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Abstract— 349 (350 max) 49 

Background 50 

With over 800 million cases globally, campylobacteriosis is a major cause of food borne disease. 51 

In temperate climates incidence is highly seasonal but the underlying mechanisms are poorly 52 

understood, making human disease control difficult.  We hypothesised that observed disease 53 

patterns reflect complex interactions between weather, patterns of human risk behaviour, 54 

immune status and level of food contamination. Only by understanding these can we find 55 

effective interventions.   56 

Methods 57 

We analysed trends in human Campylobacter cases in NE England from 2004-2009, 58 

investigating the associations between different risk factors and disease using time-series models. 59 

We then developed an individual-based (IB) model of risk behaviour, human immunological 60 

responses to infection and environmental contamination driven by weather and land use.  We 61 

parameterised the IB model for NE England and compared outputs to observed numbers of 62 

reported cases each month in the population in 2004-2009. Finally, we used it to investigate 63 

different community level disease reduction strategies. 64 

Results  65 

Risk behaviours like countryside visits (t=3.665, P<0.001 and t= -2.187, P=0.029 for temperature 66 

and rainfall respectively), and consumption of barbecued food were strongly associated with 67 

weather, (t=3.219, P=0.002 and t=2.015 P=0.045 for weekly average temperature and average 68 

maximum temperature respectively) and also rain (t=2.254, P=0.02527). This suggests that the 69 



effect of weather was indirect, acting through changes in risk behaviour. The seasonal pattern of 70 

cases predicted by the IB model was significantly related to observed patterns (r=0.72, P<0.001) 71 

indicating that simulating risk behaviour could produce the observed seasonal patterns of cases.  72 

A vaccination strategy providing short-term immunity was more effective than educational 73 

interventions to modify human risk behaviour. Extending immunity to one year from 20 days 74 

reduced disease burden by an order of magnitude (from 2412-2414 to 203-309 cases per 50,000 75 

person-years). 76 

Conclusion  77 

This is the first interdisciplinary study to integrate environment, risk behaviour, socio-78 

demographics and immunology to model Campylobacter infection,  including pathways to 79 

mitigation.  We conclude that vaccination is likely to be the best route for intervening against 80 

campylobacteriosis despite the technical problems associated with understanding both the 81 

underlying human immunology and genetic variation in the pathogen, and the likely cost of 82 

vaccine development. 83 

 84 

Keywords 85 

Campylobacter, individual-based modelling, risk behaviours, food, weather, vaccination 86 

 87 

 88 

 89 

Background 90 

Campylobacter species are the most important gut pathogens in developed countries. 91 

Campylobacteriosis occurs in 1% of the US population each year(1) and costs the European 92 



Union alone an estimated €2.4 billion annually(2). In developing countries the disease is 93 

endemic but extensively unrecorded and it is prevalent in infants (<1 year), with isolation rates of 94 

8 to 21% of all diarrhoea samples(3). In developed countries the disease also occurs in older age 95 

groups. There is considerable pressure to reduce disease burden with government agencies 96 

having strategies to monitor disease.  The public health burden, however, continues to rise. 97 

Illness is often associated with consumption of chicken(4-9) but this does not account for all 98 

cases(10). In temperate regions Campylobacter incidence is also predictably seasonal (10, 11) 99 

but the causes of this seasonality are not understood.  Campylobacter is found in many animal 100 

species and these along with environmental exposures have been suggested to explain 20-40% of  101 

disease burden(12). The relative importance of different exposures to disease remains largely 102 

unquantified which renders effective intervention to reduce the disease burden difficult. 103 

Furthermore, understanding of the interaction between human host and pathogen is poor as 104 

seroconversion rates are variable (67-96%) and infections can be asymptomatic(13). There is 105 

also a dose-response relationship for infection(14, 15), but not symptoms(16).  106 

Why is the disease seasonal in developed countries? Understanding the causes of 107 

seasonality could help identify methods for mitigating against disease when it is most prevalent. 108 

Exposure to Campylobacter is multifactorial, in that the pathogen is probably ubiquitous in the 109 

environment and in much raw chicken. To understand how the disease spreads requires 110 

understanding of human risk behaviours, social demography; consideration of how contact with 111 

the pathogen comes about and how it leads to disease. In effect we need to integrate across a 112 

range of 'epidemiological' processes that operate at different scales. Here we use an 113 

interdisciplinary approach to investigate different pathways of exposure to Campylobacter 114 

strains via the rural environment and diets, and link these to potential seasonality in human risk-115 



behaviours. We then attempt to determine the most effective interventions to mitigate disease. 116 

We used a combined biostatistical and individual-based (IB) modelling approach. We used time-117 

series analyses to investigate the role of weather in disease and in mediating those human risk-118 

behaviours that increase exposure to the pathogen and hence disease. We sought to identify the 119 

extent to which disease is related to weather after adjusting for seasonality numerically for a real 120 

population where the disease burden was known. One issue with analysing data that show 121 

seasonality is that apparent associations may occur between two or more variables, but the 122 

correlation does not reflect a causal link between the variable as there is another (often 123 

unmeasured variable) driving both processes. We used harmonic regression to model the 124 

relationship between the pattern of cases and human risk behaviours and month. This approach 125 

allowed us to adjust for seasonality and identify the direct and indirect roles of weather that 126 

determine exposure to Campylobacter associated with eating chicken, cooking activities and 127 

countryside visits. However, this approach did not allow us to quantify the relative importance of 128 

each risk behaviour in causing disease, a key outcome if we are to identify methods to intervene 129 

to mitigate against disease. To evaluate the contribution of these different exposure pathways to 130 

disease we developed an IB model which models stochastically the daily experience of human 131 

individuals, their risk-behaviours and immunity, and integrates with weather and exposure, to 132 

predict disease. We tested this model by predicting temporal disease patterns in a large 133 

population of individuals in North East England, UK. The region has a population of 910,000 134 

with an area in excess of 2,500 km2, at 55 degrees latitude N. Finally, we used the IB model to 135 

investigate how interventions to extend the duration of immunity and to reduce risk behaviours 136 

might reduce the burden of disease. 137 

 138 



Methods 139 

Time-series analyses of cases of disease, human risk behaviours and weather 140 

We investigated the effects of seasonality in temperature and rainfall on three human risk 141 

behaviours: visits to the countryside, potential barbecue activity and purchase of chicken 142 

products for barbecue. Completely coterminous data were not available for all variables, so we 143 

assumed that patterns observed over all periods were consistent: it is well-established that 144 

seasonality in cases is consistent over long periods of time in the UK(17).  145 

Data collation 146 

Monthly occurrence of Campylobacter cases, daily temperature and rainfall from 2005 to 147 

2009 and 2010 to 2015 were collated for NE England(18). Visits to the countryside by the public 148 

were obtained from the Monitor of Engagement with the Natural Environment survey 149 

(MENE)(19) based on interviews of 800+ participants\week across NE England from 2009 to 150 

2015. A proxy variable of barbecue activity in the region was constructed from the internet 151 

queries per month for barbecue charcoal in England on Google Trends from 2012 to 2015. 152 

Weekly sales of all fresh chicken products were obtained for 2013 to 2015 from one of the UK's 153 

largest UK supermarkets. 154 

Time-series analyses 155 

To investigate the relationships between Campylobacter cases, weather and the three 156 

risk-behaviours we de-seasonalised each variable using six sine-cosine harmonic 157 

regressions(18): 158 

a) mean temperature\month, 159 

b) total rainfall\month, 160 

c) Campylobacter cases\month, 161 



d) barbecue charcoal queries\month, 162 

e) sales of broiler chicken\month, 163 

f) number of visits to the countryside\day, 164 

g) sales of barbecue chicken\month. 165 

Temperature, rainfall, Campylobacter cases, charcoal queries and chicken sales were de-166 

seasonalised with an annual cycle whereas visits to the countryside, where more fine-grained 167 

data were available, were de-seasonalised for weekly and annual periods. 168 

The residuals of each temporal model were used as de-seasonalised representations of the 169 

original response variable. Linear regressions were used to determine the relationships between 170 

de-seasonalised temperature and rainfall (independent weather predictors) versus de-seasonalised 171 

Campylobacter cases and the three risk-behaviours (dependent variables). Likewise de-172 

seasonalised broiler chicken and barbecue chicken sales were compared with de-seasonalised 173 

Campylobacter cases. Non-significant relationships between a de-seasonalised predictor and a 174 

de-seasonalised dependent variable were assumed to indicate that the two variables were 175 

independent of each other. 176 

IB model of impacts of risk behaviours, exposure and immunology on Campylobacter 177 

disease 178 

The IB model simulates temporal patterns of risk-behaviours, exposure pathways, 179 

immune response, and subsequent probability of disease in relation to seasonal variation in 180 

weather, age and socio-economic status for individuals (Figure 1). The processes considered 181 

were: 182 

a) consumption of barbecued food as a source of Campylobacter,  183 

b) infection from chicken preparation and consumption in the home, 184 



c) presence of Campylobacter in the countryside as determined by livestock land 185 

use, 186 

d) visits to the countryside as determined by weather, day of week, age and socio-187 

economic status,  188 

e) human exposure to Campylobacter in the countryside, 189 

f) strains encountered when individuals were exposed, 190 

g) immune response of an individual after exposure to Campylobacter.  191 

Parameters used in the IB model are summarized in Appendix Table 1. 192 

a) Consumption of barbecued food as a source of Campylobacter 193 

The relationship between charcoal queries and weather, from the time-series analysis 194 

(above), was used to predict barbecue occurrence on a scale of 0 to 100. Idealo Survey data(20) 195 

were used to quantify the frequency of barbecues and their distribution across the days of the 196 

week. Frequency of barbecue was assigned to each individual and also the probability that they 197 

would have a barbecue on a specific day of the week. Campylobacter exposure was then 198 

predicted as the product of two probabilities: first that meat was contaminated(21) and second 199 

that the meat was undercooked(21). 200 

b) Infection from chicken preparation and consumption in the home 201 

We estimated daily consumption of chicken based on the population known to consume 202 

this meat(22) and amount of chicken consumed. Surface contamination was calculated from: the 203 

probability that a purchased chicken was contaminated(23); the proportion of the chicken that 204 

was skin(24); and the frequency distribution of Campylobacter found on chicken skin purchased 205 

from UK retailers(23). This procedure could not distinguish between barbecue cooking and other 206 

forms of chicken consumption, so may have led to an over-estimate of the contribution of 207 



chicken. Exposure to cross-contamination and likely transmission were modelled after Nauta et 208 

al.(25). 209 

c) Presence of Campylobacter in the countryside 210 

Campylobacter strains in the countryside were predicted to arise from sheep, wild birds 211 

and cattle. Sheep and wild bird contamination was assumed to be constant throughout the year, 212 

whilst that of bovine contamination was seasonal, occurring only after grass growth was 213 

sufficient to maintain stock for 10 days. We predicted grass growth using a modified Gompertz 214 

model(26): 215 

𝑦𝑡 = 𝑎1 + (𝑎2 − 𝑎1)𝑒
−𝑏𝑒−𝑐𝑡 216 

where: 217 

yt = herbage biomass after t day-degrees; 218 

a1, a2, b, c = estimated model parameters. 219 

Scale parameters a1 and a2 were determined by the minimum and maximum values 220 

respectively of herbage biomass typical in UK farms. Pastures were predicted to be contaminated 221 

by bovine sources if the increase in herbage mass was sufficient to support 10 days of 222 

consumption by cows at an average stocking density of 2.4 cows ha-1. 223 

d) Visits to the countryside 224 

Generalized Estimating Equations (GEE with Wald tests)(27) were used to predict the 225 

probability that an individual would visit the countryside from the MENE data. We modelled 226 

visit on each day of the week as a logistic response and included an autoregressive correlation 227 

structure to account for serial dependency between days using temperature, rainfall, day of the 228 

week, age and socioeconomic class as predictors. 229 

e) Exposure to Campylobacter in the countryside 230 



Exposure to Campylobacter was assumed to be via footwear. Pathogen strain-type was 231 

derived from the frequency distribution of strain-types recorded in the field(28).  The dose was 232 

set arbitrarily at 0.1g to provide an invisible and conservative estimate of contamination. 233 

Campylobacter counts in sheep, cattle and wild bird faeces were derived from Stanley et al.(29). 234 

We assumed that on handling foot-ware Campylobacter would be transmitted to hands and the 235 

relationships of Nauta et al.(25) were used to model the transmission of Campylobacter to hands 236 

and food. 237 

f) Immune response of an individual after exposure to Campylobacter 238 

We assumed that the dose consumed affected the likelihood of becoming ill (30). 239 

Exposure may or may not result in illness (14, 15) but only cases with moderate or severe illness 240 

will be reported. Illness depends on both dose(14, 15) and extent of previous exposure and 241 

immunity. 242 

We modelled the illness response of humans to exposure using data derived from  human 243 

dose response experiments(14) and assumed that cooking on a barbecue would result in a 2.5-244 

fold reduction in the dose of colony forming units (CFU)(23). The modelled dose was used to 245 

predict the likelihood of illness subject to the predicted level of immunity at the time of 246 

exposure. Immunity was assumed to decline exponentially from time of exposure to zero at a 247 

pre-defined time, which could be set as a model input variable. Whilst exposure to 248 

Campylobacter may not cause illness, the antigens present may still initiate a response from the 249 

host immune system, so any exposure to Campylobacter which did not lead to illness was 250 

assumed to affect immunity and return it to 100% as would occur immediately after illness. We 251 

did not simulate different immune responses for different strains. 252 

Validation of the IB model 253 



The model was run for NE England using weather data from January 2005 to November 254 

2009. A cohort population of 10,000 individuals was created for each simulation. Individuals 255 

were assigned age, gender and socio-economic class based on the socio-economic structure in 256 

NE England. The initial immune status of individuals was a normal random deviate (mean 0.5, 257 

SD 0.2). We predicted cases for the whole population and compared with the log-transformed 258 

monthly number of cases using generalized linear models (GLM). We ran the model 10 times 259 

from the same starting conditions and produced a mean number of cases per month and 260 

associated standard errors on our predictions. 261 

 262 

Modifying human risk behaviours and immunity to mitigate against disease 263 

We varied parameter estimates for risk behaviours, weather and immunity.  264 

The following input parameters were used: 265 

 Extending the period of immunity leading to protection from developing disease 266 

(21 to 1095 days) as might be undertaken following an intervention to enhance 267 

immunity following infection, such as vaccination with a hypothetical 268 

polysaccharide vaccine that produced short-term immunity. 269 

 Probability of chicken being undercooked (contamination reduction per cooking 270 

event) as would occur following implementation of an education program to 271 

reduce risk of exposure in domestic settings. 272 

 Fold-reduction in CFU dose in food from either cooking or reducing the burden in 273 

raw chicken (1.5 to 2.5) as would occur following implementation of an education 274 

program or a scheme to reduce the cfu on raw chicken during production. 275 



 Temperature (+/- 2.5°C) and rainfall (+10/-5mm). These assess impacts of 276 

weather on visits to the countryside and barbecue behaviour. 277 

We used Latin Hypercube Sampling(31) to create ranges for input parameters and used 278 

GLMs to quantify the contribution of each variable to the predicted number of cases. 279 

 280 

Results 281 

Impacts of temperature and rainfall on Campylobacter cases in NE England 282 

The number of reported cases was highly seasonal rising to a peak in early summer 283 

(June) each year and closely matched the seasonality in temperature and rainfall (Figure 2). The 284 

seasonality was well-described with harmonic regression models which were significant for 285 

Campylobacter cases (t=-7.448, P<0.001 and t=-7.436, P<0.001 for cosine and sine variables of 286 

time with a 365 day period) and monthly mean temperature (t=-18.710, P <0.001; t=-25.300, P 287 

<0.001). There was evidence for periodicity in the rainfall (t=3.634, P<0.001 for cosine 288 

variable). We used the residuals from these models as de-seasonalised measures of each variable 289 

to investigate links between variables and disease. De-seasonalised counts of Campylobacter 290 

cases were not significantly related to de-seasonalised temperature after also adjusting for 291 

autocorrelation (t=0.212, P=0.230) or rainfall (t=-0.119, P=0.906). This suggests that the simple 292 

seasonal relationship between monthly number of cases of Campylobacter and mean monthly 293 

temperature and rainfall is not a true one and was in fact related to other unmeasured seasonally-294 

varying phenomena. 295 

Impacts of temperature and rainfall on visits to the countryside of NE England 296 

Total visits to the countryside and daily mean temperature showed seasonal variation 297 

across the study period (Figure 3). Temperature was highly seasonal with the harmonic 298 



regression for temperature significant (t=-65.950, P<0.001 and t=45.830, P<0.001 for cosine and 299 

sine variables). There was evidence of seasonal variation in the rainfall (t= -5.266, P<0.001 for 300 

cosine variable). The log-transformed count of visits to the countryside per day showed marked 301 

annual (t=-4.157, P<0.001; t=5.328, P<0.001) and weekly (t=-3.220, P=0.001; t= 5.736, 302 

P<0.001) periodicities, reflecting the seasonal weather and periodicity associated with the 303 

working week. There was a significant linear relationship between the de-seasonalised visits and 304 

that for temperature and rainfall data (t=3.665, P<0.001 and t= -2.187, P=0.029 for temperature 305 

and rainfall respectively).  This suggests that in contrast with the occurrence of cases of disease, 306 

weather variables were important drivers of people visiting the countryside. Furthermore, there 307 

was a significant relationship between probability of an individual undertaking a visit to the 308 

countryside and weather, socio-economics status and age. GEE Wald test statistics (W) indicated 309 

that visits to the countryside were positively associated with increased temperature (W=16.343, 310 

P<0.001), weekends (Saturday: W=53.370, P<0.001; Sunday: W=107.679, P<0.001), tending to 311 

increase with age (W=22.691, P<0.001) and higher socio-economic class (W=47.283, P<0.001). 312 

Impact of temperature and rainfall on Internet queries for barbecue charcoal 313 

Web queries for barbecue charcoal for England over the study period were used as a 314 

surrogate for pursuit of barbecue activities.  Queries for information on barbecue charcoal 315 

material were highly seasonal (Figure 4) with significant harmonic regression coefficients (sine 316 

t=-2.606, P=0.010; cosine t=2.457, P=0.015). De-seasonalised query data were significantly 317 

related to temperature and rainfall in the week of the queries, suggesting that queries were related 318 

to weather rather than other unmeasured seasonal trends. De-seasonalised queries were positively 319 

associated with maximum weekly temperature (t=11.014, P<0.001) but were negatively 320 

associated with the minimum average weekly temperature (t=-3.626, P<0.001). This also 321 



suggests that, in contrast with the patterns of disease (and perhaps not surprisingly) interest in 322 

barbecue charcoal was driven by weather. 323 

Impact of temperature and rainfall on sales of chicken products 324 

There was a seasonal pattern to the sales of raw chicken products and the harmonic 325 

regression for chicken consumption was significant (cosine t=16.300, P<0·001; sine t=15.560, 326 

P<0.001).  However, after subsequent de-seasonalising the relationships between chicken sales 327 

and temperature and rainfall were not significant (t= -0.903, P=0.368 and t=0.897 P=0.372, 328 

respectively). This suggests that temperature and rainfall were not drivers of chicken purchases. 329 

Impact of chicken product sales on Campylobacter cases 330 

There were no significant relationships between de-seasonalised sales of all raw chicken 331 

or barbecue chicken products, and the equivalent de-seasonalised Campylobacter cases (t=0.070, 332 

P=0.945 and t=1.222, P=0.234, respectively).  This suggests that sales of both all raw chicken 333 

and raw "barbecue" chicken alone did not have a direct effect on the numbers of Campylobacter 334 

cases. 335 

Impact of monthly total of countryside visits on Campylobacter cases 336 

There were no significant relationships between de-seasonalised total monthly visits to 337 

the countryside and Campylobacter cases (t=-0.541, P=0.59). This suggests that monthly visits to 338 

the countryside had little influence on numbers of cases. 339 

In summary, the time series analyses suggest that weather appeared to influence visits to 340 

the countryside and also the pursuit of barbecues, but was not itself a driver of cases of disease. 341 

However the number of cases was associated with our measure of barbecue activity and hence 342 

indirectly with weather.  343 

Results of the IB model 344 



The predicted number of Campylobacter cases from the IB model, using weather and 345 

socio-demographic data as inputs, followed a cyclic pattern, with cases lowest in winter but 346 

rising to a peak in early summer. The observed numbers of cases fitted reasonably well within 347 

the 95% confidence intervals for our model predictions. There was a significant positive 348 

correlation between the mean numbers of observed and predicted cases per month for NE 349 

England over the study period. Mean number of predicted and observed cases per month were 350 

compared using generalized linear models, and predictions were significantly related to 351 

observations (r=0.728; t=8.210 P<0.001). The regression coefficient was 6.12 (95% CI 4.95 to 352 

8.01); the model over-predicting cases by a factor of 6.12. When the observed data were scaled 353 

by a multiplier of seven the match between the predicted and observed cases is clear (Figure 5). 354 

The predicted proportion of Campylobacter cases derived from chicken (mean 88.1%, SD 25.9) 355 

declined slightly in winter when other strains formed a greater proportion of predicted cases. 356 

Interventions to mitigate against disease 357 

We altered immunity, daily temperature and rainfall (which affect both barbecue activity 358 

and visits to the countryside), probability of under-cooking chicken, and the effectiveness of 359 

cooking/reduced cfu load on chicken, and re-ran the IB model to predict number of cases of 360 

disease. All interventions significantly reduced the predicted total number of Campylobacter 361 

cases, but the effectiveness of the interventions differed greatly. Extending the duration of 362 

immunity through vaccination of the population had the largest effect on level of disease 363 

(t=56.072, P<0.001), explaining more than 95% of the variation in predicted number of cases 364 

relative to the other interventions. Extending immunity from 20 days to 1 year reduced predicted 365 

number of cases by an order of magnitude (95% CI 2412-2414 to 203-309 per 50,000 person-366 

years). There were lower impacts from changes in daily temperature (t=6.801, P<0.001) and 367 



rainfall (t=9.538, P<0.001) which would affect visits to the country as well as the adoption of 368 

barbecue activity. Educational interventions to change the probability of under-cooking (t=-369 

5.963, P<0.001) and the fold-reduction in Campylobacter dose on raw meat before cooking or 370 

the effectiveness of the cooking process (t=-5.540, P<0.001) had significant effects, but their 371 

relative contribution to overall number of cases was small. 372 

Discussion 373 

To our knowledge our research is the first interdisciplinary study that integrates different 374 

and disparate human risk-behaviours, with immunology, demography of the at-risk population, 375 

sources of contamination, and weather to predict disease. The models suggest that behaviours 376 

driven by weather that lead to consumption of barbecued chicken, and to a lesser extent visits to 377 

the countryside, lead to exposure and disease. More importantly, they indicate that consideration 378 

of the immune-dynamics of the host-pathogen interaction is necessary to understand the relative 379 

role of different exposure pathways to disease. 380 

There are obvious limitations of the modelling. Data were derived from different studies 381 

with overlapping time periods. We hypothesised that the processes investigated were both causal 382 

and also consistent through time. We cannot assess the impacts of these assumptions on the 383 

model formally, but note that the patterns of disease in the UK are predictably consistent year-384 

on-year(17). We did not model all processes identified as risk factors. We excluded exposure at 385 

non-domestic food establishments(32) and cases associated with foreign travel(10, 33, 34). 386 

Strachan et al.(10) suggested national and international travel accounted for 18% and 17% of 387 

cases respectively. We note that both of these risk behaviours are likely to be seasonal in 388 

themselves. It is difficult to quantify the contribution of cases arising from travel because of poor 389 

ascertainment. However, travel in its own right is unlikely to be a mechanism leading to disease,  390 



but rather it could lead to changes in human behaviours or in exposure to new strains or both. We 391 

also did not model variation in immune response to different Campylobacter strains, treating all 392 

as homologous in their impacts on development of disease. However, in reality, C. jejuni exhibits 393 

significant genetic diversity(35) . Furthermore, recent evidence shows that C. jejuni undergoes 394 

transcriptional and genetic adaptation during human infection(36). 395 

Our analyses of countryside visits and barbecue behaviour suggested that there were 396 

significant relationships between both activities and the weather immediately prior to adoption of 397 

the behaviour. Thus, there is a mismatch in the time scales of recording of disease and the risk 398 

behaviours that lead to exposure to the pathogen.  The time-series analyses suggest our proxy for 399 

barbecue activity and visits to the countryside were directly related to temperature and rainfall. 400 

The former activity has been cited as a risk factor for disease(6, 7, 37) but our results indicate 401 

that this risk factor for exposure to the pathogen was mediated by weather. Thus, the seasonal 402 

pattern in human Campylobacter cases in NE England is probably not directly influenced by 403 

weather, but rather by an indirect effect through changing the human behaviours that lead to 404 

exposure. The IB model operated at a more short-term timescale than the time-series analyses 405 

and allowed for variation in reporting and case ascertainment specifically. The IB modelling 406 

results therefore provide more insights into the disease mechanisms than the time-series analyses 407 

and allows more scope in an assessing potential intervention strategies. In effect the model 408 

predicted population-level patterns of disease based on simulating human behaviour and 409 

exposure events for individuals on a daily basis. This more fine-scale modelling showed that 410 

weather-driven variations in barbecue activity, countryside visits and domestic cooking provided 411 

a reasonable explanation for the broad pattern of observed monthly cases of disease.  412 



The UK-based IID2 study(38) concluded that only around one in seven people with 413 

Campylobacter symptoms sought medical help. Our model predicted an approximately six-fold 414 

difference between predicted infections and observed cases, which whilst possibly fortuitous 415 

may reflect this under-reporting to health services. In addition,  we predicted that 88% of cases 416 

were from strains associated with chicken, similar to findings of Kramer et al.(39) although this 417 

is higher than the 40% to 50% reported elsewhere(32). These results suggest that there is a 418 

smaller role for countryside exposure in causing disease in this population, which matches the 419 

conclusion we drew from the time-series analyses where it was not a significant predictor at all. 420 

Whilst we have outlined the limitations to our model, it should also be stressed that the 421 

epidemiological processes that we have omitted or over-simplified could all be readily 422 

incorporated with suitable data. The model generates confidence intervals on predictions, which 423 

give it inferential power.  In addition, notwithstanding social-demographic features of the 424 

population which might predispose UK citizens to particular risk behaviours, this modelling 425 

approach could be extended to any country where equivalent risk behaviour, consumer and 426 

climate data exist.  427 

Our results indicate that the dynamics of a person's immune response after exposure 428 

affect the cyclic pattern of disease in the population and the overall burden of disease. 429 

Vaccination to extend short-term immunity was the most important factor determining number of 430 

cases. However, the modelled interaction between host and pathogen was probably over-431 

simplistic. Resistance to Campylobacter infection is assumed to change with age (40). This could 432 

reflect progressive acquisition of immunity from repeated exposure. In effect, the pool of strains 433 

that could initiate disease might decline with repeated exposure. Strains can also have an 434 

homologous effect on the immune system, with exposure to one strain leading to immunity to 435 



others(41), and protection from subsequent illness(16, 42). Analyses of strains causing illness in 436 

Scotland (43) showed that rare strains appeared more frequently in older patients. However, a 437 

small proportion of individuals can shed Campylobacter without showing disease(44) or people 438 

may have symptoms not  sufficiently severe to make them seek medical attention. There has 439 

been considerable effort to develop vaccines against Campylobacter particularly for 440 

livestock(45) and the immunological evidence from animal models suggests that repeated 441 

vaccination can lead to medium-term immunity (>26 weeks).  442 

Vaccines research has mainly focussed on identifying target antigens, particularly 443 

proteins and polysaccharides(46).  A conjugate vaccine for enterotoxic bacteria including 444 

Campylobacter has been shown to lead to functional antibodies to disease in mice(47).  445 

However, developing a vaccine for humans is more complicated because of the poor 446 

understanding of the underlying immunology and the potential for interactions with post-447 

infection immunological syndromes like Guillain Barré Syndrome(45).  There is also the 448 

problem of development costs. It has been estimated that development to the point of drug 449 

approval would cost $2.8-3.7 billion(48, 49). However, the huge expense of vaccine 450 

development has to be considered in the context of the cost of the disease burden, which 451 

annually in the EU alone has been estimated as of the same order as that of the  cost for 452 

developing vaccines (€2.4 billion~ €2.7 billion). Equivalent analyses of the cost effectiveness of 453 

behavioural interventions to mitigate food-borne disease have been less frequent.  One study in 454 

the US, with a budget of $300K, led to a program in which 14,062 people participated with a 455 

reduction in disease risk of 12.8%(49). The benefits of this level of prevention were considered 456 

sufficient to outweigh the costs.  However, the practicality of behavioural interventions at 457 



anything other than the small scale probably means they are impractical given the sizeable 458 

disease burden and the lack of efficacy suggested by our analyses.   459 

 460 

Conclusion 461 

This is the first inter-disciplinary study to integrate environment, risk behaviour, socio-462 

demographics and immunology to model infectious disease and identify pathways to mitigation.  463 

We conclude that vaccination is likely to be the best route for intervening against 464 

campylobacteriosis despite the technical problems associated with understanding both the 465 

underlying human immunology and genetic variation in the pathogen, and the likely cost of 466 

vaccine development. 467 
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Figure legends 647 

Figure 1. Flow diagram of the IB modelling model. 648 

 649 

Figure 2. Monthly recorded cases of Campylobacter in NE England 2005 to 2009 in relation to 650 

temperature 651 

 652 

Figure 3. Daily counts of visits to the countryside in the NE England and mean daily 653 

temperature, 2009-2015 654 

 655 

Figure 4. Proportional of queries (index 0 to 100) relating to purchase of barbecue charcoal 656 

2012-2015, and mean monthly temperature 657 

 658 

Figure 5. Predicted number of Campylobacter cases (rescaled by x7; see text) in NE England (+/- 659 

sd) attributed to chicken strains 2005 to 2009 and the observed number of cases over the same 660 

period  661 
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