Improving wheat as a source of iron and zinc for global nutrition

Balk, J., Connorton, J. M., Wan, Y., Lovegrove, A., Moore, K. L., Uauy, C., Sharp, P. A. and Shewry, P. R. (2019) Improving wheat as a source of iron and zinc for global nutrition. Nutrition Bulletin, 44 (1). pp. 53-59. ISSN 1471-9827

[thumbnail of Published_Manuscript]
PDF (Published_Manuscript) - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview


Wheat is the staple food crop in temperate countries and increasingly consumed in developing countries, displacing traditional foods. However, wheat products are typically low in bioavailable iron and zinc, contributing to deficiencies in these micronutrients in countries where wheat is consumed as a staple food. Two factors contribute to the low contents of bioavailable iron and zinc in wheat: the low concentrations of these minerals in white flour, which is most widely consumed, and the presence of phytates in mineral-rich bran fractions. Although high zinc types of wheat have been developed by conventional plant breeding (biofortification), this approach has failed for iron. However, studies in wheat and other cereals have shown that transgenic (also known as genetically modified; GM) strategies can be used to increase the contents of iron and zinc in white flour, by converting the starchy endosperm tissue into a ‘sink’ for minerals. Although such strategies currently have low acceptability, greater understanding of the mechanisms which control the transport and deposition of iron and zinc in the developing grain should allow similar effects to be achieved by exploiting naturally induced genetic variation. When combined with conventional biofortification and innovative processing, this approach should provide increased mineral bioavailability in a range of wheat products, from white flour to wholemeal.

Item Type: Article
Uncontrolled Keywords: bioavailability,biofortification,iron,phytic acid,wheat,zinc,medicine (miscellaneous),nutrition and dietetics ,/dk/atira/pure/subjectarea/asjc/2700/2701
Faculty \ School: Faculty of Science > School of Biological Sciences
UEA Research Groups: Faculty of Science > Research Groups > Molecular Microbiology
Faculty of Science > Research Groups > Plant Sciences
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 07 Feb 2019 09:30
Last Modified: 21 Oct 2022 21:37
DOI: 10.1111/nbu.12361


Downloads per month over past year

Actions (login required)

View Item View Item