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This is a paper in mathematics, specifically in set theory. On the example of the measure
recognition problem (MRP), the paper highlights the phenomenon of the utility of a
multidisciplinary mathematical approach to a single mathematical problem, in particular,
the value of a set-theoretic analysis. MRP asks if for a given Boolean algebra, B, and a
property,F, of measures, one can recognize by purely combinatorial means ifB supports a
strictly positivemeasurewith propertyF. Themost famous instance of this problem isMRP
(countable additivity), and in the first part of the paper, we survey the known results on this
and some other problems. We show how these results naturally lead to asking about two
other specific instances of the problem MRP, namely MRP (non-atomic) and MRP
(separable). Then, we showhowour recentwork gives an easy solution to the former of these
problems and some partial information about the latter. The long-term goal of this line of
research is to obtain a structure theory of Boolean algebras that support a finitely additive
strictly positivemeasure, along the lines ofMaharam theorem, which gives such a structure
theorem for measure algebras.
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1. Introduction

Having announced that this is a paper in set theory, let us commence by some
remarks on the nature of that subject. Set theory is a part of mathematical logic
and, indeed, it has a dual role of giving logical foundations to mathematics and of
being a part of mathematics itself. In many people’s minds, these two roles are
rather distinct. In fact, much of the development of set theory in the twentieth
century ran on two distinct tracks. On the one hand, much effort was spent to
develop systems of set-theoretic axioms from which one could logically develop
the known mathematics. Hilbert’s programme made it a priority to have such a
system, and it had widely been believed after the set theory developed by Cantor
(1874), in the late nineteenth century, that one should be able to have an
axiomatic system for mathematics by using the notion of a set as given. The
present understanding of this is rather different, mostly due to the work of Gödel
(1931) in his famous Incompleteness Theorems. Firstly, he showed that for every
consistent recursive system of axioms, which includes the Peano Arithmetic,
there is a statement formalizable in the theory itself, which is independent
(neither provable nor unprovable) in the theory, and secondly that such systems
of axioms also cannot prove their own consistency. On the other hand, much
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M. Džamonja3172
understanding was developed about the mathematical, rather than the logical,
consequences of Cantor’s work. This includes the idea of infinite sets of various
sizes and the understanding of what this means in terms of familiar objects,
such as the sets of real numbers. This paper will mainly concentrate on that
mathematical side of set theory, but in fact, the point is that the two sides of set
theory are indivisible, as we wish to demonstrate by this paper.

Most (but not all) of the modern mathematics takes the axiom scheme known
as Zermelo–Fraenkel axioms with Choice (ZFC) as a basis. It has been the case
basically since the 1920s and there are many good reasons for this decision. Some
may then view it as a serious setback that it became known since Cohen (1963)
that, as we know from Gödel (1931), there are not only some statements of
mathematics that are independent of ZFC, but also some ordinary statements,
notably the Continuum Hypothesis (‘every infinite subset of the set R of real
numbers is in a bijective correspondence either with the set N of natural numbers
or the set R itself’), that are independent. This was established by showing that
one cannot calculate the size jRjZjP(N)j just by using the axioms of ZFC in
terms of the Cantor’s a-hierarchy of infinite cardinals: ja0jZjNj, the next infinite
cardinal a1, a2, . the limit au, the next auC1, .. Moreover, it is consistent with
these axioms (assuming they themselves are consistent) that the value of jP(a0)j
is as large as desired, i.e. no upper bound can be found just by arguing in
ZFC. Indeed, Cohen’s result entirely changed the subject of set theory, not only
owing to its logical significance but also because it introduced a method for
proving that various statements were independent of ZFC. This is the method of
forcing. Many interesting results have been obtained by applying this method.
While this is exciting, it also created the feeling in the general mathematical
community that set theorists are mostly concerned about things that cannot be
done, rather than the ones that can be. It did not help that the forcing machinery
had developed to an incredible extent and even being able to read and verify
some of the proofs takes an enormous effort. There was definitely a period in
which the set theory was considered far removed from the interests of the main
stream mathematics.

I am very fortunate to belong to the generation of mathematicians who have
now seen the pendulum swing the other way. In the recent years, there have been
a number of purely mathematical results that have been obtained as a
consequence of a fine set-theoretic analysis of the problem. The final result
often does not mention any set-theoretic assumptions additional to ZFC, which is
assumed throughout, yet the proof relies deeply on an understanding of the set-
theoretic limits of ZFC and its possible universes. As an example, let us state a
celebrated theorem of Shelah (1994):

Theorem 1.1 (Shelah). If jP(an)j!au for all n!u, then jP(au)j!au4
.

To appreciate the impact of the above theorem, contrast it with what we have
already said, it is not possible to bound jP(an)j by arguing in ZFC. However, if
we are in the situation to know that this value for every n is less than au, then we
can put a definite bound on the size of jP(au)j. This theorem as stated can be
understood without any prior knowledge of modern set theory. Yet, this
statement is a culmination of at least 20 years of concentrated effort by many set
theorists, involving techniques such as large cardinals, iterated forcing,
elementary embeddings and culminating by the seminal work of Shelah
Phil. Trans. R. Soc. A (2006)



3173Measure recognition problem
(started in the 1980s and presented as a whole in Shelah (1994)) in which he
invented the whole theory (the theory of possible cofinalities, ‘pcf’) to finally
prove the theorem. This part of Shelah’s work is the one that was cited when he
was awarded the prestigious Bolyai Prize.

In this paper, we shall concentrate on the appearance of this phenomenon of
the symbiosis between the axiomatic and the mathematical in the context of
measure theory. We shall describe the problem of characterizing Boolean
algebras that carry a measure, and point out the most well-known instance of
this problem. This is of course the von Neumann (1981) problem, recently solved
in the negative by Talagrand (submitted). We shall then consider some other
instances of this problem and show some recent solutions that have been
obtained in our joint work by Džamonja & Plebanek (submitted).
2. Description of the problem

In order to make the paper accessible, we shall commence with a quick review of
the basic notions we use. A list of notational conventions can be found at the end
of this paper.

A Boolean algebra, B, is a structure consisting of a set with at least two
distinct elements, 0B and 1B, two binary operations, o and n, and a unary
operation, K, which obeys certain rules known as the laws of Boolean algebras.
A typical example of a Boolean algebra is a family of subsets of a given set A,
where 0BZ0; 1BZA, and the operations, o, n and K, are interpreted as h, g
and the complement, c, respectively. It follows from Stone Representation
Theorem (Stone 1936) that every Boolean algebra is isomorphic as a structure to
some B4P(A) for some A, so we shall only work with such algebras. The basic
laws of Boolean algebras are then interpreted as the familiar commutativity,
associativity and distributivity laws between g and h, and we also have that
for any a2B, (ac)cZa. These operations induce the familiar subset relation, 4,
which acts as a relation of partial ordering on B. Two elements a, b of B are said
to be disjoint if ahbZ0.

Boolean algebras, B, may also have properties additional to the ones given by
the basic laws. For example, we can consider the antichains, which are subsets of
B consisting of pairwise disjoint elements. The condition which guarantees that
all the antichains in B are countable is called the countable (anti)chain condition
and abbreviated as ccc. An example of a Boolean algebra that satisfies this law is
the family M of the equivalence classes (mod measure 0) of all Lebesgue
measurable subsets of the unit interval [0,1]. This is easily seen and is due to the
additivity properties of the Lebesgue measure l. It is known (see Fremlin 1989)
that one can choose the representatives, E†, of the equivalence classes of
measurable sets E so that 0/†Z0/ and the representative of E†g(h)F† is the
union (intersection) of the corresponding representatives, for all E†, F†. (For
this reason, we omit † in our notation.) Another property of M is that for every
sequence han:n!ui in M the uniongn!uan is an element of M, and it is the least
upper bound of han:n!ui with respect to 4. Boolean algebras with this property
are said to be s-complete. In fact, the analogous completeness property remains
true for sequences indexed by any other ordinal but u, which can be proved by
using the ccc property along with the s-completeness. This property is called
Phil. Trans. R. Soc. A (2006)
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completeness, and since in this paper, we never deal with algebras that are
s-complete without being complete, we shall simplify the notation and refer to
both concepts by the word ‘complete’.

Note that in the above example, l induces a function on M, which is again
called l, and this function satisfies the following, for all a,b,an2M:

(i) (strict positivity) as0/0lðaÞO0; lð0/ÞZ0,
(iiK) (total finiteness) lð1MÞ!N,
(iii) (additivity) if a, b are disjoint then l(agb)Zl(a)Cl(b), moreover

(iiiC) (countable additivity) if han:n!ui are pairwise disjoint, then
lðgn!uanÞZ

P
n!ulðanÞ.

A complete Boolean algebra, B, which supports a functional l satisfying
properties (i), (iiK) and (iiiC) above is called a measure algebra and l is called a
strictly positive (s.p.) countably additive measure. Measures which only satisfy
properties (i), (iiK) and (iii) are called s.p. finitely additive measures. Since it is
clear that by multiplying by a constant, we can obtain from l another countably
additive measure m which satisfies mð1MÞZ1 (such measures are called
probabilities), we can replace the requirement (iiK) in the definition of a measure
algebra by the one requiring the relevant measure to be a probability. In the
sequel, the word ‘measure’ will refer to finitely additive measures on algebras
which are not necessarily complete. The classical theory of such measures may be
found in Bhaskara Rao & Bhaskara Rao (1983).

The general problem we shall discuss in this paper is the following:
Measure Recognition Problem MRP(F). Given a Boolean algebra, B, and a

property, F, of measures, how can we recognize by purely combinatorial means if
on B one can define a strictly positive measure with property F?
3. Comments on the problem and known results

The most well-known instance of the MRP was asked by von Neumann in 1937
(see von Neumann 1981). He was interested in recognizing the measure algebras
(so the additional property F in the problem description is the property of
countable additivity and we are dealing with MRP (countably additive)). In
addition to the completeness and the ccc property, von Neumann isolated
another property which is always present in measure algebras, called weak
distributivity, and asked if these three properties together were sufficient for a
Boolean algebra to be a measure algebra. This famous problem was answered
only very recently by Talagrand (submitted), and the answer is negative. In fact,
the main result of Talagrand (submitted) answered, also negatively, the related
well-known Control Measure Problem, which asks if the existence of a so-called
continuous submeasure on a s-complete Boolean algebra implies the existence of
a measure. The step from this solution to the solution of von Neumann’s problem
then followed by known work, as explained in Talagrand’s paper. A (strictly
positive) continuous submeasure is a finite non-negative function, m, on a
Boolean algebra, B, vanishing only at 0B, having the ‘submeasure’ property that
m(agb)%m(a)Cm(b) for all a,b2B, and the ‘continuity’ property that for any
sequence han:n!ui of elements of B satisfying anC14an for all n andhn!uanZ0,
Phil. Trans. R. Soc. A (2006)
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we have limn m(an)Z0. The result of Talagrand (submitted) is probably the most
exciting recent result to come out of a whole variety of mathematical subjects,
particularly measure theory and set theory.

The notion of a continuous submeasure comes from the work of Maharam
(1947), who observed that a necessary condition for a Boolean algebra to be a
measure algebra is to be metrizable, and showed how one can define a continuous
submeasure from the appropriate metric. Following this work, an important
question became to recognize Boolean algebras that support continuous
submeasures, the so-called Maharam’s algebras. Recently, it was proved in
Balcar et al. (2005) and Veličković (2005) that under a certain set-theoretic
axiom known as the P-ideal dichotomy, any ccc weakly distributive complete
Boolean algebra is a Maharam algebra. Using their work as a starting point,
Todorčević (2004) obtained the following interesting characterization:

Theorem 3.1 (Todorčević). A complete Boolean algebra carries a strictly
positive continuous submeasure if and only if it is weakly distributive and satisfies
the s-finite chain condition.

The chain condition here means that the algebra can be written as a countable
union of subsets each of which only has finite antichains. Todorčević’s result is
clearly a theorem of ZFC, but it was obtained as a consequence of a set-theoretic
analysis of the situation under the P-ideal dichotomy, and the methods
introduced in Maharam (1947). Likewise, Talagrand’s result is purely a theorem
of ZFC, but even the formulation by Maharam of the Control Measure Problem
was a consequence of her analysis of the behaviour of the von Neumann’s
problem under the set-theoretic assumption of the existence of a Souslin tree.
Both of these results illustrate the point that this paper makes, about the close
connection between a set-theoretic analysis of a problem and its solution in ZFC,
as well as the long-term view that one has had to take in understanding various
specific instances of this connection.

Next, let us take a look at another special case of MRP, namely MRP(0/), the
situation when we do not require any special property F. In this case, there is a
combinatorial criterion due to Kelley (1959). It involves the notion of the
intersection number of a familyF of sets, which is defined to be the supremum of all
a, such that for every finite subsequence �a of elements of F (with possible
repetitions of elements), there is a subsequence �b of length lgð�bÞ at leasta lgð�aÞ, such
that the intersection of all elements of �b is non-empty. Kelley’s criterion is then:

Theorem 3.2 (Kelley). A Boolean algebra B carries a strictly positive (finitely
additive) measure if and only if B\{0/} can be written as a countable union of
families each of which has positive intersection number.

One may wonder how strong the condition in the Kelley’s criterion is. It clearly
implies the ccc, but Gaifman (1964) proved that there are ccc algebras which do
not satisfy Kelley’s criterion. It is also known that under the set-theoretic
statement known as Martin’s Axiom (MA) and the negation of the continuum
hypothesis (CH), all ccc Boolean algebras of size!2a0 do satisfy Kelley’s condition
and in fact some stronger conditions (see Fremlin 1984). This together with the
example of the P-ideal dichotomy results quoted above demonstrates that there
are some mathematical axioms, which make it easier for a Boolean algebra to have
certain measure-theoretic properties. We shall see another example of this
Phil. Trans. R. Soc. A (2006)
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behaviour in §4. Once the notion of the intersection number is known, the proof of
Kelley’s theorem follows rather readily by the well-known facts from functional
analysis. It seems to be a tendency in this subject that positive theorems once
formulated properly, have proofs which are much less involved than the proofs of
the negative ones. We shall illustrate this in theorem 4.1, where we shall give a
proof of one such positive theorem, while we may note that most of the negative
statements mentioned here (e.g. the construction from Talagrand (submitted))
have proofs that are very much out of the scope of this paper.

Special cases of property F which are particularly interesting are the notions of
non-atomicity and separability. To motivate the definitions, we shall go back to
the case of countably additive measures. An example of such a measure is the
familiar Lebesgue measure l on the unit interval. This measure naturally leads to a
measure on the Tychonoff product [0,1]k for any cardinal k, denoted by lk.
A remarkable theorem of Maharam (1942) shows that the structure of measure
algebras (so supporting a countably additive measure) is totally determined by
these examples. Namely, any measure algebra can be decomposed into a countable
union of subsets, each of which is either an atom, or a Boolean algebra isomorphic
to the measure algebraBk of some [0,1]k under lk, where all k are infinite cardinals.
Here, we use the notion of an atom of a Boolean algebra B, which is an element
as0 such that only b4a inB are 0 and a. Such a structure theorem does not exist
for Boolean algebras that simply support a strictly positive finitely additive
measure. Maharam (1981) asks exactly for such a theorem.

Taking a long-term goal to obtain such a structure theory for finitely additive
measures, we may ask ourselves what the first step would be. In the case of
countably additive measures such a step was to determine the relevant building
blocks, namely the algebras Bk. Each of these blocks has two important
properties. The first one is that the measure is non-atomic, which means that for
every 3O0, there is a finite partition of the algebra into elements of measure !3.
For this reason, we wish to have a combinatorial criterion for recognizing when a
Boolean algebra has a finitely additive measure which is non-atomic, which
explains why we believe the case of MRP (non-atomic) is an important special
case. In our recent work by Džamonja & Plebanek (submitted), we obtained a
simple solution to this problem, which will be presented in §4.

Another property of measure algebras, Bk, for kRa0 is that they can
be understood as metric spaces of density k. Namely one introduces a metric
dk derived from lk by declaring dk(a,b)Zlk(aDb), and this metric has the required
property. By Maharam’s theorem mentioned earlier, every measure algebra, B,
has a (unique) decomposition involving algebras Bk for some k, and the
supremum of all k involved in this composition is called Maharam’s dimension or
type of B. Hence, it would be of interest to have a similar notion for Boolean
algebras which simply support a finitely additive strictly positive measure. The
notion of type can be defined similarly to the above because a finitely additive
strictly positive measure on B will already induce a metric on B, and we can
make a reasonable definition of the type of B to be the supremum of all densities
of metric spaces obtained from B by using all the possible strictly positive
measures on B (of course the actual calculation of the type in this case, in the
absence of a representation theorem, may be very difficult). In the same vein, for
a fixed measure m on B, we may consider the density of the induced metric space.
In particular, we say that m is separable if the induced metric space is separable
Phil. Trans. R. Soc. A (2006)
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in the topological sense (i.e. it has a countable dense subset). Recognizing
Boolean algebras that have such a strictly positive measure translates in the
context of MRP into MRP (separable). Clearly, a similar notion can be defined
for any fixed possible densities of a metric space, but for the moment, we still do not
know how to solve MRP (separable). We shall show some partial solutions in §4.
4. Some recent results

In this section, we shall take for granted all notions defined in previous sections.
Here, we concentrate on MRP with two specific values of F in mind, MRP (non-
atomic) and MRP (separable). All otherwise unattributed theorems are from
Džamonja & Plebanek (submitted). In particular, this work solves the problem
MRP (non-atomic) mentioned earlier, using a rather simple argument. We
present the argument here:

Theorem 4.1. ABoolean algebraB carries a strictly positive non-atomicmeasure
if and only if there is a decomposition Bnf0gZgn!uBn, where for each n we have

(i) Bn4BnC1;
(ii) intðBnÞR2Kn; and
(iii) if a2Bn then there are disjoint b, c2BnC1 with bgc4a.

The forward direction of this theorem is easy modulo known facts. For
example, one can use the well-known Stone duality theory between Boolean
algebras and compact zero-dimensional topological spaces (Stone 1936) and its
application to measure algebras to transfer the problem into the setting of Radon
measures on compact spaces. The conclusion then follows by another well-known
theorem, Maharam (1942). Details are not of interest here. However, we shall
sketch the proof of the backward direction of the theorem, assuming the
following lemma which appears as part of Kelley’s (1959) proof and is taken in
this form from Fremlin (2002), Proposition 391 I. The notation int(A) stands for
the intersection number of the family A.

Lemma 4.2 (Kelley). Let A be a Boolean algebra and A4A\{0} non-empty.
Then

intðAÞZmax
n

inf
a2A

nðAÞ

where the maximum is taken over all probability (finitely additive) measures on A.

Proof. If there is a decomposition of B satisfying (i)–(iii), then by lemma 4.2
for each n, we can define a probability measure mn on B such that for all b2Bn

we have mn(b)R2Kn. We let m be any cluster point of the sequence be hmn:n!ui.
It is easily seen that is a probability measure on B. Let us show that m is strictly
positive. By induction on n, it easily follows that for all a2Bn and kRn, there are
2kKn pairwise disjoint sets in Bk contained in a. Hence, for such n, k we have
mk(a)R2kKn$2KkZ2Kn. Consequently, m(a)R2KnO0.

Suppose now that 3O0 and a2B\{0} are given. Let n and kRn be large
enough so that a2Bn and 2kKn!3, so 3$2kKnO1. Let b0;.; b2 kKnK1 be disjoint
elements of Bk contained in a, which exist as shown in the previous paragraph.
Then m(bi)!3 for at least one i!2kKnK1, by the choice of k. This shows that
every non-zero element of B has a subset of arbitrarily small positive measure.&
Phil. Trans. R. Soc. A (2006)
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An essential difference between this criterion and other combinatorial criteria
we mentioned above (Maharam, Kelley and Todorčević), is that the
decomposition of the Boolean algebra involves an interaction between the
countably many pieces involved. Next, one may wonder how strong this criterion
is. Obviously, a necessary condition on the Boolean algebra to support a non-
atomic strictly positive measure is first of all that it supports any strictly positive
measure, so Kelley’s criterion, and secondly that the algebra itself is atomless,
which means that it does not have any atoms in the sense defined in §3.
Džamonja & Plebanek (submitted) give an example showing that, in general,
these conditions are not sufficient to show that the algebra supports a non-atomic
strictly positive measure. As it is known that under the axiom MA various
properties of Boolean algebras of size smaller than 2a0 tend to be equivalent, the
following theorem is perhaps not surprising:

Theorem 4.3. Assume MA. Then for atomless Boolean algebras B of size!2a0 ,
the following are equivalent:

(i) B is ccc, and
(ii) B satisfies the condition from theorem 4.1.

What may be surprising is the way that the theorem is proved. We give an
informal sketch, for which we need several notions. This will also be a good
opportunity to introduce an auxiliary property of Boolean algebras which was
central in Džamonja & Plebanek (submitted), the so-called approximability.

A forcing notion is a partially ordered set P with the least element1. Two
elements ofP are incompatible if there is no element ofP that is larger than both of
them. We say that P is ccc if there is no uncountable family of pairwise
incompatible elements (note that this is a different notion than that of ccc in
Boolean algebras). A subset of P is a filter if it is directed and downward closed as
a partial order. A subset D of P is dense if for every p2P there is q2D with p%q.
MA states that for any ccc forcing P and any family F of!2a0 dense subsets of P,
there is a filter of P which intersects each of the dense sets in the family. In
applications, one may start with a goal of constructing some object, usually of size
a1!2a0 (which is why the negation of CH is usually assumed as well), and P
consisting of (usually) finite pieces of the desired object, ordered so that a stronger
element ofP gives more information about the object than a weaker one. Then one
needs to formulate a family F of dense sets which represent various requirements
on the object constructed, and the F -generic filter guaranteed to exist by MAwill,
in some natural way, give rise to the object desired.

In the context of theorem 4.3, in the non-trivial direction from (i) to (ii) and in
view of the characterization from theorem 4.1, it would be natural to start with a
Boolean algebra, B, which satisfies ccc and has size!2a0 , and to formulate a ccc
forcing notion, which would force a non-atomic strictly positive measure onB. One
would need to formulate a dense set corresponding to the requirement that a has
positive measure, for every non-zero a in B. A posteriori this may be proven
possible, but this is not how our proof went. In addition, the known proof that every
ccc Boolean algebra of size!2a0 is separable and hence satisfies Kelley’s condition

1 Some authors use partially ordered sets with the largest element, in which case notions we define
need to be read with R in place of %. The present notation follows Cohen (1963).
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and carries a measure (see Fremlin 1984), is not useful since it gives an atomic
measure. We worked instead with the notion of approximability. A Boolean
algebra B is approximable if there is a sequence hmn:n!ui of probability measures
on B such that for every as0B in B there is n such that mn(a)O1/2. This notion
was studied by Talagrand (1980) and Mägerl & Namioka (1980) with the idea of
characterizing Boolean algebras that support a strictly positive separable measure
(SM). We shall discuss this in a moment, but for now let us finish sketching the
proof of theorem 4.3. The proof is to start with a Boolean algebra that satisfies
Kelley’s condition (in fact a weaker condition than that) and formulate a ccc
forcing notion whose generic filter gives a sequence hmn:n!ui which demonstrates
that the algebra is approximable. The size of the familyF of sets such that we need
to produce an F -generic filter is equal to the size of B, so if MA holds, we can deal
with any ccc algebra of size!2a0 . Having the sequence hmn:n!ui, we can define the
weighted sum

P
n!u mn=2

nC1, and the proof is done in such a way that if the algebra
is atomless then this measure in non-atomic.

Having sketched the proof of theorem 4.3, we can discuss the next item on our
list, namely the notion of SM defined earlier. Talagrand (1980) attacks MRP
(separable) by defining a list of properties of decreasing strength one of which
is ‘supporting a strictly positive SM’. He shows that the property of B being
s-centred (so the algebra can be written as a countable union of subfamilies each
of which has the property that for all finite subsets J, we havehJs0/, provided
0/;J ) is strictly stronger than SM, while SM implies approximability. He also
shows that under the assumption of CH, property SM is strictly stronger than
approximability. There is a possibility left open by this theorem, which is that
approximability might, under some suitable axioms, actually characterize SM.
Džamonja & Plebanek (submitted) show that this is not the case:

Theorem 4.4. There is a Boolean algebra which is approximable but does not
support a strictly positive separable measure.

Proof of this theorem involves a combinatorial construction, the details of
which are out of the scope of this paper. A major building block is a zero-
dimensional topological space without isolated points with the curios property
that it has a countable dense set D, such that for every sequence hFn:n!ui of
closed sets whose union is disjoint from D, that union is nowhere dense. Such a
space was first constructed in ZFC by Simon (2002), although it was known
before that such spaces can exist under various additional axioms of set theory.

Similar to Talagrand (submitted), by answering negatively the problem of von
Neumann brings us back to square one regarding MRP (countably additive), so
does theorem 4.4 brings us back to the beginning regarding MRP (separable). It
would have been very nice if at least consistently there would be an equivalence
between approximability and separability, since there is a combinatorial
characterization of approximability due to Mägerl & Namioka (1980):

Theorem 4.5 (Mägerl–Namioka). A Boolean algebra B is approximable if and
only if for every 3 O0 (equivalently: for some 32(0,1)) there is a decomposition
B n f0gZgn!uB

3
n, where for each n we have intðB3

nÞR1K3.

In the absence of such an equivalence, we have to rethink what a possible
characterization may look like. At this point, we may say that it is unlikely that
any characterization will involve only a decomposition into countably many pieces
Phil. Trans. R. Soc. A (2006)
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each of which has some given property, in the style of all but one characterization
given here. Instead, the desired theorem will probably have to take into account
the interaction between these various pieces, like in theorem 4.1. The reason for
this is a result by Dow & Steprans (1993). Namely, one of the strongest possible
characterizations involving only the information about each of the countablymany
pieces (given that we know that s-centredness is too strong) would use the notion of
s-n-linkedness. For a given n, a family A of non-empty sets is n-linked if for any
subset J ofA of size%n, we havehJs0/. ABoolean algebra is s-n-linked if it can be
written as a countable union of sets each of which is either {0/} or n-linked. Dow &
Steprans (1993) proved that the measure algebra of [0,1]k is n-linked for every n if
and only if k%2a0 . This shows that the notion of n-linkedness does not make a
sufficient distinction between SM algebras and those of type%2a0 .
5. Conclusion

This paper shows on the specific example of theMRP the phenomenon of the utility
of amultidisciplinarymathematical approach to a single mathematical problem, in
particular, the value of a set-theoretic analysis of the problem at hand. We have
shown howMRP,which is a problem about Boolean algebras that was asked first at
least in 1937 if not earlier, has had an impact onmeasure theory, combinatorics and
set theory, and in turn, that each of these subjects contributed to a better
understanding of MRP. Specifically, we discussed the set-theoretic insights and
emphasized the point of using set-theoretic tools and being able to obtain a purely
measure-theoretic or algebraic final result. Through historical remarks presented
in the first parts of the paper, the reader can see how various results have followed
the current state of knowledge, both in set theory and measure theory. In §4, we
showed some new results and underlined the future directions of research in the
subject. One of the goals is a structure theory for Boolean algebras that support a
finitely additive strictly positive measure.
6. Notation

The power set of a given set A is the set of all subsets of A and is denoted
by P(A).

The set-theoretic notation {En:n!u} is used for what some authors denote by
fEn : n2Ng or (after a re-enumeration) {En:1%n!N}. Our notation for
sequences is han:n!ui in place of (an)n. A similar convention is used for

P
n!u.

Many notions were introduced in the text, where at first appearance they
were italicized.

The author thanks EPSRC for their support through an Advanced Fellowship in Mathematics and
the British Council for support through an Alliance Grant for years 2005 and 2006.
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Džamonja, M. & Plebanek, G. Submitted. Measures on Boolean algebras.
Fremlin, D. H. 1984 Consequences of Martin’s axiom. Cambridge, UK: Cambridge University

Press.
Fremlin, D. H. 1989 Measure algebras. In Handbook of Boolean algebras III (ed. J. D. Monk),

pp. 877–980. Amsterdam, The Netherlands: North-Holland.
Fremlin, D. H. 2002 Measure theory (measure algebras), vol. 3. Colchester, CT: Torres Fremlin.
Gaifman, H. 1964 Concerning measures on Boolean algebras. Pacific J. Math. 14, 61–73.
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