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1. Introduction

Tail interdependence1 is of paramount importance in economics, finance, insur-

ance and in many other areas of applied probability and statistics. Research has

documented that dependence2 has a complex nature, is strongly non-normal, with a

time-varying strength and shape (e.g. Patton, 2006). To date, simultaneously cap-

turing these characteristics, particularly for high-dimensional systems, has proved

difficult.

We propose a simple and flexible framework that allows for a comprehensive

analysis of tail interdependence in high dimensions and apply it to the 250 con-

stituents of the Standard & Poor index. The essence of this framework is the concept

of tail interdependence of the constituents of a high-dimensional system in a cross-

section or intertemporal context. Specifically, we focus on co-exceedances — joint

occurrences of extreme events. Under tail interdependence, the co-exceedances of

some variables are informative about such events for other variables. Conversely, un-

der independence, tail events in any subset of variables do not convey any information

about tail events in other subsets. We use co-exceedances to capture the structure

of the tail interdependence and, relying on the concept of multi-information, define

the coefficient of tail interdependence. Multi-information is used in many areas of

natural sciences and has been also applied in economics and finance (see, e.g. Backus

et al., 2014; Segoviano and Goodhart, 2009; Cameron and Windmeijer, 1997).

Our measure of tail dependence is fully non-parametric, easy to interpret and

particularly suitable for empirical studies of high-dimensional problems, typically

encountered in economics and finance. Importantly, it can be computed along any

1The pun in the title of the paper has been used before in a different form by Andrade et al.
(2012).

2While we often use the terms interdependence and dependence interchangeably, we distinguish
between the two concepts as follows. Dependence refers to the relationship between two random
variables whereas interdependence refers to the relationship among two or more variables. Hence,
the latter concept nests the former.
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direction and for any nominal severity level as specified by the user’s interest. It can

be decomposed into two components. The first component captures the interdepen-

dence of the system so we label it system interdependence. The second component

is the residual interdependence which, for reasons that will become clear below, we

label severity-k interdependence. Alternatively, our measure of tail dependence can

be decomposed into contributions of constituents to the interdependence of a sys-

tem. These decompositions can, for example, help portfolio managers identify assets

that make large contributions to the tail risk of a portfolio or regulators identify

systemically important institutions. We offer, therefore, a tool to analyse the tail

dependence of large networks without requiring knowledge of or imposing assump-

tions on their "inner workings", relying instead only on their observed behavior as

captured in a series of multidimensional observations.

In the bivariate case, our measure of tail dependence converges to the tail-

dependence coefficient (e.g. Joe, 1997; Sibuya, 1960) and can be interpreted as

a generalisation of the latter to high dimensions and to any severity level or di-

rection. The tail-dependence coefficient corresponds to the limit of the conditional

probability that one variable exceeds a high/low threshold given that the other has

exceeded its high/low threshold.

Further, we develop statistical tests of (i) independence in the tails, (ii) goodness-

of-fit of the tail interdependence structure of a hypothesized model relative to the

structure observed in the data, and (iii) dependence symmetry between any two

tails. These tests can be employed unconditionally and, importantly, conditionally to

distinguish between different models of conditional dependence such as multivariate

GARCH or time-varying copulas (e.g. Dungey and Renault, 2018; McCloud and

Hong, 2011). These contributions are provided within a unified framework that

relies on the same fundamental concept of multi-information.

The distinction of dependence in the tails relative to other parts of the distrib-
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ution is important because financial and economic variables are often dependent in

some parts but independent in others. For example, as we show below, the Fama-

French-Carhart asset pricing factors are virtually independent in the central part

of their joint distribution but dependent in the tails. Indeed, dependence changes

considerably with the extremity of returns and this discrepancy in dependence is

pervasive. Accounting for this feature is essential for many applications such as

hedging and portfolio diversification. In particular, the standard advice to hold a

well-diversified portfolio might be questionable if assets are independent in the cen-

tral part of the joint distribution but tend to fall significantly in value as one of them

experiences an extreme drop, thereby further compounding large losses instead of

offsetting them. Following Ghysels et al. (2016), we examine the performance of

two porfolios that exploit the asymmetry of the joint distribution of returns cap-

tured by either co-skewness or the coefficient of tail dependence that we propose.

We find that "co-skewness-managed" portfolio has the highest return whereas the

"tail—risk-managed" portfolio has the lowest risk relative to the alternative models

we use.

To the best of our knowledge, there is no direct, high-dimensional non-parametric

alternative to our framework. An alternative would be the factor-copula class of

models (see Oh and Patton, 2017; Lucas et al., 2016 and the references therein for

a discussion of the advantages and disadvangages of these models). However, the

framework that we propose is different from these models because ours is entirely

non-parametric. While this has advantages, it is like other non-parametric techniques

data-intensive. However, our system coefficient of tail interdependence addresses this

drawback by drastically reducing the number of the relevant joint tails. Monte Carlo

studies available in the Appendix show that our measure of tail interdependence has

good finite-sample properties even in very high dimensions.

The literature contains several measures of dependence (e.g. Li, 2009; Colangelo
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et al., 2005; Heffernan, 2001; Joe, 1997; 1989). The most widely applied dependence

measure, the Pearson’s correlation coefficient, is an inadequate measure in many

situations as it captures only the linear dependence between pairs of random variables

(e.g. Longin and Solnik, 2001). Extreme dependence has been captured by copulas

(e.g. Opitz et al., 2017; Nelsen, 2007; Patton, 2006), multivariate quantile regressions

(e.g. White et al., 2015) and multivariate extreme-value theory (e.g. Asimit et al.,

2016; Bücher et al., 2015; and Jansen and de Vries, 1991). However, these measures

of dependence are generally feasible only in low dimensions. Further, there is a large

literature that uses co-exceedances to model and test for interdependence (see, for

example, Bae et al., 2003; Boyson, et al., 2010; Dungey et al., 2015; and Beine et al.,

2015).

The paper proceeds as follows. Section 2 introduces the joint tails and the tail

interdependence structure. In Section 3, we define the coefficients of tail interde-

pendence and discuss their properties. Section 4 develops the tail interdependence

structure framework for hypothesis testing, while Section 5 applies it, conditionally

and unconditionally, to multidimensional data. Section 6 presents the results of op-

timal portfolios constructed with the coefficient of tail interdependence and Section

7 summarizes the paper. All technical proofs are relegated to the Appendix.

2. Joint tails and the tail interdependence structure

We begin with the simplest example of the bivariate case and generalise the

framework to the n dimensional case below. Let N = {1, 2} be a set of two assets

with random returns represented by the vector X = (X1, X2) with a continuous

joint cdf F (pdf f) with support on R2 and strictly increasing marginal cdfs F1, F2

(pdfs f1,f2). Suppose that the realization x = (x1, x2) of X represents the returns of

two assets. An investor who is long on these assets experiences an extreme loss at

nominal severity level α ∈ (0, 1) in asset i when the asset return xi is smaller than
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(exceeds) its relevant quantile F−1i (α). In this case, we define the indicator function,

Dα
i (x;−1) = I(xi ≤ F−1i (α)).

Dα
i (x;−1) takes on the value of one when the return xi lies in the left tail with

density mass α and zero otherwise. Extreme gains for this investor (the right tail)

at nominal severity level α are represented in the analogous way,

Dα
i (x;1) = I(xi ≥ F−1i (1− α)).

Formally, the arguments −1 and 1 of the indicator function Dα
i (x;.) stand for the

direction in which the (unidimensional) tails are measured, specifically the left (neg-

ative) and the right (positive) tails respectively.

Next, we generalize unidimensional tails to bivariate joint tails and define the

indicator function for the latter. For each subset C ∈ {{1, 2}, {1}, {2}, ∅} of N =

{1, 2} and the directional vector d = (d1, d2) ∈ {−1, 1}2, the joint tail (JT) TαC (d) ⊆

R2 is the subset of the sample space where xi falls into the negative (di = −1) or

the positive (di = 1) tail if i ∈ C. The corresponding indicator function Dα
C(x;d) is

computed as,

Dα
{1,2}(x;d) = Dα

1 (x;d1) ·D
α
2 (x;d2), (1)

Dα
{1}(x;d) = Dα

1 (x;d1) · (1−D
α
2 (x;d2)),

Dα
{2}(x;d) = (1−D

α
1 (x;d1)) ·D

α
2 (x;d2),

Dα
∅ (x;d) = (1−D

α
1 (x;d1)) · (1−D

α
2 (x;d1)).

For example, Dα
{1}(x; (−1,−1)) = 1 indicates that x1 falls in the negative tail, i.e.,

x1 ≤ F−11 (α) and Dα
1 (x;−1) = 1, while x2 does not fall in its respective negative

tail, i.e., x2 > F−12 (α) and Dα
2 (x;−1) = 0. We can define the JT TαC (d) succinctly
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using the corresponding indicator function Dα
C(x;d) as

TαC (d) = {x ∈ R
2 : Dα

C(x;d) = 1}. (2)

It can be readily verified that the superset T α = {TαC (d) : C ⊆ {1, 2}} partitions the

outcome space into 22 (the number of all subsets of N = {1, 2}) regions. Figure 1

illustrates this partition for d = −(1, 1).

[Figure 1]

Our definition of the JTs naturally generalizes to n dimensions. Let N =

{1, ..., n} be a finite set and F a continuous3 joint cdf (pdf f) of a random vec-

tor X = (X1, ..., Xn) with the support on Rn and strictly increasing marginal cdfs

F1, ..., Fn (pdfs f1, ..., fn). The following definition is a direct generalization of (1)

and (2) to any (finite) n.

Definition 1. For an n-dimensional observation x = (x1, ..., xn), the subset C ⊆ N ,

the direction vector d ∈ {−1, 1}n and the nominal level α ∈ (0, 1), we define the JT

indicator,

Dα
C(x;d) =

�
i∈CD

α
i (x;di)

�
j∈N\C(1−D

α
j (x;dj)),

and the corresponding JT,

TαC (d) = {x ∈ R
n : Dα

C(x;d) = 1}.

The subset C in this definition contains those variables from N = {1, ..., n} that

have experienced an extreme (positive or negative) event. For a given directional

vector d and nominal severity level α, there are 2n joint tails as there are 2n subsets

of N (including the empty set). We refer to upper (or positive) JTs when d = 1

3The assumptions on F are for ease of notation and are not crucial for our framework.
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= (1, ..., 1) and to lower (or negative) JTs when d = −1. Otherwise, we call the JTs

mixed. The directional vector can capture, for instance, the exposure of an investor,

institution, economy or, more broadly, system to positive and/or negative extreme

events in the underlying risk sources. Although we focus mainly on d = −1 and

d = 1, it is not difficult to imagine a scenario where some elements of d are positive

and some are negative. An intuitive example is a sophisticated investor who is long

in some assets and short in others.

Given a joint pdf f , we compute the probability of each JT and collect these

probabilities in the tail interdependence structure (TIS).

Definition 2. The tail interdependence structure pα(f,d) = (pαC(f,d))C⊆N is a 2n-

dimensional vector, where

pαC(f,d) =

�
Dα
C(x;d)f(x)dx, (3)

is the probability mass of the JT TαC (d) under f .

For example, an investor might be interested in the probabilities that all (C = N )

or none (C = ∅) of the assets in her portfolio experience an extreme loss,

pαN (f,−1) =

�
Dα
N (x;−1)f(x)dx = Pr{X1 ≤ F−11 (α), ...,Xn ≤ F−1n (α)},

pα∅ (f,−1) =

�
Dα
∅ (x;−1)f(x)dx = Pr{X1 > F−11 (α), ...,Xn > F−1n (α)}.

The superset T α(d) = {TαC (d) : C ⊆ N} partitions the outcome space into 2n (the

number of all subsets of N ) regions. The TIS pα(f,d) is, therefore, a discrete pdf.

By construction, it holds for this pdf that the probabilities pαC(f,d) for all subsets

C ⊆ N that contain a particular i ∈ N sum up to

�
C⊆N :i∈C p

α
C(f,d) = Pr{Xi ≤ F−1i (α)} = Pr{Xi ≥ F−1i (1− α)} = α.
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When there is no risk of confusion, we write T α, TαC and pα instead of T α(d), TαC (d)

and pα(f,d), respectively.

3. Measurement of tail interdependence

3.1. Multi-information and tail interdependence

The interdependence in the tails as captured by the joint pdf pα = (pαC)C⊆N is

fully defined by the multi-information (MI) (Cover and Thomas, 2006),

MI(pα||πα) =
�
C⊆N

pαC ln
pαC
παC
, (4)

where παC = α|C|(1−α)n−|C| is the probability of the JT TαC under tail independence

(computed as the product of marginal probabilities of |C| exceedances and n −

|C| non-exceedances), |C| is the cardinality of set C and πα = (παC)C⊆N is the

corresponding TIS under tail independence. Note that MI(pα||πα) is well-defined

as παC > 0 for all α ∈ (0, 1) and C ⊆ N . Although the probabilities pα∅ and πα∅ of

the no-exceedance event Tα∅ are used in the computation of MI, these probabilities

are fully determined by the probabilities of the other joint tails (because all tail

probabilities sum up to one). In this sense, they do not contain any independent

information and the computation of MI relies exclusively on the information in the

probabilities of genuine joint tails with at least one exceedance.

MI is non-negative and equals zero in case of independence only, i.e. if and

only if pα = π
α (Cover and Thomas, 2006). MI(pα||πα) is the Kullback-Leibler

(KL) divergence between the pdfs pα and πα and quantifies the total amount of

interdependence among random variables that arises from pairwise, triplet or more

complex interactions. It is widely used, e.g. in physics (e.g. Schneidman et al., 2003;

Chicharro and Ledberg, 2012) and biosciences (e.g. Wennekers and Ay, 2003).
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3.2. The coefficient of tail interdependence and its properties

We use MI as defined in (4) to measure tail interdependence. Specifically, we

normalize MI to obtain the coefficient of tail interdependence.

Definition 3. For the TIS pα = (pαC)C⊆N and πα = (παC)C⊆N , where π
α
C = α|C|(1−

α)n−|C|, the coefficient of tail interdependence (CTI) is computed as,

κ(pα) =
MI(pα||πα)

(1− n) ln(αα(1− α)1−α)
. (5)

Proposition 1. The CTI lies in the unit interval: κ(pα) ∈ [0, 1].

The CTI as defined in (5) has the following properties. Firstly, as shown in Propo-

sition 1, it lies in the unit interval. In particular, κ(pα) = 0 when all exceedances are

mutually independent and κ(pα) = 1 in the case of perfect dependence, i.e., when

all n variables always exceed together their respective quantiles. Secondly, the CTI

is invariant under the permutation of the random variables in X and scale invariant

under strictly increasing transformations of the underlying variables in X. Specifi-

cally, if each ξi(Xi) is an increasing and continuous function, then the CTI computed

from the transformed variables ξ(X) = (ξi(Xi))i=1,...,n is the same as that computed

from X. This property follows by the construction of the TIS from the quantiles of

the variables in X as the same events fall into a JT TαC under X and under ξ(X).

Furthermore, sample estimators of TIS/CTI are robust to outliers and asymptoti-

cally consistent, i.e. converge to the true TIS/CTI as the sample size grows without

bounds.

It is important to note that the empirical computation of the CTI does not

suffer from the curse of dimensionality. The computational burden increases only

linearly in the product n · T of the dimension n and the sample size T . However,

reliable computation of the CTI does require that the sample size is at least of the

order 2n (i.e. the total number of JTs). In the next subsection, we show that the
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decomposition of the CTI into the system and severity-k components circumvents

this problem. In higher dimensions, we focus on the system CTI that only needs

reliable estimates of the n+ 1 probabilities of joint exceedances.

Importantly, in the bivariate case, the limit of the CTI as α → 0 coincides with

the lower (upper) tail-dependence coefficient in a definition that goes back to Sibuya

(1960; see also Joe, 1997).

Proposition 2. For the vector X = (X1, X2) with a continuous joint PDF f and

continuous, strictly increasing marginal CDFs F1, F2,

lim
α→0

κ(pα(f,−1)) = λL ≡ lim
α→0

Pr{X1 ≤ F−11 (α)|X2 ≤ F−12 (α)},

lim
α→0

κ(pα(f,1)) = λU ≡ lim
α→0

Pr{X1 ≥ F−11 (1− α)|X2 ≥ F−12 (1− α)}.

The equivalence of the CTI and the tail-dependence coefficient in the limit is an

important finding that connects our framework to the literature on the multivariate

extreme value theory (e.g. Asimit et al., 2016; Bücher et al., 2015). We will pursue

this avenue in future research.

3.3. System and additional tail interdependence

The dimension of the TIS grows exponentially in n, which complicates its (empir-

ical) application for larger n. To address this issue, we compress the 2n-dimensional

TIS into an (n+ 1)-dimensional vector �pα = (�pαk )nk=0, where �pαk is the probability of

observing k = 0, ..., n tail events.

Definition 4. For the TIS pα, the system TIS is the (n + 1)−dimensional vector

�pα = (�pαk )nk=0 where

�pαk =
�

C⊆N :|C|=k p
α
C , for k = 0, 1, ..., n.
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Obviously, �pα is also a (discrete) pdf. In the special case of mutual independence

of tail events, we denote the system TIS by �πα = (�παk )nk=0, where

�παk =
�

C⊆N :|C|=k α
k(1− α)n−k =

�
n

k

�
αk(1− α)n−k.

From the TIS pα, we compute also the conditional probabilities pα,k = (pαC/�pαk )C⊆N :|C|=k
given that k exceedances have occurred.4 Similarly, we compute the conditional prob-

abilities πα,k = (παC/�παk )C⊆N :|C|=k from the pdf πα for each k = 0, ..., n. With this

notation in place, we define the system and severity-k MI and CTI.

Definition 5. For the TIS pα = (pαC)C⊆N , π
α = (παC)C⊆N and the resulting PDFs �pα

and pα,k, we compute the system and the severity-k multi-information, MI(�pα||�πα)

and MI(pα,k||πα,k), respectively. After normalization, we obtain the system and the

severity-k CTI,

�κ(pα) = MI(�pα||�πα)
(1− n) ln(αα(1− α)1−α)

, κk(pα) =
MI(pα,k||πα,k)

(1− n) ln(αα(1− α)1−α)
. (6)

The measure �κ(pα) quantifies the system tail interdependence by the normalized

divergence between the distributions �pα and �πα of the total number of exceedances

under pα and under πα (i.e., under tail independence), respectively. On the other

hand, each κk(pα) quantifies the interdependence among variables, given that k

exceedances have occurred. Thus, while �κ(pα) measures the dependence that is

jointly generated by all constituents, κk(pα) is the additional dependence among

the constituents given that k of them have exceeded (i.e. a severity-k event has

occurred).5 Our next result shows that the MI (CTI) can be decomposed into system

4We set pα,k = 0 when �pαk = 0. In the bivariate case, for example, pα,1{2} = p
α
{2}/�pα1 = pα{2}/(pα{1}+

pα{2}) is the conditional probability of X2 exceeding when k = 1, i.e., when exactly one exceedance
has occurred.

5While severity-k dependence is interesting in its own right, in this paper we focus mainly on
system dependence. We are pursuing severity-k dependence in a separate project.
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and severity-k MI (CTI).

Proposition 3.

MI(pα||πα) = MI(�pα||�πα) +�n

k=0 �pαkMI(pα,k||πα,k), (7)

κ(pα) = �κ(pα) +�n

k=0 �pαkκk(pα),

0 ≤ �κ(pα) ≤ κ(pα) ≤ 1,

with �κ(pα) = κ(pα) = 0 in the case of tail independence and �κ(pα) = κ(pα) = 1 for

perfect dependence (i.e., when all exceedances always occur together).

An important corollary of the last proposition shows that the CTI and the system

CTI coincide in the bivariate case. Our limit results in Proposition 2 apply, therefore,

also to the system tail interdependence.

Corollary 1. If n = 2 then κ(pα) = �κ(pα).

As an example, consider a set of interdependent constituents of a financial or

economic system. Then, the TIS pα, computed from some measure of performance

of these institutions in the negative tails, contains all information about the simulta-

neous distress of the constituents of this system at the nominal severity level α. The

system TIS �pα of the total number of constituents in distress captures the system-

ically important risk of multiple extreme events. For example, if the entire system

breaks down when k or more constituents are in distress, then the probability of the

systemic failure is simply computed as �pαk + ...+ �pαn. Our measure of tail interdepen-

dence κ(pα) and, particularly, its system part �κ(pα) capture this systemic distress

in a simple normalized coefficient.

3.4. Dynamic tail interdependence structure

The discussion above is clearly within a static framework. While this approach

may be suitable in some applications, it clearly imposes limitations on the usefulness
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of the technique, particularly in applications where the dynamics of the dependence

are important such as the portfolio application in Section 6. Another drawback is

that, like other static frameworks, it suffers from "ghost features" - the large impact

of a very influential observation entering and leaving the estimation window. As

it is now standard in the literature, this problem can be addressed by weighting

the observations so that the most recent observations are more informative about

the dependence in the subsequent periods than the observations in the past. For

example, we could model the dynamics of the system TIS �pαt+1 at date t + 1 by

an exponentially weighted moving average (EWMA) process with the parameter

δ ∈ [0, 1],

�pαt+1 = δ�pαt + (1− δ)ut, (8)

where ut is a discrete (n+1)-dimensional pdf that puts all probability on the observed

number of exceedances in period t and �pα0 is the sample TIS. This process reflects

the autoregressive structure of the number of exceedances. In the empirical section,

we estimate (8) by maximum likelihood and apply it to compute the daily forecasts

of the system TIS and CTI.

The EWMAmodel remedies the "ghost features" problem of the static framework

and therefore, it is better suited to capturing persistence in risk measures. However,

while the EWMA is a relatively simple technique to the weighting of past observations

it is not the only approach and we employ it here simply as a first approximation.

An alternative to EWMA would be a GARCH-like model. However, EWMA-based

tail forecasts have been shown to be superior to those based on GARCH models in

many cases (see, for instance, Alexander and Leigh, 1997; Boudoukh et al., 1997;

Guermat and Harris, 2002).
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4. Hypotheses testing

The (system) TIS/CTI can be directly applied to the testing of statistical hy-

potheses on dependence. It offers, therefore, a cohesive framework where dependence

measures, tests as well as other applications are based on the same fundamental con-

cept of multi-information.

The statistical procedures that we present below are based on the asymptotic

likelihood ratio test and are valid, therefore, for sufficiently large samples. Alterna-

tively, we can test them in smaller samples with a generalized version of the Fisher’s

exact test (Mehta and Hilton, 1993) which we do not discuss here.

4.1. Goodness-of-fit and independence tests

Recall that T α is a partition of the sample space of the n−dimensional random

vectorX = (X1, ..., Xn) into 2
n joint tails and that the TIS pα is a pdf over T α. Given

a sample {xt}Tt=1, an empirical TIS �pα = (�pαC)C⊆N contains the relative frequencies of

observations that fall into the JTs TαC ∈ T
α. We use �pα to test whether the observed

interdependence structure comes from a hypothesized pdf f , which produces the TIS

pα. For this purpose, we compute the KL divergence MI(�pα||pα),6

MI(�pα||pα) =�C⊆N �pαC ln
�pαC
pαC

. (9)

If exceedances are mutually independent under f , this procedure boils down to a

test of tail independence. In the latter case, the hypothesized TIS is πα and (9) is

proportional to the CTI (5),

MI(�pα||πα) = (1− n) ln(αα(1− α)1−α) · κ(�pα). (10)

6The goodness-of-fit and the interdependence symmetry test below can be conducted only when
the test statistic is well-defined, i.e., when all denominators in (9) are strictly positive.
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Our goodness-of-fit test with the mutual independence test as a special case, is

conditional on sufficient statistics estimated from the data (e.g. on the estimates of

quantiles in the sample). For the conditional test, the asymptotic distribution of the

test statistic 2·T ·MI(�pα||pα), where T is the sample size, follows the χ2-distribution

with df degrees of freedom (e.g. McCullagh, 1986). For the degrees of freedom, we

observe that we have 2n outcomes (JTs) and n + 1 restrictions on probabilities or

frequencies of these outcomes: these probabilities sum up to one and, moreover,

�
C⊆N :i∈C p

α
C =

�
C⊆N :i∈C �pαC = α, ∀i = 1, ..., n.

Therefore, we apply df = 2n − n− 1 degrees of freedom in our goodness-of-fit tests.

Alternatively, we can use the observed system TIS ��p
α
and the theoretical system

TIS �pα to compute the KL divergence D(��p
α
||�pα). In this case, 2 · T ·D(��p

α
||�pα) is

distributed approximately as χ2 with df = n−1 degrees of freedom as there are n+1

outcomes and two restrictions on probabilities of these outcomes,

�n

k=0 �pαk = 1, and
�n

k=0 k�pαk = nα.

4.2. Interdependence symmetry test

Another interesting question is whether two tail interdependence structures along

any two directional vectors d+ and d− (e.g. negative and positive tails) are symmet-

ric. Specifically, let �pα+ = (�pα+C )C⊆N and �pα− = (�pα−C )C⊆N be two empirical TISs

computed for d+ and d−, respectively. Our objective is to test whether �pα+ and �pα−

are generated by a process with an identical tail interdependence structure. In order

to test the null pα+ = pα−, we apply the Kullback—Leibler test statistic,

KL± =
�

C⊆N T
+�pα+k ln

�pα+C
�pαC

+
�

C⊆N T
−�pα−C ln

�pα−C
�pαC

,
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where,

�pαC =
(T+�pα+C + T−�pα−C )

T+ + T−
,

and T+ (T−) is the size of the sample from which �pα+ (�pα−) have been computed.

The asymptotic distribution of 2·KL± follows the χ2-distribution with 2n−1 degrees

of freedom (e.g. Quine and Robinson, 1985). We refer to this procedure as the

interdependence symmetry test. Alternatively, the statistic KL± can be computed

from the system TIS, in which case 2·KL± follows the χ2-distribution with n degrees

of freedom.

5. Application: constituents of the S&P250 index

We apply our tail interdependence framework to the daily returns of the con-

stituents of a major U.S. index. We focus on the 250 constituents of the Standard &

Poor 250 index (S&P250) due to their importance for the U.S. and global economy.

Prices and capitalization of each constituent have been obtained from Datastream

between 02 January 1990 and 29 December 2017 (7, 057 observations). The data

has mean returns close to zero and displays volatility clustering consistent with the

literature. We use a number of return series for the analysis ranging from raw re-

turns to AR-GARCH-standardised returns to account for heteroskedasticity which

can distort dependence measures, as well as the residuals of the regression of raw

returns on the Fama-French-Carhart factors. The latter factors are the dominant

pricing factors in the literature but little is known about their mutual relationship

or ability to account for tail risk.

In all statistical tests that follow, we say that the null is strongly rejected if the

p-value of the relevant test does not exceed 0.01. A simple rejection occurs with a

p-value below 0.1. If we (do not) reject the null for any tail probability α, this implies

that we tested the null for the nominal levels of extremity α ∈ {0.1, 0.15, ..., 0.9}.
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5.1. Daily returns of S&P250 constituents

We investigate the interdependence of the constituents of the S&P250 index.

We compute the daily returns between 02 January 1990 and 29 December 2017

(T = 7, 056 synchronized observations). Summary statistics for the 250 constituents,

not presented here, are in line with established evidence and show that the returns

are leptokurtic and negatively skewed.

Since we have 2250 joint tails but only 7, 056 observations we resort to system

CTI �κ(α) which requires only 251 empirical probabilities estimated from the sample.

Figure 2 shows system CTI �κ(α) computed in the negative and the positive JTs

for the empirical distribution of the raw daily returns and of AR(1)-GARCH(1,1)-

standardised daily returns. The values of �κ(α) for α ∈ [0.1, 0.5] correspond to the

negative joint tails T α(−1) and for α ∈ (0.5, 0.9] to the positive joint tails T 1−α(1).

Focusing first on the dependence in raw returns, there is an asymmetry between the

negative and the positive tails in the sample: the interdependence in the negative

tails is higher relative to the positive tails. Considering tail interdependence in the

negative tails as a manifestation of system distress, we note that the latter is higher

at more extreme levels, i.e., the risk of system breakdown increases in the severity

of the distress. In other words, the more extreme the scenario, the more likely the

system breakdown. Our interdependence symmetry test strongly rejects the null

of the same interdependence structure for the system CTI for α ∈ (0, 0.3) and α ∈

(0.7, 1). Therefore, negative extreme returns appear indeed more closely tied together

than their positive counterparts.

[Figure 2]

While the interdependence of extreme equity raw returns is strongly asymmetric

(see also, Longin and Solnik, 2001; Patton, 2009), the literature suggests this could

be driven by GARCH effects. Therefore, we repeat the analysis employing AR(1)-
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GARCH(1,1)-standardised daily returns. The results suggest that GARCH effects do

account for a considerable part of dependence although this holds only for dependence

in the tails (low and high α) but not in the central part of the distribution. Indeed for

α ∈ [0.3, 0.7], the dependence is almost identical to that of the raw returns. However,

for α /∈ [0.3, 0.7] the dependence of GARCH-standardised returns is considerably

lower. While this dependence appears to increase slightly in α in the negative tails,

the opposite happens in the positive tails. Our symmetry test rejects the null of

identical interdependence structure in these tails.

5.2. Integration of S&P250 companies

In this subsection, we address questions pertaining to the integration of S&P250

companies by examining the evolution of their tail interdependence over time. Al-

though these companies are headquartered in the U.S., they are truly global and

operate in markedly different industries such as materials, healthcare and retail. In

light of the findings above and to be consistent with the literature, we conduct this

analysis employing AR(1)-GARCH(1,1)-standardised returns. Figure 3 shows the

system CTI �κ(α) computed by (8) in the negative tail (α = 0.1), the central part of

the distribution (α = 0.5) and positive tails (α = 0.9)

[Figure 3]

The dynamics of the interdependence in the central part of the distribution and

positive tails largely have the same pattern until around 2005. However, since then,

a noticeable dependence asymmetry between the returns in the central part and the

positive tails of the distribution has developed, where in particular the dependence is

higher in the positive tails than the central part of the distribution. The dependence

in the negative tail has always been higher than in other parts of the support of the

distribution and this discrepancy has increased since 2007, which coincides with the

beginning of the financial crisis. In particular, it is clear from Figure 3 that the gap
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between �κ(0.1) and �κ(0.5) has increased markedly since then (although it seems to

be narrowing recently). Therefore, there are strong asymmetries among the negative

tail, where systemic distress materializes, the central part of the distribution which

reflects small day-to-day price moves, and positive tails capturing extreme gains.

In particular, the negative tail displays the strongest dependence, followed by the

positive tail. This is a confirmation of the rotated-J shape dependence depicted in

Figure 2. Further, while dependence increased steadily until the financial crisis, it

has started decreasing although it still remains historically high for all three parts of

the distribution.

5.3. Contribution to tail dependence

It is important for the study of spillovers and contagion to isolate the impact

or contribution of an individual component to the overall systemic distress. As the

(system) CTI can be computed for different subsets of variables, we can find the

marginal contribution of each variable to the interdependence in the subsets of other

variables and, then, apply the Shapley Value to decompose the CTI into individual

contributions (see, e.g. Tarashev et al., 2016). Here, however, we simply compute

the contribution of a single variable as the difference of the system CTIs that include

and exclude that particular variable.

Figure 4 depicts the contributions (sorted in decreasing order) of the constituents

of the S&P250 index to the system interdependence in this index. The contribution

of stock i is computed as the difference �MI(α) −�MI−i(α), where �MI(α) is the

system multi-information computed for all 250 stocks in the index after controlling

for conditional volatility and �MI−i(α) excludes stock i ∈ {1, 2, ..., 250}. We apply

the system MI in this subsection in order to avoid the confounding effect of the

normalization factor used in the computation of the system CTI. The latter factor

depends on n (the dimension of the random vector) and would be different for�MI(α)

and for �MI−i(α).
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Interestingly, we observe for each α ∈ {0.1, 0.5, 0.9} a distinct group of ca. 30

firms that make the largest positive contributions and a group of roughly the same

size making negative contributions to the system MI (except for α = 0.5 where

the latter group contains ca. 50 companies). In particular, the five largest positive

contributors turn out to be (electric) utility companies (Ameren Corporation, Amer-

ican Electric Power, Consolidated Edison, Pinnacle West Capital Corporation and

Xcel Energy), while the largest negative contributions are Apple, Cisco Systems, Mi-

crosoft, Oracle and Intel. This finding suggests that the dependence of the S&P250

index constituents is mainly due to Old Economy utility stocks. The leaders of the

New Economy, on the other hand, display little tail interdependence with the Old

Economy as manifested by their relatively large negative impact on the system MI.

[Figure 4]

5.4. Stock and factor interdependence

In this subsection, we focus on the interdependence of the 250 constituents of the

S&P250 index and relate it to the Fama-French-Carhart (FFC) factors. The FFC

factors for the period 02 January 1990 and 29 December 2017 are obtained from

Kenneth French’s website. Summary statistics are reported in Table 1.

[Table 1]

For all four factors, daily log returns are zero, negatively skewed and leptokurtic.

As observed above and shown in the right panel of Figure 5, the S&P250 constituents’

raw returns are highly interdependent and asymmetric, while AR(1)-GARCH(1,1)-

standardised returns remain strongly dependent and display dependence asymmetry,

albeit lower than for raw returns.

Considering the residuals of a regression of the S&P250 constituents’ returns on

the returns of the FFC factors, it appears that the latter account for a high degree
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of this dependence in the central part of the distribution but they are unable to

account for the strong system dependence of the S&P250 returns in the tails of the

distribution. Moreover, although not shown, most of the dependence in the residuals

is accounted for by the first factor (the market return) while the other factors account

for very little of the interdependence.

The inability of the FFC factors to account for the inderdependence of the

S&P250 returns in the tails is a direct manifestation of the tail interdependence

of the factors themselves (see also Christoffersen and Langlois, 2013). The system

CTI depicted in the left panel of Figure 5 reveals that the FFC factors are inter-

dependent for α < 0.25 and α > 0.8. Standardising the regression residuals with

a GARCH(1,1) decreases further the dependence but this still remains statistically

significant.

[Figure 5]

6. CTI and portfolio allocation

CTI can be useful in a number of applications, including hedging and risk manage-

ment, multidimensional option pricing and system risk measurement. An interesting

application is also portfolio allocation.7 Since CTI is a measure of dependence with

a particular focus on the tails in high dimensions, it can be directly applied to tail

risk diversification. Intuitively, for the CTI to add value in this context, the joint

returns of the underlying assets have to be non-normal. Under such a scenario, as

is indeed the case in reality, the portfolio return will depend not only on higher

moments, which have been shown elsewhere to have a considerable impact on the

optimal portfolio weights (Ghysels et al., 2016; Harvey et al., 2010; Guidolin and

Timmerman, 2008), but also on higher co-moments (see, for example, Martellini and

7We would like to thank the editor Eric Ghysels for suggesting this analysis.
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Zieman, 2009).

Intuition suggests that CTI, as a measure of dependence in the tails, is related

to higher co-moments and, in particular, co-skewness which captures the asymmetry

of the joint distribution of returns of the underlying assets. If an asset has a high

coefficient of co-skewness with some reference asset such as the market index, then

high returns on the asset are associated with very high and very low returns on the

market. This leads to more probability mass in extreme negative and in extreme

positive tails. Moreover, a joint distribution that displays such characteristics would

also feature asymmetric tail dependence. Indeed, it is this intuition that Bücher

et al. (2017) exploit to construct an asymmetric dependence copula function from

co-skewness which they then use to model data with complex relationships from

hydrology and finance. Further, Cerrato et al. (2017) investigate the relationship

between higher-order co-moments and the dependence structure of equity portfolios

in the U.S. and U.K. and find that co-skewness is positively associated with tail de-

pendence. Moreover, the asymmetric tail dependence parameters that they employ8

are the classic coefficients of tail dependence proposed by Sibuya (1960) and Joe

(1989) to which our CTI converges, as discussed in Section 3.2 above. Therefore, it

is no surprise we also find a positive relationship between tail dependence asymme-

try and co-skewness as shown in Figure 6. This figure highlights that the stronger

the asymmetry of the joint distribution of the S&P250 index constituents with the

market and therefore, the larger the (negative value of) their co-skewness coefficient,

then the larger the asymmetry of the dependence on the market in the lower and

upper tails.

[Figure 6]

Having confirmed that the relationship between tail dependence asymmetry and

8See equations A.12 and A13 in their Appendix A3.
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co-skewness found in the literature is strong in the S&P250 index constituents that

we employ in this paper, we examine whether these measures help improve portfolio

performance. Since we include all 250 index constituents in our portfolio, it is too

demanding to model their conditional joint density from which to obtain the optimal

weights. Therefore, we follow the parametric framework of Ghysels et al. (2016).

To obtain the optimal portfolio weights, they maximize the power utility function

by changing the weights which are a function of some benchmark portfolio weights

and other asset-specific characteristics such as the skewness of the assets. We adopt

the Ghysels et al. (2016) approach but instead of the conditional skewness, we

examine the impact of the conditional co-skewness of the assets with the market on

portfolio weights. Further, we also examine whether the conditional tail dependence

of the assets with the market can improve the portfolio performance. Specifically, we

construct two dynamic portfolios spanning the n = 250 constituents of the S&P250

index where the weights depend on conditional co-skewness and conditional CTI

difference respectively, as follows

wCSKi,t−1 =
1

n
+
λ

n
�CSKt−1(rit, rmt), wCTIi,t−1 =

1

n
+
λ

n
�∆t−1(rit, rmt), i = 1, ..., n, (11)

where λ is the parameter to estimate,�CSKt−1(rit, rmt) is the estimate at time t− 1

of the conditional co-skewness of asset i return rit with the market return rmt at

time t and �∆t−1(rit, rmt) is the estimate at time t − 1 of the difference between the

conditional CTI in the upper tail (α = 0.9) and in the lower tail (α = 0.1) for the

same rit and rmt returns. As in Ghysels et al. (2016), in expression (11), the “tilde”

indicates that the variables are standardized to have mean zero and unit variance at

every point in time. This standardization ensures that the relative contribution of a

predictor becomes clear as the magnitudes of the coefficients are directly comparable.
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Moreover, demeaning the predictors ensures that

�n

i=1w
CSK
i,t−1 =

�n

i=1w
CTI
i,t−1 =

�n

i=1

1

n
= 1.

These weights then have an intuitive interpretation. For example, the estimated

wCTIi,t−1 can be interpreted as the “tail-dependence-managed” allocation in a long-

short portfolio that tilts the optimal investment on asset i toward or away from

the equally-weighted allocation, depending on that asset’s �∆t−1(rit, rmt) relative to

the cross-sectional mean. For instance, if the investor prefers assets with a larger

positive than negative tail-dependence on the market (i.e., λ is positive), then assets

with higher �∆t−1(rit, rmt) will have a relatively higher portfolio weight. A similar

argument applies to wCSKi,t−1 and�CSKt−1(rit, rmt).

When λ = 0 the portfolios defined in (11) boil down to an equally weighted

portfolio. The latter has shown good performance in practice. Indeed, DeMiguel

et al. (2009) find that of the 14 more sophisticated models evaluated across seven

empirical datasets, none is consistently better than the equally-weighted portfolio in

terms of Sharpe ratio, certainty-equivalent return or turnover. Table 2 shows the

results for portfolio p with returns

rpt =
�n

i=1wi,t−1 · rit

where wi,t−1 = wCSKi,t−1 or wi,t−1 = wCTIi,t−1, that solves,

max
λ

1

T

�T−1
t=1

(1 + rpt)
1−γ

1− γ
(12)

subject to the relevant portfolio weights specification in expression (11). As in Ghy-

sels et al. (2016), we set the relative risk aversion γ to five, but our main conclusions

hold for a relatively wide range of risk aversion parameters. Conditional co-skewness
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and conditional CTI are estimated by EWMA (8) for each asset i and date t. For

comparison, we report also the statistics for the market (M), equally-weighted (EW )

and value-weighted (VW ) portfolios.

Table 2 reveals that conditional co-skewness and conditional CTI indeed improve

portfolio performance as compared to the standard benchmarks. The conditional co-

skewness portfolio has the highest annual expected return (18.44%) among the port-

folios examined and also higher utility (−0.2418) and certainty equivalent (10.43%)

than the benchmarks. The conditional CTI portfolio achieves comparably high util-

ity (−0.2416) and certainty equivalent (10.82%) but at the cost of a lower annual

return (16.21%). The latter finding is unsurprising given that the CTI portfolio, by

construction, hedges against extreme tail events. In particular, it scales down the

weight of an asset that often co-exceeds with the market in the negative tails but not

in the positive. The hedging character of the conditional CTI portfolio is confirmed

by its standard deviation (σp), which at 13.27% is much lower than the standard

deviations of its competitors, in particular that of the conditional co-skewness port-

folio (17.32%). Overall, the increase in the certainty equivalent is large with respect

to the market benchmark: 9.22% for the conditional co-skewness portfolio (from

1.21% to 10.43%) and 9.61% (from 1.21% to 10.82%) for the conditional CTI port-

folio. The increase is still significant with respect to the equally-weighted and the

value-weighted portfolios. Regarding optimal portfolios, the second row in Table 2

indicates that they are heavily exposed to co-skewness and to CTI difference: the

(relative) weight of�CSK and �∆t−1 in (11) is 61.97% and 66.78%, respectively. Table

2 shows also that the conditional co-skewness (conditional CTI) portfolio features

9.12% (7.06%) annualized alpha with respect to the market portfolio (rp− rm), high

correlation (ρpm) and a negative co-skewness (CSKpm) with this benchmark. Inter-

estingly, whereas the skewness (SKp) of the�CSK portfolio is positive, it is negative

for the �∆t−1 portfolio.

26



[Table 2]

7. Conclusion

Tail interdependence captures the likelihood of the constituents of a system to

get into distress or exuberance (or other, more complex extreme scenarios) simul-

taneously. However, in practice, its measurement is challenging due, among other

reasons, to the small number of tail observations and the curse of dimensionality.

We propose a versatile non-parametric framework to analyze and quantify tail de-

pendence with several extensions. We apply it to data from the constituents of the

S&P250 index and report some intriguing findings. For example, we find that while

the Fama-French-Carhart factors do well to account for interdependence in the cen-

tral part of the distribution, they do not in the tails of the distribution because they

are themselves tail dependent. We also find that the interdependence of extreme

equity returns is strongly asymmetric. In an application to portfolio allocation,

we show that (conditional) CTI improves portfolio performance and hedges against

extreme tail events. Interesting avenues for future research would be a rigorous ex-

amination of the dynamic properties of CTI and an examination of the dynamic

relationship between the (system) CTI of main asset classes or financial institutions

with macroeconomic indicators with MIDAS technique along the lines of Engle et al

(2008).
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Figure 1: The partition of the two-dimensional outcome space into joint tails

Notes: Partition of a two-dimensional outcome space into joint tails Tα for d = −(1, 1),

where qαi = F−1i (α).

Figure 2: System CTI

Notes: System CTI for the raw returns and the AR(1)-GARCH(1,1)-standardised re-

turns of the constituents of the S&P250 index.
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Figure 3: Evolution of the system CTI for S&P250 returns over time

Notes: The evolution of the system CTI �κ(α) for α = 0.1, α = 0.5 and α = 0.9
computed by (8) with the estimated value of the parameter δ ≈ 0.9975 from the returns

of S&P250 index constituent stocks.

Figure 4: Contributions (sorted in the decreasing order) to the system MI of the con-

stituents of the S&P250 index

Notes: Contributions (sorted in the decreasing order) to the system MI of the con-

stituents of the S&P250 index at the extremity levels α = 0.1, α = 0.5 and α = 0.9.
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Figure 5: Interdependence of Fama-French-Carhart factors and S&P250 index con-

stituent stocks

Notes: The left panel shows the system CTI for the Fama-French-Carhart (FFC) fac-

tors. The dashed line marks the 1% critical values for the test statistic (10) in the test

of independence. The right panel shows the system CTI for the S&P250 index constituent

returns as well as for the residuals of a regression of these constituents on the FFC factors.

Figure 6: Coskewness vs. CTI difference

Notes: Coskewness with the market vs. CTI difference with the market at α = 0.1 (CTI
in the upper JTs minus CTI in the lower JTs) for S&P250 returns between 2 January 1990

and 29 December 2017.

34



Table 1: Summary Statistics for the Fama-French-Carhart Factor Returns

RPm SMB HML MOM

Mean 0.000 0.000 0.000 0.000
SD 0.012 0.006 0.006 0.009

Skewness −0.105 −0.268 0.108 −0.956
Kurtosis 10.99 7.163 9.337 14.690

Notes: The table reports the mean, standard deviation, skewness, kurtosis for the

Fama-French-Carhart factors Market Risk Premium (RPm), Small minus Big (SMB), High

minus Low (HML) andMomentum (MOM). The data spans the period from 2 January 1990

through 29 December 2017 (7057 observations obtained from Kenneth French’s website).

Table 2: Portfolios of S&P250 constituents

M EW VW �CSK �∆
λ/(1 + λ) − − − 0.6197 0.6678

rp 0.0860 0.1746 0.1663 0.1844 0.1621
σp 0.1587 0.1597 0.1542 0.1732 0.1327
SKp −0.8093 −0.5518 −0.3402 1.1846 −0.7145
ρp,m 1.0000 0.9195 0.9392 0.8852 0.7400

CSKp,m 0.0000 −0.7004 −0.6470 −0.2009 −0.6379
u(rp, 5) −0.2490 −0.2427 −0.2427 −0.2418 −0.2416

CE(u(rp, 5)) 0.0121 0.0925 0.0925 0.1043 0.1082
rp − rm 0 0.0821 0.0744 0.0912 0.0706

Notes: Statistics for portfolio p computed from monthly S&P250 returns (T = 300)
between 02 January 1990 and 29 December 2017, where p is one of the following portfolios:

M — market, EW — equally weighted, VW — value weighted, �CSK and �∆ defined in

(11). λ/(1 + λ) — relative weight of conditional co-skewness or CTI difference, where λ
is obtained from (12) subject to (11), rp — annualized mean return, σp — annualized stan-

dard deviation, SKp — skewness, ρp,m — correlation with market, CSKp,m — co-skewness

with market, u(rp, 5)— power utility of portfolio p for γ = 5, CE(.) — annualized cer-

tainty equivalent. Conditional co-skewness and conditonal CTI difference for the last two

portfolios are estimated by EWMA (8) with δ = 0.9975 for each asset i and date t.
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8. Online Appendix

8.1. Technical proofs

Proof of Proposition 1: First, we note that the r.h.s. of (5) implies that

κ(pα) ≥ 0 asMI(pα||πα) ≥ 0 (Cover and Thomas, 2006) and (1−n) ln(αα(1−α)1−α)

> 0 for n ≥ 2 and α ∈ (0, 1).

In order to show that κ(pα) ≤ 1, we write the MI (4) as the difference between

the sum of n identical marginal entropies and the joint entropy (e.g. Schneidman et

al., 2003),

MI(pα||πα) = n · E((α, 1− α))− E(pα),

where the entropy of pα is defined as E(pα) = −
�

C⊆N p
α
C ln p

α
C and each marginal

distribution of exceedances is, by construction, equal to (α, 1 − α). On the other

hand, joint entropy cannot be smaller than marginal entropy (Cover and Thomas,

2006),

E(pα) ≥ E((α, 1− α)),

which implies,

MI(pα||πα) = n · E((α, 1− α))− E(pα) ≤

(n− 1)E((α, 1− α)) = −(n− 1) ln(αα(1− α)1−α).

The last expression is the normalizing factor in (5). �

Proof of Proposition 2: First, we express the system CTI for n = 2 as,

κ(�pα(f,d)) = 1

H(α)

�2

k=0 �pαk ln
�pαk
�παk
=

1

H(α)

	
�pα0 ln

�pα0
�πα0
+ αλα1 ln

αλα1
�πα1

+ αλα2 ln
αλα2
�πα2



,

(13)
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where,

λαk = λαk (d) ≡ �pαk (f,d)/α, d ∈ {−1, 1}2,

�pα0 = 1− αλα1 − αλ
α
2 , H(α) ≡ − ln(αα(1− α)1−α).

The following limits, obtained e.g. by the L’Hôpital’s rule, will be used repeatedly

in the proof,

lim
α→0

α

H(α)
= 0, lim

α→0

α ln(α)

−H(α)
= 1.

We note that λαk is a continuous function of α with a finite (right-hand) derivative

due to our assumptions on the joint pdf and the marginal cdfs. Moreover, λα1 ≤ 2

and λα2 ≤ 1 (for example, λα1 = 2 when α = 1/2 and there is exactly one exceedance

in each period, i.e., �pα1 = 2α). Hence, there is a unique limit λk ≡ limα→0 λ
α
k ∈ [0, 2].

It follows then that the term,

�pα0 ln(�pα0/�πα0 )
H(α)

= (1− α
2�
k=1

λαk )

	
ln(1− αλα1 − αλ

α
2 )

H(α)
−
ln(1− α)2

H(α)



,

vanishes in the limit α→ 0 because,

lim
α→0

ln(1− αλα1 − αλ
α
2 )

H(α)
= lim

α→0

α(λα1 + λ
α
2 )

−H(α)
= 0,

lim
α→0

2 ln(1− α)

−H(α)
= lim

α→0

2α

H(α)
= 0,

where we used the Taylor expansion of ln about 1. On the other hand, for each
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k = 1, 2,

lim
α→0

α · λαk ln(α · λ
α
k/�παk )

H(α)
=

lim
α→0

λαk · α ln(λ
α
k )

H(α)
− lim
α→0

λαk
α ln(

�
2

k

�
αk−1(1− α)2−k))

H(α)
=

−λk lim
α→0

α ln(
�
2

k

�
αk−1(1− α)2−k))

H(α)
= λk(k − 1),

for 2 ≥ k ≥ 1. The last two equalities follow because,

lim
α→0

α ln(αk−1)

−H(α)
= (k − 1) lim

α→0

α ln(α)

−H(α)
= k − 1,

lim
α→0

λαk · α ln(λ
α
k )

−H(α)
= lim

α→0

α

−H(α)
lim
α→0

(λαk · ln(λ
α
k )) = 0,

as the last limit is bounded given that λαk is bounded. We obtain, therefore,

lim
α→0

κ(�pα(f,d)) = λ2(d),

with the special cases λ2((−1,−1)) = λL and λ2((1, 1)) = λU . �

Proof of Proposition 3: In order to prove (7), we first show the decomposition

of the MI (4),

MI(pα||πα) =MI(�pα||�πα) +�n

k=0 �pαkMI(pα,k||πα,k). (14)

The proof consists in expanding the definition of MI and rearranging terms.

MI(pα||πα)−MI(�pα||�πα) =�C⊆N p
α
C ln

pαC
παC

−
�n

k=0 �pαk ln
�pαk
�παk
= (15)

n�
k=0

�
C⊆N :|C|=k

pαC ln
pαC
παC

−
n�
k=0

�pαk ln
�pαk
�παk
=

n�
k=0

�pαk

�
�

C⊆N :|C|=k

�
pαC
�pαk
ln
pαC
παC



− ln

�pαk
�παk

�

=
�n

k=0 �pαk
��

C⊆N :|C|=k

�
pαC
�pαk
ln
pαC
παC

−
pαC
�pαk
ln
�pαk
�παk




,

38



where the last equality follows from the fact that
�

C⊆N :|C|=k p
α
C/�pαk = 1. We can

write the last expression as,

�n

k=0 �pαk
�

C⊆N :|C|=k

�
pαC
�pαk
ln
pαC/�pαk
παC/�παk



=
�n

k=0 �pαkMI(pα,k||�πα,k), (16)

which completes the proof of the decomposition (14).

Dividing both sides of Equation (14) by−(n−1) lnαα(1−α)1−α > 0 for 0 < α < 1

yields the decomposition of the CTI,

κ(pα) = �κ(pα) +�n

k=0 �pαkκk(pα).

We note that κ(pα) ≥ �κ(pα) ≥ 0 follows from the non-negativity of �κ(pα) and κk(pα)

as the KL divergence is always non-negative (Cover and Thomas, 2006). �

Proof of Corollary 1: The proof of this corollary is obtained by observing that

MI(pα,k||πα,k) = 0 (see formulae (6) and (7)). The latter equality follows from the

fact that pα,k = πα,k in the bivariate case for any pdf pα and k = 0, 1, 2. �

8.2. Monte Carlo experiments

8.2.1. Interdependence across tails

Generally, interdependence varies across the support of a distribution. When

measured over the entire support, it may lead to misleading conclusions, especially

for applications where a measure of dependence for a specific area (or direction) is

required. To illustrate this, Table 1 shows the system CTIs with their estimated 95%

bootstrap confidence intervals for samples generated from three widely used multidi-

mensional parametric models: the multinormal, the multivariate t-distribuition with

3 degree of freedom and a Clayton copula with normal marginal densities. Each

sample contains 10, 000 vectors of 5-dimensional realizations of the relevant model.

In all models, the pairwise correlation is set (approximately) to ρ ∈ {0.0, 0.5, 0.9}
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for each pair of variables.9 The CTIs for α = 0.1 corresponds to the negative joint

tails T α(−1), while for and α = 0.5 and α = 0.9 they correspond to the central

part of the distribution and positive joint tails T 1−α(1) respectively. The CIs are

estimated by bootstrapping. First, we draw a sample S of size 10, 000 from a given

parametric distribution and estimate the system CTI. The empirical distribution of

this parameter is then generated by resampling from S and its empirical quantiles

are computed.

Around the median (α = 0.5), the dependence structure is similar for all three

models (except for the copula with ρ = 0.9). In particular, for ρ = 0.0 and ρ = 0.5,

the intersection of the three confidence intervals is non-empty, which suggests that

the underlying interdependence structure is the same for all three models.10 While

the multinormal appears to generate the same system CTI for all α, this is not the

case for the other models. In particular, the CTI is higher in the extreme tails

than around the median for the t-distribution. Interestingly, this distribution has

a significant tail interdependence even when its marginals are uncorrelated. This

result is driven by the fat tails of this distribution which increase the likelihood of

joint exceedances thus leading to a higher CTI than would otherwise prevail under

complete independence. For the Clayton copula, on the other hand, we observe a

clear asymmetry among the negative and the positive tails for ρ = 0.5 and ρ = 0.9.

This is not surprising since the essence of the Clayton copula is asymmetric tail

dependence.

[Table 3]

9In the case of the Clayton copula, the correlations 0, 0.5 and 0.9 correspond to dependence
coefficients of 0.001, 1.4 and 9, respectively.

10The symmetry of two interdependence structures and other hypotheses can be formally tested
by our test procedures discussed in the paper.
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8.2.2. Total vs. system interdependence

The left panel of Figure 7 shows the total (κ(α)) and the system (�κ(α)) CTI

computed for a standardized n = 6 dimensional normal X with corr(Xi, Xk) = ρ

for all i, k = 1, ..., 6, i �= k. Note that the tail interdependence from multinormal

samples (with a fixed correlation for all pairs of variables) is constant across the

entire range of α. Hence, the interdependence in this case neither increases nor

decreases as the tails become more extreme. Moreover, the total and the system

CTIs are identical for all α implying that this is all system interdependence and that

the additional CTI is close to zero in this case. This is intuitive because all pairs

have the same correlation and there are no pairs with higher or lower correlation

which would generate subsystem tail dependence.

The right panel of Figure 7 shows the results when the correlation is the same

for three pairs but zero for the remaining pairs (corr(X1,X2) = corr(X3,X4) =

corr(X5,X6) = 0.7 and zero for all other pairs). In this case, while the patterns

of the total and the system CTIs are similar for all α, κ(α) is about three times

larger than �κ(α) correctly identifying that interdependence originates primarily in

interactions within subsets of variables.

[Figure 7]

8.2.3. System CTI in higher dimensions

In the following experiment, we estimate the system CTI and its 95% bootstrap

confidence intervals (CI) from samples generated from a high-dimensional multinor-

mal and multivariate t-distribuition. First, we estimate the system CTI from the

sample S of size 10, 000 drawn from a given parametric distribution of n = 100

random variables, where the pairwise correlation is set (approximately) to ρ ∈

{0.0, 0.5, 0.9} for each pair of variables. The empirical distribution of the CTI is

then generated by resampling from S and its quantiles are used to construct the CIs.
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[Table 4]

Around the median (α = 0.5), the dependence structure is similar for both mod-

els. In particular, for each n, the intersection of the confidence intervals is non-empty

for both models and each correlation ρ, which suggests that the underlying interde-

pendence structure could be the same for both models.11 While the multinormal

appears to generate the same system CTI for all α, this is not the case for the t-

distribution. In this case, the CTI is higher in the extreme tails than around the

median. Interestingly, this distribution has a significant tail interdependence even

when its marginals are uncorrelated. This result is driven by the fat tails of this dis-

tribution which increase the likelihood of joint exceedances thus leading to a higher

CTI that would otherwise prevail under complete independence. Overall, this exer-

cise highlights the complex patterns of interdependence and hence, the importance

of flexible techniques for its analysis.

11The symmetry of two interdependence structures and other hypotheses can be formally tested
by our test procedures outlined in Section 4.
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Table 3: System CTI with 95% confidence intervals (in parentheses)

multinormal α = 0.1 α = 0.5 α = 0.9
ρ = 0.0 0.000 (.000, .001) 0.000 (.000, .011) 0.000 (.000, .011)
ρ = 0.5 0.112 (.096, .130) 0.129 (.119, .140) 0.119 (.102, .139)
ρ = 0.9 0.501 (.460, .547) 0.497 (.479, .515) 0.496 (.454, .541)

t-distribution

ρ = 0.0 0.028 (.021, .036) 0.000 (.000, .001) 0.026 (.020, .034)
ρ = 0.5 0.189 (.166, .215) 0.139 (.128, .150) 0.174 (.153, .198)
ρ = 0.9 0.546 (.502, .594) 0.506 (.488, .523) 0.546 (.501, .594)

Clayton copula

ρ = 0.0 0.000 (.000, .001) 0.000 (.000, .011) 0.000 (.000, .001)
ρ = 0.5 0.346 (.313, .382) 0.148 (.137, .160) 0.026 (.019, .033)
ρ = 0.9 0.812 (.757, .871) 0.656 (.638, .673) 0.278 (.250, .310)

Notes: System CTI with 95% confidence intervals in parentheses. Each sample con-

tains 10, 000 vectors of 5 -dimensional realizations generated from the multinormal, the

multivariate t-distribuition with 3 degree of freedom and a Clayton copula with normal

marginal densities. In all models, the pairwise correlation is set (approximately) to ρ ∈
{0.0, 0.5, 0.9} for each pair of variables. In the case of the Clayton copula, the correlations

0, 0.5 and 0.9 correspond to dependence coefficients of 0.001, 1.4 and 9, respectively.

Table 4: System CTI with 95% bootstrap CIs (in parentheses).
multinormal α = 0.1 α = 0.5 α = 0.9
ρ = 0.0 0.000 (.000, 0.000) 0.000 (.000, .000) 0.000 (.000, .000)
ρ = 0.5 0.258 (.250, 0.266) 0.256 (.250, .262) 0.257 (.248, .262)
ρ = 0.9 0.657 (.646, 0.667) 0.644 (.637, .652) 0.657 (.646, .667)

t-distribution

ρ = 0.0 0.103 (.099, 0.107) 0.000 (.000, .000) 0.105 (.101, .108)
ρ = 0.5 0.360 (.350, 0.370) 0.249 (.244, .254) 0.360 (.351, .370)
ρ = 0.9 0.709 (.698, 0.719) 0.650 (.643, .657) 0.708 (.696, .717)

Notes: System CTI with 95% confidence intervals in parentheses. Each sample contains

10, 000 vectors of 100-dimensional realizations generated from the multinormal and the

multivariate t-distribuition with 3 degree of freedom. In all models, the pairwise correlation

is set (approximately) to ρ ∈ {0.0, 0.5, 0.9} for each pair of variables.

43



Figure 7: CTI vs system CTI

Notes: Total (κ(α) ) and system (�κ(α) ) CTI computed from a sample of 10, 000
observations from a standardized n = 6 dimensional multinormalX with corr(Xi, Xk) =
ρ for all i, k = 1, ..., 6 , i �= k (left panel) and corr(X1,X2) = corr(X3, X4) =
corr(X5,X6) = ρ and all other correlations equal to zero (right panel). The results for

α ∈ [0.1, 0.5] correspond to the lower JTs Tα(−1) and for α ∈ (0.5, 0.9] to the upper

JTs T 1−α(1).
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