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ABSTRACT Nontyphoidal Salmonella (NTS), particularly Salmonella enterica serovar
Typhimurium, is among the leading etiologic agents of bacterial enterocolitis glob-
ally and a well-characterized cause of invasive disease (iNTS) in sub-Saharan Africa.
In contrast, S. Typhimurium is poorly defined in Southeast Asia, a known hot spot
for zoonotic disease with a recently described burden of iNTS disease. Here, we
aimed to add insight into the epidemiology and potential impact of zoonotic trans-
fer and antimicrobial resistance (AMR) in S. Typhimurium associated with iNTS and
enterocolitis in Vietnam. We performed whole-genome sequencing and phylogenetic
reconstruction on 85 human (enterocolitis, carriage, and iNTS) and 113 animal S. Ty-
phimurium isolates isolated in Vietnam. We found limited evidence for the zoonotic
transmission of S. Typhimurium. However, we describe a chain of events where a
pandemic monophasic variant of S. Typhimurium (serovar I:4,[5],12:i:� sequence
type 34 [ST34]) has been introduced into Vietnam, reacquired a phase 2 flagellum,
and acquired an IncHI2 multidrug-resistant plasmid. Notably, these novel biphasic
ST34 S. Typhimurium variants were significantly associated with iNTS in Vietnamese
HIV-infected patients. Our study represents the first characterization of novel iNTS
organisms isolated outside sub-Saharan Africa and outlines a new pathway for the
emergence of alternative Salmonella variants into susceptible human populations.

IMPORTANCE Salmonella Typhimurium is a major diarrheal pathogen and associ-
ated with invasive nontyphoid Salmonella (iNTS) disease in vulnerable populations.
We present the first characterization of iNTS organisms in Southeast Asia and de-
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scribe a different evolutionary trajectory from that of organisms causing iNTS in sub-
Saharan Africa. In Vietnam, the globally distributed monophasic variant of Salmonella
Typhimurium, the serovar I:4,[5],12:i:� ST34 clone, has reacquired a phase 2 flagel-
lum and gained a multidrug-resistant plasmid to become associated with iNTS dis-
ease in HIV-infected patients. We document distinct communities of S. Typhimurium
and I:4,[5],12:i:� in animals and humans in Vietnam, despite the greater mixing of
these host populations here. These data highlight the importance of whole-genome
sequencing surveillance in a One Health context in understanding the evolution and
spread of resistant bacterial infections.

KEYWORDS Salmonella Typhimurium, antimicrobial resistance, genomics, invasive
salmonellosis

Nontyphoidal Salmonella (NTS) is a common cause of bacterial enterocolitis (diar-
rheal disease) in humans and animals (1). Additionally, subsets of NTS organisms

are also associated with an aggressive invasive disease in susceptible humans (2) and
have been shown to cause invasive disease in animals (3, 4). Invasive NTS (iNTS)
infections principally occur in sub-Saharan Africa, are life-threatening, and are com-
monly associated with malnourished infants and the immunocompromised, particularly
those infected with HIV. Notably, iNTS disease is generally uncommon outside sub-
Saharan Africa, but the disease has recently been described in a comparatively small
patient cohort in Southeast Asia (5). The microbiological reservoirs of these two NTS
disease presentations are distinct, with organisms causing enterocolitis in humans in
industrialized countries primarily thought to arise through the food chain (1). In
contrast, the principal source of the organisms causing iNTS in sub-Saharan Africa is
thought to be the human population (6).

One of the most common NTS serovars associated with both enterocolitis and iNTS
in humans is Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium).
This serovar is globally ubiquitous and can be isolated from a range of other animal
species. Successive human epidemics of S. Typhimurium have been described over the
past several decades, many of which have been caused by variants that exhibit
resistance to multiple antimicrobials, including those recommended for clinical care.
These epidemic variants are of great concern, as antimicrobial-resistant Salmonella
infections are associated with a higher probability of hospitalization and treatment
failure, leading to a prolonged infection and increased likelihood of onward transmis-
sion (7).

An accurate understanding of how antimicrobial-resistant Salmonella variants
emerge and spread is essential for controlling their geographic scope and limiting their
potential public health impact. The advent of high-throughput whole-genome se-
quencing (WGS) and phylogenetics has enabled detailed investigations of the sources
and potential transmission routes of S. Typhimurium variants (2, 8). These studies
permitted the identification of distinct S. Typhimurium populations found in colocated
animals and humans in an industrialized country (8) and outlined the complex phylo-
geography of an epidemic iNTS-causing S. Typhimurium across sub-Saharan Africa (2).

While there is a good understanding of the S. Typhimurium genomic landscape in
Europe and sub-Saharan Africa, such an investigation has not yet been performed
extensively for S. Typhimurium originating from Southeast Asia, a known global hot
spot for zoonotic disease. Vietnam is a low-middle-income country (LMIC) in Southeast
Asia, characterized by widespread human-animal interaction and the excessive use of
antimicrobials in humans and agriculture (9, 10). Here, we exploited WGS, phylogenetic
reconstruction, and genomic analysis to provide insight into the epidemiology and
potential impact of zoonotic transfer and antimicrobial resistance (AMR) in S. Typhi-
murium and its monophasic variant Salmonella I:4,[5],12:i:� in Vietnam. Additionally,
we aimed to define the genetic characteristics of the recently isolated iNTS S. Typhi-
murium/S. I:4,[5],12:i:� in Vietnam, representing the first such investigation of a novel
collection of iNTS organisms isolated outside sub-Saharan Africa.
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RESULTS

The genomes of 85 human S. Typhimurium and S. I:4,[5],12:i:� isolates collected
between 2008 and 2013 (36 associated with enterocolitis, 41 associated with iNTS, and
8 from asymptomatic carriage) and 113 animal S. Typhimurium and S. I:4,[5],12:i:�
isolates collected between 2011 and 2013 (chickens [n � 14], ducks [n � 70], and pigs
[n � 29]) (see Table S1 in the supplemental material) in southern Vietnam were
sequenced using an Illumina HiSeq2000 sequencer. By mapping the genome sequence
reads against the S. Typhimurium SL1344 reference sequence, we were able to recon-
struct the phylogenetic relationship between these contemporary Vietnamese isolates
from different sources (Fig. 1). Using hierBAPS (11), the isolates clustered into five
distinct clades (Table S3). The most striking observation within this initial phylogeny
was an apparent lack of mixing between animal and human isolates (P � 0.0005).
Notably, organisms in three of the five clades were predominantly associated with a
single host species (clade 3, 80% [12/15] of the isolates from humans, D � 0.78, P �

0.10; clades 1 and 5, 95% [56/59] and 75% [12/16] of isolates from ducks, D � 0.73/
P � 0.10 and D � 0.44/P � 0.10, respectively). Clades 2 and 4 contained a more
comparable number of human and animal S. Typhimurium/S. I:4,[5],12:i:� isolates than
clades 1, 3, and 5 (Table S3). There was a significant phylogenetic association with the
host species of origin (animal or human) in clades 2 and 4, indicating nonrandom
clustering of isolates by host species (clade 2, D � 0.18, P � 0; clade 4, D � �0.06, P �

0.002).
Clade 2 was comprised of isolates belonging solely to multilocus sequence type 34

(ST34). This ST encompasses the European clone associated with the present S. Typhi-
murium variant pandemic, which is the monophasic S. I:4,[5],12:i:� (12). We expanded
our data set with WGS of monophasic and biphasic S. Typhimurium and S. I:4,[5],12:i:�
accessed from public databases, which included ST34 isolates from other countries (2,
12–14) (Table S2; Fig. S1) and two new sequences from organisms isolated in Scotland.
By doing so, we could demonstrate that the ancestral subclade of the Vietnamese ST34
isolates was the European ST34 S. I:4,[5],12:i:� clone (Fig. 2) (12).

Further interrogation of the phylogenetic structure revealed that the Vietnamese

FIG 1 Maximum-likelihood phylogeny of 198 Salmonella Typhimurium/S. I:4,[5],12:i:� isolates from
Vietnam. Reads were mapped to reference S. Typhimurium SL1344, with host species, multilocus
sequence type (ST), and BAPS cluster (in red) marked. The scale bar represents the number of nonre-
combinogenic single nucleotide polymorphisms per branch.
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ST34 isolates could be further subdivided into three clear subgroups, which we named
ancestral, transitional, and multidrug resistant (MDR), all of which had high bootstrap
support values within the phylogenetic tree (Fig. S2). We observed that the majority of
organisms within the ancestral ST34 subgroup, comprised of mostly European isolates,
were genetically monophasic (Fig. 2). In contrast, there was a cluster of 31 Vietnamese
isolates that were predominantly biphasic and further characterized by an extensive
complement of AMR genes (MDR subgroup) (Tables S4 and S5). This complement of
AMR genes was distinct from the classical AMR gene profile associated with resistance
to ampicillin, streptomycin, sulfonamide, and tetracycline (ASSuT), which is typically
observed in monophasic ST34 isolates.

We investigated the genomic context of the additional AMR genes in the MDR ST34
subgroup using long-read sequencing data generated using a Pacific Biosciences
sequencing system; they were found to be located on a large (~246-kb) IncHI2 plasmid.
This plasmid was similar in gene content and structure to plasmid pHXY0908 (accession
number KM877269.1), which has been previously described in an S. Typhimurium
isolate from chicken feces in China in 2009 (15). The pHXY0908 IncHI2 plasmid carried
oqxAB, blmS, sul1, �aadA2, dfrA12, aph3, sul3, aadA1a, cmlA2, aadA2, floR, sul2, hph,
aac(3=)-IVa, aac(6=)-Ib-cr, blaOXA-1, catB3, and arr3. The predicted phenotype of these
organisms was resistance to fluoroquinolones, bleomycin, sulfonamides, trimethoprim,
kanamycin, streptomycin, chloramphenicol, spectinomycin, florfenicol, hygromycin B,
apramycin, beta-lactams, and rifampin. The six transitional subgroup isolates lay be-
tween the ancestral ST34 subgroup and the MDR ST34 subgroup and exhibited some

FIG 2 Maximum-likelihood phylogeny of 418 Salmonella Typhimurium/S. I:4,[5],12:i:� isolates from Vietnam and other countries. Reads were mapped to
reference monophasic S. Typhimurium variant S. I:4,[5],12:i:� SO4698-09, with country of origin, ST34 subgroup, HIV status, flagellar status, and presence or
absence of antimicrobial resistance determinants mapped against the phylogeny. The blue box indicates the multidrug-resistant (MDR) ST34 subgroup. The
scale bar represents the number of nonrecombinogenic single nucleotide polymorphisms per branch.
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characteristics of both of the other subgroups (Fig. 2). Of these six transitional isolates,
five carried the same mercury resistance genes found in the archetypal ST34 mono-
phasic clone, and three carried the blaTEM-1, strAB, tetB, and sul2 genes, also typical of
the monophasic European clone. In contrast, and comparable to the MDR ST34
subgroup, the transitional isolates were also genetically biphasic and carried the MDR
IncHI2 plasmid (Table S6).

Two additional features distinguished the isolates in the ST34 MDR subgroup. First,
these isolates were significantly associated with iNTS disease in HIV-infected Vietnam-
ese individuals; 73% of human-derived isolates in this subgroup were from the blood
of HIV-infected patients in comparison to 32% of the human-derived isolates from other
clades (P � 0.001, Table 1). Second, while the MDR subgroup has arisen from mono-
phasic ST34 isolates, the majority (26/31) of these isolates had an intact fljBA operon
encoding a phase 2 flagellum and were phenotypically confirmed to be biphasic
(Fig. 3). S. Typhimurium typically harbors two flagellin genes, fliC and fljB. These genes
are regulated by the hin invertase so that only one flagellar antigen is expressed at any
given time (16). In the pandemic ST34 monophasic S. I:4,[5],12:i:� ancestral clone, the
fljBA operon has been deleted and replaced by a transposon (IS26-associated) carrying

TABLE 1 Numbers of Vietnamese S. Typhimurium/S. I:4,[5],12:i:� isolates from human
patients who are HIV infected or not HIV infected, excluding animal isolates

HIV infection
status

No. (%) of isolates in clade:

Ancestral/monophasic
ST34

MDR
ST34

Transition
ST34

Rest of
tree

HIV infected 6 (40) 19 (73) 0 (0) 13 (32.5)
Not HIV infected 9 (60) 7 (27) 4 (100) 27 (67.5)

Total 15 26 4 40

FIG 3 Multigenome comparison of the second flagellar region of Salmonella Typhimurium SL1344, isolate VNB151 from Vietnam, and monophasic
S. Typhimurium variant S. I:4,[5],12:i:� SO4698-09. Arrows represent coding sequences for SL1344 and predicted coding sequences for VNB151 and SO4698-09;
gray blocks indicate regions of genetic similarity between genomes. Minor differences in annotated coding sequences in regions with gray blocks reflect the
predicted nature of the VNB151 and SO4698-09 annotation.
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the AMR genes blaTEM-1, strAB, sul2, and tetBR and mercury resistance genes (12, 17). A
fragment of this transposon remained in the majority of the ST34 MDR subgroup
isolates, which included the tetBR genes, similarly inserted between hin and iroB,
leaving fljBA intact (Fig. 3). While we could not reconstruct the precise sequence of
events creating this reversion, the phylogenetic structure, bootstrap branch supports,
and DNA sequence identity support that this second flagellar operon was reacquired by
the MDR ST34 subgroup isolates from an alternative biphasic S. Typhimurium isolate
(Fig. S2).

Last, hypothesizing that these novel iNTS-associated ST34 biphasic organisms were
adapted to cause an iNTS disease phenotype in humans (as has been reported for S.
Typhimurium associated with iNTS in sub-Saharan Africa), we investigated potential
genomic degradation. In a systematic scan for putative pseudogenes, we observed
almost no evidence of genomic degradation in the ST34 MDR subgroup (Table S7),
unlike iNTS-associated S. Typhimurium in sub-Saharan Africa. The only exception found
in all 31 isolates was a frameshift in pduT, which was not present in the remaining
Vietnamese ST34 isolates. This gene encodes a hypothetical propanediol utilization
protein, and the frameshift would theoretically render this gene inactive.

DISCUSSION

Our study outlines some important observations for Salmonella epidemiology in a
global health context. Vietnam is a rapidly industrializing LMIC where the separation
between humans and livestock species is less demarcated than in more developed
countries. In this context, we observed either that distinct clades of S. Typhimurium
and/or S. I:4,[5],12:i:� were composed predominantly of isolates from a single host
species or that isolates from different host species were nonrandomly distributed
within the clade. This observation suggests restricted interspecies transmission but
should be interpreted with caution due to the limited overlap between sampling
periods (humans, 2008 to 2013, and animals, 2011 to 2013). However, we found no
significant association between sampling date and phylogeny in a tree containing only
human isolates (lambda � 0.092, P �0.21), indicating that isolates did not cluster by
year of isolation. Therefore, the observed clustering of isolates by host population was
not confounded by the year of isolation.

Previously, it was assumed that the majority of NTS infections in humans arise
through the food chain and are ultimately derived from animals (1). However, an
increasing number of studies have shown that this scenario is more nuanced. In an
industrialized setting, WGS of S. Typhimurium definitive type 104 (DT104) revealed that
the major source of human NTS DT104 infections and the AMR of those infections was
unlikely to be the local animal population (8). Additionally, a study from Kenya that
compared NTS isolates from patients and from animals found that the organisms
associated with the environment or food from within or near the homes of the patients
were not significantly related to human isolates (18). A further investigation found that
NTS isolates from patients were more comparable to NTS organisms obtained from
asymptomatic household members than from the environmental or animal samples
from the homes of index cases (6). Our work provides insight into the previously limited
understanding of the transmission of iNTS and enterocolitis-causing S. Typhimurium
and S. I:4,[5],12:i:� in Southeast Asia and identifies trends similar to those observed in
other parts of the world.

There have been successive pandemics of S. Typhimurium, including both DT204c
and DT104, in recent decades. The current pandemic is caused by the European clone
of the monophasic ST34 S. Typhimurium variant, S. I:4,[5],12:i:�. This clone rose to
prominence as a major cause of NTS disease in humans in Europe in the 2000s; pigs
were identified as the most likely reservoir (19, 20). Since then, this organism has spread
globally. ST34 was the second most common ST found within our Vietnamese isolates
and is the most common S. Typhimurium ST currently isolated from humans and
animals in China (21, 22). The pHXY0908-like plasmid found here within the MDR and
transitional subgroups is also epidemic in China (15) and also associated with S.
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Typhimurium ST34 (21, 22). pHXY0908 additionally carries various metal tolerance
genes conferring resistance to tellurite, and IncHI2 plasmids are facilitating the spread
of oqxAB and aac(6=)-Ib-cr plasmid-mediated quinolone resistance determinants in NTS
organisms. Here, we infrequently found IncHI2 plasmids outside the MDR and transi-
tional ST34 subgroups. The exceptions to this IncHI2 plasmid distribution were a duck
isolate from clade 1, a human isolate from clade 4, two Chinese ST19 isolates, and
several isolates in the monophasic ST34 subgroup: nine Vietnamese isolates (human
bloodstream infections, n � 3; pigs, n � 5; ducks, n � 1), five European isolates, and
a Chinese ST34 isolate. However, in comparison to those in the ST34 MDR and the
transitional subgroups, the plasmids identified in isolates in other clades carried fewer
and/or a different complement of AMR genes (see Tables S5 and S6 in the supplemental
material).

Our work describes a novel evolutionary pathway by which an emergent Salmonella,
typically associated with noninvasive disease, has exploited an alternative human niche
in HIV-infected individuals. This linkage of an enterocolitis-associated Salmonella in
developed countries to one causing invasive disease in predominantly immunocom-
promised individuals in developing countries has been previously observed with
Salmonella enterica serovar Enteritidis and non-ST34 S. Typhimurium subtypes (primar-
ily ST313) in sub-Saharan Africa (2, 23). In the case of ST313, these biphasic organisms
have undergone genome degradation comparable to that of Salmonella enterica
serovar Typhi, acquired AMR genes on a virulence plasmid, and spread systemically in
susceptible individuals (24). Here, a monophasic ST34 S. Typhimurium variant, S.
I:4,[5],12:i:�, with an international distribution has reacquired a secondary flagellin
gene and become associated with invasive disease in HIV-infected individuals in an
industrializing country in Southeast Asia. Notably, and unlike ST313 in sub-Saharan
Africa, this Vietnamese ST34 variant does not exhibit extensive evidence of genome
degradation. The additional flagellin gene may possibly confer a virulence advantage in
immunocompromised individuals, but further work exploiting suitable experimental
systems, as has been performed for ST313 (3, 4), is required to test this hypothesis
robustly. It is likely that the acquisition and maintenance of a broad-range MDR plasmid
confer an advantage, due to the sustained prescribing of broad-spectrum antimicro-
bials to HIV-infected individuals in Vietnam. This series of events combines an evolving
Salmonella clone with a global distribution, a pervasive Asian MDR plasmid, and a
primary burden of disease in HIV-infected individuals. Although we have identified this
new sublineage in Vietnam, it is likely not restricted to Southeast Asia. Recently, two S.
Typhimurium ST34 isolates with similar IncHI2 plasmids were identified from two
patients in Portugal, with no travel history to Asia and no report of foodborne
outbreaks or recent contact with animals (25).

Our data suggest that conditions in Vietnam likely influenced the emergence of a
new sublineage of S. Typhimurium. We predict that these conditions may be replicated
in comparable LMICs, which may facilitate the emergence of new variants of patho-
genic bacteria into human populations. These results demonstrate the incredible
genomic plasticity, global mobility, and virulence potential of S. Typhimurium. The
international circulation of these organisms combined with their ability to acquire AMR
genes and to cause invasive disease in HIV-infected humans highlights the need for
improved surveillance of bacterial pathogens in a One Health context. Our study
highlights the impact of the global AMR crisis and adds a unique insight into the
international epidemiology and emergent variants within Salmonella enterica.

MATERIALS AND METHODS
Ethics approval. The scientific and ethics committees of the collaborating institutions and the

Oxford Tropical Research Ethics Committee provided the ethical approvals for the studies that contrib-
uted organisms and data to this investigation.

Vietnamese collection of Salmonella Typhimurium. The data set for this study comprised 198
isolates of Salmonella enterica subsp. enterica serovar Typhimurium and S. I:4,[5],12:i:� isolated in
Vietnam (see Table S1 in the supplemental material). These included 85 human-derived isolates: 36 from
fecal samples taken from diarrheal patients, 41 from the blood of febrile patients, and eight from fecal
samples taken from asymptomatic individuals. Additionally, 113 Salmonella Typhimurium and S. I:4,[5],12:
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i:� isolates isolated from the fecal material of asymptomatic animals (14 from chickens, 70 from ducks,
and 29 from pigs) collected in the southern part of Vietnam from 2011 to 2013 were included. Details
of the origins of these isolates can be found in Text S1 in the supplemental material.

MLST and genome sequencing. S. Typhimurium and S. I:4,[5],12:i:� isolates were identified by
multilocus sequence typing (MLST) prior to whole-genome sequencing (WGS). Genomic DNA was
extracted using the Wizard genomic DNA purification kit (Promega, USA), and the Salmonella MLST
alleles were PCR amplified and sequenced in both directions using BigDye Terminator v3 (Applied
Biosystems, USA) followed by capillary sequencing on a 3130XL Genetic Analyzer (Applied Biosystems,
USA). All sequences were manually trimmed to align to a reference sequence and were submitted to the
S. enterica MLST database (http://mlst.warwick.ac.uk/mlst/dbs/Senterica) for allelic profile and molecular
serotyping. For each confirmed S. Typhimurium and S. I:4,[5],12:i:� isolate, 2 �g of the extracted genomic
DNA was subjected to WGS on an Illumina HiSeq2000 platform (San Diego, CA, USA) according to the
manufacturer’s protocols to generate 100-bp paired-end reads.

Antimicrobial susceptibility testing. Antimicrobial susceptibility testing was performed on all
confirmed S. Typhimurium and S. I:4,[5],12:i:� isolates on Mueller-Hinton agar using the disk diffusion
method as recommended by Clinical and Laboratory Standards Institute (CLSI) guidelines (26); antimi-
crobial disks were purchased from Oxoid (Thermo Fisher Scientific, United Kingdom). Antimicrobial
susceptibility testing was performed against ampicillin, amoxicillin-clavulanate, ceftazidime, ceftriaxone,
chloramphenicol, ciprofloxacin, gentamicin, nalidixic acid, ofloxacin, and trimethoprim-sulfamethoxazole.
Antimicrobial susceptibility was determined using the CLSI guidelines (26).

Contextual collection of Salmonella Typhimurium/S. I:4,[5],12:i:� genome sequences. To place
the Vietnamese S. Typhimurium and S. I:4,[5],12:i:� isolates in context, we included an additional 220
S. Typhimurium and monophasic variant S. I:4,[5],12:i:� genomes isolated from humans and animals in
Europe and China; full details of these isolates, sources, and accession numbers are shown in Table S2.
Assemblies only were available for the Chinese and Danish isolates; these assemblies were shredded to
generate 125-bp paired-end reads for each isolate to allow further analysis.

Genomic analysis and phylogenetics. The short reads of the 198 S. Typhimurium and S. I:4,[5],12:i:�
genomes from Vietnam were mapped to the reference genome S. Typhimurium SL1344 (27, 28),
composed of a chromosome and three plasmids (accession numbers FQ312003, HE654724, HE654725,
and HE654726) using SMALT v0.7.4 (29), and single nucleotide polymorphisms (SNPs) were called using
previously described methods (30). Variations in regions of mobile genetic elements and repeats,
including prophages and plasmids, were removed. The genome sequence of Salmonella Enteritidis
P125109 (chromosome accession number AM933172) was added as an outgroup and similarly mapped
to SL1344. Putative recombination was removed from the alignment using Gubbins (31). Hierarchical
clustering of the isolates using hierBAPS (11) was performed using the resultant nonrecombinogenic SNP
alignment, generating five primary BAPS clusters. A phylogenetic tree was created from the nonrecombi-
nogenic SNPs using RAxML (32) and rooted on S. Enteritidis P125109 in iTOL (33). Annotated assemblies
of each genome were produced using the pipeline outlined in the work of Page et al. (34), which is
described in Text S1 in the supplemental material.

A separate, larger tree was produced by mapping the short reads of all isolates (198 Vietnam isolates
and the 220 context collection isolates) to the reference genome S. I:4,[5],12:i:� SO4698-09 (accession
number PRJEB10340) (12). SNPs were called as previously described, and variation in prophage se-
quences, repeat regions, and the genomic island was removed. The tree was rooted on the outgroup
S. Enteritidis P125109 and visualized, along with the country of origin, in iTOL.

Assessment of mixing between animal and human isolates from Vietnam. With 85 human-
derived isolates, 113 animal-derived isolates, and five primary BAPS clusters, if the isolates were sampled
from a common, well-mixed pool of salmonellae, the assumption would be that approximately 43%
(85/198) of isolates in each of the five BAPS clusters would originate from humans. This null hypothesis
was tested using Fisher’s exact test in R (35), with the P value computed using Monte Carlo simulation.

Further assessment of potential mixing between animal and human populations was undertaken for
each individual BAPS clade while accounting for phylogenetic structure. Each BAPS clade was extracted
from the larger phylogenetic tree using the drop.tip function of the APE package in R (36). For each of
the five clades separately, the D value, a measure of phylogenetic signal, was calculated for the binary
host population (animal/human) trait using the caper package in R (37). The estimated D value was
evaluated as to whether or not it was significantly different both from random association (D � 1) and
from the clustering expected under a Brownian evolution threshold model (D � 0). Assessment of
potential confounding by date of isolation was performed as described in Text S1.

Identification of antimicrobial resistance determinants. The ResFinder (38) reference database
was used with ARIBA (39) to identify acquired resistance genes, and the results were visualized using
Phandango (40). Resistance due to SNPs in the gyrA, gyrB, parC, and parE genes was investigated by
creating a database of these genes from the reference sequence of S. Typhimurium SL1344 and using this
with ARIBA to identify SNPs that have been previously associated with resistance. There was a subgroup
within the ST34 isolates that had a high number of AMR determinants, called the ST34 MDR (multidrug-
resistant) subgroup.

To assess whether or not the isolates from the two clades comprising mainly isolates from ducks
(clades 1 and 5) had significantly fewer AMR determinants than the Vietnamese isolates in other clades,
the mean number of AMR determinants in isolates from clade 1 (0.66/isolate) and clade 5 (0/isolate)
separately was compared to the mean number of AMR determinants of combined isolates from clades
2, 3, and 4 (9.96/isolate) using Mann-Whitney U tests.
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Identification of putative plasmids. ARIBA (39) was used to identify the plasmid replicon types,
using the PlasmidFinder database (41), in each of the Vietnam and context collection isolates.

Genomic identification of monophasic or biphasic S. Typhimurium. Genomic identification of
biphasic or monophasic S. Typhimurium was performed by examining the mapped sequence read
coverage of the 198 Vietnam isolates against the reference S. Typhimurium SL1344 in the genomic region
around the fljBA locus. Isolates were classified as monophasic (deletion or partial deletion of the fljBA
locus or presence of the A46T fljA or R140L hin SNP described by Ido et al. [42]), biphasic (no deletion
of the fljBA locus), or possibly biphasic (biphasic�: intact fljBA locus but possible deletion of the regions
around hin, a DNA invertase allowing phase switching). Genomic classification of the flagellar status of
the Vietnam ST34 isolates was confirmed by laboratory phase switching methods detailed below. Four
of the five biphasic� (all ST34) were confirmed as biphasic, and the other was confirmed as monophasic;
in the case of any disagreements between the genomic prediction and the laboratory phase switching
results, the laboratory results were used.

Isolates in the context collection from the work of Petrovska et al. (12) were labeled as monophasic
or biphasic according to the classifications in Technical Appendix 1 from that publication. The other
isolates from the context collection, including any from the work of Petrovska et al. for which serotyping
data were not available, were classified as genetically monophasic or biphasic based on genomic analysis
as described for the Vietnam isolates.

Phase switching. To identify monophasic and biphasic S. Typhimurium Vietnam ST34 variants, cell
suspensions were agglutinated with H:i (phase 1 flagellin) and H:1 (phase 2 flagellin) antisera according
to the manufacturer’s instructions (SSI Diagnostica, Hillerød, Denmark) (43). These results were further
confirmed using phase-changing assays as described in Text S1 in the supplemental material.

Long-read sequencing. A biphasic ST34 isolate in the ST34 MDR subclade (VNB151) was additionally
sequenced using the Pacific Biosciences platform (Menlo Park, CA, USA). Genomic DNA was phenol-
chloroform extracted and was sequenced using 1 single-molecule, real-time (SMRT) cell and the P2-B6
chemistry. Sequence reads were assembled using the methods described in Text S1.

Association of ST34 MDR subgroup with HIV infections. To identify if there was an association of
the ST34 MDR subclade with HIV-infected individuals, we assessed the numbers of isolates from
HIV-infected patients in the ST34 MDR subclade versus the rest of the isolates in the tree, and compared
these to the number of isolates not derived from HIV-infected patients using a chi-squared test, using
only the human isolates from Vietnam.

Identification of pseudogenes in ST34 isolates. To determine whether or not the isolates in the
ST34 MDR subclade demonstrated evidence of genome degradation as observed in other Salmonella
isolates adapted to invasive disease (44), the presence of pseudogenes was investigated in the 71
Vietnamese ST34 isolates, as outlined in Text S1 in the supplemental material. Genes which were
disrupted in the majority of ST34 MDR subgroup isolates but not found in other subgroup isolates were
identified.

Data availability. Accession numbers for all genomes used in this study are available in Tables S1
and S2. The assembly for the biphasic ST34 isolate in the ST34 MDR subclade (VNB151) was submitted
to the European Nucleotide Archive under accession number GCA_900166885.
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