNA-induced 

silencing complex (RISC) where the sense strand (passenger) is degraded by 

Argonaute-2. The remaining anti-sense strand leads the RISC to mRNA 

complementary to itself, resulting in mRNA cleavage by RISC - silencing the GOI. 

The process of lentiviral preparation is explained below. The protocol was 

designed by Dr Lyubov Zaitseva, as previously described (340). 
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2.9.1 Lentiviral production 
 

2.9.1.1 Plasmid preparation 
 

Escherichia coli (E. coli) glycerol stocks (containing pLKO.1-amp vectors 

encoding shRNA specific for a GOI) were purchased from Sigma Aldrich’s 

MISSION® shRNA library (see Table 2.6 for details). 

 
Table 2.6. pLKO.1-amp vectors containing shRNA targeting a GOI 

 
 

The initial step in the preparation of a lentivirus is the generation of pLKO.1-amp 

plasmids from E. coli stocks. Luria Bertani (LB) agar plates, containing 50µg/ml 

ampicillin, were made and left to set at room temperature. Using a stringent 

aseptic technique, the MISSION® glycerol stocks were streaked on these plates 

and incubated upside down at 37˚C for 16 hours. Single E. coli colonies were 

then picked with a sterile pipette tip and transferred into a 10ml tube containing 

5ml of sterile LB broth supplemented with 50µg/ml ampicillin. This tube was then 

incubated at 37˚C on shaking platform set at 240rpm.  

 

After incubation, bacterial growth caused the LB broth to turn cloudy and plasmid 

purification could now take place. The bacterial culture was centrifuged at a high 

speed for 10 minutes to pellet the bacterial cells - the supernatant was discarded. 

Plasmid DNA was then purified from the E. coli cells using the NucleoSpin® 

Plasmid kit (Macherey-Nagel, Duren, Germany), as per manufacturer’s 

instructions. Briefly, E. coli cells were lysed and neutralised prior to loading onto 

a plasmid DNA binding spin column. Plasmid DNA was washed and eluted from 

the column. Purified plasmid DNA was quantified using a Nanodrop 

spectrophotometer (ThermoFisher, Waltham, MA, USA) - with purity confirmed 

using A260/230 and A260/280 ratios.  
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2.9.1.2 Plasmid precipitation 
 

A total plasmid concentration of 180ng/µl or greater was required to proceed with 

lentiviral production. If a lower concentration was generated a precipitation step 

was carried out to increase the plasmid concentration. Here 3M sodium acetate 

was added at a ratio of 1:10 to the total plasmid volume, followed by the addition 

of ice cold absolute ethanol (greater than two times the total plasmid volume). 

The solution was then frozen at -80˚C for several hours, then centrifuged at a high 

speed for 5 minutes at 4˚C. The supernatant was discarded and 1ml of ice cold 

70% ethanol was added and another centrifugation step was carried out as 

above. As much of the ethanol was removed as possible and the plasmid pellet 

was dried out in a tissue culture hood. The plasmid pellet was finally re-

suspended in water to achieve the desired plasmid concentration of >180ng/µl. 

 

2.9.1.3 Transfection of packaging cells 
 

293T packaging cells were cultured as described in 2.2.1 and split 1:2 prior to 

transfection. To create a functional lentivirus encoding shRNA targeted to a GOI, 

three different plasmids were required along with a transfection reagent. The 

pLKO.1-amp plasmid generated in 2.9.1.1 was the first plasmid used. In addition, 

Vesicular stomatitis virus glycoprotein (VSV-G) and cytomegalovirus promoter 

(pCMV) were also required as envelope proteins and packaging protein promoter 

respectively. The latter two plasmids were made from glycerol stocks as per the 

pLKO.1-amp plasmid. The transfection reagent used was FuGENE® 6 (Promega, 

Fitchburg, WI, USA). 

 

For each 10mm tissue culture dish of 293T cells a master mix of plasmids and 

transfection reagent was made as follows: 1µg of VSVG and pCMV plasmids 

were mixed with 1.5µg of pLKO.1-amp plasmid in a total volume of 15µl TE buffer. 

This DNA mixture was added to 200µl of Opti-MEM medium (ThermoFisher, 

Waltham, MA, USA) along with 18µl of FuGENE® 6. The medium was removed 

from the plate of 293T cells and replaced with 7.5ml of fresh 293T DMEM medium 

before the addition (in a dropwise manner) of the Opti-MEM medium containing 
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plasmid and transfection reagent. After a 24-hour incubation, the medium was 

removed and discarded from the 293T cells and replaced with fresh medium. This 

was repeated at 48, 72 and 96-hour time points, however at these times the 

medium removed was collected and stored at -80˚C - as it contained the lentivirus. 

 

2.9.1.4 Lentivirus titre 
 

Small 70µl aliquots from each virus collection time point were kept aside from the 

bulk collection - these were used to determine the lentivirus titre. Viral RNA was 

isolated from the 3-pooled lentiviral time point collections using the Nucleospin® 

Dx Virus kit (Machery-Nagel, Duren, Germany). 150µl of the 210µl total pooled 

volume was taken aside, 600µl of RAV1 buffer was added and vortexed 

thoroughly. After a 5-minute incubation, 600µl of absolute ethanol was added and 

vortexed for 30 seconds. The solution was then loaded into a Nucleospin® Dx 

Virus column and centrifuged at 8000 x g for 1 minute discarding the waste. The 

column was placed in a new collection tube, before the addition of 500µl of RAW 

buffer and a further centrifugation step using the above parameters. The column 

was then washed with RAV3 buffer twice (600 and 200µl respectively) using 1 

minute centrifugation steps at 8000 and 11000 x g. RNA was then eluted into 

clean and sterile Eppendorfs using 50µl of nuclease free water (warmed to 70˚C).  

Any remaining contaminating DNA was removed using a DNase step - 12.5µl of 

viral RNA was added to 10µl of DNase and 2.5µl DNase1 buffer. The solution 

was incubated in a thermocycler for 30 minutes at 30˚C followed by a 5-minute 

incubation at 70˚C.  

 

The RNA genome copy number was then calculated using the Lenti-X qRT-PCR 

titration kit (Clontech Takara Bio Europe, Saint-Germain-en-Laye, France). 

Briefly, a master mix was generated (detailed in Table 2.7) on ice, with 10% extra 

volume to account for pipetting errors. The RT enzyme mix was added last. A 

standard curve was made in 8-well PCR strips using a known concentration of 

5x107 copies/µl as the top concentration, which was diluted down to 5x103 in 

EASY dilution buffer. Viral RNA samples were also diluted using a 10-fold serial 

dilution method resulting in 4 concentrations. 2µl of the control template, viral 
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RNA and negative control were added in duplicate to a 96 well Lightcycler PCR 

plate (Roche, Basel, Switzerland) - containing 18µl of the master mix detailed in 

Table 2.7 The plate was sealed and run on a Lightcycler LC480 (Roche, Basel, 

Switzerland) using the following program: 

 

• RT Reaction – 5 minutes at 42˚C, 10 seconds at 95˚C (1 cycle) 

• Amplification – 5 seconds at 95˚C, 30 seconds at 60˚C (40 cycles) 

• Melting Curve – 15 seconds at 95˚C, 30 seconds at 60˚C (1 cycle) 

 
Table 2.7. Master mix for Lenti-X lentiviral titration qPCR 

 
 

A standard curve was generated using cycle threshold (Ct) values of the known 

copy number dilutions - enabled by the Roche Lightcycler software. This was 

used to determine the raw copy number of the viral RNA. Actual copy numbers 

per ml was determined using the equation below: 

 
 

Copies	per	ml =
Raw	copy	number	×1000	µl/ml	×DNAse	dilution	factor	×	Viral	RNA	elution	volume

DEFGFHI	JHKLIM	NOIPKM	 LQM	NFQHI	RST	MUGQHVGFOE 	×	WHKLIM	NOIPKM	HXXMX	GO	YZR
 

 

For example, a raw copy number of 2 x 107 would give the following copy 

numbers per ml: 

 

Copies	per	ml =
20000000		×	1000	×	2	×	50

150	×	2
 

=	6.66	x	109	
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If a concentration of above 1 x 108 copies per ml was obtained the process was 

continued, if not the 293T packaging cells were transfected once again as per 

Section 2.9.1.3.  

 

Next, the copies per ml was translated into transducing units per ml (TU/ml) using 

the following equation: 

 
TU

ml
= 	
Copies	per	ml

100000
 

 

The qPCR based lentiviral titration method was compared to a traditional 

fluorescent microscopy method for titrating lentiviral vectors, which obtained the 

above division factor of 100,000. This experiment was performed by Dr Lyubov 

Zaitseva.  

 

The volume of prepared virus needed to infect a given cell number with a 

particular number of viral particles (multiplicity of infection (MOI)) was generated 

using the equation below: 
 

Volume	of	prepared	virus = 	
Number	of	cells	to	be	infected

TU/ml
	×desired	MOI 

 

The volume of prepared virus was concentrated (30-40 fold) using Amicon® Ultra-

15 centrifugal filters (Merck Millipore, Burlington, MA, USA). During this process, 

lentivirus from the 3-time point collections was pooled on ice, and centrifuged at 

15,000rpm for 15 minutes at 4˚C. This was continued until the full volume was 

added to the centrifugal filter and concentrated to approximately 1ml. Upon 

completion of the concentration step a new TU/ml was generated and used for 

MOI calculations. The lentivirus was stored at -80˚C until use. 

 

2.9.2 Lentiviral knockdown 
 

AML/MM/BMSC were infected with the lentivirus prepared in 2.9.1. 5 x 105 cells 

were seeded on 24 well plates in 500µl of pen-strep free medium. 0.5µl of 
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hexadimethrine bromide (Polybrene) was added to aid the uptake of lentivirus into 

cells. The volume of virus calculated to give the required MOI was added to the 

cells. Empty construct virus (ShE) was also added to other wells of cells as 

controls - to rule out any non-specific viral effects. 24 hours after infection, 1ml of 

fresh medium was added and the cells were cultured for a further 48 hours. 

Knockdown (KD) was tested using qPCR after 72 hours (detailed in section 

2.10.4). If knockdown was successful the control and GOI KD cells were used in 

mitochondrial transfer based experiments. 

 

MM and BMSC were transduced with a lentivirus purchased from Clonetech 

(rLV.EF1.mCherry-Mito-9 and rLV.EF1.AcGFP1-Mem-9) and were used as per 

the above method - with the exception of no ShE control used.  

 

2.10 Molecular biology techniques 
 

2.10.1 RNA extraction 
 

Gene expression levels in AML/MM/ BMSC were analysed using RT-qPCR. The 

first step in this process was the extraction of RNA from these cells. RNA was 

extracted using the ReliaPrep™ RNA Cell Miniprep Kit (Promega, Fitchburg, WI, 

USA) as per manufacturer’s instructions. Briefly, cells were collected and washed 

in PBS and 250µl of BL+TG buffer was added and mixed thoroughly - followed 

by the addition of 85µl Isopropanol. The lysate was vortexed thoroughly before it 

was loaded into a ReliaPrep™ minicolumn - the column was then centrifuged at 

13000 x g for 30 seconds. 24µl of Yellow Core Buffer was mixed with 3µl of 0.09M 

MgCl2 and 3µl of DNase I enzyme (in that order) and was added to the column. 

The column was incubated for 15 minutes at RT before the addition of 200µl of 

column wash solution and a further centrifugation step using the above 

parameters. 500µl of RNA wash solution was added to the column and was 

centrifuged again at 13000 x g for 30 seconds - the minicolumn was then placed 

in a fresh collection tube. A further 300µl of RNA wash solution was added and 

the column was centrifuged for 3 minutes at 16000 x g. The minicolumn was then 

placed in an elution tube, 20µl of nuclease free water was added and the tube 
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was centrifuged for 1 minute at 13000 x g to elute the RNA. RNA was stored at -

20˚C until further use. 

 

2.10.2 DNA extraction 
 

To detect inter-species mitochondrial transfer DNA was isolated from human AML 

and MM cells - mouse mitochondrial DNA was then detected using qPCR. DNA 

was extracted using the GenElute Mammalian Genomic DNA Miniprep Kit (Sigma 

Aldrich, St Louis, MO, USA) using the manufacturer’s instructions. Briefly, cells 

were harvested and washed in PBS and the suspended in 200µl of Resuspension 

solution. To lyse the cells 20µl of Proteinase K was added followed by 200µl of 

Lysis Solution C. This lysate was vortexed and incubated at 70˚C for 10 minutes. 

After incubation 200µl of absolute ethanol was added to the lysate, followed by 

loading the lysate onto the column. The column was centrifuged at 12000 x g for 

1 minute - discarding the waste. 500µl of Wash Solution was added to the column 

and a further centrifugation step was carried out as above. A further 500µl of 

Wash Solution was then added to the column, this time however the centrifugation 

time and speed were increased to 3 minutes and 16000 x g respectively. Finally, 

100µl of Elution Solution was added directly to the column and centrifuged for 1 

minute at 12000 x g, which eluted the DNA from the column. DNA was stored at 

-20˚C until further use.   

 

2.10.3 Quantification of extracted RNA/DNA 
 

Once extracted, RNA and DNA was quantified using the NanoDrop 

spectrophotometer (ThermoFisher, Waltham, MA, USA). The apparatus was 

blanked using 1µl of elution buffer (water for RNA and Elution Solution for DNA). 

1µl of sample was then loaded onto the NanoDrop and RNA/DNA concentration 

(ng/µl) was determined. Sample purity was determined using the A260/230 ratio 

- a sample was deemed pure between 1.7 and 2.3.  
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2.10.4 cDNA synthesis 
 

In order to analyse the gene expression levels in AML/MM/BMSC, cDNA was 

synthesised from RNA extracted in 2.10.3. This was achieved using reverse 

transcription with the qPCRBIO cDNA synthesis kit (PCR Biosystems, London, 

UK), as per the manufacturers protocol. For a 10µl reaction, 2µl of 5X cDNA 

Synthesis Mix was mixed with 0.5µl of 20X RTase and 300ng of RNA. The 

remaining volume was made up to 10µl with nuclease free water. PCR tubes were 

placed in a Thermocycler (Bio-Rad, Watford, UK) and a pre-defined program 

involving a 42˚C incubation for 30 minutes and an 85˚C incubation for 10 minutes 

was run. The cDNA samples were then held at 4˚C for up to 3 hours before a 5-

fold dilution in nuclease free water. The samples were stored at -20˚C until further 

use. 

 

2.10.5 Real time qPCR 
 

The Roche Lightcycler 480 (Roche, Basel, Switzerland) was used to carry out 

real time quantitative PCR (qPCR). This method was used for gene expression 

analysis along with human and murine mtDNA analysis. 

 

2.10.5.1 Gene Expression 
 

cDNA synthesised in section 2.10.4 was used to perform qPCR to determine gene 

expression levels. The qPCRBIO SyGreen Mix (PCR Biosystems, London, UK) 

was used to carry out qPCR on 96 and 384 well Roche Lightcycler reaction plates 

(287). Briefly, a master mix was created containing 4µl of SyGreen Mix, 1µl of 

10µM forward and reverse primer mix (see Table 2.8 and 2.9) and 1µl nuclease 

free water. 4µl of the diluted cDNA was added to the PCR wells along with 6µl of 

the appropriate master mix. PCR plates were then sealed and centrifuged briefly 

before loading into the light cycler. qPCR was run using a pre-programmed 

method described below. Upon amplification, SybrGreen was incorporated into 

newly synthesised DNA which could be detected by fluorescence. 
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• Pre-amplification (95˚C for 2 minutes). 

• Amplification over 45 cycles (95˚C 15 seconds, 60˚C for 10 seconds and 

72˚C for 10 seconds). 

• Melting curve analysis to confirm PCR product specificity (95˚C for 5 

seconds, 65˚C for 1 minute and 97˚C continuous).  

• Cooling (40˚C for 30 seconds). 

 

Cycle threshold (Ct) values were determined for each GOI, along with a 

housekeeping gene (Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) or 

β-actin) as their expression does not change with the treatment or genetic 

alteration of cells. ΔCt values for GOIs were determined (Ct GOI – Ct 

housekeeping gene) and ΔΔCt was determined (ΔCt control – ΔCt test). The 

change in expression was expressed as a fold change of treated cells compared 

to untreated control cells (2-ΔΔCt). 

 
Table 2.8. KiCqStart® SybrGreen Primers (Sigma Aldrich) used in qPCR analysis. 

 
 

Table 2.9. QuantiTect Primers (Qiagen) used in qPCR analysis.  

Primer sequences were not disclosed by the manufacturer. 

 
 

 

2.10.5.2 SybrGreen based mtDNA analysis 
 
To detect cross species mitochondrial transfer SybrGreen based qPCR using 

human and mouse specific primers was utilised. Two kits were purchased, the 
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human mitochondrial DNA (mtDNA) monitoring primer set (Clontech, Clontech 

Takara Bio Europe, Saint-Germain-en-Laye, France) and the mouse 

mitochondrial DNA copy number kit (Detroit R&D, Detroit, MI, USA). The human 

kit contained a human mtDNA primer (ND1) and a human genomic DNA (gDNA) 

primer (SLCO2B1) whilst the mouse kit contained mouse mtDNA and gDNA 

primers (specific genes not disclosed). DNA (extracted in 2.10.2) was diluted to 

2ng/µl in water and 4µl was loaded onto a Lightcycler PCR plate. Human and 

mouse mtDNA and gDNA master mixes were created as follows: 4µl SybrGreen, 

1µl of 10µM forward/reverse primer mix and 1µl water. 6µl of the appropriate 

master mix was added to the 4µl of DNA and the plate was sealed and centrifuged 

briefly. The mouse and human qPCR were run using different methods which are 

highlighted below: 

 

Human mitochondrial kit: 
• Pre-amplification (98˚C for 2 minutes). 

• Amplification over 30 cycles (98˚C for 10 seconds, 61˚C for 15 seconds 

and 68˚C for 30 seconds). 

• Melting curve analysis (95˚C for 5 seconds, 65˚C for 1 minute and 97˚C 

continuous). 

• Cooling (40˚C for 30 seconds). 

 

Mouse mitochondrial kit: 
• Pre-amplification (95˚C for 10 minutes). 

• Amplification over 30 cycles (95˚C for 15 seconds and 60˚C for 60 

seconds). 

• Melting curve analysis (95˚C for 5 seconds, 65˚C for 1 minute and 97˚C 

continuous). 

• Cooling (40˚C for 30 seconds). 

 
PCR products obtained were ran on agarose gel electrophoresis gels, explained 

in section 2.10.6. 
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2.10.5.3 Taqman® based mtDNA analysis 
 

To show the cross-species mitochondrial transfer from BMSC to HSCs (under 

lipopolysaccharide (LPS) treatment in vivo), a qPCR was carried out using 

Taqman® chemistry compared to SybrGreen chemistry. In this method, a 

sequence specific probe containing both a 2′-chloro-7′phenyl-1,4-dichloro-6-

carboxy-fluorescein (VIC)/ 6-Carboxyfluorescein (FAM) fluorophore and a 

TAMRA® quencher binds to the GOI. Upon amplification of the DNA the probe is 

cleaved releasing both the fluorophore and quencher allowing for the detection of 

the fluorophore. 

 

Pre-designed Taqman® assays were obtained from ThermoFisher (see Table 

2.10), encompassing both human and mouse mtDNA and gDNA. Cell lysate was 

loaded onto a PCR plate (2µl). The human and mouse mtDNA Taqman® assays 

were run in duplex reactions due to the difference in fluorophore (VIC and FAM). 

Human and mouse gDNA Taqman® assays were run in simplex reactions. 

Simplex and duplex master mixes were generated. For the simplex master mix 

0.5µl of Taqman® assay (containing primers and probe) was mixed with 5µl of 

TaqPath ProAmp enzyme (ThermoFisher, Waltham, MA, USA) and 2.5µl water. 

For the duplex master mix 0.5µl of each Taqman® assay (total 1µl) was mixed 

with 5µl of TaqPath ProAmp enzyme and 2µl water. This master mix (8µl) was 

then added to the cell lysate on the PCR plate. The PCR plate was sealed and 

centrifuged at 1000rpm for 1 minute before it was loaded into the Lightcycler - 

qPCR was run using the following pre-programmed method: 

 

• Pre-amplification (60˚C for 30 seconds and 95˚C for 5 minutes). 

• Amplification over 50 cycles (95˚C for 15 seconds and 60˚C for 1 minute). 

• Cooling (40˚C for 30 seconds). 

 

From the Ct values obtained, human and mouse mitochondrial copy numbers in 

human HSCs were generated. Human and mouse mtDNA Ct values were 

normalised against the human gDNA Ct to obtain the ΔCt (Ct human/mouse 

mtDNA – Ct human gDNA). The ΔCt value was used to generate the 
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mitochondrial copy number (2-ΔCt). This method was adapted from the Takara 

Clontech human mitochondrial DNA (mtDNA) monitoring primer set protocol 

(http://www.clontech.com/GB/Products/Stem_Cell_Research/Pluripotency_and_

Differentiation/qPCR_Primer_Sets/ibcGetAttachment.jsp?cItemId=90270&fileId=

7220863&sitex=10030:22372:US. Accessed June 2018). The mouse mtDNA 

assay was used to ensure no mouse cell contamination. Mitochondrial copy 

numbers were used to determine the percentage of mouse mitochondria in 

human HSCs after isolation from “humanised” NSG mice - using the equation 

below. 

 

 
 

Table 2.10. Taqman® assays used for mouse and human copy number assessment. 

 
 

2.10.6 Agarose gel electrophoresis 
 

Agarose gel electrophoresis was used to analyse qPCR products - 1.25% 

agarose gels were cast containing SYBR Safe (ThermoFisher, Waltham, MA, 

USA). For 60ml of agarose gel, 0.75g of agarose was diluted in 60ml of 1X Tris 

Acetate EDTA (TAE) buffer with 6µl of SYBR Safe. The solution was microwaved 

on full power for 60 seconds to dissolve all agarose and was cooled slightly before 

pouring into gel casts. A lane dividing well comb was added to allow the loading 

of samples. After the gel had set it was loaded into a DNA gel running tank with 

the comb removed - 1X TAE was added to the gel tank to submerge the gel. PCR 

products (10µl) were prepared by adding 2µl of 6X Orange G loading dye- 10µl 

of the sample was loaded into appropriate wells on the gel along with 5µl of 100 

base pair DNA ladder (New England Biolabs, Ipswich, MA, USA) to determine 
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PCR product size. The gel was run for 1 hour at 100V and was imaged using the 

UV function (filter 1) of the Chemdoc-It2 Imager (UVP, LLC, Upland, CA, USA). 

Images were edited using ImageJ software. 

 

2.10.7 Protein extraction 
 

To analyse protein levels within BMSC, protein was extracted and Western 

blotting analysis was carried out - as per (266). The first step in this process was 

protein extraction - both whole cell protein along with cytoplasmic and nuclear 

components. To extract whole cell protein radioimmunoprecipitation assay (RIPA) 

buffer supplemented with protease and phosphatase inhibitors was used. This 

buffer lyses the cells allowing the isolation of total protein. 50µl of RIPA buffer 

was added to cell pellets (~1x106 cells) and incubated on ice for 15 minutes. After 

the incubation, the cell lysate was centrifuged at maximum speed for 15 minutes 

at 4ºC. The supernatant was collected and stored at -20ºC until use - the cell 

pellet was discarded. 

 

To extract nuclear and cytoplasmic protein fractions the NE-PER Nuclear and 

Cytoplasmic Extraction Reagents kit (ThermoFisher, Waltham, MA, USA) was 

utilised. Cell pellets were re-suspended in 100µl of CER I buffer, vortexed for 30 

seconds and incubated on ice for 10 minutes. 5.5µl of CER II buffer was 

subsequently added and vortexed once again for 30 seconds and incubated on 

ice for 1 minute. The cell lysate was then centrifuged at maximum speed for 5 

minutes and the supernatant was collected as it contained the cytoplasmic 

component. The pellet (containing nuclei) was re-suspended in 50µl of NER 

buffer and vortexed for 30 seconds. The nuclei containing lysate was incubated 

on ice for 50 minutes with a brief vortex carried out every 10 minutes. Finally, the 

lysate was centrifuged on the highest setting for 10 minutes - the nuclear 

containing supernatant was collected. Both fractions were stored at -20˚C until 

use. 
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2.10.8 Western Blotting 
 

12.5% polyacrylamide gels were made using 30% Polyacrylamide/Bis Solution 

(BioRad, Hercules, CA, USA). The gel mixture contained 10% SDS, 1.5M Tris pH 

8.8, 10% ammonium persulphate and TEMED (detailed volumes are seen in 

Table 2.11). Protein samples were prepared (from 2.10.7) by adding 4X sample 

loading buffer (containing β-mercaptaethanol and bromophenol blue) and 

denatured at 100˚C for 5 minutes.  

 
Table 2.11. Recipe for making 12ml of 12% polyacrylamide gel mix (enough for 1 gel). 

 
 

After the polyacrylamide gels were set protein samples (10µl) were loaded into 

the wells on the gel. 5µl of Precision Plus Protein All Blue Prestained Protein 

standard ladder (BioRad, Hercules, CA, USA) was also added to determine 

protein size. The gels were run at 200V for 45 minutes in running buffer containing 

10% SDS, 20µM glycine and 157µM Tris-Base. After completion of the run, the 

protein was transferred from the gel onto polyvinyladine fluoride (PVDF) 

membranes pre-treated with methanol. The gel and PVDF membrane were 

placed in transfer casts and added to a transfer tank containing transfer buffer 

(20µM Glycine and 157µM Tris-Base) - with an ice pack to lower the temperature 

generated by the electric current. The transfer took place at 100V for 1 hour, after 

which the membranes were blocked at RT in 5% bovine serum albumin (BSA) for 

1 hour.  
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To detect the protein of interest the blocked membrane was added to a tube 

containing primary antibody and was incubated overnight at 4˚C. Antibodies used 

in this study can be found in Table 2.12. Following an extensive washing step in 

TBST buffer (1X PBS and 0.01% Tween) the membranes were incubated for 1 

hour at RT with horseradish peroxidase (HRP) conjugated secondary antibodies. 

The same membrane was also probed for β-actin (total and cytosolic fractions) 

and SAM-68 (nuclear fractions) as above for loading controls.  

 
Table 2.12. Antibodies used in Western Blot analysis. 

 
 

The membranes were imaged using enhanced chemiluminscence (ECL) reagent 

(GE healthcare, Little Chalfont, UK). A 1:1 ratio of solutions A and B were mixed 

and 500µl was added to the membrane for 30 seconds. Excess solution was 

removed and the membrane was imaged using the Chemdoc-It2 Imager (UVP, 

LLC, Upland, CA, USA) - with the filter set to position 3. Images were edited and 

densitometry was determined using ImageJ software. 

 

2.11 Animal procedures 
 

All animal experiments used in this study were carried out in accordance with the 

UK Home Office regulations - under project license 70/8814 (Prof. Kristian 

Bowles) and 70/8722 (Dr Stephen Robinson). All work was carried out by myself 

(under UK Home Office personal license IBB43C002) with the assistance of Dr 

Rachel Piddock (ICC440663) and Dr Stuart Rushworth (ICD3874DB). Before 

carrying out the techniques outlined below, full training was conducted by Mr 

Richard Croft (IGEBEFB87) and Mrs Anja Croft (L8A2ACED). All animals were 
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housed in a containment level 3 laboratory (pathogen free) in the Disease 

Modelling Unit (DMU) at the University of East Anglia.  

 

2.11.1 Maintenance of animal colonies 
 

Two mouse strains were used in this study the non-obese diabetic (NOD) severe 

combined immunodeficiency (SCID) Il2rg knockout 

(NOD.Cg.PrkdscidIL2rgtm1Wji/SzJ or NSG) mice and the C57BL/6J mice. Colonies 

of NSG (originally purchased from the Jackson Laboratory, Bar Harbour, ME, 

USA) and C57BL/6J (originally purchased from stock at the DMU, UEA, UK) were 

maintained and bred in the “barn” area of the DMU. Breeding trios (1 Male and 2 

Females) were housed together for 6 months before separation. All offspring were 

weaned from their parents 3 weeks after birth and used in experiments at 4-12 

weeks of age.  

 

2.11.2 Xenograft Models 
 

The NSG mouse model was used in xenograft experiments whereby human 

AML/MM cell lines and primary AML blasts were transplanted. Human cells can 

engraft in the bone marrow of these mice as they are severely 

immunocompromised - lacking mature T, B and Natural Killer cells. The mice 

were not irradiated prior to transplantation, the animals were therefore in good 

health.  

 

AML and MM cell lines injected into the NSG were lentivirally modified with a 

pCDH-luciferase-T2A-mCherry construct (kindly gifted by Prof. Irmela Jeremias, 

Helmholtz Zentrum München, Germany). The luciferase construct allowed for the 

detection of human AML and MM cells in vivo using bioluminescence. Luciferase 

AML/MM cells were sorted prior to injection by Dr Zhigang Zhou using a 

FACSAria II cell sorter.  

 

To analyse mitochondrial transfer to normal CD34+ HSCs, a humanized mouse 

was created. Briefly, 3-4-week-old NSG mice were treated with 25mg/kg Busulfan 
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twice over a 48-hour time period. 2x105 primary human cord blood CD34+ HSCs 

were then injected into the tail vein. Engraftment of HSCs was determined through 

the analysis of human and mouse CD45+ cells in the peripheral blood. These 

animals were then treated with 1mg/kg LPS or PBS control for 2 hours to analyse 

mitochondrial transfer.   

 

2.11.3 Wild type C57BL/6J Models 
 

The C57BL/6J mice were used in this study to analyse the levels of mitochondria 

in LT and ST-HSC. 1mg/kg LPS or PBS control were injected by intraperitoneal 

(IP) injection (341) and after a 2-hour incubation the mice were sacrificed and 

bone marrow was isolated for flow cytometry analysis. These mice were also 

administered with live salmonella by oral gavage injection.  

 

2.11.4 Intravenous injections 
 

AML, MM and HSCs were administered into NSG mice through intravenous (IV) 

tail vein injection. To dilate the tail vein, mice were placed in a 37˚C hot box for 

10 minutes prior to injection. The mice were then placed in a benchtop restrainer 

and injected with a 26G needle into the lateral tail vein. After a short recovery time 

they were returned to their home cage. Cells were suspended and injected in a 

total volume of 200µl PBS - containing 0.5x106 and 2x105 cells for malignant and 

non-malignant cells respectively. 

 

2.11.5 Intraperitoneal injections 
 

Drug compounds and D-luciferin were administered to mice using an IP injection. 

Mice were manually restrained in a “scruff” and injected (with a 26G needle) into 

the peritoneum with a volume of 200µl. In cases where daily IP injection was 

required, alternate flanks of the animal were injected. 
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2.11.6 Subcutaneous injections 
 

Combinations of AML and BMSC were administered to mice using a 

subcutaneous injection. The mice were manually restrained and 200µl of cells 

were injected (using a 26G needle) under the skin on the hind flank. To compare 

the effect of PGC-1α knockdown in BMSC on the progression of AML, both flanks 

of the animal were utilised (see Figure 2.9).   

 

 
Figure 2.9. Schematic overview of the experimental set up for the subcutaneous model. 

 
Combinations 1 and 2 contained a mix of AML cells and BMSC. BMSC were modified lentivirally 
to analyse AML disease progression compared to a control viral modification. 
 

2.11.7 Blood Sampling 
 

Blood was taken from the tail vein of mice for flow cytometry analysis. Animals 

were placed in the 37˚C hot box for 10 minutes to dilate the vein. Mice were then 

placed in a benchtop restrainer and up to 200µl of blood was collected in a 1.5ml 

Eppendorf tube (using a 26G butterfly needle). 25µl of monosodium citrate was 

added to Eppendorf tubes prior to collection to ensure the blood did not clot. 

Antibodies of interest were then added to the blood for 15 minutes, the red cells 

were lysed using 1X red blood cells lysis buffer (ThermoFisher, Waltham, MA, 

USA) and then analysed using flow cytometry. 
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2.11.8 Live animal imaging using Bioluminescence  
 

To analyse tumour burden and location, bioluminescent imaging of live mice was 

carried out (342). This was enabled as AML and MM cells expressed the 

luciferase construct described in 2.11.2. 150mg/kg D-luciferin was IP injected and 

the mice were incubated at RT for 15 minutes to allow for maximum luciferase 

signal to be detected. During the last 5 minutes of the incubation the mice were 

anaesthetised in a chamber of isoflurane using a flow rate of 3%. Mice were 

imaged by the Bruker In-Vivo Xtreme (Bruker, Coventry, UK) using a pre-defined 

method (30 seconds exposure bioluminescent image, x-ray and light image). 

Mice were recovered in their home cage after imaging. Tumour burden and 

location was visualised by the detection of light produced by the formation of 

Oxyluciferin from luciferin, which is catalysed by the luciferase in the modified 

AML/MM cells. Images obtained were edited using ImageJ - bioluminescent 

images were merged with X-Ray images. Densitometry was also carried out using 

ImageJ software. 

 

2.11.9  Oral gavage 
 

To administer live Salmonella enterica to C57BL/6J mice an oral gavage injection 

was utilised - this procedure was carried out by Dr Devina Divekar. 100µl of 

salmonella (containing 1x109 bacteria) was loaded into an oral gavage needle. 

The mouse was restrained in a “scruff” and the salmonella was administered 

down the oesophagus directly into the stomach of the mouse. 

 

2.11.10 Schedule 1  
 

At the end point of the experiment (whether at a specific time point or during signs 

of animal disease) the mice were humanely sacrificed using schedule 1 killing. 

Signs of animal disease were piloerection, hunched posture and hind limb 

paralysis. Animals were sacrificed by exposure to a rising CO2 gradient followed 

by dislocation of the neck.  
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2.11.11 Isolation of mouse bone marrow 
 

The bone marrow was extracted from mice to allow for ex vivo analysis. The femur 

and tibia were isolated and stripped of soft tissue, the bone caps were removed 

and each individual bone was placed in a 0.5ml Eppendorf tube which was 

perforated to allow the removal of the bone marrow. This tube was placed in a 

1.5ml Eppendorf and was centrifuged on full power for 20 seconds to remove the 

bone marrow. The 4 bone marrow portions from each mouse were pooled and 

washed in PBS. Engraftment of AML cells was determined by staining the bone 

marrow with human CD45 and CD33 antibodies. Engraftment of MM cells was 

determined using the human CD45 antibody only (see Figure 2.10). AML/MM 

were deemed to have engrafted if the engraftment percentage was greater than 

1%. Human CD45 AML/MM cells were sorted from the mouse bone marrow using 

MACS with CD45 microbeads (as per 2.2.2). These cells were used to determine 

mitochondrial content using flow cytometry and metabolic capabilities using the 

Seahorse extracellular flux assay.  

 

 
Figure 2.10. Gating strategy to determine AML/MM engraftment in mouse bone marrow. 

 
Live cells were gated from the forward and side scatter plots. Human CD45 and CD33 expression 
is determined for the AML xenograft. Human CD45 expression is determined for the MM 
xenograft.   
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2.12 Statistical Analysis 
 

All data produced in my thesis was analysed by Prism software (Version 7.0, 

GraphPad Software, San Diego, CA, USA). The Mann-Whitney U test was used 

to analyse non-paired test groups, whereas the Wilcoxon signed-rank test was 

used to analyse paired test groups. Correlation data was analysed using the 

Pearson’s correlation co-efficient. Animal survival data was analysed by the 

Kaplan-Meier log-rank test. Results were considered significant where P<0.05 (*), 

P<0.01 (**) and P<0.005 (***). Results represent the mean ± standard deviation 

of 4 or more independent experiments.  
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3 AML derived NOX2 superoxide drives pro-tumoral 
mitochondrial transfer.  

 

3.1 Introduction 
 

Warburg stated in the 1920s that cancers utilise aerobic glycolysis (non-

mitochondrial based) to generate ATP rather than OXPHOS (306). However, 

AML appears to contradict this hypothesis as the malignancy is susceptible to 

OXPHOS inhibitors (311). In addition, primary AML blasts which have an 

OXPHOS gene signature are less susceptible to Ara-C (312). AML blasts have 

also been shown to have increased mitochondrial levels compared to normal 

CD34+ cells (314). This chapter of my thesis will determine how and why AML 

blasts have extra mitochondria. 

 

3.2 Results 
 

3.2.1 Mitochondria are transferred from BMSC to AML blasts 
 

Prior to determining how AML blasts acquire an increased mitochondrial mass, 

it’s important to confirm that primary AML blasts obtained from patients at the 

NNUH also had increased mitochondrial levels compared to normal CD34+ cells. 

AML blasts were indeed found to have on average a 4-fold increase in 

mitochondrial levels compared to CD34+ cells (Figure 3.1A), which is comparable 

to previously published literature.  

 

Taking this further, mitochondrial levels in primary AML blasts were assessed 

after they were cultured with BMSC. AML (suspension cells) and BMSC (adherent 

cells) were cultured in a 5:1 ratio for given time periods, followed by separation 

by gently mixing and mtDNA analysis. Mitochondrial levels in AML blasts were 

increased after a 72-hour (3-fold) and 1 week (6-fold) co-culture, compared with 

AML blasts cultured alone (Figure 3.1B). These results suggest that culture with 

BMSC caused an increase in mitochondrial levels within the AML blast.  
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Figure 3.1. Mitochondrial levels are elevated in AML blasts compared to CD34+ cells, and 

after co-culture with BMSC. 

Mitochondrial levels were calculated using qPCR with extracted DNA, ultilising a species specific 
mtDNA monitoring primer set. (A) Mitochondrial levels in “normal” CD34+ cells were compared to 
AML blasts. (B) The levels of mitochondria in AML blasts were determined after co-culture with 
BMSC over a 72-hour and 1 week time period. AML (suspension cells) and BMSC (adherent cells) 
were cultured in a 5:1 ratio for given time points, prior to separation by gentle mixing and 
independent mtDNA analysis. This experiment was performed by Dr Lyubov Zaitseva. 
 

To determine if intercellular mitochondrial transfer occurred between BMSC and 

AML blasts, three experiments were designed to specifically analyse the 

movement of mitochondria. The first of these utilised a specific mitochondrial dye 

(MitoTracker Green FM) which allowed labelled mitochondria to be detected by 

flow cytometry. BMSC pre-stained with MitoTracker were cultured with primary 

AML blasts for 24-hours, resultant MitoTracker MFI in AML blasts was examined 

by flow cytometry. In this assay AML blasts were also pre-stained with 

MitoTracker to eliminate dye leakage. An increase in MitoTracker MFI was 

observed in AML blasts (n=11) co-cultured with BMSC compared to AML blasts 

cultured alone - highlighting the specific movement of MitoTracker labelled 

mitochondria from BMSC to AML blasts (Figure 3.2). No significant change in 

MitoTracker MFI was observed in CD34+ cells (n=7) when co-cultured with 

BMSC, therefore mitochondrial transfer does not occur between BMSC and 

CD34+ cells under normal conditions (Figure 3.2).  
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Figure 3.2. MitoTracker Green MFI is increased in AML blasts but not in CD34+ cells after 

co-culture with BMSC. 

BMSC and AML blasts/CD34+ cells were pre-stained with 200nM MitoTracker Green FM. BMSC 
were then cultured with either AML blasts or CD34+ cells for 24-hours. MitoTracker MFI was 
measured by flow cytometry in AML blasts/CD34+ cells after co-culture with BMSC and in cells 
cultured alone.  
 

 
Figure 3.3. mCherry tagged BMSC mitochondria move to primary AML blasts. 

BMSC mitochondria were tagged with a mCherry fluorophore using the rLV.EF1.mCherry-Mito-9 
lentivirus. Un-labelled primary AML blasts (n=3) were cultured on these BMSC for 72-hours and 
imaged using fluorescence microscopy. Scale bar = 10µm. Experiment performed by Dr Lyubov 
Zaitseva. 
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In the second method, mitochondria in BMSC were specifically tagged with an 

mCherry fluorophore using the rLV.EF1.mCherry-Mito-9 lentivirus purchased 

from Clontech. Un-labelled primary AML blasts were cultured on these BMSC for 

72 hours and live cell fluorescence microscopy was used to image the co-

cultures. BMSC labelled mitochondria were seen to move to AML blasts, 

visualised by the acquisition of the mCherry fluorescence by AML blasts (Figure 

3.3).  

 

The third method I used was an in vivo xenograft model, enabled by sequence 

differences between human and murine mtDNA which can be detected by PCR. 

Four primary AML blast samples were injected into the tail vein of NSG mice, 

three weeks post administration the animals were sacrificed and bone marrow 

was extracted. Human AML blasts were seen to engraft into the bone marrow of 

NSG mice (using human CD45 and CD33 flow cytometry) at levels greater than 

50% (Figure 3.4A). Human AML blasts were purified from the bone marrow using 

MACS with human CD45 microbeads - the purity of human AML blast sample 

was determined again using flow cytometry (Figure 3.4B). PCR was carried out 

on extracted DNA using species specific mtDNA and gDNA primers, PCR 

products were visualised using agarose gel electrophoresis. In AML blasts grown 

in vitro only human mtDNA was detected, whereas in AML blasts purified from 

mouse bone marrow, murine mtDNA was detected with no murine gDNA (Figure 

3.5). Therefore, murine mitochondria moved from the BMM to human AML blasts 

in vivo.  

 

One possible limitation of this experiment was the purity of AML blasts sorted 

from the mouse bone marrow. A purity of 98.96% human CD45+CD33+ was 

achieved, there was therefore a possibility of 1.04% mouse contamination. To 

examine the potential consequence of murine mtDNA in the assay I deliberately 

spiked human DNA (98.96%) with mouse DNA (1.04%) and repeated the PCR. 

The spiked sample did not create the same result as my mitochondrial transfer 

assay (Figure 3.6) and excluded contamination as the cause of murine mtDNA 

detection. 
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Figure 3.4. Engraftment and purification of primary AML blast xenografts. 

Four primary AML blast samples were injected into NSG mice. After 3 weeks the animals were 
sacrificed and bone marrow was extracted. (A) shows the engraftment of AML blasts in the bone 
marrow using human CD45 and CD33 expression. (B) shows a representative flow cytometry plot 
of the purity of AML blast samples before and after MACS sorting. 
 

 
Figure 3.5. Murine mtDNA is detected in AML blast xenografts. 

PCR was carried out with DNA extracted from purified AML blast xenografts, using species 
specific mtDNA and gDNA primers. The figure presents an agarose gel on which PCR products 
were run.  
 

 
Figure 3.6. PCR trace of purified AML xenograft and a spiked DNA sample. 

A qPCR was run using the murine mtDNA primer with 100% murine DNA, the purified AML 
xenograft (98.96% pure) and a spiked human DNA sample with 1.04% murine DNA. The figure 
presents the PCR trace showing cycle threshold (Ct) values of the samples with the difference 
between xenograft and spiked sample (containing the same murine DNA percentage) highlighted.  
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Taken together, these three methods show that mitochondria are transferred from 

BMSC to AML blasts. The observation that AML blasts have increased 

mitochondrial levels (after culture with BMSC and compared with normal CD34+ 

cells) may therefore in part be a result of intercellular mitochondrial transfer. 

 

Previous studies analysing intercellular mitochondrial transfer utilised rho0 cells 

(devoid of mitochondria as described in Section 1.6.4), I therefore tried to 

generate AML rho0 cells to analyse mitochondrial transfer further. This was rather 

unsuccessful and took up a large amount of my PhD research time - due to the 

40-day culture required to generate these cells. During culture (in ethidium 

bromide, pyruvate and uridine) the growth rate of the OCI-AML3 cells used was 

severely reduced and I constantly battled bacterial infections in my cultures. 

Through increasing the penstrep concentration 3-fold, I managed to generate one 

batch of OCI-AML3 rho0 cells which had severely reduced mitochondrial levels 

(Figure 3.7A). I cultured these cells on human BMSC for 24 hours and found only 

a small increase in mtDNA copy number from ~0 to 2 copies per cell (Figure 3.7B). 

I attempted to engraft the remaining cells from this batch into NSG mice, 

unfortunately they were not seen to engraft as NSG mice showed no sign of 

disease after 3 months - as a result no further rho0 cells were generated for use 

in this study. 

 

 
Figure 3.7. OCI-AML3 cells cultured in ethidium bromide have reduced mtDNA content. 

OCI-AML3 cells were cultured in ethidium bromide, pyruvate and uridine for 40-days to generate 
rho0 cells (which are devoid of mtDNA). qPCR with a human mitochondrial monitoring kit was 
carried out to determine mtDNA content in WT and rho0 cells (A), and in rho0 cells after culture 
with human BMSC for 24 hours (B). 
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3.2.2 Mitochondria are transferred from BMSC to AML through TNTs 
 

How the mitochondria move from BMSC to AML blasts was next examined. From 

previous literature describing mitochondrial transfer it can be seen the most 

prominent transfer mechanism is through TNTs - these were examined in the 

context of mitochondrial transfer to AML blasts. First, I assessed the levels of 

mitochondrial transfer when AML blasts were directly and indirectly cultured with 

BMSC. This was achieved using the MitoTracker based assay which can quantify 

levels of transfer. As per the previous experiment there was a significant increase 

in MitoTracker MFI in AML blasts (n=4) cultured directly with BMSC, however 

there was no increase when AML blasts were cultured in a 0.4µm transwell 

system (Figure 3.8A). This shows that direct cell culture is required to facilitate 

mitochondrial transfer from BMSC to AML blasts.  

 
Figure 3.8. Mitochondrial transfer requires direct contact and is inhibited by CytoB. 

The MitoTracker based assay was used to assess mitochondrial transfer levels when primary 
AML blasts (n=4) were cultured with BMSC in direct and indirect culture (A). (B) CytoB and 
Dansylcadavarine were added to the AML/BMSC co-culture and mitochondrial transfer levels 
were assessed (n=4). Mitochondrial transfer levels in (B) are presented as ΔMitoTracker 
Fluorescence (MFI) between mono-cultured and co-cultured AML blasts. 
 
 
Furthermore, I analysed mitochondrial transfer levels upon the addition of 

Cytochalasin B (TNT inhibitor) and Dansylcadavarine (Endocytosis/Microvesicle 

inhibitor). Cytochalasin B (CytoB) was seen to inhibit mitochondrial transfer 3-

fold, whereas there was no change upon the addition of Dansylcadavarine (Figure 

3.8B). These results show that TNTs are the likely mechanism in which 

mitochondria move from BMSC to AML blasts.   
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CytoB is commonly used as a TNT inhibitor, however this compound is an actin 

inhibitor so therefore not specific to inhibiting TNT formations. Ergo, it was 

important to actually visualise TNTs that form between AML and BMSC to confirm 

that mitochondria move via this mechanism. TNTs are projections of the plasma 

membrane, therefore a plasma membrane dye (Vybrant DiI) was used to visualise 

AML plasma membrane projections. BMSC were stained with MitoTracker Green 

to label mitochondria and Vybrant DiI stained AML blasts were cultured with these 

for 24 hours. Confocal microscopy was used to visualise TNTs - however initially 

none were found. TNTs are highly dynamic which form and dissociate readily, 

therefore a fixation step was added to the protocol prior to visualisation. Using 

this method TNTs were visualised between AML blasts and BMSC (Figure 3.9), 

these TNTs were AML derived and contained mitochondria of BMSC origin.  

 

 
Figure 3.9. Visualisation of a TNT formed between AML blasts and BMSC.  

Primary AML blasts were stained with Vybrant DiI and cultured with MitoTracker Green stained 
BMSC. Fixed cell confocal microcopy was used to visualise TNT formations. A TNT formed by 
AML blasts can be seen containing BMSC derived mitochondria. Image taken by Dr Lyubov 
Zaitseva. 
 
 
I next aimed to quantify the number of TNTs which are formed during a co-culture 

between primary AML blasts and BMSC. During confocal microscopy, very few 

TNTs were observed however multiple Vybrant DiI dots were observed on BMSC 

- which remained after the dissociation of TNT formations (Figure 3.10A). These 

dots were called TNT-anchor points (TAPs) and were used to quantify the number 

of TNTs that formed between primary AML blasts and BMSC. TAPs were not 

found when AML blasts were cultured on BMSC in 0.4µm transwells (Figure 

3.10B). Examining four primary AML blasts, on average 300 TAPs were formed 
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over the 24-hour time period - per confocal image (Figure 3.10C). CytoB was 

found to decrease the number of TAPs by around 3.5-fold (Figures 3.10D).  

 

 
Figure 3.10. TAPs are formed by TNTs and can be used to quantify the TNT formations. 

TAPs are residual Vybrant DiI points where TNTs have formed and dissociated, shown in (A). (B) 
TAPs are only formed upon direct contact of primary AML blasts and BMSC. (C) The number of 
TAPs was quantified (per confocal image) between co-cultures of BMSC and four primary AML 
blast populations. (D) TAP formations were assessed upon the addition of CytoB (n=4).  
 
 
The results of these experiments have determined that one of the ways 

mitochondria move to AML blasts is through TNTs and the number of TNTs can 

be quantified using TAPs. 
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3.2.3 Mitochondrial transfer increases AML OCR and ATP production  
 

Next, the functional consequence of mitochondrial transfer was examined. Using 

the Seahorse Extracellular Flux Analyser (which measures the oxygen 

consumption rate (OCR) of cells - comparable with mitochondrial respiration 

levels within cells) it was found that AML blasts have increased OCR after co-

culture with BMSC (Figure 3.11). The maximum respiration and spare capacity 

was increased in AML blasts cultured with BMSC, with basal respiration and post 

oligomycin OCR increased in 1/2 AML blasts tested (Figure 3.12A). However, in 

this experiment oligomycin was not seen to have the expected effect on the 

respiration dynamics (should decrease OCR due to ATP synthase inhibition). This 

is likely due to the use of the wrong oligomycin concentration in the assay - the 

post Oligomycin result is therefore not reliable. In addition to the Seahorse data, 

the CellTitre-Glo assay revealed AML blasts cultured on BMSC had increased 

levels of ATP production (Figure 3.12B) – which suggested increased OCR in 

AML blasts results in increased ATP production.  

 

 
Figure 3.11. AML blasts have increased levels of OCR after co-culture with BMSC. 

Primary AML blasts (n=2) were cultured with and without BMSC for 24 hours and then OCR was 
analysed in AML blasts - using the Seahorse XFp Analyzer with the Mito Stress Test Kit. Data is 
represented as mean +/- standard deviation. Sequential injections of oligomycin (O), carbonyl 
cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) (F), and rotenone/antimycin A (R) were 
used to obtain respiration dynamics seen in Figure 3.12. 
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Figure 3.12. Elevated OCR in co-cultured AML cells results in enhanced ATP production. 

(A) Basal and maximum OCR rates were determined in AML blasts (n=2) (in addition to the post 
oligomycin (Post-O) OCR and spare capacity (S.C)) with and without BMSC culture. These values 
were determined using the respiration dynamics presented in 3.11 and as per 2.8 – and presented 
as % relative OCR. In all cases non-mitochondrial respiration (post rotenone/antimycin A) was 
subtracted from OCR values. (B) ATP production in AML blasts (n=4) +/-  BMSC culture was 
determined using the CellTitre-Glo ATP assay. 
 

3.2.4 Induction of oxidative stress promotes mitochondrial transfer 
 

In sections 3.2.1, 3.2.2 and 3.2.3 I have presented data which shows that 

mitochondria move from BMSC to AML blasts, that this transfer can occur through 

TNTs and that the transfer results in increased OCR and ATP production. This 

data is comparable with other published literature from other cancers where 

mitochondrial transfer has been described. Next, I aimed to take these results 

further by elucidating the stimulus mechanism of mitochondrial transfer in AML - 

which to date has not been described in any other cancer mitochondrial transfer 

system.   

 

Initially, a pharmacological screen was carried out using the MitoTracker based 

mitochondrial transfer assay to determine what effect different compounds have 

on the levels of mitochondrial transfer. It was found that compounds which induce 

oxidative stress (H2O2, Daunorubicin, CoCl2) increased mitochondrial transfer, 

whereas antioxidants (GSH and NAC) reduced the levels of mitochondrial 

transfer (Figure 3.13).  
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Figure 3.13. Pharmacological screen to assess mitochondrial transfer levels. 

Mitochondrial transfer levels were assessed between BMSC and AML blasts (n=1) upon the 
addition of a range of compounds which enhance or inhibit various key cell signalling pathways 
and processes. Details of the compounds used can be found in the methods section in Table 2.2.  
The levels of mitochondrial transfer are presented relative to a no drug control. H2O2 – hydrogen 
peroxide. DNR – daunorubicin. CoCl2 – cobalt chloride. JNKV – c-Jun N-terminal Kinase inhibitor. 
TNFa – tumour necrosis factor alpha. EX527 – selisistat. Met – metformin. Evero – everolimus. 
Len – lenalidomide. CBX – carbenoxolone. GSH – glutathione. DPI -  diphenyleneiodonium. NAC 
– N-acetyl cysteine.   
 

H2O2 was seen to increase mitochondrial transfer 3-fold whereas NAC was seen 

to reduce the process 4-fold. These results were replicated with an increased 

number of primary AML blast samples (n=8 for NAC and n=11 for H2O2) (Figure 

3.14).  

 
Figure 3.14. The effect of NAC and H2O2 on mitochondrial transfer levels. 

The MitoTracker based mitochondrial transfer assay was used to analyse the effect of NAC (A) 
(n=7) and H2O2 (B) (n=11) on the levels of transfer. The results are presented as ΔMitoTracker 
Fluorescence (MFI) between co-cultured and mono-cultured AML blasts, which corresponds to 
the level of mitochondrial transfer.   



	 123	

Normal CD34+ cells were not seen to acquire mitochondria from BMSC (Figure 

3.2). However, very interestingly the addition of H2O2 to the culture stimulated the 

transfer of mitochondria from BMSC to CD34+ cells (Figure 3.15). 

 
Figure 3.15. H2O2 promotes CD34+ cells to acquire mitochondria from BMSC. 

The levels of mitochondrial transfer were assessed between CD34+ cells (n=7) and BMSC with 
and without the addition of 50µM H2O2.  
 

Next, I examined whether NAC had an effect on AML disease progression in vivo. 

I injected the AML cell line OCI-AML3 (containing a luciferase construct) into NSG 

mice and administered NAC into their drinking water at a concentration of 2g/L, 

as per previous studies (343). However, no difference in disease progression was 

observed between NAC treated and control animals (Figure 3.16A). In addition, 

there was no difference in overall animal survival (Figure 3.16B). 

 

 
Figure 3.16. NAC has no effect on AML disease progression in vivo. 

OCI-AML3 cells (with luciferase construct) were injected into the tail vein of NSG mice and AML 
disease progression was monitored by bioluminescence (A). At signs of disease animals were 
sacrificed and survival data is presented in (B). 
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3.2.5 AML derived NOX2 superoxide drives mitochondrial transfer  
 

From the pharmacological screen, it was found that the NOX2 inhibitor 

Diphenyleneiodium chloride (DPI) had a similar effect on mitochondrial transfer 

as per NAC and GSH. NOX2 is elevated on AML blasts and converts molecular 

oxygen to superoxide, which increases oxidative stress. To examine the effect of 

DPI further the MitoTracker based mitochondrial transfer was repeated on an 

increased number of primary AML blast samples (n=11). Approximately a 2-fold 

reduction in mitochondrial transfer was observed (Figure 3.17).  

 

 
Figure 3.17. DPI inhibits the transfer of mitochondria from BMSC to AML. 

Mitochondrial levels were assessed between AML blasts (n=11) and BMSC upon the addition of 
1µM DPI, which inhibits NOX2 on AML.  
 
 
The effect of DPI on AML blast survival was next tested, DPI was added to the 

co-culture between AML blasts and BMSC and levels of apoptosis were 

measured in AML blasts after co-culture. DPI was seen to increase the level of 

apoptosis from 20 to 80% in AML blasts (Figure 3.18A), whereas no change in 

apoptosis levels were found in CD34+ cells (Figure 3.18B). This highlights the 

possibility of a specific therapeutic window for targeting NOX2 on AML blasts.  
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Figure 3.18. DPI induces apoptosis in AML blasts but not in CD34+ cells. 

AML blasts (A) or CD34+ cells (B) were cultured with BMSC and treated with either DMSO or 1µM 
DPI. Levels of apoptosis were determined using Annexin/PI and flow cytometry.   
 

Next, I made a lentivirus encoding shRNA specifically targeted to NOX2 mRNA. 

Four AML blast populations were transduced with this lentivirus (or lentivirus 

containing an empty construct) and mitochondrial transfer levels were assessed 

in these cells when cultured with BMSC. NOX2 was successfully knocked down 

in AML on average by 70% (Figure 3.19A) and this resulted in reduced 

mitochondrial transfer by approximately 2-fold (Figure 3.19B). In addition, NOX2 

KD AML blasts had a significantly reduced OCR compared with control KD cells 

after culture with BMSC (Figure 3.20). There was no change in OCR between 

control KD and NOX2 KD AML blasts when cultured alone (Figure 3.20).  

 

 
Figure 3.19. NOX2 KD in AML blasts reduces mitochondrial transfer. 

Four AML blast populations were transduced with a lentivirus encoding shRNA specific to NOX2 
or an empty construct. qPCR was used to confirm the level of knockdown presented in (A). These 
NOX2 KD and control KD cells were cultured with BMSC, levels of mitochondrial transfer were 
assessed using the MitoTracker based assay (B). 
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Figure 3.20. OCR levels are reduced in NOX2 KD AML blasts. 

Basal and maximum OCRs were determined (along with OCR post oligomycin (Post-O) and spare 
capacity (S.C)) using the Seahorse extracellular flux assay. Control KD and NOX2 KD cells were 
analysed after co-culture with BMSC and when cultured alone. All OCRs are presented as % 
relative OCR and have had non-mitochondrial respiration (post rotenone/antimycin A treatment) 
subtracted.  
 

As NOX2 is known to produce extracellular superoxide, the levels of these 

superoxides were next measured in control KD and NOX2 KD AML blasts. As 

expected there was a reduction in NOX2 derived superoxide from 700nM in 

control KD cells to 400nM in NOX2 KD cells (Figure 3.21).  

 
Figure 3.21. NOX2 KD AML blasts secrete lower levels of superoxide. 

NOX2 production in control KD and NOX2 KD AML blasts (n=4) was measured using the Amplex 
Red superoxide detection assay. The level of superoxide is presented as a concentration in nM. 
 

Next, I assessed whether the superoxide secreted by AML blasts caused a 

change in oxidative stress levels in BMSC. Primary AML blasts were cultured with 

BMSC (n=10) and ROS levels were analysed - using the DCF assay. ROS levels 

were significantly elevated in BMSC (n=10) cultured with AML blasts compared 
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to BMSC cultured alone (Figure 3.22A). This was specific to AML culture as when 

CD34+ cells were cultured with the BMSC (n=5) there was no change in ROS 

levels (Figure 3.22B).  

 

 
Figure 3.22. AML blasts, but not CD34+ cells, stimulate ROS in BMSC. 

BMSC were cultured with AML blasts (A) or CD34+ cells (B). ROS levels in co-cultured BMSC 
were assessed using the DCF assay compared to BMSC cultured alone. ROS levels are 
presented as DCF MFI.  
 
 
To assess whether increased ROS in BMSC was dependant on AML contact, I 

repeated the assay with AML blasts cultured in a transwell system. ROS levels 

remained elevated in BMSC when AML blasts were cultured in 0.4µM transwells 

(Figure 3.23A), therefore cell-cell contact is not necessary for this observation. To 

determine whether NOX2 derived superoxide caused the oxidative stress in 

BMSC I repeated the ROS detection assay in BMSC cultured with control KD and 

NOX2 KD AML blasts. ROS levels were reduced 2-fold in BMSC cultured with 

NOX2 KD cells compared with control KD cells (Figure 3.23B), which suggests 

that AML derived NOX2 superoxide contributes to the stimulation of oxidative 

stress in BMSC. 
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Figure 3.23. NOX2 derived superoxide is responsible for oxidative stress in BMSC. 

ROS levels were assessed using the DCF assay in BMSC when AML blasts were cultured in 
direct contact and when cultured in 0.4µm transwells (A). ROS levels were also determined in 
BMSC when cultured with control KD and NOX2 KD AML blasts (B).  
 
3.2.6 AML stimulates PGC-1α driven mitochondrial biogenesis in BMSC  
 
Next, I examined the consequence of AML-induced oxidative stress in BMSC and 

how this resulted in enhanced mitochondrial transfer. BMSC appeared unaffected 

by the loss of mitochondria to AML blasts, therefore I first examined mitochondrial 

levels in BMSC (n=8) after culture with AML blasts. A 3-fold increase in 

mitochondrial mass was observed in BMSC after AML culture (Figure 3.24A), 

suggesting that AML promotes mitochondrial biogenesis in BMSC. In addition, 

this increase in mitochondria caused BMSC to have elevated OCR compared 

when BMSC were cultured alone (Figure 3.24B).  

 
Figure 3.24. AML stimulates BMSC to increase mitochondrial mass and OCR. 

Mitochondrial levels in BMSC (n=8) were assessed with and without co-culture with AML blasts, 
using MitoTracker Green staining (A). (B) OCR in BMSC were determined, with and without AML, 
using the Seahorse extracellular flux analyser. Relative basal and maximum OCR are presented 
(along with post oligomycin (Post-O) OCR and spare capacity (S.C)) – all values have non-
mitochondrial respiration (after rotenone/antimycin A injection) subtracted. 
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Figure 3.25. PGC-1α is activated in BMSC after co-culture with AML blasts. 

PGC-1α mRNA levels were determined in BMSC (n=5) using qPCR with and without culture with 
AML blasts (A). Nuclear, cytosolic and total PGC-1α protein levels were determined in BMSC 
(n=2) using Western Blot analysis (B). Densitometries are presented between the Western blots. 
 
Mitochondrial biogenesis is regulated through the transcription factor PGC-1α, 

which has been shown to be activated by oxidative stress (344). Therefore, I 

assessed whether PGC-1α is activated in BMSC after culture with AML blasts. 

PGC-1α mRNA was increased 3-fold in BMSC (n=5) cultured with AML blasts 

(Figure 3.25A). PGC-1α was activated in BMSC (n=2) cultured with AML blasts, 

shown through an increased nuclear accumulation of the protein by western 

blotting (Figure 3.25B). This nuclear accumulation in BMSC (n=2) was reduced 

upon the addition of NAC (Figure 3.26), which suggests that PGC-1α activation 

and subsequent mitochondrial biogenesis is through AML-induced oxidative 

stress.  

 
Figure 3.26. Elevated PGC-1α nuclear accumulation in BMSC was reduced by NAC. 

Nuclear PGC-1α protein levels in BMSC (n=2) cultured alone and with AML blasts +/- NAC were 
determined by Western blotting. Densitometries are presented between the Western blots, which 
were normalised to Sam68 loading control. Experiment carried out with the help of Dr Stuart 
Rushworth. 
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3.2.7 Silencing of PGC-1α in BMSC inhibits mitochondrial transfer  
 
In section 3.2.6 I have shown that AML blasts stimulate mitochondrial biogenesis 

in BMSC through the activation of PGC-1α. I next investigated whether PGC-1α 

activity in BMSC is essential for mitochondrial transfer to AML blasts. I made a 

lentivirus encoding shRNA specifically targeted to PGC-1α mRNA, I then 

transduced BMSC with this virus to knockdown PGC-1α. Figure 3.27A shows that 

PGC-1α mRNA expression was reduced by around 90% in BMSC transduced 

with lentivirus targeted to PGC-1α compared to control. Mitochondrial transfer 

levels were found to be reduced on average by 40% in cultures of PGC-1α KD 

BMSC and AML blasts – compared with control KD BMSC (Figure 3.27B). 

 

 
Figure 3.27. Mitochondrial transfer levels to AML are reduced from PGC-1α KD BMSC. 

BMSC were transduced with a lentivirus encoding shRNA targeted to PGC-1α, mRNA expression 
of PGC-1α was analysed using qPCR (A). (B) The MitoTracker based mitochondrial transfer 
assay was utilised to determine mitochondrial transfer levels between control KD or PGC-1α KD 
BMSC and AML blasts (n=4). Data is presented as relative ΔMitoTracker Green MFI. 
 
I next determined whether the reduction of mitochondrial transfer (through BMSC 

PGC-1α KD) impacted on AML disease progression. To do this I utilised a 

subcutaneous mouse model whereby AML cell lines OCI-AML3 or MV4-11 

(containing a luciferase construct) were injected into the hind flank of NSG mice, 

along with either PGC-1α KD or control KD BMSC. The advantage of this model 

is that two conditions can be compared in the same animal, as AML was injected 

with control KD BMSC on the left flank and with PGC-1α KD in the right flank 

(Figure 3.28A). Live animal imaging showed that AML disease progression was 
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reduced in the right flank of the animal where AML blasts were injected with PGC-

1α KD BMSC, this was the same for both AML cell lines tested (Figure 3.28B). 

Quantification of bioluminescence highlighted that AML disease progression was 

reduced with PGC-1α KD BMSC on average by 2.5-fold with OCI-AML3 and 4.5-

fold with MV4-11 (Figure 3.28C).  

 

Taken together, the results in this section show that PGC-1α activation in BMSC 

plays a role in mitochondrial transfer between BMSC and AML blasts. 

 

 
Figure 3.28. AML disease progression is reduced in vivo through PGC-1α KD in BMSC. 

(A) Schematic representation of the subcutaneous in vivo model used to determine AML disease 
progression when PGC-1α was knocked down in BMSC. (B) Bioluminescent live animal imaging 
of OCI-AML3/MV4-11 cells containing a luciferase construct, which was enabled by the 
administration of D-luciferin prior to imaging. (C) Quantification of bioluminescence observed in 
(B) presented as tumour densitometry x103 (Bioluminescence arbitrary unit (BLI AU)). 
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3.2.8 Pre-clinical in vivo model of NOX2 KD in AML disease progression 
 

In section 3.2.5 I described that NOX2 on AML is responsible for stimulating 

mitochondrial transfer from BMSC - next I aimed to translate this idea in vivo. 

NOX2 was knocked down in the AML cell line OCI-AML3 using a lentivirus 

targeted to NOX2 mRNA, which reduced NOX2 levels by 75% compared to 

control KD cells (Figure 3.29A). NSG mice were administered with either control 

KD or NOX2 KD cells (containing a luciferase construct) and AML disease 

progression was monitored. It is important to note there was no difference in the 

growth capacity of control KD and NOX2 KD OCI-AML3 blasts grown in vitro prior 

to injection into mice (Figure 3.29B).  

 
Figure 3.29. The growth capacity of control and NOX2 KD OCI-AML3 cells is un-changed. 

OCI-AML3 cells were transduced with a lentivirus encoding shRNA which targeted NOX2 or 
control. (A) qPCR was used to determine NOX2 mRNA levels in these cells. (B) Growth capacity 
of control or NOX2 KD OCI-AML3 cells was measured by Trypan blue exclusion cell counts (B).  
 

AML disease progression was measured by live animal bioluminescent imaging 

over a 5-week period. It was found that AML homed to the bone marrow and 

progression was reduced in animals injected with NOX2 KD cells (Figure 3.30A). 

This corresponded with overall animal survival, where mice injected with NOX2 

KD OCI-AML3 cells outlived their control KD counterparts (Figure 3.30B).  
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Figure 3.30. AML disease progression is severely reduced upon knockdown of NOX2. 

Mice injected with either control or NOX2 KD OCI-AML3 cells were monitored by live animal 
bioluminescent imaging, through the activation of luciferase construct within AML blasts using D-
luciferin (A). Survival of animals in this experiment is presented in a Kaplan-Meier plot (B). 
 
 
Taking this further, control KD and NOX2 KD OCI-AML3 cells were isolated from 

mouse bone marrow using MACS with human CD45+ microbeads. Mitochondrial 

levels in the isolated AML cell population was determined using MitoTracker 

Green staining and flow cytometry. It was found that NOX2 KD OCI-AML3 cells 

had approximately half the mitochondrial content than control KD OCI-AML3 cells 

- there was no change in the mitochondrial content of these cells prior to 

administration into mice (Figure 3.31). The reduced mitochondrial mass in NOX2 

KD cells may therefore be in part due to in vivo intercellular mitochondrial transfer, 

however there still may be a range of other explanations for this observation. 

 

 
Figure 3.31. Mitochondrial levels are reduced in vivo in NOX2 KD OCI-AML3 cells.  

Control and NOX2 KD OCI-AML3 cells were isolated from mouse bone marrow by MACS. 
Mitochondrial levels were measured using MitoTracker Green staining and flow cytometry. 
Mitochondrial levels are presented as MitoTracker MFI. 



	 134	

Overall this in vivo model shows that NOX2 contributes to AML disease 

progression, in part through the stimulation of mitochondrial transfer in the BMM. 

Therefore, they may be a therapeutic intervention opportunity whereby NOX2 is 

targeted on AML blasts.  

 

3.3 Summary 
 

In this chapter of my thesis I have shown that mitochondrial transfer occurred 

from BMSC to AML blasts, which enhanced OCR. Mitochondria can move 

through TNTs and is stimulated by NOX2 superoxide, which caused oxidative 

stress in BMSC. This enhancement of oxidative stress in BMSC promoted PGC-

1α driven mitochondrial biogenesis - which facilitated mitochondrial movement to 

AML blasts. Finally, I have presented NOX2 as a novel therapeutic target in AML. 

NOX2 reduction on AML blasts increases animal survival. The data presented in 

this chapter is summarised schematically below (Figure 3.32). 

 
Figure 3.32. Schematic representation of mitochondrial transfer in AML. 

(1) NOX2 on AML blasts generate superoxide. (2) NOX2 superoxide causes oxidative stress in 
BMSC. (3) Oxidative stress in BMSC activates PGC-1α. (4) Activation of PGC-1α stimulates 
mitochondrial biogenesis. (5) AML acquires mitochondria from BMSC through TNTs. (6) 
Mitochondrial transfer results in increased mitochondrial levels in AML blasts which increases 
OCR and ATP generation. This process ultimately leads to AML proliferation and survival.  
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4 CD38 mediated mitochondrial transfer promotes bio-
energetic flexibility in multiple myeloma cells. 

 

4.1 Introduction 
 

It is becoming apparent that not all cancers utilise the Warburg hypothesis to 

generate ATP required for proliferation and survival. Multiple myeloma has been 

shown to be a “Warburg Cancer” as MM cells are susceptible to glycolysis 

inhibitors (316) and have been shown to have a glycolytic gene signature (317). 

However, these studies were carried out on MM cells alone and didn’t take into 

account the effect of the BMM. In the second chapter of my thesis I will examine 

the effect the microenvironment has on metabolism within MM cells and if (like 

AML) intercellular mitochondrial transfer occurs between BMSC and MM cells. 

 

4.2 Results 
 

4.2.1 Multiple myeloma cells enhance mitochondrial respiration in the 
presence of their BMM. 

 

First, I examined the metabolism within primary MM cells isolated from patients. 

To achieve this, I used the Seahorse Extracellular flux analyser to determine OCR 

and glycolysis in patient MM cells immediately after isolation from the bone 

marrow. Primary MM cells (n=4; from independent patient bone marrow samples) 

were found to have an increased OCR compared to four MM cell lines (Figure 

4.1A and B), in addition to having reduced levels of glycolysis (Figure 4.1C). This 

shows the BMM of primary MM cells can influence malignant cell metabolism. 

 

To assess how the mouse BMM influences metabolism within MM cell lines, I 

engrafted the MM cell line MM1S into NSG mice. After 3 weeks I sacrificed the 

mice and isolated MM1S cells using MACS with human CD45+ microbeads. OCR 

and glycolysis levels were examined in the isolated MM cells immediately 

compared to MM1S cells cultured in vitro. Increased OCR were found in MM1S 

cells analysed ex vivo (Figure 4.2A and B), with no change observed in glycolysis 

levels (Figure 4.2C).  
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Figure 4.1. Primary MM cells have increased OCR compared to MM cell lines. 

Primary MM cells were isolated from four independent patient bone marrows and analysed 
immediately using the Seahorse extracellular flux analyser compared to four MM cell lines (MM1S, 
U266, RPMI and H929). (A) Representative OCR plot (with injections of oligomycin, FCCP and 
rotenone/antimycin A) is shown which contains 2 primary MM and 2 MM cell lines. (B) Relative 
OCR in 4 primary MM cells and 4 MM cell lines – presenting the basal and maximum OCR along 
with post oligomycin (Post-O) OCR and spare capacity (S.C). All OCRs have had the non-
mitochondrial respiration (after rotenone/antimycin A treatment) subtracted. (C) Relative 
glycolysis rates in these cells is presented. 
 

 
Figure 4.2. MM1S cells isolated from NSG mice have increased OCR. 

MM1S cells were injected into the tail vein of NSG mice (n=5), after 3 weeks the mice were 
sacrificed and MM1S cells were isolated. These cells, along with MM1S cells grown in vitro, were 
immediately analysed using the Seahorse extracellular flux assay. (A) Shows a representative 
OCR plot with all data accumulated in the bar chart presented in (B). Basal and maximum OCR, 
along with post oligomycin (Post-O) OCR and spare capacity (S.C), are presented - all values 
have non-mitochondrial respiration (after rotenone/antimycin A treatment) subtracted. Relative 
glycolysis levels in the MM1S cells is shown in (C).  
 

Taking this further, I co-cultured three MM cell lines (MM1S, U266 and RPMI) 

alone and with BMSC for 72 hours. After culture, I analysed OCR and glycolysis 

using the Seahorse extracellular flux analyser. MM cell lines grown with BMSC 

were found to have increased OCR (Figure 4.3A and B). A large increase is seen 

in maximum OCR (after FCCP injection) which suggests an enhancement of the 

respiratory chain, however this may not be necessarily due to an increase in ATP 

synthase activity. No change in glycolysis was observed in 2/3 of the cell lines 
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tested, with a reduction in glycolysis observed in the RPMI cell line (Figure 4.3C). 

Taken together these results suggest that the microenvironment of MM promotes 

a more mitochondrial based metabolism, which is contrary to the Warburg 

hypothesis and previously published literature.  

 

 
Figure 4.3. MM cell lines have increased OCR after culture with BMSC. 

OCR and glycolysis rates were determined in MM cells (MM1S, U266 and RPMI) cultured with 
and without BMSC. A representative OCR plot is shown in (A). (B) Relative basal (B) and 
maximum (M) OCR is presented along with post oligomycin (P.O) OCR and spare capacity (S.C) 
– all OCR values have non-mitochondrial respiration (post rotenone/antimycin A) subtracted. 
Relative glycolysis rates are presented in (C). 
 

The consequence of increased OCR in MM cell lines was next tested. ATP levels 

and the growth capacity of MM cell lines after culture with BMSC was assessed, 

using CellTitre-Glo and Trypan blue cell counts respectively. Increased ATP 

production and growth capacity was observed in MM cell lines cultured with 

BMSC compared to when they were cultured alone (Figure 4.4). Therefore, 

culture with BMSC promotes MM cell growth and proliferation through an 

enhancement of mitochondrial respiration. 

 

 
Figure 4.4. MM cells have increased growth and ATP production after BMSC culture. 

MM1S, U266 and RPMI cells were grown with BMSC or alone for 72 hours. After culture, the 
growth capacity and ATP production in MM cells was determined using Trypan blue cell counts 
and CellTitre-Glo respectively.   
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4.2.2 Mitochondria are transferred from BMSC to MM cells 
 

To determine the reason why MM cells have increased OCR after co-culture with 

BMSC, I next examined whether intercellular mitochondrial transfer took place 

between BMSC and MM cells. I utilised the three methods developed in the AML 

project to detect mitochondrial transfer. Using the MitoTracker Green based 

mitochondrial transfer assay, increased MitoTracker MFI was found after co-

culture with BMSC in all 10 primary MM cells and in 4/5 MM cell lines tested 

(Figure 4.5). This showed that MitoTracker labelled mitochondria move from 

BMSC to MM cells. 

 

 
Figure 4.5. Increased MitoTracker MFI is observed in MM cells post co-culture with BMSC. 

Primary MM cells (n=10) and MM cell lines (n=5) were stained with 200nM MitoTracker Green 
and cultured alone or with MitoTracker Green stained BMSC for 24 hours. MitoTracker Green MFI 
levels were analysed by flow cytometry. 
 

 

The rLV.EF1.mCherry-Mito-9 lentivirus method was next used. However, the 

method was optimised to include fixed cell microscopy which was carried out on 

cells mounted onto cover slips - with mounting solution containing DAPI. The un-

labelled MM1S cell line was seen to acquire mCherry fluorescence from 

rLV.EF1.mCherry-Mito-9 positive BMSC (Figure 4.6). This showed that mCherry 

labelled mitochondria from BMSC move to the MM1S cells.  
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Figure 4.6. mCherry labelled mitochondria move from BMSC to MM cells. 

Primary BMSC were transduced with a rLV.EF1.mCherry-Mito-9 lentivirus. These BMSC were 
cultured with MM1S cells for 72 hours, followed by fixation and mounting on cell culture slides. 
The slides were imaged using fluorescent microscopy and a representative image is shown in this 
figure. The scale bar represents a 10µm distance. 
 

The final method utilised to show mitochondrial transfer was the in vivo xenograft 

model. MM1S and U266 MM cell lines were injected into the tail vein of NSG 

mice. At humane end point animals were sacrificed and human MM cells were 

then sorted from mouse bone marrow using MACS. qPCR with species specific 

primers targeted to mtDNA and gDNA was carried out on extracted DNA, PCR 

products were then visualised using agarose gel electrophoresis. In MM cell lines 

grown in vitro no presence of mouse mtDNA or gDNA was detected, whereas 

murine mtDNA was detected in MM cell lines isolated from mouse bone marrow 

- with no gDNA detected (Figure 4.7). This showed that murine mitochondria 

moved from the mouse BMM to MM cells.  

 

Taken together, these three experiments show that mitochondria moved from 

BMSC to MM cells which contributed to the increased OCR, ATP production and 

growth capacity observed in 4.2.1.  
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Figure 4.7. Murine mitochondria move to human MM cells in vivo. 

MM1S and U266 were engrafted into NSG mice. After isolation, DNA from human MM cells was 
analysed using qPCR with species specific primers targeted to mtDNA and gDNA. PCR products 
were visualised on an agarose gel and is presented in this figure. 
 

In AML, the chemotherapy agent daunorubicin was seen to increase the level of 

transfer (Figure 3.13). I next examined whether chemotherapy used in the 

treatment of MM (Bortezomib) had the same effect in this mitochondrial transfer 

model. Bortezomib was seen to increase the levels of mitochondrial transfer from 

BMSC to both primary MM cells (Figure 4.8A) and MM cell lines (Figure 4.8B) by 

approximately 50%. Therefore, a common theme is emerging whereby current 

chemotherapeutics increase the level of mitochondrial transfer.   

 

 
Figure 4.8. Bortezomib increases mitochondrial transfer from BMSC to MM cells. 

Mitochondrial levels were analysed between BMSC and primary MM cells (n=7) or MM cell lines 
(n=4), using the MitoTracker Green based transfer assay upon the addition of 10nM Bortezomib. 
Mitochondrial transfer levels to primary MM cells (A) and MM cell lines (B) are presented as % 
mitochondrial transfer compared to DMSO treated control. 
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4.2.3 Mitochondria are transferred from BMSC to MM cells through TNTs 
 

To examine how mitochondria move from BMSC to MM cells, TNTs were once 

again analysed to determine whether mitochondrial transfer in MM occurred in a 

similar way to AML. I used the MitoTracker based mitochondrial transfer assay to 

quantify the level of transfer between BMSC and MM cells upon the addition of 

CytoB (TNT inhibitor) and Dansylcadavarine (Endocytosis/Microvesicle inhibitor). 

Mitochondrial transfer was reduced upon the addition of CytoB by 40%, whereas 

no change was observed upon the addition of Dansylcadavarine (Figure 4.9).  

 
Figure 4.9. CytoB reduces mitochondrial transfer from BMSC to MM cells. 

The MitoTracker based transfer assay was used to determine transfer levels upon the addition of 
CytoB (A) and Dansylcadavarine (B). Mitochondrial transfer levels were determined using the 
ΔMitoTracker Fluorescence (MFI) between co-cultured and mono-cultured MM cells and are 
presented as %mitochondrial transfer relative to non-treated controls. 
 

Next, I aimed to visualise TNT formations using the Vybrant DiI staining of MM 

cells and MitoTracker Green staining of BMSC. After co-culture, fixed cell 

confocal microscopy was carried out and TNTs were found between MM cells 

and BMSC (Figure 4.10). These TNTs were formed by the cancer cell and 

contained mitochondria of BMSC origin. This assay was optimised to enhance 

the quality of TNT images - the rLV.EF1.AcGFP1-Mem-9 lentivirus was 

purchased from Clontech which labelled the plasma membrane of MM cells with 

a GFP fluorophore. These cells were cultured with MitoTracker CMXRos stained 

BMSC for 24 hours and fixed cell confocal microscopy was carried out. GFP-

TNTs were visualised between BMSC and MM cells which contained 

mitochondria of BMSC origin (Figure 4.10). 
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Figure 4.10. TNTs are formed between MM and BMSC which contain BMSC mitochondria. 

TNTs were visualised by confocal microscopy using two methods. MM were stained with Vybrant 
DiI and cultured with MitoTracker Green stained BMSC. Also, MM were transduced with the 
rLV.EF1.AcGFP1-Mem-9 lentivirus and cultured with MitoTracker CMXRos stained BMSC. Both 
conditions were visualised by fixed cell confocal microscopy and individual microscope fields are 
presented, along with the merged field. The scale bar relates to a 10µm diameter. 
 

TAPs are formed on BMSC after co-culture with MM cells stained with Vybrant 

DiI, these were used again to quantify the number of TNT formations. On average 

around 250 TAPs are formed per confocal image (Figure 4.11) which is slightly 

less than the average number of TAPs found on BMSC after AML co-culture. 

 

 
Figure 4.11. TAPs are formed on BMSC after culture with Vybrant DiI labelled MM cells. 

Four MM cell lines were stained with Vybrant DiI and cultured with BMSC stained with MitoTracker 
Green. MM cells were removed and TAPs were quantified and presented as counts per confocal 
image.  
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Upon the addition of CytoB the number of TAPs formed on BMSC was reduced 

by approximately 75% (Figure 4.12). This shows that TAPs are a useful method 

of quantifying the number of TNT formations that occur during a co-culture of 

BMSC and MM cells. This will be important in Section 4.2.5. 

 
Figure 4.12. The addition of CytoB reduces the number of TAPs formed on BMSC. 

Four MM cell lines were stained with Vybrant DiI and cultured with MitoTracker Green stained 
BMSC (with and without the addition of CytoB). After co-culture MM cells were removed and 
BMSC were visualised by confocal microscopy, a representative image taken after U266 culture 
is presented. The number of TAPs per confocal image was determined with and without the 
addition of CytoB, data is presented as relative TAP formations per confocal image. 
 

The results in this section show that mitochondria can be transferred from BMSC 

to MM cells via TNTs, which is comparable with the AML mitochondrial transfer 

mechanism described in Chapter 3. 

 

4.2.4 CD38 on MM cells is crucial for the transfer of mitochondria from 
BMSC 

 

In the first part of this chapter I have shown that mitochondria are transferred from 

BMSC to MM cells through TNTs. Next, I wanted to delve deeper into the 

mechanism which controls mitochondrial transfer in MM. MM cells express high 

levels of the surface molecule CD38 (244) and this molecule has been recently 

shown to facilitate mitochondrial transfer from astrocytes to neurons after stroke 

(331). Therefore, I examined whether CD38 plays a role in mitochondrial transfer 

observed in MM. 

 

First, I correlated levels of mitochondrial transfer to levels of CD38 on the surface 

of primary MM cells and MM cell lines. There was a strong positive correlation 
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(R=0.8727) observed between the levels of CD38 expressed on MM cells and the 

quantity of mitochondria they acquired from BMSC (Figure 4.13).  

 

 
 

Figure 4.13. CD38 expression on MM cells correlates with mitochondrial transfer levels. 

Mitochondrial transfer levels were assessed in primary MM cells (n=7) and MM cell lines (n=5) 
using the MitoTracker Green based transfer assay. CD38 levels were also measured on MM cells 
using flow cytometry.  
 

Next, I made a lentivirus encoding shRNA which targets CD38 mRNA. CD38 

surface expression was reduced by approximately 80% in MM cell lines 

transduced with CD38 lentivirus compared to a control virus (Figure 4.14A). The 

levels of mitochondrial transfer between BMSC and control KD or CD38 KD MM 

cell lines was next assessed. Mitochondrial transfer was reduced by 40-50% in 

CD38 KD MM cell lines compared to control KD cells (Figure 4.14B).  

 
Figure 4.14. CD38 KD MM cells acquire reduced quantities of mitochondria from BMSC. 

MM cell lines (MM1S, U266, H929 and RPMI) were transduced with a lentivirus encoding shRNA 
targeted to CD38 or control. (A) CD38 surface protein levels are presented on control KD or CD38 
KD cells. (B) Mitochondrial transfer levels in control KD and CD38 KD cells were assessed using 
the MitoTracker Green based transfer assay. 



	 145	

To analyse the role of CD38 further, I next overexpressed CD38 on MM cells to 

assess levels of mitochondrial transfer. All-trans retinoic acid (ATRA) has recently 

been shown to increase CD38 expression on AML blasts (345), therefore this was 

utilised in MM cell lines. MM cell lines treated with 1µM ATRA for 16-hours were 

seen to increase their CD38 mRNA expression (Figure 4.15A) and their CD38 

surface protein levels (Figure 4.15B) - compared to DMSO treated controls. 

Mitochondrial transfer levels were increased from BMSC to MM cell lines treated 

with ATRA compared to DMSO by between 40 and 70% respectively (Figure 

4.15C). Overall, these results provide evidence that CD38 has a role in facilitating 

mitochondrial transfer between BMSC and MM cells. 

 

 
Figure 4.15. CD38 overexpression, using ATRA, causes increased mitochondrial transfer. 

Three MM cell lines (U266, RPMI and H929) were treated with 1µM ATRA or DMSO for 16-hours 
(overnight). CD38 mRNA and protein expression levels were determined using qPCR (A) and flow 
cytometry (B) respectively. Mitochondrial transfer levels were determined in ATRA/DMSO treated 
MM cell lines using the MitoTracker Green based transfer assay (C).  
 
 
 
4.2.5 CD38 forms the leading edge of a MM tunneling nanotube 
 

Next, I assessed how CD38 controls the transfer of mitochondria from BMSC to 

MM cells. As CD38 is a cell surface molecule it is likely that it is involved in the 

extracellular projection (TNT) that facilitates mitochondrial transfer. To examine 

this hypothesis first, I analysed the number of TAPs (TNT formations) that were 

present on BMSC after co-culture with ether control KD or CD38 KD MM cell lines. 

A severe reduction in the number of TAPs formed on BMSC was observed after 

co-culture with RPMI CD38 KD cells compared to control KD cells (Figure 4.16A). 

This was also the case with MM1S, U266 and H929 MM cell lines where there 
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was approximately an 80% reduction in the number of TAPs formed on BMSC 

after culture with CD38 KD cells (Figure 4.16B). Therefore, the knockdown of 

CD38 in MM cells reduces the number of TNTs formed between MM cells and 

BMSC - resulting in reduced levels of mitochondrial transfer. 

 

 
Figure 4.16. CD38 KD MM cell lines form less TNTs with BMSC. 

Control KD and CD38 KD MM cell lines (MM1S, U266, RPMI and H929) were stained with Vybrant 
DiI stain and cultured for 24-hours with MitoTracker Green stained BMSC. TAPs were visualised 
using fixed cell confocal microscopy and quantified per confocal microscope image. 
 

Next, I analysed in more detail the composition of the TAP and whether CD38 

could be present within this formation. First, I examined the expression levels of 

CD38 on MM cells after co-culture with BMSC. Reduced levels of CD38 were 

observed on the surface of MM1S and U266 MM cell lines after co-culture with 

BMSC (Figure 4.17A). BMSC do not express CD38, however after co-culture with 

MM cell lines they gain CD38 expression - albeit at low levels (Figure 4.17B). This 

shows that CD38 may be transferred to BMSC during co-culture with MM cells.  

 

 
Figure 4.17. CD38 is transferred from MM cells to BMSC during co-culture.  

MM1S and U266 cells were cultured with BMSC for 24-hours. CD38 expression on MM1S/U266 
cells (A) and BMSC (B) were assessed by flow cytometry. 
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I next determined the location of CD38 on BMSC that was transferred from MM 

cells. Using the TAP visualisation method, BMSC were probed with a CD38 

antibody conjugated to an Alexa Fluor 647 fluorophore. CD38 was found to be 

located on BMSC within TAPs formed by TNT contacts (Figure 4.18), therefore 

CD38 may contribute to the formation of TNTs and resultant TAPs.  

 

 
Figure 4.18. MM CD38 is located within the TAP on BMSC after co-culture. 

MM1S cells were stained with Vybrant DiI and cultured with BMSC (which were stained with 
MitoTracker Green) for 24-hours. After culture MM1S cells were removed, BMSC were fixed and 
probed with CD38 Alexa Fluor 647 antibody before imaging with confocal microscopy. Individual 
microscope channels are presented along with merged field for BMSC alone and after co-culture 
with MM1S cells. 
 

Next, I analysed the location of CD38 on TNTs formed by MM cells during co-

culture with BMSC. I cultured rLV.EF1.AcGFP1-Mem-9 MM1S cells with 

MitoTracker CMXRos for 24 hours, the culture was fixed and probed with the 

CD38 Alexa Fluor 647 antibody. Confocal microscopy highlighted the location of 

CD38 on a MM cell during TNT formation (Figure 4.19). CD38 was highly 

clustered at the point of TNT formation and projects down the TNT. 

 

Taken together, these results provide evidence that CD38 may form the leading 

edge of a TNT projection – which is then deposited on BMSC after dissociation. 

This mechanism plays a role in the transfer of mitochondria from BMSC to MM 

cells.  
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Figure 4.19. CD38 localises of the leading edge of a TNT formation. 

MM1S cells were transduced with the rLV.EF1.AcGFP1-Mem-9 lentivirus. These cells were 
cultured with MitoTracker CMXRos stained BMSC for 24 hours. Co-cultures were then fixed and 
CD38 was probed using an Alexa Fluor 647 antibody. CD38 location on TNTs was visualised 
using confocal microscopy, individual microscope channels and merged field are presented.  
 

Next, I tried to determine the binding partner on BMSC which CD38 binds to form 

a TNT. The only known binding partner of CD38 is CD31 (346), therefore I 

examined whether CD31 could be this binding molecule on BMSC. As CD31 is a 

surface receptor I used flow cytometry to first examine whether primary human 

BMSC expressed CD31. I found that BMSC (n=3) did not express CD31 (Figure 

4.20) therefore could not be the molecule that CD38 binds forming a TNT. It is 

likely there is a novel binding partner to CD38 expressed on BMSC or CD38 could 

bind un-specifically to BMSC in order to form the TNT. Unfortunately, I was unable 

to find out anything further during my PhD research and this remains an 

unanswered question. 
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Figure 4.20. BMSC do not express the CD38 binding partner CD31. 

Primary human BMSC (n=3) were incubated with a CD31-FITC antibody or isotype control for 15 
minutes. CD31 expression on BMSC was analysed using flow cytometry. 
 

4.2.6 Silencing of CD38 in vivo reduces MM disease progression. 
 

To determine the effect of CD38 mediated mitochondrial transfer on MM disease 

progression, I used an in vivo xenograft model to monitor the growth of MM. 

Control KD or CD38 KD MM1S cells (containing a luciferase construct) were 

injected into the tail vein of NSG mice. There was no difference in the growth 

capacity of these cells prior to administration into mice (Figure 4.21). MM disease 

progression in the bone marrow was monitored using live animal bioluminescent 

imaging, a reduced MM disease burden was found in animals injected with CD38 

KD MM cells compared to control KD cells (Figure 4.22A). This resulted in these 

animals outliving their control KD counterparts (Figure 4.22B). 

 
Figure 4.21. Growth capacity is unchanged between control KD and CD38 KD MM1S cells.  

Before injection into mice, the growth capacity of control KD and CD38 KD MM1S were analysed 
using Trypan blue exclusion cell counts. 
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Figure 4.22. MM disease progression is severely reduced upon the knockdown of CD38.  

Control KD or CD38 KD MM1S cells (containing luciferase construct) were injected into the tail 
vein of NSG mice. MM disease progression at day 14 and 21 was analysed using live animal 
bioluminescent imaging, through activation of the luciferase construct in MM cells using D-luciferin 
(A). Overall survival of animals in this experiment is presented in a Kaplan-Meier plot (B). 
 

Furthermore, control KD and CD38 KD MM1S cells were isolated from mouse 

bone marrow and mitochondrial levels were analysed using MitoTracker Green 

staining. A 2.5-fold decrease in mitochondrial levels was observed in CD38 KD 

MM1S cells compared to control KD cells (Figure 4.23A). No change in 

mitochondrial levels was observed in control KD and CD38 KD MM cells pre-

transplant into mice (Figure 4.23B). Taking these results together, it suggests that 

one way that CD38 promotes MM disease progression in vivo is through 

intercellular mitochondrial transfer levels. 

 

 
Figure 4.23. Ex vivo mitochondrial levels are reduced in CD38 KD MM1S cells. 

Mitochondrial content was analysed in control KD and CD38 KD MM1S cells isolated from NSG 
mice (A) and cultured in vitro (B). Mitochondrial levels were determined using MitoTracker Green 
staining and flow cytometry. Data is presented as MitoTracker Green MFI.  
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4.3 Summary 
 

In this chapter I have presented data which shows that in the presence of its 

microenvironment, multiple myeloma utilises a more mitochondrial based 

metabolism over glycolysis to generate ATP. This is due in part to intercellular 

mitochondrial transfer from BMSC which can be facilitated through TNTs. Taking 

this further, I have shown that CD38 expression on the surface of MM cells plays 

a role in the transfer of mitochondria. CD38 has the ability to form the leading 

edge of a TNT which docks with BMSC. MM disease progression is reduced in 

vivo through inhibition of CD38 which may be mediated in part by pro-tumoral 

mitochondrial transfer. Figure 4.24 presents schematically an overview of the 

results discussed in this chapter. 

 

 
Figure 4.24. Overview of mitochondrial transfer in Multiple Myeloma. 

(1) CD38 is highly expressed on the surface of MM cells. (2) CD38 forms the leading edge of a 
MM derived TNT formation. (3) CD38 binds to BMSC through a currently unknown BMSC 
molecule and facilitates mitochondrial transfer to MM cells. (4) The TNT dissociates leaving 
behind MM-CD38 protein on the surface of BMSC - which form TAPs. (5) The consequence of 
mitochondrial transfer is that MM cells enhance mitochondrial respiration and ATP production. 



	 152	

5 LPS mediated bacterial infection stimulates mitochondrial 
transfer to haematopoietic stem cells. 

 

5.1 Introduction 
 

In the first two results chapters I have described two haematological malignancies 

where intercellular mitochondrial transfer aids proliferation and survival. The 

transfer of mitochondria between cells has previously been shown to also occur 

in non-malignant systems. In chapter 3 I found under normal circumstances 

CD34+ cells (HSCs) do not acquire mitochondria from BMSC, however under 

oxidative stress these cells can be forced to acquire mitochondria. A major 

stimulus of oxidative stress in the human body is bacterial infection (347), 

therefore this may stimulate mitochondrial transfer to HSCs in a non-malignant 

haematological system. LPS is found on the surface of gram negative bacteria 

and has been shown to stimulate a bacterial-like infection response in mice (16). 

LPS has also been shown to promote intercellular mitochondrial transfer in vivo, 

where airway instilled BMSC transfer their mitochondria to lung epithelial cells 

(330). In the final chapter of my thesis I will examine whether mitochondrial 

transfer occurs from the BMM to HSCs in mouse models simulating bacterial 

infection. This will determine whether intercellular mitochondrial transfer is a 

process that AML and MM cells have hijacked to promote their proliferation and 

survival.  

 

5.2 Results 
 

5.2.1 LPS causes increased mitochondrial content in C57BL/6J ST-HSCs 
 

First, I analysed the effect of LPS on mitochondrial levels in different cell 

populations within the murine haematopoietic system including ST-HSCs, LT-

HSC and MPPs. This was achieved using 7-colour flow cytometry with 6 

antibodies targeted to cell surface markers (along with MitoTracker Green). This 

flow cytometry method was based on a similar method used by Walter and 

colleagues (16) and included all appropriate colour compensations. The gating 
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strategy to determine cell populations of interest was defined using FMO controls 

and is shown in Figure 5.1 Panel A. 

 

C57BL/6J were treated with either 1mg/kg LPS or PBS for 2 hours. This time point 

was chosen to try and specifically detect changes in mitochondrial levels due to 

intercellular transfer rather than mitochondrial biogenesis. LPS caused an 

expansion of haematopoietic cells (Figure 5.1 Panel D) as expected and is 

comparable to data published by Walter and colleagues (16). As an expansion of 

the haematopoietic system is a hallmark of the response to bacterial infection, in 

this experiment I have therefore successfully managed to induce the desired 

bacterial response in order to analyse mitochondrial levels.
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Figure 5.1. LPS induces an expansion of ST-HSCs in C57BL/6J bone marrow and an increase in mitochondrial content. 

C57BL/6J mice were treated with either PBS or 1mg/kg LPS for 2 hours, followed by sacrifice and BM isolation. Haematopoietic cell population 
numbers and mitochondrial content within these populations were analysed using 7-colour flow cytometry. Panel A presents the gating strategy 
used to specifically analyse haematopoietic cell populations. Panel B shows representative histogram plots of the defined populations presenting 
MitoTracker Green MFI and cell counts. Panel C presents mitochondrial levels (MitoTracker Green MFI) in specific populations of all animals 
examined (n=5), with Panel D showing the cell counts.  
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Figure 5.2. Salmonella enterica stimulates expansion of the BM haematopetic component through an increase in mitochondria.    

Salmonella enterica was administered to C57BL/6J mice, after 72 hours the animals were sacrificed and bone marrow was extracted. Specific 
haematopoietic cell components were determined using the same gating strategy as Figure 5.1. Panel A presents the mitochondrial content (relative 
MitoTracker Green MFI). Panel B presents the cell numbers of each specific haematopoietic cell population. 
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A significant increase in mitochondrial levels were found in the ST-HSC 

population (Lin-Sca+c-Kit+CD150+CD48-CD34+) but not LT-HSCs (Lin-Sca+c-

Kit+CD150+CD48-CD34-) (Figure 5.1 Panel D). Significant increases in 

mitochondrial levels were also found in Lin- and Lin-Sca+c-Kit+ (LSK) populations. 

In the other populations analysed (Lin+, MPPs and total HSCs) the levels of 

mitochondria are unchanged.  

 

To determine whether the same effect is observed upon a real bacterial infection, 

the experiment was repeated with animals administered with live Salmonella 

enterica. This gram-negative bacterium was administered through oral gavage 

with bacterial infection observed after 72 hours. Therefore, at 72 hours the mice 

were sacrificed and bone marrow analysis was carried out. As expected, an 

expansion of the haematopoietic component of the bone marrow was again 

observed in Salmonella treated mice (Figure 5.2 Panel A). Increased 

mitochondrial levels were observed again in ST-HSC and LSK cells and 

additionally in LT-HSC, Total HSCs and MPPs likely due to the increased time 

point used (72-hour vs 2-hours) compared to the LPS experiment. Taken 

together, the results from LPS and Salmonella experiments suggest that ST-

HSCs increase their mitochondrial levels in order to proliferate and expand the 

downstream haematopoietic cell component in response to pathogen exposure. 

 

5.2.2 LPS induces intercellular mitochondria transfer to HSCs 
 

Next, I aimed to examine how ST-HSCs increase their mitochondrial levels and 

whether this could be due to intercellular mitochondrial transfer. To do this I 

generated “humanised” mice, through the transplantation of umbilical cord blood 

CD34+ stem and progenitor cells into 3-4-week-old NSG mice. Engraftment was 

assessed through monthly peripheral blood analysis looking specifically for 

human CD45+ cells. Figure 5.3 shows that the percentage of human CD45+ cells 

in the bone marrow rose from around 3% to 40% from month 1 to month 3 - which 

confirms “humanisation” of the mice.  
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Figure 5.3. Human CD45+ cells are present in the bone marrow of humanised mice. 

Cord blood CD34+ stem and progenitor cells were transplanted into 3-4-week-old NSG mice, 
engraftment was determined through peripheral blood flow cytometry analysis. The percentage of 
human CD45+ cells is presented over a 3-month time period in 5 humanised NSG mice.  
 

Humanised mice generated were treated with PBS or 1mg/kg LPS for 2 hours, 

bone marrow was then extracted and haematopoietic cell populations were 

analysed using flow cytometry. A modified panel of antibodies was used to detect 

the human HSC population (murineCD45- humanCD38-CD34+CD45RA-

CD90+CD49f+), MPP (murineCD45- humanCD38-CD34+CD45RA-CD90-CD49f-), 

CMP (murineCD45- humanCD38+CD34+CD45RA-CD90-CD49f-) and GMP 

(murineCD45- humanCD38+CD34+CD45RA+CD90-CD49f-). Again, appropriate 

colour compensations were carried out and gating strategy (Figure 5.4) was 

determined using FMO controls.  

 
Figure 5.4. Gating strategy of HSC, MPP, CMP and GMP populations in humanised mice. 

After sacrifice, humanised NSG BM was isolated and stained with a panel of antibodies to analyse 
specific HSC, MPP, CMP and GMP populations. The gating strategy is presented.  
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In addition to the panel of antibodies, humanised mouse BM from PBS/LPS 

treated mice was stained with MitoTracker Green to determine mitochondrial 

levels. Increased mitochondrial levels were observed in HSC and MPP 

populations from LPS treated humanised mice, with no change observed in CMP 

and GMP populations (Figure 5.5). This result was comparable with results 

obtained from C57BL/6J mice. 

 
Figure 5.5. LPS increases mitochondria in human HSC and MPP from humanised mice.  

Mitochondrial levels were determined in HSC, MPP, CMP and GMP populations isolated from 
humanised mice after PBS/LPS treatment. These populations were determined using the gating 
strategy shown in Figure 5.4 and mitochondrial levels were determined using MitoTracker Green 
staining. 
 

Finally, I determined whether increased mitochondrial levels were in part due to 

intercellular mitochondrial transfer from the mouse BMM. The humanised NSG 

mouse model allows the specific analysis of two species mitochondrial transfer. 

The human HSC population was sorted from the bone marrow of humanised mice 

after treatment with PBS/LPS, using the gating strategy shown in Figure 5.4. 

qPCR was directly carried out on HSC cell lysate using duplex Taqman qPCR, 

with species specific probes targeted to the mitochondrial ND1 gene. A human 

Tert probe was also used for normalisation of Ct values. The HSC population from 

PBS treated humanised mice contained no mouse mitochondria. However, on 

average 3% of the total mitochondria in human HSCs from the LPS treated mice 

were of mouse origin (Figure 5.6A). There was no difference in the levels of 

human mitochondria in isolated HSCs, suggesting that mitochondrial biogenesis 

is not occurring (Figure 5.6B). This presents data which suggests that upon LPS 

treatment mitochondria are transferred from the BMM to HSCs which allows their 

expansion and proliferation.   
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Figure 5.6. Mouse mitochondria move from the BMM to human HSCs upon LPS 

treatment. 

The human HSC population was sorted from the BM of PBS/LPS treated “humanised” mice. qPCR 
was carried out with species specific Taqman probes targeted to ND1 and Tert. Mouse and human 
mitochondrial levels were determined using the ΔΔCt normalising the human/mouse 
mitochondrial Ct to human Tert. (A) The percentage of mouse mitochondria detected in isolated 
HSC. (B) The relative quantity of human mitochondria in HSCs isolated from PBS/LPS treated 
mice is presented.  
 

5.3 Summary 
 

In the final results chapter of my thesis I have explored the possibility of 

intercellular mitochondrial transfer occurring in a non-malignant haematological 

system. I utilised LPS to simulate bacterial infection in C57BL/6J mice and found 

that ST-HSCs had increased mitochondrial levels compared to PBS treatment. 

This result was also observed after the administration of the “real” bacterium 

Salmonella enterica. Through the use of humanised NSG mice, I found that 

increased mitochondrial levels in HSCs were in part due to intercellular 

mitochondrial transfer from the BMM. This transfer of mitochondria resulted in the 

expansion and proliferation of the HSC compartment, which will mount an attack 

against the foreign pathogen. Results in this chapter show that mitochondrial 

transfer in the bone marrow is not specific to haematological malignancies and 

that it’s a fundamental process in which AML and MM cells are able to hijack to 

gain a survival advantage.  
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6 Discussion and Conclusions 
 

6.1 General Discussion 
 

Acute myeloid leukaemia and multiple myeloma are devastating haematological 

malignancies which are presently incurable. Current treatments targeting the 

malignant cell are effective at removing the bulk of the tumour, however disease 

relapse is very common and ultimately leads to mortality. Small numbers of 

AML/MM cells remain in bone marrow niches, where they are protected from 

chemotherapeutics and have the ability to proliferate - leading to the repopulation 

of the malignancy. It is envisaged that the eradication of the malignant cells which 

remain within the bone marrow will provide a better prognostic outcome for 

patients diagnosed with these diseases. One of the ways in which malignant cells 

are protected is via their interactions with BMSC. A better understanding of the 

complex biological interactions between these two cell types will ultimately lead 

to novel therapeutics that will be used in combination with current 

chemotherapeutic regimens.  

 

In my thesis, I have highlighted the process of intercellular mitochondrial transfer 

which contributes to AML/MM survival and proliferation. In addition, I have 

dissected the key mechanisms that underpin this pro-tumoral process. It is hoped 

these mechanisms can be targeted therapeutically, which may increase the 

survival and prognostic outcome of patients diagnosed with these currently 

destructive diseases. 

 

6.2 Key findings  
 

6.2.1 Mitochondrial transfer in the bone marrow niche 
 

In my thesis, I have described two malignancies where intercellular mitochondrial 

transfer contributes to their survival and proliferation- which will contribute to the 

literature describing mitochondrial transfer.  
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AML blasts have previously been shown to be anti-Warburg - relying on 

mitochondria for ATP production (311) whilst having increased mitochondrial 

levels (314). I have shown that intercellular mitochondrial transfer from BMSC 

contributes to the accumulation of mitochondria within AML blasts, resulting in 

increased ATP production through an enhancement of mitochondrial respiration 

(Section 3.2.1 – 3.2.3). There may be other factors which contribute to 

mitochondrial accumulation in AML blasts, one example being defects in the 

mitochondrial degradation process mitophagy. However, this process has 

however been shown to be functional in AML stem cells and is required for cellular 

survival (348). It is therefore unlikely that this process contributes to the observed 

phenotype. A second study by Moschoi and colleagues also described 

mitochondrial transfer from BMSC to AML blasts (349). Ergo, the accumulation of 

mitochondria in AML blasts is most likely due to intercellular mitochondrial 

transfer.  

 

I have shown that an increase in mitochondrial levels subsequently enhances 

OCR in AML blasts (Section 3.2.3). The process of FAO is also able to generate 

ATP from free fatty acids, through OXPHOS (350). AML have been shown to 

import free fatty acids via the FABP4 transporter protein (273), therefore the 

increased mitochondria acquired from BMSC may provide extra machinery to 

metabolise these fatty acids. The combination of OXPHOS and FAO have the 

ability to provide AML blasts with huge amounts of ATP which can be utilised for 

rapid proliferation within the bone marrow.  

 

To date, there has been no study comparing mitochondrial levels in MM cells with 

their non-malignant counterparts. In my thesis, I showed that mitochondrial 

transfer was also present between MM and BMSC – a highly surprising result 

(Figure 4.2.2 and 4.2.3). This is because (unlike AML blasts) MM cells have been 

shown to be a “Warburg Cancer” relying on aerobic glycolysis to generate ATP 

(316, 317). However, after analysing the effect the MM microenvironment has on 

metabolism within the malignant cell it becomes apparent why the transfer of 
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mitochondria occurs. The BMM allows MM cells to switch their metabolism to 

utilise mitochondria, which contributes to growth capacity and ATP production 

(Section 4.2.1). Studies showing MM utilised aerobic glycolysis only analysed MM 

cells in mono-culture and not in the context of their microenvironment. Therefore, 

it is of paramount importance to study metabolism of malignant cells within their 

supportive microenvironment as they would be in the human body.  

 

In the final chapter of my thesis I described mitochondrial transfer in a non-

malignant haematological system - where HSCs acquire mitochondria from the 

BMM under LPS induced bacterial infection (Section 5.2). Therefore, I believe 

mitochondrial transfer is a normal physiological process that malignant 

haematopoietic cells can hijack to favour their proliferation and survival. Recently 

HSCs have been shown to transfer mitochondria to BMSC (351). This process 

occurred through connexin-43 mediated gap junctions and was shown to regulate 

ROS levels within the HSC. However, only limited conclusions can be drawn as 

this research was presented as a conference abstract and the full paper has not 

been published yet. Nevertheless, it can be seen that mitochondrial transfer plays 

an important role in the regulation of normal haematopoiesis as well as in the 

malignant bone marrow. 

 

It is becoming ever more apparent that malignant haematopoietic cells can modify 

their protective microenvironment and utilise normal processes to promote their 

survival and proliferation (352, 353). My results contribute to the evidence where 

this is the case; I have shown in my thesis that AML blasts can induce 

mitochondrial biogenesis in BMSC in order to “steal” these mitochondria to aid its 

proliferative advantage (Section 3.2.6). The mechanism utilised by AML blasts 

can not only acquire mitochondria, but also ensures BMSC remain viable to 

safeguard a constant mitochondrial source. Although not examined in thesis due 

to time constraints, I believe there will be a similar process exploited in MM to 

ensure BMSC remain viable. This mechanism will need to be independent of 



	 163	

NOX2 (as MM cells do not express this enzyme) but is likely to be still through 

PGC-1α activation. 

 

The number of cancers in which intercellular mitochondrial transfer occurs from 

supporting microenvironment cells is rapidly increasing. These cancers include 

Breast (326), Lung (323), Ovarian (326) and now AML and MM. It is highly likely 

that this biological process will also occur in other cancers that are known to have 

a strong association with their microenvironment such as prostate (354) and 

colorectal cancer (355). Therefore, I believe that in the not too distance future 

there will be literature describing mitochondrial transfer in these malignancies.  

 

As mitochondrial transfer appears to be part of the malignant phenotype, it is 

becoming apparent that the Warburg hypothesis may not be universally 

applicable. PET scans are a useful tool in diagnosing cancer as malignant cells 

have increased glucose consumption due to the Warburg hypothesis. Even 

though MM cells rely on mitochondrial metabolism in their BMM, PET scans are 

used in the diagnosis of MM and increased glucose consumption is associated 

with a poor prognosis (356, 357). Warburg stated that cancers generate ATP 

through glycolysis and this process produces lactate. Recent studies have shown 

that circulating lactate can feed the TCA cycle in lung cancer (358), which is the 

case in both human and mouse tumours (359). Therefore, in the context of MM I 

hypothesise that glucose does feed glycolysis as Warburg hypothesised. 

However, lactate generated is then fed into the TCA cycle of functional 

mitochondria (acquired from the BMM) and ATP is generated through OXPHOS. 

This may be the case for other “Warburg Cancers” where the transfer of 

mitochondria occurs and may re-define metabolism within tumour cells.  

 

6.2.2 Tunneling nanotubes: The mitochondrial transporter 
 

Mitochondria have been shown to primarily be transferred between cells by TNTs 

(323, 326, 327, 329) as well as microvesicles (331) and connexion-43 gap 
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junctions (330). In both AML and MM, I found that mitochondria can be transferred 

by TNTs which were of malignant cell origin (Section 3.2.2 and 4.2.3). The TNT 

inhibitor CytoB was found to reduce mitochondrial transfer between BMSC and 

AML/MM cells. TNTs were visualised using fixed cell confocal microscopy and 

contained BMSC mitochondria. As the TNTs were of malignant cell origin, this 

shows that mitochondrial transfer is an active process in which AML/MM cells 

steal mitochondria from BMSC. As mentioned in section 6.2.1, a second paper 

has described the transfer of mitochondria from BMSC to AML blasts (349). 

However, in this paper the authors concluded that mitochondria were transferred 

via an endocytosis mechanism due to a reduction in mitochondrial transfer 

observed upon the addition of Dansylcadavarine. The authors didn’t assess the 

effect of CytoB or analyse the formation of TNTs. In my mitochondrial transfer 

assays, I found Dansylcadavarine had no effect on mitochondrial transfer levels 

however CytoB caused a reduction in mitochondrial trafficking (Figure 3.8 and 

3.10). As a result of these two publications, it suggests that mitochondria move 

from BMSC to AML blasts by a combination of TNT and endocytosis mechanisms. 

 

Mitochondria are not the only cellular component transported via TNTs. There 

have been a number of studies describing the movement of endosomes (360), 

lysosomes (361), autophagosomes (362), endoplasmic reticulum (363), 

microRNAs (364) and pro-survival cytokines (365). This poses the question - what 

else is moving between BMSC to AML/MM cells as well as the mitochondria? 

Malignant haematopoietic cells have the tendency to act as parasites and I 

believe once they dock with BMSC they will acquire anything that will aid their 

survival. It is therefore highly important to determine the extent of TNT material 

transfer between BMSC and AML/MM cells. Unfortunately, this was outside the 

scope of my PhD thesis but will hopefully be determined in the future.  

 

A recent study also showed that mitochondria can be transferred in the opposite 

direction from T-ALL (Jurkat) cells to BMSC, which also occurs through TNTs 

(366). This was shown to reduce ROS levels in the malignant cell, a result that is 
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in agreement with a study by Golan and colleagues which presented the transfer 

of mitochondria from HSCs to BMSC (351). This study also showed the transfer 

of mitochondria from HSCs to BMSC, although in this study the mitochondria were 

transferred via gap junctions. Mitochondria are a large source of intercellular ROS 

levels (367) and these levels are increased when mitochondria are dysfunctional 

(368). Therefore, mitochondria which are transferred to BMSC may be 

dysfunctional and their transfer may result in reduced ROS levels in the donor 

cell. It would be interesting to study whether AML/MM cells have the ability to 

transfer mitochondria to BMSC and whether these mitochondria are 

dysfunctional. This process may present a dysfunctional mitochondria recycling 

system which may aid malignant cell survival. 

 

6.2.3 Control mechanisms of mitochondrial transfer in AML/MM 
 

Mitochondrial transfer is becoming a critical part of the malignant phenotype. A 

full understanding of the mechanisms which underpin this biological phenomenon 

is therefore very important if this process is to be exploited therapeutically. In my 

thesis, I have presented controlling mechanisms of intercellular mitochondrial 

transfer from BMSC to both AML blasts and MM cells.  

 

Firstly, in AML I have shown that NOX2 located on the malignant cell stimulates 

mitochondrial transfer (Section 3.2.5 and 3.2.6). Superoxide generated by NOX2 

can increase oxidative stress in BMSC, causing the activation of PGC-1α and 

subsequent mitochondrial biogenesis. This process has been shown to be 

specific to AML cells as oxidative stress is not induced in BMSC cultured with 

non-malignant CD34+ cells. Mitochondrial transfer was reduced upon the addition 

of the NOX2 inhibitor DPI (in addition to knocking NOX2 down on AML blasts), 

which also induced apoptosis in AML blasts. NOX2 is most commonly found on 

professional phagocytes and is a transmembrane protein that transports 

electrons across plasma membranes reducing oxygen to superoxide (369). There 

are six other members of the NOX family (NOX1, 3, 4, 5 and DUOX1 and 2) which 
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are located on other cell types such as the colon, endothelium, kidney and thyroid 

cells (370). All seven members have a similar structure based around six 

transmembrane domains, two haem groups and a NADPH binding site on the 

COOH terminal (seen Figure 6.1). The crystal structure was only recently 

determined in 2017 (371) and is very similar to the long accepted predicted 

structure (369). Although the involvement of NOX2 in malignant mitochondrial 

transfer is most likely confined to AML (or CML if it occurs), other members of the 

NOX family could contribute to other mitochondrial transfer systems. For example 

NOX1 is highly expressed on colon cells (372) and colon cancers are known to 

have a high association with their microenvironment (355). This highlights a 

potential role for NOX1 in any intercellular mitochondrial transfer that may occur 

in this malignancy.  

 
Figure 6.1. The structure of NADPH oxidase family of enzymes. 

The predicted (left) (369) and the X-ray crystal structure (right) (371) of the NOX family of 
enzymes. The two structures are very similar with 6 transmembrane domains 2 haem groups. 
Electrons pass from NADPH to the haem groups (through FAD) and then reduce oxygen to 
superoxide. 
 
NOX2 may also play a role in the mechanism behind mitochondrial transfer from 

the BMM to HSCs under bacterial infection. NOX2 on monocytes/macrophages 

is crucial in the defence from bacterial infections and inactivity of this enzyme can 

lead to chronic granulomatous disease (CGD) (373). Superoxide generated by 

NOX2 monocytes/macrophages may also induce oxidative stress and 

mitochondrial biogenesis in BMSC. This may result in the trafficking of 
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mitochondria to HSCs, inducing cycling and the expansion of blood cells needed 

to fight the pathogen. However, this is still very much a hypothesis which requires 

further work. 

 

In addition to elucidating the mechanism behind mitochondrial transfer in AML, I 

have also determined the mechanism which can cause the transfer of 

mitochondria to MM cells. I have shown that CD38 located on the surface of MM 

cells form TNTs which dock with BMSC facilitating the movement of mitochondria 

(Section 4.2.4 and 4.2.5). CD38 is left behind on BMSC after the dissociation of 

the TNT and CD38 knockdown reduces the number of TNTs formed. CD38 has 

two known functions firstly, as an ectozyme catalysing the metabolism of the 

calcium messengers cyclic ADP-ribose and nicotinic acid adenine dinucleotide 

phosphate (374). Secondly CD38 functions as a cell surface receptor – the likely 

mechanism utilised in mitochondrial transfer. The X-ray crystallography structure 

of CD38 (375) is shown in Figure 6.2.  

 

 

 
Figure 6.2. X-Ray Crystallography structure of CD38. 

The structure of CD38 was determined in 2005 (375) and is presented in this figure. The left and 
red images are a 90˚ rotation of each other in the vertical axis. CD38 is made up of 8 alpha helices 
and 6 beta sheets. The C-terminal binds to the plasma membrane anchoring the protein.  
 



	 168	

As CD38 is found on the leading edge of the TNT and is deposited on the surface 

of BMSC after TNT dissociation, I believe that its role in mitochondrial transfer is 

as a receptor. However, in my thesis I was unable to determine the binding partner 

of CD38 on the surface of BMSC. CD38 has one known binding partner CD31 

(346), however CD31 is not expressed on BMSC (Figure 4.20) and is a known 

negative marker in the characterisation of BMSC (376). Therefore, there may be 

an unknown binding partner of CD38 present on the surface of BMSC. BMSC do 

express CD157 which is a homologue of CD38 (377), therefore there may be an 

association of CD38 with CD157 leading to TNT docking. Unfortunately, there 

was no time to assess CD157 and other possible factors as part of my thesis. 

 

The discovery of the role of CD38 in the MM mitochondrial transfer mechanism 

has highlighted an unknown role of this molecule. CD38 was initially thought to 

be only expressed on haematopoietic cells (378), however CD38 is known today 

to be expressed on a range of different tissues like brain, prostate, pancreas and 

kidney (377).  This opens up the possibility that CD38 may be involved in other 

mitochondrial transfer systems in other malignancies as well as non-malignant 

systems. CD38 has already been shown to mediate mitochondrial transfer from 

astrocytes to neurons after stroke (331). AML blasts have been shown to express 

CD38, albeit at lower levels than MM (379). It would be very interesting to test 

whether CD38 plays a role in the TNT formation shown between AML blasts and 

BMSC. If this were the case, it may pave the way for the use of the CD38 

monoclonal antibody Daratumumab to treat patients with AML.  

 

A common observation between the two malignant mitochondrial transfer 

systems described in my thesis is that chemotherapy drugs increase the level of 

mitochondrial transfer. Daunorubicin and Bortezomib, used in the treatment of 

AML and MM respectively, were shown to increase the level of mitochondrial 

transfer from BMSC by on average 2-fold (Figure 3.13 and 4.8). This presents a 

system where malignant cells can adapt to treatments they encounter in order to 

survive.  This is extremely interesting in the context of minimal residual disease, 
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where mitochondrial transfer may contribute to the survival of a small number of 

AML/MM cells in close proximity to BMSC within the bone marrow. This 

mechanism may lead to the patient relapse which is currently responsible for the 

current poor survival rates of AML and MM. Chemotherapeutics have been shown 

to induce oxidative stress in the bone marrow (380), which suggests that this 

stimulates mitochondrial transfer as per NOX2. In my results, I did not analyse 

the effect of oxidative stress in the mitochondrial transfer to MM cells. The effect 

of Bortezomib suggests that oxidative stress is also involved in this mechanism, 

albeit in an independent process to NOX2.  

 

Taken together, these malignant mitochondrial transfer mechanisms describe 

biological molecules that may be therapeutically targetable in the context of AML 

and MM. In addition, the mechanisms described may provide a molecular basis 

for the elucidation of other transfer systems where the trafficking of mitochondria 

has already been or will be described in the future. 

 

6.2.4 Therapeutically targeting mitochondrial transfer  
 

The overall aim of any cancer research project is to determine key biological 

processes and molecules which can be targeted therapeutically for the benefit of 

the patient. In my thesis, I have shown that in both AML and MM intercellular 

mitochondrial transfer from the BMM is a process that contributes to the survival 

and proliferation of these malignancies. Furthermore, I have highlighted the 

biological role of NOX2, PGC-1α and CD38 in the mitochondrial transfer process 

and present these as novel biological targets in the treatment of AML and MM - 

which may stop the flow of mitochondria. I have shown that current chemotherapy 

treatments increase the level of mitochondrial transfer (Figure 3.13 and 4.8), it is 

therefore apparent that treatments targeting mitochondrial transfer could be used 

in conjunction with lower doses of the current chemotherapy regimens to provide 

a more effective therapy. 
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In the AML mitochondrial transfer system, I have highlighted NOX2 and PGC-1α 

as molecules that contribute to the trafficking of mitochondria from BMSC (Section 

3.2.5 and 3.2.6). There may be a novel opportunity to target these therapeutically 

to treat AML and hopefully increase patient survival. In my thesis, I have used the 

commercially available DPI to inhibit NOX2 on the surface of AML and shown that 

induction of apoptosis is specific to malignant cells over non-malignant cells 

(Figure 3.18). However, DPI and the other commercially available inhibitor 

Apocymin are not isoform specific as they also inhibit NOX1, 3, 4 and 5 (381). 

Therefore, these compounds would be unsuitable to be used in the clinic. The 

only known NOX2 specific inhibitor is the small peptide NOX2-ds-tat, which has 

an IC50 for NOX2 inhibition of 0.74µM (382). However currently there are no 

clinical trials which use this compound in any disease, the only NOX inhibitor in 

clinical trials is the NOX1/4 inhibitor GKT137831 used to the treat primary biliary 

cholangitis (NCT03226067) and type 2 diabetes (NCT02010242). It would be very 

interestingly to test NOX2-ds-tat in in vitro and in vivo models of AML, specifically 

focussing on mitochondrial transfer. 

 

The second molecule that could be targeted in the AML mitochondrial transfer 

system is PGC-1α in BMSC. In my thesis, I specifically inhibited PGC-1α using 

shRNA (Section 3.2.7) however there is a chemical inhibitor of PGC-1α (SR-

18292) which was not tested (383). The clinical efficacy of this drug has not been 

examined and SR-18292 has currently not been used in any clinical trials to date. 

As PGC-1α is crucial to normal bodily homeostasis (through mitochondrial 

biogenesis) any treatments targeting PGC-1α in BMSC must be specific to avoid 

any of target effects. In addition, PGC-1α inhibition in BMSC may interfere and 

alter normal haematopoiesis disrupting the bone marrow further. For these 

reasons, I believe that NOX2 is the more favourable target in AML to inhibit the 

transfer of mitochondria from the BMM. 

 

Elucidation of the mitochondrial transfer system in MM highlighted the role of 

CD38 in the formation of the TNT (Section 4.2.4 – 4.2.6). Targeting CD38 may 
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reduce the levels of mitochondrial transfer, which could potentially lead to 

increased patient survival. Contrary to treating AML with NOX2 inhibitors, a 

specific CD38 antibody Daratumumab has been shown to induce MM apoptosis 

in the presence of the protective BMM (249). Early clinical trials using 

Daratumumab targeting CD38 have been shown to be well tolerated and clinically 

efficacious in early phase studies of the treatment of relapsed refractory MM 

(251). In addition, phase 3 clinical trials of anti-CD38 antibodies in MM therapy 

have demonstrated improvements in overall response rates and progression free 

survival when combined with chemotherapy (384). Further to this, Daratumumab 

has been FDA approved for the treatment of refractory MM in combination with 

bortezomib and lenalidomide (252). Although I didn’t use Daratumumab, my 

thesis results provide a further insight into potential mechanisms of action of 

CD38 antibodies in the treatment of MM - where pro-tumoral mitochondrial 

transfer is also inhibited. Therefore, the data I have presented here shows that 

CD38 inhibition in MM (using Daratumumab) also has the ability to inhibit 

mitochondrial transfer for clinical benefit.  

 

I have shown in my third results chapter that mitochondrial transfer can occur to 

non-malignant HSCs under stress stimuli (Section 5.2). It is therefore very 

important to consider this process when designing treatments targeting malignant 

mitochondrial transfer. Although I have not determined the control mechanisms 

in non-malignant transfer, there are likely to be similarities between the 

processes. Therefore, targeting specific mechanisms such as the NOX2 oxidative 

stress mechanism may also impair non-malignant mitochondrial transfer to HSCs 

which could make patients more susceptible to bacterial infections. 

 

6.3 Limitations of the Study and Further Work 
 

Despite the results obtained, as with any study there are limitations which should 

be considered. The number of primary patient samples in some experiments is 

limited, this is due to sample availability and sharing samples around a highly 
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active research group. However, I believe experiments using small numbers of 

primary cells outweighs equivalent experiments using cell lines. Likewise, in 

animal experimentation increased numbers of mice would give more statistically 

significant results. However, I chose to refine animal experimentations to use the 

minimum number of mice to generate a statistically significant result. 

 

Ideally, the isolation of primary BMSC could have been more specific. I cultured 

and expanded all adherent cells from the mononuclear cell fraction and 

characterised them as CD73, CD90 and CD105 positive BMSC - this population 

was therefore very heterogeneous. Different cells within the BMSC population 

could have transferred varying levels of mitochondria to malignant AML/MM cells. 

Enhanced characterisation of stromal cells within the bone marrow has led to the 

discovery of specific subtypes like CAR and Nestin GFP+ cells (discussed in my 

introduction section 1.2.3). It would be of interest to isolate these cells specifically 

and analyse mitochondrial transfer levels from these to malignant AML/MM cells.  

 

In the MM mitochondrial transfer system, I have shown that CD38 is crucial for 

the process and CD38 KD in MM xenograft models increases animal survival 

(Section 4.2.6). As discussed in section 6.2.4, the CD38 monoclonal antibody 

Daratumumab has been FDA approved for the treatment of refractory MM. 

Unfortunately, I was unable to obtain Daratumumab from Janssen during my PhD 

and was therefore unable to test the role of this drug in mitochondrial transfer. If 

in the future my research group could obtain Daratumumab, I would suggest 

further work should examine the effect of Daratumumab on the intercellular 

mitochondrial transfer which occurs in MM. In addition, I would examine whether 

CD38 is involved in the AML mitochondrial transfer system to determine whether 

Daratumumab could be a viable therapeutic to treat AML.  

 

Although I have elucidated parts of the mitochondrial transfer mechanisms in MM, 

there is still further work needed to fully understand this system. I was unable to 

determine the molecule on BMSC which CD38 binds to anchor the TNT formation. 
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The obvious candidate was CD31, however this is not expressed on the surface 

of BMSC. Therefore, there is either a novel binding partner of CD38 on the surface 

on BMSC or CD38 binds un-specifically with BMSC to facilitate the transfer of 

mitochondria. Further work is needed to address this issue.   

 

Finally, I have shown that LPS induced bacterial infections stimulates 

mitochondrial transfer from the BMM to non-malignant HSCs. Due to time 

constraints, I was unable to determine the mechanism behind this but hypothesise 

that NOX2 may play a part due to its essential role to bacterial infection. Hopefully, 

future work will determine if NOX2 is involved in the non-malignant mitochondrial 

transfer mechanism which I have shown to occur between the BMM and HSCs 

under bacterial infection. 

 

6.4 Concluding remarks 
 

Overall in my thesis I have shown that intercellular mitochondrial transfer occurs 

from BMSC to both AML and MM cells and this transfer can occur via TNTs. AML 

NOX2 superoxide stimulates PGC-1α in BMSC, which results in increased 

mitochondrial biogenesis and contributes to the pro-tumoral trafficking of 

mitochondria. In MM, CD38 on the surface of the malignant cell has the ability to 

form TNTs which dock with BMSC and allows the transfer of mitochondria. 

Inhibition of both these processes has been shown to induce apoptosis and 

increase the survival of mice which have been injected with AML/MM cells. In 

addition, I have shown that mitochondrial transfer is an already established 

process that can be hijacked by malignant haematopoietic cells. My work 

highlights the nature of mitochondrial transfer in the progression and survival of 

AML and MM. My thesis presents novel biological molecules which underpin pro-

tumoral mitochondrial transfer, which could be targeted therapeutically in the 

clinic to improve the survival of patients who are affected by AML and MM. 
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