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In this paper, we revisit the state of deep-water fisheries to the west of the British Isles and 

aim to provide an overview on the key drivers behind community changes along continental 

margins. The deep-water fisheries to the west of the British Isles that extend from the shelf-

slope break down to the lower slope and along banks and seamounts of the Rockall Basin, 

mainly target blue ling Molva dypterygia, roundnose grenadier Coryphaenoides rupestris, 

orange roughy Hoplostethus atlanticus, with by-catches of black scabbardfish Aphanopus 

carbo and tusk Brosme brosme. These fishing grounds experienced a long period of 

exhaustive exploitation until the early 2000s, but subsequently the implementation of 

management strategies has helped to relieve excessive fishing pressure. It is widely accepted 

that a better understanding of the long-term implications of disturbance is needed to 

understand patterns in deep-water communities and what sustainable use and exploitation of 

resources might look like in this context. 

 

KEYWORDS 

ecosystem disturbance, ecosystem management, food webs, modelling, north-east Atlantic 

Ocean  

 

1 | IMPORTANCE OF CONTINENTAL SLOPES FOR DEEP-WATER FISHERIES  

 

Continental slopes cover around 5.4% of the global ocean floor (Harris et al., 2014) and play 

an important role for deep-water fisheries (Koslow, et al., 2000). This is a highly productive 

environment, favourable to a broad diversity of habitats and associated fish species (Haedrich 

& Merrett, 1988; Gordon & Bergstad, 1992; Lorance, 1998; Priede et al., 2010; Campbell et 

al., 2011).  
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Extensive deep-water fisheries (deeper than 400 m, near the lower limits of the upper 

continental slope) have developed following a decline of the continental-shelf fisheries 

(Hopper 1995; Koslow et al., 2000, Thurstan et al., 2010). Total global catch of important 

deep-water fisheries reached a peak of about 3.7 Mt in 2003 (FAO, 2011; Priede, 2017), but 

long-term effects of exploitation caused a significant reduction of many fish stocks (Devine 

et al., 2008; Bailey et al., 2009; Priede et al., 2011; Victonero et al., 2018), with several 

species still being fished outside safe biological limits (Norse et al., 2012; Pauly ||& Zeller, 

2016). 

Depletion of deep-sea fish populations is commonly associated with long-term effects 

on the benthic fauna (Benn et al., 2010), with concerns regarding the   ecosystem services 

they provide, such as benthic nutrient cycling (Ruhl et al., 2011). Fishing can have a direct 

effect on the continental slopes and fishing-induced changes in food web or biomass structure 

may also disrupt nutrient transfer via the active biological pump (Trueman et al., 2014). It 

may also cause damage to sensitive coral or sponge aggregations (Clark et al., 2016) that 

have been suggested to provide essential habitats for some commercial important fish 

(Costello et al., 2005; Buhl‐ Mortensen et al., 2010; Söffker et al., 2011; Baillon et al., 2012; 

Milligan et al., 2016). 

In the north-east Atlantic Ocean, multispecies fisheries target inter alia blue ling 

Molva dypterygia (Pennant 1784), roundnose grenadier Coryphaenoides rupestris Gunnerus 

1765 and orange roughy Hoplostethus atlanticus Collett 1889 (Gordon, 2001; Lorance & 

Dupuoy, 2001; Lorance et al., 2001; Gordon et al., 2003) and crustaceans such as Norway 

lobster Nephrops norvegicus and the shrimps Parapenaeus longirostris and Aristeus 

antennatus. Such fisheries are typically characterised by significant amounts of by-catch and 

discards of numerous unwanted species, including by-catch of epibenthic fauna and 
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vulnerable fishes, such as elasmobranchs (Monteiro et al., 2001; Clarke et al., 2015; Bueno-

Pardo et al., 2017). 

This paper aims to provide a brief overview of the current status of deep-water 

fisheries to the west of the British Isles (Figure 1) and the key drivers shaping deep-water 

communities along the continental margin. Finally, we discuss the role of ecosystem-based 

approaches in deep-water fisheries management as a tool towards the achievement of the 

United Nations Sustainable Development Goals (SDG). 

 

2 | State of deep-water fisheries in ICES subareas 6 and 7 

 

Following the decline of more traditional continental-shelf fisheries, deep-water fishing effort 

in the north-east Atlantic Ocean has expanded dramatically since the 1960s, with Russian 

fishing vessels targeting C. rupestris in international waters, beyond the western limits of the 

UK continental margin. German trawlers targeted M. dypterygia in the Rockall Trough in the 

1970s and a major French trawl fishery to the west of the British Isles for the same species 

developed during the same decade (Charuau et al. 1995; Gordon, 2001). Fisheries targeting 

black scabbardfish Aphanopus carbo Lowe 1839, H. atlanticus and C. rupestris began in the 

late 1980s, following a French incentive to land species with low commercial value but high 

by-catch rates (Charuau et al. 1995; Gordon, 2001). In the mid-1990s, deep-water fisheries 

became attractive to other fleets, including Scottish, Irish and Spanish fleets, but the French 

fleet has continued to dominate along the NE Atlantic continental slopes.  

The development of deep-water fisheries was mainly driven through the increase in 

fleet capacity and fishing power, particularly in the 1990s (Villasante, 2010) and a lack of 

fishing opportunities elsewhere. Other important fisheries exist for species such as blue 

whiting Micromesistius poutassou (Risso 1827)), boarfish Capros aper (L. 1758) and 
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monkfishes Lophius spp., but these primarily occur on the continental shelf, in depths < 400 

m and, therefore, are not considered here. The average landings of the main deep-water 

fisheries to the west of the British Isles (ICES subareas 6 and 7; http://www.ices.dk/marine-

data/maps/Pages/default.aspx) between 1950 and 2016 are given in Tables 1, 2. 

The expansion of global fishing towards deeper areas means fishing for, generally, 

vulnerable species, that are long-lived with relatively low fecundity and growth rates, late 

maturation, commonly (but not exclusively) seen in deep-water fishes (Morato et al., 2006). 

This low biological productivity implies that these fish stocks can only sustain a low to 

moderate fishing mortality (Priede, 2017); i.e., the level of fishing mortality that slope stocks 

can sustain is lower than for shelf stocks. 

Qualitative assessments on deep-water fish stocks in the North Atlantic Ocean have 

been provided since 1994 by the ICES expert working group (EWG) on the biology and 

assessment of deep-sea fisheries resources (WGDEEP; formerly SGDEEP, study group on 

the biology and assessment of deep-sea fisheries resources). Recent developments such a new 

accepted assessment framework and methods and available data have enabled the EWG to 

quantitatively assess some of these assessment units. WGDEEP provides scientific advice on 

29 assessment units, including those for C. rupestris, M. dypterygia, A. carbo, H. atlanticus 

and B. brosme. Stocks are managed within units that do not always correspond to a biological 

population. Biological stock units generally represent self-perpetuating units where there is 

limited genetic exchange with other stocks (Pawson & Jennings, 1996; Pawson & Ellis, 

2005). For example, ICES consider there to be five stocks of B. brosme in the north-east 

Atlantic Ocean based on genetic studies (ICES, 2018a), yet there were five management 

units, which cover different spatial areas (EU, 2018). This is because biological assessment 

units are updated as new information is made available (Knutsen et al., 2009), but there is a 

delay in amend management units.  
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The introduction of regulatory measures under the EU Common Fisheries Policy 

(CFP) in 1983 has had little or no effect on deep-water fish stocks (Villasante et al., 2012). 

Following ICES advice, in 1992, the European Commission (EC) introduced new policies 

regulating the exploitation of deep-water stocks, which remained ineffective as EU fleets 

continued to target deep-water fish beyond safe biological limits during the 1990s and 2000s 

(Gordon, 2003; Villasante et al., 2012). Since the implementation of further restrictive 

measures, i.e., total allowable catch (TAC), by the EC in 2002, the overall fishing pressure on 

deep-water fish species has declined and the overall biomass of commercial fish stocks in 

ICES subareas 6 and 7, those adjacent to the British Isles, has increased markedly (ICES, 

2016a). In addition, the EC has recently adopted a regulation that limits the use of certain 

gears below depths of 800 m (EU, 2016), including the prohibition of bottom fishing 

activities in areas of occurrence of vulnerable marine ecosystems (VME). 

The main fleets targeting M. dypterygia are French and, in recent years, Scottish 

trawlers. Estimated landings in ICES subareas 6 and 7 reached a peak of about 18,000 t in 

1973 (ICES, 2018a), but from 2000s total reported landings have declined (Figure 2). Molva 

dypterygia fishing mortality has decreased since 2002 and stock biomass has increased since 

2004, but stocks have been exploited at a level considered above sustainable levels since 

2010. Total landings in ICES subarea 7 are low and restricted to by-catch (ICES, 2018b).  

Like other stocks around the world (Clark et al., 2000), H. atlanticus catch per unit 

effort (CPUE) has declined since 1990, which has been linked to depletion caused by fishing 

activities in ICES areas 6 and 7 (Bailey et al., 2009). Owing to the decline of the fishery, total 

landings of H. atlanticus have been low since 2002 (Figure 2) and there has been no directed 

fishery following the introduction of a zero TAC for this stock unit in the NE Atlantic Ocean 

since 2010 (ICES, 2018a). Owing to the restrictive measures for this fishery, limited data on 

catch and its composition are available, which, coupled with current monitoring programmes, 
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are insufficient to evaluate the status of H. atlanticus populations in ICES subareas 6 and 7 

(ICES, 2018b).  

Most landings of C. rupestris from ICES subareas 6 and 7 are from French and 

Spanish bottom trawlers. This fishery has declined since 2004, particularly in the last few 

years with the implementation of the regulation prohibiting bottom trawling below depths of 

800 m (EU, 2016; ICES, 2018a). Landings of C. rupestris have declined sharply in subarea 6 

from 14,800 t in 2001 to c. 630 t in 2017 and no landings were reported in subarea 7 in the 

same year (Figure2; ICES, 2018b). Discard rates of C. rupestris in other fisheries have also 

reportedly declined over the past few years and this has been attributed to the decline of the 

deep-water fishery overall (ICES, 2018a). The current status of C. rupestris stocks is 

unknown (ICES, 2018b) mainly due to insufficient data. 

Historical landing data for A. carbo in ICES subareas 6 and 7 indicate an increasing 

trend from 1999 reaching a maximum of over of 5800 t in 2002 (Figure 2), just before the 

implementation of EU TAC management policies for deep-water fish stocks. The stock 

assessment for this species indicates a moderate increase in abundance since 2010, with 

stable landings up to 2016 (ICES, 2018b). 

Brosme brosme is a by-catch species in the deep-water fisheries in ICES subareas 6 

and 7 and it has been mainly landed by the Norwegian longline fleet. Historically, reported 

landings varied substantially in ICES subarea 6, peaking at about 5600 t in 1983 and at 4400 t 

in 2000, but showing a slight decline since 2001. Landings from ICES subarea 7 are 

historically low; they peaked at 785 t in 1969, but have remained very low since 2003 (ICES, 

2018a). Discards are negligible in the longline fishery, but most of B. brosme by-catch in 

trawl fisheries is discarded. Owing to limited information of B. brosme life-history 

parameters, no stock-management reference points are defined for this stock in ICES division 
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6b and a precautionary approach was advised in 2018 for stocks in ICES subareas 6 and 7 

(ICES, 2018a).  

Current fishing opportunities for M. dypterygia and C. rupestris are based on an ICES 

category 1 assessment approach with full analytical assessment, forecast and maximum 

sustainable yield (MSY) reference points, a precautionary approach is used for the H. 

atlanticus (ICES category 6) and A. carbo (ICES category 3) in ICES subareas 6 and 7 

(ICES, 2018a). Although A. carbo is assessed as a category 3 stock, it is qualitatively 

evaluated in relation to management reference points, like that of the H. atlanticus. There is 

evidence of improvements in the state of some of the stocks in the slopes to the west of the 

British Isles. However, there remains some uncertainty in this assertion given that historical 

landings and discards data are not always accurately recorded, or not provided by all EU 

member states (Pawlowski & Lorance, 2009). Additionally, assessments could be improved 

with fisheries-independent data, for example estimates on recruitment (Large et al., 2010; 

Carlsson et al., 2011; Neat, 2017), but spatial and temporal coverage does not always provide 

robust estimations (Large et al., 2003; Thorson & Barnett, 2017). Despite recent efforts, there 

is still a scarcity of information for most of the deep-water fish species, particularly on the 

spatial distribution and habitat uses, biological and genetics data. Previous studies have 

attempted to estimate the age for certain species around the British Isles, such as Baird's 

slickhead Alepocephalus bairdii Goode & Bean 1879, C. rupestris, blackbelly rosefish 

Helicolenus dactylopterus (Delaroche 1809)) and H. atlanticus (Gordon & Swan, 1986; 

Smith et al., 1995; Kelly et al., 1997; Kelly et al., 1999; Allain & Lorance, 2000), but 

although crucial for estimation of growth rate, mortality rate and productivity, data on the 

population structure and studies on age validation of the long life of several deep-water 

species are still limited (Treble et al., 2008; Andrews et al., 2009).  
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3 | Population Connectivity and Stock Identity 

 

Little is understood about connectivity of deep-sea fish populations. Recent genetic analysis 

has revealed evidence of C. rupestris population substructure along the central and eastern 

North Atlantic Ocean (White et al., 2010), suggesting limited connectivity across ocean 

basins. This is particularly evident in the Rockall Trough area, where limited migrations of C. 

rupestris occur once a fish settles out and adopts a benthopelagic behaviour pattern (Knutsen 

et al, 2012). Geochemical analysis of C. rupestris otoliths showed a clear separation of 

population units along the NE Atlantic Ocean (Longmore et al., 2010, 2011). A complex 

depth-dependent genetic structure in C. rupestris was revealed recently (Gaither et al., 2018) 

identifying genetically based ontogenetic depth segregation whereby juvenile populations 

inhabiting shallow waters exhibit mixing, but adults segregate by depth forming genetically 

distinct populations. In contrast, the roughhead grenadier Macrourus berglax Lacépède  1801 

shows significant gene flow across North Atlantic locations (Coscia et al., 2018). A general 

lack of understanding of potentially complex population demographic processes across broad 

oceanic areas and behaviours limits the ability for an effective management. A combination 

of tools (e.g.,, genetic and geochemical approaches) have potential to inform on the 

mechanisms for population connectivity and reveal insights in terms of the duration of 

different life stages (Trueman et al., 2016). 

Deep-water fish stocks have been exploited outside their safe biological limits over 

decades in the north-east Atlantic Ocean with unknown long-term effects on the ecosystems. 

Moreover, while > 100 deep-water demersal fish species are known for the British Isles (Neat 

& Campbell, 2011; Froese & Pauly, 2018), only few species and stocks are assessed for 

advice by ICES. However, stock assessments are hampered owing to incomplete or lack of 

available data on deep-water fisheries catches in the NE Atlantic Ocean (ICES, 2016b, 
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2018a,c), significantly challenging a sustainable management of deep-water fisheries (Norse 

et al., 2012; Large et al., 2013). For this reason, there is a clear need to undertake further 

research to develop and improve stock assessment methodologies and to collect systematic 

data to identify important habitats and location of spawning areas. 

 

4 | Trophodynamics in continental slopes 

 

Energy availability plays a key role in determining community and biomass trends, as well as 

patterns of diversity and distribution of assemblages along continental slopes (McClain et al., 

2012; Woolley et al., 2016). Abundant and diverse deep-sea communities are supported on 

slopes by enhanced food availability (McClain & Schlacher, 2015), which appears to be 

controlled by lateral and vertical (sinking) fluxes (Ichino et al., 2015). At greater depths, 

where absence of light, high pressure and near freezing temperatures are major constraints, 

detrital flux of particulate organic matter (POM), secondary production and benthic recycling 

have an important role in fuelling benthic and benthopelagic communities (Figure 3; Jones et 

al., 2014; Stasko et al., 2016). 

The active transport of carbon and nutrients by diel vertical migration of zooplankton 

and small pelagic fishes is a common phenomenon, which has been extensively documented 

(Sutton, 2013), and it is crucial in fuelling bentho-pelagic production at mid-slope depths 

(Mauchline & Gordon, 1991; Trueman et al., 2014; Drazen & Sutton, 2017). However, the 

diversity and composition of higher trophic-levels communities can be modified by changes 

in primary production (Blanchard et al., 2012). For instance, a shift in the dominant 

phytoplanktonic species can induce phenological change in zooplankton abundance, which 

may ultimately affect fish recruitment and fisheries; at present, however, these cascading 

effects have not been comprehensively documented (de Madron et al., 2011). Sea surface 
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temperatures are predicted to continue rising over the coming decades (Domingues et al., 

2008; Medhaug et al., 2017) and theoretical and empirical evidence shows that mean 

phytoplankton body size reduces with increasing temperature (Morán et al., 2010; Thomas et 

al., 2012). This reduction may be critical for deep-sea communities, as smaller phytoplankton 

may be less readily exported to deep waters, potentially reducing the total nutrient supply to 

deep-water fish communities (Yool et al., 2017).  

It is now acknowledged that deep-water fish communities may provide a significant 

carbon sequestration ecosystem service by capturing carbon from the deep-scattering-layer 

communities and transferring carbon to the greater depths (Trueman et al., 2014). In this 

sense, it is conceivable that the contribution of deep-water benthic fauna in regulating 

atmospheric carbon might be higher than previously appreciated (Thistle et al., 2006; Kahn et 

al., 2015). Long-term changes in organic matter fluxes and, ultimately, in deep-water fish 

communities are therefore likely to influence energy pathways and the capacity of carbon 

storage, but the sensitivity of deep communities to change is poorly understood (Sweetman et 

al., 2017).  

 

5 | Ecosystem effects and implications for the seabed 

 

Despite limitations, historical data do enable an examination of temporal trends in catches 

and evaluation of contribution from individual species to ecosystem level. Studies of human 

activities in the deep sea have received increasing attention over the past 20 years, mainly due 

to appreciation of the ecological and economic importance of these poorly-studied marine 

ecosystems (Basson et al., 2001; Gage, 2001; Rogers et al., 2015). 

The geographical extent of deep-sea fisheries effects on the deep seabed of the North 

Atlantic Ocean has been highlighted as a long-running concern, especially since benthic 
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trawling has by far the greatest effect on the seafloor, much more so than the hydrocarbon 

industry, seafloor cables and other activities combined (Benn et al., 2010). An increasing 

body of evidence suggests severe perturbations caused by bottom trawling on the integrity of 

the seafloor and its biological assemblages along continental slopes (Daly et al., 2017; 

Eigaard et al., 2017). Previous studies identified trawling-induced sediment displacement, 

suggesting that industrial bottom trawling had long-term effects on seabed morphology (Puig 

et al., 2012; Martín et al., 2014). Bottom trawling increases sediment resuspension, affecting 

sedimentation rates at and around the affected areas and altering geochemical properties of 

the sediments, resulting in biological and ecological effects such as nutrient resuspension and 

sediment homogenisation (Amaro et al., 2016; O‘Neil & Ivanović, 2016). Physical 

disturbance by bottom trawling is now widely spread in coastal and shelf zones (Brown et al., 

2005; Bueno-Pardo et al., 2017), but, in these environments, sediment transport and erosion 

may buffer the capacity of trawling to modify seafloor morphology (Nittrouer & Wright, 

1994). 

Direct consequences of bottom trawling also include biomass removal or damage of 

sensitive benthic communities (e.g.,, sponges and deep-sea corals), resulting in high mortality 

rates (Ramsay et al., 2001; Clark et al., 2016). Bottom-trawl fishing has been shown to 

damage or destroy long-lived benthic communities, but also to harm the complexity of the 

seabed, reducing species richness and biomass (Gage et al., 2005; Huvenne et al., 2016). 

Numerous studies have demonstrated that deep-sea fisheries in the North Atlantic Ocean 

occur at the same depths as known VMEs (Muñoz et al., 2009; Fonseca et al., 2014). The 

effects of bottom trawling on benthic communities, particularly on VMEs, are often direct 

and immediate (e.g.,, damaging sponges and corals, removing non-target species through by-

catch), persisting for decades or longer (Hall-Spencer et al., 2002; Clark et al., 2016). Muñoz 

et al. (2012) provided insights on the presumed effects of towed gears, suggesting that 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

13 
 

apparent differences in cold-water corals and sponge aggregations in different habitats along 

the Hatton Bank might be a consequence of bottom trawling activity. Likewise, it has been 

proposed that extensive fisheries induced considerable changes in biomass of deep-water fish 

populations in the Porcupine Seabight (Bailey et al., 2009) and along the slopes of the 

Rockall Trough (Mindel et al., 2018). 

The effects of persistent trawling are said to result in reduced diversity of epifauna 

and endofauna (Roberts et al., 2000; Jennings et al., 2001; Tillin et al., 2006; Pusceddu et al., 

2014; Almeida et al., 2017), with a shift in communities towards a dominance of scavenger 

species (Jennings & Kaiser, 1998; Blanchard et al. 2004). However, the degree to which deep 

benthic fauna are resilient to long-lasting bottom trawling and the implications on marine 

food webs is still poorly understood (Arroyo et al., 2017; Cunha et al., 2017; Hiddink et al., 

2017; Vieira, 2017). Ecological indicators, such as trophic and size structure, community 

biomass and diversity, reflect overall changes in ecosystems (Blanchard et al., 2017; Mindel 

et al., 2018), but substantial knowledge gaps and long-term data deficiency contributes to 

deficient assessment of the extent of human-induced effects, particularly through fisheries, on 

deep-water ecosystems (Rogers et al., 2015). Nevertheless, greater perturbations of the 

benthic communities could lead to the disruption of the benthic energy pathways, through the 

changes in nutrient transfer and the removal of food resources exploited by the fish 

communities. This could result in potential changes on the ecosystem services associated 

with benthic nutrient cycling and ultimately affecting secondary production of deep-water 

fish communities. 

Some preliminary studies of long-term changes in deep-sea fish communities to the 

west of the British Isles have been carried out, most notably by Basson et al. (2001), Neat et 

al. (2008) and Bailey et al. (2009). Various scientific institutes collected information in the 

1970s and 1980s, prior to the development of major deep-water fisheries (Basson et al., 
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2001) and in recent years Marine Scotland (Aberdeen, UK) and the Marine Institute 

(Oranmore, Ireland) have conducted detailed surveys of shelf edge and seamount 

communities as part of their annual monitoring programme (O‘Hea et al., 2009; Neat et al., 

2010). The species richness was observed to reach a maximum value at 1000 m and decline 

at greater depths. Basson et al. (2001) calculated various diversity indices based on deep-

water survey data from the pre-and post-exploitation era. Data available post-exploitation, 

from the SAMS OTSB(S) survey in 1999, suggested that diversity was lower than the pre-

exploitation state. Godbold et al. (2013) reported a decline in total demersal fish biomass in 

the Porcupine Seabight and adjacent abyssal plain of 36% within the depth range of the 

commercial fishery (< 1500 m). Whilst there were significant declines in target (e.g., C. 

rupestris decreased by 57 %) and non-target [e.g.,, Coryphaenoides guentheri (Vaillant 1888) 

and Antimora rostrate (Günther 1878)] species, not all species declined significantly.  

Identifying temporal changes and geographical gradients in community dynamics can 

be informative to improve ecological theory (May & McLean, 2007) and ecosystem 

modelling (Thorpe et al., 2015; Spence et al., 2018), both of which can be used in support of 

adequate fisheries management (Hyder et al., 2015). However, species-based food web 

models such as Ecopath with Ecosim (Christensen & Walters, 2004) are less effective in size-

structured ecosystems and recent studies have highlight the important role that body size 

plays in energy flux and trophic ecology within deep demersal fish communities (Polunin et 

al. 2001; Trueman et al., 2014; Mindel et al., 2016; Vieira, 2017). Food web models 

combining taxonomic–functional trait and body-size approaches are likely to be more 

effective (Hartvig et al., 2011; Blanchard et al., 2014). Therefore, understanding the 

mechanisms supporting deep-water fish community structure would be useful to parameterise 

ecosystem models [e.g.,, Porcupine Seabight (Howell et al., 2009), Rockall Trough 
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(Heymans et al., 2011)] in order to simulate, on a decadal timescale, the effects of benthic 

community changes on fish abundance and production (Blanchard et al., 2009, 2011). 

Accumulated proof of anthropogenic effects on deep sea communities and habitats 

confirms the significant threat to biodiversity (Ramirez-Llodra et al., 2011). Information on 

fisheries activities and related pressures (Weaver et al., 2011; McCauley et al., 2016; 

Amoroso et al., 2018), as well as the distribution and type of litter often lost or discarded 

(e.g., Pham et al., 2014), are powerful tools to increase societal and scientific awareness 

regarding the degradation of even the most remote marine ecosystems (Ruhl et al., 2011). 

Such information is key to identify anthropogenic pressures operating in these ecosystems 

and is therefore essential for effective management and achievement of ‗good environmental 

status‘ (EU, 2008) and to support further actions to target commitments under the United 

Nations Sustainable Development Goal 14: conserve and sustainably use the oceans, seas and 

marine resources (www.sustainabledevelopment.un.org/sdg14). 

 

6 | Scope for future work 

 

Generally, bottom trawls are relatively unselective fishing gears (Cashion et al., 2018), for 

this reason the wider cost-benefit of deep-water fisheries should be considered when 

reviewing fisheries regulations (Mangi et al., 2016). Collecting further data on the 

biodiversity and ecosystem functioning of deep-sea communities is important to consolidate 

knowledge and assess state and trends and to provide scientific-based information towards 

conservation and sustainable exploitation of marine resources (Ehler & Douvere, 2009; 

Kaiser et al., 2016). 

It is crucial to better understand resilience, recoverability and the role of disturbance 

on deep-water communities. Additionally, it is relevant to investigate the role of pelagic 
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communities; e.g., the vertically-migrating component of ecosystems, their structure and 

function (Woodall et al., 2018). This knowledge gap in a community functionally responsible 

for active benthic–pelagic coupling in continental slope ecosystems severely hampers our 

ability to predict ecosystem response to climate or human-induced change (Anderson et al., 

2018). 

Understanding historical trends of fisheries, climate and anthropogenic effects on 

ecosystems is important for the development of predictive models that can be used to identify 

the gaps in knowledge and better inform policy-makers in the support for future deep-sea 

management and conservation decisions. As evidenced by the recent introduction of depth 

ban on trawl fishing bellow 800 m, there is an intention to reduce of bottom-trawl fisheries to 

allow the sustainability of deep-water fisheries and to protect benthic ecosystems (EU,  

2016). An integrated ecosystem-based approach coupling the management of deep-water fish 

stocks and the state of benthic ecosystems (Kenny et al., 2018) would allow a better 

understanding of direct and indirect effects of bottom trawling on benthos and how fisheries 

effects reflect changes in food webs and ultimately in fish stocks. Implementing such 

strategies can be a step towards the achievement of the SDGs and contribute to the 

conservation and sustainable use of marine resources. 

 

ACKNOWLEDGEMENTS 

 

The authors thank the organizing committee of The Fisheries Society of the British Isles 

Annual Symposium 2018, G. Engelhard, guest editor of the JFB Special Issue and our three 

anonymous reviewers for critical and constructive comments that improved the manuscript. 

We thank B. Bett, M. Cunha, H. Ruhl, J. Gonçalves, M.-T. Chung, R. Thorpe, M. Spence and 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

17 
 

G. Lambert for the discussions and well-considered comments that contributed to this 

manuscript and to I. Katara and L. Fronkova for their help with Figure 1.   

 

REFERENCES  

 

Allain, V. & Lorance, P. (2000) Age estimation and growth of some deep-sea fish from the 

northeast Atlantic Ocean. Cybium 24(3), 7-16. 

 

Almeida, M., Frutos, I., Company, J. B., Martin, D., Romano, C. & Cunha, M. R. (2017) 

Biodiversity of suprabenthic peracarid assemblages from the Blanes Canyon region 

(NW Mediterranean Sea) in relation to natural disturbance and trawling pressure. 

Deep Sea Research Part II 137, 390-403. 

 

Amaro, T., Huvenne, V. A. I., Allcock, A. L., Aslam, T., Davies, J. S., Danovaro, R., De 

Stigter, H. C., Duineveld, G. C. A., Gambi, C., Gooday, A. J., Gunton, L. M., Hall, 

R., Howell, K. L., Ingels, J., Kiriakoulakis, K., Kershaw, C. E., Lavaleye, M. S. S., 

Robert, K., Stewart, H., Van Rooij, D., White, M. & Wilson, A. M. (2016) The 

Whittard Canyon – a case study of submarine canyon processes. Progress in 

Oceanography 146, 38-57. 

 

Amoroso, R. O., Pitcher, C. R., Rijnsdorp, A. D., McConnaughey, R. A., Parma, A. M., 

Suuronen, P., et al. (2018) Bottom trawl fishing footprints on the world‘s continental 

shelves. Proceedings of the National Academy of Sciences of the USA 115, E10275-

E10282. 

 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

18 
 

Anderson, T. A., Martin, A. P., Lampitt, R. S., Trueman, C. N., Henson, S. A. & Mayor, D. J. 

(2018) Quantifying carbon fluxes from primary production to mesopelagic fish using 

a simple food web model. ICES Journal of Marine Science (on-line). 

doi:10.1093/icesjms/fsx234 

 

Andrews, A. H., Tracey, D. M. & Dunn, M. R. (2009) Lead-radium dating of orange roughy 

(Hoplostethus atlanticus): validation of a centenarian life span. Canadian Journal of 

Fisheries and Aquatic Sciences 66, 1130-1140. 

 

Arroyo, N. L., Preciado, I., López‐ López, L., Muñoz, I. & Punzón, A. (2017) Trophic 

mechanisms underlying bentho‐ demersal community recovery in the north‐ east 

Atlantic. Journal of Applied Ecology 54(6), 1957-1967. 

 

Bailey, D. M., Collins, M. A., Gordon, J. D. M., Zuur, A. F. & Priede, I. G. (2009) Long-term 

changes in deep-water fish populations in the northeast Atlantic: a deeper reaching 

effect of fisheries? Proceedings of the Royal Society B 276, 1965-1969. 

 

Basson, M., Gordon, J. D. M., Large, P., Lorance, P., Pope, J. & Rackham, B. (2001) The 

effects of fishing on deep-water fish species to the west of Britain. JNCC (Joint 

Nature Conservation Committee) Report No. 324. p. 150. 

 

Benn, A. R., Weaver, P. P. E, Billett, D. S. M., van den Hove, S., Murdock, A. P., Doneghan, 

G.B. & Le Bas, T. (2010) Human Activities on the Deep Seafloor in the North East 

Atlantic: An Assessment of Spatial Extent. PLoS ONE 5 (9), e12730. 

 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

19 
 

Blanchard, F., Leloch F., Hily C. & Boucher J. (2004) Fishing effects on diversity, size and 

community structure of the benthic invertebrate and fish megafauna on the Bay of 

Biscay of France. Marine Ecology Progress Series 280, 249-260. 

 

Blanchard, J. L., Jennings, S., Law, R., Castle, M. D., McCloghrie, D., Rochet, M. J. & 

Benôit, E. (2009) How does abundance scale with body size in coupled size-

structured food webs? Journal of Animal Ecology 78, 270-280. 

 

Blanchard, J. L., Law, R., Castle, M. D & Jennings, S. (2011) Coupled energy pathways and 

the resilience of size-structured food webs. Theoretical Ecology 4, 289-300. 

 

Blanchard, J. L., Jennings, S., Holmes, R., Harle, J., Merino, G., Allen, J. I., Holt, J., Dulvy, 

N. K. & Barange, M. (2012) Potential consequences of climate change for primary 

production and fish production in large marine ecosystems. Philosophical 

Transactions of the Royal Society B 367, 2979-2989. 

 

Blanchard, J. L. andersen, K. H., Scott, F., Hintzen, N. T., Piet, G. J. & Jennings, S. (2014) 

Evaluating targets and trade-offs among fisheries and conservation objectives using 

a multispecies size spectrum model. Journal of Applied Ecology 51, 612-622. 

 

Blanchard, J. L., Heneghan, R. F., Everett, J. D., Trebilco, R. & Richardson, A. J. (2017) 

From bacteria to whales: using functional size spectra to model marine ecosystems. 

Trends in Ecology and Evolution 32, 174-186. 

 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

20 
 

Brown, E.J., Finney, B., Dommisse, M. & Hills, S. (2005) Effects of commercial otter 

trawling on the physical environment of the southeastern Bering Sea. Continental 

Shelf Research 25, 1281-1301. 

 

Bueno-Pardo, J., Ramalho, S. P., García-Alegre, A., Morgado, M., Vieira, R. P., Cunha, M. 

R. & Queiroga, H. (2017) Deep-sea crustacean trawling fisheries in Portugal: 

quantification of effort and assessment of landings per unit effort using a Vessel 

Monitoring System (VMS). Scientific Reports 7, 40795. 

 

Buhl-Mortensen, L., Vanreusel, A., Gooday, A. J., Levin, L. A., Priede, I. G., Buhl-

Mortensen, P., Gheerardyn, H., King, N. J. & Raes, M. (2010) Biological structures 

as a source of habitat heterogeneity and biodiversity on the deep ocean margins. 

Marine Ecology, 31, 21-50. 

 

Campbell, N., Neat, F., Burns, F. & Kunzlik, P. (2011) Species richness, taxonomic diversity 

and taxonomic distinctness of the deep water demersal fish community on the 

northeast Atlantic continental slope (ICES Subdivision VIa). ICES Journal of 

Marine Science 68, 365-376. 

 

Carlsson, J., Shephard, S., Coughlan, J., Trueman, C. N., Rogan, E., & Cross, T. F. (2011) 

Fine-scale population structure in a deep-sea teleost (orange roughy, Hoplostethus 

atlanticus). Deep Sea Research Part I 58(6), 627-636. 

 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

21 
 

Cashion, T., Al-Abdulrazzak, D., Belhabib, D., Derrick, B., Divovich, E., Moutopoulos, D. 

K., Noël S.-L., et al. (2018) Reconstructing global marine fishing gear use: catches 

and landed values by gear type and sector. Fisheries Research 206, 57-64. 

 

Charuau, A., Dupouy, H. & Lorance, P. (1995) French exploitation of the deep-water 

fisheries of the North Atlantic. In: Hopper, A.G. (Ed.), Deep-water Fisheries of the 

North Atlantic Oceanic Slope, Kluwer Academic Publisher, Netherlands, pp. 337-

356. 

 

Christensen, V. & Walters, C. J. (2004) Ecopath with Ecosim: methods, capabilities and 

limitations. Ecological Modelling 172, 109-139. 

 

Clark, M. R. anderson, O. F., Francis, R. C. & Tracey, D. M. (2000) The effects of 

commercial exploitation on orange roughy (Hoplostethus atlanticus) from the 

continental slope of the Chatham Rise, New Zealand, from 1979 to 1997. Fisheries 

Research 45(3), 217-238. 

 

Clark, M. R., Althaus, F., Schlacher, T. A., Williams, A., Bowden, D. A. & Rowden, A. A. 

(2016) The impacts of deep-sea fisheries on benthic communities: a review. ICES 

Journal of Marine Science 73 (suppl. 1), i51–i69. 

 

Clarke, J., Milligan, R. J., Bailey, D. M. & Neat, F. C. (2015) A scientific basis for regulating 

deep-sea fishing by depth. Current Biology 25, 2425-2429. 

 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

22 
 

Coscia, I., Castilho, R., Massa-Gallucci, A., Sacchi, C., Cunha, R. L., Stefanni, S., Helyar, S. 

J., Knutsen, H. & Mariani, S. (2018) Genetic homogeneity in the deep-sea grenadier 

Macrourus berglax across the North Atlantic Ocean. Deep Sea Research Part I 132, 

60-67. 

 

Costello, M. J., McCrea, M., Freiwald, A., Lundalv, T., Jonsson, L., Bett, B. J., van Weering, 

T. C. E., de Haas, H., Roberts, J. M. & Allen, D. (2005) Role of cold-water Lophelia 

pertusa coral reefs as fish habitat in the NE Atlantic. in: Cold Water Coral and 

Ecosystems, A. Freiwald, J. M. Roberts (eds), Springer, Heidelberg: 771-805. 

Cunha, M. R., Hilário, A. & Santos, R.S. (2017) Advances in deep-sea biology: biodiversity, 

ecosystem functioning and conservation. An introduction and overview. Deep Sea 

Research Part II 137, 1–5. 

 

Daly, E., Johnson, M. P., Wilson, A. M., Gerritsen, H. D., Kiriakoulakis, K., Allcock, A. L. 

& White, M. (2017) Bottom trawling at Whittard Canyon: Evidence for seabed 

modification, trawl plumes and food source heterogeneity. Progress in 

Oceanography 169, 227-240. 

 

de Madron, X. D. et al. (2011) Marine ecosystems‘ responses to climatic and anthropogenic 

forcings in the Mediterranean. Progress in Oceanography 91, 97- 

166. 

 

Devine, J. A., Baker, K. D. & Haedrich, R. L. (2006) Fisheries: deep-sea fishes qualify as 

endangered. Nature 439, 29. 

 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

23 
 

Domingues, C. M., Church, J. A., White, N. J., Gleckler, P. J., Wijffels, S. E., Barker, P. M., 

Dunn, J. R. (2008) Improved estimates of upper-ocean warming and multi-decadal 

sea-level rise. Nature 453, 1090-1093. 

 

Drazen, J. C. & Sutton, T. T. (2017) Dining in the deep: the feeding ecology of deep-sea 

fishes. Annual Review of Marine Science 9, 337-366. 

 

 

 

Ehler, C. & Douvere, F. (2009) Marine Spatial Planning: a step-by-step approach toward 

ecosystem-based management. Intergovernmental Oceanographic Commission and 

Man and the Biosphere Programme. IOC Manual and Guides no. 53, iCaM Dossier 

no. 6. Paris: UNESCO. 

 

Eigaard, O.R., Bastardie, F., Hintzen, N.T., Buhl-Mortensen, L., Buhl-Mortensen, P., 

Catarino, R., Dinesen, G.E., et al., 2016. The footprint of bottom trawling in 

European waters: distribution, intensity and seabed integrity. ICES Journal of 

Marine Science 74, 847-865. 

EU (2008). Directive 2008/56/EC of the European Parliament and of the Council of 17 June 

2008 establishing a framework for community action in the field of marine 

environmental policy. Official Journal of the European Union L164, 19–40. 

EU (2016) Regulation (EU) 2016/2336 of the European Parliament and of the Council of 14 

December 2016 establishing specific conditions for fishing for deep-sea stocks in the 

north-east Atlantic and provisions for fishing in international waters of the north-east 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

24 
 

Atlantic and repealing Council Regulation (EC) No 2347/2002. Official Journal of 

the European Union L354, 1–19. 

EU (2018) Council Regulation (EU) 2018/120 of 23 January 2018 fixing for 2018 the fishing 

opportunities for certain fish stocks and groups of fish stocks, applicable in Union 

waters and, for Union fishing vessels, in certain non-Union waters, and amending 

Regulation (EU) 2017/127. Official Journal of the European Union L 27, 1–168 

 

FAO (2011) Review of the state of world marine fishery resources. FAO Fisheries and 

Aquaculture Technical Paper No. 569. Rome, FAO. 334 pp. 

 

Fonseca, P., Abrantes, F., Aguilar, R., Campos, A., Cunha, M., Ferreira, D., Fonseca, T. P., 

Garcia, S., Henriques, V., Machado, M., Mecho, A., Relvas, P., Rodrigues, C. F., 

Salgueiro, E., Vieira, R., Weetman, A. & Castro, M. (2014) A deep-water crinoid 

Leptometra celtica bed off the Portuguese south coast. Marine Biodiversity 44, 223-

228. 

 

Froese, R. & Pauly, D. Editors (2018) FishBase. World Wide Web electronic publication. 

www.fishbase.org, version (06/2018). 

 

Gage, J. D. (2001) Deep-sea benthic community and environmental impact assessment at the 

Atlantic Frontier. Continental Shelf Research 21, 957-986. 

 

Gage, J. D., Roberts, J. M., Hartley, J. P. & Humphery, J. D. (2005) Potential impacts of 

deep-sea trawling on the benthic ecosystem along the Northern European continental 

margin: a review. In Barnes, P. W. & Thomas, J. P. (Eds.), Benthic Habitats and the 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

25 
 

Effects of Fishing. (pp. 503-517). (American Fisheries Society Symposium; Vol. 

41). American Fisheries Society. 

 

Gaither, M. R., Gkafas, G. A., de Jong, M., Sarigol, F., Neat, F., Regnier, T., Moore, D., 

Grӧcke, D. R., Hall, N., Liu, X., Kenny, J., Lucaci, A., Hughes, M., Haldenby, S. & 

Rus Shoelzel, A. (2018) Genomics of habitat choice and adaptive evolution in a 

deep-sea fish. Nature Ecology and Evolution 2, 680-687. 

 

Godbold, J., Bailey, D., Collins, M., Gordon, J., Spallek, W. & Priede, I. (2013) Putative 

fishery-induced changes in biomass and population size structures of demersal deep-

sea fishes in ICES Sub-area VII, Northeast Atlantic Ocean. Biogeosciences 10, 529-

539. 

 

Gordon, J. D. M. & Swan, S.C. (1996) Validation of age readings from otoliths of juvenile 

roundnose grenadier, Coryphaenoides rupestris, a deep-water macrourid fish. 

Journal of Fish Biology 49, 289-297. 

 

Gordon, J. D. M. & Bergstad, O. A. (1992) Species composition of demersal fish in the 

Rockall Trough North-eastern Atlantic as determined by different trawls. Journal of 

the Marine Biological Association of the United Kingdom 72, 213-230. 

 

Gordon, J. D. M. (2001) Deep-water fisheries at the Atlantic frontier. Continental Shelf 

Research 21, 987-1003. 

 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

26 
 

Gordon, J. D. M. (2003) The Rockall Trough, Northeast Atlantic: the cradle of deep-sea 

biological oceanography that is now being subjected to unsustainable fishing 

activity. Journal of Northwest Atlantic Fishery Science 31, 57-83. 

 

Gordon, J. D. M., Bergstad, O. M, Figueiredo, I. & Menezes, G. (2003) Deep-water fisheries 

in the Northeast Atlantic: I Description and Current Trends. Journal of Northwest 

Atlantic Fishery Science 31, 137-150. 

 

Haedrich, R. L. & Merrett, N. R. (1988) Summary atlas of deep-living demersal fishes in the 

North Atlantic Basin. Journal of Natural History 22, 1325-1362. 

 

Hall-Spencer, J., Allain, V. & Fosså, J. H. (2002) Trawling damage to Northeast Atlantic 

ancient coral reefs. Proceedings of the Royal Society B 269, 507–511. 

 

Harris, P. T., Macmillan-Lawler, M., Rupp, J. & Baker, E. K. (2014) Geomorphology of the 

oceans. Marine Geology 352, 4-24. 

 

Hartvig, M. andersen, K. H. & Beyer, J. E. (2011) Food web framework for size-structured 

populations. Journal of Theoretical Biology 272, 113-122. 

 

Heymans, J. J., Howell, K. L., Ayers, M., Burrows, M. T., Gordon, J. D., Jones, E. G. & 

Neat, F., 2011. Do we have enough information to apply the ecosystem approach to 

management of deep-sea fisheries? An example from the West of Scotland. ICES 

Journal of Marine Science 68, 265-280. 

 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

27 
 

Hiddink, J., Jennings, S., Sciberras, M., Szostek, C., Hughes, K., Ellis, N., Rijnsdorp, A. D., 

McConnaughey, R. A., Mazor, T., Hilborn, R., Collie, J. S., Pitcher, R., Amoroso, R. 

O., Parma, A. M., Suuronen, P. & Kaiser, M. (2017) Global analysis of depletion 

and recovery of seabed biota following bottom trawling disturbance. Proceedings of 

the National Academy of Sciences 114, 8301-8306. 

 

Hopper, A. G. (ed) (1995) Deep-Water Fisheries of the North Atlantic Oceanic Slope. 

Kluwer Academic Press, Dordrecht. 

 

Howell, K., Heymans, J. J., Gordon, J. D. M., Ayers, M. & Jones, E. (2009) DEEPFISH 

project: applying an ecosystem approach to the sustainable management of deep-

water fisheries. Part 1: Development of an Ecopath with Ecosim model. SAMS 

report 259a. Scottish Association for Marine Science, Oban. 116 pp. 

 

Huvenne, V. A. I., Bett, B. J., Masson, D. G., Le Bas, T. P. & Wheeler, A. J. (2016) 

Effectiveness of a deep-sea cold-water coral marine protected area, following eight 

years of fisheries closure. Biological Conservation 200, 60-69. 

 

Hyder, K., Rossberg, A. G., Allen, J. I., Austen, M. C., Barciela, R. M., Bannister, H. J., 

Blackwell, P. G., Blanchard, J. L., Burrows, M. T., Defriez, E., Dorrington, T., 

Edwards, K. P., Garcia-Carreras, B., Heath, M. R., Hembury, D. J., Heymans, J. J., 

Holt, J., Houle, J. E., Jennings, S., Mackinson, S., Malcolm, S. L., McPike, R., Mee, 

L., Mills, D. K., Montgomery, C., Pearson, D., Pinnegar, J. K., Pollicino, M., 

Popova, E. E., Rae, L., Rogers, S. I., Speirs, D., Spence, M. A., Thorpe, R., Turner, 

R. K., van der Molen, J., Yool, A. & Paterson, D. M. (2015) Making modelling 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

28 
 

count - increasing the contribution of shelf-seas community and ecosystem models 

to policy development and management. Marine Policy 61, 291-302. 

 

ICES (2016a), Celtic Seas Ecoregion. ICES Ecosystem Overviews 

www.ices.dk/sites/pub/Publication%20Reports/Advice/2016/2016/Celtic_Sea_Ecore

gion-Ecosystem_overview.pdf  

 

ICES (2016b) Report of the Working Group on Biology and Assessment of Deep-sea 

Fisheries Resources (WGDEEP), 20–27 April 2016, ICES HQ, Copenhagen, Denmark. ICES 

CM 2016/ACOM:18, 648 pp. 

http://ices.dk/sites/pub/Publication%20Reports/Expert%20Group%20Report/acom/2

016/WGDEEP/01%20WGDEEP%20Report.pdf 

 

ICES (2018a) Report of the Working Group on the Biology and Assessment of Deep-sea 

Fisheries Resources (WGDEEP), 11–18 April 2018, ICES HQ, Copenhagen, 

Denmark. ICES CM 2018/ACOM:14. 682 pp. 

http://www.ices.dk/sites/pub/Publication%20Reports/Expert%20Group%20Report/a

com/2018/WGDEEP/01%20WGDEEP%20Report.pdf 

 

ICES (2018b) ICES Stock Assessment Database. Copenhagen, Denmark. ICES. [accessed 

date]. http://standardgraphs.ices.dk 

 

ICES (2018c) Report of the Working Group on Elasmobranch Fishes (WGEF), 19–28 June 

2018, Lisbon, Portugal. ICES CM 2018/ACOM:16. 1306 pp. 

This article is protected by copyright. All rights reserved.

http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2016/2016/Celtic_Sea_Ecoregion-Ecosystem_overview.pdf
http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2016/2016/Celtic_Sea_Ecoregion-Ecosystem_overview.pdf


A
cc

ep
te

d 
A

rti
cl

e
 

29 
 

http://www.ices.dk/sites/pub/Publication%20Reports/Expert%20Group%20Report/a

com/2018/WGEF/01%20WGEF%20Report%202018.pdf 

 

Ichino, M. C., Clark, M. R., Drazen, J. C., Jamieson, A., Jones, D. O., Martin, A. P., Rowden, 

A. A., Shank, T. M., Yancey, P. H. & Ruhl, H. A. (2015) The distribution of benthic 

biomass in hadal trenches: a modelling approach to investigate the effect of vertical 

and lateral organic matter transport to the seafloor. Deep Sea Research Part I 100, 

21-33. 

 

Jennings, S. & Kaiser, M. J. (1998) The effects of fishing on marine ecosystems. Advances in 

Marine Biology 34, 201-352. 

 

Jennings, S., Dinmore, T. A., Duplisea, D. E., Warr, K. J. & Lancaster, J. E. (2001) Trawling 

disturbance can modify benthic production processes. Journal of Animal Ecology 70, 

459-475. 

 

Jones, D. O. B., Yool, A., Wei, C.-L., Henson, S., Ruhl, H. A., Watson, R. A. & Gehlen, M. 

2014. Global reductions in seafloor biomass in response to climate change. Global 

Change Biology 20, 1861-1872. 

 

Kahn, A. S., Yahel, G., Chu, J. W. F., Tunnicliffe, V. & Leys, S. P. (2015) Benthic grazing 

and carbon sequestration by deep-water glass sponge reefs. Limnology and 

Oceanography 60, 78-88. 

 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

30 
 

Kaiser, M. J., Hilborn, R., Jennings, S., Amaroso, R. andersen, M., Balliet, K., et al. (2016) 

Prioritization of knowledge‐ needs to achieve best practices for bottom trawling in 

relation to seabed habitats. Fish and Fisheries 17, 637-663. 

 

Kelly, C. J., Connolly, P. L. & Bracken, J. J. (1997) Age estimation, growth, maturity and 

distribution of the roundnose grenadier from the Rockall Trough. Journal of Fish 

Biology 50, 1-17. 

 

Kelly, C. J., Connolly, P. L. & Bracken, J. J. (1999) Age estimation, growth, maturity and 

distribution of the bluemouth rockfish Helicolenus d. dactylopterus (Delaroche, 

1809) from the Rockall Trough. ICES Journal of Marine Science 56, 61-74. 

 

Kenny, A. J., Campbell, N., Koen-Alonso, M., Pepin, P. & Diz, D. (2018) Delivering 

sustainable fisheries through adoption of a risk-based framework as part of an 

ecosystem approach to fisheries management. Marine Policy 93, 232-240. 

 

Knutsen, H., Jorde, P. E., Sannaes, H., Hoelzel, A. R., Bergstad, O. A., Stefanni, S., 

Johansen, T. & Stenseth, N. C. (2009) Bathymetric barriers promoting genetic 

structure in the deepwater demersal fish tusk (Brosme brosme). Molecular Ecology 

18, 3151-3162. 

 

Knutsen, H., Jorde, P. E., Bergstad, O. A. & Skogen, M. (2012) Population genetic structure 

in a deepwater fish Coryphaenoides rupestris: patterns and processes. Marine 

Ecology Progress Series 460, 233-246. 

 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

31 
 

Koslow, J., Boehlert, G. W., Gordon, J. D. M., Haedrich, R. L., Lorance, P. & Parin, N. 

(2000) Continental slope and deep-sea fisheries: implications for a fragile 

ecosystem. ICES Journal of Marine Science 57, 548-557. 

 

Large, P. A., Hammer, C., Bergstad, O. A., Gordon, J. D. M., & Lorance, P. (2003) Deep-

water fisheries of the northeast Atlantic: II. Assessment and management 

approaches. Journal of Northwest Atlantic Fishery Science 31, 151-163. 

 

Large, P. A., Diez, G., Drewery, J., Laurans, M., Pilling, G. M., Reid, D. G., Reinert, J., 

South, A. B. & Vinnichenko, V. I. (2010) Spatial and temporal distribution of 

spawning aggregations of blue ling (Molva dypterygia) west and northwest of the 

British Isles. ICES Journal of Marine Science 67, 494-501. 

 

Large, P. A., Agnew, D. J., Álvarez Pérez, J. Á., Barrio Froján, C., Cloete, R., Damalas, D., 

Dransfeld, L., Edwards, C. T. T., Feist, S., Figueiredo, I., González, F., Herrera, J. 

G., Kenny, A., Jakobsdóttir, K., Longshaw, M., Lorance, P., Marchal, P., 

Mytilineou, C., Planque, B. & Politou, C.-Y., 2013. (2013) Strengths and 

weaknesses of the management and monitoring of deep-water stocks, fisheries and 

ecosystems in various areas of the world—a roadmap toward sustainable deep-water 

fisheries in the Northeast Atlantic?. Reviews in Fisheries Science 21, 157-180. 

 

Longmore, C., Fogarty, K., Neat, F., Brophy, D., Trueman, C., Milton, A. & Mariani, S. 

(2010) A comparison of otolith microchemistry and otolith shape analysis for the 

study of spatial variation in a deep-sea teleost, Coryphaenoides rupestris. 

Environmental Biology of Fishes 89, 591-605. 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

32 
 

 

Longmore, C., Trueman, C. N., Neat, F., O‘Gorman, E. J., Milton, J. A. & Mariani, S. (2011) 

Otolith geochemistry indicates life-long spatial population structuring in a deep-sea 

fish, Coryphaenoides rupestris. Marine Ecology Progress Series 435, 209-224. 

 

Lorance, P. (1998) Structure du peuplement ichtyologique du talus continental à l'ouest des 

îles Britanniques et impact de la peche. Cybium 22(4), 309-331. 

 

Lorance, P. & Dupouy, H. (2001) CPUE abundance indices of the main target species of the 

French deep-water fishery in ICES sub-areas V–VII. Fisheries Research 51, 137-

149. 

 

Lorance, P., Dupouy, H. & Allain, V. (2001) Assessment of the roundnose grenadier 

(Coryphaenoides rupestris) stock in the Rockall Trough and neighbouring areas 

(ICES Sub-areas V–VII). Fisheries Research 51, 151-163. 

 

Mangi, S. C., Kenny, A., Readdy, L., Posen, P., Ribeiro-Santos, A., Neat, F. C. & Burns, F. 

(2016). The economic implications of changing regulations for deep sea fishing 

under the European Common Fisheries Policy: UK case study. Science of the Total 

Environment 562, 260-269. 

 

Martín, J., Puig, P., Palanques, A. & Giamportone, A. (2014) Commercial bottom trawling as 

a driver of sediment dynamics and deep seascape evolution in the Anthropocene. 

Anthropocene 7, 1-15. 

 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

33 
 

Mauchline, J. & Gordon, J. D. M. (1991) Oceanic pelagic prey of benthopelagic fish in the 

benthic boundary layer of a marginal oceanic region. Marine Ecology Progress 

Series 74, 109-115. 

 

May, R. M. & McLean, A. R. (2007) Theoretical ecology: principles and applications. Wiley 

Blackwell, Oxford. 

 

McCauley, D. J., Woods, P., Sullivan, B., Bergman, B., Jablonicky, C., Roan, A., Hirshfield, 

M., Boerder, K. & Worm, B. (2016) Ending hide and seek at sea. Science 351, 1149-

1150. 

 

McClain, C. R., Allen, A. P., Tittensor, D. P. & Rex, M.A. (2012) Energetics of life on the 

deep seafloor. Proceedings of the National Academy of Sciences of the USA 109, 

15366-15371. 

 

McClain, C. R. & Schlacher, T. A. (2015) On some hypotheses of diversity of animal life at 

great depths on the sea floor. Marine Ecology 36, 849-872. 

 

Medhaug, I., Stolpe, M. B., Fischer, E. M. & Knutti, R. (2017) Reconciling controversies 

about the ‗global warming hiatus‘. Nature 545, 41-47. 

 

Milligan, R.J., Spence, G., Roberts, J. M. & Bailey, D. M. (2016) Fish communities 

associated with cold-water corals vary with depth and substratum type. Deep Sea 

Research Part I 114, 43-54. 

 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

34 
 

Mindel, B. L., Neat, F. C., Trueman, C. N., Webb, T. J. & Blanchard, J. L. (2016) Functional, 

size and taxonomic diversity of fish along a depth gradient in the deep sea. PeerJ 4, 

e2387. 

 

Mindel, B. L., Neat, F. C., Webb, T. J. & Blanchard, J. L. (2018) Size-based indicators show 

depth dependent change over time in the deep sea. ICES Journal of Marine Science 

75, 113-121. 

 

Monteiro, P., Araújo, A., Erzini, K. & Castro, M. (2001) Discards of the Algarve (southern 

Portugal) crustacean trawl fishery. Hydrobiologia 449, 267-277. 

 

Morán, X. A. G., Lopez-Urrutia, A., Calvo-Diaz, A. & Li, W. K. W. (2010) Increasing 

importance of small phytoplankton in a warmer ocean. Global Change Biology 16, 

1137-1144. 

 

Morato, T., Watson, R., Pitcher, T. J. & Pauly, D. (2006) Fishing down the deep. Fish and 

Fisheries 7, 24-34. 

 

Muñoz, P. D., Sayago-Gil, M., Cristobo, J., Parra, S., Serrano, A., Diaz del Rio, V., 

Patrocinio, T., Sacau, M., Murillo, F. J., Palomino, D. & Fernandez-Salas, L.M. 

(2009) Seabed mapping for selecting cold-water coral protection areas on Hatton 

Bank, Northeast Atlantic. ICES Journal of Marine Science 66, 2013-2025. 

 

Muñoz, P. D., Sayago-Gil, M., Patrocinio, T., González-Porto, M., Murillo, F. J., Sacau, M., 

González, E., Fernández, G. & Gago, A. (2012) Distribution patterns of deep-sea 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

35 
 

fish and benthic invertebrates from trawlable grounds of the Hatton Bank, north-east 

Atlantic: effects of deep-sea bottom trawling. Journal of the Marine Biological 

Association of the United Kingdom 92, 1509-1524. 

Neat, F., Burns, F. & Drewery, J. (2008) The deepwater ecosystem of the continental shelf 

slope and seamounts of the Rockall Trough: a report on the ecology and biodiversity 

based on FRS scientific surveys. Fisheries Research Services Internal Report, 

(02/08). 

 

Neat, F., Kynoch, R., Drewery, J. & Burns, F. (2010) Deepwater trawl survey manual. 

Marine Scotland Science Report 3(10), 1-46. 

 

Neat, F. & Campbell, N. (2011) Demersal fish diversity of the isolated Rockall plateau 

compared with the adjacent west coast shelf of Scotland. Biological journal of the 

Linnean Society 104, 138-147. 

 

Neat, F. C. (2017) Aggregating behaviour, social interactions and possible spawning in the 

deep‐ water fish Coryphaenoides rupestris. Journal of Fish Biology 91, 975-980. 

 

Nittrouer, C. A. & Wright, L.D. (1994) Transport of particles across continental shelves. 

Reviews of Geophysics 32, 85-113. 

 

Norse, E., Brooke, S., Cheung, W., Clark, M. R., Ekeland, I., Froese, R., Gjerde, K. M., 

Haedrich, R. L., Heppell, S. S., Morato, T., Morgan, L. E., Pauly, D., Sumaila, R. & 

Watson, R., 2012. Sustainability of deep-sea fisheries. Marine Policy 36, 307-320. 

 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

36 
 

O‘ Hea, B., Johnston, G., Gerritsen, H., Leahy, Y., Mohn, C. & Wall, D. (2009) Deep Water 

Survey, 2008 Celtic Explorer 9th – 22nd September 2008. Marine Institute, 59pp. 

 

O'Neill, F. G. & Ivanović, A. (2016) The physical impact of towed demersal fishing gears on 

soft sediments. ICES Journal of Marine Science 73 (suppl 1), i5–i14. 

 

Pauly, D. & Zeller, D. (2016) Catch reconstructions reveal that global marine fisheries 

catches are higher than reported and declining. Nature Communications 7, 10244. 

 

Pawlowski, L. & Lorance, P. (2009) Effect of discards on roundnose grenadier stock 

assessment in the Northeast Atlantic. Aquatic Living Resources 22(4), 573-582. 

 

Pawson, M. G. & Jennings, S. (1996). A critique of methods for stock identification in 

marine capture fisheries. Fisheries Research 25, 203-217. 

 

Pawson, M. G. & Ellis, J. R. (2005) Stock identity of elasmobranchs in the Northeast Atlantic 

in relation to assessment and management. Journal of Northwest Atlantic Fishery 

Science 35, 173-193. 

 

Pham, C. K., Ramirez-Llodra, E., Alt, C. H. S., Amaro, T., Bergmann, M., Canals, M., 

Company, J. B., Davies, J., Duineveld, G., Galgani, F., Howell, K. L., Huvenne, V. A. I., 

Isidro, E., Jones, D. O. B., Lastras, G., Morato, T., Gomes-Pereira, J. N., Purser, A., 

Stewart, H., Tojeira, I., Tubau, X., Van Rooij, D. & Tyler, P. A. (2014). Marine litter 

distribution and density in European seas, from the shelves to deep basins. PloS 

ONE 9, e95839. 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

37 
 

 

Polunin, N. V. C., Morales-Nin, B., Pawsey, W. E., Cartes, J. E, Pinnegar, J. K. & Moranta, 

J. (2001) Feeding relationships in Mediterranean bathyal assemblages elucidated by 

carbon and nitrogen stable-isotope data. Marine Ecology Progress Series 220, 13-

23. 

 

Priede, I. G. (2017) Deep-Sea Fishes: Biology, Diversity, Ecology and Fisheries. Cambridge: 

Cambridge University Press. doi:10.1017/9781316018330 

 

Priede, I. G., Godbold, J. A., King, N. J., Collins, M. A., Bailey, D. M., Gordon, J. D. M. 

(2010) Deep-sea demersal fish species richness in the Porcupine Seabight, NE 

Atlantic Ocean: global and regional patterns. Marine Ecology 31, 247-260. 

 

Priede, I. G., Godbold, J. A., Niedzielski, T., Collins, M. A., Bailey, D. M., Gordon, J. D. M. 

& Zuur, A. F. (2011) A review of the spatial extent of fishery effects and species 

vulnerability of the deep-sea demersal fish assemblage of the Porcupine Seabight, 

Northeast Atlantic Ocean (ICES Subarea VII). ICES Journal of Marine Science 68, 

281-289. 

 

Puig, P., Canals, M., Company, J. B., Martín, J., Amblas, D., Lastras, G., Palanques, A. & 

Calafat, A. M. (2012) Ploughing the deep sea floor. Nature 489, 286-289. 

 

Pusceddu, A., Bianchelli, S., Martín, J., Puig, P., Palanques, A., Masqué, P. & Danovaro, R. 

(20140 Chronic and intensive bottom trawling impairs deep-sea biodiversity and 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

38 
 

ecosystem functioning. Proceedings of the National Academy of Sciences of the USA 

111, 8861-8866. 

 

Ramirez-Llodra, E., Tyler, P. A., Baker, M. C., Bergstad, O. A., Clark, M. R., Escobar, E., 

Levin, L. A., Menot, L., Rowden, A. A., Smith, C. R., Van Dover, C. L. (2011) Man 

and the Last Great Wilderness: Human Impact on the Deep Sea. PLoS ONE 6(8), 

e22588. 

 

Ramsay, K., Bergmann, M., Veale, L. O., Richardson, C. A., Kaiser, M. J., Vize, S. J. & 

Feist, S. W. (2001) Damage, autotomy and arm regeneration in starfish caught by 

towed demersal fishing gears. Marine Biology 138, 527-536. 

 

Regulation (EU) 2016/2336 of the European Parliament and of the Council of 14 December 

2016 establishing specific conditions for fishing for deep-sea stocks in the north-east 

Atlantic and provisions for fishing in international waters of the north-east Atlantic 

and repealing Council Regulation (EC) No 2347/2002. 

 

 

Roberts, J. M., Harvey, S. M., Lamont, P. A., Gage, J. D. & Humphery, J. D. (2000) Seabed 

photography, environmental assessment and evidence for deep-water trawling on the 

continental margin west of the Hebrides. Hydrobiologia 441, 173-183. 

 

Rogers, A. D., Brierley, A., Croot, P., Cunha, M. R., Danovaro, R., Devey, C., Hoel, A. H., 

Ruhl, H. A., Sarradin, P-M., Trevisanut, S., van den Hove, S., Vieira, H. & Visbeck, 

M. (2015) Delving Deeper: Critical challenges for 21st century deep-sea research. 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

39 
 

Larkin, K.E., Donaldson, K. and McDonough, N. (Eds.) Position Paper 22 of the 

European Marine Board, Ostend, Belgium. 224 pp. ISBN 978-94-920431-1-5 

 

Ruhl, H. A. andré, M., Beranzoli, L., Cagatay, M. N., Colaço, A., Cannat, M., Dañobeitia, J. 

J., Favali, P., Géli, L., Gillooly, M., Greinert, J., Hall, P. O. J., Huber, R., 

Karstensen, J., Lampitt, R. S., Larkin, K. E., Lykousis, V., Mienert, J., Miranda, J. 

M., Person, R., Priede, I. G., Puillat, I., Thomsen, L. & Waldmann, C. (2011) 

Societal need for improved understanding of climate change, anthropogenic impacts 

and geo-hazard warning drive development of ocean observatories in European 

Seas. Progress in Oceanography 91, 1-33. 

 

Smith, D. C., Robertson, S. G., Fenton, G. E. & Short, S. A. (1995) Age determination and 

growth of orange roughy (Hoplostethus atlanticus): a comparison of annulus counts 

with radiometric ageing. Canadian Journal of Fisheries and Aquatic Sciences 52(2), 

391-401. 

 

Söffker, M., Sloman, K. & Hall‐ Spencer, J. M. (2011) In situ observations of fish associated 

with coral reefs off Ireland. Deep Sea Research Part I: Oceanographic Research 

Papers 58, 818-825. 

 

Spence, M. A., Blanchard, J. L., Rossberg, A. G., Heat, M. R., Heymans, J. J., Mackinson, S., 

Serpetti, N., Speirs, D. C., Thorpe, R. B. & Blackwell, P. G. (2018) A general 

framework for combining ecosystem models. Fish and Fisheries, 1–12.  

 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

40 
 

Stasko, A. D., Swanson, H., Majewski, A., Atchison, S., Reist, L. & Power, M. (2016). 

Influences of depth and pelagic subsidies on the size-based trophic structure of 

Beaufort Sea fish communities. Marine Ecology Progress Series 549, 153-166. 

 

Sutton, T. T. (2013) Vertical ecology of the pelagic ocean: classical patterns and new 

perspectives. Journal of Fish Biology 83, 1508-1527. 

 

Sweetman, A. K., Thurber, A. R., Smith, C. R., Levin, L. A., Mora, C., Wei, C.-L., Gooday. 

A. J., Jones, D. O. B., Rex, M., Yasuhara, M., Ingels, J., Ruhl, H. A., Frieder, C. A., 

Danovaro, R., Würzberg, L., Baco, A., Grupe, B. M., Pasulka, A., Meyer, K. S., 

Dunlop, K. M., Henry, L. A. & Roberts, J. M. (2017) Major impacts of climate 

change on deep-sea benthic ecosystems. Elementa: Science of the Anthropocene 5 

(4). 

 

Thistle, D., Sedlacek, L., Carman, K. R., Fleeger, J. W., Brewer, P. G. & Barry, J. P. (2006) 

Simulated sequestration of industrial carbon dioxide at a deep-sea site: effects on 

species of harpacticoid copepods. Journal of Experimental Marine Biology and 

Ecology 330, 151-158. 

 

Thomas, M. K., Kremer, C. T., Klausmeier, C. A. & Litchman, E. (2012) A global pattern of 

thermal adaptation in marine phytoplankton. Science 338, 1085-1088. 

 

Thorpe, R. B., Le Quesne, W. J., Luxford, F., Collie, J. S. & Jennings, S. (2015) Evaluation 

and management implications of uncertainty in a multispecies size‐ structured 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

41 
 

model of population and community responses to fishing. Methods in Ecology and 

Evolution 6, 49-58 

 

Thorson, J. T., & Barnett, L. A. (2017) Comparing estimates of abundance trends and 

distribution shifts using single-and multispecies models of fishes and biogenic 

habitat. ICES Journal of Marine Science 74, 1311-1321. 

 

Thurstan, R. H., Brockington, S. & Roberts, C. M. (2010) The effects of 118 years of 

industrial fishing on UK bottom trawl fisheries. Nature communications 1, 15. 

 

Tillin, H. M., Hiddink, J. G., Jennings, S. & Kaiser, M. J. (2006) Chronic bottom trawling 

alters the functional composition of benthic invertebrate communities on a sea-basin 

scale. Marine Ecology Progress Series 318, 31-45. 

 

Treble, M. A., Campana, S. E., Wastle, R. J., Jones, C. M. & Boje, J. (2008) Growth analysis 

and age validation of a deepwater Arctic fish, the Greenland halibut (Reinhardtius 

hippoglossoides). Canadian Journal of Fisheries and Aquatic Sciences 65, 1047-

1059. 

 

Trueman, C. N., Johnston, G., O‘Hea, B. & MacKenzie, K. M. (2014) Trophic interactions of 

fish communities at midwater depths enhance long-term carbon storage and benthic 

production on continental slopes. Proceedings of the Royal Society B 281, 

20140669. 

 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

42 
 

Trueman, C. N., Chung, M-T. & Shores, D. (2016) Ecogeochemistry potential in deep time 

biodiversity illustrated using a modern deep-water case study. Philosophical 

Transactions of the Royal Society B 371, 20150223. 

 

Victorero, L., Watling, L., Palomares, M. L. D. & Nouvian, C. (2018) Out of sight, but within 

reach: A Global History of Bottom-Trawled Deep-Sea Fisheries from > 400 m 

depth. Frontiers in Marine Science 5, 98. 

 

Vieira, R. P. (2017) Functioning and vulnerability of continental slope ecosystems: 

combining stable isotope and visual survey approaches. PhD Thesis. University of 

Southampton. 

 

Villasante, S. (2010) Global assessment of the European Union fishing fleet: an update. 

Marine Policy 34, 663-670. 

 

Villasante, S., Morato, T., Rodriguez-Gonzalez, D., Antelo, M., Österblom, H., Watling, L., 

Nouvian, C., Gianni, M. & Macho, G. (2012) Sustainability of deep-sea fish species 

under the European Union Common Fisheries Policy. Ocean & Coastal 

Management 70, 31-37. 

 

Weaver, P. P. E., Benn, A., Arana, P. M., Ardron, J. A., Bailey, D. M., Baker, K., Billett, D. 

S. M., Clark, M. R., Davies, A. J., Durán Muñoz, P., Fuller, S. D., Gianni, M., 

Grehan, A. J., Guinotte, J., Kenny, A., Koslow, J. A., Morato, T., Penney, A. J., 

Perez, J. A. A., Priede, I.G., Rogers, A. D. Santos, R.S. & Watling, L. (2011) The 

impact of deep-sea fisheries and implementation of the UNGA Resolutions 61/105 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

43 
 

and 64/72. Report of an international scientific workshop, National Oceanography 

Centre, Southampton, 45 pp. 

 

White, T. A., Stamford, J. & Rus Hoelzel, A. (2010) Local selection and population structure 

in a deep‐ sea fish, the roundnose grenadier (Coryphaenoides rupestris). Molecular 

Ecology 19, 216-226. 

 

Woodall, L. C. andradi-Brown, D. A., Brierley, A. S., Clark, M. R., Connelly, D., Hall, R. A., 

Howell, K. L., Huvenne, V. A. I., Linse, K., Ross, R. E., Snelgrove, P., Stefanoudis, 

P. V., Sutton, T. T., Taylor, M., Thornton, T. F. & Rogers, A. D. (2018) A 

multidisciplinary approach for generating globally consistent data on mesophotic, 

deep-pelagic and bathyal biological communities. Oceanography 31(3), 

https://doi.org/10.5670/oceanog.2018.301. 

 

Woolley, S. N., Tittensor, D. P., Dunstan, P. K., Guillera-Arroita, G., Lahoz-Monfort, J. J., 

Wintle, B. A., Worm, B. & O‘Hara, T. D. (2016) Deep-sea diversity patterns are 

shaped by energy availability. Nature 533, 393-396. 

 

Yool, A., Martin, A. P. anderson, T. R., Bett, B. J., Jones, D. O. B. & Ruhl, H. A. (2017) Big 

in the benthos: Future change of seafloor community biomass in a global, body size 

resolved model. Global Change Biology 23, 3554-3566. 

 

 

  

This article is protected by copyright. All rights reserved.

https://doi.org/10.5670/oceanog.2018.301


A
cc

ep
te

d 
A

rti
cl

e
 

44 
 

Figure captions 

 

FIGURE 1 Map showing ICES Subareas and Divisions to the west of the British 

Isles, and fishing intensity deeper than 400 m in 2015 (www.odims.ospar.org) 

 

FIGURE 2 (a) Trends in official nominal catches from ICES subarea 6 and (b) ICES 

subarea 7 of Aphanopus carbo (█), Molva dypterygia (█), Hoplostethus atlanticus (█), 

Coryphaenoides rupestris (█) and Brosme brosme (█). n.b., In 1999 data were not 

provided by all EU member states (www.ices.dk/marine-data/dataset-

collections/Pages/Fish-catch-and-stock-assessment.aspx), 

 

 

FIGURE 3 Schematic illustration of important physical and biological processes 

responsible for fueling benthic and pelagic communities on the continental slope and 

in the water column (after Vieira, 2017).  
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e TABLE 1 Average annual historical nominal catches of selected deep-water fish species from ICES Subarea 6 1950–2016 (ICES: 

www.ices.dk/marine-data/dataset-collections/Pages/Fish-catch-and-stock-assessment.aspx) 

 

 
 Average landings (t) 

  
1950 1960 1970 1980 1990 2000 2010 

  

Bony fishes         

     Beryciformes         

Alfonsino  Beryx spp. 0 0 0 1 177 5 1 

Orange roughy Hoplostethus atlanticus 0 0 0 1 276 118 0.1 

     Gadiformes          

Tusk Brosme brosme 690 1623 1601 3397 2523 2013 1381 

Roundnose grenadier Coryphaenoides rupestris 0 0 38 231 5470 5192 1139 

Roughhead grenadier  Macrourus berglax 0 0 0 0 100 59 162 

Blue ling Molva dypterygia 0 34 3368 9062 4895 4429 1470 

Ling Molva molva 4348 8719 14,500 14,459 9191 5956 5227 

Greater forkbeard Phycis blennoides 0 0 2 377 640 1080 717 

Roughsnout grenadier Trachyrincus scabrus 0 0 0 0 0 127 0 

     Osmeriformes         

Greater argentine Argentina silus 0 0 0 0 1 1697 2665 

     Perciformes         

Blackspot (red) seabream  Pagellus bogaraveo 0 0 336 125 5 3 0 

Black scabbardfish  Aphanopus carbo 0 0 0 15 1893 3226 2048 

         

Elasmobranchs   

     Squaliformes         

Leafscale gulper shark  Centrophorus squamosus 0 0 0 0 0.4 169 26 

Table
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e Portuguese dogfish Centroscymnus coelolepis 0 0 0 0 18 766 6 

Kitefin shark Dalatias licha 0 0 0 0 3 148 0 

Birdbeak dogfish  Deania calcea 0 0 0 0 0 3 0 

     Carcharhiniformes         

Blackmouth catshark  Galeus melastomus 0 0 0 0 0 0.1 0 
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e TABLE 2 Average annual historical nominal catches of selected deep-water fish species from ICES Subarea 7 1950–2016 (ICES: 

www.ices.dk/marine-data/dataset-collections/Pages/Fish-catch-and-stock-assessment.aspx) 

 

 
 Average landings (tonnes) 

  
1950 1960 1970 1980 1990 2000 2010 

  

Bony fishes         

     Beryciformes         

Alfonsino  Beryx spp. 0 0 2 14 115 57 12 

Orange roughy Hoplostethus atlanticus 0 0 0 0.3 975 1176 2 

     Gadiformes          

Tusk Brosme brosme 24 84 23 208 137 77.5 16 

Roundnose grenadier Coryphaenoides rupestris 0 1 10 21 1048 406 36 

Roughhead grenadier  Macrourus berglax 0 0 0 0 0 18.5 3 

Blue ling Molva dypterygia 0 0 14 67 220 238 77 

Ling Molva molva 1852 3492 6092 11,015 9395 5459 2876 

Greater forkbeard Phycis blennoides 0 0 0.4 218 1565 1739 805 

     Osmeriformes         

Greater argentine Argentina silus 0 0 0 0 0 4 2 

     Perciformes         

Blackspot (red) seabream  Pagellus bogaraveo 0 0 967 366 43 83 60 

Black scabbardfish  Aphanopus carbo 0 0 0 0 282 446 157 

         

     Elasmobranchs   

     Squaliformes         

Leafscale gulper shark  Centrophorus squamosus 0 0 0 0 0 258 4 

Portuguese dogfish Centroscymnus coelolepis 0 0 0 0 13 488 1 
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e Kitefin shark Dalatias licha 0 0 0 0 0 66 1 

Birdbeak dogfish  Deania calcea 0 0 0 0 0 32 0.2 

     Carcharhiniformes         

Blackmouth catshark  Galeus melastomus 0 0 0 0 0 2 1 
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