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Abstract
During physiological or ‘natural’ childbirth, the fetal head follows a distinct motion pattern—often referred to as the cardi-
nal movements or ‘mechanisms’ of childbirth—due to the biomechanical interaction between the fetus and maternal pelvic 
anatomy. The research presented in this paper introduces a virtual reality-based simulation of physiological childbirth. The 
underpinning science is based on two numerical algorithms including the total Lagrangian explicit dynamics method to 
calculate soft tissue deformation and the partial Dirichlet–Neumann contact method to calculate the mechanical contact 
interaction between the fetal head and maternal pelvic anatomy. The paper describes the underlying mathematics and algo-
rithms of the solution and their combination into a computer-based implementation. The experimental section covers first 
a number of validation experiments on simple contact mechanical problems which is followed by the main experiment of 
running a virtual reality childbirth. Realistic mesh models of the fetus, bony pelvis and pelvic floor muscles were subjected 
to the intra-uterine expulsion forces which aim to propel the virtual fetus through the virtual birth canal. Following a series 
of simulations, taking variations in the shape and size of the geometric models into account, we consistently observed the 
cardinal movements in the simulator just as they happen in physiological childbirth. The results confirm the potential of the 
simulator as a predictive tool for problematic childbirths subject to patient-specific adaptations.
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1 Introduction

The biomechanical process of human childbirth involves 
intricate interactions between the two main agents, i.e. the 
fetus and the maternal abdominal and pelvic anatomy. More 
specifically, during the second stage of labour, the fetal head 

comes into contact with the maternal bony pelvis and pelvic 
floor muscles due to the expulsive forces aiming to expel the 
fetus from the womb. From a purely physical perspective, 
this constitutes a mechanical contact problem which lies at 
the basis of various phenomena including:

• The ‘cardinal movements’ (CMs) of the fetal head which 
occur during physiological birth1;

• The adverse effect on pelvic floor muscles when over-
stretched and potentially resulting in incontinence fol-
lowing childbirth;

• The possibility of labour coming to a halt because the 
fetal shoulder impacts with the bony pelvis known as 
shoulder dystocia (SD);

• Unfavourable presentations such as brow and face.
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In the longer run, the aim of the project is to create a patient-
specific ‘virtual reality’ (VR) childbirth simulator capable 
of assessing the likelihood of normal and, more importantly, 
abnormal outcomes for individual cases prior to the actual 
event. This is of great clinical importance as it would allow 
clinicians to plan ahead, for example, to decide on an elec-
tive Caesarean Section (CS) if the simulation returns a high 
risk score on the occurrence of SD. Before such a sophis-
ticated predictive simulator can be developed, the ‘normal’ 
interaction between fetus and maternal pelvic anatomy—
nowadays referred to as physiological childbirth—has to be 
realistically modelled and simulated first.2

In this paper, we focus on the technical side of the R&D 
by describing the methodology we used to model the 
mechanical contact problem of physiological childbirth on 
computer. We used an explicit finite element (FE) formula-
tion, better known as the Total Lagrangian Explicit Dynam-
ics (TLED) method by Miller et al. (2007) to calculate the 
deformations of the soft tissues. The contact forces fed into 
TLED are calculated via a modified projection-based con-
tact method (Yastrebov 2013). Validation is based on the 
quantitative and qualitative observations (or absence) of the 
CMs of normal childbirth. Even though the methodology is 
applied to modelling childbirth on computer in this paper, it 
can be easily adopted for other soft tissue simulations that 
include mechanical contact interactions, for example, surgi-
cal simulation and navigation, and robotic surgery.

2  Background

FE modelling of childbirth biomechanics related phenom-
ena dates back to the late 1970s. McPherson and Kriewall 
(1980) modelled the deformation of fetal cranial bone when 
subjected to the uterine pressure during the first stage of 
labour using finite element Analysis (FEA). Due to limited 
processing power in those days, they created a FE model 
of the parietal bones only. Building on this preliminary 
model, Lapeer and Prager (2001) developed a 3D FE model 
of fetal head moulding and successfully validated it against 
a clinical study by Sorbe and Dahlgren (1983). Their work 
has been used in various applications including the effect 
of head moulding on the pelvic floor muscles (Silva et al. 
2015), infant and baby head trauma (Loyd et al. 2015) and 
fetal growth (Libby et al. 2017).

The effect of labour, be it physiological or assisted, on 
the biomechanical behaviour of the pelvic floor muscles 
is another popular subject where FEA is used. Lien et al. 
(2004) predicted the stretching of the Levator Ani Muscle 
(LAM—the collection of pelvic floor muscles) using MR 
(magnetic resonance) images and FEA during the second 
stage of labour. Parente et al. (2009) assessed the effect of 
the variation in material properties of the pelvic floor mus-
cles on their biomechanical behaviour during physiologi-
cal childbirth. Silva et al. (2017) assessed the biomechani-
cal properties of the pelvic floor muscles of continent and 
incontinent women, respectively, also using MRI data and 
(inverse) FEA. Oliveira et al. (2017) analysed the effect of 
episiotomy (incision made in the vagina to aid delivery or 
avoid damage to other tissues) on the pelvic floor muscles 
using FE models.

Last but not least, a number of attempts to model a VR 
childbirth simulator have been made since the early 1990s. 
Boissonnat and Geiger (1993) created a simple model of a 
fetal skull interacting with the bony pelvis. The model was 
not FE based, but contact forces and resulting moments on 
the head were based on the degree of volumetric interpen-
etration of the skull polyhedra into the pelvic polyhedra. 
Rotations of the head resembling the CMs were appar-
ently observed during some simulations. Liu et al. (1996) 
proposed to improve Geiger’s model by developing a fully 
articulated fetal model and use FE analysis to determine the 
forces and moments acting on the fetal head though we are 
not aware of any further publications covering the suggested 
improvements. Buttin et al. (2009) modelled a fetus using 
two ellipsoids for the fetal head and trunk, respectively, and 
performed FEA on the descent of the fetus. They link their 
simulation to the BirthSIM system by Moreau et al. (2007) 
which is used for hands-on training and planning of obstet-
rics forceps delivery. The strengths of the reported research 
are the consideration of key soft tissues including the uterus 
and a mouldable (non-rigid) fetal head. These strengths are 
somehow weakened due to the simplification of the geomet-
ric models which are merely ellipsoids and no mention of 
the observation of the CMs or mechanisms of the fetal head. 
Gerikhanov et al. (2013) created a VR simulation with the 
aim of observing the cardinal movements starting with the 
least complex configuration of a rigid bony pelvis and a rigid 
fetal skull. The underlying model was based on rigid body 
mechanics. They observed flexion of the fetal head and inter-
nal rotation to some degree. They concluded that additional 
maternal anatomy such as the pelvic floor muscles would be 
required as a minimal configuration to observe the critical 
CMs (flexion, internal rotation, extension and external rota-
tion). It is their proposal that has been further investigated 
in the research presented in this paper. The rigid body model 
by Gerikhanov et al. (2013) is bound to be inadequate due 
to the addition of soft tissues which significantly increase 

2 In the past, the term ‘normal’ childbirth was used when the baby 
is delivered vaginally without additional instrumental intervention. 
Following a debate amongst midwives and obstetricians on the ambi-
guity of ‘normal’, a birth without instrumental intervention is now 
called ‘physiological’ childbirth.
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complexity; thus, a new model is required using a combina-
tion of explicit FE and mechanical contact methods.

3  Methodology

The proposed methodology is a combination of the Total 
Lagrangian Explicit Dynamics (TLED) explicit FE formula-
tion which is coupled to a projection-based contact method 
to calculate the contact forces causing deformation in the 
soft tissues which subsequently cause the fetal head to 
rotate. The external body forces are the intra-uterine expul-
sion force and the maternal bearing down forces. The soft 
tissues (pelvic floor muscles, ligaments and uterine cervix) 
are modelled using tetrahedral elements and Neo-Hookean 
hyperelastic material properties. Other components in the 
model are static (maternal pelvis) or dynamic (fetus) rigid 
bodies. The fetus has one articulation, i.e. the fetal neck 
which couples the rigid fetal head to the rigid fetal body. It 
is comprised of a linear and torsional spring (see Table 3 for 
the stiffness coefficients) to resist translations and rotations, 
respectively. Bending (flexion/extension/lateral flexion) is 
constrained by the contact of the fetal head with the fetal 
body. Rotations in the transverse plane are constrained by 
the torsional spring. The remainder of this section describes 
each of the numerical TLED and contact methods separately 
and then consolidates these within the FE formulation. The 
implementation is covered at the end of the section.

3.1  TLED formulation

TLED (Miller et al. 2007) is a variation on the Lagrangian 
formulation of the finite element method (FEM). Belytschko 
et al. (2014) describe the difference between the updated 
Lagrangian (UL) and total Lagrangian (TL) formulations:

Dependent variable description:

UL—current or deformed configuration;
TL—reference or material configuration.

Derivatives of the dependent variables:

UL—evaluated with respect to the spatial coordinates; 
TL—evaluated with respect to the material coordinates.

Strain measure:

UL—strain rate; TL—total strain.

The main advantage of the TL formulation is that a considera-
ble number of variables can be pre-computed and then reused 
throughout the simulation, thus saving computation time.

We start by writing down the law of conservation of lin-
ear momentum (Belytschko et al. 2014):

where ∇0 is the nabla operator in the reference (material) 
configuration, � is the nominal stress, � is a vector of body 
forces, �0 is the density in the reference configuration and �̈ 
is the acceleration vector or second derivative in time of the 
displacement vector �.

Using the weak form (principle of virtual work) we multi-
ply Eq. 1 with a variation �u and integrate over the reference 
domain Ω0:

where X is the position vector of a material point in the refer-
ence configuration and each of the three individual terms, 
respectively, represent:

• The internal energy �W int;
• The external energy −�Wext;
• The kinetic energy �Wkin.

Considering the arbitrariness of the variation �u , the forces 
can be determined immediately from Eq. 2. The external 
forces f ext are defined by the intra-uterine pressure and 
maternal bearing down forces (see Sect. 4.3 for actual val-
ues); the kinetic forces f kin are determined in the TLED 
update loop (see Fig. 7).

This means that only the internal forces require further 
attention:

We approximate the internal forces f int by nodal forces f by 
introducing shape functions N and the matrix of the shape 
function derivatives �� . Expressing the first Piola–Kirchoff 
(FPK) stress tensor �T in terms of the second Piola–Kirchoff 
(SPK) stress � whilst introducing the deformation gradient 
� gives the nodal force:

The above integral needs to be derived numerically.
Consider a continuous function � of natural element coor-

dinates �, �, �:

This integral can be approximated via three-dimensional 
Gaussian quadrature integration with quadrature points in 

(1)∇0 ⋅ � + � − 𝜌0�̈ = 0

(2)∫Ω0

𝛿u
𝜕�

𝜕X
dΩ0 + ∫Ω0

𝛿u�dΩ0 − ∫Ω0

𝛿u𝜌0�̈dΩ0 = 0

(3)f int = ∫Ω0

��

�X
dΩ0

(4)f = ∫Ω0

�N

�X
�TdΩ0 = ∫Ω0

���TdΩ0 = ∫Ω0

����T
dΩ0

(5)∫Ω

�(�, �, �)dΩ = ∫ ∫ ∫
1

−1

�(�, �, �)d�d�d�
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each dimension resulting in a triple summation of three-
dimensional weights multiplied with the function value at 
each quadrature point. This triple summation is often sim-
plified to a single summation where the product of weights 
in each dimension are multiplied yielding one single weight 
for nq quadrature points:

For tetrahedral elements, the Jacobian:

for element natural coordinates ec = {�, �, �} and the volume 
of the undeformed tetrahedron V0 . This yields the following 
expression for:

Substituting Eq. 8 into Eq. 4 and using Eq. 6 to perform 
numerical integration, we get:

Since the above integration is in the range [0, 1] instead 
of the canonical [−1, 1] , the weights in each dimension are 
scaled to 1. The combined weight wq across the three dimen-
sions will then also be equal to 1 thus Eq. 9 reduces to:

The deformation gradient � in Eq. 10 can be derived from:

with the identity matrix �.
Finally, to derive �� , we apply the chain rule to the matrix 

of shape function derivatives:

The shape functions for a constant strain tetrahedral ele-
ment are:

(6)∫Ω

�(�, �, �)dΩ ≈

nq∑
q=1

wq�(�q, �q, �q)

(7)J = det

(
�X

�ec

)
= 6V0

(8)dΩ0 =
1

6
Jd�d�d� = V0d�d�d�

(9)f = ∫ ∫ ∫
1

0

V0����
T
d�d�d� ≈

nq∑
q=1

wqV0����
T

(10)f = V0����
T

(11)� = ��� + �

(12)�� =
�N

�X
=

�N

�ec

�ec

�X
=

�N

�ec

(
�X

�ec

)−1

(13)N1(�, �, �) = �

(14)N2(�, �, �) = �

(15)N3(�, �, �) = �

(16)N4(�, �, �) = 1 − � − � − � .

The Jacobian matrix � is given by:

where � is the matrix of nodal coordinates. Working out 
Eq. 17 gives:

where Ei are column vectors representing tetrahedral edges.
We can now derive �� by substituting Eq. 18 (following 

inversion) into Eq. 12:

We will relate the internal forces described in Eq. 10 with 
the contact forces derived later in Sect. 3.3.

3.2  Mechanical contact method

The forces which affect the motion of the baby’s head (CMs) 
are a result of the contact interaction between the baby head 
and the maternal pelvic anatomy—including the bony pel-
vis, the pelvic floor muscles and ligaments and the fully 
dilated uterine cervix—during the second stage of labour 
which is the expulsion stage. During the first stage of labour, 
the movement of the baby is slow and consists of the head 
being in contact with the uterine cervix (i.e. the lower part 
of the uterus) which dilates from almost closed to full dila-
tion (approx. 10 cm on average). The fetal head to uterine 
cervix contacts causes the phenomenon known as fetal head 
moulding (Lapeer and Prager 2001). We ignore fetal head 
moulding at this stage of the development thus consider the 
fetal head to be rigid. Thus, the simulation starts at the end 
of the first stage or start of the second stage. The fetus is 
descending and is not yet in contact with the pelvic anatomy. 
To detect contact, we need to perform a contact detection 
procedure which is better known in computer graphics and 
computer games as collision detection. Once contact/col-
lision is detected between the baby head and any part of 
the maternal anatomy, contact pairs need to be established 
between the two surfaces according to a contact discretisa-
tion method. Once contact pairs have been established, the 
contact needs to be ‘resolved’ using a contact resolution 
method. We will discuss each of these three methods next. 
One should keep in mind that these procedures are part of a 
continuous update loop.

(17)� =
�X

�ec
= �

�N

�ec
=

⎡⎢⎢⎣

x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

⎤
⎥⎥⎦

⎡⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

−1 − 1 − 1

⎤⎥⎥⎥⎦

(18)� =

⎡⎢⎢⎣

x1 − x4 x2 − x4 x3 − x4
y1 − y4 y2 − y4 y3 − y4
z1 − z4 z2 − z4 z3 − z4

⎤⎥⎥⎦
=

⎡⎢⎢⎣

E1

E2

E3

⎤⎥⎥⎦

T

(19)�� =
�N

�ec

[
E1 E2 E3

]−1
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3.2.1  Contact detection

We used hierarchical collision detection (CD) to minimise 
processing overhead using a two-step process with a broad 
and narrow phase.

During the broad phase, FE mesh models are first sub-
divided in different rectangular regions using a Bounding 
Volume Hierarchy (BVH) which in our implementation is 
an octree subdivision. Figure 1 shows an octree built around 
the bony pelvis model. BVHs can be implemented using 
pointers, but since elements are not typically removed in 
our application, this approach causes a significant overhead 
when the tree needs to be traversed during the CD process 
due to indirect memory access. Therefore, we adopted a 
pointer-less method where leaf nodes are stored in sequential 
order and their position being accessed through an indexing 
function. We used Morton code or z-order curve indexing for 
this purpose (Morton 1966) which reduces the dimension-
ality of the key from three to one. The construction of the 
octree was done in a top-down fashion, i.e. starting from the 
entire mesh model and subdividing in smaller boxes until the 
smallest box contains a preset maximum number of faces. 
This approach is preferred over a bottom-up approach which 
starts at the level of a single face. Although both approaches 
are O(N) for N faces, the latter requires to run a nearest 
neighbour test at each new level up the tree which causes 
a significant overhead for complex FE meshes. The broad 
phase at runtime uses a tree traversal algorithm. Since some 
of the meshes are deformable, e.g. the pelvic floor muscle 
mesh (see Fig. 12), the orientation of the AABBs (axis 
aligned bounding boxes) is relatively changed to one another 
which turns them in OBBs (Oriented Bounding Boxes). 
Even a rigid body in the simulation, e.g. the fetal head, will 
change in global directions so if AABBs were referred to a 
global coordinate system they will turn into OBBs as well. 
There are two ways to resolve this: either both OBBs to be 

checked for collision are referred to a global coordinate sys-
tem or the local coordinate system of one of the two bodies 
(typically the rigid body) is used as the master coordinate 
system and the other body’s OBBs are referred to it. Figure 2 
shows the two approaches and illustrates that the second 
approach is favourable as only one transformation is required 
which results in a speedup for high OBB counts, typical for 
complex FE mesh traversal.

Once potential collision between parts of potentially 
colliding bodies is detected through the nearest OBBs, the 
narrow phase identifies face-to-face collision between the 
relatively small number of faces contained in each of the 
OBBs. We use the well-established SAT (Separating Axis 
Theorem) for this purpose (Miller 1997).

3.2.2  Contact discretisation

Ignoring multiple body contact and self-contact, we assume 
two bodies to be in contact at some instance in time at one 
(or multiple) section(s) of their respective boundaries. Since 
the bodies or ‘objects’ in our application are discretised FE 
mesh models, we select one object’s contact surface to be 
the ‘master’ surface and the other to be the ‘slave’ surface. 
Typically, the latter is the surface with the higher mesh 
resolution. Due to the discrete nature of contact interac-
tion, contact pairs between master and slave surfaces are 
selected according to three different scenarios. In a node-
to-node (NTN) approach, these contact pairs consist of cor-
responding nodes on each of the two surfaces on a one-to-
one basis, based on minimal distance. This works fine for 

Fig. 1  The bony pelvis model with octree-based AABBs (axis 
aligned bounding boxes)

Fig. 2  Top: OBBs of object 1 and 2 referred to global coordinate sys-
tem. Bottom: Object 1 becomes master object, and object 2’s position 
and orientation are referred to the master object’s local coordinate 
system
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contact in the normal direction, but in the tangential direc-
tion, i.e. when slip occurs, node correspondence may be lost 
for some nodes. In a node-to-segment (NTS) discretisation, 
a node from the slave surface is paired with a segment of 
the master surface. This approach is better suited for large 
deformations and large tangential sliding as compared to the 
NTN approach. The method works fine if slave surfaces have 
higher resolution than master surfaces but if this is not the 
case then undetected or ‘spurious’ penetrations may occur. 
Finally, the segment to segment (STS) relates segments of 
each one surface to the other. Though attractive in theory, 
this method is complex to implement in practical problems. 
In our application, we opted for the NTS discretisation due to 
the large displacements between the slave surface (the fetal 
head) and the master surfaces (maternal anatomy including 
bony pelvis, pelvic floor muscles and uterine cervix).

3.2.3  Contact resolution

The body parts in contact in our application are the rigid 
fetal head with either the deformable pelvic floor muscles or 
the rigid bony pelvis. Both rigid body parts are of arbitrary 
shape. We do not consider friction at this stage due to the 
complexity of finding realistic values of friction coefficients 
for our particular application. As such, the following Hertz-
Signorini-Moreau (HSM) contact conditions hold for fric-
tionless contact (Yastrebov 2013) for an arbitrary rigid body 
with an arbitrary deformable body on the contact zone Γc 
(of which the active contact zone Γ̄c is the subset of contact 
pairs in contact):

where g is the gap between corresponding elements of a con-
tact pair. The condition that the gap should be non-negative 
is crucial to the underlying principles of various numerical 
contact methods discussed later. The contact pressure �n is 
non-positive for non-adhesive contact. The third condition 
signifies that a positive gap implies a zero contact pressure 
and the presence of a positive contact pressure, a zero gap. 
Finally, the tangential stress vector �t is the zero vector due 
to frictionless contact.

The SAT CD method looks for intersections at the level 
of the primitives which are typically outer faces of the object 
boundaries. Due to the a posteriori nature of SAT CD when 
using finite time steps, collisions can be missed hence caus-
ing interpenetration of the two objects. In applications such 
as game physics, this may be avoided by either using a priori 
CD methods which preempt collisions and avoid interpen-
etration or by rectifying the interpenetration by calculating 
the exact point of collision. The concept of interpenetra-
tion (or negative gap g) and its rectification to satisfy the 
HSM condition of a non-negative gap g (Eq. 20) lays at the 
basis of several numerical contact methods. Next, we give a 

(20)g ≥ 0, �n ≤ 0, g�n = 0, �t = �

brief review of some popular contact methods followed by 
more in-depth coverage of the projection-based partial Dir-
ichlet–Neumann (pDN) contact method which we adapted 
to our specific problem statement.

Penalty method (PM) treats interpenetrations as strict con-
straint violations by introducing a resistive ‘penalty’ force as 
a function of the gap (or penetration) between the node and 
the master surface. An abstract way of visualising penalty-
based methods is to imagine a resistive spring between the 
contact surfaces which has length 0 when there is no contact 
and which elongates with increasing penetration (violation 
of the HSM first condition). The relation between the force 
and the gap is often taken to be linear (Hooke’s law) due to 
its simplicity although nonlinear (quadratic and exponential) 
functions provide more accurate results. To fulfil a non-pen-
etration condition, the penalty force has to be infinite which 
implies that in practical solutions this condition can only 
be approximately fulfilled. Since the penalty parameter(s), 
which relate(s) the force to the gap, is/are problem specific 
hence empirically determined (Kikuchi and Oden 1988), 
they cannot be used in a different context, e.g. when scaling 
the problem geometry or modifying material properties or 
the time step.

Lagrange multiplier method (LMM) The LMM aims to fulfil 
the HSM conditions using constrained minimisation. The 
Lagrangian is given by:

where � is the displacement vector on the active contact 
zone Γ̄1

c
 of deformable object 1; Π(�) is the corresponding 

deformation energy; �n are a continuous set of Lagrange 
multipliers on the active contact zone to enforce the gap 
condition g(�) ≥ 0 . The stationary condition is obtained by 
taking the variation of (�, �n) . It should be noted that the 
following relation holds for the contact pressure �n:

Since the LMM introduces additional degrees of freedom 
into the solution that represent the contact forces between 
the bodies in contact, the solution becomes harder to obtain 
and may in fact become impractical to compute for relatively 
large problems (Pietrzak and Curnier 1999). The augmented 
Lagrange method (ALM) combines the LMM with the PM 
which leads to improved solution convergence, thus consid-
erably improving the speed of the solver (Simo and Laursen 
1992). The LMM was used with an explicit FE model by 
Taylor (1989) in the PRONTO 3D software for transient 
solid dynamics. Heinstein (1997) also used the LMM in 

(21)(�, 𝜆n) = Π(�) + �Γ̄1
c

𝜆ng(�)dΓ̄
1

c

(22)|�n| = |�n| = �
�g
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combination with a matrix-free explicit FE model using an 
iterative approach to enforce the contact non-penetration 
conditions outlined in (20). Further work by Heinstein et al. 
(2000) focused on contact-impact modelling for large defor-
mation problems (including friction) in an explicit dynamic 
FE setting. Despite the focus being on impact modelling, 
the method can be used for quasi-static contact problems as 
well and can deal with multiple object contact. Johnsen et al. 
(2012) combined the method by Heinstein et al. (2000) with 
Miller’s TLED method (Miller et al. 2007) and integrated 
these into the NiftySim TLED simulation software (Johnsen 
et al. 2014). Additional functionality includes contact nor-
mal smoothing for improved stability and a friction model. 
Johnsen’s updated method is also capable of simulating con-
tact between two soft tissues or soft tissues and rigid objects. 
Further development by Johnsen et al. (2015) includes the 
earlier mentioned BVH (Sect. 3.2.1) to improve performance 
for high polygon count meshes using a heuristic approach.

Projection-based method (PBM) The main issue with the 
PM is its inability to satisfy the conditions outlined in (20). 
Whilst the LMM-based methods do satisfy these conditions, 
when used within an explicit FE model, the solution depends 
on the time step used for explicit time integration. To deal 
with these shortcomings, projection-based methods treat 
contact conditions strictly kinematically by resolving con-
tact by moving or ‘projecting’ violating (or interpenetrating) 
nodes out of penetration. As such the contact conditions (20) 
are satisfied, whilst the computational cost of projection is 
significantly smaller than for LMM-based approaches. Since 
PBMs are strictly kinematic, the contact force is unknown. 
Cirak and West (2005) use a momentum-based approach to 
derive the contact force, based on the momentum exchange 
between interacting nodes. Interpolation is used when 
nodes hit faces instead of other nodes. Momentum is cal-
culated from the mass and velocity of the nodes in contact. 
The method is useful for impact modelling but less so for 
quasi-static approaches as there is little or no momentum 
exchange. The partial Dirichlet–Neumann (pDN) contact 
method described by Yastrebov (2013) is also projection 
based. The non-penetration conditions (20) are enforced 
by projection of the (slave) nodes onto the (master) surface 
using the Dirichlet boundary conditions. Tangential contri-
butions including friction are treated as Neumann bound-
ary conditions. The method was not originally designed for 
explicit FE though the use of a Dirichlet boundary condition 
along the normal direction of the contact surface leads to a 
more robust contact resolution due to having no dependency 
on the reaction force and the time step in explicit FE. Due to 
the process of childbirth being a slow quasi-static process, 
the relative velocities of the contact surfaces remain small 
and no impact is present nor do we consider any friction 
at this stage. As such, the adaptation of the pDN method 

for our purpose has resulted in the projection-based contact 
method algorithm illustrated in Fig. 3. The slave surface 
nodes are in blue colour, and the master surface is pink. The 
issue that arises is that in between one time step �t = h , a 
free node � at position �t−h will have penetrated the surface 
ending up at position �t whilst violating the HSM conditions 
described earlier. We wish to move the node to the position 
�p = �i + � where �i is the intersection point of node � with 
the master surface and � is the tangential slip that would 
have occured within the time step. Rather than calculating 
the exact position of �i , it is more straightforward to project 
�t in the direction of the master surface’s normal � over the 
distance dt (gap) which is obtained from:

where �o is an arbitrary node on the master’s intersection plane 
(plane origin). The projected position �p is then given by:

Algorithm 4 in “Appendix 3’ further describes the imple-
mentation of the projection-based contact method.

3.3  Calculating the contact force

Since the proposed pDN method only satisfies the non-pen-
etration conditions, the contact force needs to be calculated 
separately as part of the explicit FE formulation we outlined 
in Sect. 3.1. The FEM integrates stress over element volume to 
evaluate nodal forces. Here, nodal forces are evaluated across the 
element surface. Therefore, we adopt the finite volume method 
(FVM) (Teran et al. 2003) to evaluate the stress-based contact 
force. “Appendix 1” illustrates the basic principle of calculating 
a nodal force for a 2D triangular element. Extending to a 3D 
tetrahedron (see Fig. 4), we get for the nodal force at node i:

(23)dt = (�t − �o) ⋅ �

(24)�p = �t + dt�

(25)fi = −

n∑
j=1

1

3
�j(aj,1�j,1 + aj,2�j,2 + aj,3�j,3)

Fig. 3  The principle behind the implemented pDN method. Blue 
nodes are part of the slave surface penetrating the pink master sur-
face. The node � at time t − h (�t−h) will interpenetrate the master 
surface at the next time step ( h = �t ) ending up at position �t . To sat-
isfy the HSM conditions, �t is projected back to the surface to end up 
at the position �p = �i + � = �t + �t where �i is the intersection point 
and � the tangential slip vector
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�j is the Cauchy stress in element j; aj,k, �j,k, k = 1… 3—
areas and normals, respectively, of the faces of element j 
comprising node i (current or spatial configuration); n is the 
number of elements of the surrounding volume around node 
i. Replacing the Cauchy stress with the nominal stress and 
using Nanson’s formula to express areas and normals in the 
reference (material) configuration (Holzapfel 2000) gives:

where �j is the nominal stress tensor for element j;�j,l,Aj,l 
are the normal and area, respectively, of the node i adjacent 
to face l of element j in the reference configuration. The sum 
of the product of normals and areas can be pre-computed per 
element j: bj =

1

3

∑
l≠j Al�l . Additionally, for a tetrahedron, 

the following relation holds: 
∑4

k=1
Ak�k = 0 . Putting this 

together, we arrive at the matrix �m:

As such, force contributions of one element e to each of its 
nodes as derived from the FVM can be written in the nodal 
force contribution matrix:

With gk , the nodal force contributions of element e to node 
k. Equation 10 in Sect. 3.1 (TLED) also represents the indi-
vidual element contribution to the nodal forces and has to 
equate in absolute value (though opposite sign) to the force 
derived in Eq. 28 which gives3:

(26)fi = −

n∑
j=1

1

3
�j(Aj,1�j,1 + Aj,2�j,2 + Aj,3�j,3)

(27)�m = −
1

3
[A1�1 A2�2 A3�3 A4�4] =

[
b1 b2 b3 b4

]

(28)f e
FVM

= ��m = [g1 g2 g3 g4]
T

(29)��m = −V0��
T��T

Since � = �� and � = �T (Holzapfel 2000), the term ��T in 
Eq. 29 can be replaced by � which cancels out with its left-
hand side equivalent resulting in:

3.4  Implementation

The underlying architecture of the birth simulation software 
is an entity-component system (ECS) (Nystrom 2014). An 
ECS works well in computer game styled software where 
many ‘entities’ use similar generic components. An entity 
identifies an object, e.g. fetal head, pelvis, pelvic floor mus-
cle. It will typically encapsulate this object’s position, ori-
entation, velocity and so forth, but it will not contain any 
methods with respect to the behaviour of the object. This is 
held in different (generic) components that relate to systems, 
e.g. systems for rendering, physics, object manipulation 
(UI), camera, keyboard and windows. As such, behaviour 
is decoupled from the actual object. Figure 5 shows an ECS 
diagram for the fetal head in the simulation.

The requirement for interactive (realtime) rates in our 
childbirth simulation dictates that the computations are to 
be performed within small time periods (preferably smaller 
than 16 ms). To facilitate this, various underlying systems 
need to run in parallel. Figure 6 shows a flow chart of all 
main systems as part of the simulation. The TLED imple-
mentation is run on the GPU using the OpenCL4 API. Note 
that other research teams have developed GPU-based imple-
mentations of the TLED method using the NVidia CUDA5 
technology (Taylor et al. 2008; Johnsen et al. 2014). Figure 7 
gives an overview of each stage of the TLED implementa-
tion. Each of the stages of pre-computation, element and 
node processing are described in Algorithms 1–3 in “Appen-
dix 3”. The pre-computation step is executed once, whereas 
the nodal and elemental updates are constantly updated in 

(30)�m = −V0��
T

Fig. 4  FVM integration for a 3D region showing a node i and the ele-
ments of its surrounding polygon in the reference (left) and current 
(right) configurations. The coloured region shows the neighbourhood 
in which the stress is integrated. Aj(aj) and �j(�j) are the area and 
normal, respectively, for the reference (current) configuration of face j 

Fig. 5  An entity-component system (ECS) diagram for the fetal head

3 The proof of this equality is provided in “Appendix 2”.

4 https ://www.khron os.org/openc l/.
5 https ://devel oper.nvidi a.com/cuda-zone.

https://www.khronos.org/opencl/
https://developer.nvidia.com/cuda-zone
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a continuous cycle of data exchange between the two ker-
nels. The nodal displacement updates at the next time step 
t + 1 are calculated using an explicit FE solver with Verlet 
numerical integration:

where u is the nodal displacement, �t , the external force 
vector, �t , the internal force vector, both at time t and the 
pre-computed constants A,B,C are:

(31)ut+1 = A(�t − �t) + But + Cut−1

where � is the mass matrix and � the damping matrix. 
Convergence to the correct solution is conditional to a suf-
ficiently small time step, Δt , according to the Courant-Frie-
drichs-Lewy (CFL) condition (Lewy et al. 1928).

Figure 8 shows the basic class diagram of the TLED 
implementation.

The implementation of the pDN contact method is illus-
trated in Algorithm 4 in “Appendix 3”. The main nodal 
boundary condition (BC) used in the pDN method is a plane 
constraint.6 A penetrating slave node, with a plane constraint 
attached to it, will be projected onto the master surface plane 
which is described by the four parameters of the plane equa-
tion (step 2 in Algorithm 4). The contact detection process 
is executed on the CPU.

Figure 6 illustrates the parallel execution of TLED and 
contact detection at the abstract level.

Figure 9 shows how the contact and TLED processes 
interact with one another at the process level. During the 
sync event, data are exchanged between CPU (contact) and 
GPU (TLED). This allows TLED to use the latest contact 
conditions as BCs until the next sync event, whilst the latest 
nodal deformations are considered to be constant in the con-
tact detection until the next sync event. The system employs 
amortised contact detection where contact is performed once 
per frame as opposed to performing it at every TLED sub-
task (red and green blocks in Fig. 9) which require a com-
plete TLED update each. The per-frame simulation time step 
is 16 ms, whereas TLED subtask time steps are considerably 
smaller. The reason for this is to allow the system to be 
updated in real time as CPU-processed contact detection at 
every TLED subtask step is not feasible due to data transfer 
overheads.

4  Experiments

In this section, we cover first a number of experiments on the 
validation of the implemented contact method, followed by 
the main experiment covering the ‘acid test’ as to whether 
our VR childbirth simulator is capable of showing the same 
biomechanical behaviour of a real physiological childbirth 

(32)

A =
(

1

Δt2
� +

1

2Δt
�
)−1

B =
2

Δt2
�A

C =
1

2Δt
�A +

B

2

Fig. 6  Flow chart of the processes involved in the childbirth simula-
tion. A sync event at the end of each frame enables synchronisation 
of the concurrent processes related to contact detection, rigid body 
dynamics and TLED

Fig. 7  The core steps of the TLED algorithm as implemented in the 
childbirth simulation software. The two kernels constantly exchange 
data. SPK is the second Piola–Kirchoff stress. See also Algorithms 1–3 
in “Appendix 3”

6 The software facilitates the use of other nodal BCs through dis-
placement, linear and spring constraints.
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by exhibiting the four critical CMs of the fetal head: flexion, 
internal rotation, extension and external rotation.

4.1  Contact method validation

We compared the implemented projection-based contact 
method with TLED against the tried and tested ABAQUS 
software7 in explicit contact mode. A cube with sides of 
10 cm and Neo-Hookean hyperelastic material proper-
ties was used with a bulk modulus, k = 1 MPa and a 
shear modulus, � = 66 kPa (corresponding to pelvic floor 
muscle tissue—see Table 3). These moduli needed to be 

Fig. 8  Basic class diagram of the TLED implementation in the childbirth simulation software. All computations are performed in the Calcu-
lator subclasses, and the FE data are stored in the Assembly class

Fig. 9  The contact method executed on the CPU generates the con-
tact boundary conditions (BCs). During the sync event, the data are 
exchanged between the CPU (contact) and GPU (TLED). Green and 

red sub-tasks on the GPU as part of TLED depict per-element and 
per-node kernels, respectively

Table 1  Comparison of the deflection in the negative y-direction 
u
y,max in mm (note that minus signs have been omitted for clarity) for 

the BirthView and ABAQUS explicit FE with contact solvers, follow-
ing the sphere on cube experiment

Two spheres of 10 and 15 kg, respectively, were used. The number of 
elements for the cube varied between 126 and 12,490 elements

Load (kg) #tet BirthView ABAQUS Diff. (%)

10 126 17.86 14.85 − 17
558 19.23 16.11 − 16
1256 19.53 17.77 − 9
5720 20.19 20.40 + 1
12,490 20.21 21.27 + 5

15 126 26.74 20.04 − 25
558 27.69 21.53 − 22
1256 27.56 24.25 − 12
5720 28.77 27.48 − 5
12,490 28.72 28.42 − 1

7 https ://www.3ds.com/produ cts-servi ces/simul ia/produ cts/abaqu s/.

https://www.3ds.com/products-services/simulia/products/abaqus/


A computer-based simulation of childbirth using the partial Dirichlet–Neumann contact method…

1 3

converted into Neo-Hookean polynomial coefficients where 
C10 = �∕2 = 33 kPa and D1 = 2∕k = 0.002 kPa−1 for use in 
ABAQUS Explicit.

The cube consists of first-order tetrahedral elements and 
all bottom plane nodes are encastred. The number of ele-
ments was increased from 126 elements up to 12490 ele-
ments in five steps. A solid sphere (or ball) with a diameter 
of 10 cm was then gently released (initial velocity is 0) on 
top of the cube. Two mass densities were applied to yield 
spheres of 10 and 15 kg, respectively.8 The time step was 
set to 16 ms in BirthView (the name of our simulation soft-
ware), whereas ABAQUS ran at a stable time step increment 
of 0.001 ms.

Table 1 shows the results.
Figure 10 shows the (10 kg) sphere with initial contact on 

the top surface on the cube (left) and at maximum deflection 
uy,max in the negative y direction (right).

The results show that the BirthView physics engine 
(TLED/pDN) exhibits less sensitivity to the number of ele-
ments used as compared to ABAQUS explicit contact which 
underestimates the deflection at lower element counts. This 
phenomenon is clearer at the higher weight of 15 kg (which 
is the mass equivalent to the force of a combined volitional 
push and the weight of the baby) where the percentage dif-
ference between the deflection at 126 elements versus 12490 
elements is just 7% in BirthView, whereas it is almost 30% 
in ABAQUS. Ignoring this trend, the deflection at the higher 
element counts corresponds well between BirthView and 
ABAQUS with differences of no more than 5%.

4.2  Time step sensitivity

To illustrate the relative insensitivity to the time step of 
the penalty-based method, implemented in BirthView, a 
comparison to Heinstein’s method (Heinstein et al. 2000) 
is facilitated through the following experiment: The same 
cube with sides of 10 cm and pelvic floor muscle hyperelas-
tic properties is used. A square plate of 10 × 10 cm is gently 
lowered on the cube and the deflection, uy,max , in the negative 
y direction is measured for different time steps. Table 2 and 
Fig. 11 show the results. It is clear that Heinstein’s method 
only converges to the true solution when the time step is 
sufficiently small, whereas the penalty-based method exhib-
its the same solution across all tested time step magnitudes 
starting from the 16 ms upper bound.

Fig. 10  A solid sphere of 10 kg is gently lowered on a hyperelastic 
cube (1256 elements with pelvic floor muscle tissue properties) in 
BirthView. All nodes on the bottom plane of the cube are encastred. 
Left: initial contact. Right: maximum deflection uy,max = −19.53mm

Table 2  Comparison of BirthView’s penalty-based contact method 
and Heinstein’s method on loading a hyperelastic cube with a pres-
sure plate of 186.6 N at different values of the time step

The corresponding compression values u
y,max in mm are shown for 

each of the two methods in columns 2 and 3, respectively, and the 
relative difference in column 4

Time step (ms) u
y,max (mm) Diff. (%)

BirthView Heinstein

16 10.61 12.37 16.6
4 10.61 12.24 15.4
1 10.61 11.44 7.8
0.25 10.61 10.73 1.1
0.1 10.61 10.63 0.19
0.01 10.61 10.62 0.09

Fig. 11  Comparison of BirthView’s projection-based contact method 
(blue curve) and Heinstein’s method (red curve) on loading a hyper-
elastic cube with a pressure plate of 186.6 N at different values of the 
time step. The abscissa shows the time step in ms, the ordinate the 
value of uy,max in m

8 The weights have been selected on the basis of the force applied 
during a volitional push during childbirth which, including the weight 
of the baby, range approx. between a mass equivalent of 10 and 15 kg.
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4.3  Childbirth simulation

Due to the complex nature of combining TLED and contact 
interaction algorithms, described earlier, an incremental 
approach was needed to arrive at the current childbirth simu-
lation which we present next. The various experiments that 
laid the foundation of the simulation were successfully com-
pleted and validated and can be found in Gerikhanov (2017). 
The current version is capable of simulating physiological 
childbirth with the baby in occiput anterior (OA) position. 
OA implies that the back of the baby’s head presents to the 
front of the maternal pelvis near the time of expulsion and is 
the most common presentation (Williams Obstetrics 2014). 
At the start of the second stage of labour, the back of the 
baby’s head either faces left from the mother’s viewpoint 
(LOA) or right (ROA).9

The simulation’s components and their material proper-
ties (Hoyte et al. 2008) are listed in Table 3. Figure 12 shows 
the pelvic floor muscle mesh and the encastre points con-
necting the muscle to the bony pelvis. The latter was derived 
from the Visible Female (US national library of medicine 
1996), whereas the pelvic floor muscles were derived from a 
22-year-old subject of the BodyParts3D library (Mitsuhashi 
et al. 2009). The fetal head is a decimated and adapted ver-
sion of the detailed fetal skull model used in Lapeer and 
Prager (2001) and is shown in Fig. 13. It is attached to the 
fetal trunk via a stiff combined linear and torsional spring—
see Fig. 14. The fetal trunk was obtained from MR scans of a 
stillborn baby. The sacrospinous ligaments are triangular in 

shape and connect, on both left and right sides, through their 
triangular base to the edge formed by the sacrum and coccyx 
and their triangular apex to the ischial spine—see Fig. 15. 
Both the sacrospinous ligaments and the uterine cervix were 
modelled manually using anatomical images (Drake et al. 
2014) and the Blender software (Blender Online Community 
2015).

The intra-uterine pressure (IUP) lays at the basis of the 
uterine expulsion force which applies to the fetal buttocks 
and is at its peak once the uterine cervix has fully dilated 
which marks the end of the first stage of labour and the start 
of the second stage of labour. The IUP varies periodically 
over a period of approximately 3 min with a basal and peak 
pressure. Quantitative experiments on the intra-uterine pres-
sure (IUP) have been performed since the 1950s (Turnbull 

Fig. 12  The deformable pelvic floor mesh and its encastre points to 
connect the assembly to the maternal bony pelvis

Table 3  Geometrical components of the childbirth simulation

All elements are first-order. Material properties of the soft tissues are adopted from Hoyte et al. (2008)

Component #elements Material property Boundary conditions

Fetal head 7900 triangular shell Rigid Connected to neck
Fetal neck Two springs Linear 100 N/m Fixed to fetal head and trunk

Torsional 100 Nm/rad Rotations in sagittal and coro-
nal planes are constrained 
by head to body contact

Rotations in the transverse 
plane are constrained by the 
torsional spring

Fetal trunk 1216 triangular shell Rigid Free moving
Bony pelvis 14,000 triangular shell Rigid Encastred (immobile)
Uterine cervix 1,024 tetrahedral Neo-Hookean HE: m = 66 kPa, K = 1 MPa Fixed in x, y, z at pubic bone
Pelvic floor muscles 28,700 tetrahedral Neo-Hookean HE: m = 66 kPa, K = 1 MPa Encastred—see Fig. 12
Sacrospinous ligaments 12,320 tetrahedral Neo-Hookean HE: m = 160 kPa, K = 1 MPa Encastred—see Fig. 15

9 The current simulation can be run in real time on a quadcore 
(2.9 GHz per core) laptop or desktop with at least 16 GB (1866 MHz) 
of memory and a high-end video adapter card with at least 4  GB 
GDDR5 dedicated memory.
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1957). For our experiment, we adopted more recent values as 
reported by Ashton-Miller and DeLancey (2009), i.e. a base-
line force of 16 N at rest, 54 N during a uterine contraction 
(peak) and 120 N during a volitional push. The initial posi-
tion of the fetal head is above the pelvic brim upon which 
the uterine force is applied and the TLED/contact algorithm 
enters in an update loop, as previously shown in Figs. 6, 
7 and 9, to, respectively, detect contact between head and 
pelvis, resolve the contact and update the deformation of 
the soft tissues and rigid body mechanics of the fetal head, 
neck and trunk. The main objective of the experiments is 
to observe the critical cardinal movements of the fetal head 
which occur in the vast majority of physiological (‘natu-
ral’) childbirths, i.e. in the order: flexion, internal rotation, 
extension and external rotation. Figure 16 shows the posi-
tion, flexion (rotation in the sagittal plane) and rotation (in 
the transverse plane) at each stage of the expulsion of the 

virtual baby. Flexion (negative ‘deflexion’—orange curve) 
starts around the 36 s mark followed by internal rotation 
(red curve) reaching a maximum around the 120 s mark, fol-
lowed by extension (or deflexion—orange curve) just above 
the 144 s mark followed by full external rotation around the 
180 s mark. Figure 17 shows snapshots of the simulation at 
the four distinct stages of flexion, internal rotation, extension 
and external rotation.10

5  Discussion

The experiment reported in Sect. 4.3 included all soft tissues 
currently modelled, i.e. the pelvic floor muscles (aka Leva-
tor Ani Muscle), the sacrospinous ligaments and the uterine 
cervix. From preliminary experiments, not fully reported 
here, we started with a bony pelvis, fetal head and uterine 
cervix only, then added each of the soft tissues separately. 
Table 4 shows which of the critical CMs were observed in 
each of these configurations. The final configuration (Case 
4) corresponds to the experiment reported in Sect. 4.3 where 
all soft tissues have been added. It can be seen that only in 
this case are all the critical CMs observed. It is interest-
ing to note that this does not happen if either the pelvic 
floor muscles (Case 2) or the sacrospinous ligaments (Case 
3) are present. If the latter is added (Case 3), it makes no 

Fig. 13  Rigid fetal head model with 7900 triangular first-order shell 
elements

Fig. 14  A combined linear and torsional (stiff) spring connects the 
fetal head to the fetal trunk and functions as the fetal neck

Fig. 15  The sacrospinous ligaments mesh model containing 12,320 
tetrahedral first-order elements. The frontal part of each ligament is 
encastred to the ischial spines, whereas the back part is encastred to 
the sacrum

10 A video showing the full process is available as additional mate-
rial.
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difference at all as the outcome is the same as in Case 1 
(neither pelvic floor muscles nor sacrospinous ligaments). 
For Case 2 (pelvic floor muscles only), flexion is observed 
and internal rotation goes halfway but then does not progress 
any further so the virtual fetus never gets delivered. It is only 
when both pelvic floor muscles and sacrospinous ligaments 
are added that all CMs are observed and the virtual fetus 
is successfully delivered. This can also be observed from 
the trajectories shown in Fig. 16 and the screen shots from 
BirthView in Figs. 17 and 18. A well-known phenomenon 
during physiological childbirth is the fetus moving upwards 
and downwards (bouncing) due to the pulsating expulsive 
force even though the net motion is downwards (Bamberg 
et al. 2012). This phenomenon is also present in the Birth-
View Case 4 simulation and can be most clearly observed 
during the fetal head’s extension phase as illustrated in the 
supplementary video and from the wavy patterns in the blue 
curve in Fig. 16 which corresponds to the fetal head posi-
tion or ‘station’. To assess robustness, Case 4 experiments 
with realistic variations in the initial position, the fetal head 

and pelvic geometry (Hall et al. 2007), were run (but not 
reported here) and the four critical CMs were still observed 
resulting in the delivery of the virtual fetus.11

In Fig. 16, we observe that the total simulation time is 
approx. 216 s which is just under 4 min. This is much faster 
than the time the second stage of labour on average lasts 
during a real childbirth which is approx. 20 min to 2 h (Wil-
liams Obstetrics 2014). There are several reasons for this. 
Firstly, various surrounding maternal organs (e.g. the blad-
der) have been ignored in the model as they do not actively 
participate though they do indirectly constrain the passage. 
Secondly, there will be varying degrees of friction at times 
due to variation in fluid content between contact surfaces. 
Finally, the pelvic floor muscle model in the simulation has 
strictly hyperelastic properties and no visco-elastic proper-
ties that will slow down progress of the simulated childbirth 
process.

Fig. 16  The fetal head position (blue curve), rotation in the sagit-
tal plane [orange curve: flexion (–) and extension/deflexion (+)] and 
rotation in the transverse plane (red curve) throughout the simulation 

starting with the fetal head above the pelvic brim in ROA position 
and ending with the head being expelled

11 The uterine cervix only affects flexion at the start of the process by 
pre-flexing the head. It does not affect the other cardinal movements 
due to it being fully dilated.
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Fig. 17  A VR childbirth simulation run in BirthView: top left: initial 
(LOA) position; top right: flexion; middle left: internal rotation; mid-
dle right: extension start; bottom left: extension finish; bottom right: 

external rotation. The colour code encodes the displacement of the soft 
tissues where blue starts at 0.0 mm, then 6.4, 12.8 (cyan), 19.2, 25.6 
(green), 32.0, 38.4, 44.8 (yellow), 51.2 (orange) and 57.6 mm (red)
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6  Conclusion

We have presented a methodology to facilitate a VR 
computer-based physiological childbirth simulation. We 
described the underlying model, including the mathemat-
ics, soft tissue models and processing using TLED, the 
projection-based contact method and their implementation 
on the GPU. It was shown from quantitative (head rotation 
values) and qualitative (observation of the critical cardinal 
movements) results that the fetal motions in the VR-based 
simulation are remarkably similar to its motions in a real 
scenario.

The current simulator which uses average-sized models 
of fetal and maternal anatomy will be further developed for 
educational purposes. From our conversations with health 
professionals, it has become apparent that trainee mid-
wives and obstetricians could greatly benefit from a tool 
that allows them to look inside an otherwise largely non-
transparent process. To arrive at such a tool, more complex 
scenarios should be tested. First of all, further stability test-
ing is needed (which are already ongoing at the time of writ-
ing) to assess variations in the geometrical size and shape 
of key anatomical components (e.g. smaller or larger than 
average fetal head, different types of pelvis) and the material 
properties of the soft tissues (looser or stiffer cervix, pelvic 
floor muscles and sacrospinous ligaments). Secondly, differ-
ent positions of the fetus at the start of the second stage of 
labour should be tested. The most important one would be 
shoulder dystocia (SD) as it is one of the most critical situa-
tions that can occur during childbirth in developed countries 
(Crofts et al. 2006). The simulator could also be used in 
conjunction with a force-feedback hardware device to do 
training of instrumental delivery such as obstetric forceps 
(Moreau et al. 2007).

Additional improvements, of a biomechanical nature, to 
potentially enhance soft tissue behaviour and interaction 
include the addition of visco-elastic material properties to 
the soft tissues to improve realism in terms of duration, a 
deformable fetal head including moulding (Lapeer and 

Prager 2001), and articulated arms and legs to simulate the 
delivery of the fetal trunk once the head has been delivered. 
In the longer term additional maternal anatomical models 
should be added as well, i.e. a full uterus and abdominal 
organs such as the bladder.

Ultimately, the simulator could be used to predict adverse 
outcomes prior to the actual childbirth. This requires the 
currently ‘average-sized’ simulator to be transformed into a 
‘patient-specific’ sized simulator. Although this is perfectly 
doable with modern day medical imaging technology, the 
following challenges would have to be dealt with:

• Key anatomical components of the mother and fetus 
would be segmented from high-resolution and correctly 
weighted MR images obtained a number of weeks before 
the predicted delivery. This would also require the scal-
ing of the fetal anatomy to conform with the expected 
size at birth. Growth charts could be used for this pur-
pose.

• The average models can be warped through non-rigid 
registration algorithms to correspond with the shape and 
size of the patient-specific models (including the addi-
tional scaling mentioned before). Lapeer et al. (2009) 
developed a fast non-rigid registration algorithm on the 
GPU that registers high-resolution medical image vol-
umes in less than one second.

• To assess the material properties of the maternal soft 
tissue, ultrasound elastography or MRE (Magnetic Reso-
nance Elastography) could be used.

Further applications of the simulator could include the 
assessment of structural changes to soft tissues at the mech-
anobiology level due to excessive deformation potentially 
followed by permanent tissue damage. In the case of the pel-
vic floor muscles, this could result into post-partum incon-
tinence, whereas excessive moulding of the fetal head could 
cause intracranial haemorrhage(s).

Table 4  Four experiments with 
different configurations of soft 
tissues added

Case 4 corresponds to all soft tissues added which is the only configuration that exhibits all four critical 
cardinal movements (CMs) thus leading to successful delivery of the virtual fetus. The other cases grind 
to a halt at the internal rotation stage which never fully completes and consequently does not allow the VR 
fetus to progress beyond that stage

Case Bony pelvis Uterine 
cervix

Pelvic 
floor 
muscles

Sacros-
pinous 
ligaments

Flexion Internal rotation Extension External 
rotation

1 Y Y N N N ∼ 1∕3 – –
2 Y Y Y N Y ∼ 1∕2 – –
3 Y Y N Y N ∼ 1∕3 – –
4 Y Y Y Y Y Full Y Y
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Appendix 1: Nodal contact force for 2D 
triangular element

Here, we describe the underlying fundamentals of the FVM 
(finite volume method) for later calculation of the nodal con-
tact force for 3D tetrahedrons using a simplified case for 2D tri-
angles first. Consider the divergence (Gauss’) theorem in 2D:

In a linear (constant strain) element, the Cauchy stress � is 
constant over the element thus:

This implies that the surface integral in the left-hand side 
of Eq. 33 is zero, and hence for the 2D triangular element 
shown in Fig. 19 we obtain:

(33)∫A

(∇ ⋅ �)dA = ∮s

(� ⋅ �)ds

(34)∇ ⋅ � = 0

(35)∫
�Ω1

��ds + ∫
�Ω2

��ds + ∫
�T1

��ds + ∫
�T2

��ds = 0

Which can be rewritten as:

The nodal force fi is derived by applying Eq. 36 for all the 
surrounding elements of node i:

(36)∫
�Ω1

��ds + ∫
�Ω2

��ds = −∫
�T1

��ds + ∫
�T2

��ds

(37)fi = ∮
�Ω1

��ds = −
∑
j
∫
�Tj

��ds

Fig. 18  Snapshots of the same simulation as shown in Fig. 17 showing the effect on the sacrospinous ligaments at the stages of internal rotation 
(left) and external rotation (right)

Fig. 19  FVM integration for a 2D region showing a node i and the 
elements of its surrounding polygon. The coloured region shows the 
neighbourhood in which stress is integrated. The lighter coloured tri-
angle shows the boundary segments �Ωj and edge segments �Tj

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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The length of �Tj is half the length of corresponding edge Ej 
thus for n edges with normals �:

Appendix 2: Proof of contact force equality 
and reaction forces

We assume that the forces in Eqs. 10 and 28 are equal and 
thus lead to Eq. 29 and subsequently Eq. 30. The proof is 
based on evaluating the matrix of shape function derivatives 
�� in function of tetrahedral properties. From the Jacobian 
matrix in Eq. 18, we can derive the inverse Jacobian matrix:

It can be verified that ai, bi, ci correspond to the x, y, z com-
ponents, respectively, of the normal vector to the tetrahedral 
triangular face opposite to vertex i. This implies that the area 
of triangular face i is equal to:

and that the determinant of � is six times the volume of the 
tetrahedron.

If we consider the vector �i =
[
ai bi ci

]
 and the normalised 

vector �̂i = �i∕|�i| , where �̂i = �i and |�i| = Ai , we get:

We can now rewrite Eq. 39 as:

Substituting Eq.  42 into Eq.  12 and substituting 
A4�4 = −(A1�1 + A2�2 + A3�3) we get:

Rewriting Eq. 27 and relating it to Eq. 43, we get:

(38)fi = −

n∑
j=1

1

2
�(Ej�j + E(j+1)mod n�(j+1)mod n)

(39)�−1 =
�ec

�X
=

1

6V0

⎡
⎢⎢⎣

a1 b1 c1
a2 b2 c2
a3 b3 c3

⎤
⎥⎥⎦

(40)Ai =
1

2

√
a2
i
+ b2

i
+ c2

i

(41)�i = 2Ai�i

(42)
�ec

�X
=

1

3V0

⎡⎢⎢⎣

A1�1

A2�2

A3�3

⎤⎥⎥⎦

(43)�� =
1

3V0

⎡⎢⎢⎢⎣

A1�1

A2�2

A3�3

A4�4

⎤⎥⎥⎥⎦

(44)�m = −
1

3

⎡⎢⎢⎢⎣

A1�1

A2�2

A3�3

A4�4

⎤⎥⎥⎥⎦

T

= −V0��
T

Which is equal to Eq. 30.   □

Reaction forces
Nodal forces contributed by element e are evaluated as:

The nominal stress � relates to the traction force � and area 
normal � as � = �� . The force acting on area A (reference 
configuration) is then:

This shows that the force acting on an element e in Eq. 45 
as calculated from our contact model corresponds to the 
general force as a result of the traction force in an element. 
As such, the contact reaction force for face i from elements 
j = 1… 4 can be derived as:

(45)fe = ��m =
1

3
�

⎡
⎢⎢⎢⎣

A1�1

A2�2

A3�3

A4�4

⎤
⎥⎥⎥⎦

T

(46)f = �A = ��A

(47)Ri = fi =
1

3
�Ai�i = −

1

3

∑
j≠i

�Aj�j

Appendix 3: Algorithms

Algorithm 1 TLED pre-computation of constants
1: Calculate element volumes according to Eq.7
2: Calculate node masses from element volumes and mate-

rial density
3: Calculate the matrix of shape function derivates Dh ac-

cording to Eq.12 and store in the global buffer m Dh
4: Calculate per element nodal indices based on element con-

nectivity and store in nodeInds
5: Calculate the Verlet integration constants A,B and C -

see Eq. 32) - and store in m ABC

Algorithm 2 TLED element processing
1: for all elements in assembly do
2: Collect nodal displacements into float u[4][3] using

the per element nodal indices list from nodeInds
3: Extract the shape function derivative matrix Dh from

the global buffer m Dh
4: Calculate F from u and Dh (Eq. 11)
5: Calculate the Right Cauchy-Green deformation tensor

C from F (C = FTF)
6: Calculate the SPK stress S from C , F and the Lamè

constants (µ andλ)
7: Calculate the nodal force matrix Fe using the SPK

stress (Eqs 28 and 29)
8: Spread the values from Fe to the global buffer Fx using

the nodal indices nodeInds
9: Calculate the Von-Mises stress from the components of

S and store the value into the m VMS buffer.
10: end for
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Algorithm 3 TLED nodal processing
1: for all nodes in assembly do
2: Sum the total internal nodal forces from individual el-

ement contributions
3: Calculate the next displacement of the node, using

the precomputed values stored in m ABC and store in
a buffer m U new (Eq. 31)

4: Apply the boundary conditions (Algorithm 4) for nodal
displacements and add current external force loads into
the external force vector R

5: end for

Algorithm 4 Projection based contact
1: Retrieve the previous and current node positions pt−h

and pt and the plane equation of the master surface to
derive n and the arbitrary point on the plane po

2: Calculate the gap dt according to Eq. 23
3: Find node penetration pp according to Eq. 24
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