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Abstract. We develop an AFM (Ablowitz-Fokas-Musslimani) method applicable to studying4
water waves in a cylindrical geometry. As with the established AFM method for two-dimensional5
and three-dimensional water waves, the formulation involves only surface variables and is amenable6
to numerical computation. The method is developed for a general cylindrical surface, and we demon-7
strate its use for numerically computing fully nonlinear axisymmetric periodic and solitary waves on8
a ferrofluid column.9
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1. Introduction. In the classical water wave problem a solution is sought de-12

scribing an inviscid fluid motion with a free surface. If the fluid motion is irrotational13

the mathematical problem requires the solution of Laplace’s equation subject to a14

suitable condition on the bottom in the case of finite depth, or at minus infinity15

in the case of infinite depth, and subject to Bernoulli’s equation and the kinematic16

condition at the free surface. Of particular interest is the determination of the free17

surface itself, and the description of waves propagating along the free surface, their18

shape, speed, and so on.19

Numerous analytical approaches have been developed for tackling this problem20

(for a review see, for example, Lannes [14]). In 2006 Ablowitz et al. [1] presented21

a new non-local formulation which they developed by exploiting a carefully chosen22

identity for harmonic functions. We shall refer to this as the AFM (Ablowitz-Fokas-23

Musslimani) method. This was used to re-express the problem in terms of an integral24

over the free surface to be solved along with Bernoulli’s equation. Accordingly their25

formulation involves only surface variables and can therefore be solved independently26

and without reference to the remainder of the flow domain. This new approach has27

been used, for example, to study the stability of two-dimensional periodic waves on28

water of finite depth in the presence of gravity (Deconinck & Oliveras [8]) and in29

the presence of both gravity and surface tension (Deconinck & Trichtchenko [9]), and30

for bathymetry detection from surface data (Vasan & Deconinck [20]). It has also31

been extended to include vorticity (Ashton & Fokas [4]) and to two-layer flows (Haut32

& Ablowitz [13]). In effect the AFM formulation is a surface-variables description33

of the water waves problem with an implicit Dirichlet-to-Neumann operator. The34

performance of the AFM method against other Dirichlet-to-Neumann formulations,35

including the Craig-Sulem operator expansion approach, has been assessed by Wilken-36

ing & Vasan [21].37

To date the AFM method has been applied to study two-dimensional and three-38

dimensional surface waves. In this paper we show how it can be adapted to a cylindri-39

cal geometry, and we derive the cylindrical analogue of the nonlocal surface integral40

of Ablowitz et al. [1]. By way of demonstration, we illustrate the utility of this41
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Fig. 1. Sketch of the periodic flow geometry. The domain Ω occupies one wavelength −L ≤
x ≤ L with b ≤ r ≤ S(x, θ, t).

formulation for numerically computing fully nonlinear, axisymmetric periodic waves42

and solitary waves on a liquid column. Periodic axisymmetric waves on a cylindrical43

liquid jet have previously been computed by Vanden-Broeck et al. [19] using a fi-44

nite difference method. While a cylindrical column will normally tend to disintegrate45

into droplets by virtue of the well-known Rayleigh-Plateau instability, if the liquid46

in question is a ferrofluid, which is essentially a stable suspension of tiny magnetize-47

able particles (e.g. Rosensweig [16]), the Rayleigh-Plateau instability can be resisted48

and the column fully stabilised when it is subjected to an azimuthal magnetic field49

(Arkhipenko & Barkov [3]). Such a field can be generated by placing an electric50

current-carrying wire or metal rod along the axis of the column. Nonlinear waves on51

the surface of a ferrofluid column stabilised in this way have previously been studied52

by Bashtovoi et al. [5] and Rannacher & Engel [15] using a weakly-nonlinear model53

equation of KdV type. Experiments confirming the possibility of periodic waves and54

solitary waves were performed by Bourdin et al. [7]. Fully nonlinear solitary wave so-55

lutions were computed by Blyth & Părău [6]. We emphasise that it is not our intention56

here to further the study of this physical phenomenon per se, rather to demonstrate57

the efficacy of the cylindrical AFM formulation for computing such waves.58

2. Equations of motion. We consider a generally unsteady inviscid, incom-59

pressible and irrotational axisymmetric fluid motion with velocity u = ∇φ, where60

φ(x, r, θ, t) is the velocity potential with cylindrical polar coordinates (r, θ) and time61

t. The velocity potential satisfies Laplace’s equation62

∇2φ = 0,(2.1)63

in the fluid domain Ω, which we take to be cylindrical, occupying the region b ≤64

r ≤ S(x, θ, t), −L ≤ x ≤ L, 0 ≤ θ ≤ 2π for some given constants L > 0 and65

b > 0. The boundary r = b is assumed to be a solid surface, and the boundary at66

r = S(x, θ, t) is assumed to be a free surface whose particular form is to be determined67

as part of the solution to the problem. With a view to later computing travelling wave68

solutions we henceforth adopt periodic boundary conditions at the domain ends x =69

±L. Solitary wave solutions can be computed within this framework by considering70

L to be sufficiently large.71
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Bernoulli’s equation holds at the free surface so that72

φt +
1

2

(
φ2x + φ2r +

1

r2
φ2θ

)
+
γκ

ρ
− V = E(t),(2.2)73

at r = S, where γ is the surface tension at the free surface, κ is the curvature of the74

free surface, ρ is the fluid density, V represents a potential field associated with one75

or more body forces per unit mass that are influencing the fluid motion, and E(t)76

is the Bernoulli constant. The kinematic condition at the free surface requires that77

D(r − S)/Dt = 0, where D/Dt is the material derivative, which yields the condition78

St + φxSx + φθ
Sθ
S2

= φr(2.3)79

on r = S. On the solid boundary we enforce the impermeability condition φr = 0 at80

r = b.81

Our goal is to reformulate the problem in terms of free surface variables only.82

Following the approach of Ablowitz et al. [1], we start by noting that, if two functions83

φ(x, r, θ, t) and ψ(x, r, θ, t) both satisfy Laplace’s equation, then it is the case that84

∂r(φxψr + ψxφr) +
(φxψr + ψxφr)

r
+

1

r
∂θ

(
φx
ψθ
r

+ ψx
φθ
r

)
85

+ ∂x

(
φxψx − φrψr −

1

r2
φθψθ

)
= 0(2.4)86

87

as can be readily checked by expanding the brackets. The identity (2.4) is in divergence88

form which motivates us to introduce the intermediary vector field89

a =

(
φxψx − φrψr −

1

r2
φθψθ

)
ex + (φxψr + ψxφr) er +

(
φx
ψθ
r

+ ψx
φθ
r

)
eθ,(2.5)90

where ex, er, and eθ are the unit vectors in the x, r, and θ directions respectively.91

Choosing φ to be the velocity potential and applying the divergence theorem to the92

vector field a over the domain Ω we obtain93 ∫ 2π

0

∫ L

−L
S

[
(φxψr + ψxφr)− Sx

(
φxψx − φrψr −

1

S2
φθψθ

)
94

− Sθ
S2

(φxψθ + ψxφθ)

]
r=S

dxdθ − b
∫ 2π

0

∫ L

−L
[φxψr]r=b dx dθ = 0,(2.6)95

96

where we have enforced the impermeability condition at r = b.97

Inspired by Ablowitz et al. [1], we now choose for ψ the particular solution of98

Laplace’s equation99

ψ = ei(kx+mθ)F (r)(2.7)100

with101

F (r) =
[
kbKm+1(kb)−mKm(kb)

]
Im(kr) +

[
kbIm+1(kb) +mIm(kb)

]
Km(kr),(2.8)102

where Im, Km are modified Bessel functions of the first and second kind (e.g. Abramowitz103

& Stegun [2]), m is a non-negative integer, and k = nπ/L for integer n = ±1, ±2, · · · .104
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We note that the particular form (2.7) has been devised so that the second integral105

in (2.6) vanishes identically.106

Keeping in mind our objective of determining a set of equations of motion in terms107

of free surface variables only, we introduce the surface potential function q(x, θ, t) ≡108

φ(x, S, θ, t). By straightforward differentiation109

qx = φx + Sxφr, qθ = φθ + Sθφr, qt = φt + Stφr,(2.9)110

where the terms on the right hand sides are evaluated at the surface r = S. Utilising111

these relations together with the kinematic condition (2.3), and assuming (2.7), the112

integral expression (2.6) becomes113 ∫ 2π

0

∫ L

−L
S
[
iF (S)

(
kSt +

m

S2
(qxSθ − qθSx)

)
+ qxF

′(S)
]

ei(kx+mθ) dxdθ = 0.(2.10)114
115

Equation (2.10) represents the central equation of motion and it is expressed purely116

in terms of surface variables. It is the cylindrical analogue of equation (I) in Ablowitz117

et al. [1].118

At this point in the interest of simplicity we specialise to axisymmetry and assume119

from here on that all variables are independent of θ. The particular solution (2.7)120

reduces to121

ψ = kb
(
K1(kb)I0(kr) + I1(kb)K0(kr)

)
eikx,(2.11)122

and the central equation (2.10) simplifies to its axisymmetric form123 ∫ L

−L
kS
[
iSt

(
K1(kb)I0(kS) + I1(kb)K0(kS)

)
124

+ qx

(
K1(kb)I1(kS)− I1(kb)K1(kS)

)]
eikx dx = 0.(2.12)125

126

Following Wilkening & Vasan [21] we may write this as127 ∫ L

−L
eikxS

(
K1(kb)I0(kS) + I1(kb)K0(kS)

)
N (x) dx128

=

∫ L

−L
ieikx S

(
K1(kb)I1(kS)− I1(kb)K1(kS)

)
∂xD(x) dx,(2.13)129

130

where D(x) ≡ q(x) is the Dirichlet surface data, and N (x) ≡ St is the Neumann131

surface data. As was pointed out by Wilkening & Vasan [21] this implicitly assumes132

that it is possible to connect the Dirichlet and Neumann data via an infinite series133

expansion in terms of the basis functions (2.11); for the two-dimensional case see134

equations (2.5), (2.6) of [21].135

Written in terms of the surface variables, the axisymmetric form of Bernoulli’s136

equation (2.2) is given by137

qt +
1

2
q2x −

1

2

(St + Sxqx)2

1 + S2
x

+
γκ

ρ
− V = E(t).(2.14)138

Equations (2.12) and (2.14) constitute the equations of motion for the problem ex-139

pressed in terms of surface variables only.140
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2.1. Travelling-wave solutions. To compute travelling-wave solutions we in-141

troduce the change of variables (x, t) 7→ (z, t), where z = x − ct for constant wave142

speed c > 0. In the new variables, the Bernoulli condition (2.14) becomes143

qt − cqz +
1

2
q2z −

1

2

(St − cSz + Szqz)
2

1 + S2
z

+
γκ

ρ
− V = E .(2.15)144

Henceforth we seek only fixed-form travelling wave solutions in which case St = qt = 0.145

Introducing the travelling-wave change of variables into (2.12) we observe, as did De-146

coninck & Oliveras [8] for two-dimensional flow, that the resulting form can be sim-147

plified further using integration by parts. First noting the relations (e.g. Abramowitz148

& Stegun [2], p. 376)149

1

ξ

d

dξ

(
ξI1(ξ)

)
= I0(ξ),

1

ξ

d

dξ

(
ξK1(ξ)

)
= −K0(ξ),(2.16)150

we integrate the first integral in (2.12) by parts to obtain151 ∫ L

−L
kS(qz − c)

(
K1(kb)I1(kS)− I1(kb)K1(kS)

)
eikz dz = 0.(2.17)152

153

Following Deconinck & Oliveras [8], we view the Bernoulli condition (2.15) as a154

quadratic equation for qz, solve accordingly, and insert the solution into (2.17) to155

obtain the final travelling-wave form156 ∫ L

−L
kS
[
(1 + S2

z )(c2 − 2F)
]1/2(

K1(kb)I1(kS)− I1(kb)K1(kS)
)

eikz dz = 0,(2.18)157
158

where159

F ≡ γκ

ρ
− V − E , κ = − Szz

(1 + S2
z )3/2

+
1

S(1 + S2
z )1/2

.(2.19)160

We recall that k = nπ/L with n = ±1,±2, · · · . Note that (2.18) is trivially satisfied161

when k = 0.162

3. Travelling-waves on a ferrofluid column. Having established the basic163

equations of motion for cylindrical geometry, we next demonstrate how the formula-164

tion can be applied to a particular case study. The flow domain Ω is as described in165

section 2, and is assumed to be filled with a ferrofluid which experiences a body force166

when subjected to a magnetic field (e.g. Rosensweig [16]). The region 0 ≤ r ≤ b is167

occupied by a metallic rod carrying an electric current I in the positive x direction.168

Such a configuration has been realised in experiments (e.g. Bourdin et al. [7]). The169

current generates an azimuthal magnetic field H = Ieθ/(2πr). The magnetic body170

force in the fluid is (e.g. Rosensweig [16])171

χµ0H · ∇H = −µ0χI
2

4π2r3
er,(3.1)172

where χ is the magnetic susceptibility of the ferrofluid and µ0 = 4π × 10−7Hm−1 is173

the magnetic permeability in a vacuum. The corresponding potential field associated174

with this force is175

V =
µ0χI

2

8π2r2
.(3.2)176
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The magnetic field stabilises the ferrofluid column against the well-known Rayleigh-177

Plateau instability (e.g. Drazin & Reid [11]) so that, in the absence of surface distur-178

bances, it adopts an equilibrium configuration with S = a, for constant a. Henceforth179

we nondimensionalise variables using a as the reference length scale and (a3ρ/γ)1/2 as180

the reference time scale. Non-dimensionalising in this way reveals the importance of181

two dimensionless parameters, namely the dimensionless rod radius and the magnetic182

Bond number,183

b∗ =
b

a
, B =

µ0χI
2

4π2γa
.(3.3)184

Henceforth we drop the asterisk on b∗ for convenience.185

In dimensionless form, the central equations (2.18), (2.19) become186

∫ L

−L
kS

[
(1 + S2

z )

(
c2

2
− 1

S(1 + S2
z )1/2

+
Szz

(1 + S2
z )3/2

+
B

2S2
+ E

)]1/2
(3.4)187

×
(
K1(kb)I1(kS)− I1(kb)K1(kS)

)
eikz dz = 0,188

189

where c and S are now dimensionless190

Blyth & Părău [6] computed fully nonlinear solitary wave solutions for this fer-191

rofluid system. Doak & Vanden-Broeck [10] computed periodic waves and generalised192

solitary waves. In relating the results to be presented below with those found by193

Blyth & Parau (2014), we take the Bernoulli constant in (2.15) to be194

E = 1− B

2
.(3.5)195

In making a correspondence between the present work and that of Blyth & Părău [6],196

it is important to note that the transformation φz 7→ φz − c is required to map from197

the velocity potential used here to that adopted by BP (this explains the absence of198

the term c2/2 seen on the right hand side of BP’s (3.5) with the choice made in (3.5)199

for the Bernoulli constant).200

Linearising (2.18) it is straightforward to show that small amplitude waves with201

wavenumber k1 = π/L propagate on the surface of the ferrofluid column with speed202

c0 given by (see Arkhipenko & Barkov [3]; Blyth & Părău [6])203

c20 =
1

k1

(
I1(k1)K1(k1b)− I1(k1b)K1(k1)

I1(k1b)K0(k1) + I0(k1)K1(k1b)

)
(k21 − 1 +B).(3.6)204

3.1. Numerical method. In practice we solve for free surface profiles S(z) that205

satisfy (2.18) using a numerical method. The form (2.18) has been derived assuming206

periodicity with period L. Accordingly we seek periodic travelling-wave solutions as207

a Fourier expansion. With a view to numerical implementation we write208

S(z) ≈ SN =

N∑
n=−N

aneinπz/L(3.7)209

for some specified level of truncation N , where the constant generally complex coeffi-210

cients an are to be found. Note that since S(z) is real, we must have that an = a∗−n.211

For a wave that is even about z = 0 the coefficients an are real and in this case we212
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Fig. 2. A solution branch for periodic waves of period 2L = 2π when B = 1.5 and b = 0.1: (a)
the infinity norm ‖S − 1‖∞ against the wave speed c. The symbols correspond to ‖S − 1‖∞ = 0.107
(a2 = 0.05) [light red 4 ], 0.296 (a2 = 0.12) [blue # ] and 0.479 (a2 = 0.16) [dark red � ]; (b) the wave
profiles corresponding to the symbols on the branch in (a); (c) the Cauchy error EN = ‖SN−SN−2‖2
at the symbols in (a); (d) the condition number σ(J) against N for each symbol in (a).

may replace exp(ikz) with cos kz to given an entirely real expression in (2.18). All of213

the waves to be presented below possess this symmetry.214

Substituting (3.7) into (2.18) we approximate the resulting integral using the pe-215

riodic trapezium rule over a grid of equally-spaced points in the interval [−L,L− h]216

with h = 2L/(2N + 1). We note that the periodic trapezium rule delivers exponen-217

tial accuracy as is discussed by Trefethen & Weideman [17]. Derivatives of S are218

computed spectrally by taking a fast Fourier transform; products of derivatives are219

computed in real space. We use the zero-padding technique to mitigate against alias-220

ing error. Setting k = nπ/L we pick n from each value in the discrete set {1, . . . , N/2}221

to obtain 2N algebraic equations for the 2N + 2 unknowns comprising the 2N + 1222

Fourier coefficients an and c. A further condition comes from fixing the mean radius223

of the ferrofluid column so that a0 = 1. One more equation is needed, and in practice224

we enforced a non-zero value of the second Fourier coefficient a2 to ensure a wave of225

non-zero amplitude. This yields a set of 2N + 2 algebraic equations for the 2N + 2226

unknowns which is solved using Newton’s method for which the Jacobian J is com-227

puted numerically. All of the computations, including the calculation of the modified228

Bessel functions, were done in Matlab. To attempt to maintain a well-scaled Jacobian229
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8 M. G. BLYTH AND E. I. PĂRĂU

J we divided the integrand in (2.18) by its maximum value over one period. Further230

discussion on this point can be found below.231

As a test of our numerical procedure we repeated the two-dimensional calculations232

of Deconinck & Oliveras [8] using a modified form of our own code. Tests on the233

accuracy of the results in axisymmetry will be discussed in the next section. We also234

successfully recomputed some of the solitary wave solutions presented by Blyth &235

Părău [6].236

3.2. Results. In keeping with our intention to demonstrate the efficacy of the237

AFM method for axisymmetric geometry, in the following two subsections we outline238

its capability for computing nonlinear periodic waves and solitary waves on a ferrofluid239

column. We note that nonlinear solutions for both periodic and solitary waves have240

been studied in detail elsewhere (see Doak & Vanden-Broeck [10] and Blyth & Părău241

[6]) using finite-difference methods.242

3.2.1. Periodic waves. We may compute periodic waves using the numerical243

method described in section 3.1. In practice we latch onto a periodic solution branch244

by first computing a small amplitude wave using (3.6) to provide an initial guess for245

c (for chosen wavelength L) to be used in Newton’s method.246

Figure 2 shows a sample set of calculations for the branch of periodic waves of247

half-period L = π for the case B = 1.5, b = 0.1. Panel (a) shows the solution248

branch characterised by the infinity norm ‖S − 1‖∞ that bifurcates from the linear249

wave speed c∗ = 1.079. Evidently the wave speed decreases along the branch so250

that c < c∗ for the nonlinear waves. Typical wave profiles along the branch are251

shown in panel (b). Numerical difficulties prevent continuation along the branch252

to smaller wave speeds than those shown in the figure. Ultimately we expect the253

waves to pinch together in the trough region to form trapped bubbles (see Doak &254

Vanden-Broeck [10]), similar to those seen in two-dimensional capillary and capillary-255

gravity waves. Since it is restricted to functions S(z) which are single-valued in z it256

is not possible to capture such solutions with the present formulation. However as257

was pointed out by Wilkening & Vasan [21] for two-dimensional problems, the AFM258

method suffers from some ill-conditioning which appears to be the primary obstacle259

which frustrates continuation to larger amplitude. In particular the issue is connected260

with the possibility of identifying an infinite series representation for the Dirichlet and261

Neumann data in (2.13). In panel (c) we show the L2-norm EN = ‖SN − SN−2‖2262

for increasing truncation level N . While Cauchy convergence is demonstrated for263

the smallest amplitude wave shown (i.e. for a2 = 0.05) down to machine accuracy264

using double precision arithmetic, the same convergence cannot be achieved for the265

larger amplitude waves. The condition number σ(J) of the Jacobian matrix J at the266

converged solution is plotted versus the truncation level N in panel (d) of figure 2,267

and it appears to be growing exponentially for the larger amplitude waves. Wilkening268

& Vasan [21] noted how to overcome this issue via a regularisation technique but we269

have not attempted to follow this here.270

Figure 3(a) shows another example of a nonlinear periodic wave computed using271

the present method for the shorter domain 2L = π for B = 30 and b = 0.1. When272

the magnetic Bond number B exceeds a critical value B2(b) which depends on the273

rod radius, the dispersion curve for small amplitude periodic waves c0(k) versus k274

has a minimum (Blyth & Părău [6] – see their figure 1a). This raises the prospect275

of small amplitude periodic waves with two or more resonant wavenumbers for the276

same wave speed; this is the well-known phenomenon of Wilton ripples (e.g. Vanden-277

Broeck [18]). Solutions of this type can also be captured using the current method (we278
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Fig. 3. (a) Periodic wave for B = 30 and b = 0.1 with 2L = π and c = 3.301. (b) A periodic
waves with Wilton ripples for B = 30 and b = 0.1 and c = 3.097 with 2L = 2.061 = 2π/k1 (with
k1 = 3.2375).

note that Doak & Vanden-Broeck [10] have recently computed solutions with Wilton279

ripples on a ferrofluid jet using a finite difference approach). In figure 3(b) we show280

an example of such a solution for b = 0.1 and B = 30 > B2(0.1) ≈ 9 with a 1:2281

resonance meaning that linear waves with wavenumbers k1 and 2k1 exist for the same282

wave speed c. Using the the linear theory result (3.6) we find that this occurs when283

k1 = 3.2375 and c = 3.173. The solution shown in figure 3(b) lies on the solution284

branch which bifurcates from this point and is shown for the wave speed c = 3.097.285

3.2.2. Solitary waves. Solitary wave solutions have previously been computed286

by Rannacher & Engel [15] using a weakly-nonlinear KdV model and by Blyth &287

Părău [6] for the fully nonlinear system. The latter authors noted that solitary waves288

solutions arise as bifurcations from the small amplitude periodic wave solution or289

as nonlinear bifurcations starting at finite amplitude. The character of the possible290

solitary wave solutions depends on the value of B. Indeed Blyth & Părău [6] showed291

that elevation solitary waves (with S(0) > 1) are possible in the ranges 1 < B < 2292

and B > B2(b), where the threshold value B2(b) has a closed form expression and is293

such that B2 → 9 as b → 0. Depression solitary wave solutions (with S(0) < 1) are294

found for all B > 1.295

We may compute solitary waves using the AFM method as follows: first we follow296

the branch of periodic waves emanating from small amplitude where the wave speed297

c satisfies (3.6); having identified a wave of some amplitude, we extend the domain298

L by continuation to an appropriately large value; finally, noting that our numerical299

procedure fixes the mean level of S(z) so that in general we have attained a solitary300

wave with S(±∞) 6= 1, we elevate the far-field level by continuation until S(±∞) = 1.301

Figure 4(a) shows an elevation solitary wave computed in this way for B = 1.25 and302

b = 0.1. An example of a depression solitary wave is shown in figure 4(b). Also shown303

on the same graph, and barely distinguishable from the present solution, is the same304

wave computed using the finite difference approach of Blyth & Părău [6] (see their305

figure 5a).306

As was noted in section 3.2.1 when B > B2(b) the linear dispersion curve has307

a minimum. As demonstrated by Groves & Nilsson [12] the nonlinear Schrödinger308

equation is a good approximation in the vicinity of this minimum and this equation309
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Fig. 4. (a) Elevation solitary wave solution for B = 1.25 and b = 0.1, and (b) Depression
solitary wave for B = 4 and b = 0.1. In both panels the solid line is the result computed using the
present method, and the broken line is the solution of Blyth & Părău [6] shown in their figure 5a
(for panel a) and their figure 6 (for panel b).
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Fig. 5. Depression solitary waves (with S(0) < 1) on a branch bifurcation from the minimum
of the linear dispersion curve for B = 30 and b = 0.1. (a) c = 2.918 and (b) c = 3.085.

has both elevation and depression solitary waves. Fully nonlinear solutions of both310

of these types were computed by Blyth & Părău [6]. Examples of depression waves311

of this type computed using the present AFM method are shown in figure 5. In312

particular the wave in panel (a) is a reproduction using the current method of that313

shown in figure 9(a) of Blyth & Părău [6].314

4. Summary. We have developed an AFM (Ablowitz-Fokas-Musslimani) water-315

wave method for cylindrical geometry, and have demonstrated the use of the method316

for computing fully nonlinear travelling-waves on a ferrofluid column which has been317

stabilised by an azimuthal magnetic field. Previous studies have used finite-difference318

methods based on a hodograph-type approach which simplifies the domain geometry319

but which requires the solution of a nonlinear equation for the velocity potential.320

A significant drawback of such methods is that they require the discretisation of321

the entire fluid domain. In contrast the AFM method is formulated with reference322

to variables evaluated at the free surface only. While the finite-difference approach323

This manuscript is for review purposes only.



THE AFM WATER-WAVE METHOD FOR CYLINDRICAL GEOMETRY 11

produces a discretisation error which depends algebraically on the mesh size of the324

computational grid, the AFM method is much simpler to implement and can achieve325

exponential convergence. However, as was noted above, and discussed in depth for326

the two-dimensional case by Wilkening and Vasan [21], the method can suffer from327

ill-conditioning and regularisation techniques may be needed for very high precision328

calculations. Nonetheless, as we have demonstrated, even for relatively large ampli-329

tude waves, a good degree of accuracy can be achieved. Moreover, the method can be330

readily adapted for investigating the stability of travelling-wave solutions, as was done331

in two-dimensions by Deconinck & Oliveras [8]. For the axisymmetric computations332

performed here this is left as a topic for future work.333
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