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Abstract.— Introgression is an evolutionary process which provides an important source of
innovation for evolution. Although various methods have been used to detect introgression,
very few methods are currently available for constructing evolutionary histories involving
introgression. In this paper we propose a new method for constructing such evolutionary
histories whose starting point is a species forest (consisting of a collection of lineage trees,
usually arising as a collection of clades or monophyletic groups in a species tree), and a
gene tree for a specific allele of interest, or allele tree for short. Our method is based on
representing introgression in terms of a certain ’overlay’ of the allele tree over the lineage
trees, called an overlaid species forest (OSF). OSFs are similar to phylogenetic networks
although a key difference is that they typically have multiple roots because each
monophyletic group in the species tree has a different point of origin. Employing a new
model for introgression, we derive an efficient algorithm for building OSFs called
OSF-Builder that is guaranteed to return an optimal OSF in the sense that the number
of potential introgression events is minimized. As well as using simulations to assess the
performance of OSF-Builder, we illustrate its use on a butterfly dataset in which
introgression has been previously inferred. The OSF-Builder software is available for
download from

https://www.uea.ac.uk/computing/software/OSF-Builder

(Keywords: introgression, allele, lineage, phylogenetic network, OSF-Builder,
Fitch-Hartigan algorithm)
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Introgression, an evolutionary process in which foreign genetic material (typically
some genes) is introduced into a genome, is an important evolutionary process that usually
arises through hybridization between species of distinct evolutionary lineages (Goulet et al.
2017). It is a widespread phenomenon occurring in both plants and animals and can play a
fundamental role in speciation (Mallet 2005). In the case of adaptive introgression,
beneficial alleles are transmitted between species (Zhang et al. 2016). This has the
potential to promote adaptive diversification (Grant and Grant 2016), improve the
resilience of endemic species to environmental change (Becker et al. 2013), and facilitate
range expansion of invasive species (Muhlfeld et al. 2014). It has been highlighted as a
concern for genetically modified crops that hybridize with their wild relatives (Stewart Jr
et al. 2003). Perhaps most controversially and interestingly, introgressed Neanderthal
alleles may have helped modern humans adapt to non-African environments
(Sankararaman et al. 2014). Several other examples of introgression are presented in Mallet
(2005); Zhang et al. (2016) and the references therein.

Most methods for analyzing introgression tend to focus on its detection. For
example, the ABBA/BABA test (Sousa and Hey 2013) (see also Martin et al. (2015)),
which was designed to detect interbreeding between modern humans and Neanderthals
(Durand et al. 2011), has also been used to detect adaptive introgression between
butterflies, lizards, and birds (see Zhang et al. (2016) and the references therein). It is a
statistical test that is based on a D-statistic and it essentially works by comparing
frequencies of rooted tree topologies on four taxa. Using posterior predictive checking, this
idea is extended in the JML software (Joly 2012) (see also Joly et al. (2009)) to test for the
presence of hybridization in multispecies sequence data. Realising that for certain models
frequency patterns are in fact phylogenetic invariants, the recently introduced HyDe
software tool (Blischak et al. 2018) builds on these ideas to detect introgression under the
coalescent model with hybridization. However, to date very few methods have been
designed to explicitly construct evolutionary histories involving introgression. Notable
exceptions to this are Wen et al. (2016) in which the PhyloNet software (Than et al. 2008)
is used to represent introgression between mosquitoes in terms of a phylogenetic network
and the SNaQ software (Solis-Lemus and Ané 2016) which employs level-1 phylogenetic
networks to capture introgression between swordtails and platyfishes (Xiphophorus:
Poeciliidae).

In this paper, we present a new tool to construct and represent evolutionary
histories involving introgression. To do this, we introduce the concept of an Overlaid
Species Forest (or OSF, for short), examples of which are presented in Figures 1c and 1d.
An OSF is essentially a leaf-labelled multiply rooted directed graph that does not contain
directed cycles (see Section Definitions for details). Our definition of OSFs was motivated
in part by diagrams such as the one presented in Wallbank et al. (2016, Figure 5), which
represents introgression of two alleles between Heliconius butterfly species. Formally
speaking, an OSF may be regarded as a type of phylogenetic network, although it differs
from typical phylogenetic networks in that it may have more than one root (as opposed to
a single root corresponding to a last common ancestor). This occurs because the
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construction superimposes an allele tree (i. e. a phylogenetic tree constructed for the gene
that has potentially introgressed) over lineage trees represented in the species tree, and
each of the lineage trees has a different ancestral root node in the species tree.

The lineage trees can be chosen by, for example, considering bootstrap values of
branches on the species tree, cutting the species tree at a certain level, or choosing taxa
that have some trait of interest (see, e.g., Wallbank et al. (2016)). Moreover, at least for
the applications we are interested in, the gene tree represents the evolutionary history of a
specific allele of interest for the gene in question, and so we call this an allele tree.

Using the above terms our main problem can be stated as follows: How should the
allele tree be laid over the species forest to indicate the path by which an allele may have
introgressed between lineages? Figure 1a shows three lineage trees (indicated in bold
branches) that are components of a larger, fully resolved species tree. Figure 1b shows an
allele tree. Figure 1c shows an OSF obtained by overlaying the allele tree over three lineage
trees pictured in Figure 1a. Figure 1d shows the OSF obtained by overlaying the allele tree
over the two lineage trees obtained from the species tree in Figure 1a by deleting the
outgoing branches of the root node.

A B C D E H I J K L

A B C D E H I J K L

a b c d e h i j

A B C D E H I J K L

a) b)

c) d)

Figure 1: a) A species tree with three ’lineage trees’ highlighted in bold. b) An allele tree,
with a leaf labelled by the same letter as the species in which it is contained. c) An OSF
constructed by overlaying the allele tree on the lineage trees ((A,B), C), ((D,E), (H, I)) and
(J, (K,L)). d) An OSF constructed by overlaying the allele tree over the two lineage trees
((A,B), C) and (((D,E), (H, I)), (J, (K,L))).

A key feature of our approach is that our starting point is a species forest and an
allele tree and that neither that tree nor the trees in that forest are assumed or required to
be fully resolved. In practice, this forest will usually be a collection of lineage trees
(i. e. clades or monophyletic groups – see, e. g. , Figure 1a) from a reconstructed species tree
that might not be fully resolved. This has an advantage when studying introgression
because obtaining fully resolved species trees can be problematic (see, e. g. , (Ge et al.
1999)).

The problem of constructing OSFs is closely related to that of reconciling a gene
tree with a species tree, which is extensively studied in the literature (see, e.g., Doyon et al.
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(2011)). The key methodological distinction between approaches developed for tackling
this problem and our method is the replacement of the species tree by a species forest.
This is critical since, in essence, the species forest forces extra constraints (namely that
introgression must occur between and not within the specified lineages) which would not
necessarily be respected in a reconciliation approach. To illustrate this difference, consider
again the species tree and allele tree in Figure 1a and b. Then using the definition of a
reconciliation of a gene tree with a species tree sensu Tofigh et al. (2011) (see also
e. g. Huber et al. (2018)) it follows that the network depicted in Figure 2d is a
reconciliation for them. In particular, and contrary to the introgression scenario pictured in
Figure 2c for that allele tree and the obtained species forest in Figure 2b, that
reconciliation scenario postulates two duplication events at the root of the network and one
horizontal gene transfer event (indicated by a dashed branch).

Our method for building an OSF essentially works as follows. Starting with a
species forest F and an allele tree G, we use a bottom-up approach to add in branches,
which we call contact arcs, between different lineage trees of F so that the resulting graph
simultaneously displays G and all the lineage trees in F . If there is discordance between
the species forest and G, then we interpret contact arcs as indicators of potential gene flow
between the lineage trees. We also employ a new model for introgression which captures
the idea that an allele can spontaneously arise within a lineage tree and that introgression
is infrequent. This is formalized by allowing the root of the allele tree G to be mapped to
any node of a lineage tree (i.e. not necessarily its root) of F . In addition, we invoke
parsimony so as to minimize the number of contact arcs necessary to reconcile G with the
trees in F . Adapting the Fitch-Hartigan algorithm (Fitch 1971) enables us to then find an
optimal OSF (i.e., an OSF with a minimal number of contact arcs) relative to our model.

We now summarize the contents of the rest of the paper. In the next section, we
present our model for introgression and the OSF-Builder algorithm. This section also
includes a brief discussion of theoretical properties of OSF-Builder and its usage. We
describe a simulation study used to investigate the performance of OSF-Builder in the
case where there is uncertainty in either the allele tree or the species forest. To illustrate
the use of OSF-Builder, we apply it in the Results section to a Heliconius butterfly
dataset from Wallbank et al. (2016) and Kozak et al. (2015), in which there is evidence for
introgression having played a role in wing pattern evolution. We also present the results
from the simulation study. We conclude with a brief discussion of some possible future
directions.

Methods

An Evolutionary Model for Introgression

We begin by introducing our model for introgression. The starting point for our
model is the observation that in many introgression studies lineage information is available
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for the species under consideration and that alleles from one lineage are distinct from
alleles from another lineage. In the case of introgression, lineages can carry alleles specific
to other lineages, making these useful indicators for introgression. A useful way to
represent introgression by a graph is to add lineage tree connecting branches to the species
forest so that the information provided by both the lineage trees and the allele tree is
displayed in a single structure.

Model assumptions.— To obtain our model, we make the following additional biologically
motivated assumptions.

(M1) Introgression of an allele being studied is an infrequent event.

(M2) An allele can only originate in one lineage.

(M3) If an allele has introgressed from one lineage into a different lineage then it cannot
introgress back into the first lineage unless the start of the first introgression event
predates the end of the second one (i.e., we do not allow time inconsistent events).

(M4) The allele composition of a species x comprises an allele inherited by descent that
uniquely identifies species x and all the alleles that species x has obtained via
introgression events (in particular, we do not allow for loss of alleles).

(M5) The only other permissible evolutionary events are allele sequence divergence
accompanying speciation and whole genome duplication.

Assumption (M1) motivates the use of a parsimony framework for modelling
introgression, Assumption (M2) is motivated by the observation that lineages are
sometimes identifiable from a specific allele, and Assumption (M3) reflects time
consistency. Assumption (M4) captures the idea that a species can carry lineage-specific
and lineage-foreign alleles.

Definitions

We now present some definitions that we will use to formalize the model presented
in the previous section. As mentioned in the Introduction, we will use directed graphs as a
tool to vizualize OSFs. For a directed graph H, denote by V (H) the set of nodes of H. To
emphasize that the branches of H have a direction, we refer to them as arcs rather than
branches. If v is a node of H then we refer to the number of arcs coming into v as the
indegree of v and the number of arcs leaving v as the outdegree of v. If the outdegree of v is
zero then we call v a leaf of H. If the indegree of v is 0 we call v a root. We denote the set
of leaves of H by L(H). For example, in the graph in Figure 1c, the indegree of the node at
the top of the figure to where the top dashed arrow points is zero, and its outdegree is two.
The node labelled D in that graph is a leaf and the set of leaves of that graph is
{A, . . . , E,H . . . , L}.
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A (rooted) phylogenetic tree T on a set X of taxa is a rooted directed tree with leaf
set X that has precisely one node of indegree 0, and no nodes that simultaneously have
indegree one and outdegree one. If T is such a tree, and u and v are nodes of T such that
there exists a directed path from u to v in T , then we say that u is an ancestor of v in T .
Note that u = v might hold. If v is a leaf of T that has u as an ancestor then we call v an
offspring (taxon) of u and if v is an ancestor of u that is directly above u then we call v a
parent of u. In that case we also call u a child of v. For example, the tree in Figure 1a is a
phylogenetic tree on {A, . . . , E,H, . . . L}. The right arc emanating from its root (i.e. the
top node) ends in an ancestor of D,E,H, . . . , L and all seven of them are offspring taxa of
that node.

We call a phylogenetic tree representing a clade a lineage tree and a phylogenetic
tree representing the evolutionary history of an allele of a gene an allele tree. Note that the
leaves of a lineage tree are species whereas the leaves of an allele tree are not. We also call
a collection of one or more lineage trees on pairwise distinct leaf sets a species forest. Note
that the node set (leaf set) of a forest is the set of all nodes (leaves) in its lineage trees. We
refer to a map that assigns a leaf a of the allele tree to the species in the forest that carries
a as a leaf-map. To facilitate readability, we always assume that a leaf of the allele tree is
assigned to the leaf of the species forest by the leaf map that is labelled by the
capitalization of that letter (i.e., a maps to A in this case).

We say that a phylogenetic tree T is displayed by an OSF if T is either the allele
tree or one of the trees in the species forest from which the OSF was constructed.
Continuing with the example in Figure 1, the two trees in Figure 1d obtained by deleting
the two dashed arrows are lineage trees that, taken together, form a species forest. The
node set of that forest comprises the nodes in both trees and its leaves are A, . . . , E, and
H, . . . , L. The leaf set of the allele tree is {a, . . . , e, h, i, j} and the leaf-map assigns leaf a
to species A, leaf b to species B, and so on.

Overlaid Species Forests

We now formalize our model. We assume that we are given a species forest F (i.e., a
collection of lineage trees), an allele tree G, and a leaf-map φ for G and F . We shall call a
map ψ from the node set of G to the node set of F an Overlaid Species Forest or OSF, for
short, for F and G (and φ) if ψ satisfies the following three properties:

(P1) When restricted to the leaves of G the maps ψ and φ coincide.

(P2) If u and v are two nodes of G such that u is an ancestor of v in G, and the nodes
ψ(u) and ψ(v) belong to the same lineage tree in F , then ψ(u) is an ancestor of ψ(v)
in that tree.

(P3) For any node v of G there exists an offspring taxon h of v such that species φ(h) and
ψ(v) are nodes in the same lineage tree in F .
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v1

v3

v2
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v6 v7

ψ(v1)

ψ(v3) = ψ(v5)

ψ(v2) ψ(v7)
ψ(v4) = ψ(v6)

A B C D E H I J K L

a)

b)

c) d)

A B C D E H I J K L

Figure 2: a) The allele tree from Figure 1b with interior nodes labelled v1, . . . , v7. b) A
species forest obtained from the species tree in Figure 1a in which an OSF ψ for both is
indicated in terms of the images of v1, . . . , v7 under ψ. c) A depiction of ψ in terms of the
OSF in Figure 1d. d) A reconciliation in terms of a phylogenetic network for the allele tree
in Figure 1b and the species tree in Figure 1a. The two duplication events are indicated by
horizontal bars and the horizontal gene transfer event is indicated by a dashed branch.

For example, the map ψ for the OSF in Figure 2c is given in Figure 2b.
It can be shown that we can always represent an OSF by a multiply rooted, directed

acyclic graph H by adding contact arcs connecting distinct lineage trees such that H
displays the given allele tree. For simplicity we also consider an OSF to be such an object
(so Figure 2c and Figure 2b are equivalent).

Note that in the case in which the species forest only contains one lineage tree,
Property (P2) implies that the problem of constructing an OSF boils down to finding a
reconciliation map for a lineage tree and a gene tree under parsimony where the only two
permissible evolutionary events are divergence and duplication (see, e.g., Baudet et al.
(2015)). In this case, the OSF does not have any contact arcs. Also note that the map that
assigns a leaf of an allele tree to its corresponding species in a species forest and all its
other nodes to the root of an arbitrarily chosen lineage tree in the forest is an OSF.
Consequently, for any allele tree and any species forest there always exists an OSF.
However it is straight-forward to see that that OSF is not necessarily minimal, i.e., there
might exist OSFs that postulate fewer contact arcs for that allele tree and species forest.

The OSF-builder Algorithm

To minimize the number of contact arcs when we construct an OSF, we adapt the
well-known Fitch-Hartigan algorithm (Fitch 1971). For a given phylogenetic tree T on
some set X and a sequence alignment for X, this algorithm is used to compute an optimal
labelling of the interior notes of T in terms of the character states or alphabet that make
up the sequences.
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To build an OSF, rather than assigning character states to the nodes of a
phylogenetic tree, we assign the lineage trees to the nodes of an allele tree. To make this
more precise, suppose F is a species forest, G is an allele tree, and φ is a leaf-map that
relates their leaf sets. Then, in the bottom-up step of the Fitch-Hartigan algorithm we
record for every node v of G all potential trees of F that could accommodate v by an OSF
for F and G. Once this is done for all nodes of G, we use the top-down step of that
algorithm to decide for every node v in G which one of the potential trees recorded for v to
choose. Using a modification of the ’lca-map’ which assigns to a collection of leaves of a
phylogenetic tree its last common ancestor, we then identify the nodes in the species forest
to which contact arcs are added.

The Algorithm.— We now give a more detailed description of the OSF-Builder
algorithm. We refer to the next section for a worked example and the Supplementary
Material (see doi:10.5061/dryad.1nt8t75) for a proof of its correctness. OSF-Builder
takes as input a species forest F , an allele tree G and a leaf-map φ from G to F . Put
F = (F,G, φ). Then OSF-Builder finds an overlaid species forest
ψ = ψF : V (G)→ V (F ) by adding a minimal number of contact arcs connecting distinct
trees in F such that Properties (P1) – (P3) are satisfied by the associated multiply rooted
directed acyclic graph.

OSF-Builder works by first initializing each leaf w of G with the lineage tree Pw

in F that contains the species associated to w via φ in its leaf set (Step 0). Referring to
this assignment as a map P from the leaves of G into the trees of F defined by putting
P (w) = Pw, the algorithm then applies the Fitch-Hartigan algorithm to G and F to find an
extension P of P to a map from the nodes of G to the trees in F (Step 1). The purpose of
this map is to select for all nodes v of G, a lineage tree among all lineage trees that could
potentially accommodate v. We use this information as the starting point for our
construction of the contact arcs. Before presenting details concerning this construction we
remark that by virtue of the Fitch-Hartigan algorithm, the number of contact arcs that we
add to the species forest to obtain an OSF for F and G is as small as possible.

To complete the construction of the contact arcs, OSF-Builder considers each
interior node v of G in turn to obtain the node in the lineage tree P (v) that v is assigned
to via ψ. More precisely, OSF-Builder first associates to every node v of G the set Uv of
all species in F that carry an offspring taxon of v. After this, it considers the subset U ′

v of
species in Uv that are also contained in the leaf set of lineage tree P (v) (i.e.,
U ′
v = Uv ∩ L(P (v))). Note that it can be shown that the set U ′

v must contain at least one
species of F . Next, the last common ancestor of the species in U ′

v with regards to the tree
P (v) is found by OSF-Builder and taken to be the node that v is mapped to under ψ.
To ensure that no contact arcs are between leaves of F which would affect readability, all
leaves that are involved in a contact arc are pushed out in the final post-processing phase
of the algorithm.

An illustrative example
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Using the lineage trees and allele tree pictured in Figures 3a, we now explain how
OSF-Builder generates the OSF depicted in Figure 3d so as to illustrate how the
algorithm works. Let G denote the allele tree pictured in Figure 3a(bottom) and let φ
denote the leaf-map for F and G, that is, an assignment of the taxa in G to the species in
F . Then OSF-Builder employs the bottom-up step of the Fitch-Hartigan algorithm to
recursively assign to each node v of G all lineage trees that could potentially accommodate
v as follows. Starting with the taxa of G and considering each taxon in turn
OSF-Builder assigns to each taxon v the lineage tree that contains the species that v is
mapped to under φ (Step 0). This is the tree P (v). Now assume that v is a node in G such
that the assignment has already been made for all children of v. Let S comprise all lineage
trees in F that can accommodate a maximum of the children of v. Then OSF-Builder
assigns the lineage trees in S to v as lineage trees that can potentially accommodate v.

We illustrate this assignment for all non-leaf nodes of G in Figure 3b. For example,
the tree L2 is assigned to node w1 by OSF-Builder because both children of that node
can be accommodated by lineage tree L2, that is, are mapped to a species in L2 by our
leaf-map. In contrast, because one child of node v1 has been assigned to lineage tree L1

whereas the other has been assigned to lineage tree L2, OSF-Builder marks L1 and L2 as
potential candidates for accommodating v1 and defers making a choice between them until
the top-down step of the Fitch-Hartigan algorithm. Once assignments of allele tree nodes
have been made in the bottom-up step, OSF-Builder carries out the top-down step of
the Fitch-Hartigan algorithm. Starting with the root of G, OSF-Builder selects a lineage
tree amongst all possible lineage trees that can accommodate that root. Now assume that
v is a node in G for which a lineage tree has been selected by OSF-Builder in its
top-down phase. Then if u is a child of v that can also be accommodated by that tree
OSF-Builder also selects that tree for u. If u cannot be accommodated by that tree then
OSF-Builder selects one of the trees that can accommodate u, breaking ties in favour of
one of them – see the Results and Discussion Sections for more on this.

We illustrate that step for the non-leaf nodes of G in Figure 3c. Since both L1 and
L2 can accommodate the root ρ of G, OSF-Builder arbitrarily breaks this tie in favour of
L1. This is the tree P (ρ) selected for ρ by OSF-Builder. Since each child of ρ was
assigned a unique lineage tree in the bottom-up phase, OSF-Builder selects that tree for
each child. In the case of the child that is an ancestor of leaf b that tree is L1. For the child
labelled u1 that tree is L2 implying that the tree P (u1) is L2. To minimize the number of
contact arcs and also break the tie as to which tree to assign to the children of u1,
OSF-Builder chooses L2 as both children can be accommodated by that tree. Thus, the
tree assigned to both of them via P is L2. Since w1 is a child of v1 and w1 can be
accommodated by L2, OSF-Builder also chooses L2 for w1. Thus, the tree P (w1) is again
L2. Applying the same rational to the remaining non-leaf node of G as for w1 implies that
OSF-Builder chooses L2 for that node too. The resulting assignment of lineage trees to
the nodes of G is the map P in the previous section.

Since G contains three branches for which the lineage trees assigned to their end
nodes differ, i.e., the branches ending in leaves c and j, respectively, and the branch coming
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into u1, it follows that the OSF generated by OSF-Builder must have three contact arcs.
To find the nodes in the forest connected by them, OSF-Builder considers every interior
node v of G in turn to find the node in the tree P (v) assigned to v. To do this,
OSF-Builder first finds all offspring taxa of v that are accommodated by the same
lineage tree as v. These taxa make up the set U ′

v. Then it finds the last common ancestor
in P (v) of the taxa in U ′

v. This ancestor is then assigned by OSF-Builder to v. For
example, since only the offspring taxa d, e, h, and i of node u1 are mapped to species
contained in the same lineage tree as u1 (i.e., L2), the set U ′

u1
comprises the species D, E,

H, and I only. Since their last common ancestor in L2 is the root of L2, that node is
assigned to u1 by OSF-Builder. Note that since the node c of G is assigned to species C
via this process, the arc leading to C is subdivided by a new node and the contact arc is
attached to that node (rather than C) in OSF-Builder’s post-processing phase.

G :

a b c d e h i j

{1} {2} {2}

{2, 3}{1, 2}

{2}

{1, 2}

G :

a b c d e h i j

1 2 2

22

2

1

v1

u1

u1

v1

b)

c)

w1

w1

L2 L3L1

L2 L3L1

A B C D E H I J K L

a)

a b c d e h i j

A B C D E H I J K L

d)

Figure 3: a) The species forest indicated in Figure 1a given in bold and the allele tree in Fig-
ure 1b. b) The bottom-up phase of the Fitch-Hartigan part of the OSF-Builder algorithm
applied to the set of lineage trees and the allele tree in a). The leaf set corresponding to each
of the three lineage trees L1, L2, and L3 is indicated by a horizontal line below the leaves.
For ease of readability inside the allele tree, we denote, for all i = 1, 2, 3, a lineage tree Li

assigned to a non-leaf node by i. c) Employing the same notation as in b), the top-down
phase of the Fitch-Hartigan part of the OSF-Builder algorithm. d) The resulting OSF
(which is also the OSF in Figure 1c.)

Properties and Usage of OSF-Builder
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The OSF-Builder algorithm has some attractive theoretical properties. First,
OSF-Builder will always find an OSF that minimizes the number of contact arcs, for any
given input (Supplementary Material, Lemma 1 and Theorem 2). Furthermore, if F and G
are the species forest and the allele tree obtained from that OSF by deleting its contact
arcs, then OSF-Builder will recover that OSF from F and G provided the information is
available as to how ties were resolved.

It should be noted however that the OSF need not be unique, and also that there
might be OSFs that cannot be found by OSF-Builder (see, e.g., Supplementary
Material, Figure 1). Another property of OSF-Builder is that, for any subtree of an
allele tree, an OSF found by OSF-Builder for the allele tree always restricts to an
optimal OSF for that subtree. Thus, even if an allele tree G is only known in parts (i.e. in
terms of a subtree G′), then the OSF returned by the algorithm for G′ and a species forest
can be employed as a basis for finding an optimal OSF for G and that forest. However it
should be noted that this OSF might not be found by OSF-Builder.

We have implemented OSF-Builder in Python 2 (see Supplementary Material for
details) and it is freely available from the website given in the abstract. It takes as input a
triple consisting of a species forest and an allele tree (all in newick format) and a leaf map
for them, and generates an OSF in the form of a multiply rooted directed graph. This
graph is currently returned by OSF-Builder as a .gve file and also in e-newick notation
(Morin and Moret 2006). The .gve file can be represented using the freely available
Graphviz software (Ganser and North 2000), which we used to generate Figure 5. For
technical reasons, in case the e-newick format is chosen, we artificially turn the found OSF
into a phylogenetic network by arbitrarily joining all roots of the OSF with a new single
root. This can then be read by popular software packages such as Dendroscope (Huson and
Scornavacca 2012) and manually post-processed to obtain the OSF found by our approach
by removing the arbitrarily placed arcs and the root.

Simulations

In this section, we describe the methodology behind our simulation studies which we
use to assess the performance of OSF-Builder in the case of uncertainty either in the
allele tree or the species forest. We refer to Figure 4 for a schematic overview. Essentially,
we begin by first randomly generating a species forest and an allele tree together with a
minimal OSF for this pair (called OSF1). We then perturb the allele tree by applying
subtree-prune-and-regraft (SPR) operations in order to simulate inaccurate estimates of
this tree within the input to the OSF-Builder algorithm. SPR-operations are widely used
in phylogenetics to explore tree space and amount to pruning a subtree of a given tree and
regrafting that subtree elsewhere onto the resulting tree (see, e.g., Semple and Steel (2003)
for a formal definition). By applying varying numbers of SPR-operations we can simulate
trees that are close to (few operations) or far from (many operations) the allele tree. After
this, we run our algorithm on the original species forest and perturbed allele tree to obtain
an OSF (called OSF2), and we measure how close OSF2 is to OSF1. Following the same
protocol, we also use SPR-operations to introduce uncertainty in the species forest.
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We now provide more details. Using the software SimCoal (Excoffier et al. 2000), we
first simulate a phylogenetic tree with 100 leaves. Using this tree we then generate a
species forest F containing seven lineage trees by randomly deleting non-pendant arcs, and
checking that this selection gives a valid collection of phylogenetic trees. To generate an
OSF, which we call OSF1, we randomly add eight contact arcs in-between the lineage trees
in F by connecting nodes between pairs of trees, ensuring that we do not create a directed
cycle (cf. Figure 2 in the Supplementary Material). We then also create an allele tree G
from this OSF by randomly picking a root and taking the tree with leaves in F that can be
reached from that root via directed paths. We also ensure that running our algorithm on
the pair F and G gives OSF1.

Allele tree

SPR-Perturbation

OSF-Builder

Comparison

a) b)

c)d)

A B C D E H I J K L

a b c d e h i j

a b c d eh i j

A B C D E H I J K L

Figure 4: A schematic outline of our simulation study which models of uncertainty in the
input allele tree. a) OSF1 and b) An allele tree G. Note that to ensure that G is a valid input
allele tree for OSF-Builder we derive it from OSF1. c) The allele tree G′ obtained from G
by application of one SPR operation to G. d) The OSF OSF2 generated by OSF-Builder
when given G′ and F as input.

To simulate uncertainty in the input data, we apply 1, 3 or 5 random
SPR-operations to the allele tree G, one after the other, to generate a perturbed allele tree
G′. In the case of the species forest, we proceed as for the allele tree ensuring that a
pruned subtree is not regrafted to the same tree from which it was pruned. The reason for
the latter is that such forests would suggest introgression events within a lineage which is
not permitted by our model.

We then use G′, F and G,F ′ (with implicit leaf maps) as input to OSF-Builder to
obtain an OSF which we denote by OSF2. For each case, we repeated this process 100
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times to obtain a distribution. To measure how close OSF2 was to OSF1, we compute the
difference between the number of contact arcs.

Results

In this section, we present our findings for a biological dataset and our simulation
study. Unless specified otherwise, we refer to an optimal OSF (in the sense of postulating a
minimal number of contact arcs) as just an OSF.

The Heliconius Butterflies Dataset

In The Heliconius Genome Consortium (2012) evidence was presented for
introgression having played a role in the evolution of wing pattern in Heliconius butterfly
species. To investigate this further Wallbank et al. (2016) studied the evolutionary
relationships between Heliconius butterfly species based on the so-called dennis and ray
alleles of the optix gene, which are known to be implicated in wing pattern production.
They determined that the dennis allele introgressed from Heliconius melpomene into
Heliconius timareta and from an ancestor of Heliconius luciana, Heliconius pardalinus and
Heliconius elevatus into Heliconius melpomene, and that the ray allele introgressed from
H.melpomene into H.timareta, and also into H.elevatus (Wallbank et al. 2016, Fig. 5).

To run OSF-Builder on this data we obtained a species forest and allele tree as
follows. For the allele tree, we used the tree constructed for the dennis allele in Wallbank
et al. (2016) (see Supplementary Material for the link to dryad). To obtain the species
forest we used the species phylogeny presented in Kozak et al. (2015, Fig. 1) containing ten
Heliconius butterfly lineages. Out of these ten lineages, only five contain species carrying
the dennis allele, we thus only considered these five for our study. Amongst these, the
melpomene and silvaniforms lineages are studied in more detail in Wallbank et al. (2016,
Fig. 4). In particular, both contain more species than their counterparts in Kozak et al.
(2015), and lineage melpomene is split into two distinct sublineages melpomene and
timareta. We incorporated this additional information into our species forest, and, since the
elevatus sublineage of the silvaniforms lineage plays a key role in introgression, we made it
into a lineage tree in it own right. The resulting species forest therefore has 7 lineages.

We depict the OSF generated by OSF-builder in Figure 5. We used the relative
ages of the lineages as indicated by their underlying species phylogeny (Kozak et al. 2015,
Fig. 1) to resolve ties. As can be seen, all four of the aforementioned introgression events
were identified by OSF-Builder. Furthermore, Figure 5 suggests that introgression
between these lineages did not only occur once but multiple times including backcrossing
and that the dennis allele might have introgressed into H.melpomene via H.timareta. The
former is interesting given that Wallbank et al. (2016) raised the question as to whether
multiple introgression events might have occurred between these lineages. We repeated this
analysis using the tree constructed for the ray allele in Wallbank et al. (2016), and
obtained similar results (OSF presented in the Supplementary Material).
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Figure 5: For
the Helico-
nius butterfly
dataset from
Wallbank
et al. (2016)
and Kozak
et al. (2015),
we picture the
OSF found
by OSF-
Builder for
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each of them
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ent colour.
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trogression
events are
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Given that OSF-Builder might have had to resolve ties in the construction of the
depicted OSF, we also investigated what effect the approach that we used in this example
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for tie resolution might have had on its structure. For this we considered all possible ways
in which ties could be resolved in this dataset (random sampling from the set of all possible
ways to resolve ties could be used for larger datasets). We depict our findings in Figure 6a
in terms of a heat map generated by measuring the number of times a contact arc occurred
in an OSF and normalized over all OSFs to obtain a proportion. These proportions were
used as input to the Heatmapper software (Babicki et al. 2016) where higher proportions
are represented as darker cells. In particular, a dark cell in row i and column j indicates
that a high proportion of the OSFs had a contact arc from lineage tree Li to lineage tree
Lj. In Figure 6b, we present an augmented version of the species tree in (Kozak et al.
2015, Fig. 1) in which we have added in all contact arcs that are in more than 50% of the
OSFs found by OSF-Builder. Due to the size of the species tree we have shrunk the
lineages down to leaves.

a)

L1

L2

L3

L4

L5

L6

L7

L1 L2 L3 L4 L5 L6 L7

L1

L2

L3

L4

L5

L6

L7

b)

Figure 6: Heliconius butterflies dataset. (a) Heat map representing the proportion of OSFs
containing contact arcs found over all possible ways to resolve ties in the top-down phase of
the Fitch-Hartigan algorithm. (b) A simplified version of the Heliconius butterflies species
tree in which we have added all contact arcs (dashed arrows) that were contained in more
than 50% of the OSFs found. All seven lineage trees have been shrunk to single leaves and
double arrows indicate contact arcs going both ways.

Interestingly, out of the 42 = 7× 6 possible contact arcs between the seven lineage
trees we only observe 26 different ones and out of these only 10 occur more than half the
time. Out of those 10, the contact arcs from lineage H.melpomene (L6) to its sister lineage
H.timareta (L7) and from L7 to L6 were recovered every time suggesting that there is
strong signal in the data for introgression between these two lineages. The remaining
contact arcs which appear a high proportion of times are quite symmetric (in the sense
that introgression is supported strongly in both directions between the lineages). A notable
exception to this is the silvaniforms lineage (L4), which was the source of a high proportion
of contact arcs ending in lineages L5 and L6 although no contacts arcs were found with
either of these lineages as a source and ending in lineage L4.
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Effect of Input Perturbations on OSF-Builder

To study the effect of uncertainty in the input data we simulated two scenarios as
described in Methods. We start with the case where the species forest F is fixed and the
allele tree G is varied. We let n(F,G) denote the number of contact arcs of an OSF for a
species forest F and an allele tree G.

In Figure 7, we present the distribution of the differences n(F,G′) − n(F,G) between
the true OSF1 and the computed OSF2 when the species forest F is fixed and the allele
tree G is varied to give a perturbed tree G′. Note that in case the OSF for F and G′ has
fewer contact arcs than the OSF for F and G then that difference is negative. As explained
in Methods, G′ is obtained from G by applying 1, 3 or 5 SPR operations. As might be
expected, we see that more SPR operations result in a greater difference in contact arcs
between OSF1 and OSF2. Having said this, in the majority of the cases and largely
irrespective of the considered number of operations, this difference is at most one contact
arc. Furthermore, Figure 8 suggests that if G′ is not too dissimilar from the true allele tree
then 60% of the OSFs constructed by OSF-Builder contained all 8 contact arcs of OSF1

and, reassuringly, more than 90% contained at least 7 of them.

Figure 7: For F and G the true species forest and allele tree, respectively, and G′ the
perturbed allele tree, we depict the distribution of the difference n(F,G′) − n(F,G) in the
number of contact arcs over 100 runs for 1 (left), 3 (middle), and 5 (right) SPR-operations
(see Methods for details). The x-axis is labelled by n(F,G′) − n(F,G) and the y-axis gives the
percentage of times that a difference is observed. Note that the value of −1 on the x-axis
means that G′ has one contact arc less than G.

We now turn our attention to the case where the allele tree is fixed and the
uncertainty affects the species forest. We depict in Figure 9 the distribution of the
differences n(F ′,G) − n(F,G), where F ′ is a forest obtained from F by applying 1, 3, or 5
SPR-operations to the lineage trees in F , respectively. The distributions highlighted by
Figure 9 are similar to the ones observed in Figure 7 for the allele tree, in the sense that
the number of SPR-operations directly influences the number of contact arcs. Put
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Figure 8: For F and G the true species forest and allele tree, respectively, and G′ the per-
turbed allele tree, we depict the distribution of the number of original contact arcs recovered,
over 100 runs, for 1 (left), 3 (middle), and 5 (right) SPR-operations. The x-axis is labelled
by the number of contact arcs and the y-axis gives the percentage of times that a number
was observed. For ease of readability, contact arc numbers which were not observed are
omitted.

Figure 9: For F and G the true species forest and allele tree, respectively, and F ′ the
perturbed species forest, we depict the distribution of the difference n(F ′,G) − n(F,G) in the
number of contact arcs over 100 runs for 1 (left), 3 (middle), and 5 (right) SPR-operations.
The labelling of the axis is as in Figure 7.

differently, the larger the number of SPR-operations is between the lineage trees in F ′ and
the lineage trees in F the more the species forests differ in their number of contact arcs.

Taken together, Figures 7 and 9 indicate a high percentage of cases where the true
OSF had the same number of contact arcs as OSF2, and this is independent of the number
of SPR-operations performed. Furthermore, the difference n(F ′,G) − n(F,G) when perturbing
the species forest is higher than the difference n(F,G′) − n(F,G) when perturbing the allele
tree using the same number of SPR-operations. In other words, it seems that uncertainty
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in the species forest has a greater effect on OSF-Builder’s ability to recover an OSF than
uncertainty in an allele tree. Having said this, in cases where uncertainty is low
OSF-Builder might provide a attractive tool for shedding light into introgression
independent of whether this uncertainty affects the allele tree or the lineage trees.

Discussion

We have presented a novel approach for representing and exploring evolutionary
scenarios where introgression is suspected to have occurred. It is implemented in the
OSF-Builder software which is freely available for download from the webpage mentioned
in the abstract. It takes as input a species forest and an allele tree and constructs an OSF
for them that is minimal in the number of contact arcs. We have assessed the performance
of OSF-Builder in the presence of uncertainty by means of a simulation study, and have
also illustrated its use on a biological dataset. Our results are promising and indicate that
OSF-Builder could be a useful new tool for studying introgression, in combination with
existing tools for identifying introgression, especially as it is quick to run in practice.

For OSF-Builder to give informative results it is clearly important to take as
input good estimates of the species forest and allele tree. Estimating the allele tree is
usually a matter of building a phylogenetic tree from a multiple sequence alignment for
which there are numerous tools available. For the species forest, data such as morphological
characters or geographical locations are commonly used to infer lineage information (see
e.g. (The Heliconius Genome Consortium 2012; Barej et al. 2015)). If however lineages are
not known, then methods such as those described in (Parker et al. 2008; Alexandrou et al.
2011) might be used. Alternatively, one could also run OSF-Builder with varying choices
of (species-tree induced) lineage trees to better understand the effect of lineage tree choice.
Guided by the species tree, this clearly boils down to either merging or splitting up
lineages trees. Provided that the resulting species forest is such that every lineage tree in
the forest contains at least one species for which information is available in the allele tree
then the inner workings of OSF-Builder ensure that the number of contact arcs increases
in case lineage trees are split up and decreases in case they are merged.

Our simulation studies suggest that OSF-Builder is resilient to small amounts of
uncertainty in the allele tree or in the lineage trees. This not only holds with regard to
recovering the correct number of contact arcs but also to reconstructing the true contact
arcs. Since deeper signals tend to get confounded by more recent ones it might however be
difficult to detect events which occurred further back in time, a problem faced by many
tools used for phylogenetic analysis. In the case of OSF-Builder, the most likely reason
for this occurring is its bottom-up nature which implies that decisions as to how to resolve
ties close to leaves can affect the breaking of ties closer to the root of the allele tree. In
regards to our simulation methodology, we have used random SPR moves to generate trees
that are increasingly far away from either a fixed lineage or allele tree in terms of the
number of SPR operations. It may be of interest to investigate other ways to simulate
random introgression scenarios which take into account the underlying introgression
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process, but this would probably first require a careful analysis of what the most common
kinds of error are in lineage and allele tree estimates.

OSF-Builder is quick to run in practice (e.g. the Heliconius butterflies dataset
took 3.8s to run on a HP laptop running Windows 10), and can be run on large datasets.
Even so, as noted above, there could potentially be several optimal OSFs (just as with
maximum parsimony where there can be several optimal most parsimonious trees – see,
e. g. , Kurtzman and Robnett (2003)). In case an OSF is derived from a species tree, we
recommend that the lineage trees be input in the order suggested by their relative ages in
the species tree, with the oldest one coming first. If this information is not available or the
user wants to understand the effect of other orderings the program can be run several
times, each time changing tie resolving preferences to get an idea which contact arcs are
more common than others (as illustrated in the Heliconius butterfly dataset). Even so, it
might be of interest to develop alternative ways to allow OSF-Builder to resolve ties. For
example, weighting schemes could maybe be developed for the lineage trees based on either
confidence values for the trees or the size of their leaf sets (or a combination of both). As
different OSFs might be computed it might also be of interest to develop tools that would
allow for comparing and assessing different OSFs, along the lines of metrics used for
phylogenetic trees or networks (see, e.g., Cardona et al. (2009); Huber et al. (2011)). This
could potentially provide more insight into differences between OSFs supported by a
dataset rather than just taking the difference in the number of contact arcs, as in our
simulation studies. Another potential direction to understand multiple OSFs may be to
investigate the adaptation of approaches that deal with multiple optima in lateral gene
transfer studies (see e.g. Bansal et al. (2013)).

Although the parsimony model appears to be useful in practice it is based on the
assumption that introgression is infrequent, an assumption whose validity may become
clearer as the number of genome studies for introgression grows (Koyama et al. 2016;
Zhang et al. 2016). Therefore, it could be of interest to develop more sophisticated models
for introgression which could try to take this into account. For example, it could be worth
exploring whether our optimization criterion could be replaced with a more sophisticated
one that takes into account costs of introgression events (e. g. , different costs could be
assigned to introgression events based on their source trees and/or their recipient trees). In
another direction, it should be noted that our model does not allow for losses, which can be
an important source of genetic variation (Albalat and Canestro 2016). It may be
interesting to try and incorporate losses into our model, along similar lines to approaches
used for modelling tree reconciliation some of which, for example, employ probabilistic
methods (see, e.g., Baudet et al. (2015); Doyon et al. (2011)). Another important
underlying evolutionary process that should be taken into account is incomplete lineage
sorting, whose affects can also greatly complicate matters (Choleva et al. 2014). Including
this process into network models appears to be a challenging problem. In Holland et al.
(2008), an approach is described for distinguishing incomplete lineage sorting and
hybridization using a special type of (unrooted) phylogenetic network called a split
network. Recent progress has also been made on this problem for rooted networks using
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parsimony (Yu et al. 2013) and both could provide clues for its solution.
OSF-Builder is a method that is designed to analyse a single allele tree relative to

a species forest. In practice, however, it could be of interest to analyse several allele trees
simultaneously. This could, for example, provide more evidence of large-scale introgression
events, where several genes introgressed at a similar time between lineages. This could be
done one allele tree at a time, and the resulting OSFs compared in a pairwise fashion,
potentially using methods for comparing OSFs as mentioned above. However, if a large
number of allele trees are involved this could potentially become quite cumbersome. In the
area of lateral gene transfer, methods have been developed for identifying ’highways’ for
lateral gene transfer between species which consider multiple gene trees (see, e. g. , Bansal
et al. (2011)). Thus, it might be of interest to see if these approaches could be adapted to
deal with multiple allele trees. These methods could be useful for teasing apart whether or
not multiple, tightly-linked genes or single genes are responsible for certain traits (see e.g.
(Nadeau 2016, p.28) for a discussion of such a phenomenon in butterfly patterning).

In summary, we believe that OSF-Builder is a helpful new tool for analysing
introgression, and we expect that it should provide a useful basis for developing new
methods to study this important phenomenon.

Supplementary Material

Supplementary Material is available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.1nt8t75
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