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Synthesis, structural and magnetic characterization of two lanthanide complexes containing 
2-formylpyridine semicarbazone (HSCpy) is discussed.  
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Abstract 11 

Two novel semicarbazone-lanthanide(III) complexes were prepared and 12 

structurally characterized as [Ln (Hscpy)2 (NO3)2]NO3·MeOH (Ln = Gd and Tb; Hscpy 13 

= 1-((E)-2-pyridinylmethylidene)semicarbazone). The 4f metal ions experience deca-14 

coordination geometry.  Each molecular formula contains two neutral Hscpy molecules 15 

in the keto form coordinated through two nitrogen atoms and one oxygen atom, while 16 

two nitrate ligands are both coordinated in a chelate mode. The 1+ charge of the cation-17 

complex is balanced by a nitrate anion. Extensive intermolecular hydrogen bonds are 18 

formed through the methanol solvate molecule, which acts both as a donor and an 19 

acceptor molecule. The chemical composition of the compounds was confirmed by high 20 

resolution mass spectra (ESI-MS); peaks at m/z = 122.07 and 148.05, assigned to the 21 

fragments C6H8N3
+ and C7H6N3O

+, respectively, are in agreement with the coordination 22 

of Hscpy. Alternating current magnetic susceptibility analysis was performed in the 10 23 

– 10000 Hz range, and the terbium-complex showed slow relaxation of the 24 

magnetization when immersed in a static magnetic field of 1 kOe and 1.5 kOe, with an 25 

activation barrier to the relaxation (21.9(4) cm-1) among the highest found for ten-26 
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coordinated Tb(III) complexes. This behavior of slow relaxation of the magnetization is 27 

relevant as a memory effect regarding the development of Single Molecule Magnets 28 

(SMM). 29 

Keywords: Lanthanide; Semicarbazone; Crystal structure; Magnetic properties; SMM. 30 

Introduction 31 

The trivalent cations have 4f orbitals shielded by 5s and 5p orbitals; thus the 32 

Ln3+-ligand interactions are mainly electrostatic, and the magnetic and spectroscopic 33 

features of Ln3+ ions are determined by ligand symmetry [1-4]. The most common 34 

oxidation state for lanthanide ions found in coordination compounds is 3+, with ionic 35 

radii in the 1.1-0.85 Å range; gadolinium(III) exhibits a radius of 0.99 Å [5]. The 36 

lanthanide cations also show large coordination numbers, typically 8-10. Due to their 37 

similar electronic configuration, the lanthanide elements are considered to have similar 38 

chemistry, which is often assumed to be less attractive relative to the d-block. Quite the 39 

opposite, the chemistry of the lanthanide ions in the solid state and in solution has 40 

proven this to be wrong. These ions have distinct magnetic and spectroscopic 41 

characteristics in a chemistry dominated by charge, size and steric effects. 42 

 The chemistry of lanthanide complexes continues to be intensively investigated 43 

due to numerous potential applications. For example, sensitive molecular sensors have 44 

been developed exploring the long-lived luminescence of the 4f elements [6-8]. The 45 

coordination chemistry determines the sensitivity, and the composition of the lanthanide 46 

sensor varies throughout the test as the complex may dissociate and re-assemble.  47 

Among other potential applications of lanthanide complexes, magnetic resonance 48 

imaging (MRI) appears as an important field of research [9,10].  Upon chelation by an 49 

organic ligand, most of the coordinated solvent molecules are displaced from the 50 

inner-sphere. A typical ligand used to create an MRI contrast agent has eight donor 51 
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atoms. Any remaining solvent molecule (water, in particularly) is important for MRI 52 

contrast, since it allows, through chemical exchange, that several other solvent 53 

molecules can interact with the lanthanide ion, controlling the relaxation efficiency of 54 

the Ln-based MRI contrast agents [11]. Finally, lanthanide ions are of great interest to 55 

develop Single-Molecule Magnets (SMMs) due to their strong spin-orbit coupling, large 56 

magnetic anisotropy, and large energy barriers of spin reversal, showing slow magnetic 57 

relaxation. SMMs are important due to their potential applications in data storage, 58 

quantum processing and molecular spintronics [12-14]. 59 

In this work we expand on developing novel 4f complexes with chelating 60 

ligands, with particular interest in semicarbazones. Semicarbazones are multidonor 61 

atom ligands that can bind in a chelate mode, generating interesting coordination 62 

compounds that can achieve the most diverse coordination modes and geometric 63 

demands of metal ions. Their complexes have been studied for years as potential 64 

biologically antifungal agents [15-18]. (E)-2-(pyridine-2-ylmethylene)hydrazine-1-65 

carboxamide (Hscpy) (Scheme 1) is a semicarbazone tridentate ligand prepared from 66 

the reaction of semicarbazide hydrochloride and 2-pyridinecarbaldehyde in the presence 67 

of sodium acetate in ethanol. Hscpy has five potential donor atoms, and it usually binds 68 

as a chelate using two nitrogen (pyridinic/pyridinyl and azomethinic) atoms and one 69 

oxygen atom.  70 

The first reports on the coordination chemistry of Hscpy appeared in 1987 by 71 

Singh and coworkers, who described the preparation of mononuclear-complexes with 72 

vanadium(V), molybdenum(VI), manganese(II), tungsten(VI), antimony(III) and 73 

bismuth(III), although no clear structural information was presented [19-28]. Soon after, 74 

metal complexes containing the Hscpy ligand, such as the cobalt(II), nickel(II), zinc(II), 75 

copper(II) and iron(II) compounds, were structurally characterized [29-33]. Recently we 76 
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reported the dinuclear copper(II) complex and its relation with the thiosemicarbazone 77 

analogues [34]. 78 

Regardless of its great potential to coordinate metal ions, as far as we know, no 79 

coordination complexes of Hscpy with lanthanide ions have been reported. Therefore, 80 

design, synthesis and characterization of new lanthanide complexes with chelating 81 

ligands, as well as the knowledge of their coordination mode, structure, and 82 

fundamental properties, continue to be relevant to the multiple potential applications.  83 

Hence, herein we describe the synthesis and structural characterization of two 84 

new deca-coordinated gadolinium and terbium complexes with Hscpy.  85 

The dynamics of the magnetization of the Tb derivative have been investigated, 86 

in the search for compounds that show slow relaxation of magnetization. This is 87 

relevant as a memory effect in the development of Single Molecule Magnets (SMM). 88 

 89 

 90 

Scheme 1. Tautomeric (keto and enolate) forms of the pyridine-2-carbaldehyde 91 

semicarbazone ligand.  92 

93 
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Experimental 94 

General 95 

Reagent grade chemicals were used in this work. The ligand Hscpy was 96 

prepared according to published procedures [18]. 97 

Infrared spectra were obtained with a FTS3500GX Bio-Rad Excalibur series 98 

spectrophotometer in the region 4000-400 cm-1 in KBr pellets. Microanalyses were 99 

performed with a Perkin Elmer CHN 2400 analyser.  100 

Mass spectra were measured in a high resolution ESI-MS on a microTOF QII 101 

mass spectrometer (Bruker Daltonics, Billerica, MA) from methanolic solutions. 102 

X-band Electron Paramagnetic Resonance (EPR) spectra (See Supporting 103 

material) were recorded on a Bruker EMX micro spectrometer equipped with a high 104 

quality factor TE102 resonant cavity from solid samples and from aqueous solutions at 105 

77 K. The samples were placed in standard 4 mm o.d. EPR quartz tubes and the low 106 

temperature spectra were obtained using an insertion quartz finger Dewar.  107 

Synthesis  108 

Bis(1-((E)-2-pyridinylmethylidene)semicarbazone)(dinitrato)lanthanide(II109 

I) nitrate [Ln (Hscpy) 2 (NO3)2]NO3·MeOH (Ln  = Gd and Tb;  herein complexes (1) 110 

and (2), respectively). Hscpy (0.49 g, 3 mmol), dissolved in 20 mL of ethanol, was 111 

added to a solution of 1 mmol of Ln(NO3)3⋅xH2O dissolved in a minimum volume of 112 

boiling ethanol. The solution was kept under reflux for 4 h. Then, the system was kept 113 

in the freezer overnight and the product was collected by filtration, washed with cold 114 

ethanol and dried under vacuum. Yields were 408 mg (61%) for Gd3+ and 437 mg 115 

(65%) for Tb3+.  116 

 117 
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Single-Crystal X-Ray Analyses  118 

 119 

Crystals suitable for X-ray diffraction analysis were obtained by the saturation 120 

of a methanolic solution of each complex with diethyl ether vapor.  121 

From each sample under oil, a crystal was mounted on a Micro mesh and fixed 122 

in the cold nitrogen stream on a Bruker D8 Venture diffractometer, equipped with a 123 

Photon 100 CMOS detector, Mo-Kα radiation and graphite monochromator.  Intensity 124 

data were measured by thin-slice ω- and φ-scans. 125 

Data were processed using the APEX3 program [35]. The structure was 126 

determined by the intrinsic phasing routines in the SHELXT program [36] and refined 127 

by full-matrix least-squares methods, on F2's, in SHELXL [37]. The two complexes 128 

were found to be isostructural – the two complex molecules and their packing 129 

arrangements are essentially identical. The non-hydrogen atoms were refined with 130 

anisotropic thermal parameters, except, in complex (1) for O(36A), O(36B), C(37A) 131 

and C(37A), which were kept isotropic, due to crystal disorder, leading to a better 132 

refinement result. For complex (1), all hydrogen atoms bound to carbon atoms were 133 

included in idealized positions with U(iso)'s set at 1.2*U(eq) or, for the methyl 134 

hydrogen atoms, 1.5*U(eq) of the parent carbon atoms; hydrogen atoms bound to 135 

nitrogen or oxygen atoms were refined freely. For complex (2), the same procedure was 136 

followed except that H(38) was also included in an idealized position with U(iso)'s set 137 

at 1.5*U(eq) of the parent oxygen atom. 138 

Scattering factors for neutral atoms were taken from reference [38]. Computer 139 

programs used in this analysis have been noted above and were run through WinGX 140 

[39]. 141 

More detailed information about the structure refinements is given in Tables 1, 142 

for experimental details, and 2, which shows selected bond distances and angles. 143 
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CCDC files 1867407 and 1867408 contain the crystallographic data for 1 and 2 144 

respectively, for this paper at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the 145 

Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 146 

1EZ, UK; fax: +44(0)1223-336033; email: deposit@ccdc.cam.ac.uk]. 147 

 148 

AC susceptometry. 149 

 150 
Alternating current (ac) magnetic susceptibility analysis of pellets made of 151 

microcrystalline powders of 2, was performed with a Quantum Design PPMS setup 152 

working in the 10 – 10000 Hz range with zero, 0.1 and 0.15 T applied static fields. 153 

Magnetic data were corrected for the sample holder contribution and for the sample 154 

diamagnetism using Pascal’s constants [40]. The ac susceptibility data were analyzed 155 

within the extended Debye model [41], in which a maximum in the out-of-phase 156 

component χM'' of the complex susceptibility is observed when the relaxation time τ 157 

equals (2πν)−1. The frequency dependence of χM'' at constant temperature was 158 

determined using equation (1): 159 

 160 

χM'' (ω) = (χT − χS)1[(ωτ1)
1-α1cos(α1π/2)]/[1 + 2(ωτ1)

1-α1sin(α1π/2) + (ωτ)2-2α1] + (χT − 161 

χS)2[(ωτ2)
1-α2cos(α2π/2)]/[1 + 2(ωτ2)

1-α2sin(α2π/2) + (ωτ)2-2α2]   (1) 162 

 163 

where ω = 2πν, χT and χS are the isothermal and adiabatic susceptibilities, i.e., the 164 

susceptibilities observed in the two limiting cases ν → 0 and ν → ∞, respectively, and α 165 

is a parameter which accounts for a distribution of relaxation times. The present 166 

function includes two different sets of χT, χS, τ and α to reproduce the two overlapping 167 

relaxation processes shown by 2. 168 

 169 

170 
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Results and Discussion 171 

Complexes 1 and 2 have essentially identical chemical structures. Figure 1 172 

shows a molecular representation of complex 2. The crystal structure contains a terbium 173 

centre that is deca-coordinated by two Hscpy and two nitrate ligands in chelating mode. 174 

Each of the Hscpy ligands is coordinated to the central ion forming two five-membered 175 

chelate rings, one through the pyridine and the azomethine nitrogen atoms and the other 176 

through the latter nitrogen atom and the oxygen atom from the amide group. The 1+ 177 

charge of the cation-complex is balanced by a separate nitrate anion, that of N(33). A 178 

methanol molecule completes the chemical environment of the complex.  179 

The tridentate Hscpy ligand in 2 shows bite angles N(py)-Tb-O of 123.64(14) 180 

and 121.48(13) o, while the chelating nitrates show O-Tb-O’ angles of 50.50(12) and 181 

51.38(14) o. The normals to the Hscpy ligand planes in this complex, calculated from 182 

the positions of the twelve heavier atoms of each ligand, are 41.29(7) ° apart (Supp. 183 

Info., Fig S1.). 184 
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185 
Figure 1. View of the complex 2, indicating the atom numbering scheme. Thermal 186 

ellipsoids are drawn at the 50% probability level. 187 

 188 

Selected bond distances and angles for complexes 1 and 2 are listed in Table 2. 189 

The Ln-O(11,23), Ln-N(01,13) and Ln-N(08,20) bond lengths are between 2.392(4) and 190 

2.6568(15) Å, which are values significantly longer than those in a 3d-complex such as 191 

the nickel(II)-complex (mean Ni-N bond distance of 2.047 Å and Ni-O 2.137 Å) [33]; 192 

this is consistent with the larger radius of the lanthanide ions. Analyzing the bond 193 

lengths of the atoms directly bonded to the lanthanide ions in complexes 1 and 2, we 194 

observe that all bond lengths follow the general pattern with longer bonds for the Gd 195 

complex than for the Tb cation. This is in accord with the ‘Lanthanide contraction’; as 196 

we progress through the 4f series, the f electrons suffer a greater attraction from the 197 

nucleus due to poor shielding effect, leading to the ion radii decreasing as we advance in 198 

the series. 199 
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Table 1. Crystal data and structure refinement for complexes 1 and 2. 200 

Elemental formula C14H16N10O8Gd, NO3, CH4O (1) C14H16N10O8Tb, NO3, CH4O (2) 

Formula weight 703.67 705.35 

T / K 302(2) 240(2) 

Radiation, λ / Å 0.71073 0.71073 

Crystal system Triclinic Triclinic 

Space group P-1 P-1 

Unit cell dimensions a = 8.7881(16) 

b = 12.105(2) 

a = 8.7424(8) 

b = 12.0551(10) 

 c = 12.106(2) c = 12.0572(11) 

 α = 77.544(8) α = 77.268(4) 

 β = 86.075(8) β = 86.632(4) 

 γ = 88.102(8) γ = 87.882(4) 

Volume / Å3 1254.3(4) 1236.95(19) 

Z, Calculated density / Mg m-3  2, 1.863 2, 1.894 

Absorption coefficient / mm-1 2.725 2.941 

F(000) 694 696 

Crystal colour, shape Colourless, parallelepiped Colourless, parallelepiped 

Crystal size / mm 0.343 x 0.255 x 0.128 0.242 x 0.135 x 0.044 

θ range / º 2.9 to 27.5 2.9 to 27.2 

Index ranges -11≤h≤11, -15≤k≤15, -15≤l≤15 -11≤h≤11, -15≤k≤15, -15≤l≤15 

Completeness to θ = 25.2 º 99.8 % 99.9 % 

Absorption correction Semi-empirical from equivalents Semi-empirical from equivalents 

Max. and min. transmission 0.7461 and 0.6826 0.6985 and 0.5656 

Reflections collected / unique  124952 / 5758 [R(int) = 0.029] 60747 / 5501 [R(int) = 0.200] 

No. of ‘observed’ reflections  

(I > 2σI) 

5507 4949 

Data / restraints / parameters 5758 / 0 / 392 5501 / 0 / 378 

Goodness-of-fit on F2 1.100 1.029 

Final R indices (‘observed’ data) R = 0.016, wR2 = 0.039 R = 0.048, wR2 = 0.114 

R indices (all data) R = 0.017, wR2 = 0.040 R = 0.055, wR2 = 0.118 

Largest diff. peak and hole / e Å-3 0.88 and -0.26  1.74 and -1.34 

Location of largest difference peak near the O(36B) atom near the Tb atom 

w=[σ2(Fo2)+(0.0219P)2+0.5100P] -1 for complex 1 and w=[σ2(Fo2)+(0.0635P)2+3.800P] -1 for complex 2. 201 

 202 

203 
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Table 2. Selected bond lengths (Å) and angles (°) for complexes 1 and 2.  204 

Ln = Gd (1) Tb (2) 

 Ligand 1* Ligand 2* Ligand 1 Ligand 2 

Ln-N(01,13) 2.6073(14) 2.6568(15) 2.595(4) 2.643(4) 

Ln-N(08,20) 2.5801(14) 2.5946(14) 2.557(5) 2.581(4) 

Ln-O(11,23) 2.4226(14) 2.4035(12) 2.410(4) 2.392(4) 

Ln-O(27,30) 2.5100(14) 2.4748(14)   2.493(4) 2.457(4) 

Ln-O(28,31) 2.5399(14) 2.5030(15) 2.530(4) 2.486(4) 

     

C(07,19)-N(08,20) 1.274(2) 1.273(2) 1.266(7) 1.274(7) 

N(08,20)-N(09,21) 1.358(2) 1.361(2) 1.375(7) 1.356(6) 

N(09,21)-C(10,22) 1.357(2) 1.362(2) 1.365(7) 1.375(7) 

C(10,22)-O(11,23) 1.242(2) 1.243(2) 1.243(7) 1.239(6) 

C(10,22)-N(12,24) 1.326(2) 1.325(2) 1.320(8) 1.323(7) 

     

     

N(01,13)-Ln-N(08,20)   61.56(5)   60.61(5)   61.66(14)   60.65(14) 

N(08,20)-Ln-O(11,23)   61.71(4)   61.62(4)   62.16(13)   61.94(13) 

N(01,13)-Ln-O(11,23) 123.10(5) 121.14(4) 123.64(14) 121.48(13) 

N(08)-Ln-N(20) 170.65(5)  170.50(14)  

N(25)-Ln-N(29) 172.50(4)  172.61(13)  

*Ligand 1 = ligand coordinated through N(01), N(08) and O(11) atoms; ligand 2 = ligand coordinated 205 
through N(13), N(20) and O(23) atoms 206 

 207 

Support for the proposed neutral form of the Hscpy ligand comes from the 208 

analysis of the N(09)-C(10) and C(10)-N(12) bond distances which, in the two ligands 209 

of the Tb complex, have mean values of 1.370(7) Å and 1.321(7) Å, respectively; these 210 

indicate the keto form of the ligand as shown in Scheme 1. The C(10)-O(11) bond 211 

exhibits a double-bond character with a short mean length of 1.241(7) Å, also in 212 

accordance with the keto form of the tautomeric equilibrium. The same behavior was 213 

also observed for the Gd(III) complex and as seen in 214 
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Table 2. 215 

Further, typical bond distances of the semicarbazone [33], namely C(06)-216 

C(07), C(07)-N(08), N(08)-N(09) and N(09)-C(10), are practically the same after 217 

coordination to the lanthanide ions despite the rotation of 180° about the N(9)-C(10) 218 

bond in the complex molecules. The largest changes were found in angles such as 219 

C(06)-C(07)-N(08) and C(10)-N(09)-N(08) that are 4.8o and 6.7o lower, respectively, 220 

after coordination.  221 

Recently, Raja and co-workers reported the crystal structure of a similar 222 

complex [Ce(BPBH)2(NO3)3], BPBH = 2-benzoylpyridine benzohydrazone [42]. The 223 

structure resembles those reported here, but in the Ce complex case all the nitrate ions 224 

are directly bound to the cerium(III) ion, leading to dodeca-coordination of the metal 225 

centre. Some observed bond distances, for Ce-N(pyridine), Ce-N(azomethinic), Ce-226 

O(BPBH) and Ce-O(NO3
-), are at 2.9365(16), 2.7706(14), 2.4952(12) and 2.62(2)-227 

2.72(2) Å, respectively.  Comparing those with the mean bond distances found in our 228 

terbium complex 2, Ln-N(1,13) 2.619 Å, Ln-N(8,20) 2.569 Å, Ln-O(11,23) 2.401 Å and 229 

Ln-O(27,28,30,31) 2.491 Å, respectively, one can see that the bonds for the lanthanide 230 

complexes have significantly shorter lengths.  231 

The methanol molecules, with the oxygen atom O(38), in both of our 232 

complexes act as donors and acceptors in the formation of hydrogen bonds which, with 233 

hydrogen bonds from every N-H group, link the various moieties in an extensive 234 

hydrogen bond network. Figure 2 shows a section of this supramolecular arrangement in 235 

the unit cell of complex 2. 236 
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237 
Figure 2. The hydrogen bond networks in complex 2, viewed along the a axis. Thermal 238 

ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed 239 

lines. 240 

FTIR and mass spectra. 241 

Infrared spectra showed bands that are characteristic of group functions 242 

expected for these compounds as seen in Figure 3. Mean values, observed in the series 243 

are: ν(N-H) at 3379 cm-1, ν(C=O) at 1665 cm-1, (pyridine ring) at 1547 cm-1, ν(C-C) at 244 

1478 cm-1, δ(C-H) at 1153 cm-1 [43]. The complexes also showed the stretching mode 245 

ν(N-O) of nitrate ions at 1383 cm-1. 246 
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 247 

Figure 3. FTIR spectra of the complexes 1 and 2. 248 

 249 

Figure 4 shows high resolution mass spectrum (HRMS-ESI) of compounds 1 250 

and 2 in the positive mode (Full spectra can be seen as Supp. info. Fig S2). They 251 

exhibited peaks at m/z = 122.07 and 148.05 assigned to the fragments C6H8N3
+ and 252 

C7H6N3O
+, respectively, Scheme 2. In addition, several fragments containing 253 

lanthanides were also observed as represented in Scheme 2 for both complexes. The 254 

assignments are in accordance with the calculated fragmentation patterns, considering 255 

the isotopic distribution of the elements, as demonstrated in Figure 4. 256 
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 257 

Figure 4. HRMS-ESI positive mode of complexes 1 (a1) and 2(b1) dissolved in 9:1 258 

CH3OH/H2O mixture showing the corresponding fragment inset. Calculated 259 

fragmentation patterns (a2) and (b2) for Gd and Tb complexes, respectively, showing 260 

the most intense peaks, considering the isotopic distribution of the elements. 261 

 262 

Scheme 2. Fragments assignments according to the experimental data of complexes 1 263 

and 2. 264 

265 
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Dynamics of the magnetization of complex 2. 266 

The largely unquenched magnetic orbital moment of the lanthanide ions, in 267 

combination with the crystal field acting on them, makes their magnetic moment relax 268 

more slowly than that usually found in paramagnets. Systems featuring slow relaxation 269 

of the magnetization are called Single Ion (or Molecule) Magnets (SIM and SMM, 270 

respectively), and are widely investigated for the memory effect [44] and quantum 271 

coherence associated to their magnetic moment at the level of the magnetically isolated 272 

molecular entity [45]. In order to evaluate the relaxation dynamics of complex 2, 273 

frequency- and temperature-dependent alternated-current susceptometry was carried 274 

out. 275 

 With zero static applied magnetic field, complex 2 did not show any 276 

out-of-phase signal in the magnetic susceptibility (see Suppl. Info. Fig. S3), similar to 277 

previously analyzed ten-coordinated Tb(III) complexes [46-48]. The application of a 278 

static field of 1 kOe significantly slows down the magnetization dynamics, allowing the 279 

detection of a set of frequency- and temperature-dependent peaks in the investigated 280 

range, reported in Figure 5a. Examination of the frequency dependence of the in-phase 281 

(χM' (ω)) and out-of-phase (χM'' (ω)) susceptibilities points to the presence of two 282 

distinct relaxation processes. The first one is too slow to present peaks within the 283 

investigated frequency range and appears as a tail in the low temperature part of the χM'' 284 

(ω) plot. The second one, on the other hand, shows frequency- and temperature-285 

dependent peaks in the 102 – 103 Hz range. In order to extrapolate the magnetic 286 

relaxation time of the system, τ, the fitting of the χM'' (ω) profiles has been carried out 287 

with an extended Debye model including two independent relaxation processes 288 

(Equation 1). Since no peaks in the frequency dependence of the χM'' plot for the slow 289 

process have been detected, the parameters describing the slow relaxation process are 290 
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affected by great uncertainties and will not be discussed here, but simply used to fit 291 

efficiently the complete χM''(ω) isothermal profiles. The temperature dependence of the 292 

relaxation time of the faster process has been plotted as function of the inverse of 293 

temperature, according to the Arrhenius relation τ = τ 0 exp(∆/kBT), in Figure 5b.  294 

 295 

 296 

Figure 5. a) Frequency dependence of the out-of-phase magnetic susceptibility χM'' of 297 

2, measured for different temperatures ranging from 2.0 K (blue points) to 6.0 K (red 298 

points) measured with an applied magnetic field of 1 kOe. b) Temperature dependence 299 

of the relaxation times measured with a static applied magnetic field of 1 kOe (empty 300 

circles) and 1.5 kOe (full circles) along with the corresponding best fitting lines, as 301 

described in the text. 302 

 303 

The plot describes a temperature dependence of τ that is decreasing upon 304 

lowering the temperature, indicating a crossover between at least two relaxation 305 

mechanisms. To fit this curve, a model including an Orbach process, describing a 306 

thermally activated relaxation through an activation barrier, coupled to a temperature 307 

independent one (tunneling process) has been used: 308 

 309 

τ(T) = τ0exp(∆/kBT) + τtunneling 310 

 311 
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The black line reported in Figure 5b displays the results of the fitting, which 312 

yielded τ0 = 2.6(1)⋅10-6 s, ∆ = 7.6(2) cm-1 and a tunneling frequency of 2.60(3)⋅104 Hz 313 

as best-fitting parameters. It must be stressed that fitting of the plot with models 314 

including a Raman process coupled to a direct or to a tunneling one yielded poorer 315 

results or extremely low Raman exponent (2.3), and were thus discarded. In order to 316 

have better insights into the relaxation dynamics of 2, the ac susceptometry 317 

characterization has been measured with a static magnetic field of 1.5 kOe, yielding the 318 

results reported in Figure S4. The frequency-dependent behavior of the χM'' exhibits 319 

again two different relaxation processes, of which only one presents clear maxima. For 320 

this, the plots have been fitted with the same model employed for the 1 kOe 321 

measurements. The extracted relaxation times, reported as full dots in Figure 5b, are 322 

higher than those previously found at the same temperature in a 1 kOe field, indicating 323 

that the increased field suppressed the quantum tunneling relaxation process still present 324 

in the 1 kOe field. As observed in the previous case, the higher temperature part 325 

displays a steeper dependence on temperature, which is reduced upon cooling, reaching 326 

a maximum at about 2.9 K. Below this temperature, a decrease in the relaxation time 327 

upon cooling occurs. This phenomenon can be interpreted as result of a decrease in the 328 

energy exchange between the molecules and the solid state vibrations responsible for 329 

the spin relaxation upon cooling (phonon-bottleneck effect) [49-51]. The curve has been 330 

fitted with the same model as used before, joining an Orbach process with a remaining 331 

tunneling mechanism. The extracted parameters are τ0 = 8.3(5)⋅10-7 s, ∆ = 21.9(4) cm-1 332 

and a tunneling frequency of 1.92(1)⋅104 Hz. The presence of a quantum tunneling of 333 

the magnetization with an applied field may arise from the presence of overlapping 334 

processes of direct relaxation and phonon-bottleneck effect. The experimentally 335 

determined value of the activation barrier to the magnetic relaxation is among the 336 

highest found for ten-coordinated Tb(III) complexes, pointing to the Hscpy ligand as a 337 
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good building block from which to prepare lanthanide complexes with slow relaxation 338 

of the magnetization [46-48,52].  339 

 340 

Conclusion 341 

Two new complexes of the bis-semicarbazone Hscpy series have been prepared 342 

and characterized, and both trivalent metal ions (Gd and Tb) showed coordination 343 

number 10. The ligand Hscpy is bound as a tridentate chelate, coordinated through two 344 

nitrogen atoms and one oxygen atom, while two nitrato ligands are coordinated in a 345 

chelate mode. The complexes crystallized with an accompanying discrete nitrate anion 346 

as counter-ion, and a methanol mono-solvate molecule; the overall composition is 347 

[Ln(Hscpy)2 (NO3)2]NO3·MeOH.  348 

Infrared (FTIR) as well as high resolution mass spectra (HRMS-ESI) of the 349 

Gd3+ and Tb3+ compounds exhibited bands and fragments, respectively, in accordance 350 

with the chelate mode of binding of Hscpy, and the calculated fragmentation patterns.  351 

In search for essential magnetic properties required for a possible application 352 

as a single molecule magnet (SMM), we have explored the dynamics of magnetization 353 

of the terbium complex. It showed slow relaxation of the magnetization under static 354 

magnetic fields of 1 kOe and 1.5 kOe, with an activation barrier to the relaxation 355 

(21.9(4) cm-1) among the highest found for ten-coordinated Tb(III) complexes, 356 

indicating that the Hscpy ligand is a good building block from which to prepare 357 

lanthanide complexes with slow relaxation of the magnetization.  358 

 359 
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