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Abstract 

Background: High-quality plant phenotyping and climate data lay the foundation of phenotypic 

analysis and genotype-environment interaction, providing important evidence not only for plant 

scientists to understand the dynamics between crop performance, genotypes, and environmental 

factors, but also for agronomists and farmers to closely monitor crops in fluctuating agricultural 

conditions. With the rise of Internet of Things technologies (IoT) in recent years, many IoT-based 

remote sensing devices have been applied to plant phenotyping and crop monitoring, which are 

generating terabytes of biological datasets every day. However, it is still technically challenging to 

calibrate, annotate, and aggregate the big data effectively, especially when they were produced in 

multiple locations, at different scales.  

Findings: CropSight is a PHP and SQL based server platform, which provides automated data 

collation, storage, and information management through distributed IoT sensors and phenotyping 

workstations. It provides a two-component solution to monitor biological experiments through 

networked sensing devices, with interfaces specifically designed for distributed plant phenotyping and 

centralised data management. Data transfer and annotation are accomplished automatically though an 

HTTP accessible RESTful API installed on both device-side and server-side of the CropSight system, 

which synchronise daily representative crop growth images for visual-based crop assessment and 

hourly microclimate readings for GxE studies. CropSight also supports the comparison of historical 

and ongoing crop performance whilst different experiments are being conducted. 

Conclusions: As a scalable and open-source information management system, CropSight can be used 

to maintain and collate important crop performance and microclimate datasets captured by IoT 

sensors and distributed phenotyping installations. It provides near real-time environmental and crop 

growth monitoring in addition to historical and current experiment comparison through an integrated 

cloud-ready server system. Accessible both locally in the field through smart devices and remotely in 

an office using a personal computer, CropSight has been applied to field experiments of bread wheat 

prebreeding since 2016 and speed breeding since 2017. We believe that the CropSight system could 
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have a significant impact on scalable plant phenotyping and IoT-style crop management to enable 

smart agricultural practices in the near future. 
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CropSight, distributed plant phenotyping, phenomics, IoT-based crop management, information 

system 
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Background 

Automated phenotyping technology has the potential to enable continuous and precise measurement 

of dynamic phenotypes that are key to today’s plant research [1,2]. Quantitative phenotypic traits 

collected through crop development are not only important evidence for plant scientists to understand 

the dynamics between plant performance, genotypes, and environmental factors (i.e. genotype-

environment interaction, GxE), but critical for agronomists and farmers to closely monitor crops in 

fluctuating agricultural conditions [3–5]. High quality phenotyping and climate datasets lay the 

foundation for meaningful phenotypic analysis, which is likely to produce an accurate delineation of 

the genotype-to-phenotype pathway for the assessment of yield potential and environmental 

adaptation [6,7]. Presently, although many automated phenotyping platforms are capable of 

generating large plant-environment data [8], it is still technically challenging to collect, calibrate, 

annotate, and aggregate these datasets effectively, especially for experiments carried out in multiple 

locations, at different scales [9,10].    

   With the rise of Internet of Things (IoT) technologies and their applications in plant phenotyping 

[11], a number of commercial data and experiment management solutions have been developed on the 

base of customised hardware and proprietary software. For example, LemnaTec’s Field Scanalyzer 

platform (www.lemnatec.com) employs a simple HTTP server with an SQLite database to facilitate 

crop monitoring and deep phenotyping using LemnaControl and LemnaBase systems [12,13]. 

Integrated Analysis Platform (LemnaTec) [14] together with LemnaGrid analysis software form an 

automated data processing platform that combines raw image collection, metadata association, and 

phenotypic analysis for indoor plant phenotyping. Phenospex’s FieldScan system uses infield Wi-Fi 

network to connect PlantEye
TM

 3D laser scanners, climate sensors, and a gantry system with a 

PostgreSQL database to realise the scanner-to-plant phenotyping [15]. Furthermore, the 

PlantScreen
TM

 system (Photon Systems Instruments) manages fluorescence images through computer 

vision techniques via dedicated networks and databases [16]. However, the above commercial 

systems require ongoing licensing maintenance and additional costs for developing new functions. It 
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is therefore challenging for a broader plant research community to adopt and extend them easily in 

order to meet the growing needs of today’s plant research [10].   

   Recently, some research-based systems have also been introduced to the scientific community. For 

example, by combining local and global management subsystems, a cloud-based remote control 

system has been developed to monitor environmental conditions in tropical horticulture cultivation as 

well as remotely control drip irrigation for tomato plants based on soil moisture content [17]. The 

framework has been tested under unstable network connections in rural areas, which has demonstrated 

its potential and usefulness; however, it requires long-term outdoor verification and still has 

compatibility issues when integrating with different sensing devices. PhotosynQ software manages 

data collection and storage through a handheld device called MultispeQ [18]. It uses Bluetooth to 

retrieve leaf surface images, environmental and geolocational data collected by the handheld device, 

which are then stored in a mobile phone or a laptop for centralised analysis. The system requires 

manual interference for data synchronisation and onsite workstations or cloud-based servers for data 

analysis. Hence, it is tailored for small-scale and qualitative phenotyping tasks. BreedVision is 

another system that gathers data through a network-based HTTP server [19]. Mounting multiple 

sensors on a tractor, BreedVision is used to carry out field phenotyping for wheat breeding. Sensors 

communicate to a SQL database running in an embedded system. However, similar to the above 

commercial systems, this platform is designed for bespoke hardware and has not provided an open 

application programming interface (API) that allows external hardware and software to connect. 

Solely for collecting climate datasets, the PANGEA architecture [20] was successfully established to 

network large numbers of connections (e.g. wireless sensor networks, WSN) for agricultural practises 

[21]. This system has been used to integrate large-scale WSN installations through open and 

distributed smart device interfaces. However, it cannot handle image-based datasets and thus limits its 

applications in image-based plant research. Lately, a comprehensive and open-source Phenotyping 

Hybrid Information System (PHIS) has been developed by INRA [22]. The PHIS system aims to 

provide a platform to enable data tracing and reanalysis of phenomic data (for both sensor- and 

image-based data) collected on thousands of plants, sensors and events. It can identify and retrieve 
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objects, traits and relations via ontologies and semantics. Because the PHIS system needs to 

incorporate many external phenotyping and modelling systems, it is therefore heavyweight and 

suitable for post-experimental data integration and analysis.      

   The above industrial and academic efforts identify the need to develop a scalable and openly 

available information management system to deal with our growing experimental needs and 

biological datasets. It needs to handle different types of datasets acquired in plant phenotyping 

experiments. To integrate data transfer, calibration, annotation and aggregation effectively, such a 

system should be flexible for changeable experimental designs and expandable with third-party 

hardware and external software. More importantly, the system needs to enable users to closely 

monitor experiments conducted in different locations whilst experiments are being carried out.   

   With these design requirements in mind, we developed CropSight, a scalable IoT-based information 

management system that is easy to use and flexible to deploy in diverse experimental scenarios. 

CropSight is an open-source software system, which provides a range of interfacing options for the 

community to adopt and extend. We followed a distributed systems design during the development, so 

that experimental, phenotypic, and environmental data collected from infield and indoor experiments 

could be integrated efficiently. The system provides a unified web interface for users to oversee data 

collection, calibration and storage on a regular basis. Through our three-year wheat prebreeding field 

experiments (2016-2018) [23] and the speed breeding project [24], a powerful visualisation 

component and a flexible data/experiment management solution has been established. Equipped with 

CropSight, users can now closely monitor different experiments, both ongoing and historic, running in 

different locations. Furthermore, the modulated software architecture has made it possible to change 

scale and performance for growing experimental needs. To our knowledge, the research-based 

CropSight system has the potential to significantly contribute towards dynamic data collation and 

scalable experimental management, for both plant phenotyping and crop GxE studies.   
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Findings  

IoT is a fast-growing field. IoT-based sensors are generating terabytes of data for plant research and 

agriculture services everyday [25]. Since the existing data/experiment management solutions heavily 

rely on bespoke data collection approaches, they cannot be easily adopted and extended. Also, most of 

the present solutions require the construction of a centralised management system, which could not 

resolve the problem of scalability and accessibility, because the distributed nature of IoT technologies 

and the centralised data administration infrastructure are likely to confound each other. Instead, we 

developed a two-component solution. The first part of this is a device-side system that is lightweight 

and capable of interacting directly with distributed IoT sensing devices, which can ensure onboard 

data standardisation and data collection. The second component is a server-side system that collates 

and stores image- and sensor-based data, with SQL as the back-end. This server-side system is more 

comprehensive and responsible for managing and visualising dynamic crop-environment data 

collected during experiments. Combining both parts, the open-source CropSight system is capable of 

bringing scalability and flexibility to users. 

 

The systems design 

The two-component systems design of CropSight is shown in Fig. 1. We used a Python-based web 

framework, Flask [26,27], as the base for the device-side services. The main reason for this choice is 

that Python, a high-level programming language widely used by the scientific community, can interact 

with many single-board computers (e.g. a Raspberry Pi computer) commonly embedded in distributed 

IoT sensors and/or phenotyping devices. This framework administers onboard data flow and storage 

together with a lightweight server for web-based interactions (Fig. 1A). As Flask is hardware 

independent, the approach can be applied to any hardware that supports Python. Additional services 

such as Linux crontab scheduling system, dynamic host configuration protocol (DHCP, used for 

establishing self-operating Wi-Fi network), and virtual network computing (VNC) services can also 

be easily added or removed to maintain the simplicity of the device-side system.  
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   Powered by PHP5+ [28] and MySQL [29], the device-side system can facilitate real-time 

interactions between smart devices (e.g. smartphones and tablets) and IoT devices. The graphic user 

interface (GUI) was developed using PHP and JavaScript, which can be opened in a web browser 

such as Chrome and Firefox on any smart device. A PHP-based RESTful API [30] was adopted to 

regulate hourly client-server communications. A lightweight SQL server, MariaDB [31], was used for 

collecting and storing different formats of datasets, including images, climate sensors, and 

experimental settings. The device-side system can give access to each phenotyping device, so that live 

video streaming and remote system configuration can be initiated by users to deploy phenotyping 

devices (Supplementary Fig. 1) as well as to establish indoor or infield experiments just using a 

smartphone or a tablet. Also, the GUI allows users to enter metadata including trials, experiments 

(e.g. genotypes, treatments and biological replicates), and brief description, while phenotyping 

devices are being installed. The distributed IoT-based design has massively improved the mobility 

and flexibility of phenotyping tasks.  

   The server-side system bridges the connection between data aggregation and cloud-based 

interfacing (Fig. 1B). This approach facilitates biological data acquired at different locations to be 

synchronised with a centralised server for data management, detailed traits analyses, and decision 

making in crop management. PHP5+ was used to develop the system that supports Apache and an 

SQL server such as MySQL [29]. The server-side system initiates regular updates of the status of each 

distributed IoT device via server user interface, with information such as online or offline status of the 

device, operational mode, representative daily images, micro-climate readings, and the usage of 

computing resources (i.e. CPU and memory). Between 2016 and 2018, the two-component CropSight 

system has been successfully applied to monitor wheat prebreeding experiments in the field and 

indoor wheat speed breeding (i.e. growth chamber and greenhouse) simultaneously (Supplementary 

Fig. 2).  

   Whilst CropSight is designed to allow users with no technical background to use, the installation of 

the system still requires an IT technician to complete (see Additional File 1 for detailed instructions). 
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To install the system, a functioning PHP and SQL server is required. Also, as it needs to run on a 

network-enabled web server, a network infrastructure is therefore required to function CropSight (Fig. 

2). Due to the rural location of many crop research experiments, it is often expensive and unfeasible to 

install wired or wireless networks in some experimental sites. Hence, our solution is to establish an 

ad-hoc and self-operating network through USB Wi-Fi dongles mounted on IoT devices, e.g. a 

CropQuant phenotyping workstation [23], so CropSight can manage data transfer between distributed 

devices (distributed nodes) and a central server (a server node). The self-operating network can be 

either a Star or a Mesh network topology (Supplementary Fig. 3). In our case, we have established a 

Star network typology in field experiments of bread wheat. The device-side CropSight system 

administers the self-operating network, enabling peer-to-peer HTTP accessing points to network 

distributed nodes for data calibration and synchronisation (Fig. 2A), or to establish a direct link 

between a smart device and a server node (Fig. 2B). After correlating and collecting all data from the 

device side, the system will then transfer the data to the server-side system, where users could oversee 

different experiments at near real-time (Fig. 2C). The self-operating networking approach enables 

flexible WiFi coverage over experiment sites. It is important to point out that the effective radius of 

one Star network in our experiments is around 1,000-1,200 m
2
, which is determined by the effective 

25-metre range of the USB Wi-Fi dongles installed in our CropQuant phenotyping workstations. A 

normal Star network includes 8 low-cost distributed nodes and one server node, which costs 

approximate £3,250 to build in-house. For an individual phenotyping workstation (i.e. a distributed 

node), around 20GB sensor- and image-based data could be generated in a growing season. 

 

An MVC architecture 

When implementing the CropSight system, we followed Model-view-controller (MVC) software 

architecture, dividing the system into three interconnected parts to separate internal information flows 

based on how they are presented to the user [32]. Using the MVC pattern to interface different parts of 

the CropSight system, not only source code can be reused for both device-side and server-side 
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software implementation, we could also enable modulated parallel software development to add new 

functions, while biological experiments were still ongoing (Fig. 2D).  

   To enable data standardisation and integration, a RESTful API was implemented that accepts 

image- and sensor-based datasets and IoT device status updates in JSON format. All interactions 

between devices and the server are authenticated using a pre-shared key pair to ensure that data 

collection is accomplished from a trusted source. The RESTful design allows all data requested for 

transaction to be contained within a single request, which compiles all information into one JSON 

object and then transmits through an HTTP POST request. The Model implementation allows us to 

determine dynamic data structures, as well as to manage logic and rules of the CropSight system. The 

entity–relationship model (ER diagram) used for establishing the database including entity types and 

specifies relationships between the entity types can be seen in Supplementary Fig. 4. 

   Based on PHP server (Apache tested) and SQL server (MySQL and MariaDB tested), the Controller 

component responds to user input and internal interactions on the data model. The controller receives 

image, sensor and system status as the input data flows, validates them, and then passes them to the 

model component, first on distributed device-side server and then transmitted to a globally accessible 

server-side server, which mirrors the input data. Internet connections are required, if the input datasets 

need to be transferred from a field experiment site to onsite servers. The form of data transmission can 

be either wired ethernet or WiFi network. The Controller administers data collation between device-

side and server-side by mimicking the device API call to the higher-level server API, at the time of 

device request is programmed. 

   The View component presents the data model and user interactions in two formats. First, through an 

active HTTP connection and D3.js graphing engine [32], users can access distributed IoT devices via 

web browsers (Chrome and Firefox tested) installed on any smart device, in the field or in 

greenhouses. The device-side CropSight provides a tailored GUI window, within which users can 

deploy (see Additional File 1), monitor, assess and download captured data on demand. Second, the 

device-side system synchronises with the server at regular intervals, based on which CropSight 
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provides a more comprehensive GUI to present both experimental and technical status (i.e. system 

status) of ongoing experiments. The device-side system is designed to be distributed. So, if a given 

IoT device cannot make a direct internet connection for any reasons, the device-side system will 

enable local data storage as a server node. After the networking is re-established, the system can then 

forward collected data automatically (the onboard USB memory stick can store up to 60 days’ image 

and sensor data). 

 

Experiment and data management   

Monitoring dynamic plant phenotypes such as height, growth rate, growth stages, and associated 

climate conditions in biological experiments can be a laborious and time-consuming task. It is even 

more challenging if we need to calibrate and verify datasets collected from sensing devices deployed 

in different sites. In particular, low-quality and missing data often leads to analysis errors and 

unusable results, which normally can only be identified after the completion of experiments [33]. 

Hence, the server-side CropSight system was designed to oversee ongoing experiments based on 

representative daily images, hourly sensor data collected from each phenotyping device, as well as 

experimental settings such as genotype, treatment, drilling date, plot position and biological replicate.  

   The interfaces of experiment and data management are presented in Fig. 3, which integrate 

experiment location, plot map, and crop/experiment/device information to enable quick cross-

referencing so that crop management decisions can be made whilst experiments are still ongoing. As 

shown in Fig. 3A, for a given experiment, the grid view provides GPS-tagged project geolocation, 

identifiers of installed phenotyping devices, representative daily images of monitored plots, and 

colour coded status indicator showing the operation mode of each distributed device. CropSight reads 

the device-side server’s GPS coordinates and presents the geolocation in an embedded Google Map 

for users to locate the experiment. In addition to the GPS location, an embedded plot map is also 

provided demonstrating the position of each monitored plot or pot in the field or in greenhouses 

together with colour coded status markers, indicating whether extra attention is needed (e.g. green for 
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operating, amber for idle, and red for device termination or operational error). These markers in the 

plot map can be clicked, which will bring the user to the detailed view of individual device (Fig. 4). 

Each distributed phenotyping device uploads a daily representative image of the monitored plot or 

pot. The resolution of the image is 640x480 pixels, downsized from 2592×1944 pixels to enable 

effective data transmission for large-scale device-server data synchronisation. The image is 

automatically selected based on file size, intensity, and image clarity. Image calibration and white 

balance for infield crop imaging are accomplished via phenotyping devices such as CropQuant 

workstations [23]. The automated adjustment of white balance gains and exposure mode under 

changeable lighting conditions are included in the Python script available in the CropSight project 

repository on GitHub ([34], Assets Section, camera_capture_script.py).  

   The grid view of these representative image is used as a snapshot of the experiment, so that users 

can quickly assess plant growth and performance of each genotype without regularly walking in the 

field during the growing season. We have developed an image analysis algorithm to automatically 

select high-quality images from daily image series to reduce manual interference on operating 

phenotyping workstations [34] as well as a number of Python-based software such as Leaf-GP to 

analyse growth phenotypes [35]. However, to maintain the independence of CropSight, these 

algorithms have not been integrated in the infrastructure. 

   The list view provides a table of status that incorporates crop information with experiment and 

device details (Fig. 3B). This view is mainly used for project maintenance proposes, which contains 

three sections. First, similar to the grid view, crop information identifier lists phenotyping devices 

installed in the experiment. Second, experiment information includes a coloured status indicator to 

display the operational mode of a given device, the experiment duration of a given device, and the 

latest timestamp of data synchronisation. Device uptime (i.e. experiment duration) is computed using 

the device’s internal clock (i.e. the Linux uptime command) and the time when the latest image is 

captured. Third, distributed device information shows: (1) each device’s onboard storage, using filled 

bars to indicate the percentage of space left in gigabytes (GB) based on regular 30-minute updates; (2) 
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buttons to download image- (i.e. “Crop Growth Image Series”, in monthly Zip archives) and sensor-

based (i.e. “Download Sensor Data”, in a CSV file) datasets collated during the experiment from the 

SQL database; and (3) device interaction buttons, providing direct device control and remote system 

configuration via Secure Shell (SSH) or VNC.  

Continuous microclimate visualisation   

Microclimate is an important evidence for plant scientist to monitor radiation/ambient/soil variation in 

different locations over the whole experiment site, an important factor that closely connects with the 

performance at both plant and plot levels [36]. To facilitate the monitoring of microclimate during the 

experiment, a comprehensive visualisation function has been developed for CropSight (Fig. 4). By 

accessing a given phenotyping device’s detail page, collected environmental factors can be viewed as 

individual line charts along with the device information. IoT-based climate sensor readings are logged 

with the central server and then indexed by device and location, allowing near real-time microclimate 

readings (30-minute updates) of monitored regions. The visualisation is done in the web browser 

using the D3 JavaScript library. In our case, we can soundly retrieve readings such as device 

temperature (to assess device performance), ambient relative humidity, ambient temperature (Fig. 

4A), light levels (based on light intensity), soil temperature, and soil moisture (Fig. 4B). The 

microclimate datasets acquired from multiple locations across the field can also be used for data 

calibration to generate a normalised and highly reliable environmental reading of the experimental 

site. The CropSight system accepts collective readings from most off-the-shelf climate sensors and 

hence is open to the expansion of new environmental variables. The environmental sensors used in 

our experiments are: DHT22 digital temperature & humidity sensor, TSL2561 luminosity sensor, 

DS18B20 waterproof digital temperature probe, and analogue capacitive soil moisture sensor. 

Ambient temperature and humidity sensors were incorporated into the housing of the phenotyping 

workstations and soil sensors were inserted into the ground of the plot, attached to the phenotyping 

workstations via cables.  
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Applications in wheat field experiments 

A key element of modern agriculture is to closely monitor dynamic crop performance and agricultural 

conditions to predict and plan crop production [37]. Plant breeding and GxE studies also rely on high-

quality and high-frequency crop-environment data to produce accurate growth models for yield and 

quality prediction [38,39]. The CropSight system provides users with quick access to environmental 

factors recorded by each distributed phenotyping device during the growing season. Based on the 

position of a given phenotyping device, seasonal microclimate datasets can jointly form a dynamic 

growth condition map showing environmental conditions and variance in the field (Fig. 5).  

   In a 253-day field experiment of 32 wheat genotypes within the single genetic background of 

Paragon (a UK spring wheat variety) accomplished in 2017, we have installed 16 CropQuant field 

phenotyping workstations to monitor six-metre wheat plots to collect continuous crop growth image 

series as well as associated microclimate conditions such as ambient temperature, relative humidity, 

light levels, soil temperature and soil humidity. When the datasets were being collated in CropSight, a 

field map of dynamic microclimate conditions at key growth stages (i.e. from early booting to early 

grain filling, 56 days) was gradually produced, showing the increase in ambient temperature (Fig. 

5A), the variation of ambient moisture levels (Fig. 5B), and the steady increase of soil temperature 

(Fig. 5C). To simplify the presentation, the microclimate heatmap was presented with data at 14-day 

intervals, where wheat plots installed with sensors were outlined with red colour and plots without 

sensors were outlined with green colour, where climate data was produced through data interpolation 

methods based on adjacent readings (Fig. 5). The period of the interval can be flexibly changed, and 

the microclimate readings are retrievable as soon as data synchronisation is finished (Supplementary 

Fig. 5 and Additional File 2). Furthermore, the climate datasets can be used for cross-validating the 

soundness of infield sensors, for example, whether soil temperature correlates with ambient 

temperature (Supplementary Fig. 5A); and why readings from many low-cost sensors could provide 

more representative information of the field in comparison with one expensive central weather station 

(Supplementary Fig. 5B).  
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   Utilising this approach, dynamic environmental conditions throughout the field can be recorded 

with very low-cost climate sensors, which can then be scaled up through interpolation methods to 

cover regions without sensors. To soundly interpolate environmental data, the placement of climate 

sensors needs to be standardised to ensure effective data coverage. Depending on measurement 

requirements, standards for sensor placement can be based on the estimation of evapotranspiration 

[40]. Through our wheat field experiments between 2016 and 2018 at Norwich Research Park in the 

UK, combining distributed sensors and the CropSight system is capable of providing high-quality 

crop performance and growing conditions datasets for our changeable experiment needs.  

 

Comparison between multi-year experiments  

CropSight not only provides tools for monitoring ongoing infield and indoor experiments, but also 

supplies toolkits to reference and download historical datasets. An important part in crop research is 

able to compare collected results with past experiments. To this end CropSight stores all image and 

sensor data and manages these historical datasets with easy reference and access (Fig. 6). Historical 

datasets can be retrieved through the frontpage similar to ongoing experiments (multiple projects can 

be administered by CropSight simultaneously). After opening a completed project, users can display 

the GPS-tagged geolocation of an accomplished project and devices used in the project together with 

project references (Fig. 6A). By clicking a specific plot within the experimental field, CropSight can 

directly reference environmental and image datasets in the plot, with device name, date of last 

capture, and last image taken by the phenotyping device (Fig. 6B). If users want to revisit previous 

datasets in the project, they can download both sensor data packages and/or growth image series in 

monthly archives by clicking the archive links (Fig. 6C). This design enables a unified cloud-ready 

platform to facilitate both ongoing and historical data management for in- and post-experiment 

comparison.  
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Discussion and outlook 

The continuing challenge of global food security caused by fluctuating environments and a narrower 

range of genetic variation of modern crops requires innovative thoughts and technologies to improve 

crop productivity and sustainability [2,41,42]. As European infrastructures for sustainable agriculture 

(e.g. EMPHASIS and AnaEE) have identified, openly shareable solutions built on widely accessible 

digital infrastructures are likely to provide an effective solution to address the challenge by integrating 

novel scientific concepts, sensors and models [43,44]. The CropSight system presented here is 

scalable and open-source, providing the scientific community a number of interfacing options to adopt 

and extend. The openly available platform integrates high-frequency environmental data and crop 

images automatically, which can be used to enable both phenotypic analyses and agricultural decision 

making. By associating environmental conditions with crop growth data, we also trust that the system 

is capable of forming a sound base for reliable GxE studies. More importantly, CropSight provides 

geolocation and remote sensor readings of current and historical experiments, a comprehensive 

solution to enable multi-site and multi-year cross-referencing of crop performance and growth 

conditions. 

   Because CropSight facilitates the real-time access of microclimate conditions and crop imagery 

(through live video streaming) in the field or in greenhouses, either through a smart device or an 

office PC, users can make a quick decision of crop performance, growth stages, and plot conditions of 

any monitored location distributed in a given experiment, field, or site. Furthermore, automatic data 

transmission allows a centralised data and experiment management, which means that the system can 

be scaled up to the national scale if a broader IoT in agriculture infrastructure is in place. As collected 

data is annotated and pre-selected on distributed phenotyping or IoT devices, only standardised crop-

environment datasets are collated to support detailed traits analyses and cross-referencing. Finally, 

openly sharing results from different sites and different experiments will enable crop researchers, 

breeders, and farmers to gain great benefits, for example, predicting and prewarning disease spread at 

the national scale so that early adoption of preventative measures can be arranged. 
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   Presently, many governments are shifting their focuses towards innovative technologies to 

modernise crop and agricultural research. The UK Government, for instance, has invested heavily in 

IoT-based technologies to address challenges on yield production, food traceability, environmental 

challenges, incompatibility, and lack of infrastructure [45]. We believe that CropSight can address 

some of the current challenges directly. For example, by logging historical data and annotating crop 

growth and environmental effects within monitored fields can increase crop traceability. To reduce 

the overall use of agrochemicals as part of a precision farming strategy [46,47], CropSight can be 

used to identify the appropriate timing and areas for chemical application together with infield 

imaging and ambient sensors. Water is in limited supply for large regions of the globe and the 

reduction of unnecessary irrigation would be of large benefit to the cost-effectiveness of agriculture 

[48,49]. As discussed previously, CropSight is built in with near real-time environment monitoring 

mechanisms including soil temperature, soil moisture levels, and ambient humidity. Hence, it can 

provide information crucial to make decisions and targeting irrigation in timing and location. 

Additionally, by linking extra climate sensors with IoT devices, further environmental readings can be 

extended in CropSight for growing agricultural needs.   

   Besides environmental and crop growth monitoring, historic and current datasets collated in a 

central system can also deliver predictive powers. An example of potentially predictable situations is 

the “Smith Period” for predicting Late Blight in potato crops [50]. Late Blight is shown to be likely to 

occur during a “Smith Period”, which is defined by a period of two or more days with a minimum 

temperature of 10
o
C and a humidity of 90%, or above for at least 11 hours in each day. Having direct 

access to dynamic sensor readings on the CropSight can allow the monitoring of specific 

environmental patterns much easier and thus establish an important tool to inform farmers and 

growers to apply fungicides and chemical treatments to the appropriate areas. Hence, CropSight has a 

high potential to serve sustainable agriculture and environmentally friendliness of food production 

under today’s changeable climates. 
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Future Development 

To establish a data and experiment information management system that is scalable and usable on 

regional, national or even global crop research and agricultural practices, we believe that, with further 

development, CropSight in connection with distributed IoT sensors can meet the future demand of 

usability and scalability. One area of expansion is in scalability. The system is currently tested on 

local server with a direct network connection to at least one of the distributed nodes. To allow the 

expansion at a larger, national, or even global scale, the reliance on maintained servers would be less 

effective than a true cloud-based service. Hence, by moving the CropSight system to a globally 

accessible cloud server with cloud enabled distributed storage is a potentially feasible approach that 

removes the requirements for institutions and agricultural practitioners to maintain servers and 

storage. Given the lack of network infrastructure in rural areas in many countries, the addition of 3G 

or 4G mobile data networks to key distributed nodes in the field can improve the infield network, 

upon which the data communication of a large number of Agri-Tech devices can be relied.  

   Another prohibitive factor in IoT in agriculture is the quantity and costs of IoT devices required to 

cover an entire field. Based on our three-year field experiments, we believe that installing sensors and 

phenotyping workstations to cover every area in the field is unnecessary. Fig. 5 shows that the data 

interpolation approach applied can generate microclimate readings between randomly positioned 

stations to model environmental variation across the whole field. This subsampling approach has 

produced high-quality environmental readings, which could be used to improve the effectiveness of 

IoT applications in agriculture. Additionally, with the development of national IoT infrastructure, the 

similar subsampling idea can be expanded to a larger and multi-site level, which can then truly help 

inform decision in crop research and agricultural practices across a country’s arable land.    
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Availability and requirements 

Project name: CropSight for wheat prebreeding in Designing Future Wheat 

Project home page: https://github.com/Crop-Phenomics-Group/cropsight/releases [34] 

Operating system(s): Platform independent 

Programming language: Python, PHP, JavaScript, SQL 

Requirements: Apache (or other PHP5+) server, MySQL (or other SQL) server, a recent version of 

Chrome, Firefox, or Safari 

License: BSD-3-Clause available at https://opensource.org/licenses/BSD-3-Clause 

RRID: SCR_016870 

Availability of supporting data 

The datasets supporting the results presented here are available at the CropSight Project page [34]. 

Snapshots of source code and other supporting data are also openly available in the GitHub repository 

[34] and GigaScience database, GigaDB [51]. 

 

Additional files 

Additional File 1.docx (CropSight Installation Instructions and Interface Details) 

Additional file gives step-by-step instructions for initialising the system through an existing PHP 

webserver with SQL database, details of RESTful API required fields necessary for device 

interaction, and addition detail of distributed installation and database integration. 
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Additional File 2.html (Algorithm to generate plotted figures) 

Additional file contains full python code to replicate plotted figures within the paper, displayed within 

an exported iPython notebook. All datasets shown within the plotted figures of the paper are available 

at the project GitHub repository. 
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Figures  

 

Figure 1: A deployment diagram of the CropSight system in biological experiments.  

(A) CropSight facilitates users to interact with distributed infield or indoor phenotyping devices using 

wired (i.e. ethernet cables) or wireless connection (e.g. WiFi network). The CropSight client running 

on distributed workstations supports remote control and onboard data management. (B) Users can 

connect, monitor and administer experiments through the centralised CropSight server in near real 

time. Through dedicated networks, the CropSight back-end server collates and integrates large-scale 

image- and sensor-based phenotyping datasets in an SQL database.  
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Figure 2: A component diagram of the deployment, detailed data flows, device- and server-side 

applications of the CropSight system.  

 (A) IoT phenotyping workstations installed in wheat field experiments. Distributed phenotyping 

nodes are connected by the CropSight system. (B) Infield phenotyping devices can be directly 

accessed and controlled through the device-side CropSight system using a smart device. (C) The 

server-side CropSight system can be used to manage ongoing indoor and infield experiments through 

accessing a centralised web interface. (D) A detailed component diagram showing the MVC design of 

CropSight and the interface between distributed phenotyping workstations, device-side CropSight 

server, server-side system, and detailed data flows. The data input is through a RESTful API, 

responsible for transferring data between servers and enabling interactions through a web-based user 

interface.  
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Figure 3: System views of the server-side CropSight system.  

(A) The user interface is accessible through a web browser on any computing device. The grid view 

of the system is designed to present all experiments, including geolocation of the experiments, their 

experimental layouts, monitored plots and genotypes, experiment duration, and representative daily 

images. (B) The list view shows detailed statistics of all monitored crops in a given experiment, 

including crop information (genotypes and daily images), experimental information, and distributed 

phenotyping information such as workstation ID, storage, IP address, image and sensor data 

download, and device interaction functions via flask-based HTTP interface.   
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Figure 4: The individual view of the server-side CropSight system.  

(A) The individual view of the server-side CropSight system monitoring crops in the field, detailing 

device and experiment information together with captured microclimate data. (B) Web-based graph 

visualisation of hourly sensor readings during a given experiment, showing ambient temperature, 

ambient humidity, field lighting, soil moisture, and soil temperature variation in the plot region.   
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Figure 5: Infield spatial measurements of microclimate conditions collated by the CropSight 

system. 

(A, B) A heat map of ambient sensor reading of temperature and relative humidity recorded during the 

growing season. Each cell represents a plot in the 2017 field experiment. Real sensor reading outlined 

in red and interpolated values outlined in green. (C) A heat map of soil-based sensor reading of soil 

temperature recorded during the growing season.   
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Figure 6: Historical experiments and data access. 

(A) The CropSight system provides access to historical experimental datasets, including the 

geolocation of all experiments as well as all plots monitored in a completed experiment. (B) In a 

completed experiment, the last image captured in the experiment and historical image- and sensor-

based data can be downloaded. (C) The download links for monthly image series archived in cloud.  
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Supplementary Figure 1: The device-side CropSight system login GUI and remote system 

configuration. 

(A) The device-side CropSight system gives GUI-based access to each phenotyping device’s user 

interface. (B) The system allows device management and remote system configuration such as live 

video streaming to assist in calibration and experiment setup.  

 

Supplementary Figure 2: Archived image- and sensor-based experimental data access. 

(A&B) Archived data access of 2016 and 2017 wheat field experiments, allowing browsing and 

downloading of previously completed infield experiments. (C) Accessing multiple indoor and infield 

experiments and archived historical data to enable cross-referencing crop growth and environmental 

conditions. 

 

Supplementary Figure 3: The network topology of self-operating crop phenotyping in the field. A 

number of nodes form a star network with a central in-field server node, which communicates with 

the CropSight system through an in-field wireless network. 

 

Supplementary Figure 4:  Database Entity-Relationship diagram detailing high-level entities within 

the CropSight database and the relational links between primary, composite and foreign key fields. 

The ER diagram also describes the structure of database tables, omitting simple storage fields. 

 

Supplementary Figure 5: Validating climate sensors deployed in the field. 

(A) The cross-validation of two different sets of sensors, normalised soil and ambient temperature 

readings. (B) Different reading between distributed ambient humidity sensors (15 placed in the field) 
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in comparison with a central weather station, showing different climate readings. 
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