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ABSTRACT 

Phenotypic differences between species and populations can reveal much about how 

they have adapted and responded to a complex set of environmental cues. Studies have 

shown that genetic control of some traits is centralised to single genomic regions, while 

others are regulated at many unlinked loci dispersed throughout the genome. One trait 

that shows an enormous degree of variation between plant species is flower colour, 

and its tractability makes it an ideal trait for studying genetic differences underlying 

species differentiation. Antirrhinum majus has long been used as a model for studying 

floral traits, including colour. The 20-30 wild Antirrhinum species use diverse patterns 

on their flowers, formed by producing and accumulating magenta anthocyanins and 

yellow aurones in different tissues, to attract pollinators. In this project, I sought to 

genetically map flower colour phenotypes to the Antirrhinum genome. Several 

Antirrhinum species were crossed to A. majus to generate segregating populations. I 

used a combination of bulked segregant analysis, individual genotyping of segregating 

populations and analysis of genome sequences from wild accessions to test whether 

genes governing each colour trait were concentrated at particular loci or dispersed 

across many chromosomes. I found that variation in magenta not previously 

characterised maps to the known ROSEA-ELUTA (ROS-EL) locus where transcription 

factors regulating anthocyanin production are encoded. Yellow phenotypes from three 

species mapped to chromosome 2, where there is reduced recombination between A. 

majus and many wild species, and where an aurone biosynthetic enzyme is encoded. 

However, there appear to be some additional modifiers of flower colour in these 

species, not linked to the ROS-EL and chromosome 2 loci. These results fit neither the 

central- nor dispersed-control models of genetic control, but rather an intermediate 

hypothesis – that flower colour can be changed by selection acting on a modest number 

of loci spread throughout the genome. 
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CRYNODEB 

Gall gwahaniaethau mewn ffenoteip rhwng rhywogaethau a phoblogaethau ddatgelu 

llawer am y modd maen nhw wedi addasu drwy ymateb i gyfresi cymhleth o 

arwyddion amgylcheddol. Mae ymchwil wedi dangos fod rheolaeth enetig rhai 

nodweddion wedi ei ganoli ar rannau penodol o’r genom, tra bo rheolaeth 

nodweddion eraill yn digwydd mewn nifer o rannau di-gyswllt wedi eu gwasgaru ar 

hyd y genom. Un nodwedd sy’n arddangos amrywiaeth aruthrol rhwng rhywogaethau 

o blanhigion yw lliw blodau. Mae hydrinedd y nodwedd hon yn ei gwneud yn un 

ddelfrydol ar gyfer astudio newidiadau genetig sy’n tanseilio gwahaniaethau rhwng 

rhywogaethau. Mae’r planhigyn Antirrhinum majus wedi ei ddefnyddio ar gyfer astudio 

nodweddion mewn blodau, gan gynnwys lliw, ers dros ganrif. Mewn rhywogaethau 

cysylltiedig – y 20-30 aelod o’r genws Antirrhinum a geir yn y Canoldir – gwelir 

patrymau amryfath ar flodau’r planhigion. Ffurfir y lliwiau a’r patrymau yma gan 

gynhyrchu pigmentau majenta (anthocyanin) a melyn (aurone) mewn rhannau 

gwahanol o’r petalau, er mwyn dennu gwenyn fel peillwyr. Yn yr ymchwil yma, 

edrychais ar ffenoteipiau lliw rhai o’r gwahanol rywogaethau a’u mapio i enom 

Antirrhinum. Fe groeswyd llawer o rywogaethau gyda A. majus i greu poblogaethau yn 

arwahanu am ffenoteipiau gwahanol. Defnyddiais nifer o ddulliau genetig a genomig 

i brofi dwy ddamcaniaeth gyferbyniol – ydi ffenoteipiau lliw blodau wedi eu rheoli yn 

ganolog ar un locws neu ar wasgar drwy’r genom? Fe welais fod amrywiaeth mewn 

patrwm majenta oedd heb ei hynodi o’r blaen wedi ei reoli ar locws oedd wedi ei 

ddisgrifio yn barod, a bod llawer o ffenoteipiau melyn gwahanol yn mapio i’r un 

mannau a’i gilydd. Fodd bynnag, gwelais hefyd fod gan rai o’r ffenoteipiau yma 

addaswyr gwahanol wedi eu lleoli mewn rhannau eraill o’r genom. Dangosa hyn fod 

rheolaeth enetig yn ffitio damcaniaeth ganolraddol i’r ddwy a osodais ar ddechrau’r 

prosiect. 
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1 Introduction 

1.1 Adaptive variation and its genetic regulation 

Organisms adapt to a complex set of environmental cues. Within a species, this 

adaptive response results in trait variation that is maintained within and between 

populations through a balance of mutation, genetic drift and natural selection. When 

such polymorphisms go to fixation, this results in species-level trait differences 

(Charlesworth and Charlesworth 2010). This can be seen in the diversity found in the 

natural world. 

Evolutionary biologists have long been interested in studying trait variation in the wild 

and the genetic variation that underlies it. During his voyages on the Beagle, Charles 

Darwin observed the variation between inhabitants of different islands in the 

Galapagos. Here, organisms showed specialised adaptations to small-scale habitat 

differences. This is best-illustrated in his famous finches (Geospiza spp), in which 

natural selection has led to different beak shapes and sizes according to food 

availability and the birds’ feeding preferences (Darwin 1859). This has established the 

groundwork for more than 150 years of observational studies and genetic analyses of 

traits under selection. The field now includes work on thousands of different plant and 

animal species, all of which show a diversity of traits as adaptations to their 
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environments. 

1.2 Colour variation 

Nowhere is trait variation more striking than in the diversity of colours and patterns 

seen in nature. Organisms produce colours as warning signals to predators, 

camouflage to hide in different environments, patterns to attract mates or signal to 

pollinators, and to function in metabolic processes such as photosynthesis. Some 

additional colour variation is of unknown evolutionary advantage or may be 

selectively neutral. 

Flowering plants (angiosperms) are a monotypic clade of 369,000 species (Willis 2017) 

that have recruited colour in various organs for different functions. In flowers, colours 

and patterns are finely-tuned to manipulate animals in a way that maximises the 

plants’ reproductive success. Colour is used, alongside other cues such as scent, to 

attract pollinators from a distance, guide them towards specific parts of the flower and, 

sometimes, in specialised ways such as mimicry of insect-rewarding flowers by 

nectarless species (Schiestl and Johnson 2013). 

Many of these colours and patterns have evolved as a result of selection effected by 

animals that interact with the plants, giving rise to convergent evolution of similar 

colours in plants pollinated by the same animals (pollination syndromes), as well as 

highly-specialised plant-pollinator pairings involving mimicry. Red flowers are 

typically pollinated by birds, which have good red colour vision unlike most insects. 

Bee-pollinated flowers tend to be yellow or purple, colours that are better-detected by 

these insects’ visual receptors (Schiestl and Johnson 2013). Contrasting flower colours 

can often be seen in closely-related species that attract different pollinators. The scarlet 

monkeyflower, Mimulus cardinalis (Phrymaceae), has bright red flowers to attract 

hummingbirds, while its close relative, the great purple monkeyflower, M. lewisii, has 

purple-magenta flowers to attract bees. Experimental evidence has shown that flower 

colour alone can lead to a change in pollinator from bumblebees to hummingbirds in 

these Mimulus species (Bradshaw and Schemske 2003). 

M. lewisii also uses patches of yellow pigment surrounded by regions of white to guide 

bees towards a landing patch (Owen and Bradshaw 2011, Yuan et al 2016). Such 

‘nectar guides’ are important in plants as they help increase pollinator efficiency and, 
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thus, pollination efficiency (Hansen et al 2012). These guides range in complexity from 

contrasting spots in particular flower regions (Figure 1.1 a) to a combination of colours 

that produce more elaborate patterns (Figure 1.1 b). Some plants also use structural 

colour to highlight regions on their flowers to pollinators (Figure 1.1 c). This produces 

angle-dependent colour patterns (iridescence) that have been shown to increase 

pollinator efficiency (Moyroud et al 2017). Plants can also use a combination of 

different pigment colours, structural colours, textures and chemical signals to sexually 

mimic pollinators, resulting in a highly specialised plant-pollinator relationship where 

the plants are pollinated by insects attempting copulation (Devey et al 2008) (Figure 

1.1 d). 

 

Figure 1.1 Flower traits used by plants to attract and guide pollinators: a Mimulus guttatus 

flower with red spots on its landing patch (a); an Impatiens flower with magenta and yellow 

nectar guides that converge around the centre of the flower (photograph by Alex Twyford) 

(b); a Hibiscus trionum flower with a dark iridescent ring, from Vignolini et al (2014) (c); 

and an Ophrys flower with an elaborate labellum that resembles the insects that pollinate 

the plants (d). 

1.3 Biochemistry of flower colour 

1.3.1 Flower colour pigments 

Plants produce pigments using several different pathways. Many of these pigments are 

used in flowers to attract pollinators, although some accumulate in other tissues and 

contribute towards different plant processes. The pigments used in flowers fall into one 

of three classes of compounds: flavonoids, betalains and carotenoids. 

1.3.1.1 Flavonoids 

Flavonoids are secondary metabolites that serve a diverse range of functions in land 
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plants. The complex pathway that produces them, discussed in detail in section 1.5.2 

on page 28, has evolved gradually in plants, with more recently evolved clades 

producing novel classes of flavonoids compared to ancient ones (Figure 1.2) (Rausher 

2006). Although famed for the colours they confer to flowers and other plant organs, 

flavonoids play a wide range of roles in plant physiology, including deterring 

herbivores, protecting tissues against damage from ultraviolet light and oxidation, and 

mediating symbioses between plants and fungi (Koes et al 1994). 

 

Figure 1.2 Phylogeny of land plants based on Chase and Reveal (2009) annotated with 

the time of origin of flavonoid biosynthetic enzymes (blue labels) and the occurrence of 

six classes of flavonoids, adapted from Rausher (2006). A green plus (+) indicates the 

documented presence of a flavonoid class; a red minus (−) indicates the possible 

evolutionary loss of a flavonoid class. Enzyme abbreviations: CHS, chalcone synthase; 

CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase; FLS, flavonol synthase; F3′H, 

flavonoid 3′-hydroxylase; F3′5′H, flavonoid 3′5′-hydroxylase DFR, dihydroflavonol 4-

reductase; ANS, anthocyanidin synthase; UFGT, UDP-glucose: flavonoid 

glucosyltransferase; IFS, isoflavone synthase; AUS, aureusidin synthase. 

Several flavonoids are involved in flower colour. The best-studied examples are 
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anthocyanins, which give flowers red to blue hues, depending on the degree to which 

the B ring (Figure 1.3 a) of the molecular backbone is hydroxylated and/or O-

methylated (Figure 1.3 b). The three major anthocyanins are the 3-glucosides of 

pelargonidin, cyanidin and delphinidin, which give orange-red, magenta and purple 

colours, respectively (Glover and Martin 2012). 

 

Figure 1.3 An anthocyanin molecule showing the A, B and C rings, adapted from Glover 

and Martin (2012) (a); the red to blue hues given by anthocyanins according to the degree 

to which the B ring is hydroxylated, adapted from Ananga et al (2013) (b). 

Another class of flavonoids important for flower colour is aurones. These pigments 

give a bright yellow colour to several flowering plant species, mostly in the 

Plantaginaceae and Asteraceae families (Nakayama 2002). They are considered to 

have evolved later than most other major flavonoids and are only found in the 

flowering plants (Rausher 2006). Chalcone, a precursor of flavonoids, can also give a 

pale-yellow colour to flowers, including in some Dianthus and Cyclamen species. 

1.3.1.2 Betalains 

Some plants with red- and purple-coloured organs in the order Caryophyllales use a 

separate class of pigments, following the loss of anthocyanins from most members of 

that order. These betalain pigments give Bougainvillea bracts, Nepenthes pitcher plant 

traps and Christmas cactus (Schlumbergera) flowers their characteristic colours (Strack 

et al 2003). 

1.3.1.3 Carotenoids 

Most yellow flowers are coloured by carotenoids, a class of lipid-soluble isoprenoid-

derived compounds synthesised within plastids (Glover 2014). Carotenoids are some 
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of the most abundant naturally occurring pigments on earth, produced not only in land 

plants but also in algae, and in some fungi and bacteria (Nisar et al 2015). Narcissus, 

Brassica and Mimulus flowers are all coloured yellow by carotenoids (Valadon and 

Mummery 1968, Yuan et al 2014, Zhang et al 2015). 

 

1.4 Finding genes for phenotypes 

Understanding the genetic architecture of phenotypic variation has been an important 

aim in biology since Sturtevant (1913) first used studies of linkage and recombination 

to genetically map traits in Drosophila fruit flies. The discovery of DNA as the genetic 

material led to the development of genetic markers, first by looking at enzymes 

encoded by alternate alleles (allozyme variants) in Drosophila pseudoobscura (Hubby and 

Lewontin 1966), and then by using restriction enzymes to examine polymorphisms in 

DNA itself (Saiki et al 1985). 

Developments such as the invention of DNA amplification through polymerase chain 

reaction (PCR) and the ability to clone and sequence DNA brought with them the 

desire to understand the relationship between phenotypic differences and variation at 

the molecular level (Altshuler et al 2008). In the late 1980s, genes underlying human 

diseases were sequenced for the first time (Kerem et al 1989), and quantitative trait loci 

(QTLs) underlying complex continuous traits were identified (Edwards et al 1987). 

Single nucleotide polymorphisms (SNPs) – changes in DNA from one nucleotide base 

to another – between individuals of the same species were first described by Kreitman 

(1983). He showed that most SNPs within genes occur without changing the amino 

acid sequences of the proteins they encode, suggesting that natural selection constrains 

protein sequences. Advances in high-throughput sequencing technologies in recent 

years have made discovering SNPs in virtually any natural system possible (Dalziel et 

al 2009). Techniques such as restriction site-associated DNA (RAD) sequencing and 

whole genome sequencing have made it possible to develop genome-wide markers for 

genetic variability, useful not only in functional biology, but in evolutionary biology 

too. By identifying the genetic loci that underlie traits distinguishing species and 

populations, we can look at the evolutionary forces that shape speciation and 

divergence (Anderson et al 2011). 
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The ability to study molecular differences in natural populations has massively 

increased our knowledge of how the genetic control of adaptive traits is organised in 

the genome. An important question is the relative contributions of different loci to a 

phenotype: is a trait regulated by one or a few loci of large effect, or do many separate 

loci dispersed throughout the genome each have marginal contributions to an overall 

perceived phenotype (King and Long 2017)? 

Genome-wide association studies (GWAS) have shown that some traits that vary 

between populations, and between individuals within a population, are governed by 

many independent loci. At least 71 loci contribute towards susceptibility to Crohn’s 

disease in humans (Franke et al 2010), for example, while many loci involved in such 

complex traits are likely to go undetected – the so-called Beavis effect (King and Long 

2017). At the other extreme, horn polymorphism in Soay sheep (Ovis aries) maps to a 

single locus owing to a balance between sexual and natural selection (Johnston et al 

2013). 

Another example of a single locus associated with multiple phenotypes in natural 

populations is seen in Heliconius butterflies, a genus of mimetic insects found in the 

neotropics. In several Heliconius species, a locus named OPTIX encodes a transcription 

factor that controls red wing patterning (Jiggins et al 2017). GWAS results show that 

differences in red patterning across multiple species (Figure 1.4) map to the OPTIX 

locus. Wallbank et al (2016) showed that two 50-100 kb sequences in the cis-regulatory 

region of OPTIX regulate where the gene is expressed, and that evolutionary shuffling 

between the two sequences through hybridisation has resulted in different patterns 

across species. This is thought to allow mimicry of different butterfly species without 

compromising OPTIX function through coding-sequence changes. 
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Figure 1.4 Schematic representation of wing patterns in Heliconius butterflies caused by 

two cis-regulatory changes, DENNIS and RAY, in the promoter region of the OPTIX gene. 

Some species, such as H. meriana, carry the DENNIS sequence in this region, resulting in 

expression of OPTIX and red banding on the upper half of the wings (a). Others, such as 

H. contigua, carry the RAY sequence, resulting in red bands on the lower half of the wings 

(b). Species carrying both sequences, such as H. elevatus, have both patterns (c), while those 

with neither sequence, such as H. rosina, do not show either pattern. Patterns regulated by 

other loci have been removed from the images. DENNIS and RAY haplotypes are shown 

below the diagrams. Adapted from Wallbank et al (2016). 

Genetic changes affecting regulation of gene expression are also crucial in the 

evolution of flower colour (Streisfeld and Rausher 2011). Many flower colour 

pigments, including flavonoids and carotenoids, are important not only for 

reproduction, but for other physiological processes in plants, too. Carotenoids expand 

the range of wavelengths plants can utilise in photosynthesis (Hashimoto et al 2016), 

and flavonoids are involved in defending plants against a host of biotic and abiotic 

stresses (Buer et al 2010). Thus, it has been proposed that adaptations involving flower 

colour evolve by differences in the expression of existing genes, with natural selection 

likely acting against mutations that would have pleiotropic effects on other plant 

functions (Streisfeld and Rausher 2011). Such differences typically involve mutations 

in the cis-regulatory regions of structural genes involved in pigment production, or in 

coding or cis-regulatory regions of the transcription factors that interact with the 

structural genes (Wu et al 2013). Research on model organisms such as Mimulus, 

Petunia, Ipomoea and Antirrhinum has contributed greatly to our understanding of the 

different methods plants have evolved for regulating expression of their flower colour 

genes (Sobel and Streisfeld 2013). 

1.5 Antirrhinum species and their colours 

Antirrhinum majus L. (Plantaginaceae) has been used for over a century as a model 

organism for studying floral trait variation (Schwarz-Sommer et al 2003). Darwin 
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(1868) was fascinated by the morphology of Antirrhinum flowers and the ‘peloric’ 

mutants he saw that had radially-symmetrical flowers as opposed to the bilateral 

symmetry of wildtype flowers. Research in Antirrhinum has since made fundamental 

contributions to research on flower development (Coen and Meyerowitz 1991) and 

the biosynthesis of flower colour pigments (Martin et al 1991), as reviewed in Schwarz-

Sommer et al (2003) and Hudson et al (2008). 

The Antirrhinum corolla is made up of five petals which are fused for part of their 

length, forming a tube enclosed by two upper and three lower lobes (Figure 1.5). The 

flowers are pollinated by bees, and their shape is thought to be an adaptation to these 

pollinators (Vargas et al 2010). The closed flower structure requires bees to land on a 

platform, prise apart the lobes to access nectar at the base of the tube, and at the same 

time contact the anthers and stigma to pollinate the flower (Figure 1.6). This 

mechanism excludes smaller, lighter insects, and typically only large bees – mostly 

Bombus lucorum, B. hortorum, B. lapidarius and Xylocopa violacea – can gain entry 

(Tastard et al 2012). 

 

Figure 1.5 Cross-section of an A. majus flower, showing the floral organs and their 

positions. 



Mabon Rhun Elis 

28 

 

Figure 1.6 Pollination of an A. majus flower, with the flower in cross-section. A bumblebee 

(B. hortorum) approaches the flower (a). To gain entry, she must land on the lower lobes of 

the flower, push them down and crawl inside the tube to access the nectar (b). 

1.5.1 Flower colour in A. majus 

Two types of flavonoid pigments accumulate in the flowers of Antirrhinum species to 

give them their colours. Magenta colours are produced by anthocyanin – typically 

cyanidin 3-rutinoside, although cyanidin 3-glucoside has also been found in the 

flowers of some cultivars (Gilbert 1971). Yellow colours are produced by an aurone 

named aureusidin glucoside (Nakayama 2002). 

1.5.2 The flavonoid biosynthetic pathway 

Three enzymes are required to convert a molecule of coumaroyl-CoA and three 

molecules of malonyl-CoA to aureusidin glucoside (aurone) and eight are required to 

make cyanidin 3-rutinoside (anthocyanin) (Figure 1.7). Many of the structural genes 

encoding these enzymes were identified in A. majus, mostly using mutants with 

transposable element insertions. The nivea mutant has a mutation in the gene encoding 

chalcone synthase (CHS) (Sommer and Saedler 1986), incolorata in flavanone 3-

hydroxylase (F3H) (Martin et al 1991), eosinea in flavonoid 3′-hydroxylase (F3′H) 

(Stickland and Harrison 1977), pallida in dihydroflavonol reductase (DFR) (Martin et 

al 1985) and candica in anthocyanidin synthase (ANS) (Martin et al 1991). The 

structural genes involved in aurone biosynthesis were characterised more recently – 

AUREUSIDIN SYNTHASE 1 (AS1), which encodes aureusidin synthase (AUS) by 

Nakayama et al (2000) and the sequence of FLAVIA (FLA), the gene encoding chalcone 
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glucosyltransferase, which adds a glucose group to the A ring of chalcone ahead of 

conversion to aureusidin (Ono et al 2006), is not yet published (Boell et al unpublished 

results). 

 

Figure 1.7 Biosynthetic pathway of flavonoids with a focus on the pigments aurones and 

anthocyanins, which have been coloured according to their appearance in aqueous 

solutions. Flavonoid names are shown in black, with enzyme names in blue. Enzyme 

abbreviations: CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone 3-

hydroxylase; F3′H, flavonoid 3′-hydroxylase; DFR, dihydroflavonol 4-reductase; F3′5′H, 

flavonoid 3′5′-hydroxylase; ANS, anthocyanidin synthase; UF3GT, UDP-glucose: 

flavonoid 3-glucosyltransferase; UF3RT, UDP-glucose: flavonoid 3-

rhamnosyltransferase; CGT, chalcone glucosyltransferase; AUS, aureusidin synthase.  

Adapted from Martin et al (1991) and Rausher (2006), with the addition of CGT as 

characterised by Ono et al (2006). 
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In addition to the structural genes, many genes encoding transcription factors are also 

involved in regulating flavonoid biosynthesis. These activate structural genes acting 

late in the pathway (from F3H onwards): DELILA (DEL) encodes a basic helix-loop-

helix transcription factor to activate pigmentation in the corolla tube (Martin et al 

1991); ROSEA encodes two MYB-like transcription factors activating these genes 

throughout the petals (Schwinn et al 2006); VENOSA encodes another MYB-like 

transcription factor activating the pathway in tissue overlying veins in the dorsal petals 

of the flowers; and ELUTA, which suppresses the biosynthesis of anthocyanins in parts 

of the petals (Martin et al 1991) was recently shown to be another MYB gene (Tavares 

et al in review). These regulatory genes have been shown to underlie variation in 

magenta pigmentation in wild Antirrhinum species (Schwinn et al 2006, Whibley et al 

2006, Shang et al 2011, Tavares et al in review). 

1.5.3 Diversity of Antirrhinum species 

Between 20 and 30 Antirrhinum species, depending on the taxonomic treatment used, 

are native to the Mediterranean (Rothmaler 1956, Vargas et al 2009, Wilson and 

Hudson 2011). Most of the diversity in the Antirrhinum genus is found on the Iberian 

peninsula, where the majority of species are found (Figure 1.8). They occupy diverse 

habitats and show an extensive amount of variation in organ morphology, growth 

habit and flower colour (Vargas et al 2009, Wilson and Hudson 2011). 
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Figure 1.8 Map of Antirrhinum species distribution on the Iberian peninsula. Distribution 

information is taken from Rothmaler (1956), Whibley (2004) and Wilson and Hudson 

(2011). 

Despite the phenotypic diversity across the genus, however, nearly all Antirrhinum 

species are inter-fertile and are thought to have radiated relatively recently – in the last 

3-5 million years (Whibley 2004). This recent radiation, coupled with likely 

hybridisation between species, has made resolving phylogenetic relationships and 

determining ancestral phenotypes in the genus difficult (Wilson and Hudson 2011). 

Antirrhinum species have one of two contrasting growth habits. Twelve of the species 

whose population distributions are shown in Figure 1.8 are small, prostrate plants that 

grow on rocky cliffs. These have small flowers, small, often succulent, leaves, and 

show good drought and cold tolerance, but are thought to be poor at competing for 

resources with other plants (Figure 1.9 a-c). Others are much larger and grow upright 

on disturbed (ruderal) habitats. These tend to have large flowers and large, thin leaves 

(Figure 1.9 d-f) (Wilson and Hudson 2011). Flower colour also appears to correlate 

with these ecological differences. The prostrate, cliff-dwelling species mostly have 

white or pale pink flowers, with a small amount of colour thought to act as pollinator 

guides. These guides are seen in the ruderal species too, but are complemented by 

bright yellow or magenta pigmentation accumulating throughout the petals. 
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Figure 1.9 Growth habits and flower colours in Antirrhinum. Many species, such as A. 

pulverulentum (a), A. lopesianum (b) and A. valentinum (c), are small, prostrate xerophytes 

growing in isolation on cliff faces. These usually have small white or pale pink flowers. 

Others, such as A. pseudomajus (d and f) and A. braun-blanquetii (e), are large and upright 

and are found growing in competition with other plants. These have large, brightly-

coloured flowers. Photographs c, d and f taken by Enrico Coen. 

The colours and patterns seen on Antirrhinum flowers are adaptations to help the plants 

attract and guide bees. The bright colours are believed to attract the insects from a 

distance (Whibley et al 2006, Bradley et al 2017), while markers such as magenta veins 

on the upper lobes and yellow ‘foci’ at the tips of the upper lobes guide the pollinators 

to the correct part of the flowers and in the correct orientation (Venail 2005, Owen 

and Bradshaw 2011, Shang et al 2011, Tavares et al in review). 

1.5.4 A hybrid zone between two Antirrhinum majus subspecies 

Two subspecies of A. majus that grow in the Pyrenees have contrasting sets of the 

colours and guides described above. A. m. striatum has bright yellow flowers with dark 

magenta veins at the centre of the upper lobes, just above the mouth of the flower 
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(Figure 1.10, left). Its sister subspecies, A. m. pseudomajus, has magenta flowers with a 

patch of white on the landing platform (‘face’) of the flower and yellow foci 

highlighting the mouth of the flower (Figure 1.10, right). 

 

Figure 1.10 Schematic representations of the flowers of A. m. striatum and A. m. 

pseudomajus, the former yellow with magenta veins, and the latter magenta with yellow 

foci. 

These contrasting patterns are formed using alternate alleles of several loci of major 

effect. The A. m. pseudomajus allele of ROSEA (ROS) activates anthocyanin production 

in the flower lobes (Schwinn et al 2006). The A. m. striatum allele of ROS does not, 

leaving the lobes unpigmented (Whibley et al 2006), apart from in tissue overlying petal 

veins in the upper lobes, where the same pathway is activated by the A. m. striatum 

allele of VENOSA (VE) (Venail 2005, Shang et al 2011). The effect of VE cannot be 

determined visually in A. m. pseudomajus because VE is epistatic to ROS – the full 

magenta pigmentation obscures any additional pigmentation in the vein region 

(Tavares 2014). The A. m. striatum allele of ELUTA restricts anthocyanin production – 

and thus the vein pattern – to the centre of the flower (Martin et al 1991, Tavares et al 

in review). The A. m. pseudomajus allele does not, allowing magenta pigmentation to 

be unrestricted in the petals. And the A. m. pseudomajus allele of SULFUREA (SULF) 

restricts aurone production to the foci at the mouth of the flower, which does not 

happen with the A. m. striatum allele (Bradley et al 2017). The two subspecies also have 

different alleles of the aurone biosynthetic gene FLAVIA (FLA), which encodes CGT 

(see Figure 1.7 on page 29). Although both are functional, the A. m. pseudomajus allele 

produces a weaker yellow colour than A. m. striatum. This is an alternative method of 
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restricting yellow in some Antirrhinum species and is thought to be redundant in A. m. 

pseudomajus (Boell et al unpublished results). 

The two subspecies have adjacent population ranges in the south of France and 

northern Spain/Catalonia, which sometimes overlap. When this happens, hybrid 

zones are formed. Hybrid zones are found in many plant and animals, with well-

studied examples in mice (Turner and Harr 2014), sunflowers (Rieseberg et al 1999) 

and monkeyflowers (Stankowski et al 2015). They occur when populations that are 

genetically distinct meet and produce hybrid offspring. But these areas where hybrids 

are found are narrow relative to the population ranges of the species, and both 

populations outside the hybrid zone remain distinct despite gene flow in the contact 

area (Barton and Hewitt 1989). Studying these hybrid zones can shine new light on 

the differences between species and the way selection shapes genetic divergence, and 

as such are described as ‘natural laboratories’ (Hewitt 1988). 

One hybrid zone between A. m. striatum and A. m. pseudomajus has been studied 

extensively for more than 15 years (Whibley 2004). This hybrid zone, located in the 

county of Ripollès in the province of Girona, Catalonia shows a remarkable clinal 

change in flower colour over a 1-2 km distance (Figure 1.11 a and b). The plants, being 

ruderal in habit, grow along two roadsides. Near the village of Fornells de la 

Muntanya, A. m. striatum grows. Travelling east along either one of the roads, 

Antirrhinum flowers with different colours gradually appear: white, orange and pink 

flowers that are not typically found outside such hybrid zones (Figure 1.11 c). 

Continuing east, another gradual change is seen, with the plants along the roadside 

near the village of Planoles having magenta flowers – A. m. pseudomajus. The 

phenotypes of the hybrids can be explained using different combinations of the two 

alleles each at ROS, EL and SULF 

Historical evidence suggests that a hybrid zone between A. m. striatum and A. m. 

pseudomajus has existed in this region since at least 1928 (Tavares 2014, Tavares et al 

in review). Flower colour plays an important role in maintaining this hybrid zone. In 

addition to the sharp clines in flower colour across the area, allelic clines and other 

signatures of strong selection have been described at ROS and EL, which are linked on 

one chromosome at the ‘ROS-EL locus’ (Whibley et al 2006, Tavares et al in review), 

and at SULF (Bradley et al 2017). 
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Figure 1.11 Location of the hybrid zone between A. m. striatum and A. m. pseudomajus on 

the Iberian Peninsula (a) and in the local area (b). Also shown are representative 

phenotypes (c). From left to right, along with their ROS, EL and SULF haplotypes, these 

are: A. m. striatum (ros EL sulf); white-flowered hybrid (ros EL SULF); pale orange-flowered 

hybrid (ROS EL sulf); pink-flowered hybrid (ROS EL SULF); bright orange-flowered hybrid 

(ROS el sulf); A. m. pseudomajus (ROS el SULF). 
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However, additional phenotypes are seen in the hybrid zone that have not yet been 

genetically characterised. Although A. m. pseudomajus’s magenta pigmentation is 

known to be regulated by ROS, part of the flower is unpigmented. This phenotype is 

not seen in A. majus cultivars where ROS also activates anthocyanin pigmentation 

(Schwinn et al 2006). Additional variation has also been generated by crossing plants 

with hybrid phenotypes from this region to A. majus. F2 populations generated from 

these crosses segregate for traits not seen in either parent. And additional variation in 

flower colour is also seen in other Antirrhinum species, and the genetic loci underlying 

this variation have yet to be identified. 

1.6 Overview and hypotheses 

Flower colour in Antirrhinum is an ideal system for studying the genetic basis of 

phenotypic variation in the wild. There a great deal of diversity of colours and patterns 

between species and populations, and flower colour’s tractability as a trait and its 

tendency to be regulated by loci of major effect makes it easy to identify segregating 

phenotypes. The interfertility of Antirrhinum species means that they can be crossed to 

A. majus, whose genome has been sequenced, so that phenotypes segregate in a known 

genetic background. And the role of A. majus as a model organism gives the advantage 

that the loci regulating many segregating traits are already known. 

In the following chapters, I will present my work testing two alternative hypotheses to 

explain the genetic determination of flower colour variation in Antirrhinum. The first 

hypothesis is that, given the variability in flower colour seen across the genus, flower 

colour in Antirrhinum is regulated by many different loci – possibly equal to the number 

of phenotypes that differ between species. The alternative to this hypothesis is that 

regulation of flower colour is concentrated at a small number of loci, as is seen for 

wing patterning in Heliconius. Different alleles at these loci may be found in species 

with different flower colours and patterns. I will describe how I used a combination of 

genetic, genomic and molecular techniques to characterise and map phenotypic 

differences in anthocyanin pigmentation (chapter 3) and aurone pigmentation (chapter 

4) as a means of testing these hypotheses. 
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2 Materials and methods 

2.1 Plant material 

2.1.1 Antirrhinum accessions 

This project used five wild-collected accessions of Antirrhinum species from the Iberian 

peninsula (Table 2.1). Collection trips for material used in this work took place in 1999 

and 2003, with separate collection trips at a hybrid zone between A. majus striatum and 

A. m. pseudomajus in 2009 and 2012. The aim of these trips was to collect seeds from 

different species with a range of floral phenotypes. Collection codes combine a letter 

from the alphabet for each year and a three-letter abbreviation for a location. For 

example, C-NAP was collected in 2003 (year C) near Pont Napoleon in the Pyrenees. 

Seeds from individual plants were collected and stored separately, with each maternal 

plant given a unique number. Where possible, 20-30 maternal seed families were 

collected for a given population and silica-dried leaves were taken for genetic analysis. 

In addition, for each site, GPS coordinates and habitat descriptions were recorded and 

photographs were taken. Seeds were stored at 4°C in the John Innes Centre seed store 

for later use. For seeds collected in the hybrid zone between A. majus striatum and A. 

m. pseudomajus, a different numbering system exists because of the collaborative 

nature, large size and different aims of the hybrid zone project. Plants in the hybrid 

zone were given a letter corresponding to the year of sampling and a number. 
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Table 2.1 Wild Antirrhinum accessions used in this work. ‘HZ’ refers to the hybrid zone 

between A. m. striatum and A. m. pseudomajus. The first three accessions were collected by 

members of the Coen lab on collecting trips. For the hybrid zone accessions, location and 

plant information was collected as part of the hybrid zone project led by Enrico Coen and 

Nick Barton, and the seeds were collected by Hugo Tavares and Desmond Bradley. 

Year 
collected Identifier 

Plant 
ID Species Latitude Longitude 

1999 Y-GAT 2 A. charidemi 36.71° -2.18° 

2003 C-NAP 361 A. sempervirens 42.86° -0.05° 

2003 C-QUE 342 A. molle 42.11° 1.81° 

2009 J (HZ) 1428 A. m. pseudomajus 42.32° 2.13° 

2012 M (HZ) 0194 A. m. striatum × 
A. m. pseudomajus 
hybrid 

42.33° 2.06° 

 

2.1.2 Antirrhinum stock cultivars 

The John Innes Centre maintains an extensive collection of Antirrhinum varieties, 

mutants and species. Several of these exist as highly-inbred stock lines bred for specific 

traits – for example, JI7 is a standard A. majus stock line with dark magenta flowers, 

typically used as the wildtype in genetic studies, JI57 is a yellow-flowered mutant and 

JI659 has radially-symmetrical flowers. 

When plants are grown, they are labelled according to growing season (a sequentially 

changing letter for each season, with one winter and one summer growing season each 

year), seed family (progeny from a single cross or self) and individual identification 

number. For example, L124-28 was grown in the summer of 2016 (L) and was the 

28th individual in family 124. Some family numbers are reserved for stock lines – 

families of the line JI7, for example, are always given the number seven. 

Another line used in one of my analyses is a roseadorsea (rosdor) mutant, which has a 

mutation in the ROSEA gene that regulates anthocyanin pigmentation. rosdor was used 

so that some yellow variation could be seen more clearly and not obscured by 

anthocyanin pigmentation. This line was originally obtained from the germplasm 

collection at the Institut für Kulturpflanzenforschung, Gatersleben, Germany 

(Schwinn et al 2006), but has been crossed and backcrossed to JI7 several times to 

introgress the rosdor allele into the reference genome background (Lucy Copsey, pers 
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comm). 

2.1.3 Plant pedigrees 

This project uses crosses between plants grown from wild-collected seed and well-

characterised stock lines. Wild accessions for crossing were chosen because of their 

interesting floral phenotypes discussed in section 2.2.1. The other parent was chosen 

to have a contrasting phenotype so that progeny would be likely to segregate for the 

trait of interest. In total, 14 F2 and F3 populations segregating for traits from wild 

accessions were grown during this project (Table 2.2). 

Table 2.2 Antirrhinum families (populations) used in this thesis. Each family is identified 

using an identification system (column 1) that combines a letter and number. This system 

is explained in section 2.1.2 on page 38. Each family shown was grown from the selfed 

seeds of the parent (column 4). Some families are repeats of families from a previous year 

(eg L124 is a repeat of J108) – these were seeds from different capsules on the same 

individual parent. Others are near-repeats (eg N101 and N102 are near-repeats of J108) – 

these were seeds from sibling parents generated from the same cross. A pedigree of each 

family is shown in its relevant chapter, and the page number where each pedigree is printed 

is shown in the final column. 

Family 
ID 

Year 
sown 

Family 
size Parent 

Wild 
accession 

Pedigree 
page 

J108 2015 240 Y135-3 (capsule 1) J1428 (HZ) 68 

L124 2016 500 Y135-3 (capsule 2) J1428 (HZ) 80 

N101 2017 340 Y135-4 J1428 (HZ) 92 

N102 2017 320 Y135-5 J1428 (HZ) 92 

J104 2015 465 H998-5 C-QUE 100 

J152 2015 48 H102R-3 (capsule 1) M0416 (HZ) 130 

J154 2015 48 H102R-15 (capsule 1) M0416 (HZ) 130 

L122 2016 200 H102R-3 (capsule 2) M0416 (HZ) 140 

L123 2016 160 H102R-15 (capsule 2) M0416 (HZ) 140 

N124 2017 168 H102R-2 M0416 (HZ) 144 

N136 2017 231 H102R-20 M0416 (HZ) 144 

H115 2014 128 E253-8 C-NAP 151 

H118 2014 160 E256-2 C-NAP 153 

H246 2014 67 D138-7 Y-GAT 155 
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Crosses were performed manually on emasculated flowers by transferring pollen to the 

stigma using a paintbrush. Individual flowers were tagged with a paper label and 

capsules (containing 50-200 seeds) were collected before they dehisced. Initial crosses 

generated F1 populations. These were then selfed by selecting a flower with a good 

amount of pollen and brushing it onto the stigma of each flower on the same plant. If 

not used during the following growing season, seeds were stored at 4°C. In the 

pedigree diagrams used throughout this thesis, female parents are shown on the left 

and male parents on the right. 

2.1.4 Growth conditions 

Seeds were sown by family in trays and watered daily in a lit unheated greenhouse 

until germination. Seedlings were transplanted into individual 9 cm pots at the one 

true leaf stage. These were left to grow in the greenhouse and, for summer season 

plants, transferred outside before flowering. Winter season plants were kept in the 

glasshouse with 16 hours of supplemental light each day and watered daily. 

2.1.5  Harvesting 

Flowers were harvested for photographing and phenotyping by gently pulling the 

pedicle away from the stem. Harvested flowers were individually labelled, kept on ice 

during collection and stored for a maximum of 12 hours at 4°C to keep them from 

wilting before phenotyping. 

Leaves were harvested in one of two ways. Leaves for individual genetic analysis were 

collected on dry ice in collection microtubes (Qiagen, Germantown, MD, US) along 

with a tungsten carbide bead for later grinding, and stored at −80°C until ready for 

DNA extractions. Leaves for pooled genetic analysis were collected and dried using 

silica, then stored at room temperature until ready for DNA extractions. 

Flower buds were harvested for transcription analysis while they were still developing, 

when flower colour genes are expressed (Tavares 2014). This corresponded to corolla 

length between 1 cm and 1.5 cm. Buds were cut using a scalpel and two parts of the 

flower were harvested: the lateral lobes and the flower face (flower regions shown in 

Figure 2.1). These cut bud parts from several plants with the same phenotype were 

pooled into an RNase-free 2 ml microcentrifuge tube and flash-frozen in liquid 

nitrogen. The sample was then stored at −80°C until ready for RNA extractions. 
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2.1.6 Time considerations 

In this thesis, several thousand plants were grown concurrently with leaf and flower 

material collected from each individual for genotyping and phenotyping work, 

respectively. Genotyping work needed to be completed before the end of the growing 

season so that future populations could be obtained by crossing or self-fertilising 

individuals of interest. This put considerable pressure on the time available for each 

experiment, limiting phenotyping work to one flower and genotyping work to one leaf 

sample from each individual plant. This time pressure also meant that the main bulked 

segregant analysis and individual genotyping experiments were prioritised over gene 

expression work, which is why RNA sequencing results were not finalised for 

presentation in this thesis. 

2.2 Phenotyping 

2.2.1 Visual scoring 

Flowers were scored based on visual inspection for a suite of colour traits. These 

included the intensities of both magenta and yellow pigments, the distribution of 

colour across the flower and any novel patterns. I chose 10 pattern traits to phenotype 

in each of the families I looked at (Figure 2.1). These were typically easy to score, with 

pigment (magenta or yellow) accumulating in one or more of the flower regions 

shown. Individuals could have some combination of these phenotypes, such as 

magenta veins and yellow foci, although some phenotypes were less distinct, such as 

overlapping regions obscuring each other. An example of this would be the hinge 

region, which is masked by the arc region. Initial scoring on small F2 populations was 

performed on living plants. Once familiarised with the traits, larger populations were 

grown and flowers were scored from photographs taken in well-lit conditions against 

a black background with a scale and colour standards. Data were stored in a binary 

format: presence or absence of each of the 10 traits for each of the two colours. 
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Figure 2.1 Regions of colouration in Antirrhinum flowers. Pigments can accumulate in the 

parts of the flower indicated in blue. Each family was visually inspected for pigmentation 

differences between individuals in these regions. Segregating families were then 

phenotyped by individual. 

For the traits I looked at in most detail, I developed a more precise scoring system. For 

the white face trait discussed in chapter 3, this was a numbered system ranging from 0 

(no white) to 5 (large white patch). The yellow arc trait discussed in chapter 4 had 

three discrete forms (little or no yellow, yellow foci, yellow arc, and yellow tube) and 

therefore a numbering system was not necessary. 

2.2.2 Multispectral analysis 

Some of the families used in this project had both yellow and magenta pigmentation. 

Families segregating for the white face trait (chapter 3), for example, also showed 

variation in the extent of yellow accumulating on the flower face. This made scoring 

the magenta colour more difficult and tended to introduce uncertainty to the 

phenotyping. I got around this issue by using a colour-conversion method in Adobe 

Photoshop. A magenta scoring image was made by systematically converting each 
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photograph to black and white with magenta pixels darkened. A corresponding yellow 

scoring image was made by darkening yellow pixels in the same way. Each colour was 

then scored individually from these colour-converted images. I confirmed that this 

method was an accurate estimation of the amount of each colour reflected using a 

multispectral imager (VideometerLab 3, Videometer, Hørsholm, Denmark).  

2.3 DNA and RNA isolation 

2.3.1 DNA extractions 

2.3.1.1 Extraction from silica-dried leaf material 

One-to-two young leaves from each sample selected for a pool was placed in a 1.5 ml 

microcentrifuge tube and disrupted using a micropestle. 400 μl of CTAB extraction 

buffer (100 mM Tris (pH 8.0); 1.4 M NaCl; 20 mM EDTA (pH 8.0)) was added and 

the mixture was vortexed. The tube was incubated at 65°C for 30 minutes and then 

left to cool at room temperature for three minutes. 200 μl of chloroform was added 

and the tube was vortexed again. The mixture was centrifuged at room temperature at 

12,000 rpm for five minutes in a microcentrifuge. 300 μl of the resulting supernatant 

was transferred to a new tube, to which 200 μl of isopropyl alcohol was added. The 

tube was inverted several times to mix. This mixture was centrifuged at room 

temperature at 12,000 rpm for 10 minutes in a microcentrifuge and the supernatant 

was discarded, leaving a white pellet of DNA. This pellet was washed with 500 μl of 

70% [v/v] ethanol, which was then discarded and the pellet was left to air-dry until the 

pellet was transparent. The DNA was resuspended in 50 μl TE buffer (10 mM Tris-

HCl (pH8.0); 1 mM EDTA (pH 8.0)) and quantified using a Qubit broad range DNA 

assay (Thermo Fisher Scientific, Waltham, MS, US), before being stored at -20°C until 

it was ready to be sequenced. 

2.3.1.2 Extraction from frozen leaf material 

Three-to-four young leaves were used for extracting high-quality DNA from individual 

plants for genotyping work. These leaves were kept frozen at −80°C between 

harvesting and DNA extraction. DNA extractions were then performed by Richard 

Goram, who runs a DNA extraction and genotyping facility at the John Innes Centre. 

Material was ground in a TissueLyser (Qiagen, Germantown, MD, US) and the 

DNeasy 96 Plant Kit (also by Qiagen) was used for extractions according to the 
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manufacturer’s instructions. Extracted DNA, eluted in sterile water, was kept at −20°C 

until ready for use. I performed quality control on a subset of around five samples from 

each plate by quantifying the DNA using a Qubit broad range DNA assay (Thermo 

Fisher) and measuring absorbance at 260 nm and 280 nm using a NanoDrop 1000 

spectrophotometer (also from Thermo Fisher). 

2.3.2 RNA extractions 

The collected buds were ground to a fine powder in liquid nitrogen using a pre-cooled 

pestle and mortar. 1 ml of Tri Reagent (Merck Group, Darmstadt, Germany) was then 

added to each sample and thawed. This mixture was transferred to a 1.5 ml 

microcentrifuge tube and centrifuged at 4°C at 12,000 rpm for five minutes. The 

resulting supernatant was transferred to a new microcentrifuge tube and 200 μl of 

chloroform was added. The mixture was shaken vigorously by hand for 15 seconds 

before being left to stand at room temperature for three minutes. This mixture was 

then centrifuged at 4°C at 12,000 rpm for 15 minutes. The upper aqueous layer, 

containing the dissolved RNA, was transferred to another new microcentrifuge tube 

and 500μl of isopropyl alcohol was added to precipitate the RNA. This was left to 

stand at room temperature for 10 minutes and then centrifuged at 4°C at 12,000 rpm 

for 10 minutes. The supernatant was carefully discarded, leaving a translucent pellet 

of RNA. The pellet was washed with 1 ml of ethanol, centrifuged at 4°C at 12,000 rpm 

for 5 minutes, and the ethanol was carefully discarded. The pellet was left to air-dry at 

room temperature before the RNA was eluted in 20 μl of distilled water treated with 

diethyl pyrocarbonate (DEPC) to remove RNase enzymes. The isolated total RNA 

was quantified using a Qubit high sensitivity RNA assay (Thermo Fisher Scientific), 

absorption was measured as a quality control metric using a NanoDrop 1000 

spectrophotometer and the samples were run on an agarose gel to ensure that both 18S 

and 25S ribosomal RNA bands were present. For this gel electrophoresis, a welled tray 

of 1.2% agarose gel was prepared with 0.5× Tris/Borate/EDTA (TBE) buffer (45 mM 

Tris-borate, 45 mM boric acid and 2 mM EDTA) and ethidium bromide was added 

to a final concentration of 0.4 µg/ml to stain the RNA. The RNA samples were diluted 

to 1% of their extracted concentrations and a 0.1 volume of loading dye (25% [w/v] 

Ficoll type 400; 0.25% [w/v] xylene cyanol; 0.25% [w/v] bromophenol blue) was 

added to each. These samples were loaded into wells and run horizontally 

alongside a molecular ladder (ssRNA Ladder from New England Biolabs, Ipswich, 

MS, US) at 10 V/cm until the loading dye’s colour could be seen approaching the 
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end of the gel. The gel was then visualised using a short-wave UV (254 nm) trans-

illuminator and photographed. 

2.4 High throughput sequencing techniques 

2.4.1 DNA sequencing 

2.4.1.1 Pooled DNA 

DNA was extracted as outlined in section 2.3.1.1. The DNA was pooled in equimolar 

ratios based on Qubit quantification before being sent for sequencing. DNA 

sequencing libraries were prepared by The Genome Analysis Centre (TGAC, now the 

Earlham Institute), Norwich, UK for samples from H115, H118 and H246, and at the 

Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, Beijing 100101, 

China for all other samples. DNA sequencing was also performed by the same 

institutes – at TGAC using 100 bp paired-end reads on a HiSeq 2000 sequencer 

(Illumina, San Diego, CA, US) with a sequencing depth of 20×, and at BIG using 150 

bp paired-end reads on a HiSeq 2500 sequencer (Illumina) with a sequencing depth of 

50×. 

2.4.1.2 DNA from individuals 

Although no DNA sequencing of individuals was done for this work, I used previously 

acquired sequencing data from several Antirrhinum species. These resequenced 

genomes were based on short read Illumina data, sequenced by TGAC and mapped 

to the Antirrhinum genome by Annabel Whibley. 

2.4.2 The Antirrhinum genome 

The reference Antirrhinum genome was sequenced and assembled by Yongbiao Xue 

and is based on short read Illumina data and longer Pac Bio (Pacific Biosciences, 

Menlo Park, CA, US) reads. 

2.4.3 Bioinformatic analysis 

2.4.3.1 Quality testing 

Sequencing reads in FASTQ format were first quality-tested using fastq-mcf, part of 
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the ea-utils suite of bioinformatics software (Aronesty 2011). The following commands 

were used to process the FASTQ reads: 

1 fastq-mcf -l 50 -k 0 -x 20 -q 20 
--qual-mean 20 
--qual-gt 90,20 
--max-ns 0 
--min-len 50 n/a 
-o <filtered_fastq_read1> 
-o <filtered_fastq_read2> 
<read1_fastq> <read2_fastq> 

2.4.3.2 Mapping to the reference genome 

All reads were mapped to the Antirrhinum reference genome (version 2) using the 

Burrows-Wheeler Aligner (BWA) (Li 2013) using these commands: 

2 bwa mem <reference_genome> 
-R <read_group_info> 
<read1_fastq> <read2_fastq> 
> <output_SAM_file> 

2.4.3.3 Processing 

Following mapping, the files were processed using a combination of Picard Tools 

(Broad Institute 2018b), SAMtools (Li et al 2009) and the Genome Analysis Toolkit 

(GATK, version 3.6) (McKenna et al 2010, Broad Institute 2018a). SAMtools was used 

to convert the BWA output sequence alignment/map (SAM) files to the binary 

alignment/map (BAM) format accepted by downstream processing software: 

3 samtools view -h -b <SAM_file> -o <output_BAM> 

I then sorted the contents of the BAM file, again using SAMtools: 

4 samtools sort <input_BAM> -o <output_BAM> 

Duplicate reads, which can arise during PCR amplification of sequencing libraries or 

through incorrect detection of single reads as multiple ones, were removed using 

Picard Tools’ MarkDuplicates tool: 

5 java -Xmx32g -jar MarkDuplicates.jar 
INPUT = <sorted_BAM> 
OUTPUT = <BAM_without_duplicates> 
REMOVE_DUPLICATES=true 
ASSUME_SORTED=true 
METRICS_FILE = <output_metrics_file> 
MAX_FILE_HANDLES_FOR_READ_ENDS_MAP = 1000 
CREATE_INDEX = true 

To minimise the number of mismatching bases in the aligned sequencing file, GATK 

tools were used to locally realign reads in intervals. The intervals for this realignment 
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were created using RealignerTargetCreator and the reads were realigned using 

IndelRealigner: 

6 java -Xmx16g -jar GenomeAnalysisTK.jar 
-T RealignerTargetCreator 
-R <reference_genome> 
-I <BAM_without_duplicates> 
-o <realignment_intervals> 

7 java -Xmx16g -jar GenomeAnalysisTK.jar 
-T IndelRealigner 
-R $ref.fasta 
--targetIntervals <realignment_intervals> 
-I <BAM_without_duplicates> 
-o <realigned_BAM> 

 

2.4.4 Bulked segregant analysis 

2.4.4.1 SNP/indel calling 

Single nucleotide polymorphisms (SNPs) and insertions/deletions (indels) were called 

using mpileup from SAMtools: 

8 samtools mpileup 
-C 50 -q 40 -Q 30 
-f <reference_genome> 
-o <mpileup_output> 
<realigned_BAM> 

The second line contains commands for quality filtering. Here, -C is a coefficient for 

downgrading the mapping quality score given to reads that contain excessive 

mismatches. A value of 50 is recommended for reads mapped using BWA. The -q 

command sets a minimum coefficient-adjusted mapping quality to use; reads not 

meeting this threshold are not used. The -Q command sets a minimum base quality 

threshold. The output was given in a .pileup format. 

2.4.4.2 Allele frequency calculation 

Frequencies of the reference (JI7) and non-reference alleles in the pools at each SNP 

were estimated using SNAPE-pooled (Raineri et al 2012). SNAPE-pooled uses a 

Bayesian estimation of SNP posterior frequency distribution in pooled samples. The 

software is intended for pools of wild individuals which would show more diversity 

within the pools than my F2 individuals. For this reason, there are a number of 

parameters to specify that differ from the default values suggested by the authors. 
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9 snape-pooled 
-nchr <number_of_alleles> 
-theta 0.05 
-D 0.05 
-priortype flat 
-fold folded 
< <mpileup_output> 
> <snape output> 

The -nchr command specifies the number of alleles expected at each SNP – in 

Antirrhinum, 2× the number of individuals in the pool. The -theta value specifies the 

nucleotide diversity (θ) in the pool. A value is required but will be ignored by the 

program because the -priortype is set as flat, meaning that we do not make 

assumptions about the allele frequencies in the pools. -D is the prior genetic difference 

between the reference genome and the individuals in the pool. This is very low in these 

analyses as the reference genome used is based on JI7, which was one of the parents 

of each cross used to generate the F2s. The folded value for the -fold parameter is 

used because we do not know the identity of the non-reference allele. 

2.4.4.3 Calculating G and G′ statistics 

A method for statistical analysis of genomic BSA was developed by Magwene et al 

(2011). This method starts by combining the allele counts of both pools to give four 

values for each SNP: count of the reference allele in pool 1 (n1), count of the non-

reference allele in pool 1 (n2), count of the reference allele in pool 2 (n3), and count of 

the non-reference allele in pool 2 (n4). A modified G statistic, based on the standard G 

statistic (equation 1) is calculated for each SNP based on these allele counts. This uses 

an expected value of in  ( ˆin ) based on the null hypothesis that there is no causal locus 

near a SNP (equation 2). For SNP where this null hypothesis is correct, and assuming 

no distortion in segregation or average sequencing coverage, 1̂n = 2n̂ = 3n̂  = 4n̂ . 
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However, because BSA sampling is in two phases – ie first the individuals are divided 
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into two phenotypic pools, and then two alleles are sampled in each pool – G is not 

expected to follow the usual 2
1χ  distribution. Therefore, Magwene et al (2011) 

developed an alternative simulation to calculate a modified G, based on the expected 

distribution in BSA studies. A smoothed version of the G statistic (G′) is also calculated 

for each SNP, which involves averaging G across a window (W) using a weighted 

kernel regression (k) (equation 3). For my analyses, I used window sizes of 50 kb. As 

a kernel function, I used the tri-cube kernel recommended by Magwene et al (2011), 

which takes into account the standardised distance within the window (0 at the focal 

SNP, 1 at the edge of the window) (equation 4). 
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2.4.4.4 Running and plotting analyses 

A pipeline for carrying out these analyses in R (R Development Core Team 2008) was 

developed by Mansfeld and Grumet (2017). I made small modifications to these scripts 

to allow smaller window sizes. Their scripts also calculate a Δ SNP-index, an 

estimation of the allele frequency difference between the pools, which was developed 

by Takagi et al (2013). These were also smoothed using the tri-cube kernel function. 

I plotted the number of SNPs in each window, genome-wide G′ values and genome-

wide smoothed Δ SNP-index values against physical positions along each 

chromosome according to version 2 of the Antirrhinum genome (Xue et al, in 

preparation) using ggplot2 (Wickam 2009) and compiled them for the figures 

presented in this thesis using Adobe Illustrator (Adobe Systems, San Jose, CA, US). 

2.4.5 RNA sequencing 

Extracted RNA was sent to BIG for preparation of Illumina libraries and RNA 

sequencing. This work is ongoing, and the results of these analyses were not completed 

in time for presentation in this thesis. 
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2.5 SNP genotyping 

2.5.1 KASP genotyping 

Kompetitive Allele-Specific PCR (KASP) is a technology developed by LGC 

Genomics, Teddington, UK to detect the presence of one or both of a pair of alleles at 

a specific SNP. Two oligonucleotide primers are designed in one direction, one ending 

in the base pair of each allele at the focal SNP (Figure 2.2). A common primer in the 

opposite direction is used to amplify a 20-100 bp PCR product. For this explanation I 

will consider the allele-specific primers to be in the forward (5′ to 3′ direction) and the 

common primer to be in the reverse direction. Each of the allele-specific primers has a 

fluorophore-labelled oligonucleotide tail at its 5′ end, with a VIC® cassette-targeting 

sequence for one allele and a FAM™ cassette-targeting sequence for the other allele 

(LGC Ltd 2013). 

 

Figure 2.2 Examples of the three primers used in KASP genotyping. The two allele-

specific primers (in the forward direction in this case) start with a fluorophore-labelled 

primer sequence (VIC for one allele, FAM for the other) and end with the base pair of 

their respective alleles at the focal SNP. The common reverse primer matches a sequence 

in the sample 20-100 bp downstream of the focal SNP. 

The KASP reaction mixture contains the fluorescence cassettes targeted by the 

oligonucleotide tails, a Taq polymerase enzyme, a buffer solution and DNA from the 

sample being tested, at a total volume of 10 μl in each well of a 96-well plate, although 

lower volume reactions in plates with up to 1536 wells are possible (LGC Ltd 2013). 

The reaction is then run on the programme specified by the company: 94°C for 15 

minutes to initiate the hot-start Taq polymerase enzyme, 10 cycles of 94°C for 20 

seconds and 61°C for 60 seconds (decreasing by 0.6°C in each subsequent cycle), and 

then 26 cycles of 94°C for 20 seconds and 55°C for 60 seconds. I ran these plates in a 

standard 96-well PCR thermocycler and read the plates on a CFX96 Touch™ real-
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time PCR detection thermocycler (Bio-Rad laboratories, Hercules, CA, US). 

Fluorescence in the blue (for FAM) and green (for VIC) channels was measured in 

relative fluorescence units (RFU) and genotypes of reactions were called from the way 

they clustered. 

 

Figure 2.3 Example output from the CFX Manager 3.1 (Bio-Rad Laboratories) software 

used to call the genotypes of KASP reactions. Reactions clustering together that had high 

FAM fluorescence and low VIC fluorescence were called as allele 1 homozygotes and vice 

versa for allele 2. Reactions clustering together that had high fluorescence for both 

fluorophore channels were called as heterozygotes. Individuals not clustering with others 

were not called. These may represent wells where the DNA was not correctly extracted or 

amplified. At least two negative controls, one only containing the reaction mixture and 

water and one containing the reaction mixture plus a negative DNA extraction control (a 

well left empty during collection, but that was treated as a sample during extraction). 

2.5.2 Marker determination 

Oligonucleotide primers for KASP genotyping were developed in one of two ways. 

Firstly, I designed several primers myself using the Primer3 (Koressaar and Remm 

2007, Untergasser et al 2012) plugin in Geneious (Kearse et al 2012). These sequences 

were based on the sequencing data from bulked segregant analyses to identify SNPs 

that were surrounded by non-polymorphic regions long enough to accommodate a 22-

base primer sequence. The allele-specific primers ended in the base seen at the focal 
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SNP in the 5′ to 3′ strand in each of the two pools. The following tails were attached 

to the 5′ end of these oligonucleotide sequences: GAAGGTCGGAGTCAACGGAT for primers 

targeting the VIC cassette; and GAAGGTGACCAAGTTCATGC for primers targeting the FAM 

cassette. These primers were ordered from Sigma-Aldrich Life Science (Merck Group, 

Darmstadt, Germany). Secondly, some primers were designed by LGC Ltd using their 

proprietary software. For these primers, the sequence surrounding the focal SNP was 

sent to LGC and the primers were received ready to use. The LGC-designed primers 

were acquired through collaboration with David Field (University of Vienna, Austria) 

and Nick Barton (Institute of Science and Technology Austria, Klosterneuburg, 

Austria). 
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3 Transcription factors regulate magenta 
colour variation in Antirrhinum majus 

3.1 Introduction 

Crucial to developmental processes in plants and animals is the regulation of gene 

expression. A common mechanism for regulating where and when genes are expressed 

in plants is through transcription factors. These are proteins that interact with cis-

regulatory sequences in the promoter region of a gene to regulate transcription of that 

gene (Meshi and Iwabuchi 1995). There are several classes of transcription factors in 

plants, classified according to their conserved domains – regions that are highly 

conserved within the protein families and that bind a target DNA sequence within the 

cis-regulatory regions of target genes (Liu et al 1999). 

As discussed in chapter 1, the genetic basis of phenotypic variation can be due to 

genetic differences that are localised to one part of the genome (centralised genetic 

control) or mutations in different parts of the genome that each affect a given trait in a 

different way (dispersed genetic control). In the case of trait regulation by transcription 

factors, centralised control could mean a single transcription factor regulating a 

phenotype in different populations, possibly with different effects. An example of this 

is wing patterning mediated by a transcription factor in Heliconius butterflies, where 

several species have red bands on their wings as warnings to predators, with the same 
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genes used in different species to produce different banding patterns (Baxter et al 2008, 

Reed et al 2011). Dispersed control could mean several transcription factors encoded 

by genes dispersed throughout the genome each affecting the same trait. Height in 

humans is a polygenic trait controlled by hundreds of loci, many of which encode 

transcription factors (Lettre et al 2008, Weedon et al 2008, Simeone and Alberti 2014). 

3.1.1 Flower colour patterns in Antirrhinum 

Antirrhinum flowers are insect-pollinated and, like other insect-pollinated species, they 

have evolved to attract pollinators to visit them using specialised cues. One of the most 

striking of these cues in Antirrhinum is the colours and patterns produced on the 

flowers. In this chapter, I will focus on the magenta colour seen, with varying degrees 

of intensity and patterning, in all Antirrhinum species. In particular, I will describe my 

efforts to characterise the ‘white face’ phenotype found in A. m. pseudomajus and other 

species with predominantly magenta flowers. 

3.1.2 Regulation of magenta colour in Antirrhinum petals 

Antirrhinum flowers’ magenta colour is caused by anthocyanin pigments, a class of 

flavonoid secondary metabolites found in nearly all land plants (Campanella et al 

2014). Anthocyanin pigments accumulate in the petals’ upper epidermal cells and, 

under acidic conditions, absorb light at a range of wavelengths according to the 

number of hydroxyl groups on one of the rings of the molecule – one in pelargonidin, 

two in cyanidin and three in delphinidin (Glover and Martin 2012). In A. majus, the 3-

rutinoside of cyanidin that gives the flowers their characteristic hue, was isolated by 

Scott-Moncrieff (1930), although some cultivars also produce cyanidin 3-glucoside in 

addition to the 3-rutinoside, resulting in darker petals (Gilbert 1971). Cyanidin has an 

absorption maximum between 465 nm and 550 nm (green light) and a secondary 

absorbance peak between 270 nm and 280 nm (ultraviolet light); pelargonidin’s main 

peak is wider than that of cyanidin and its absorption maximum is at a shorter 

wavelength, so it absorbs some blue light (400-450 nm) in addition to green (Saito and 

Harborne 1992) (Figure 3.1). These absorbance profiles mean that cyanidin is seen by 

humans as magenta (a combination of red and blue-violet), while pelargonidin appears 

red (Gausman 1983, Glover and Martin 2012). Many pollinators, including bees and 

hummingbirds, use colour to forage, although their visual spectra – the range of 

wavelengths their photoreceptors can detect – can vary (Osorio and Vorobyev 2008). 
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Anthocyanins are synthesised in the cytoplasm and the endoplasmic reticulum 

through the flavonoid biosynthesis pathway. The pigment molecules are then 

deposited in the vacuole (Zhao and Tao 2015). 

 

Figure 3.1 Absorbance spectrum of cyanidin 3-glucoside as measured by Skaar et al (2014) 

and pelargonidin 3-glucoside as measured by Lopes-da-Silva et al (2007). Absorbance is 

shown in absorption units (AU). Shown below the graphs are the part of the 

electromagnetic spectrum for the wavelengths along the x-axis and the visual spectra of 

humans, bees and hummingbirds. 
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Figure 3.2 Simplified biosynthetic pathway of cyanidin 3-rutinoside, the magenta-

coloured anthocyanin found in Antirrhinum majus and related species. The main steps are 

shown in the conversion of a molecule of the amino acid phenylalanine to the final form 

of cyanidin found in the vacuoles of magenta-pigmented A. majus epidermal cells. The 

intermediate stages between chalcone and cyanidin also give rise to other important 

flavonoids, such as flavones and flavonols. Adapted from Falcone Ferreyra et al (2012). 

At least eight enzymes are required to make anthocyanins in plants. Most of the genes 

encoding them have been identified by studying mutants. These biosynthetic enzymes 

work consecutively to convert a molecule of the amino acid phenylalanine and three 

molecules of malonyl CoA to make an anthocyanin molecule (Figure 3.2). The 

intensity of the pigment in different cells depends on the expression of the genes that 

encode the enzymes, which in turn is controlled by the expression of regulatory genes 

encoding transcription factors (Martin et al 1991, Schwinn et al 2006, Streisfeld and 

Rausher 2011). 

The anthocyanin pathway in Antirrhinum is regulated by MYB-like proteins – typically 

comprising two repeat sequences containing R2 and R3 MYB motifs, each of which 

encodes α-helices that bind to DNA (Martin and Paz-Ares 1997, Stommel et al 2009). 

The R2R3 MYB-like transcription factor-encoding regulatory genes ROSEA (ROS), 

ELUTA (EL) and VENOSA (VE) are all known to regulate anthocyanin production 

(Schwinn et al 2006, Shang et al 2011, Tavares et al in review). The transcription factors 
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they encode interact with late stages of the anthocyanin synthesis pathway, controlling 

the presence or absence of the pigment in different petal regions (Figure 3.3). In 

magenta-flowered Antirrhinum species, the dominant allele of ROS switches on 

anthocyanin production in epidermal cells throughout much of the flower face, 

resulting in brightly coloured flowers. In ROS/- plants where the functional 

semidominant EL allele is homozygous, anthocyanin production is limited to the 

centre of the flower, a phenotype not seen in the wild outside naturally occurring 

hybrid zones. Typically, Antirrhinum species with a ROS genotype have a non-

functional el copy, which means that magenta colouration is not restricted. The third 

gene VE switches on anthocyanin production in epidermal cells overlying veins in the 

dorsal lobes of the Antirrhinum flower, thus producing a radiating magenta venation 

pattern throughout this region. In plants with the VE/-, EL/EL genotype, these vein 

patterns are localised to the centre of the flower. 

 

Figure 3.3 The effects of the MYB-like transcription factor-encoding genes ROSEA (ROS), 

ELUTA (EL) and VENOSA (VE) on magenta flower colour in A. m. pseudomajus. All genes 

are considered homozygous in this diagram. Starting with a ros el ve triple mutant, the 

addition of ROS gives rise to magenta pigmentation throughout much of the petals. With 

the addition of EL, this pigmentation is restricted to the centre of the flower. From the 

same starting triple mutant phenotype, adding VE gives a flower phenotype with veins 

across the dorsal petals. Adding EL restricts these veins to the centre of the flower. The 

effect of VE cannot clearly be seen in a ROS background as the bright petal-wide 

pigmentation obscures colour in the veins. 

The ROSEA locus can be further divided into three genes, ROS1, ROS2 and ROS3. 

These have similar DNA sequences and are thought to have arisen through 

duplication of an ancestral ROS locus. ROS1 has been shown to activate flavanone 3-
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hydroxylase (F3H), flavanone 3′-hydroxylase (F3′H), dihydroflavonol reductase (DFR) 

and UDP-glucose: flavonoid 3-O-glucosyltransferase (UF3GT), while ROS2 activates 

only F3′H (Schwinn et al 2006, Glover 2014). The roseadorsea (rosdor) mutant line of A. majus 

has vastly reduced anthocyanin pigmentation. Gene expression studies have shown 

that this line lacks ROS2 expression and has changes in the promoter region of ROS1. 

Another mutant line, roseacolorata (roscol), also has reduced anthocyanin production; ROS2 

is expressed in this line, but ROS1 is not (Schwinn et al 2006). ROS3 has only recently 

been described through sequence analysis around the ROS locus. No ros3 mutants have 

been characterised and it may be a pseudogene (Tavares 2014, Tavares et al in review). 

EL, located just 100 kb from the ROS locus, likely arose through a duplication event 

at ROS. The EL locus is predicted to be 609 bp long and encodes a transcription factor 

with two MYB domains. When the ros EL and ROS el haplotypes from other 

Antirrhinum species are crossed to a common A. majus background, expression of the 

EL gene is significantly different between ros EL and ROS el plants (Figure 3.4) 

(Tavares et al in review). 

 

Figure 3.4 Expression estimates EL in the buds of whole flowers with different genotypes 

at ROS and EL. The bars show the mean and 95% confidence interval of expression, 

measured as fragments per kilobase of transcript per million mapped reads (FKPM). The 

flower illustrations depict the phenotype seen for each haplotype. Expression estimates are 

significantly different between plants with each haplotype (q < 0.01). Adapted from 

Tavares et al (in review). 
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3.1.3 White face phenotype in the Antirrhinum genus 

A common feature of most Antirrhinum species with magenta flowers is a lack of 

anthocyanin pigmentation in the face region around the flower foci – the two points 

at the top of the lower lobes (Figure 3.5). In some species, such as A. majus pseudomajus, 

this lack of magenta extends through much of the face of the flower, whereas in others, 

such as A. linkianum, it is confined to the few millimetres immediately surrounding the 

foci or not present at all (Figure 3.6). These, however, are generalisations and much 

variation in this ‘white face’ phenotype also exists between populations of the same 

species. Several cultivars of A. majus also have magenta flowers, and many of these 

lack the white face phenotype. A. majus var. JI7, a research line commonly used for 

genetic studies of flower colour, is one such cultivar that has full magenta colouration. 

 

Figure 3.5 An illustration of the locations on Antirrhinum corollas of the regions referred 

to as the ‘foci’ and the ‘face’. 
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Figure 3.6 Photographs of the flowers of 11 Antirrhinum species with pink or magenta 

flowers (a) and schematic representations of the full magenta and white face phenotypes 

(b). In some species, such as A. m. pseudomajus and A. barrelieri, a large part of the flower 

face is left white owing to a lack of anthocyanin pigmentation. In others, such as A. 

cirrhigerum and A. australe, this region without magenta is generally smaller and only 

includes the foci, where yellow aurones accumulate. In A. linkianum, some accessions have 

no white patch on their flowers. 

 

Another species of interest in regard to the white face phenotype is A. molle. This 

species, which grows in southwestern France, northern Catalonia and Andorra 

(Figure 3.7), has white flowers, with no magenta outside the dorsal vein pattern seen 

in many white-flowered Antirrhinum species. However, when crossed to the lab 

cultivar JI7, a white face pattern has been observed in F2 populations. This may mean 

that the white face allele of A. m. pseudomajus, whose habitat range neighbours that of 
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A. molle, is also seen in other species but does not always produce a phenotype because 

of epistasis. Alternatively, the white face phenotype seen in these F2 populations may 

have an entirely different genetic basis. 

 

Figure 3.7 Approximate population range of A. molle near the borders between France, 

Catalonia and Andorra. Drawn using information from Whibley (2004) and Wilson and 

Hudson (2011). 

 

Figure 3.8 Images of Antirrhinum molle and its flowers. Front view of a flower in the wild 

(a), side view of a flower from the same plant in the wild (b) and growth habit of a plant 

in the wild (c) – all taken at the QUE location near the Santuari de Queralt in Berga, 

Catalonia, in 2017, and thus given the identifier W-QUE. Front (d) and side (e) view 

flower photographs from a plant germinated from seed collected at the same location in 

2003 (identified as C-QUE). 
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The adaptive advantage, if any, of this white face phenotype has not been established, 

nor has its effectiveness at attracting pollinators been characterised. But one 

explanation may be that clearing the foci and surrounding regions of anthocyanins 

ensures that different pigments do not accumulate in the same parts of the flower. The 

foci of predominantly magenta-flowered Antirrhinum species accumulate a yellow 

pigment called aurone, and these are thought to serve as nectar guides to facilitate 

pollination. A similar yellow pattern is found in Mimulus lewisii (Phrymaceae) and 

mutants lacking these yellow guides receive around 20% fewer bumblebee visitors than 

wildtype plants. Also, 55% of visitors entered the mutant flowers in the wrong 

orientation, compared with 10% of visits in the wrong orientation on wildtype flowers 

(Owen and Bradshaw 2011) (Figure 3.9). Allowing the magenta pigment to encroach 

on this yellow region may dilute the signal these foci conveys to pollinators, thus 

reducing the plant’s reproductive success. 

 

Figure 3.9 Bumblebees foraging on wildtype and mutant Mimulus lewisii flowers. 

Bumblebees enter wildtype flowers facing upwards, guided by yellow foci on the petals 

(a). These guides are missing in the guideless mutant, resulting in 55% of pollinators 

entering in the wrong orientation (b). The same entry orientation is seen when wildtype 

flowers are turned upside down (c). Adapted from Owen and Bradshaw (2011). 

3.1.4 Similar phenotypes in other plant species 

Antirrhinum is not the only system where a flower colour pattern is conferred by 

localised lack of pigment. In the bumblebee-pollinated monkeyflower Mimulus lewisii, 

the petals are coloured pink by anthocyanins, with yellow foci coloured by carotenoids 

(Figure 3.10 a). However, the region at the ‘throat’ of the flower, surrounding the 

yellow foci, is left white in a similar manner to the white face of A. m. pseudomajus. 

This phenotype in M. lewisii has been mapped to a single Mendelian locus called 

LIGHT AREAS1 (LAR1). This locus encodes an R2R3-MYB transcription factor, 
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which targets the flavonol biosynthetic gene FLAVONOL SYNTHASE (FLS), and 

plants carrying the dominant allele have higher FLS expression than those 

homozygous for the recessive lar1 allele (Figure 3.10 b) from the related species M. 

cardinalis (Figure 3.10 c). The flavonol synthase enzyme encoded by FLS produces a 

colourless flavonol that competes with, and eliminates, anthocyanin biosynthesis in 

the light region of the flower (Yuan et al 2016). Similar transcription factors to that 

encoded by LAR1 are important for flower colour in A. majus – ROS, EL and VE all 

encode R2R3 MYBs that regulate anthocyanin biosynthesis (Schwinn et al 2006). No 

LAR1 homologue has been described in Antirrhinum, but one possible explanation for 

the white face phenotype is that flavonol and cyanidin biosynthesis are in competition 

in the white face region of Antirrhinum flowers. Alternatively, Antirrhinum may have 

independently evolved a similar phenotype using a different mechanism. This can be 

tested by mapping the gene behind this phenotype and determining its function in 

Antirrhinum flowers. 

 

Figure 3.10 The flowers of Mimulus lewisii, M. cardinalis and a lar1/lar1 M. lewisii near-

isogenic line (NIL). Wildtype M. lewisii has a white patch on its flowers’ throat region. Its 

close relative M. cardinalis lacks this white patch; its flowers are also dark red, unlike M. 

lewisii’s pink flowers. This white patch is caused by the accumulation of flavonol in the 

throat region, which reduces the amount of pink anthocyanin accumulated. This flavonol 

accumulation is regulated by the LAR1 MYB-like transcription factor in M. lewisii. In the 

lar1 NIL, anthocyanins accumulate throughout the throat region. Photographs from Yuan 

et al (2016) 

3.1.5 Pooled whole genome sequencing 

Determining the link between phenotype and genotype – ie determining which genes 

affect which traits – is a core aim in genetics. A widely used and simple method for 

mapping genetic variation in this way is bulked segregant analysis (BSA), a technique 

first developed by Michelmore et al (1991) for the detection of phenotype-associated 
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genetic marker sites. This method involves generating a population that segregates for 

a trait of interest and pooling individuals into two bulks according to that trait – one 

bulk containing individuals with one extreme phenotype and another containing those 

with the contrasting extreme phenotype. This can be done either for traits that appear 

to segregate in a Mendelian fashion – ie one gene linked to the phenotype, producing 

a 3:1 phenotypic ratio – or for more complex traits regulated by several quantitative 

trait loci (QTL). All individuals in the same bulk will have the same phenotype for the 

trait being studied. When allele frequencies in pooled DNA samples from each bulk 

are estimated and the difference between them calculated, one would expect a marker 

linked to the trait of interest to show high frequency differences between the bulks, 

while markers at other sites in the genome would have similar frequencies in both 

bulks. Thus, a peak in allele frequency difference will reveal a locus linked to the trait 

of interest (Figure 3.11). The higher the number of recombination events and more 

accurate the estimation of allele frequency, the more effective the analysis and the 

narrower these peaks will be (Magwene et al 2011). 

 

Figure 3.11 Representation of the results from two hypothetical bulked segregant 

analyses, each using 18 markers. In the first analysis, there is no locus associated with the 

trait that differs between the pools, and all markers show little difference in allele frequency 

estimates (a). In the second, there is a locus associated with the trait, and markers linked 

to that locus show high differences in allele frequency between the pools (b). 

Advances in the technology used for DNA sequencing during the last decade have 

made whole genome sequencing (WGS) a powerful and effective tool both in 

evolutionary biology and genetics. Genome resequencing (ie sequencing the genome 

of a species for which a reference genome already exists) has particularly benefited 

from advancements in highly parallelised short-read sequencing methods, such as the 



Evolutionary genetics of flower colour variation in Antirrhinum 
 Chapter 3: Transcription factors regulate magenta colour variation in Antirrhinum majus 

 65
  

Illumina sequencing platform (Levy and Myers 2016). The cost, power and availability 

of these technologies and the associated field of bioinformatics have improved 

dramatically, such that even population-scale genomic analyses are now possible (Park 

and Kim 2016). 

Sequencing technology advances have allowed WGS to be combined with BSA. In 

such BSA sequencing (BSA-seq) experiments, pooled DNA from each bulk is 

sequenced, with the resulting output containing short sequences from each individual 

in the pool. The contigs are mapped to a reference genome and software is then used 

to call single nucleotide polymorphisms (SNPs) between the two bulks. Allele 

frequency for each bulk is estimated by taking the number of mapped reads with each 

of two possible nucleotides at a SNP. This number, as a proportion of the total number 

or reads mapped to that nucleotide position, is a proxy for allele frequency. With a 

high enough sequencing depth and large enough bulks, allele frequency estimates can 

be scanned across the genome, allowing accurate genetic mapping of segregating traits 

(Magwene et al 2011). 

3.1.6 Statistical considerations of bulked segregant analysis 

The mapped allele frequency differences between BSA pools is a good indicator of the 

location in the genome of loci linked to a trait of interest (Parts et al 2011). However, 

a higher detection power can be achieved by using a G-statistic-based test such as that 

developed by Magwene et al (2011). The calculation of their statistic is shown in detail 

in chapter 2. The raw allele frequency difference value has a slow rate of decay around 

a causal locus, thus making it difficult to refine identification of causal loci beyond a 

large interval. However, the decrease in the value of G around the same locus is 

expected to be more rapid, giving a more precise estimation of the location of a causal 

locus on a chromosome (Figure 3.12). This G calculation also benefits from the 

inclusion of more parameters, such as genome-wide sequencing coverage rather than 

simply the depth of coverage at a SNP. 
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Figure 3.12 The allele frequency difference (dashed blue line) and the G statistic around 

a hypothetical causal SNP. Adapted from Magwene et al (2011). 

Magwene et al (2011) also calculate a smoothed version of the G statistic, which they 

call G′. Calculating G′ involves averaging the G value across a sliding window of fixed 

width (typically 50 kb). They also use a smoothing kernel (tri-cube) to adjust 

neighbouring values and achieve a smoother distribution. Using G′ is helpful because 

the variation in the unprocessed G value prevents the detection of causal loci. This 

variation comes from two stages in the experimental process. Firstly, populations used 

in BSA studies segregate for more than one trait. This first source of variation can be 

minimised by using larger segregating populations, more individuals in each bulk and 

more highly inbred parents of the population. Secondly, the sequencing stage of BSA 

experiments introduces additional variation, which may come from differences in 

coverage across the genome, incomplete library preparation, misalignment of reads or 

problems with algorithms used to call SNPs. Protocol optimisation can help alleviate 

many of these concerns, but some stochasticity is likely to remain (Magwene et al 

2011). 

3.1.7 Fine-mapping by genotyping large populations 

Once a phenotype has been mapped to a specific genomic region using BSA, it can be 

mapped more precisely using fine-mapping techniques. Every individual in a large 

population segregating for the trait of interest is phenotyped and genotyped at close 

intervals across the locus that was identified in the BSA results. Chance recombination 

events between markers will reveal which markers are most closely linked to the gene 
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responsible for the phenotype. 

One method of doing this efficiently is to use allele-specific polymerase chain reaction 

(PCR). This method is described in detail in chapter 2. Briefly, the sequence of the 20-

25 nucleotides immediately preceding a SNP are incorporated into two 

oligonucleotide primers: one ending with the nucleotide of the first allele at that SNP, 

and one ending with the nucleotide of the second allele. A common primer in the 

opposite direction is used to flank the other end of a short PCR product. Different 

fluorescent tags attached to each allele-specific primer allow identification of which 

primer has directed successful amplification in each reaction. In individuals 

homozygous at the SNP, there will only be one fluorescence peak. For heterozygous 

individuals, one would expect two peaks – one for each allele. This method has been 

commercialised by LGC Ltd (2013) in a technology called Kompetitive Allele-Specific 

PCR (KASP). 

3.1.8 Aim of this work 

My aim in the experiments detailed in this chapter is to determine the genetic basis of 

the white face phenotype in A. m. pseudomajus, a highly prevalent phenotype in the 

genus. This phenotype is part of a suite of patterns produced in Antirrhinum by 

accumulating magenta anthocyanin pigments in different parts of the flowers’ petals. 

These other flower colour traits are each changed by one gene – ROSEA turns on 

anthocyanin production in the petals, VENOSA does the same in petal cells overlying 

veins in the dorsal petals and ELUTA restricts anthocyanin pigmentation to the centre 

of the flower. Given this, a hypothesis for the genetic basis of the white face phenotype 

is that an additional single gene of large effect is involved in regulating the white face 

phenotype in A. m. pseudomajus, thus adding to the suite of genes known to regulate 

magenta pigmentation. Perhaps an A. majus homologue of Mimulus lewisii’s LAR1 

might fulfil this role by producing competing colourless flavonols, or another 

transcription factor may switch off anthocyanin biosynthesis genes in a specified part 

of the flower in the same manner as ELUTA. According to these hypotheses, bulked 

segregant analysis would show a single peak either at a LAR1 homologue or elsewhere 

in the genome when comparing pools of plants with and without the white face 

phenotype. Alternatively, white face may be a polygenic trait with several loci 

contributing to the final phenotype. Bulked segregant analysis would then show 

several distinct peaks when comparing white face and non-white face pools. 
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3.2 Results: Segregation of the white face phenotype in F2 
populations 

To identify the genetic basis of A. m. pseudomajus’s white face, I needed a population 

that segregated for the trait. Previous work on isolating genes from A. m. pseudomajus 

has involved crossing plants to the closely related A. m. striatum because the two 

subspecies are very similar both genetically and phenotypically, differing in little other 

than their flower colour. However, because A. m. striatum does not exhibit petal-wide 

magenta pigmentation, the effect of any gene restricting anthocyanin biosynthesis in 

the face of the flower would not be seen. Instead, A. m. pseudomajus was crossed to a 

cultivar of A. majus known as John Innes Stock 7 (JI7) (Figure 3.13). Plants in the JI7 

line are darkly magenta-coloured throughout their petals without the white face 

phenotype seen in A. m. pseudomajus. This cultivar is also the one used for the assembly 

of the A. majus genome (Xue et al, in preparation). 

 

Figure 3.13 A pedigree of the plant family J108 grown for analysis of the white face 

phenotype. Seed from J1428 was collected near the village of Ventola, Ribes de Freser, 

Girona, Catalonia and grown at the John Innes Centre as V163. Plant 36 from that family 

was crossed to the A. majus research line JI7 (individual V7-2). Plant 3 from the F1 

generation (Y135) was selfed to generate the family J108. In the diagram, female and male 

parents are indicated using their respective symbols (♀ and ♂) and a diamond (◇) 

represents self-fertilisation. Solid lines show the relationship between parent and progeny 

and dashed lines show crosses between parents.  
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I used an F2 population segregating for this white face/non-white face phenotype 

generated by crossing an A. m. pseudomajus plant grown from wild-collected seed to a 

JI7 plant. Figure 3.14 shows the magenta flower colour variation seen in the progeny 

of this cross, ranging from the full pigmentation of the JI7 line to the strong white face 

of A. m. pseudomajus. In the first F2 population of 240 plants, family J108, 57 plants 

showed a strong white face phenotype, 125 had a weak white face and 58 had no white 

face. The statistical difference between this ratio and a 1:2:1 ratio expected for a trait 

caused by a semidominant allele at a single locus is not significant (p = 0.404). This 

suggests that A. m. pseudomajus carries a semidominant allele at a single locus that 

regulates the white face phenotype. The same F2 family also showed variation in other 

floral traits that were not considered, including in flower size and shape, and in the 

amount of yellow colouration at the foci, although these did not appear to be linked 

to the white face phenotype. 

 

Figure 3.14 Magenta variation seen in the progeny of crosses between A. m. pseudomajus 

and the A. majus JI7 line. In some individuals, a large white patch is seen in the face region 

(‘strong white face’); in others, the petals are magenta throughout (‘no white face’). A 

schematic illustration (top) and example photograph (bottom) is shown for each version 

of the phenotype. 

3.3 Results: Bulked segregant analysis of the white face trait from 
A. m. pseudomajus 

Two pools of DNA were sequenced from the F2 population J108 segregating for the 

white face phenotype. The first comprised 13 plants showing the clearest strong white 

face phenotype, and the second comprised 29 plants showing the clearest full magenta 
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phenotype. 

 

Figure 3.15 Flower photographs from the 42 individuals from J108 used to construct the 

bulked segregant analysis pools. DNA from the leaves of the 13 individuals whose 

photographs are pictured on the left was pooled to form the ‘strong white face’ pool. DNA 

from the leaves of the other 29 individuals were used to form the ‘no white face’ pool. 

I identified SNPs in the resulting data relative to the JI7 reference genome and 

calculated the frequencies of the reference and non-reference alleles at each of these 

sites and the difference in allele frequency between the pools at each SNP (Δ SNP-

index). From these allele frequencies, I calculated a G value at each site, testing the 

null hypothesis that there is no QTL linked to that site. 

The bulked segregant analysis of J108 showed seven peaks that crossed the false 

discovery rate threshold, which was set at a q value of 0.01 (Figure 3.16). The main 

plot of interest is the middle of the three, showing G′ values for SNPs averaged across 

50 kb windows. Three of the peaks seen are known to be on loci misassembled in the 

current version of the Antirrhinum genome. These are the very narrow peaks on 

chromosomes 3, 4 and 5. They are shown in light grey on the graphs in Figure 3.16. 

G′ values at these loci consistently match those seen on parts of chromosome 2, 
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suggesting that they are linked and that, in future versions of the genome, these loci 

should be assembled on chromosome 2. However, given that their exact positions on 

chromosome 2 is unknown, I have left them in their currently assembled positions for 

this work. There is also a section of chromosome 2 that is assembled in the incorrect 

orientation – this has been given a green background in this figure. Because of this, 

chromosome 2 should be treated as one peak rather than two. 

 

Figure 3.16 Bulked segregant analysis Manhattan plots for phenotypic extremes from 

family J108 segregating for the white face phenotype. The top plot shows the number of 

SNPs in each 50 kb window across each chromosome. The middle plot shows the G′ value 

for each SNP. This is a version of the G value averaged across 50 kb windows and 

smoothed using a tri-cube kernel function. The red line on this plot represents a G′ 

threshold corresponding to a false discovery rate of 0.01. The bottom plot shows the 

difference in allele frequency of each pool, again averaged and smoothed across 50 kb 

windows. A negative value indicates that, in a majority of sequencing reads, the JI7 

reference genome nucleotide is found at SNPs in that window; a positive value indicates 

that a majority of reads have a non-reference nucleotide at SNPs in the window. 

Mismapped regions are shown in light grey, and a green background represents the section 

of chromosome 2 that is assembled in the wrong orientation. 

Discarding the three misassembled regions and considering chromosome 2 as having 
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just one peak leaves three peaks to be investigated. Firstly, chromosome 2 shows very 

high G′ values, with nearly the entire chromosome appearing as a peak. Secondly, 

chromosome 5 has a peak covering its first 3Mb. And thirdly, a large peak is found on 

chromosome 6, seen towards the end of the chromosome. Elevations in G′ value can 

also be seen around the final 20Mb of chromosome 8 and the last 6Mb of chromosome 

5, but these are lower than the false discovery rate threshold. The observance of 

numerous peaks usually means that a phenotype is polygenic, regulated by genes at 

several distinct QTL. However, this contradicts the 1:2:1 ratio of white face 

phenotypic classes seen in J108. This suggests that the plants in the two pools may 

have differed in more than just their white face phenotypes, perhaps because of the 

small number of individuals used. 

The chromosome 2 peak is the highest of the three. It includes three known flower 

colour genes. FLAVIA (FLA), which encodes chalcone glucosyltransferase (CGT), an 

enzyme involved in the biosynthesis of the yellow aurone pigment in Antirrhinum (Ono 

et al 2006, Boell et al unpublished results) (Figure 3.17). The other two known flower 

colour genes on the chromosome are CHALCONE ISOMERASE (CHI), involved in the 

early stages of anthocyanin biosynthesis and AUREUSIDIN SYNTHASE1 (AS1), 

which works alongside CGT to make aurone. 

 

Figure 3.17 A closeup view of chromosome 2 showing G′ values across that chromosome 

(dark blue line), using the same BSA data as Figure 3.16. The positions of three genes 

found on this chromosome are shown with vertical lines: AUREUSIDIN SYNTHASE 1 

(light blue), CHALCONE ISOMERASE (magenta) and FLAVIA (gold). The pale red 

horizontal line represents a G′ threshold corresponding to a false discovery rate of 0.01. 

The anthocyanin biosynthetic gene CHI itself may be contributing to the white face 

phenotype or to variation in magenta. The chalcone isomerase enzyme it encodes is 

involved in the early stages of the flavonoid biosynthetic pathway. A change in the 
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function of the chalcone isomerase protein is unlikely, given that anthocyanins still 

accumulate in the flowers outside the face region in plants with a strong white face 

phenotype. However, a change in the cis-regulatory region of this gene could alter the 

regulation of the gene without compromising the function of the chalcone isomerase 

enzyme. This would mean a marked difference in the way the magenta pigment is 

regulated in the face region compared with other parts of the flower. Interspecies 

differences in patterns produced by anthocyanins have previously only mapped to 

transcription factors – no differences have been found at the loci encoding biosynthetic 

genes. Furthermore, the transcription factors described – ROS, EL and VE – interact 

with stages in the anthocyanin pathway much later than where chalcone isomerase 

acts (Schwinn et al 2006). 

Another possible explanation for the peak on chromosome 2 is that the individuals 

compared in this analysis differed not only for magenta pigmentation, but for yellow 

pigmentation too. In J108, the size of the yellow region seen varied from a tiny hint at 

the foci to a much greater degree of yellow pigmentation covering much of the flower 

face. I looked back at the photographs taken of the flowers of J108, and in particular 

at those individuals used to construct the BSA pools. There was a great deal of 

variation in the amount of yellow in the face region of these flowers; some flowers had 

very weak and restricted yellow pigmentation, whereas others had strong yellow 

pigmentation that spread much further down the face (Figure 3.18). Such variation in 

the amount and intensity of yellow pigmentation may be explained by segregation of 

alleles at the FLA locus; the FLA allele of JI7 is known to produce a much stronger 

yellow colour than that of A. m. pseudomajus (Boell et al unpublished results). The lack 

of yellow may make the white face phenotype more visible when scoring; conversely, 

rich yellow colouration may make the magenta colour of non-white face individuals 

appear darker. Because the two bulks were the tail ends of the phenotypic distribution 

between white face and non-white face without consideration for other traits, some 

unconscious bias with regard to yellow may have influenced the construction of the 

pools. 



Mabon Rhun Elis 

74 

 

Figure 3.18 Yellow variation seen in J108. In some individuals, the face of the flower only 

had a hint of yellow pigmentation (a and c), whereas others had much stronger yellow (b 

and d). The same flower photographs are shown in e to h, with their face regions 

magnified. 

 

To determine whether the signal on chromosome 2 was linked to the white face 

phenotype or to the variation seen in yellow pigmentation, the individuals used for the 

two J108 BSA pools were genotyped using KASP markers (LGC Ltd 2013). These 

markers determine the presence or absence of two alleles at a SNP for each individual 

tested. If only one is present, the individual is homozygous for that allele; if both are 

detected, the individual is heterozygous at the SNP of interest. In this analysis, the 

marker used was in the promoter region of FLA and the assay tested for the JI7 and A. 

m. pseudomajus alleles. In the white face pool, nine plants were homozygous for the A. 

m. pseudomajus allele of FLA, and the other four were heterozygous. In the non-white 

face pool, five plants were homozygous for the A. m. pseudomajus allele, 18 were 

homozygous for the JI7 allele and six were heterozygous. This means that in the white 

face pool, there were 22 A. m. pseudomajus FLA alleles and only four JI7 FLA alleles. 

In the non-white face pool, however, there were 42 JI7 FLA alleles but only 16 A. m. 

pseudomajus FLA alleles. This predicts a peak in allele frequency difference at FLA and, 

therefore, at least some of the G′ value peak on chromosome 2 is because of this 

unconscious bias. 

The width of the peak on chromosome 2 also requires explaining. In work attempting 

to genetically map traits from Antirrhinum species using the JI7 line, a lack of 
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recombination on chromosome 2 is consistently observed (Boell et al unpublished 

results). Figure 3.19 shows the results of four bulked segregant analyses from chapter 

4 of this thesis, in which the pools tested were also from F2 populations derived from 

crosses between Antirrhinum species and JI7. Here too, all peaks on chromosome 2 are 

nearly chromosome-wide. The cause of the lack of recombination on this chromosome 

has not been determined, but such effects are often caused by inversions. Given that 

this effect is seen when analysing variation from many different Antirrhinum species, 

this would mean an inversion in the chromosome 2 of JI7, relative to other Antirrhinum 

accessions. Such a phenomenon may also explain the difficulty in correctly assembling 

chromosome 2. Issues with this chromosome’s assembly are discussed in section 4.6.4. 

 

Figure 3.19 Manhattan plots showing the result of bulked segregant analyses described in 

chapter 4 of this thesis, which focuses on yellow colour variation. As is the case in family 

J108 (Figure 3.16), peaks on chromosome 2 in these analyses cover nearly the whole 

chromosome. The blue line shows the G′ value for each SNP, a variation on the G statistic 

averaged across 50 kb windows and smoothed using a tri-cube kernel function. Red 

horizontal lines on each plot represent a false discovery rate of 0.01. 

The peak on chromosome 5 (Figure 3.16 and enlarged in Figure 3.20) is at the very 

start of the chromosome, with the first 3Mb of the chromosome showing an elevated 

G′ value between 5 and 10. A lower elevation in G′ (G′ < 5) is seen around the 66Mb 

position on the chromosome, although this peak does not cross the false discovery rate 
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threshold (a q value of 0.01). Neither of these two regions contain genes previously 

known to be involved in flower colour in Antirrhinum. The start of chromosome 5, 

therefore, is of particular interest as the height of its peak is consistent with it 

containing a white face-linked causal locus. A previously unidentified gene involved 

in pollinator-attracting flower colour patterns may therefore be found in this area. 

Alternatively, similarly to chromosome 2, it may be a result of the pooling strategy, 

containing loci regulating a trait that was inadvertently selected for in the pools. 

 

Figure 3.20 A closeup view of chromosome 5 showing G′ values across that chromosome 

(dark blue line), using the same BSA data as Figure 3.16. The pale red horizontal line 

represents a G′ threshold corresponding to a false discovery rate of 0.01. 

I extracted the sequences for the first 3Mb and final 10Mb of chromosome 5 to look 

for sequences homologous to genes in other plant species. I performed a blastx analysis 

using the basic local alignment search tool (BLAST) (Altschul et al 1990). The blastx 

tool compares the amino acid translation of a query sequence against a large database 

of protein sequences and is designed to find sequences that are homologous to protein-

coding genes. I used the NCBI non-redundant database for this search (NCBI 

Resource Coordinators 2017). None of the genes found in this analysis appear to be 

involved in flower colour or, more generally, in the regulation or synthesis of 

flavonoids. There are also no MYB-like transcription factors, which are typical 

regulators of magenta flower colour in Antirrhinum, encoded within these two regions. 

If flower colour-regulating genes are located in these regions, therefore, they would be 

new genes without homologues described in the NCBI database, and would likely 

involve a mechanism other than MYB-like transcription factors. However, it is 

possible that the peaks may be linked to phenotypes that were not selected for in the 

pools, but that happened to differ between some of the plants compared. Such a 

difference between only some of the individuals in the bulks would also explain these 
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peaks being low compared to some of the other peaks. 

The peak on chromosome 6 (Figure 3.21) contains the linked ROSEA (ROS) and 

ELUTA (EL) genes, although it is not possible with this data to determine whether one 

of these genes is more closely linked to the phenotype than the other. That either of 

these genes are linked to the white face phenotype is surprising. Both are known to 

regulate magenta pigmentation, but the effects of both have been previously described: 

ROS activates late-pathway anthocyanin biosynthetic genes throughout the petal 

lobes, and EL restricts the activity of the same genes outside the centre of the flower. 

Both are also thought to have the same allelic configuration in A. m. pseudomajus as in 

A. majus var. JI7 – dominant ROS (ROS/-) and recessive EL (el/el). These results, 

however, imply that a difference between A. m. pseudomajus and JI7 at or near the ROS-

EL locus may be partly responsible for the difference in their magenta phenotypes. 

Alternatively, this peak could represent differences in magenta intensity that make the 

white face easier to score, without being involved in suppressing anthocyanin 

production in the face directly. 

 

Figure 3.21 A closeup view of chromosome 6 showing G′ values across that chromosome 

(dark blue line), using the same BSA data as Figure 3.16. The position of the ROS-EL 

locus is shown with a magenta vertical line. The pale red horizontal line represents a G′ 

threshold corresponding to a false discovery rate of 0.01. 

The low peak on chromosome 8 is highest around the 45Mb position along the 

chromosome (Figure 3.22). This region does not contain genes previously known to 

be involved in flower colour. VENOSA, a gene encoding a MYB-like transcription 

factor that regulates anthocyanin pigmentation in the dorsal petals, is located on this 

chromosome, but at the start of the chromosome, 43-45Mb away from the peak. As 

with the results from chromosome 5, I used a blastx search to look for regions 

homologous to protein-coding genes from other species at this peak, but did not find 
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any likely to be involved in flower colour regulation. 

 

Figure 3.22 A closeup view of chromosome 8 showing G′ values across that chromosome 

(dark blue line), using the same BSA data as Figure 3.16. The position of the VE locus is 

shown with a magenta vertical line. The pale red horizontal line represents a G′ threshold 

corresponding to a false discovery rate of 0.01. 

None of the peaks described above contain a homologue to the LAR1 gene in Mimulus 

lewisii described by Yuan et al (2016). The A. majus LAR1 homologue is located on 

chromosome 1, but no peak in allele frequency difference between plants with and 

without the white face phenotype can be seen on this chromosome in Figure 3.16. 

This suggests that the white face phenotype is not analogous to the light area seen in 

M. lewisii. 

The Δ-SNP index plot on the bottom row in Figure 3.16 is based on the work of Takagi 

et al (2013), who developed a method for calculating the allele frequency differences at 

individual SNPs between bulks with extreme phenotypes in segregating populations. 

First, the proportion of reads mapped to a SNP that carry the non-reference genome 

allele is calculated in each bulk. Then, the value for the ‘wild type’ pool (non-white 

face here) is subtracted from the value of the ‘novel’ phenotype pool (strong white 

face). This gives the Δ-SNP index for that SNP, and the same calculation is performed 

for all SNPs in the genome. For this analysis, I applied the same sliding window 

averaging (50 kb) and smoothing kernel (tri-cube) as I did the G′ value so that the effect 

of outliers would be minimised, giving a cleaner signal. Full details of this method are 

given in chapter 2. Genomic positions not linked to a locus associated with the trait of 

interest (strong white face in this case) should have a Δ-SNP index value of zero, 

because 50% of alleles in both pools would come from each parent. If a genomic 

position has a positive value on this graph, it means that the white face pool held a 
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higher proportion of A. m. pseudomajus alleles than the non-white face pool. 

Conversely, a negative value indicates that the white face pool held a lower proportion 

of non-reference alleles than its non-white face counterpart. The peaks on 

chromosomes 2, 5, 6 and 8 all have positive values, which means that loci within these 

peaks are enriched for the A. m. pseudomajus allele in the white face pool compared to 

the non-white face pool. 

The baseline Δ-SNP index for most of the genome does not lie at 0 in Figure 3.16 – 

most genomic positions apart from most of chromosome 3 have a positive or negative 

value. In fact, most genomic positions have a higher proportion of A. m. pseudomajus 

alleles in one pool compared to the other. Only on chromosome 1 does the white face 

pool contain a higher proportion of reference (JI7) alleles than the non-white face pool, 

whereas for chromosome 2 and chromosomes 4 to 8 the reverse is true. This could be 

a sign that loci on these chromosomes may be enhancing the white face phenotype. 

Alternatively, this may be noise as a result of each pool containing relatively few 

individuals and thus differing by chance at some locations within the genome. A third 

possible reason is that plants were inadvertently selected to be more like A. m. 

pseudomajus in the white face pool and more like JI7 in the non-white face pool. Such 

differences may include flower shape and size, which may show subtle differences 

between the parents. 

3.4 Results: Genotyping a larger population for ROS-EL to look at 
the relationship between genotype and phenotype 

In order to map the white face phenotype at a finer scale and to determine whether 

loci at the ROS-EL locus or chromosome 2 were linked to the white face phenotype, I 

designed a series of SNP markers based on my BSA results (Section 8.1, Appendix 1). 

Using these KASP markers, I scored and genotyped a new F2 population of 500 plants 

grown in 2016. This population, L124, was grown from selfed seed from the same 

parent as J108, but from a separate capsule (Figure 3.23). 
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Figure 3.23 A pedigree of the plant family grown for analysis of the white face phenotype. 

Seed from J1428 was collected near the village of Ventola, Ribes de Freser, Girona, 

Catalonia and grown at the John Innes Centre as V163. Plant 36 from that family was 

crossed to the A. majus research line JI7 (individual V7-2). Plant 3 from the F1 generation 

(Y135) was selfed to generate the family L124. This was the same F1 plant that gave rise 

to J108. In the diagram, female and male parents are indicated using their respective 

symbols (♀ and ♂) and a diamond (◇) represents self-fertilisation. Solid lines show the 

relationship between parent and progeny and dashed lines show crosses between parents. 

I also developed a more precise scoring system for the white face phenotype, giving 

each plant a magenta score between 0 (no white face) and 5 (strong white face) (Figure 

3.24). To help with this phenotyping, I used an approximation of a multispectral 

imaging technique to visualise the flowers’ colours more accurately (described in detail 

in chapter 2). In doing so, I hoped to distinguish as much as possible between the 

yellow and magenta pigmentation of each flower. To achieve this, I converted each 

image to black and white while applying a colour filter. As a result, in the images 

converted to visualise magenta, areas with the most intense magenta colouration 

appears dark grey or black, and areas with the least magenta colouration appears light 

grey or white, regardless of the presence of other colours. Similarly, yellow-coloured 

parts of the flower are the darkest in the yellow-converted images. I assigned a score 

between 0 and 5 based on visual inspection of the magenta-converted images. Figure 

3.24 shows the original images of representative flowers given each white face score, 

along with the colour-converted images. This scoring system is not perfect, as I did not 



Evolutionary genetics of flower colour variation in Antirrhinum 
 Chapter 3: Transcription factors regulate magenta colour variation in Antirrhinum majus 

 81
  

see any flowers with a magenta score of 0 but with strong yellow pigmentation too, 

suggesting that accumulation of aurones in the foci prevents anthocyanin 

pigmentation at the very top of the flower face. 

 

Figure 3.24 Revised flower colour scoring system used for phenotyping plants for the 

white face trait. The scores assigned range from full magenta pigmentation with no white 

(0) to a large white patch covering the face of the flower (5). The upper row shows a 

schematic representation of each score. The second row shows a representative 

photograph of a flower given each score, with the dorsal petals removed so as not to 

obscure the flowers’ faces. The third row shows the same flower photographs seen in the 

second row, but converted to black and white with magenta pixels darkened. The same 

colour conversion has been applied in the fourth row, but with yellow pixels darkened 

instead of magenta ones.  

As with J108, the majority of L124 plants showed a weak white face phenotype. Of 

the 498 plants, 42 plants (8.4%) had a white face score of 0 or 1 (no white face), 304 

plants (61.0%) had a score of 2 or 3 (weak white face) and 152 plants (30%) had a score 

of 4 or 5 (strong white face). The number of plants given each score is shown in full in 

Figure 3.25. This ratio differs significantly from the 1:2:1 ratio seen in J108, with a G 

test for goodness of fit giving p < 0.01. 
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Figure 3.25 Frequency of each white face phenotype score in L124 (n = 498), grouped 

according to phenotype description. The diagrams below the bars show a typical visual 

representation of each score. 

I designed and tested 25 sets of primers at and near the ROS-EL locus. These are shown 

in detail in Section 8.1 (Appendix). I used one KASP marker in each gene for this 

work: one marker in the second intron of ROS1 (52,319,793 bp along chromosome 5) 

and one in the exon of EL (52,491,807 bp along chromosome 5). The white face 

phenotype was closely associated with the genotypes at the ROS-EL locus. This 

association is shown in Figure 3.26, where I show the proportions of individuals with 

each ROS and EL genotype, sorted by white face phenotype. In summary, of the plants 

showing the strongest white face phenotype (score 5), 77% were homozygous for the 

A. m. pseudomajus allele of ROS (genotype ROSP/ROSP) and 65% were homozygous for 

the A. m. pseudomajus allele of EL (genotype ELP/ELP); the exceptions were 

heterozygous (ROSP/ROS7 and ELP/EL7, where a superscript 7 indicates the A. majus 

stock 7 allele). Of those showing the clearest non-white face phenotype (score 0), 71% 

had the genotype ROS7/ROS7 and 57% had the genotype EL7/EL7; exceptions, again, 

were heterozygous (ROSP/ROS7 and ELP/EL7). Looking at the two extreme 

phenotypes (scores 0 and 5), around 75% of the variation in white face phenotype is 

accounted for by ROS-EL. There are three possibilities that could explain the residual 

variation in this phenotype. First, a second gene, unlinked to ROS-EL, may act as a 

modifier of the white face phenotype. Second, there may be variation in the white face 

phenotype that is not controlled genetically – environmental differences might alter 
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the amount of magenta pigmentation on the flower face. And third, some of the 

genotyping results may be inaccurate, due either to problems with the oligonucleotide 

markers or sample contamination. 

 

Figure 3.26 Percentages of each of the three ROS and EL genotypes present in individuals 

from the family L124 grouped by white face phenotype score. Individuals homozygous 

for the JI7 allele are coloured in blue, those homozygous for the A. m. pseudomajus allele 

are coloured in green and heterozygous individuals are shown in yellow. The number of 

individuals falling within each group is shown above its bar. These are not the same for 

both genes because genotypes could not confidently be called for all reactions. 

I also recorded the yellow flower phenotypes of plants in L124 based on the yellow-

converted images (Figure 3.24) and genotyped them to determine whether differences 

at the FLA locus can explain the variation in the amount of yellow seen on the flowers. 

As shown in Figure 3.27, most plants (296 out of 498) had yellow foci on their flowers. 

An additional 104 had spread yellow pigmentation, where the yellow on the flower 

face extended down from the foci. The remaining plants had little (57 plants) or no 

yellow (41 plants) on their flowers. I performed G tests for goodness of fit to determine 

whether the yellow phenotypic ratios in this family matched those expected for a single 

gene. The ratio between the number of flowers with spread yellow, restricted yellow 

and little-to-no yellow differed significantly (p < 0.01) from the 1:2:1 ratio that would 

be expected if the variation was governed by a single locus with a semidominant allele. 

The ratio between the number of flowers with spread yellow and restricted/suppressed 

yellow also differed significantly (p < 0.01) from the 3:1 ratio that would be expected 

if a single causal locus had a fully dominant spread-yellow allele. This could mean that 

yellow variation in this family is controlled by more than one gene. 
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Figure 3.27 Frequency of each yellow phenotype in L124 (n = 498), grouped according to 

phenotype description. The diagrams below the bars show a typical visual representation 

of each score, but using blue to illustrate yellow pigmentation to make it easier to see. 

The FLA genotypes for this family showed the expected 1:2:1 ratio between individuals 

carrying only the A. m. pseudomajus allele, both alleles and only the JI7 allele, 

respectively. Some association could be found between FLA genotype and yellow 

phenotype (Figure 3.28). Plants with little or no yellow in their flowers were mostly 

homozygous for the A. m. pseudomajus allele of FLA (80%), with some heterozygotes 

(20%). Plants scored as having yellow foci not spreading down the flower face could 

have any of the three FLA genotypes, with 58% heterozygotes, 30% JI7 homozygotes 

and 12% A. m. pseudomajus homozygotes. Similarly, in the group of plants with spread 

yellow on the faces of their flowers, 56% were heterozygous and 44% were 

homozygous for the JI7 allele; none of these plants were homozygous for the A. m. 

pseudomajus allele. These results suggest that the A. m. pseudomajus allele of FLA 

generally confers less yellow than that of JI7, but that another gene may also regulate 

the restriction of yellow in L124. 
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Figure 3.28 Percentages of each of the three FLA genotypes present in individuals from 

L124 grouped by yellow phenotype. Individuals homozygous for the JI7 allele are 

coloured in blue, those homozygous for the A. m. pseudomajus allele are coloured in green, 

and heterozygous individuals are shown in yellow. The number of individuals falling 

within each group is shown above its bar. 

3.5 Results: A second round of bulked segregant analysis shows 
that just one peak is linked to the white face phenotype 

The incomplete linkage between the white face phenotype and the genotype at ROS 

and EL suggested that an additional unlinked locus may affect the intensity of the 

phenotype. Alternatively, the results may indicate sample contamination or inaccurate 

genotyping. I generated additional pools for sequencing to attempt to determine 

whether an additional contributing locus exists and identify it, this time using plants 

from L124 that I had genotyped for ROS and EL and scored more accurately. I grouped 

the magenta-converted flower images according to ROS-EL genotype and selected the 

white face/non-white face phenotypic extremes. I sequenced four pools for this 

population, each comprising DNA from 20 plants: 

1. Strong white face, A. m. pseudomajus alleles of ROS and EL. These were the 

individuals that had the strongest white face phenotypes and were confirmed 

to be homozygous for the A. m. pseudomajus alleles of both ROS and EL. These 

all had magenta scores of 5. 

2. No/very little white face, A. m. pseudomajus alleles of ROS and EL. These 

were the ROSP-ELP homozygotes that had the fullest magenta colouration with 

the least amount of white face. These had magenta scores of 1 and 2. 

3. Weak white face, JI7 alleles of ROS and EL. These were the ROS7-EL7 
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homozygotes that had the strongest white face phenotypes in that group. These 

had magenta scores of 3 and 4. 

4. No white face, JI7 alleles of ROS and EL. In the fourth pool, all the plants 

had a non-white face phenotype (score 0) and were homozygous for the JI7 

alleles of ROS and EL. 

I then performed bulked segregant analyses on six pairwise comparisons. I used these 

analyses to test two alternate hypotheses. Hypothesis 1 is a null hypothesis and states 

that the ROS-EL locus is solely responsible for the white face phenotype and that no 

other locus is linked to this trait; any additional variation is due to environmental 

effects. Hypothesis 2 states that one or more loci in addition to ROS-EL are 

differentially fixed between plants with opposing phenotype. The comparisons I used 

to test these hypotheses, and the expected outcome in each case, are shown in Table 

3.1. 

Table 3.1 Summary of the six pairwise comparisons I used to compare the sequenced 

pools in my second round of bulked segregant analysis. The final two columns show the 

expected results if hypothesis 1 (only ROS-EL is involved in changing the white face 

phenotype) or hypothesis 2 (ROS-EL and one or more additional loci are collectively 

involved in changing the white face phenotype) were true. 

 Pools compared Summary of 
comparison 

Hypothesis 1 
result 

Hypothesis 2 
result 

A Pool 1 by pool 2 Different 
phenotypes, but 
same ROS-EL 
genotype 

No peaks One or more 
peaks, but not at 
ROS-EL 

B Pool 1 by pool 3 Same phenotype, 
different ROS-EL 
genotypes 

Peak at ROS-EL 
only 

Peak at ROS-EL 
only 

C Pool 1 by pool 4 Different 
phenotypes, 
different ROS-EL 
genotypes 

Peak at ROS-EL 
only 

Peak at ROS-EL 
and at one or 
more other loci 

D Pool 2 by pool 3 Different 
phenotypes, 
different ROS-EL 
genotypes 

Peak at ROS-EL 
only 

Peak at ROS-EL 
and at one or 
more other loci 

E Pool 2 by pool 4 Same phenotype, 
different ROS-EL 
genotypes 

Peak at ROS-EL 
only 

Peak at ROS-EL 
only 

F Pool 3 by pool 4 Different 
phenotypes, but 
same ROS-EL 
genotype 

No peaks One or more 
peaks, but not at 
ROS-EL 
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Results of these analyses (Figure 3.29) show that when two pools are analysed and 

have the same genotype at ROS-EL, there is no peak anywhere in the genome (Figure 

3.29 A and F). When two pools analysed have different genotypes at ROS-EL, a peak 

is seen at the ROS-EL locus, but not elsewhere in the genome, suggesting that no loci 

on other chromosomes contribute to the white face phenotype. This is consistent with 

hypothesis 1 being correct. 
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Figure 3.29 Manhattan plots showing the genome-wide G′ values (G values averaged 

across a distance of 50 kb and adjusted using a tri-cube smoothing kernel) for six bulked 

segregant analyses. The names of the comparison made in each analysis is shown in the 

grey box to the right of each row and correspond to the descriptions in Table 3.1. In 

summary, they are: (A) pool 1 × pool 2, with different phenotypes but the same ROS-EL 

genotype; (B) pool 1 × pool 3, with the same phenotype but different ROS-EL genotypes; 

(C) pool 1 × pool 4, with different phenotypes and different ROS-EL genotypes; (D) pool 

2 × pool 3, with different phenotypes and different ROS-EL genotypes; (E) pool 2 × pool 

4, with the same phenotype but different ROS-EL genotypes; and (F) pool 3 × pool 4, with 

different phenotypes but the same ROS-EL genotype. The plots in each row are arranged 

horizontally by chromosome. Details of the pools are as follows: in pool 1, all plants have 

a strong white face phenotype and are homozygous for the A. m. pseudomajus allele at the 

ROS-EL locus; in pool 2, all plants have a non-white face phenotype and are homozygous 

for the A. m. pseudomajus allele at the ROS-EL locus; in pool 3, all plants have a weak-to-

strong white face phenotype and are homozygous for the A. majus var. JI7 allele at the 

ROS-EL locus; in pool 4, all plants have a non-white face phenotype and are homozygous 

for the A. majus var. JI7 allele at the ROS-EL locus. The pink line in each of the 

chromosome 6 plots shows the location of the ROS-EL locus. 

The peak at ROS-EL in Figure 3.29 is highest and widest in analyses B (pool 1 × pool 

3, same phenotype but different ROS-EL genotypes) and C (pool 1 × pool 4, different 

phenotypes and different ROS-EL genotypes). Here, all of chromosome 6 shows some 

elevation in G′, with a further elevation near the ROS-EL locus itself. These two plots 
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differ markedly from those for analyses D (pool 2 × pool 3, different phenotypes and 

different ROS-EL genotypes) and E (pool 2 × pool 4, same phenotype but different 

ROS-EL genotypes). This could mean that an additional locus on chromosome 6 

modifies the phenotype subtly, either by enhancing the white face phenotype in A. m. 

pseudomajus or by reducing the white face phenotype in A. majus var. JI7. However, 

there are no high peaks seen in either analysis A or F (different phenotypes but the 

same ROS-EL genotype). If there was a modifier acting on the white face phenotype, 

a peak would be expected in one of these plots. This suggests that there is no genetic 

modifier and that unexplained variation in L124 is either environmental or because of 

incorrect genotyping. 

A closer look at the genotyping used as the basis of this round of bulked segregant 

analysis reveals some discrepancies, suggesting that I misgenotyped some of the 

plants. I performed the genotyping for L124 using KASP primers, which I designed to 

give an allele-specific fluorescence when PCR plates containing the PCR-amplified 

samples are read under ultraviolet light. The absolute intensity of the fluorescence is 

not itself a reliable measure of the amount of each PCR product present as different 

primers can amplify better than others. To overcome this, the software used to read 

these genotyping plates (Bio-Rad CFX Manager) uses an algorithm to cluster values 

together based on the fluorescence intensity at each wavelength in each well. But re-

genotyping these 80 plants showed that eight of the 20 individuals in pool 2, which 

should be homozygous for the A. m. pseudomajus allele of ROS-EL, were in fact 

heterozygous, and therefore also carried the A. majus var. JI7 allele of ROS-EL (Figure 

3.30). As Table 3.2 shows, the relative numbers of each ROS-EL allele in pool 2 was 

different from what was predicted from the original genotyping. Analyses that use this 

pool (A, D and E) are inaccurate at the ROS-EL locus. It is likely that, without eight 

JI7 ROS-EL alleles in pool 2, the peak at chromosome 6 in analyses D and E in Figure 

3.29 would be higher. This would also likely eliminate the small signal on 

chromosome 6 in analysis A. 
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Figure 3.30 Scatter plot showing the ROS-EL genotyping results for the 80 L124 plants 

used for the second round of bulked segregant analysis in this chapter. The y axis shows 

the intensity of the green fluorophore seen when the A. m. pseudomajus allele has been 

amplified and the x axis shows the intensity of the blue fluorophore seen when the A. majus 

var. JI7 allele has been amplified. The points are coloured according to the pool to which 

they were assigned, as shown in the legend. The circled points are individuals that were 

misclassified as homozygous for the A. m. pseudomajus allele whereas they are in fact 

heterozygous. 

Table 3.2 Intended and actual numbers of A. m. pseudomajus and JI7 alleles of ROS-EL in 

the four pools used in the bulked segregant analysis for L124. 

Pool 

Intended number of alleles Actual number of alleles 
A. m. 

pseudomajus JI7 
A. m. 

pseudomajus JI7 
1 40 0 40 0 
2 40 0 32 8 
3 0 40 0 40 
4 0 40 0 40 

 

Notably missing in Figure 3.29 are the peaks on chromosomes 2, 5 and 8 seen in the 

previous analysis (Figure 3.16). The two differences between J108, used for the first 

BSA, and L124, used for the second, were the sizes of the families and the phenotyping 

method used. J108 was pooled according to differences in the white face phenotype as 

observed on living plants and from unprocessed photographs. L124 was pooled 
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according to differences in the white face phenotype as observed from the colour-

converted images, largely discounting variation in yellow pigmentation. The first 

method resulted in several distinct peaks; the second method results in just one peak. 

This suggests that the peaks seen in the previous analysis were not linked to the white 

face phenotype, but instead were linked to additional variation between the pools. 

My results from this experiment indicate that hypothesis 1 is correct – that only one 

gene is involved in changing the white face phenotype that segregates between these 

pools. However, this results also disproves the original hypothesis that a novel gene 

would be involved in changing this phenotype. It appears instead that the ROSEA-

ELUTA locus is involved in regulating magenta pigmentation in a novel way. 

3.6 Results: Genotyping a larger population maps the white face 
phenotype to the ROSEA locus 

Bulked segregant analysis of L124 showed that the white face phenotype was likely 

genetically-regulated only at the ROS-EL locus. This meant that the additional 

phenotypic variation observed was due to genotyping errors or environmental 

variation. To determine which of these was responsible for the variation, I used the 

same two SNP markers at ROS and EL, as well as an additional marker at each gene 

(at 52,352,815 bp in the third exon of ROS3 and at 52,491,840 bp, again in the EL 

exon), to genotype two additional F2 families grown in 2017: N101 and N102. These 

were generated using the same JI7 × A. m. pseudomajus accession cross as J108 and 

L124, but from a separate F1 individual (Figure 3.31). The white face phenotype was 

seen again in both families, with 24% (155 individuals) showing no white face (scores 

0 and 1), 56% (363 individuals) having a weak white face (scores 2 and 3) and 19% 

(124 individuals) a strong white face (scores 4 and 5) (Figure 3.32). Once again, the 

ratios between phenotype groups appeared to resemble a 1:2:1 ratio, but a G test for 

goodness of fit gave p < 0.01, showing a significant difference between the expected 

and observed ratios. 
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Figure 3.31 A pedigree of the two plant families grown in 2017 for analysis of the white 

face phenotype. Seed from J1428 was collected near the village of Ventola, Ribes de 

Freser, Girona, Catalonia and grown at the John Innes Centre as V163. Plant 36 from that 

family was crossed to the A. majus research line JI7 (individual V7-2). Plants 4 and 5 from 

the F1 generation (Y135) were each selfed to generate the families N101 and N102, 

respectively. These F1 plants were siblings to the one that gave rise to J108. In the diagram, 

female and male parents are indicated using their respective symbols (♀ and ♂) and a 

diamond (◇) represents self-fertilisation. Solid lines show the relationship between parent 

and progeny and dashed lines show crosses between parents. 
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Figure 3.32 Frequency of each white face phenotype score in the combined families N101 

and N102 (n = 642), grouped according to phenotype description. The diagrams below the 

bars show a typical visual representation of each score. 

As with L124, there was an association in N101 and N102 between the white face 

phenotype seen and the genotypes of ROS and EL as determined at the same marker 

sites as previously. Of the group with the strongest white face phenotype (score 5), all 

individuals had the genotype ROSP/ROSP and 80% had the genotype ELP/ELP; the EL 

genotype exceptions were heterozygous (ELP/EL7). Of those grouped as having the 

clearest non-white face phenotype (score 0), 58% had the genotype ROS7/ROS7 and 

60% had the genotype EL7/EL7; exceptions, again, were heterozygous (ELP/EL7). 

These results are shown in more detail in Figure 3.33. Both markers in both genes 

were consistent with each other. 
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Figure 3.33 Percentages of each of the three ROS and EL genotypes present in individuals 

from the combined families N101 and N102 grouped by white face phenotype score. 

Individuals homozygous for the JI7 allele are coloured in blue, those homozygous for the 

A. m. pseudomajus allele are coloured in green and heterozygous individuals are shown in 

yellow. The number of individuals falling within each group is shown above its bar. These 

are not the same for both genes because genotypes could not confidently be called for all 

reactions. 

In total, 25 recombination events were identified between ROS and EL, out of 424 

plants whose genotypes were confidently called for all four markers. This translates to 

a genetic distance of 6 cM, which is more than 10 times higher than the previously 

described value of 0.5 cM using 10,261 individuals. This could be a sign that some of 

the individuals in the N101 and N102 populations were misgenotyped. The 

phenotypes of these recombinants are shown in Figure 3.34. Six of the seven 

individuals identified as homozygous for ROSP but heterozygous at EL had a strong 

white face. The individuals identified as homozygous for ROS7 and heterozygous at 

EL had either weak white face or no white face phenotypes. Two of the three 

individuals homozygous for ELP but heterozygous at ROS also had a strong white face, 

while the third had a weak white face. All those heterozygous at ROS and homozygous 

for EL7 had a weak white face. That there is a higher proportion of ROSP homozygous 

recombinants (fifth row in Figure 3.34) showing a strong white face than ELP 

homozygous recombinants (fourth row in Figure 3.34) suggest that the white face trait 

is linked more closely to ROSEA than to ELUTA. However, given that fewer ELP 

homozygous recombinants were identified, and that the number of recombinants seen 

is higher than expected, this result is inconclusive. 
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Figure 3.34 Phenotypic analysis of individuals with various genotypes at ROS and EL. 

Two markers are shown for each gene. The colour of the bars shows which allele or alleles 

were detected for an example individual at each of the four markers – green for A. m. 

pseudomajus and blue for JI7. The strongest white face phenotype is only seen when an 

individual is homozygous for the A. m. pseudomajus allele of ROS. 

This likely overestimation in the number of recombinants may have occurred because 

of issues with the markers used. Markers I designed based on the genome sequencing 

data from J108 consistently performed poorer than those designed by LGC Ltd using 

their proprietary marker-design technology. Using the markers designed by LGC, 

nearly all reactions clustered into one of three classes, with fewer than 10 exceptions 

in each 96 well plate. The markers I designed, however, consistently resulted in 30 or 

more reactions not clustering with others and whose genotypes could not be called as 

a result (Figure 3.35). Reactions using LGC primers also clustered together more 

tightly than the ones using my manually-designed primers. This suggests that 

manually-designed primers are less efficient and less accurate than ones designed using 

the company’s proprietary technology. 
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Figure 3.35 Allelic discrimination graphs used to determine the genotypes of a 96 well 

plate or reactions using a manually-designed marker for EL (a) and a marker for FLA 

designed by LGC Ltd using their proprietary technology (b). The x axis value for a reaction 

is the relative fluorescence intensity measured in the blue channel, detecting the FAM 

fluorophore (showing the presence of the JI7 allele), and the y axis value is the relative  

fluorescence intensity measured in the green channel, detecting the VIC fluorophore 

(showing the presence of the A. m. pseudomajus allele). Individuals determined to be 

homozygous for the JI7 allele are shown as orange circles, those determined to be 

homozygous for the A. m. pseudomajus allele are shown as blue squares and those 

determined to be heterozygous are shown as green triangles. Black diamonds represent 

reactions whose values did not cluster with any of the three classes and thus whose 

genotypes were not called. Plots taken from the CFX Manager 3.1 software (Bio-Rad 

Laboratories, Hercules, CA, US). 

The ten putative recombinants homozygous for either ROSP or ELP were reserved at 

the end of the growing season and self-fertilised so that the phenotypes and genotypes 

of the resulting populations can be looked at in more detail in future experiments. If 

they are true recombinants, this would suggest that the recombination rates in JI7 or 

A. m. pseudomajus are much higher than previously estimated. 

3.7 Future experiments: analysis of ROS and EL transcription in 
white face and non-white face flowers 

One way of determining whether ROS or EL is responsible for the white face 

phenotype will be to look at which, if any, of the two is expressed in the white face 

patch and outside this region. If ROS controls the trait, its expression would be 

expected outside the white face patch, but not inside, given that ROS is an activator of 

magenta pigmentation. If EL is responsible for the trait, its expression would only be 
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expected inside the white face patch, and not outside, because EL is a repressor of 

magenta. 

I selected plants from N101 and N102 classed as having a strong white face and no 

white face. I harvested the corollas of developing buds (0.5-1 cm in length) from the 

flowers of these plants and dissected them, collecting the ventral lip region (where the 

white face patch is seen) and the ventral and lateral lobes (which is magenta whether 

or not the white face phenotype is seen), pooling these together from several 

individuals (Figure 3.36). I extracted RNA from these, and this is currently being 

sequenced. 

 

Figure 3.36 Antirrhinum flower diagrams showing the four tissue pools collected for RNA 

sequencing: (1) ventral lip region of a non-white face flower; (2) ventral and lateral lobes 

of a non-white face flower; (3) ventral lip region of a white face flower; (4) ventral and 

lateral lobes of a white face flower. The tissue was collected from developing buds but 

flowers are shown here in their fully developed forms for illustrative purposes. 

Sequenced transcripts from this experiment will be mapped to the Antirrhinum genome 

and gene expression will be compared between the pools. These data will be used to 

test whether ROS or EL are expressed differently between the four tissues. One 

hypothesis for the white face phenotype is that ROS is downregulated in the ventral lip 

region of white face flowers. If this is the case, fewer sequenced transcripts would map 

to loci within the ROS genomic interval in the white face tissue pool (pool 3 in Figure 

3.36) compared to the other three pools. Another hypothesis is that EL is upregulated 

in the ventral lip region of white face flowers, thus inhibiting production of 

anthocyanins here. If this hypothesis were correct, more sequence transcripts would 

map to loci within the EL genomic interval in the white face tissue pool (pool 3 in 

Figure 3.36) compared to the other three pools. Because ROS upregulates genes in the 

anthocyanin biosynthetic pathway and EL downregulates the same genes, I would 
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expect these biosynthetic genes to show lower levels of expression in the white face 

tissue whichever hypothesis is correct. 

3.8 Results: Bulked segregant analysis of the white face trait from 
A. molle 

Antirrhinum molle, which grows near the border between France and Catalonia, has 

white flowers with yellow foci and magenta veins. However, when this species was 

crossed to JI7, as is routinely done when new accessions are grown, a white face 

phenotype was produced. A. molle has a habitat range that neighbours (and, in part of 

its range, overlaps with) that of A. m. pseudomajus, and putative hybrids have been 

observed. This suggests that A. molle – or at least the accession used in this cross, which 

was collected where both species are found in sympatry – carries a white face allele 

from A. m. pseudomajus. Alternatively, the white face of A. m. pseudomajus may be the 

result of introgressive hybridisation with A. molle. 

In some plants in the F2 between A. molle and JI7, there was a clear white face at the 

centre of the flower (Figure 3.37 b) whereas in others, this white face covered most of 

the upper half of the ventral and lateral lobes (Figure 3.37 c). I will refer to this as a 

‘white band’. Others had no white face phenotype (Figure 3.37 a), while a fourth 

group had the roseadorsea (rosdor) phenotype (Figure 3.37 d), where magenta pigmentation 

is missing from the flower face although some pale pink colour is seen on the upper 

surface of the dorsal lobes. 
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Figure 3.37 Phenotypes seen in J104 (a to d), an F2 from a cross between A. molle (e) and 

JI7 (f). In some plants, flowers had full magenta pigmentation with no white face (a), in 

some, they had a strong white face (b) and in some, flowers were white across the upper 

half of the ventral and lateral lobes (‘white band’, c). A further group of plants had a similar 

phenotype to that seen in roseadorsea mutants – barely any magenta pigmentation (d). 

An A. molle individual was crossed to JI7 and an F2 population of 500 plants (J104) 

was produced by selfing the F1 (Figure 3.38). The A. molle individual came from the 

C-QUE accession (Figure 3.39). Of the 465 F2 plants whose flower colours were 

scored, 230 (49.4%) had full magenta pigmentation (no white face), 126 (27.1%) had 

a strong white face, 80 (17.2%) had a rosdor phenotype and 29 (6.2%) had a white band 

phenotype. The number of white band individuals is one 16th of the total number of 

individuals scored, which may mean that it is homozygous for recessive alleles at two 

independent loci that regulate the phenotype. I tested whether the ratios seen adhered 

to the 9:3:3:1 phenotypic ratio that would be expected for two unlinked segregating 

loci with a dominant allele at each. However, a G test of goodness of fit showed that 

230:126:80:29 differed significantly from that ratio (p < 0.001). I also looked whether 

the magenta (regardless of white face phenotype) to rosdor phenotype ratio was 3:1 as it 

is for plants segregating for the rosdor allele in JI7. However, the observed ratio again 

differs significantly from the expected ratio (p < 0.001). Finally, I tested whether the 

ratio of the combined no white face and centralised white face plants to the combined 

rosdor and white band plants adhered to a 3:1 ratio. A G test of goodness of fit showed 

that the observed 256:109 ratio did not differ significantly from the expected ratio (p = 

0.434). Moreover, the ratio of rosdor to white band plants is also not significantly 

different from a 3:1 ratio (p = 0.701). This led to a hypothesis that two genes regulate 
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magenta in A. molle, although some phenotypic plasticity may make scoring 

intermediate phenotypes (possibly heterozygotes) difficult. According to this 

hypothesis, plants with a white band are homozygous for the recessive A. molle allele 

at both genes. An alternative hypothesis is that only one gene regulates magenta 

variation and that differences in the shape and size of the white pattern are all because 

of environmental effects. 

 

Figure 3.38 A pedigree of J104, a plant family grown for analysis of the flower colour 

variation from A. molle, which included a white face phenotype. This family originated 

from a cross between the plant D146-1, which was generated from A. molle seed collected 

from the C-QUE location, and an individual from the JI7 lab cultivar (E7-26). In the 

diagram, female and male parents are indicated using their respective symbols (♀ and ♂) 

and a diamond (◇) represents self-fertilisation. Solid lines show the relationship between 

parent and progeny and dashed lines show crosses between parents. 
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Figure 3.39 Location within Catalonia of the C-QUE collection location where A. molle 

was sampled in 2003. The location was named after the Santuari de Santa Maria de 

Queralt near Berga, close to where the accession was sampled. 

To test these two hypotheses, the plants were pooled according to phenotype for 

bulked segregant analysis. Three bulks were constructed: the first bulk, full magenta, 

contained plants without any white face pattern seen on the flowers; the second bulk, 

white face, contained plants with a white face pattern that did not extend beyond the 

central region of the flower; and the third bulk, white band, contained plants whose 

flowers had a white patch that extended into the lateral lobes of the flower. DNA from 

plants in each bulk was pooled and sequenced by Yongbiao Xue at the Institute of 

Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China. 

I processed the results using the same pipeline I had used for J108 and L124 (white 

face from A. m. pseudomajus) and looked for peaks of allele frequency differences by 

calculating G′ values and Δ SNP-index values for windowed SNPs across the genome. 

I performed these analyses for three phenotypic comparisons: full magenta v 

centralised white face; full magenta v spread white band; and centralised white face v 

spread white band (Table 3.3). 
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Table 3.3 Predicted results from bulked segregant analysis for three comparisons in J104 

given two possible hypotheses: that variation in white face size and shape is genetic and 

that two loci regulate the phenotype; or that variation in white face size and shape is 

mostly environmental and that magenta colour in this family is only regulated at one locus. 

Comparison 
Prediction if hypothesis 
1 is correct 

Prediction if hypothesis 
2 is correct 

Full magenta v 
centralised white face 

One peak One peak 

Full magenta v 
spread white band 

Two peaks One peak (the same peak 
as in the first comparison) 

Centralised white face v 
spread white band 

One peak (but not the 
same peak as in the first 
comparison) 

One peak (the same peak 
as in the other 
comparisons) 

 

The BSA comparing plants that had full magenta flowers with those that had strong 

but centralised white face patterns on their flowers showed just one peak in G′ value, 

which was located on chromosome 2 (Figure 3.40). The narrow peaks on 

chromosomes 3, 4 and 5 were not considered for the same reasons given for J108 

earlier in this chapter. The peak on chromosome 2 suggests that the white face pattern 

seen in this family is regulated by a gene on this chromosome and does not have the 

same regulatory basis as the white face phenotype seen in A. m. pseudomajus. CHI, an 

anthocyanin structural gene, is encoded on chromosome 2, although from this data it 

is not possible to determine whether this or another locus on the ~70Mb-long interval 

is causal to the phenotype. 
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Figure 3.40 Bulked segregant analysis Manhattan plots for family J104, comparing allele 

frequencies in plants that have full magenta with those that have a strong centralised white 

face. The top plot shows the number of SNPs in each window, the middle plot shows the 

G′ value and the bottom plot shows the difference in allele frequency between the pools. 

All values are averaged across 50 kb windows; the lower two plots are smoothed using a 

tri-cube kernel function. The red line in the middle plot represents a G′ threshold 

corresponding to a false discovery rate of 0.01. The positions of AS1, CHI, FLA, SULF and 

ROS-EL are indicated with vertical lines and labelled below the x axis. 

The second BSA of this family, comparing plants that had full magenta flowers with 

those that had a spread white band pattern showed two peaks (Figure 3.41). The first 

was the same chromosome 2 peak seen in the previous comparison. However, the G′ 

values for this peak were much higher in the second comparison than in the first 

(maximum values of around 32 and 12, respectively). This suggested that alleles linked 

to the white face/band phenotype were fixed in the white band pool but not in the 

centralised white face pool – ie plants with a centralised white face are heterozygous, 

while those that have a white band are homozygous for the A. molle allele. 
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Figure 3.41 Bulked segregant analysis Manhattan plots for family J104, comparing allele 

frequencies in plants that have full magenta with those that have a spread white band 

pattern. The top plot shows the number of SNPs in each window, the middle plot shows 

the G′ value and the bottom plot shows the difference in allele frequency between the 

pools. All values are averaged across 50 kb windows; the lower two plots are smoothed 

using a tri-cube kernel function. The red line in the middle plot represents a G′ threshold 

corresponding to a false discovery rate of 0.01. The positions of AS1, FLA, SULF and ROS-

EL are indicated with vertical lines and labelled below the x axis. 

The second peak seen was near the start of chromosome 5, between the ~3Mb and 

~7Mb positions. The presence of this peak in this comparison (no white v white band 

covering the upper half of the lower lobes) and not in the previous one (no white v 

centralised white face) suggested that a modifier of the white face phenotype may be 

encoded in this interval. However, this peak was low compared to that seen on 

chromosome 2, suggesting that the A. molle allele was only marginally more prominent 

in the white face pool compared to the non-white face pool. This may mean that the 

pools varied in a trait regulated by a gene encoded at this interval because of the small 

sizes of the bulks. I also investigated whether this was the same peak seen in J108 

comparing white face and non-white face pools in A. m. pseudomajus × JI7 F2, but the 
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J104 peak appears to be closer towards the 3′ end of chromosome than the J108 peak 

(Figure 3.42). 

 

Figure 3.42 A closeup view of chromosome 5, showing the G′ value profiles for J108 

comparing the white face and full magenta phenotypes (blue line) and J104 comparing the 

strong white band and full magenta phenotypes (pink line). J108 was the F2 generation 

from a cross between A. m. pseudomajus and JI7. J104 was the F2 generation from a cross 

between A. molle and JI7. The coloured brackets above the line plot show the width of the 

peaks in each comparison in their respective colours. 

As a final comparison of this family, I looked at the allele frequency differences 

between the centralised white face pool and the white band pool. This showed the 

same peaks as in the comparison of the full magenta (non-white face) pool and the 

white band pool, but at lower G′ values (Figure 3.43). 
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Figure 3.43 Bulked segregant analysis Manhattan plots for family J104, comparing allele 

frequencies in plants that have a centralised white face pattern on their flowers with those 

that have a spread white band pattern. The top plot shows the number of SNPs in each 

window, the middle plot shows the G′ value and the bottom plot shows the difference in 

allele frequency between the pools. All values are averaged across 50 kb windows; the 

lower two plots are smoothed using a tri-cube kernel function. The red line in the middle 

plot represents a G′ threshold corresponding to a false discovery rate of 0.01. The positions 

of AS1, FLA, SULF and ROS-EL are indicated with vertical lines and labelled below the x 

axis. 

I looked at the sequencing coverage seen for these samples at the ROS locus and 

compared this to the coverage for individuals of A. m. pseudomajus, A. m. striatum and 

A. molle (Figure 3.44). A. molle individuals have a deletion in the promoter region of 

ROS1, a deletion also seen in A. m. striatum. However, the deletion is absent from the 

sequenced samples in J104, suggesting that it was also absent in the accession used 

from C-QUE, which has not been sequenced. This may mean that the A. molle 

accession used for this analysis had the ROS allele of A. m. pseudomajus, the result of 

hybridisation at the C-QUE location. 



Evolutionary genetics of flower colour variation in Antirrhinum 
 Chapter 3: Transcription factors regulate magenta colour variation in Antirrhinum majus 

 107
  

 

Figure 3.44 Whole genome sequencing depth of coverage along a section of chromosome 

6 containing the first exon of ROS1 from A. m. pseudomajus, A. m. striatum, A. molle and 

two pools from J104. The sample names are shown on the left, and their coverage profiles 

are illustrated using panels from the Integrative Genomics Viewer (Robinson et al 2011). 

The location of the ROS1 exon is shown in magenta, and the intron that follows it is shown 

in light pink. 

Because a similar peak on chromosome 2 was first seen in the F2 from the cross 

between A. m. pseudomajus and JI7, and that this was likely a result of variation in 

yellow pigmentation, I looked back at the scoring data for J104 flowers to see whether 

there was variation in yellow pigmentation. A. molle yellow colour restriction is known 

to be regulated by FLA rather than SULF (Boell et al unpublished results), and therefore 

yellow variation in J104 would be expected to map to chromosome 2. For yellow 

colour phenotyping, J104 flowers had been scored as having ‘very restricted yellow’ 

(189 plants), ‘slightly restricted yellow’ (158 plants) or ‘strong yellow’ (111 plants) 

flower face/foci phenotypes. This is close to a 3:1 ratio of yellow restriction to strong 

yellow, and a G test for goodness of fit showed that there was no significant difference 

between the observed ratio and 3:1 (p = 0.786). This suggested that one locus 

controlling yellow restriction was segregating in the population and that the A. molle 

allele is dominant to that of JI7. 

Looking at the individuals used in the pools, 88% of those in the ‘white band’ pool and 

72% of those in the ‘centralised white face’ pool had very restricted yellow, compared 

with just 24% in the ‘full magenta’ pool. This suggests that there was a strong 

difference in the number of A. molle FLA alleles in the pools. The reason for this 

difference in yellow could be because of two things: either there was unconscious bias 

in selecting the plants that made up these pools, as in J108; or, given that there was no 

other peak in the BSA of J104, the white face regulator in this family may be 

genetically linked to FLA, and individuals with a strong white face were more likely 

to have restricted yellow. I looked at the ratios of yellow phenotypes within each 

magenta class (Table 3.4) and compared these to the overall observed phenotypic 
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ratio. In each class, G tests for goodness of fit showed that the within-magenta class 

ratio of yellow phenotypes differed significantly from the overall ratio of yellow 

phenotypes (p < 0.01 for all four magenta classes). This suggests that there is some 

linkage between the yellow and magenta phenotypes seen in J104. Alternatively, the 

two different segregating phenotypes made scoring each one independently difficult. 

As there are no photos from most J104 individuals, testing this will require another 

segregating population. 

Table 3.4 Number of individuals assigned to each magenta and yellow phenotypic class 

in J108. These number differ slightly from those given for magenta phenotype at the start 

of this section because some individuals were not scored for yellow. 

 
Very restricted 

Slightly 
restricted Strong yellow Total 

Full magenta 54 70 104 228 
White face 74 45 7 126 
White band 17 8 0 25 
rosdor 44 35 0 79 
Total 189 158 111  

 

3.9 Discussion 

3.9.1 The ROS-EL locus produces at least three phenotypes in the 
Antirrhinum genus 

I started this chapter with a hypothesis that the white face phenotype was caused by 

an A. m. pseudomajus allele at a single gene, similarly to the other magenta phenotypes 

studied in Antirrhinum. My results suggest that this hypothesis is correct, and that only 

one locus underlies the phenotype. However, contrary to my initial expectations, this 

locus is not a previously unidentified gene, but appears to be either ROSEA or ELUTA, 

both of which are previously known regulators of magenta pigmentation. 
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Figure 3.45 Schematic diagrams of the phenotypic effects of three different alleles of 

ROSEA in a common JI7 background according to the results presented in this chapter. 

When the non-functional ros allele (from a JI7-related cultivar) is homozygous, very little 

anthocyanin is produced in the petals and, as a result, they appear a very pale pink. When 

the ROS allele of A. majus var. JI7 (ROSJI7) is homozygous, anthocyanin is produced 

throughout the petals, giving the flowers a bright magenta hue. When the A. m. pseudomajus 

allele of ROS (ROSpseudo) is homozygous, the same bright pigmentation is produced as with 

ROSJI7; here, however, a patch on the flower face is left without pigmentation, leading to 

the white face phenotype seen in A. m. pseudomajus. 

Given these results, one of these genes appears to be responsible for regulating 

anthocyanin production in Antirrhinum in a way not previously described. Previous 

work has shown that plants carrying the functional ROS allele accumulate 

anthocyanin pigment throughout their petals, whereas ros mutants show very little 

anthocyanin accumulation (Schwinn et al 2006). But from my results, if the white face 

phenotype in my segregating families is regulated by the A. m. pseudomajus allele of 

ROS, this allele would seem to extend magenta pigmentation throughout most of the 

flower, but leaving part of the flower without accumulating anthocyanin pigment, thus 

producing the white face phenotype. Likewise, the A. m. pseudomajus allele of EL was 

thought to be non-functional, as A. m. pseudomajus has magenta pigmentation that is 

not restricted to the centre of the flower, as is seen with the A. m. striatum allele. My 

results suggest that, if ELP is responsible for the white face phenotype, this allele is 

functional but is regulating magenta in a different part of the flower from the A. m. 

striatum allele. 

One potential explanation for ROS or EL having these two distinct effects could be 

presence of enhancers located in the cis-regulatory region of the gene. In Heliconius 

butterflies, wing colour patterns are regulated by transcription factors and, similarly to 

petal colour regulation in Antirrhinum, only a small number of genes of large effect are 

involved in this regulation. Red wing colour patterns in Heliconius are regulated by the 

transcription factor OPTIX, and variation in the red pattern consistently maps to this 
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locus (Reed et al 2011). Two contrasting red wing pattern phenotypes seen in Heliconius 

are DENNIS and RAY, which have red bands on the top and bottom halves of the 

wings, respectively. Using genomic analyses, Wallbank et al (2016) showed that these 

phenotypes are associated with a two-part 50 kb-long sequence located 60-110 kb 3′ of 

the OPTIX gene. The first part of this sequence is associated with DENNIS and the 

latter part with RAY (Figure 3.46). A similar cis-regulatory mechanism of producing 

magenta patterns by regulating ROS or EL transcription may be found in Antirrhinum. 

In such a system, some species, such as A. m. pseudomajus, would carry a cis-regulatory 

sequence near ROS or EL which differs from the sequence at the same position in other 

species. Future work could make use of natural populations of species with full 

magenta but no strong white face to look for phenotype-genotype associations. 

 

Figure 3.46 Association study of wing patterning in Heliconius butterflies. The inset 

butterfly diagrams show the DENNIS and RAY wing pattern phenotypes. The plot shows 

the statistical association across 96 genomes for the DENNIS phenotype (red dots) and the 

RAY phenotype (orange dots). These regulatory sequences, whose locations along the 

chromosome are shown with rectangles above the points (red for DENNIS, orange for 

RAY), interact with the OPTIX gene, whose location is shown under the plot using a red 

rectangle. Adapted from Wallbank et al (2016). 

3.9.2 The white face phenotype seen in crosses between JI7 and A. molle is 
not the same trait as the white face from A. m. pseudomajus 

When an A. molle individual was crossed to JI7, the F2 population segregated for a 

trait similar to those seen in F2s from crosses between JI7 and A. m. pseudomajus. This 

suggested that A. molle (or at least the C-QUE accession used in this cross) also carried 

the white face allele at ROS-EL, perhaps through hybridisation with A. m. pseudomajus, 

but that its phenotype was not seen because A. molle has no anthocyanin pigmentation 

outside the dorsal veins region. However, when white face and non-white face 
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individuals were compared using BSA, there was no difference in allele frequency on 

chromosome 6, where the ROS-EL locus is located. The variation between the pools 

instead mapped to chromosome 2, which had not previously been implicated in 

interspecies variation in magenta colour, suggesting that A. molle at C-QUE have a 

magenta-regulating mechanism not yet described. 

One known flower colour gene on chromosome 2 is CHALCONE ISOMERASE (CHI), 

which encodes the first enzyme involved in the conversion of chalcone to 

anthocyanins. Because A. molle has a magenta venation pattern in its flowers, and 

because flavonoids produced using CHI are important for plant defence (Rausher 

2006), CHI is unlikely to be non-functional in A. molle. But the A. molle allele of CHI 

may contain cis-regulatory changes that could affect the way it is expressed and in 

which tissues (Rausher 2006, Streisfeld and Rausher 2011). Alternatively, there may 

be a novel transcription factor-encoding gene located on chromosome 2 that regulates 

magenta colouration in the face of Antirrhinum flowers. It is not possible to address 

this further using the data generated using J104 because of the low recombination 

between A. molle (and several other species) and JI7 on that chromosome. One possible 

future experiment could be to cross A. molle from C-QUE to a magenta-flowered 

Antirrhinum accession without the white face phenotype and generating a segregating 

population. If the white face trait segregates in this population, it may be possible to 

map the phenotype more precisely. 

3.9.3 Bulked segregant analysis can be problematic when two or more 
interacting traits segregate 

Pooling individuals into bulks is an effective and efficient way of finding the genetic 

basis of phenotypic differences. The number of DNA preparations and sequencing 

lanes required is equal to the number of bulks analysed, making this a time- and cost-

effective way of mapping traits. BSA in its simplest form also makes phenotyping a 

less onerous task as only individuals with the most extreme phenotypes need to be 

scored. It is an especially useful method for mapping traits determined by few genes 

of large effect, as flower colour typically is. 

However, methods that rely on sequencing pooled DNA have their caveats. Once 

tissue or DNA from individuals is pooled, the ability to identify individuals is lost. 

DNA amplification during the library preparation stage of sequencing may not be even 

across individuals. Because of this, individuals may not be evenly represented in the 
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read counts at each locus, and allele frequency estimates may be incorrect. This 

problem can be minimised by optimising library preparation and using the highest 

expected coverage possible (Anderson et al 2014). A related technique called 

multiplexed shotgun genotyping (MSG) is now emerging as a successor to BSA. MSG 

has the advantage that individuals are barcoded during the library preparation stage 

before being pooled, giving the ability to identify individuals after sequencing 

(Andolfatto et al 2011). 

Pooling individuals can also present problems because of variation in more than one 

trait. Some of this variation is likely to be in traits that are not visible or easily scored. 

The effect of this variation can be minimised by using pools containing as many 

individuals as is feasible (Magwene et al 2011). However, I encountered an additional 

source of such variation. 

Although I did not notice at the time, the plant pools from family J108 used for the 

first round of bulked segregant analysis in this chapter differed not only for their 

magenta phenotype, but also for their yellow phenotype. Because of this additional 

variation, I had a peak in G′ value on chromosome 2, a part of the genome that is not 

linked to the white face trait. This peak disappeared when plants in a related family 

were pooled based on their magenta phenotypes alone, by scoring from colour-

adjusted photographs. This highlights the importance of eliminating unconscious bias 

when pooling individuals according to their flower colour phenotypes. Selecting plants 

with the most extreme phenotypes for one flower colour trait without accounting for 

other flower colour variation may introduce such bias. 

I also selected the individuals for the first round of bulked segregant analysis by 

physically grouping plants that appeared to have the same phenotypes together. 

Because plants in this F2 population also showed variation for traits other than flower 

colour, this may have had the unintended consequence of grouping together plants 

with other traits in common, such as height, leaf shape or growth habit. This additional 

source of unconscious bias may explain the peaks on chromosomes 5 and 8 as these 

do not appear to be flower colour-related. These peaks are eliminated when pooling is 

done using only flower photographs, without being able to see the full plant. 

3.9.4 Using small bulks can lead to false signals 

In Figure 3.16, there is a residual difference in allele frequency seen across much of 

the genome outside the peaks on chromosomes 2, 5, 6 and 8. This implies some 
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phenotype-associated loci on these chromosomes in some of the individuals 

constituting the bulks. This could be another case of inadvertent selection, similar to 

the phenotyping bias that led to the errant peaks discussed previously. However, given 

that these differences in allele frequency are low, any phenotypic differences 

underlying them are unlikely to be fixed in more than 10% of the plants sampled. The 

bulks in these analyses only contained 20 individuals each. It is therefore possible that 

phenotypic differences in one or two plants, combined with linkage disequilibrium 

between A. m. pseudomajus and A. majus var. JI7, is responsible for these allele 

frequency differences. This could be tested by using a larger number of individuals in 

each bulk, where the effect of outlying individuals would be minimised. 

3.9.5 Phenotypic plasticity can make mapping traits difficult 

One of the difficulties I experienced with the white face trait was the variability of the 

phenotype. Although a strong association exists between the clearest white face 

phenotype and the A. m. pseudomajus allele of ROS-EL, it is often impossible to predict 

the genotype of plants with a weak white face phenotype. Because the plants were 

grown outside, they were subjected to a range of environmental conditions. Different 

individuals may have experienced different levels and sources of environmental stress, 

for example because of their position within the tray in which they were grown, their 

proximity to shade or the uniformity of watering. Anthocyanin production is a 

common stress response in plants (Christie et al 1994, Dixon and Paiva 1995, Miki et 

al 2015). The effect of environmental stresses on flower colour in Antirrhinum is not 

known, but stress may cause a plant-wide increase in anthocyanin accumulation, thus 

making flowers darker. Alternatively, a requirement to produce anthocyanins in 

vegetative tissue may limit production in flowers, leading to paler flowers. 

3.9.6 Misgenotyping 

One of the problems I encountered when carrying out this work was misgenotyping 

samples using KASP. In the graph in Figure 3.30, eight of the 20 non-white face plants 

I initially assigned a ROSP/ROSP genotype turned out to be ROSP/ROS7 heterozygotes. 

This incorrect assignment of genotype occurred because the blue fluorescence of these 

samples, corresponding to the A. majus var. JI7 allele, was not as bright as for some of 

the other samples. As a result, these samples were incorrectly clustered with the 

ROSP/ROSP homozygotes. This result shows the importance of manually checking the 
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KASP output for each plate. For my subsequent results in section 3.6, I visually 

checked each genotype output graph to look for discrepancies between assigned 

genotype and actual genotype. 

I also had to discount several samples genotyped using KASP. Samples located around 

the top edge of the 96-well PCR plates I used for these analyses often evaporated. This 

improved slightly by sealing the plates using a higher-quality foil lid, but some 

evaporation persisted. These empty wells were sometimes assigned a heterozygous 

genotype by the clustering algorithm. Most of these were easy to check by looking at 

the output graph manually, but I could not determine whether some samples were true 

heterozygotes or evaporated reactions. Because of this uncertainty, I eliminated all 

samples from the top row of each plate and reanalysed them separately. 

It is also possible that some misgenotyped samples escaped after these manual 

adjustments. This could explain the likely exaggerated recombination rate calculated 

between ROS and EL. Although I used two markers for each gene, the positions of 

these putative recombinants within each genotyping plate may mean consistent 

misgenotyping of some samples. This could be avoided by collecting each sample 

twice and using a different layout in each replicate plate. 

3.9.7 Implications for a previously studied Antirrhinum hybrid zone 

ROS and EL have been studied extensively in a hybrid zone between A. m. pseudomajus 

and A. m. striatum with magenta and yellow flowers, respectively. In A. m. pseudomajus, 

ROS extends magenta pigmentation throughout the petals apart from the white face 

region; this subspecies is homozygous for recessive el. In A. m. striatum, EL restricts the 

magenta venation pattern regulated by the unlinked VE gene to the centre of the dorsal 

petals; A. m. striatum is homozygous for recessive ros. In the 1-2 km long hybrid zone 

between them, hybrid flowers with intermediate colours and patterns are found, but 

these phenotypes are confined to this geographic region (Whibley et al 2006, Tavares 

2014). 

A cline in ROS-EL allele frequency is found in this hybrid zone, with the A. m. 

pseudomajus haplotype increasing sharply in frequency from 0 to 1 over the length of 

the hybrid zone (Figure 3.47). A peak in FST, a measure of population differentiation, 

is also found at the ROS-EL locus. These are signs that the locus is under intense 

selective pressure because the contrasting phenotypic effects of ros EL and ROS el are 

crucial for the fitness of A. m. striatum and A. m. pseudomajus, respectively. 
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The white face phenotype is not expected to contribute to these signals of selection. 

The phenotype is likely of great importance to A. m. pseudomajus because it allows the 

yellow and magenta pigments of its flowers to separate to ensure clearer pollinator 

guides. But a reciprocal selective pressure may not occur in A. m. striatum because the 

regulator of the white face phenotype only has an effect if the flower is magenta. No 

effect would be expected on the yellow colour in A. m. striatum, although if ELUTA is 

the white face regulator, it may affect the magenta veins. 

 

Figure 3.47 Clines in haplotype frequency and flower colour in a hybrid zone between A. 

m. striatum and A. m. pseudomajus. Panel A shows the steep cline in the frequency of the 

ROS1 A. m. pseudomajus haplotype (magenta points and line) along the hybrid zone from 

east to west. Unlinked genes (green and blue points) do not show such a cline. Panel B 

shows the corresponding clines in yellow and magenta flower colour. Taken from Whibley 

et al (2006).
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4 The aurone biosynthetic gene FLAVIA 
regulates yellow colour variation in 
Antirrhinum majus 

4.1 Introduction 

4.1.1 Yellow flower colour 

Yellow pigmentation is common in flowers, especially those pollinated by bees. Bee-

pollinated flowers often have yellow pigmentation throughout the flower, sometimes 

combined with nectar guides that use other pigments or structural colours to facilitate 

pollinator foraging (Wilson et al 2004). Yellow pigments themselves can also form 

these guides, and blue- and magenta-coloured flowers often contain patches of yellow 

pigmentation (Owen and Bradshaw 2011). 

Several classes of compounds are responsible for yellow flower colours in plants. 

Bright yellow colours in most flowers are produced through the accumulation of 

highly oxidised carotenoids known as xanthophylls (Nakayama 2002, Glover 2014). 

Daffodils (Narcissus spp), oilseed rape (Brassica napus) and monkeyflowers (Mimulus 

spp) are examples of plants that use these carotenoids to make their flowers bright 

yellow (Valadon and Mummery 1968, Yuan et al 2014, Zhang et al 2015). Several 
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flavonoid compounds can also reflect light in the yellow part of the visible spectrum. 

Pale yellows in carnations (Dianthus spp) and cyclamens (Cyclamen spp) are produced 

by chalcones, while several members of the family Asteraceae use 6′-deoxy chalcones 

to produce their pale yellows. Brighter yellows require either supplementary 

carotenoid accumulation or the conversion of chalcones to aurones. Aurones are rarer 

than most other flavonoid pigments and are only found in a small number of species 

of flowering plants, including Cosmos (Asteraceae), Limonium (Plumbaginaceae) and 

Antirrhinum (Rausher 2006, Tanaka et al 2008). That these species are unrelated 

suggests convergent evolution of aurone synthesis, and it is not known if other species 

use the same biosynthetic pathway as Antirrhinum, where aurones have been best 

studied (Tanaka et al 2008). 

4.1.2 Yellow flower colour in Antirrhinum 

4.1.2.1 Aurone biosynthetic pathway 

 

Figure 4.1 Simplified biosynthetic pathway of aureusidin glucoside, the yellow aurone 

pigment in Antirrhinum flowers. Like anthocyanins, aurones are derived from chalcone, 

but unlike the large pathway used to produce anthocyanins, the aurone biosynthetic 

pathway is relatively short. Just two enzymes are involved in converting chalcone to 

aurone, whereas anthocyanins require at least five. Adapted from Ono et al (2006). 

Yellow aurones share a molecular precursor with anthocyanin in chalcone. Chalcone 
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(specifically 2′,4,4′,6′-tetrahydroxy chalcone, naringenin chalcone or THC) itself has a 

pale-yellow colour, but it is unstable and usually requires modification to be used as a 

pigment  (Tanaka et al 2008). Forkmann and Dangelmayr (1980) showed that, in 

Dianthus flowers, yellow colouration by THC is only possible without chalcone 

isomerase (CHI) activity. CHI converts THC to the colourless compound (2S)-

naringenin, which is then further converted into flavones, anthocyanins and other 

flavonoids. In Antirrhinum, a molecule of THC is instead glycosylated by chalcone 4′-

O-glucosyltransferase (CGT), transported to the vacuole, and converted to aureusidin 

glucoside by the polyphenol oxidase homologue aureusidin synthase (AS1) (Ono et al 

2006). This pathway does not interfere with anthocyanin biosynthesis, and orange 

flowers accumulating both pigments in the same parts of the flower have been 

observed (Whibley et al 2006). 

4.1.2.2 Regulation of the aurone biosynthetic pathway by small RNAs 

In many Antirrhinum species, aurone pigmentation is not present in all parts of the 

corolla, but rather is restricted to ‘foci’ – the upper part of the lower lobes, adjacent to 

the flower opening (Figure 4.2). Yellow foci in these species are thought to guide 

pollinator entry to the flowers (Bradley et al 2017). A similar phenotype in Mimulus 

lewisii has been shown to increase pollinator foraging efficiency (Owen and Bradshaw 

2011). 
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Figure 4.2 Schematic and photographic representation of the region on the flower I refer 

to as the ‘foci’. The diagram on the left shows this region coloured in blue. The foci are 

found on the lower lobes, adjacent to the opening of the flower. The photographs show 

the yellow foci found on the flowers of seven example species: A. australe, A. charidemi, A. 

cirrhigerum, A. graniticum, A. molle, A. m. pseudomajus and A. tortuosum. The circled images 

show the same flowers, but zoomed in on the foci. 

In A. majus  subspecies pseudomajus, which has these yellow foci, restriction of aurone 

pigmentation is regulated by SULFUREA (SULF), which is located on chromosome 4. 

sulf mutants accumulate yellow pigmentation throughout the flower petals, appearing 

bright yellow. Bradley et al (2017) showed that the SULF locus arose through recent 

inverted duplication of the FLAVIA (FLA) gene that encodes CGT. The SULF locus 

contains two inverted repeat sequences that generate small RNAs (sRNAs) that repress 

the FLA transcript, thus restricting aurone synthesis. It is not known whether this same 

mechanism restricts yellow in other Antirrhinum species. However, one species with 

restricted yellow, A. molle, is fixed for the recessive sulf allele. Its yellow restriction is 
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thought to arise through changes in the cis-regulatory region of the FLA gene itself. 

4.1.3 Flower colour phenotypes in a hybrid zone between two Antirrhinum 
subspecies 

4.1.3.1 A. m. striatum and A. m. pseudomajus 

Two Antirrhinum majus subspecies, A. m. striatum and A. m. pseudomajus, have adjacent 

population ranges in the Pyrenees, and hybrid zones between the two species have 

been described (Whibley et al 2006). A well-studied hybrid zone between them is 

discussed in detail in chapter 1. Both subspecies use flower colour to attract 

bumblebees as pollinators, but their colours and patterns contrast starkly. In A. m. 

striatum, the flowers are yellow with pollinator-guiding magenta veins on the upper 

lobes. In A. m. pseudomajus, the flowers are magenta, with pollinator-guiding yellow 

foci on the lower lobes surrounded by a white face (Figure 4.3). 

 

Figure 4.3 Flowers of A. m. striatum (a, b and c) and A. m. pseudomajus (d, e and f). A. m. 

striatum has full yellow flowers (a). This yellow is particularly bright on the lower lobes 

(b). On the upper lobes (c), a magenta venation pattern is seen, restricted to the very centre 

of the flower. A. m. pseudomajus has magenta flowers (d), with a white patch in the middle 

of the lower lobes, and yellow foci (e). Venation pattern, if present, cannot be seen in A. 

m. pseudomajus because the upper lobes are magenta throughout (f). 
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Figure 4.4 Whole genome sequencing depth of coverage along a section of chromosome 

4 containing the two SULF inverted repeat sequences for three A. m. pseudomajus (restricted 

yellow) and two A. m. striatum (spread yellow) individuals. Panel a shows the whole length 

of chromosome 4, with the region expanded in b and c highlighted. In c, the sequenced 

individuals are shown on the left, and their coverage profiles are illustrated using panels 

from the Integrative Genomics Viewer (Robinson et al 2011), with the y axes showing the 

number of reads mapped at each position in the genome. The locations of the two SULF 

inverted repeats are shown by the green boxes. 

The differences in the restriction of yellow pigmentation between A. m. striatum and A. 

m. pseudomajus can be explained by genetic differences at the SULF locus. Whole 

genome sequencing of individuals from the two species shows that sequencing depth 

of coverage is greatly reduced in A. m. striatum relative to A. m. pseudomajus in a 100-

150 kb region that includes SULF (Bradley et al 2017). Some individuals from A. m. 

striatum have a ~1.4 kb deletion at the SULF locus relative to A. m. pseudomajus. This 

deletion covers most of the first inverted repeat and part of the second (Figure 4.4). 
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4.1.3.2 Hybrid phenotypes 

 

Figure 4.5 Four of the hybrid phenotypes found in the hybrid zone between A. m. striatum 

and A. m. pseudomajus. The typical parental subspecies’ phenotypes are also shown. 

In the kilometre-long core of the hybrid zone, plants with flower colour phenotypes 

not seen in between A. m. striatum and A. m. pseudomajus are common. In this area, 

there are flower colours that are not normally seen in either of the two subspecies 

outside the hybrid zone. These include white (genotype SULF ros EL), pale orange (sulf 

ROS EL), pink (SULF ROS EL) and bright orange (sulf ROS el) (Figure 4.5). 

4.1.4 Other yellow variation in the Antirrhinum genus 

One Antirrhinum species is notable for its near lack of yellow. A. sempervirens Lapeyr. 

grows in the western Pyrenees in southwestern France (Figure 4.6). This species has 

white flowers with a very subtle hint of yellow pigmentation around the foci region of 

the flower, although some accessions appear to have no yellow at all. The flowers also 

have tightly restricted magenta veins (Figure 4.7). A. sempervirens has the SULFUREA 

genotype sulf/sulf (Bradley, unpublished results), which suggests that the near lack of 

yellow in this species is regulated by another locus. A. sempervirens belongs to 

subsection Kickxiella, unlike A. majus, which belongs to subsection Antirrhinum 

(Wilson and Hudson 2011). White flowers are characteristic of the Kickxiella group. 

These plants also have smaller flowers than A. majus and tend to grow on rocky cliffs, 

unlike most subsection Antirrhinum member, which grow on roadsides and other 

disturbed habitats. 
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Figure 4.6 Approximate distribution range of A. sempervirens near the border between 

France and Spain. Drawn from information provided in Whibley (2004) and Wilson and 

Hudson (2011). 

 

Figure 4.7 Images of Antirrhinum sempervirens and its flowers. Front view of a flower in the 

wild (a), side view of the same flower in the wild (b), growth habit of the plant in the wild 

(c) – all taken in the C-NAP location. Front (d) and side (e) view flower photographs from 

of a plant germinated from C-NAP seed. The scale bar (1 cm) applies to d and e. 

Another species, A. charidemi Lange., also has an unusual yellow flower colour 

phenotype compared to the rest of the Antirrhinum genus. This species grows in 

southern Spain (Figure 4.8) and has pink flowers with bright yellow foci and yellow 

pigmentation in the tube of the flower. A. charidemi is a member of the Antirrhinum 

subsection of Antirrhinum species (Hudson et al, unpublished results), although many 
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of its phenotypic characters are more typical of the Kickxiella group – its flowers are 

small (1-1.5 cm in length) and it grows on rocky cliffs – and it has previously been 

classified as such (Wilson and Hudson 2011). Its flowers accumulate much more 

yellow pigment in the corolla tube than has been observed in other species. 

 

Figure 4.8 Approximate distribution range of A. charidemi in southern Spain. Drawn from 

information provided in Whibley (2004) and Wilson and Hudson (2011). 

 

Figure 4.9 Images of Antirrhinum charidemi and its flowers. Front view of a flower in the 

wild (a), side view of another flower in the wild (b), growth habit of a plant in the wild (c) 

– all taken in the Y-GAT location. Front (d) and side (e) view flower photographs from of 

a plant germinated from Y-GAT seed. The scale bar (1 cm) applies to d and e. 
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4.1.5 Using segregating populations to study natural variation 

Phenotypic variation between naturally-occurring species and populations can be 

difficult to work with genetically. While the hybrid zone between A. m. striatum and 

A. m. pseudomajus makes it easy to study traits under selection between individuals 

from those two subspecies in close sympatry, work on species or populations growing 

in allopatry is more challenging. One way of overcoming this if species are inter-fertile 

is to cross wild-collected accessions to plants with a known genetic background to 

generate F2 populations. That way, populations segregating for traits of interest can 

be generated, allowing their genetics to be studied in a more homogeneous 

background. 

The John Innes Centre maintains an extensive collection of Antirrhinum cultivars, as 

discussed in chapter 2. One of these, line JI7, has been used extensively for research 

on flower colour. This line is highly inbred, so plants of this variety can be assumed to 

be homozygous across all loci in the genome (Tavares 2014). Its genome is also 

sequenced, making bioinformatic analysis of plants from experimental crosses using 

this cultivar easier and more effective. 

4.1.6 Aim of this work 

My aim in the experiments described in this chapter is to characterise the variation 

seen in yellow flower colour in Antirrhinum that has not previously been explained and 

to determine its genetic basis. I will focus on variation from the hybrid zone between 

A. m. striatum and A. m. pseudomajus described in Whibley et al (2006), as well as the 

species A. sempervirens and A. charidemi, both of which have unusual yellow flower 

colour phenotypes compared to other Antirrhinum species. Many MYB-like 

transcription factors are known to regulate magenta flower colour in Antirrhinum, but 

regulation of yellow colour has so far only been attributed to two loci: FLA, a 

biosynthetic gene involved in aurone production; and SULF, which generates 

regulatory sRNAs to inhibit FLA’s function. Magenta anthocyanins and yellow 

aurones are produced in different parts of the same pathway. Given this, one 

hypothesis to explain additional yellow variation that has yet to be characterised is 

that there will be transcription factors involved in its regulation. If this is correct, 

populations segregating for these yellow colour phenotypes will also segregate for the 

genes encoding these MYB-like proteins, providing a route for their identification 

using bulked segregant analysis. This would reveal previously unidentified loci whose 
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translated sequences contain MYB domains. Alternatively, yellow flower colour may 

have a different mode of regulation from that of magenta colour, possibly with 

additional loci encoding regulatory sRNAs or by changes in the cis-regulatory regions 

of one or both biosynthetic genes involved in the aurone pathway. In these instances, 

allele frequency differences between BSA pools would be seen either at the loci that 

encode FLA or AS1 themselves or at inverted repeats that show sequence homology to 

one of these genes, as SULF does FLA. 

4.2 Results: Novel phenotypes arise when hybrid zone accessions 
are crossed with lab cultivars 

In an F2 population generated to study flower colour variation in the hybrid zone 

between A. m. striatum and A. m. pseudomajus, a previously unseen trait was observed. 

The corolla of flowers in this population was generally white, but some individuals 

showed a yellow band in the dorsal petal lobes, just above the opening of the flower 

(Figure 4.10), which we called a ‘yellow arc’ because of the shape of the pattern. 
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Figure 4.10 The yellow arc phenotype compared with the wildtype non-yellow arc 

phenotype. From left to right, the first column shows a schematic representation of each 

of the two phenotypes. The second column shows a photograph of representative flowers, 

taken from the underside of the flowers. The yellow colour can be difficult to see in 

photographs. For this reason, I have included a third column, where the photograph from 

the second column is selectively converted to black and white, with yellow pixels 

darkened. This conversion makes the yellow arc appear as an easily observed black stripe. 

The dark patch extending up the tube of the flower also means that this individual has a 

yellow tube phenotype. 

The family where this phenotype was seen was an F2 population from a cross between 

a hybrid zone-derived plant and a lab cultivar. The male parent of this cross was D194-

3, which was germinated from seed collected in the hybrid zone in 2012. It had white 

flowers without magenta or yellow pigmentation anywhere on the flower lobes, 

although there was some magenta pigment at the base of the flower tube (Figure 4.11). 

The original wild accession had been sampled to the west of the centre of the hybrid 

zone, where most surrounding flowers were magenta. It also had predominantly white 

flowers, but it did have yellow foci and restricted magenta veins (Figure 4.12). This 

flower colour – unlike the colour seen in A. m. striatum or A. m. pseudomajus outside the 

hybrid zone – indicates that the plant is of hybrid origin, the result of interbreeding 

between the two subspecies. 



Mabon Rhun Elis 

128 

 

Figure 4.11 Photographs of a flower from D194-3, which grew from a seed collected from 

M0194, collected in a hybrid zone between A. m. striatum and A. m. pseudomajus. A front 

view (a) and a side view (b) are shown. 
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Figure 4.12 Photographs and collection location of accession M0416 collected in a hybrid 

zone between A. m. striatum and A. m. pseudomajus. The flower is mostly white (a), 

although yellow can be seen on the face in the side view (b); this view also reveals the 

restricted magenta venation pattern on the dorsal lobes, which are hidden because of the 

photograph’s angle in the front view. This plant was sampled within the ‘magenta flank’ 

of the hybrid zone – near the hybrid zone itself, but where most of the surrounding flowers 

have an A. m. pseudomajus-like magenta flower colour (c). 
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Figure 4.13 Families used for analysing the yellow arc phenotype and their pedigrees. 

Both families used were F3 populations from a single cross between a plant generated from 

wild-collected seed and an A. majus lab cultivar, but came from two different F2 

individuals. M0416 was the wild accession from which the seed that generated D194-3 

was collected. In the diagram, female and male parents are indicated using their respective 

symbols (♀ and ♂) and a diamond (◇) represents self-fertilisation. Solid lines show the 

relationship between parent and progeny and dashed lines show crosses between parents. 

Originally, the cross between D194-3 and A. majus was performed to look at the 

venation pattern seen on the flowers – D194-3 has very restricted magenta veins 

(Figure 4.11 a). In the F2 that resulted from this cross (H102), however, some of the 

progeny had a pattern of yellow pigment on the dorsal lobes of the flowers, forming 

an arc shape above the flowers’ foci (Figure 4.10). This phenotype had not previously 

been observed in the wild, and is not seen in D194-3 or in M0416. Two individuals 

from this F2 population were self-fertilised to make F3 populations, both of which 

segregated for this yellow arc phenotype. The pedigrees for these families are shown 

in Figure 4.13. 

These two small F3 families, comprising 48 plants each were phenotypically scored by 

Lucy Copsey. In the combined families, around two thirds of individuals had a yellow 

arc phenotype (Figure 4.14). These limited results suggested a 3:1 segregation ratio in 

these two families for yellow arc and no yellow arc, respectively. A G-test for goodness-

of-fit gives a p-value of 0.244 for J152 and 0.103 for J154, which means that the 

observed segregation ratio does not differ significantly from a 3:1 ratio expected for 
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segregation at a single causal locus where one allele is dominant. This gave rise to a 

hypothesis that the yellow arc phenotype was regulated by a single gene. The lack of 

observation of the phenotype in the hybrid zone may be because of epistasis (eg the 

yellow arc may be masked by the full yellow pigmentation of A. m. striatum) or a lack 

of flower colour scoring for the dorsal arc flower region. 

 

Figure 4.14 Number of individuals scored as having each yellow phenotype in J152 and 

J154 combined and the proportion of the whole combined family with that phenotype, 

shown as percentages. Illustrations below the graph columns show schematic 

representations of each phenotype, with yellow shown in blue to make distinguishing the 

phenotypes easier. 

4.3 Results: Bulked segregant analysis and individual genotyping 
show that the yellow arc phenotype is linked to the FLAVIA locus 

I attempted to map the yellow arc variation in J152 using bulked segregant analysis. 

Individuals with the strongest yellow arc pattern and those without any yellow arc 

pattern were gathered together to construct two bulks with opposing phenotypes. The 

yellow arc bulk contained 29 individuals and the non-yellow arc bulk contained 10 

individuals. DNA from the leaves of these plants was prepared, pooled and sequenced. 

Mean depth of coverage was calculated as 39× for the yellow arc pool and 41× for the 

non-yellow arc pool. I mapped the data to the Antirrhinum reference genome, 

processed the data as described in chapter 2 and analysed the resulting data by 
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calculating allele frequency differences and G′ values for each comparison of the 

yellow arc and non-yellow arc bulks. 

 

Figure 4.15 Bulked segregant analysis Manhattan plots for family J152 segregating for the 

yellow arc phenotype. The top plot shows the number of SNPs in each 50 kb window 

across each chromosome. The middle plot shows the G′ value for each SNP. This is a 

version of the G value averaged across 50 kb windows and smoothed using a tri-cube 

kernel function. The red line on this plot represents a G′ threshold corresponding to a false 

discovery rate of 0.01. The bottom plot shows the difference in allele frequency of each 

pool, again averaged and smoothed across 50 kb windows. A negative value indicates that, 

in a majority of sequencing reads, the JI7 reference genome nucleotide is found at SNPs 

in that window; a positive value indicates that a majority of reads have a non-reference 

nucleotide at SNPs in the window. 

The plots in Figure 4.15 show the results from this analysis. The G′ values calculated 

for this family (middle row of plots) are low for most genomic regions, with a high 

peak covering much of chromosome 2, a low peak at the end of chromosome 3 and a 

slight elevation on chromosome 8. There are high, narrow peaks seen on 

chromosomes 3, 4 and 5. Given that these are very narrow and that their heights 

consistently match parts of chromosome 2, these are likely to be artefacts of genome 

misassembly in the current version of the Antirrhinum genome. These sequences, 
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should the genome be reassembled, should be investigated and, if appropriate, their 

positions corrected. 

 

Figure 4.16 A closeup view of chromosome 2 showing G values across that chromosome, 

using the same BSA data as Figure 4.15. High G values are found across most of the 

chromosome except for at the start of the chromosome and around the 45Mb position. 

The grey points in the background show the raw G values (G calculated for individual 

SNPs) and the blue line is the G′ value, calculated using a kernel-adjusted mean value of 

G across 50 kb sliding windows. The positions of two genes found on this chromosome 

are shown with vertical lines: AUREUSIDIN SYNTHASE 1 (blue) and FLAVIA (gold). The 

orange horizontal lines represent the top 10% (dotted), 1% (dashed) and 0.1% (solid) 

thresholds for G′ on the chromosome. The pale red line corresponds a false discovery rate 

of 0.1. 

As discussed in chapter 3, chromosome 2 contains both of the genes that encode the 

two enzymes involved in synthesising the yellow pigment aureusidin glycoside from 

chalcone: AS1, which encodes aureusidin synthase, and FLA, which encodes chalcone 

glucosyltransferase (see the aurone biosynthetic pathway in Figure 4.1 on page 117) 

(Boell and Bradley, unpublished results). As shown in Figure 4.16, AS1 does not fall 

within the peak in G′ value, but FLA does. This suggests that mutations at or linked to 

the FLA locus may be involved in establishing the yellow arc phenotype in 

Antirrhinum. Such a mechanism, where biosynthetic genes differ between species to 

regulate flower colour, would be in contrast with that regulating magenta flower 

colour, where transcription factors have evolved to interact with various stages of the 
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anthocyanin biosynthesis pathway. 

In the bottom row of plots in Figure 4.15, which shows allele frequency differences 

between the pools across the genome, the peak on chromosome 2 has a negative value. 

This indicates that the chromosome 2 allele linked to the yellow arc phenotype comes, 

not from the accession collected in the wild, but from the lab cultivar used in the cross. 

However, this phenotype is not seen in A. majus cultivars that have not been crossed 

to this wild accession, suggesting that there may be epistatic interactions between an 

A. majus allele at a causal locus on chromosome 2 and an unlinked locus fixed for the 

wild accession allele. 

I also performed the same bulked segregant analysis on J154, the second family that 

segregated for the yellow arc pattern. As with J152, individuals with the strongest 

yellow arc pattern and those without any yellow arc pattern were gathered together to 

construct two bulks with opposing phenotypes. The yellow arc bulk this time 

contained 16 individuals and the non-yellow arc bulk contained 15 individuals. DNA 

was collected, prepared and sequenced as for J152. Mean depth of coverage was 

calculated as 58× for the yellow arc pool, but was considerably lower – at 23× – for 

the non-yellow arc pool. 

Genome-wide G′ values calculated for 50 kb sliding windows across each chromosome 

are shown in Figure 4.17. As with the plot for J152, the largest peak is seen on 

chromosome 2 and includes the FLA locus, which is consistent with FLA or another 

gene on the same chromosome being responsible for the yellow arc phenotype. The 

lack of recombination on chromosome 2 again makes it impossible to determine using 

this data where exactly on the chromosome the linked locus is located. This analysis 

also confirms that chromosome 2 in individuals with a strong yellow arc mostly carries 

alleles from the A. majus cultivar at most SNPs, suggesting that the yellow arc 

phenotype comes from this research line rather than from the wild accession. 

However, unlike in the J152 plot shown in Figure 4.15, J152 shows additional peaks 

in G′ and allele frequency difference (Δ SNP-index) on chromosomes 4 and 5 and the 

end of chromosome 1. These additional peaks may mean that there may be several 

unlinked loci contributing to the phenotype. The wide nature of these peaks also 

suggests a lack of recombination as seen on chromosome 2. However, the poorer 

sequencing coverage in one of the bulks means that the non-yellow arc bulk is under-

represented compared to the yellow arc bulk. This is likely to lead to an increased level 

of noise in the BSA results, and some of the peaks seen may be artefacts caused by this 
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noise. This may also explain why the G′ and Δ SNP-index lines in Figure 4.17 are 

more erratic than those in Figure 4.15 – with poor coverage, the effect of very small 

signals can be amplified. 

 

Figure 4.17 Bulked segregant analysis Manhattan plots for family J154 segregating for the 

yellow arc phenotype. The top plot shows the number of SNPs in each 50 kb window 

across each chromosome. The middle plot shows the G′ value for each SNP. This is a 

version of the G value averaged across 50 kb windows and smoothed using a tri-cube 

kernel function. The red line on this plot represents a G′ threshold corresponding to a false 

discovery rate of 0.01. The bottom plot shows the difference in allele frequency of each 

pool, again averaged and smoothed across 50 kb windows. 

Using a larger window size gives a cleaner G′ signal because it filters out noise – high-

frequency deviations in G which have nothing to do with the trait being analysed. This 

can prove useful, especially when analysing bulks from a population such as this one, 

where the parent plants that gave rise to the population used were not closely related 

and the number of individuals in each bulk was relatively small. To look for the regions 

of the genome most strongly associated with the arc colour trait, I repeated my analysis 

using a window size of 1 Mb (Figure 4.18). 
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Figure 4.18 Bulked segregant analysis Manhattan plots for family J152 (upper two plots) 

and J154 (lower two plots) – repeating the analyses shown in Figure 4.15 and Figure 4.17, 

respectively, but using larger windows of 1 Mb. The top plot of each pair shows the 

number of SNPs in each window. The bottom plot of each pair shows the G′ value for 

each SNP, averaged across nearby SNPs in a 1 Mb window and smoothed using a tri-cube 

kernel function. Note that the scale of the y-axes in the two plots showing the number of 

SNPs in each window are different because of the lower SNP density in J154. The 

positions of the AS1 and FLA genes involved in the biosynthesis of yellow pigmentation 

are shown with blue and yellow lines, respectively, and the position of SULF, known for 

its regulation of yellow pigmentation, is shown with a green line. 

Comparing the G′ plot for J152 in Figure 4.18 with its 50 kb window counterpart in 

Figure 4.15, there is little or no difference in the locations of the peaks seen, and major 

allele frequency differences are still observed across chromosome 2. The profiles of the 

narrow peaks on chromosomes 3, 4 and 5 – starting and ending very suddenly – are 

further evidence that they represent sequences that have been misassembled in the 

Antirrhinum genome. In the J154 analysis, however, using 1 Mb windows has a more 

notable effect, as seen when comparing Figure 4.18 with Figure 4.17. After increasing 
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the window size, the height of the peaks on chromosomes 4 and 5 become much lower, 

suggesting that the signal seen is, at least in part, noise. Such noise can be the result of 

sequencing coverage not being uniform across the genome. Indeed, this appears to be 

the case in both J152 and J154, as seen in the SNPs-per-window plots in Figure 4.18. 

Large areas of the genome have very low SNP coverage, such as the first 40-50Mb of 

chromosome 6 in J152. 

 

Figure 4.19 Whole genome sequencing depth of coverage along a section of chromosome 

4 containing the two SULF inverted repeat sequences for samples from J152, J154, three 

A. m. pseudomajus (restricted yellow) and two A. m. striatum (spread yellow) individuals. 

Panel a shows the whole length of chromosome 4, with the region expanded in b and c 

highlighted. In c, the sequenced individuals are shown on the left, and their coverage 

profiles are illustrated using panels from the Integrative Genomics Viewer (Robinson et al 

2011), with the y axes showing the number of reads mapped at each position in the 

genome. Coloured vertical lines show positions that contain SNPs relative to the reference 

genome. The locations of the two SULF inverted repeats are shown by the green boxes. 

A key regulator of yellow pigmentation in A. m. pseudomajus is the SULF gene, 

described in section 4.1.2.2. Small RNAs transcribed at this locus inhibit the 

expression of FLA, thus limiting the amount of yellow pigmentation produced in 

specific tissues. In A. m. pseudomajus, this results in yellow pigmentation being limited 
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to the flower foci. I looked at the mapped sequencing reads from J152 and J154 in the 

Integrative Genomics Viewer (Robinson et al 2011) and compared the SULF locus of 

these families to the same position in A. m. pseudomajus and A. m. striatum (Figure 

4.19). Both J152 and J154 appear to have partial deletions relative to A. m. pseudomajus 

covering parts of the SULF inverted repeat and the sequence linking them. This is a 

smaller deletion than in A. m. striatum. This deletion is fixed in both phenotypic bulks 

for both families, which explains why no peak is seen at this locus in the BSA plots. 

The results at SULF suggest that yellow arc is an allele of SULF (SULFarc) that is present 

at an unknown frequency in the hybrid zone, but that its phenotype is not visible when 

combined with the A. m. pseudomajus allele of FLA (FLAP). When crossed with a line 

that has the A. majus JI7 allele of FLA (FLA7), which has a similar FLA sequence to the 

brightly yellow-flowered A. m. striatum, the SULFarc pattern becomes visible. Thus, 

different combinations of FLA and SULF alleles in the hybrid zone can give rise to a 

range of flower colour phenotypes (Figure 4.20). Compared with the A. m. pseudomajus 

allele of SULF (SULFP), the SULFarc allele appears to be a weak inhibitor of yellow 

pigmentation. Rather than limiting yellow pigmentation to the flower foci, SULFarc 

restricts aurone production to a broader region of the flower that includes the dorsal 

arc. This weakened restriction effect may be because fewer sRNAs are produced, 
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owing to the partial deletion. 

 

Figure 4.20 Hypothesised phenotypic effect of different combinations of FLA and SULF 

alleles in the hybrid zone between A. m. striatum and A. m. pseudomajus. A superscript S 

represents an allele from A. m. striatum and P represents an allele from A. m. pseudomajus. 

SULF arc represents the yellow arc allele of SULF found in the hybrid zone. 

4.4 Results: Genotyping for FLAVIA reveals close linkage 
between genotype and phenotype 

J152, the family used to generate the BSA results presented in section 4.3 was small, 

with only 46 individuals. To confirm the effect of the A. majus JI7 allele of FLAVIA 

(FLA7) on the yellow arc phenotype, seeds from the same crosses that generated J152 

and J154 (same parent but different capsules) were sown to generate two larger 

families, L122 and L123 (see Figure 4.13), with 200 and 160 individuals, respectively. 

These segregated for the yellow arc pattern in a similar way to J152 and J154. Some 

flowers in L122 and L123 also showed a yellow pigmentation in the tube of the flower, 

another phenotype not usually seen in wild accessions. Further analysis of 

photographs from J152 and J154 shows that some individuals these families also had 
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yellow tubes. 

 

Figure 4.21 Families used to confirm the FLA genotypes of the yellow arc phenotype and 

their pedigrees. Both families used were F3 populations from a single cross between a plant 

generated from wild-collected seed and an A. majus lab cultivar, but came from two 

different F2 individuals. L122 and L123 came from different selfed flowers (ie separate 

capsules) on the same plants as J152 and J154, respectively. M0416 was the wild accession 

from which the seed that generated D194-3 was collected. In the diagram, female and male 

parents are indicated using their respective symbols (♀ and ♂) and a diamond (◇) 

represents self-fertilisation. Solid lines show the relationship between parent and progeny 

and dashed lines show crosses between parents. 

I photographed a sample flower from each individual in L122 and L123 and scored 

their flower colours based on these photographs. Of the 360 individuals in the 

combined population, 54 were not in flower when I scored them, giving a total 

phenotyped population size of 306. I photographed each flower from two angles: from 

the underside of the flower, where the front of the dorsal petals, the flower face and 

the underside of the flower tube were visible; and from the top of the flower, where the 

back of the dorsal petals and the top of the tube were visible. To make flower colour 

scoring easier and more accurate, I selectively converted the flower photographs to 

black and white, making the yellow pigments darker than those of other colours, using 

an automated processing script in Adobe Photoshop, as shown previously in Figure 
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4.10. 

Of the 306 individuals scored in L122 and L123, 214 individuals (69.9%) had a yellow 

arc phenotype, while the remaining 92 individuals (30.1%) had no yellow arc. 

However, these families showed additional variation not scored in J152 and J154. Of 

the plants showing a yellow arc pattern, 68 individuals (31.7% of those with a yellow 

arc, 22.2% of the family) had yellow pigmentation in the tube of the flower. 146 

individuals (68.2% of those with a yellow arc and 47.7% of the family) had a yellow 

arc pattern without yellow pigmentation in the tube (Figure 4.22). A G test for 

goodness of fit showed that this ratio did not differ significantly from a 1:2:1 ratio (p = 

0.06), suggesting that the A. majus allele responsible for the increased yellow 

production is semidominant. 

 

Figure 4.22 Number of individuals scored as having each yellow phenotype in L122 and 

L123 combined and the proportion of the whole combined family with that phenotype, 

shown as percentages. Illustrations below the graph columns show schematic 

representations of each phenotype, with yellow shown in blue to make distinguishing the 

phenotypes easier. 

A hypothesis to explain the arc and tube phenotypes based on this segregation ratio 

would be that, in the presence of SULF arc, one copy of FLA7 gives a yellow arc 

phenotype, while an extra copy (ie FLA7/FLA7) additionally gives a yellow tube 

phenotype (hypothesis 1). Alternatively, the yellow tube phenotype may be regulated 

by an unlinked gene that is epistatic to FLA, requiring the FLA7 allele for its phenotype 
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to show (hypothesis 2). If hypothesis 1 is correct, plants with both a yellow arc and a 

yellow tube phenotype will have the genotype FLA7/FLA7, while those with only a 

yellow arc phenotype will have the genotype FLA7/FLAP. If hypothesis 2 is correct, all 

plants with a yellow arc, regardless of tube colour, will have the genotypes FLA7/FLA7 

or FLA7/FLAP; plants with yellow flower tubes will not be distinguishable by their FLA 

genotypes. 

I designed seven sets of Kompetitive Allele-Specific PCR (KASP) oligonucleotide 

primers (LGC Ltd 2013) at and near the FLA coding region on chromosome 2 to 

determine the genotypes of individuals in L122 and L123. I also used five 

oligonucleotide primers developed by LGC Ltd for the same region, albeit based on a 

closely related population from the hybrid zone rather than L122 and L123 

themselves. The positions of all these primers on chromosome 2 in the reference 

Antirrhinum genome are shown in Table 4.1 and in Figure 4.23. Of the primers I 

designed, none revealed polymorphisms in the individuals I tested, but one of the 

LGC-designed primer pairs did. I used this – primer pair 4, with a focal SNP at 

71,833,823 bp in the promoter region of FLA – to genotype the combined families. 

Table 4.1 KASP oligonucleotide primer pairs designed for determining the genotypes of 

individual plants at and near the FLA coding region on chromosome 2, along with the 

result of testing the primers on a test plate containing 96 individuals with a selection of 

different yellow phenotypes. Although referred to as pairs, three primers are used in each 

analysis: two in the same direction, each ending in a different allele of the focal SNP; and 

one common primer in the opposite direction. Manually designed primers were the ones 

I designed based on genome sequencing data. 

Primer pair Focal SNP (bp) Origin Testplate result 
1 71832425 Manually designed Monomorphic 
2 71833304 LGC-designed Monomorphic 
3 71833653 Manually designed Monomorphic 
4 71833823 LGC-designed Polymorphic 
5 71834117 Manually designed Monomorphic 
6 71834290 Manually designed Monomorphic 
7 71834360 Manually designed Monomorphic 
8 71834537 LGC-designed Monomorphic 
9 71835496 Manually designed Monomorphic 
10 71836472 Manually designed Monomorphic 
11 71852521 LGC-designed Monomorphic 
12 71872855 LGC-designed Monomorphic 
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Figure 4.23 Positions of the focal SNPs (red lines) of the primers described in Table 4.1, 

relative to the coding region of FLA (green block); a shows the position of the region 

containing FLA on chromosome 2; b shows the location of FLA and the 12 focal SNPs 

more specifically; and c shows the position of the focal SNP of primer pair 4, used for 

subsequent analyses to genotype for FLA. 

Of the 337 reactions whose genotypes I could confidently call, 75 wells (22.3%) only 

showed fluorescence corresponding to the JI7 allele (FLA7), 97 wells (28.9%) only 

showed fluorescence corresponding to the alternative, A. m. pseudomajus allele (FLAP), 

and the remaining 165 wells (49.0%) showed fluorescence in both channels, meaning 

that both alleles are present (ie heterozygous, FLA7/FLAP). These values showed the 

expected 1:2:1 ratio for two segregating alleles, as confirmed by a G test for goodness 

of fit, which revealed that the expected and observed ratios did not differ significantly 

(p = 0.113). 

I then looked at the association between yellow phenotype and FLA genotype in the 

population (Table 4.2). Of the 60 individuals homozygous for FLA7 for which I also 

had phenotype information, all individuals had a yellow arc, and all but three 

individuals (95.0%) had a yellow tube. Every one of the 85 phenotyped individuals 

homozygous for FLAP lacked the yellow arc pattern. Of the 148 individuals that were 

heterozygous at FLA for which I also had phenotype information, 22 individuals 

(14.9%) had no yellow arc, 121 individuals (81.8%) had a yellow arc without yellow 

pigmentation in the tube, and five (3.4%) had a yellow tube as well as a yellow arc. 
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Table 4.2 Frequencies of different phenotypes given the FLA genotypes of plants in L122 

and L123. The phenotypes are: no yellow arc, NY; yellow arc, YA; and yellow arc and 

tube, YT. 

Genotype FLA7/FLA7 FLA7/FLAP FLAP/FLAP 
Phenotype NY YA YT NY YA YT NY YA YT 
Number 0 3 57 20 121 5 85 0 0 

 

These results, with some yellow tube plants heterozygous at FLA, appeared to confirm 

hypothesis 2 – that the yellow tube phenotype is regulated by a separate gene from 

FLA at an unlinked locus. However, given that only three out of 57 FLA7 homozygotes 

did not have a yellow tube and only five out of 121 FLA7/FLAP heterozygotes did have 

a yellow tube, I could not exclude the possibility that hypothesis 1 was correct and that 

some of my samples were misgenotyped or mislabelled. 

 

Figure 4.24 Families used to confirm the FLA genotypes of the yellow arc phenotype and 

their pedigrees. Both families used were F3 populations from a single cross between a plant 

generated from wild-collected seed and an A. majus lab cultivar, but came from two 

different F2 individuals. L122 and L123 came from different selfed flowers on the same 

plants as J152 and J154, respectively. M0416 was the wild accession from which the seed 

that generated D194-3 was collected. In the diagram, female and male parents are 

indicated using their respective symbols (♀ and ♂) and a diamond (◇) represents self-

fertilisation. Solid lines show the relationship between parent and progeny and dashed 

lines show crosses between parents. 

I used two further plant populations grown in 2017 – N124 and N136 – to verify my 
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results from L122 and L123. These F3 families were derived from different individuals 

in the same F2 that gave rise to J152, J154, L122 and L123 (Figure 4.24). A total of 

167 plants in N124 and 223 plants in N136 were phenotyped for yellow flower colour 

and genotyped for FLA. The ratios of phenotypes in these families differed 

substantially from those seen in the previous families (Figure 4.25). In N124, 24 

individuals (14.4%) had little or no yellow pigmentation in the flowers, and the other 

143 (85.6%) had strong yellow pigmentation at the flower foci. Of these 143 with 

strong yellow pigmentation, 80 had a yellow arc (55.9% of those with strong yellow 

pigmentation, 47.9% of the family) and 63 did not. And of those with a yellow arc, 53 

also had a yellow tube (66.3% of those with a yellow arc, 31.7% of the family), while 

the remaining 27 did not. In N136, 47 individuals (21.1%) had little or no yellow 

pigmentation in the flowers, and the other 176 (78.9%) had strong yellow pigmentation 

at the flower foci. Of these 176 with strong yellow pigmentation, 142 had a yellow arc 

(80.7% of those with strong yellow pigmentation, 63.7% of the family) and 34 did not. 

And of those with a yellow arc, 34 also had a yellow tube (23.9% of those with a yellow 

arc, 15.3% of the family), while the remaining 49 did not. 

 

Figure 4.25 Frequencies of different yellow phenotypes in N124 and N136: little or no 

yellow (NY); yellow only on the foci (YF); yellow on the foci and yellow arc (YA); and 

yellow in the foci, arc region and flower tube (YT). 

Looking at the genotypes, in N124, 53 individuals (31.7%) were homozygous for 

FLA7, 38 (22.8%) were homozygous for FLAP, and 76 (45.5%) were heterozygous. In 

N136, 46 individuals (20.6%) were homozygous for FLA7, 51 (22.9%) were 

homozygous for FLAP, and 126 (56.5%) were heterozygous. In both families, a G test 
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for goodness of fit did not show significant differences between the observed ratio and 

the 1:2:1 expected ratio for a segregating marker with two alleles. 

Table 4.3 Linkage between FLA genotype and yellow phenotype in N124 and N136, using 

the following phenotypic categories: little or no yellow (NY); yellow only on the foci (YF); 

yellow on the foci and yellow arc (YA); and yellow in the foci, arc region and flower tube 

(YT). 

Genotype FLA7/FLA7 FLA7/FLAP FLAP/FLAP 

Phenotype NY YF YA YT NY YF YA YT NY YF YA YT 

N124 Frequency 0 0 0 53 0 49 27 0 24 14 0 0 

N136 Frequency 0 0 12 34 0 89 37 0 47 4 0 0 
 

There was a strong association between the genotype at FLA and the yellow phenotype 

scored for each individual in these two families (Table 4.3). In N124, all 53 of those 

with a FLA7/FLA7 genotype had yellow pigmentation in the foci, arc and tube. None 

of the 38 plants with the FLAP/FLAP genotype had a yellow arc or a yellow tube, 

although 14 had strong yellow pigmentation at the foci while the rest did not. The 76 

heterozygotes had moderate yellow phenotypes – at least strong yellow on the face, 

with 27 also showing a yellow arc phenotype but none with yellow tubes. In N136, 34 

of the 46 plants with a FLA7/FLA7 genotype had yellow pigmentation in the foci, arc 

and tube, but the remaining 12 lacked the yellow tube phenotype. As in N124, none 

of the 51 plants with the FLAP/FLAP genotype had a yellow arc or a yellow tube, and 

only four had strong yellow pigmentation at the foci, with the other 47 showing little 

or no yellow in the flowers. Heterozygotes, again, had either strong yellow foci or 

yellow foci and yellow arcs, and none had yellow tubes. 

These results confirm that the yellow arc phenotype requires at least one copy of the 

FLA7 allele and appear to suggest that the yellow tube phenotype is only seen in FLA7/ 

FLA7 homozygotes, although this contradicts the results seen in L122/L123. However, 

not all FLA7 homozygotes in N136 have a yellow tube, which means that I cannot infer 

that my earlier hypothesis 1 – that yellow tube arises from having two copies of FLA7 

– is correct. It is possible, therefore, that there is another locus unlinked to FLA that 

regulates yellow pigmentation in the flower tube, but that it is epistatic to FLA (tube 

hypothesis 1, Table 4.4). A future experiment to identify this locus would be to pool 

the 12 N136 individuals with a FLA7/FLA7 genotype and a yellow arc but no yellow 

tube into one bulk, and individuals with the same genotype but with a yellow tube into 

another bulk, and to sequence them for bulked segregant analysis. A better experiment 
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would be to re-sow selfed seed from H102R-20, the parent of N136, to get larger 

numbers for these pools. The genotyping results for N124 and N136 also confirm that 

plants homozygous for FLAP do not show a yellow arc phenotype, although they may 

accumulate yellow pigment in the flower face. An alternative hypothesis is that the 

variation in yellow tube in N136 plants fixed for FLA7 is seen because of environmental 

differences between individual plants (tube hypothesis 2, Table 4.4). If this is correct, 

BSA of the pools described above would show no peaks. 

Table 4.4 Predicted outcome, given two alternate hypotheses, of BSA comparing plants 

from N124/N136 fixed for FLA7 but with different tube colour phenotypes. 

 Tube hypothesis 1 Tube hypothesis 2 
Description of 
hypothesis 

Yellow tube is regulated by 
an unidentified gene 
unlinked to FLA. 

Yellow tube is the result of 
variation in yellow pigment 
accumulation because of 
environmental differences. 

Predicted result of 
BSA of FLA7/FLA7 

plants with and 
without yellow tube 
phenotypes 

Peak on a chromosome 
other than chromosome 2. 

No peaks seen. 

 

The different phenotypic ratios in N124/N136 compared to L122/L123 may be 

explained by the N-set families (and their parents) being differentially fixed for another 

regulator of yellow pigmentation compared to the L-set families. Because N124 and 

N136 (or any other families from H102R-2 or H102R-20) have not been sequenced, 

their SULF genotype is unknown, but if the SULF deletion is different in between 

N124/N136 and L122/L123, the interaction with FLA7 may produce different results 

(arc hypothesis 1, Table 4.5). This could be tested through individual Sanger 

sequencing at the SULF locus for individuals from each of the four families. 

Alternatively, there may be another locus segregating in N124 and N136 that leads to 

additional variation in yellow colour. This may be the same locus that leads to a yellow 

tube phenotype when plants have the FLA7/FLA7 genotype, although this would not 

explain the differences in ratios between N124 and N136 (arc hypothesis 2, Table 4.5). 

A way to test this would be to pool FLA heterozygotes with and without a yellow arc 

phenotype and look for BSA peaks outside chromosome 2. 
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Table 4.5 Predicted outcome, given two alternate hypotheses, of two proposed future 

experiments. 

 Arc hypothesis 1 Arc hypothesis 2 
Description of hypothesis There are fewer 

individuals with yellow 
arc because N124/N136 
have a different SULF 
deletion compared with 
L122/L123. 

There are fewer 
individuals with yellow 
arc because N124/N136 
are segregating for a 
second locus unlinked to 
FLA that changes yellow 
colour amount/intensity. 

Predicted result of Sanger 
sequencing at SULF for 
N124/N136 and 
L122/L123 

Sequences differ 
between the N-set 
families and the L-set 
families – eg size of the 
deletion is different. 

Sequences are the same 
for all individuals tested. 

Predicted result of BSA of 
FLA7/FLAP plants with 
and without yellow arc 
phenotypes 

No peaks seen. Peak on a chromosome 
other than chromosome 2. 

Predicted result of 
growing self seed from 
other H102 individuals. 

Not all families show the 
same yellow arc 
phenotypic ratios. 

Not all families show the 
same yellow arc 
phenotypic ratios. 

 

4.5 Results: Additional variation in yellow pigmentation is also 
linked to the FLAVIA locus 

In addition to the yellow variation in yellow arc seen in the families previously 

described in this chapter, I looked at variation in other yellow phenotypes from other 

Antirrhinum species. A. sempervirens grows in southwestern France and has white 

flowers with a very subtle hint of yellow in the face region and tightly restricted 

magenta veins (Figure 4.26 a and b). A. charidemi grows in southeastern Spain and has 

pink flowers with bright yellow foci and, unlike other species, a yellow flower tube 

(Figure 4.26 c and d). 
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Figure 4.26 Flowers of A. sempervirens (a and b) and A. charidemi (c and d). The scale bar 

of 1 cm relates to all four images. 

 

Figure 4.27 Location within France of the C-NAP collection location where A. 

sempervirens was sampled in 2003. The location was named after the nearby Pont 

Napoleon, a bridge in the commune of Luz-Saint-Sauveur, Hautes-Pyrénées department, 

southwestern France.  

Seeds were collected from A. sempervirens in the Parc national des Pyrénées in 

southwestern France in 2003 (Figure 4.27). This accession is named C-NAP (C was 

the identifier given to 2003 as a collecting year and NAP refers to the nearby Pont 

Napoleon). The seeds were germinated in glasshouse conditions and one of these 

individuals was crossed with A. majus (JI7) and self-fertilised to give an F2 generation. 

Seeds were also collected from A. charidemi in the Cabo de Gata-Níjar natural park in 

southeastern Spain in 1999 (Figure 4.28). This accession was named Y-GAT (Y refers 

to 1999 as a collection year and GAT is short for Cabo de Gata). Progeny from these, 
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were recurrently backcrossed to JI7 to introgress alleles of interest. This backcrossed 

line was then crossed to JI7 to generate an F2 population. 

 

Figure 4.28 Location within Spain of the Y-GAT collection location where A. charidemi 

was sampled in 1999. The location was named after the Cabo de Gata-Níjar Natural Park, 

eastern Andalucia, where the seeds were collected. 

A family was generated each from two crosses between A. sempervirens and JI7: H115 

and H118. These were scored for magenta and yellow pigmentation. In H115 (Figure 

4.29), of the 99 plants scored, 18 had no yellow pigmentation, 64 had yellow 

pigmentation restricted to the flower face and 17 had yellow spread throughout the 

petal lobes (Figure 4.30). Yellow pigmentation in this family did not appear to be 

regulated by one gene with a semidominant allele; this would mean a 1:2:1 segregation 

ratio, but a G test for goodness of fit showed that the observed ratio differed 

significantly from this (p = 0.007). A likely explanation for the segregation ratio seen 

is that the family segregated for SULF and for another gene regulating yellow 

pigmentation. The sulf allele gives a spread yellow phenotype (like that seen in Figure 

4.30 c and f), but the dominant SULF allele, fixed in JI7, only restricts yellow (Figure 

4.30 b and e) and does not eliminate it or weaken its intensity (as is the case in Figure 

4.30 a and d). Therefore, there may be an additional gene, ‘NOYELLOW’, regulating 

yellow pigmentation in H115. If the lack of yellow is associated with a recessive 

noyellow allele, a 9:3:4 ratio of restricted yellow (SULF/- NOYELLOW/-) to spread 

yellow (sulf/sulf NOYELLOW/-) to lack of yellow (-/- noyellow/noyellow) would be 

expected because SULF would likely be epistatic to NOYELLOW. A G test for 

goodness of fit showed that the observed ratio did not differ significantly from this 
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expected 9:3:4 ratio (p = 0.093). This unknown ‘NOYELLOW’ gene was therefore of 

interest, as this could be a previously unidentified gene responsible for colour variation 

between Antirrhinum species. H115 also segregated for restriction of magenta and the 

presence/absence of veins (Figure 4.30). These magenta phenotypes were not 

considered in this study, but are likely to be because of segregation of ELUTA (which 

restricts magenta pigmentation in A. m. pseudomajus and is thought to serve the same 

function in A. sempervirens) and VENOSA (which regulates anthocyanin production in 

tissue overlying veins in the dorsal lobes of A. m. striatum and is thought to serve the 

same function in A. sempervirens). 

 

Figure 4.29 The pedigree of H115, which segregated for lack of strong yellow 

pigmentation on the flower face, as seen in A. sempervirens. In the diagram, female and 

male parents are indicated using their respective symbols (♀ and ♂) and a diamond (◇) 

represents self-fertilisation. Solid lines show the relationship between parent and progeny 

and dashed lines show crosses between parents. 
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Figure 4.30 Flower colour phenotypes in H115 (a-f), an F2 population between A. 

sempervirens (g), which has very little yellow pigmentation, and the lab cultivar JI7 (h), 

which has strong but restricted yellow. Many individuals had no yellow pigmentation (a 

and d), while others had yellow on the flower face (b and e). Some were sulf mutants, 

meaning that yellow pigmentation was produced throughout the petal lobes (c and f). The 

A. sempervirens accession used for this cross has a magenta pattern restricted to the centre 

of the flower, magenta veins and no yellow pigmentation (g). A. majus var. JI7 has full 

magenta pigmentation and restricted yellow foci (h). 

In H118 (Figure 4.31), of the 134 plants scored, 23 had no yellow pigmentation, 82 

had yellow pigmentation restricted to the flower face and 20 had yellow spread 

throughout the petal lobes (Figure 4.32). This ratio, like in H115, was not significantly 

different to the expected 9:3:4 ratio of restricted yellow to spread yellow to lack of 

yellow (p = 0.092). This appears to confirm that yellow flower colour in this family is 

regulated at SULF and at another locus where the recessive allele is associated with A. 

sempervirens’s lack of yellow phenotype. 



Evolutionary genetics of flower colour variation in Antirrhinum 
 Chapter 4: The aurone biosynthetic gene FLAVIA regulates yellow colour variation 

 153
  

 

Figure 4.31 The pedigree of H118, which segregated for lack of strong yellow 

pigmentation on the flower face, as seen in A. sempervirens. In the diagram, female and 

male parents are indicated using their respective symbols (♀ and ♂) and a diamond (◇) 

represents self-fertilisation. Solid lines show the relationship between parent and progeny 

and dashed lines show crosses between parents. 
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Figure 4.32 Flower colour phenotypes in H118 (a-c), an F2 population between A. 

sempervirens (d), which has very little yellow pigmentation, and the lab cultivar JI7 (e), 

which has strong but restricted yellow. The yellow colour phenotypes seen were no yellow 

(a), restricted yellow foci (b) and spread ‘sulf’ yellow (c). Variation was also seen in 

magenta colouration with some showing a ROSEA-ELUTA phenotype (a), some showing 

a VENOSA-eluta phenotype (b) and some showing a VENOSA-ELUTA phenotype (c). 

Magenta pigmentation and its regulation is discussed in the introduction to chapter 3. The 

A. sempervirens accession used for this cross has a magenta pattern restricted to the centre 

of the flower, magenta veins and no yellow pigmentation (g). JI7 has full magenta 

pigmentation and restricted yellow foci (h). 

H246, the F2 from the cross between an A. charidemi-derived family and JI7, 

segregated for yellow pigmentation in the tube of the flowers (Figure 4.33), a 

phenotype seen in A. charidemi. The A. charidemi-derived male parent of this cross was 

the result of several back-crosses to JI7 (Figure 4.34), so this family was more 

introgressed than those used elsewhere in this chapter. There were 67 plants in this 

family; 16 plants had yellow flower tubes, while 51 did not. This represents a 3:1 ratio 

between the no yellow tube and strong yellow tube phenotypes, confirmed by a G test 

for goodness of fit (p = 0.832). This suggests that yellow tube is associated with a 

recessive allele at a single locus. 
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Figure 4.33 Flowers from H246 segregating for the yellow tube phenotype. Some plants 

had strong yellow pigmentation on the flower tube (a), while others lacked this phenotype 

(b). This phenotype was easier to see on the inside of the tube where less magenta colour 

accumulates (c and d). 

 

Figure 4.34 The pedigree of H246, which segregated for strong yellow pigmentation in 

the flower tube, as seen in A. charidemi. In the diagram, female and male parents are 

indicated using their respective symbols (♀ and ♂) and a diamond (◇) represents self-

fertilisation. Solid lines show the relationship between parent and progeny and dashed 

lines show crosses between parents. 

Leaves collected from these families were pooled as follows: for H115, one pool of 

plants with no yellow (18 individuals), one pool with restricted yellow (17 individuals), 
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and one pool with spread yellow (15 individuals) to confirm that SULF was 

segregating; for H118, one pool of plants with no yellow (20 individuals), one pool 

with restricted yellow (20 individuals), and one pool with spread yellow (15 

individuals); and for H246, one pool of plants with a strong yellow tube phenotype (16 

individuals) and one pool with no yellow tube (20 individuals). DNA was extracted 

from these pooled leaves and sequenced at The Genome Analysis Centre (now the 

Earlham Institute). I processed and analysed the sequencing data using the same 

pipeline as for J152 and J154 earlier in this chapter and mapped the variation in yellow 

pigmentation using bulked segregant analysis. 

 

Figure 4.35 Bulked segregant analysis Manhattan plots for family H115 segregating for 

the presence and absence of yellow pigmentation in the flowers. The top plot shows the 

number of SNPs in each 50 kb window across each chromosome. The middle plot shows 

the G′ value for each SNP – a modified G value averaged across 50 kb windows and 

smoothed using a tri-cube kernel function. The red line on this plot represents a G′ 

threshold corresponding to a false discovery rate of 0.01. The bottom plot shows the 

difference in allele frequency of each pool, again averaged and smoothed across 50 kb 

windows. A negative value indicates that, in a majority of sequencing reads, the JI7 

reference genome nucleotide is found at SNPs in that window; a positive value indicates 

that a majority of reads have a non-reference nucleotide at SNPs in the window. 
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The results from the first bulked segregant analysis, comparing the pools with and 

without yellow from H115, are shown in Figure 4.35. The highest peak in G′ for this 

comparison is on chromosome 2, with most windows along the chromosome having 

G′ values above the false discovery rate. Elevated G′ is also seen along much of 

chromosome 3. Finally, there is a very low peak at the end of chromosome 5, and 

another one towards the end of chromosome 6. 

The highest peak in G′ is on chromosome 2, and the Δ SNP-index shows that A. 

sempervirens alleles are more common than the JI7 allele in the no-yellow pool on this 

chromosome. This suggests that a gene on this chromosome is associated with the lack 

of yellow phenotype from A. sempervirens. The peak on chromosome 2, as with 

previous work on the yellow arc phenotype, is wide because a lack of recombination 

is seen on this chromosome between JI7 and Antirrhinum species collected in the wild. 

Both AS1 and FLA, the genes that encode the two enzymes that convert chalcone to 

the yellow aurone pigment, are located on chromosome 2. However, the highest points 

of the G′ and Δ SNP-index peaks exclude AS1. FLA is included in the highest peak in 

Δ SNP-index, although it, too, has a lower G′ value than most regions on the genome. 

This could be because SNP density is slightly lower around the FLA locus compared 

to some other parts of the chromosome. However, there may be an additional 

regulator of yellow flower colour located on this chromosome that has not previously 

been identified. 
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Figure 4.36 Bulked segregant analysis Manhattan plots for family H118 segregating for 

the presence and absence of yellow pigmentation in the flowers. The top plot shows the 

number of SNPs in each window, the middle plot shows the G′ value and the bottom plot 

shows the difference in allele frequency between the pools. All values are averaged across 

50 kb windows; the lower two plots are smoothed using a tri-cube kernel function. The red 

line in the middle plot represents a G′ threshold corresponding to a false discovery rate of 

0.01. The positions of AS1, FLA and SULF are indicated with vertical lines and labelled 

below the x axis. 

Bulked segregant analysis of H118 largely confirmed the result seen for H115 (Figure 

4.36). The highest peak, again, is on chromosome 2 and excludes AS1. As seen in 

H115, however, there is a slight dip in G′ value around the FLA locus, although this is 

less prominent in H118. No such dip is seen in Δ SNP-index at the same locus. 

I also used bulked segregant analysis to compare plants in these families that had 

restricted yellow pigmentation with those that had spread yellow pigmentation to 

confirm that the phenotype was regulated by SULF as was predicted. In H115, the 

largest peak was on chromosome 4 and includes the SULF locus (Figure 4.37). The 

same result was seen for H118 (Figure 4.38). There was a small signal around 60Mb 

along chromosome 1 and another around 50Mb along chromosome 2 in H118. 
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However, these are much lower than the peak on chromosome 4. Because there were 

very few individuals in these pools (20 and 15), a difference in a few individual plants 

may produce a large signal on the plot. This may also be true for the low peaks in the 

bulked segregant analysis of the lack of yellow phenotype. 

 

Figure 4.37 Bulked segregant analysis Manhattan plots for family H115 comparing plants 

that had restricted yellow pigmentation with those that had spread yellow colour. The top 

plot shows the number of SNPs in each window, the middle plot shows the G′ value and 

the bottom plot shows the difference in allele frequency between the pools (Δ SNP-index). 

All values are averaged across 50 kb windows; the lower two plots are smoothed using a 

tri-cube kernel function. The red line in the middle plot represents a G′ threshold 

corresponding to a false discovery rate of 0.01. The positions of AS1, FLA and SULF are 

indicated with vertical lines and labelled below the x axis. 
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Figure 4.38 Bulked segregant analysis Manhattan plots for family H118 comparing plants 

that had restricted yellow pigmentation with those that had spread yellow colour. The top 

plot shows the number of SNPs in each window, the middle plot shows the G′ value and 

the bottom plot shows the difference in allele frequency between the pools (Δ SNP-index). 

All values are averaged across 50 kb windows; the lower two plots are smoothed using a 

tri-cube kernel function. The red line in the middle plot represents a G′ threshold 

corresponding to a false discovery rate of 0.01. The positions of AS1, FLA and SULF are 

indicated with vertical lines and labelled below the x axis. 
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Figure 4.39 Whole genome sequencing depth of coverage along a section of chromosome 

4 containing the two SULF inverted repeat sequences for three A. m. pseudomajus (restricted 

yellow), two A. m. striatum (spread yellow) individuals, two A. sempervirens (little or no 

yellow) individuals, and pooled plants with restricted yellow and spread yellow on their 

flowers. Panel a shows the whole length of chromosome 4, with the region expanded in b 

and c highlighted. In c, the sequenced individuals are shown on the left, and their coverage 

profiles are illustrated using panels from the Integrative Genomics Viewer (Robinson et al 

2011), with the y axes showing the number of reads mapped at each position in the 

genome. Coloured vertical lines show positions that contain SNPs relative to the reference 

genome. The locations of the two SULF inverted repeats are shown by the green boxes. 

I also looked at the SULF sequence of plants in H115 and H118 and compared them 

to those of A. m. striatum, A. m. pseudomajus and A. sempervirens. This showed that plants 

with spread yellow flowers in H115 and H118 had a deletion between the two SULF 

inverted repeats and that A. sempervirens had the same deletion. This deletion was 

smaller than that of A. m. striatum and did not include the inverted repeats themselves. 

However, the phenotype suggests that this deletion is enough to allow yellow 

pigmentation to spread throughout the petal lobes. 
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In the bulked segregant analysis of H246, comparing plants with and without yellow 

flower tubes, the largest peak in G′ value and Δ SNP-index was once again on 

chromosome 2 (Figure 4.40). Few other genomic positions have G′ values that cross 

the false discovery rate threshold, and none have a similar peak height to chromosome 

2 positions, apart from the narrow peaks on chromosomes 4 and 5, which, as described 

earlier in this section, are likely assembled incorrectly. 

 

Figure 4.40 Bulked segregant analysis Manhattan plots for family H246 segregating for 

the presence and absence of yellow pigmentation in the tubes of the flowers. The top plot 

shows the number of SNPs in each window, the middle plot shows the G′ value and the 

bottom plot shows the difference in allele frequency between the pools. All values are 

averaged across 50 kb windows; the lower two plots are smoothed using a tri-cube kernel 

function. The red line in the middle plot represents a G′ threshold corresponding to a false 

discovery rate of 0.01. The positions of AS1, FLA and SULF are indicated with vertical 

lines and labelled below the x axis. 

One difference between the plot for H246 and those for H115 and H118 is that the 

H246 G′ values are generally lower outside the peaks than the corresponding values in 

the other families. The SNP density across much of the chromosome is also lower, 

and the Δ SNP-index values are closer to 0 on most chromosomes. This may reflect 
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the fact that H246 is far more introgressed than H115 and H118 or, indeed, any other 

family used in this thesis. Through multiple generations of backcrossing, more loci 

have become fixed in H246 than in the other populations I have used. 

As in previous results for other phenotypes in this chapter, the signal on chromosome 

2 associated with the yellow phenotype excludes the AS1 locus but includes the FLA 

locus. However, it also includes most positions on the chromosome, which leaves the 

result inconclusive as to whether FLA or another locus is responsible for the yellow 

tube phenotype. One hypothesis to explain this is that a cis-regulatory region change 

at FLA in A. charidemi results in yellow aurones being produced and accumulated in 

regions of the flower that are not yellow in other species. The alternative is that another 

gene, also located on chromosome 2, is responsible for yellow colour production in 

the flower tube of A. charidemi. Such a locus may encode a transcription factor that 

activates yellow production in the flower tube in A. charidemi or deactivates the 

pathway in other species. Alternatively, it may be transcribed as regulatory sRNAs 

that inhibit the activity of FLA or AS1 in the flower tube in species other than A. 

charidemi. A way to test this would be to grow a larger population segregating for the 

same phenotype and to genotype these plants for FLA. If the yellow tube phenotype is 

regulated at the FLA locus itself, every plant with a yellow tube should have the 

FLAcharidemi/FLAcharidemi genotype. If the phenotype is regulated by a locus located 

elsewhere on chromosome 2, if the family is large enough to ensure recombination 

between FLA and the causal locus, some plants with a yellow tube will have a 

FLA7/FLAcharidemi genotype. 

I also replotted the figures in this section using larger 1 Mb windows (Figure 4.41) as 

I did for J152 and J154. The largest peaks for H115 and H118 when comparing plants 

that have the no yellow phenotype with those that have restricted yellow, and when 

comparing H246 plants with and without yellow tubes, are still on chromosome 2. 

These peaks still exclude AS1 and, while the signal for FLA is higher than the false 

discovery rate threshold for each comparison, there are considerably higher peaks 

elsewhere on the chromosome. The largest peaks for H115 and H118 when comparing 

plants that have the spread yellow phenotype with those that have restricted yellow is 

on chromosome 4, near the SULF locus. 
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Figure 4.41 Bulked segregant analysis Manhattan plots showing G′ values for H115 

comparing plants that have no yellow pigmentation on the flower face with those that have 

restricted yellow (a), H115 comparing plants that have yellow pigmentation spread across 

the petal lobes with those that have restricted yellow (b), H118 comparing plants that have 

no yellow pigmentation on the flower face with those that have restricted yellow (c), H118 

comparing plants that have yellow pigmentation spread across the petal lobes with those 

that have restricted yellow (d), and H246 comparing plants that have yellow flower tubes 

with those that do not (e). Note that the y axis differs from that used in previous plots. All 

values are averaged across 1 Mb windows and smoothed using a tri-cube kernel function. 

The red line in each plot represents a G′ threshold corresponding to a false discovery rate 

of 0.01. The positions of AS1, FLA and SULF are indicated with vertical lines and labelled 

below the x axis. 

4.6 Discussion 

4.6.1 Origin of additional phenotypes 

My initial hypothesis for work in this chapter was that yellow flower colour variation 
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in the Antirrhinum genus would have additional regulators to those already described. 

I looked at three different yellow phenotypes that had not been genetically 

characterised: yellow arc (from the A. m. striatum and A. m. pseudomajus hybrid zone), 

yellow tube (from A. charidemi) and lack of yellow on the face (from A. sempervirens). I 

also looked at a spread yellow phenotype seen when A. sempervirens, which has little 

or no yellow colour on its flowers, was crossed to a lab cultivar with restricted yellow. 

All my bulked segregant analyses for this chapter showed a peak on chromosome 2, 

and all of these peaks included the FLA locus, which encodes one of the two aurone-

specific enzymes. It is unclear from these results whether the genetic changes 

underlying yellow colour variation are in the coding region or cis-regulatory region of 

FLA, or whether a separate regulator is encoded at a linked locus. However, these 

results suggest that FLA, or another linked gene on chromosome 2, is responsible for 

much of the variation in yellow colour between Antirrhinum species. 

My results also revealed a third allele present in the A. m. striatum and A. m. pseudomajus 

hybrid zone at the SULF locus. This locus in A. m. pseudomajus contains FLA-derived 

inverted repeat sequences that restrict aurone production in specific petal regions by 

restricting FLA expression (Bradley et al 2017). A deletion at this locus in A. m. striatum 

relative to A. m. pseudomajus allows yellow pigmentation to extend throughout the 

petal lobes. The additional allele I identified in this work appears to restrict yellow 

pigmentation conferred by the A. majus JI7 allele of FLA to the arc region of the dorsal 

petals and the foci region of the ventral petals. This suggests a weaker restriction of 

FLA than the A. m. pseudomajus allele, which restricts yellow pigmentation to just the 

foci. The frequency of this ‘yellow arc’ SULF allele among plants in the hybrid zone 

region is unknown, but future experiments looking at this could take advantage of 

hybrid zone tissue already collected. KASP primers could be developed to 

discriminate between the A. m. pseudomajus and ‘yellow arc’ SULF allele in individuals 

from this population. 

One technique that could help to determine the regulatory basis of yellow colour 

variation more accurately is RNA sequencing. Sequencing RNA from different petal 

tissues in plants with different yellow colour phenotypes would reveal which genes are 

expressed in which tissues. Dissecting the tube and lobe regions of plants with and 

without strong yellow pigmentation would allow comparisons of gene expression 

between different tissues. If FLA is responsible for the yellow tube phenotype, for 

example, I would expect its expression to be higher in the tube region of plants 
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showing this phenotype compared with the same region in plants without the 

phenotype and compared with non-yellow regions of the same flowers. RNA 

sequencing would also reveal whether any additional, unknown genes are 

differentially expressed between tissues of interest. This makes it a more robust method 

of studying gene expression than targeted analyses such as qPCR, where primers 

would need to be developed for each gene of interest. 

4.6.2 The role of biosynthetic genes in natural variation 

One key difference between magenta and yellow colours in Antirrhinum is the way in 

which they are regulated. Magenta colour is regulated by transcription factors, which 

activate and suppress anthocyanin structural genes in different tissues (Rausher 2006, 

Schwinn et al 2006, Tavares et al in review). Regulation of yellow colour, however, 

appears to be linked to the regulatory sRNA locus SULF (Bradley et al 2017) and the 

aurone structural gene FLA (Boell et al unpublished results). 

This difference in the way aurones and anthocyanins are regulated may be because of 

the pleiotropic nature of the anthocyanin structural genes. Anthocyanins are used by 

plants for defence against a host of biotic and abiotic stresses (Koes et al 1994). There 

has been less work on the biological significance of aurones beyond flower colour, but 

their relative rarity among plants and their absence in all clades except the flowering 

plants (Rausher 2006) suggests that they are less important for defence than 

anthocyanins. Aurones are also believed to have evolved more recently than 

anthocyanins. The anthocyanin pathway and its regulation have evolved piecemeal 

over millions of years (Rausher 2006), with at least eight enzymes required for 

cyanidin 3-rutinoside biosynthesis in Antirrhinum (Martin et al 1991). The shorter 

pathway and shorter evolutionary timescale of aurone biosynthesis may mean that 

yellow colour by aurones requires a simpler regulatory mechanism. 

4.6.3 Lack of recombination on chromosome 2 

A common feature seen in all the bulked segregant analyses for this chapter is a lack 

of recombination along a large interval on chromosome 2. Peaks on this chromosome 

were consistently nearly chromosome-wide, suggesting that recombination is 

suppressed across a 55-65Mb interval. This suppressed recombination could be a sign 

of a chromosomal inversion between JI7 and the accessions used in crosses for this 

chapter. Inversions, formed when an interval breaks apart from the rest of the 
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chromosome and is reinserted in the reverse orientation, lead to suppressed 

recombination in heterozygotes because gametes are not balanced (Kirkpatrick and 

Barton 2006, Kirkpatrick 2010). Inversions sometimes contain adaptive combinations 

of genes and the resulting suppressed recombination is believed to protect these 

combinations (Twyford and Friedman 2015). Determining the cause of the reduced 

recombination on chromosome 2 in Antirrhinum will first require better 

characterisation of recombination rates across the chromosome using genetic markers 

located at regular intervals. 

4.6.4 Contribution to the understanding of the Antirrhinum genome 

This work used a new version of the Antirrhinum genome assembly (known informally 

as A. majus GenomeV2, Xue et al, unpublished). This version of the genome comprises 

eight scaffolds, each corresponding to one of the eight chromosomes of Antirrhinum. 

However, during my work, I encountered several genomic regions on many different 

scaffolds where allele frequency differences identified in the BSA were in strong 

contrast to surrounding regions. For example, several narrow ‘peaks’ in allele 

frequency difference are seen on chromosomes 4, 5 and 6, while a section of 

chromosome 2 shows a signal ‘dip’ around 50Mb. I concluded that the anomalous 

narrow peaks were likely misplaced in the genome assembly and instead belong on 

chromosome 2 and that the dip in the chromosome 2 signal was the result of part of 

the scaffold being assembled in the incorrect orientation. This information will be used 

to inform future improvements to the genome assembly, and these changes will be 

incorporated into future genome releases. 
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5 Discussion 

5.1 Summary of the work presented in this thesis 

In this thesis, I have used a combination of bulked segregant analysis, fine mapping of 

traits and whole genome sequencing of natural accessions to look at the genetic basis 

and evolution of flower colour in Antirrhinum. I tested whether each flower colour trait 

(ie accumulation of anthocyanins and of aurones) is centrally controlled by a single 

locus in different species, or is a trait with dispersed genetic control with many loci 

contributing towards a phenotype. Six flower colour phenotypes were mapped to three 

loci. I concluded that there are fewer loci regulating flower colour than there are colour 

phenotypes seen, but that there are also several distinct loci involved in controlling 

each trait. This means that neither hypothesis is fully correct and that genetic control 

of flower colour in Antirrhinum lies somewhere between being centralised and 

dispersed. 

5.2 Flower colour in Antirrhinum is regulated by fewer loci than 
the number of different phenotypes seen 

Across Antirrhinum, there are many distinct flower colour and pattern phenotypes. 
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Species can broadly be categorised as having magenta, white or yellow flowers. But 

within these categories, more variation exists. Magenta flowers can have a white 

ventral patch near the flower opening (‘white face’) or the amount of anthocyanin that 

accumulates can be reduced, resulting in a paler pink colour. Most white flowers have 

strong yellow foci that are thought to guide pollinators to the precise part of the flower 

where the upper and lower lobes meet. In white flowers, there are also usually 

magenta-coloured venation patterns in their dorsal lobes, but different species vary for 

the degree to which these patterns are restricted. Yellow flowers often have these vein 

patterns too. And some species, notably A. charidemi, have yellow colouration in the 

tube of the flower, while most species have unpigmented or magenta tubes. 

Some of these phenotypes had already been genetically characterised. Production of 

magenta anthocyanins in the petal epidermis had been mapped to the ROSEA (ROS) 

locus and production of the same pigments in tissues overlying dorsal veins to the 

VENOSA (VE) locus (Schwinn et al 2006, Shang et al 2011). Later, the restriction of the 

ROS and VE phenotypes to the central region of the flower was mapped to the ELUTA 

(EL) locus, which is linked to the ROS locus (Tavares 2014, Tavares et al in review). 

Likewise, the restriction of the yellow aurone pigment to the flower foci was mapped 

to the SULFUREA (SULF) locus in A. majus and A. m. pseudomajus (Bradley et al 2017) 

and to the FLAVIA (FLA) locus in A. molle (Boell and Bradley, unpublished results). 

But the additional variation seen in other species – lack of yellow in A. sempervirens, 

yellow tube in A. charidemi, white face (localised lack of magenta) in A. m. pseudomajus 

– remained unexplained. More flower colour variation, hidden because of epistasis, 

was also seen when species were crossed to lab cultivars to characterise their 

phenotypes and genotypes, including the yellow arc phenotype from the A. m. striatum 

and A. m. pseudomajus hybrid zone, and another white face (localised lack of magenta) 

phenotype from A. molle. 

Bulked segregant analysis of the white face phenotype from A. m. pseudomajus revealed 

that an allele from the subspecies at the ROS-EL locus is responsible for the phenotype. 

This was confirmed by individual genotyping, which showed that the A. m. 

pseudomajus ROS allele (ROSP) appears to be more tightly linked to the phenotype than 

ELP, although the recombination rate I calculated cast some doubt over the accuracy 

of these markers. If this result is correct, it means that ROSP encodes a ROS 

transcription factor that is expressed differently from that of the A. majus lab cultivar 

JI7 and leaves part of the face of the flower without magenta pigmentation. If EL is 

the causal locus, the EL transcription factor is produced in A. m. pseudomajus and ELP 
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is not non-functional as previously thought, although it has a very different expression 

pattern from the ELS allele in A. m. striatum. Whichever is correct, there are at least 

three ROS or EL alleles with different effects possible in the genus (Figure 5.1). 

 

Figure 5.1 Explaining the white face phenotype if ROS (a) or EL (b) is the causal locus 

associated with the phenotype. A superscript S refers to an allele from A. m. striatum, 7 

refers to an allele from the A. majus variety JI7 and P refers to an allele from A. m. 

pseudomajus. All genotypes depicted are homozygous. 

Bulked segregant analysis of the white face phenotype from A. molle, however, showed 

that white face variation in this species is not regulated by ROS or EL – in this case, 

the phenotype associated with an A. molle allele on chromosome 2, with a possible 

modifier on chromosome 5. One gene located on this chromosome is CHALCONE 

ISOMERASE (CHI), which encodes the chalcone isomerase enzyme involved in the 

biosynthesis of anthocyanins and other flavonoids. It may be possible that mutations 

in the cis-regulatory region of this gene cause differences in where this gene is 

expressed, although transcription factors interacting with the anthocyanin pathway 

have previously only been shown to interact with later stages (Figure 5.2) (Schwinn et 

al 2006). Neither does the causal locus of the white face phenotype in A. molle appear 

to be a homologue of the LAR1 gene, which produces a similar phenotype in Mimulus 

lewisii (Yuan et al 2016). The Antirrhinum homologue of this gene is located on 

chromosome 1, where no peak is seen. Whatever the genetic basis of this phenotype 

in A. molle, however, it is different from that seen in A. m. pseudomajus, which suggests 

that there may be more than one way of producing a white face in Antirrhinum flowers. 
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Figure 5.2 The biosynthetic pathway of cyanidin-3-glucoside, the anthocyanin produced 

in Antirrhinum flowers, annotated with the parts of the pathway with which the ROS, EL 

and VE transcription factors interact. Drawn using information from Schwinn et al (2006). 

Three yellow colour phenotypes from three different species mapped to chromosome 

2: increased yellow production (as seen in the arc region) in an F2 between JI7 and an 

accession from the A. m. pseudomajus and A. m. striatum hybrid zone; the lack (or near 

lack) of yellow pigmentation in the flowers on A. sempervirens; and the yellow 

pigmentation seen in the flower tubes of A. charidemi. Two explanations can be given 

for this. Firstly, the same gene – likely the chalcone glucosyltransferase-encoding 

biosynthetic gene FLAVIA (FLA) (Boell et al, unpublished results) – is responsible for 

several yellow phenotypes. Different species may vary at the FLA promoter region, 

leading to different FLA expression patterns. Secondly, chromosome 2 may contain 

several genes involved in the regulation of yellow flower colour, making this a ‘flower 

colour chromosome’. 

Finally, two phenotypes were associated with the SULFUREA (SULF) locus on 

chromosome 4. In plants segregating for a yellow arc phenotype, seen in an F2 from a 

cross between JI7 and an accession from the A. m. striatum and A. m. pseudomajus 

hybrid zone, there was no segregation at the SULF locus, but rather the phenotypic 

variation mapped to chromosome 2. However, the increase in yellow pigment 

production caused by differences on chromosome 2 produced a pattern that had not 

been observed in the wild. Inspection of the SULF sequence revealed a deletion within 

this locus in both pools relative to the reference genome. A. m. striatum also has a 

deletion at SULF, leading to bright aurone production throughout the corolla lobes, 
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whereas A. m. pseudomajus does not, leading to restriction of yellow pigment 

production to the flower foci. But the yellow arc SULF deletion does not match that 

of A. m. striatum, suggesting that a third SULF allele can be found in the hybrid zone. 

The other phenotype that mapped to the SULF locus was the spread yellow colour 

seen segregating in an F2 from a cross between JI7 and A. sempervirens. A. sempervirens 

flowers are white, with little or no yellow pigmentation. However, my analyses 

showed that these plants with spread yellow in this population had a deletion relative 

to the reference genome between the two SULF inverted repeats – a deletion shared by 

the A. sempervirens accession used in the cross. 

5.3 Magenta flower colour is regulated by different alleles of genes 
encoding transcription factors 

My results showing that either ROS or EL is responsible for the white face phenotype 

suggest that at least three alleles can exist at the causal locus. If EL is the causal locus, 

there is one JI7 allele that leads to full magenta pigmentation, a second A. m. striatum 

allele that either leads to restriction of magenta to the centre of the flower, and a third 

A. m. pseudomajus allele that produces a white face phenotype. If ROS is responsible, 

the same explanation stands, except that the A. m. striatum allele eliminates magenta 

pigmentation from the petal lobes, except for at the independently-regulated veins.  

There are more experiments that can be carried out to test whether ROS or EL is 

responsible for the white face phenotype. Firstly, fine mapping using more genetic 

markers and larger plant populations would allow recombination events closer to the 

locus to be characterised and the phenotypes of recombinants determined. Using the 

A. m. striatum and A. m. pseudomajus hybrid zone as a natural laboratory, and markers 

dispersed along an interval containing ROS-EL, Tavares et al (in review) were able to 

map EL based on the phenotype of A. m. striatum to a ~50 kb interval. However, if this 

technique were to be used to finely map the white face phenotype, a natural population 

showing variation in the white face phenotype would be required. All A. m. 

pseudomajus accessions studied so far have shown some degree of localised lack of 

magenta pigmentation at the centre of the flower face. Instead, generating a larger 

segregating population, again using an F2 between A. m. pseudomajus and JI7, may be 

more suitable. The markers used would also need to cover the entirety of the peak seen 

in the bulked segregant analysis of the white face segregating population to determine 

whether another locus further up or downstream of ROS and EL is causal to the 
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phenotype. 

Secondly, RNA sequencing from different parts of flowers with and without the white 

face phenotype will determine where in these flowers ROS and EL are transcribed. 

Work by Tavares et al (in review) showed that, in whole flower buds, ELS (A. m. 

striatum) expression (Figure 5.3 B tracks 11, 12, 13) was significantly higher than that 

of EL7 (JI7) (Figure 5.3 B tracks 8, 10, 14), but there was no significant difference 

between EL7 (Figure 5.3 B tracks 8, 10, 14) and ELP (A. m. pseudomajus) (Figure 5.3 B 

track 9) expression. Likewise, rosdorsea (rosdor) (Figure 5.3 A track 7) and rosS  (Figure 

5.3 A track 6) expression levels were significantly lower than those of ROS7 (Figure 

5.3 A tracks 1 and 4) and ROSP (Figure 5.3 A tracks 2 and 5), but there was no overall 

significant difference between ROSP (Figure 5.3 A tracks 2 and 5) and ROS7 (Figure 

5.3 A tracks 1 and 4) expression. However, there was also no significant difference in 

expression between these two alleles and ‘ROS*’ – a recombinant allele containing the 

promoter and coding region of ROS1 from A. m. striatum, but the rest of the ROS-EL 

locus from A. m. pseudomajus. This lack of difference in expression was despite the 

magenta colour produced being paler. This suggests that ROS2 and/or ROS3, tandem 

downstream duplications of ROS1, may also contribute to the colour phenotype seen 

(Tavares et al in review). In roseacolorata mutants where ROS2 is expressed but ROS1 is 

not, anthocyanin production is reduced (Schwinn et al 2006), suggesting that ROS2 is 

functional. It has not been shown whether ROS3 is functional, which may mean it is a 

pseudogene (Tavares 2014). 
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Figure 5.3 Expression estimates of ROS1 (A) and EL (B) in the buds of whole flowers with 

different ROS-EL genotypes (all homozygous). The bars show the mean and 95% 

confidence interval of expression, measured as fragments per kilobase of transcript per 

million mapped reads (FKPM). The flower illustrations and photographs underneath each 

plot depict the phenotype seen for each ROS-EL haplotype written above the images. From 

left to right, the ROS-EL haplotypes are: ROS and el both from JI7; ROS and el both from 

A. m. pseudomajus; ROS1 from A. m. striatum but ROS2, ROS3 and EL from A. m. 

pseudomajus; ROS from JI7 and EL from A. m. striatum; ROS from A. m. pseudomajus and 

EL from A. m. striatum; ros and EL both from A. m. striatum; rosdor mutation and EL from 

JI7. Samples with different letters above their bars are significantly different from each 

other (q < 0.01). Adapted from Tavares et al (in review). 

The expression values measured by Tavares et al (in review), however, were for the 

whole corolla of flower buds, not for specific parts of the petals. Tissue-specific RNA 

sequencing can reveal different patterns of expression for different genes during 

development (Jiao et al 2017). ROS and EL expression overall may not differ between 

plants with and without the white face phenotype, but tissue-specific differences may 

exist. Figure 5.4 shows the different predicted expression patterns of ROS and EL in 

white face and non-white face flowers if ROS or EL is responsible for the phenotype. 

If neither is responsible, another gene may show differential expression between the 

samples. These tissues have been prepared and sent for RNA sequencing, but the data 

has not yet been returned. The two hypotheses presented in Figure 5.4 could also be 



Evolutionary genetics of flower colour variation in Antirrhinum 
 Chapter 5: Discussion 

 175
  

tested using quantitative polymerase chain reaction (qPCR), which would show the 

amount of transcript of each gene tested present in each sample (Stanton et al 2017). 

However, I opted for RNA sequencing because this would allow identification of all 

differentially expressed genes in the tissues of interest, not just those being tested. I 

also had limited time available to design and test new qPCR primers and chose to 

prioritise my BSA experiments instead; RNA sequencing does not require 

development of gene-specific primers. 

 

Figure 5.4 Predicted expression patterns of ROS and EL developing Antirrhinum flowers 

(as illustrated on diagrams of fully developed flowers) with different phenotypes 

depending on which of the two is causal to the phenotype. 

5.4 Anthocyanin pigmentation appears to have additional 
regulators that have not yet been identified 

When A. molle was crossed to JI7, around a quarter of individuals in the F2 generation 

had a white face phenotype very similar to that seen in A. m pseudomajus, while around 

one 16th of individuals had a stronger ‘white band’ pattern that covered the upper half 

of the ventral and lateral lobes and around 17% had a rosdor-like phenotype. These ratios 

suggested that the phenotype was controlled by two genes, while the similarity of the 

phenotype to that previously seen in A. m. pseudomajus and the presence of a rosdor-like 

phenotype suggested that ROS was one of these two genes. However, given that no 

peak was seen at the ROS-EL locus when comparing pools with and without a white 

face/white band phenotype, the white face seen in this population must be because of 

segregation at another locus. 

Because the only peak seen when comparing pools that had full magenta pigmentation 

with those that had a strong centralised white face was on chromosome 2, it is likely 

that a regulator of magenta can be found on this chromosome. As described above, 
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this may be the result of genetic differences at or near the biosynthetic gene CHI, which 

encodes an enzyme that converts chalcone to naringenin, which is then processed 

further to produce anthocyanins. Changes in the coding region of CHI that affect the 

enzyme itself are unlikely here – the ability of the plants to produce anthocyanins is 

not affected. However, one mechanism by which flower colour can be regulated in 

different plant tissues without compromising the integrity of biosynthetic pathway is 

by mutations in the cis-regulatory regions of biosynthetic genes (Streisfeld and Rausher 

2011, Sobel and Streisfeld 2013). Such mutations in regulatory elements – regions 

adjacent to coding sequences that encode instructions determining when and where 

the gene is transcribed by interacting with transcription factors – are common 

hallmarks of phenotypic variation between species (Stern and Orgogozo 2009). 

Through this mechanism, anthocyanin production could be locally downregulated in 

the face of the flower without causing pleiotropic effects – the pigments could still be 

produced outside this region (Wu et al 2013). Previously-described flower colour-

regulating transcription factors in A. majus and Mimulus lewisii, however, have only 

been shown to interact with genes that encode enzymes downstream of chalcone 

isomerase in the pathway (Schwinn et al 2006, Wu et al 2013). 

Another gene encoded within the chromosome 2 region where a peak is seen in J104 

is FLAVIA (FLA), which encodes an enzyme involved in yellow aurone production in 

Antirrhinum flowers. A. molle has restricted yellow foci despite having a deletion at the 

SULFUREA (SULF) locus, which restricts yellow pigmentation in A. majus and A. m. 

pseudomajus. Instead, the pigment restriction in A. molle is thought to be a result of cis-

regulatory mutations at the FLA locus (Boell et al, unpublished results). Given that 

double-pigmented orange Antirrhinum flowers are confined to hybrid zones through 

apparent selection against them by pollinators (Whibley et al 2006), it may be 

important for fitness that magenta and yellow pigments are kept separate on the 

flower. The magenta-regulating genes ROS and EL are in linkage disequilibrium on 

chromosome 6 in a hybrid zone between A. m. striatum and A. m. pseudomajus and work 

together to produce distinct phenotypes in the two subspecies (Tavares 2014). A 

magenta colour regulator linked to FLA might ensure that yellow and magenta 

pigments do not overlap in flowers with restricted yellow pigmentation regulated by 

FLA. 

As with the white face phenotype from A. m. pseudomajus, one experiment that would 

provide useful evidence as to which gene or genes regulate the white face/band 

phenotype in A. molle is RNA sequencing of dissected corollas. This would show 
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which genes show different levels of expression in parts of the flower kept without 

pigmentation and those that are magenta-coloured.  

5.5 Yellow flower colour appears to be regulated by different 
alleles of biosynthetic genes and of a locus transcribed as 
regulatory small RNAs 

A common feature of nearly all my bulked segregant analyses of yellow colour 

variation from different Antirrhinum species was a signal on chromosome 2, where 

both enzymes involved in the conversion of chalcone to the yellow pigment aureusidin 

glucoside are encoded. While I was not able to map this variation precisely, owing to 

the low recombination on this chromosome between A. majus JI7 and the accessions 

tested (Boell and Bradley, unpublished results), absence of evidence to the contrary 

suggests that the biosynthetic gene FLAVIA (FLA) may be a regulator of yellow colour 

in several species. This gene encodes chalcone glucosyltransferase (Boell and Bradley, 

unpublished results), which is necessary for transportation of chalcone to the vacuole 

where the activity of the final enzyme in the aurone pathway takes place (Ono et al 

2006). 

The other locus to which variation in yellow flower colour was attributed was 

SULFUREA (SULF) on chromosome 4. Bradley et al (2017) showed that this locus 

contains inverted repeat sequences that are transcribed as regulatory small RNAs 

(sRNAs). These sRNAs inhibit the activity of FLA in specific parts of the corolla in 

some species with restricted yellow pigmentation such as A. m. pseudomajus and A. 

majus. The sister subspecies to A. m. pseudomajus, A. m. striatum, has a deletion covering 

part of the SULF locus and, as a result, FLA activity is not inhibited and the corolla 

lobes are bright yellow. My results showed that the wild parent of the F2s segregating 

for yellow arc – a hybrid between A. m. pseudomajus and A. m. striatum – carried a third 

allele of SULF, which has a shorter deletion than A. m. striatum. This allele does appear 

to inhibit FLA activity, but in a smaller proportion of the corolla than the SULF alleles 

previously studied in A. m. pseudomajus and A. majus JI7. The result in a background 

with the strongly-expressed JI7 allele of FLA is a yellow arc pattern in the dorsal lobes. 

This yellow arc SULF allele may be the result of recombination at the locus or it may 

be an allele that is found in some A. m. pseudomajus individuals. 

I also showed that individuals with spread yellow flower colour in an F2 population 

from a cross between A. sempervirens, which has mostly white flowers, and A. majus JI7 
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also had a deletion in SULF. In fact, this deletion in the A. sempervirens SULF allele 

was similar in length to that seen in the yellow arc SULF allele. A. sempervirens and A. 

m. pseudomajus have adjacent population ranges (Wilson and Hudson 2011) and some 

hybridisation may have occurred, allowing introgression of the A. sempervirens allele 

into some of A. m. pseudomajus populations. 

If changes at FLA – whether in its coding region or in an adjacent regulatory element 

– are responsible for differences in flower colour between species, the regulation of 

yellow pigmentation would appear to use a different mechanism from that of magenta 

colour. To date, all the interspecies variation in magenta flower colour in Antirrhinum 

has mapped to MYB-like transcription factors rather than the biosynthetic genes 

themselves (Schwinn et al 2006, Shang et al 2011, Tavares 2014, Tavares et al in 

review). Reviewing the literature documenting the genetic basis of flower colour 

transitions, Streisfeld and Rausher (2011) determined that fixed differences in flower 

colour intensity between species are characterised by changes at genes that encode 

transcription factors. 

One notable difference between the anthocyanin and aurone pathways is the number 

of steps involved. Anthocyanins are produced using a multistep pathway that involves 

at least six enzymes between chalcone and the magenta pigment in its final form. With 

a separate gene encoding each enzyme, there are several points in the pathway with 

which transcription factors can interact to regulate flower colour (Figure 5.5). The 

aurone pathway is much shorter, containing just two enzymes that first glucosulate 

chalcone for vacuolar import and then convert the chalcone glucoside to aurone (Ono 

et al 2006) (Figure 5.5). Because there are fewer places in this pathway where 

transcription factors might act, regulation using that mechanism may not be possible. 

Another important difference between aurones and anthocyanins is their distribution 

among plants. Plants as evolutionary ancient as bryophytes (liverworts, mosses and 

hornworts) produce anthocyanins, and the same biosynthetic pathway is used across 

land plants (Campanella et al 2014). Aurones, however, have a much more restricted 

distribution and are only found in a small number of taxa (Tanaka et al 2008). This 

suggests that aurones may have evolved more recently than anthocyanins. While 

plants have had tens of millions of years to evolve complex regulatory mechanisms for 

anthocyanins, the shorter evolutionary timescale of aurones may mean that there has 

not been enough time for a sophisticated system of regulation to evolve. Instead, plants 

whose flowers are coloured by aurones may have to rely on changes at biosynthetic 
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genes and loci encoding regulatory sRNAs in order to regulate where these pigments 

accumulate. 

 

Figure 5.5 Combined biosynthesis pathways of cyanidin 3-glucoside (anthocyanin) and 

aureusidin glucoside (aurone). The structures of intermediate compounds between 

chalcone and the final pigments are not shown. Adapted from Falcone Ferreyra et al (2012) 

and Ono et al (2006). 

5.6 Reduced recombination across chromosome 2 in Antirrhinum 

In my analyses of flower colour regulation in different species, one common feature 

seen when these species were crossed to JI7 was a low rate of recombination on 

chromosome 2. In most of my analyses, a large chromosomal interval between the 

~4Mb and ~48Mb positions, and another between the ~53Mb and ~75Mb positions, 

appeared to have reduced recombination. Visual analysis of signals on this 

chromosome further suggests that the final third of the chromosome, between ~48Mb 

and ~75Mb, is assembled in the wrong orientation, as the signal at the end of the 

chromosome is consistently level with that at the ~48Mb position. If this part of the 

chromosome is indeed misassembled, it would suggest a single interval of suppressed 

recombination 55-65Mb in length. Studies of genomic divergence between A. m. 

striatum and A. m. pseudomajus have also shown that recombination on this 

chromosome is similarly suppressed in heterozygotes between these two subspecies. 

Alleles on chromosome 2 in A. m. striatum are similar to those seen in JI7 (Boell et al, 

unpublished results). These results suggest that there are two distinct chromosome 2 

haplotypes in Antirrhinum that do not recombine with each other. 
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One well-characterised source of suppressed recombination in heterozygotes between 

species or populations is chromosomal inversions, where part of a chromosome in one 

population has a different order relative to another population (Kirkpatrick and Barton 

2006). These genomic features are caused when an interval between two points on a 

chromosome breaks apart and is reinserted in the reverse orientation. Recombination 

is suppressed in heterozygotes through a loss of balanced gametes (Kirkpatrick 2010). 

Chromosomal inversions that distinguish species or subspecies have been observed in 

several study systems, including Drosophila fruit flies (Krimbas and Powell 1992), 

Anopheles mosquitos (Coluzzi et al 2002) and Heliconius butterflies (Joron et al 2011). In 

plants, Twyford and Friedman (2015) showed that a ~6.5Mb-long chromosomal 

inversion underlies life history differences between annual and perennial Mimulus 

guttatus ecotypes. The M. guttatus inversion is believed to protect an interval containing 

several adaptive genes from recombination, thus providing an adaptive advantage 

(Twyford and Friedman 2015). 

In Antirrhinum, a chromosomal inversion on chromosome 2 may serve a similar role 

in preserving linked adaptive traits to that seen in M. guttatus. Such an inversion would 

not necessarily protect loci involved in regulating flower colour, but A. m. pseudomajus 

and A. m. striatum are very closely related and differ for few described traits other than 

flower colour (Whibley et al 2006, Bradley et al 2017). Because FLA is located at one 

end of the interval with suppressed recombination and appears to be important in the 

determination of flower colour in Antirrhinum, one or more similarly important genes 

may be found at the other end of the interval. Although AS1 is located at this end of 

the chromosome, it does not appear to be included in this low recombination interval, 

suggesting that there may be another flower colour gene in this region. Alternatively, 

there may be an entirely different reason for the low recombination on this 

chromosome. More work using larger populations and additional markers along 

chromosome 2 is needed to determine whether any recombination points can be 

identified within this interval and to measure recombination rates across the 

chromosome. 

5.7 More phenotypic variation in flower colour in Antirrhinum 
remains to be explained 

In this thesis, I have described and genetically mapped different magenta and yellow 

flower colour phenotypes seen in the Antirrhinum genus. However, some additional 
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species of Antirrhinum show more variation in flower colour that has not been studied. 

Several species, including A. graniticum and A. barrelieri, have pale pink flowers where 

the anthocyanin colouration is less intense than in magenta-flowered species such as 

A. m. pseudomajus. A. graniticum shows polymorphism in flower colour between 

populations – at some locations, flowers are pink, while in others they are white; some 

locations also show variation within populations (Figure 5.6). 

 

Figure 5.6 Variation seen in the intensity of magenta pigmentation in A. graniticum. Some 

populations had pink flowers (a) while others had white flowers (b). One population was 

seen to show a gradient of pigment intensities between the two phenotypes (c). It is not 

known whether this difference in colour is genetic or because of environmental factors. 

A similar phenotype was seen by Tavares et al (in review) in a hybrid plant between A. 

m. striatum and A. m. pseudomajus that showed recombination downstream of the ROS1 

coding sequence. This plant carried the ROS1 allele of A. m. striatum, which produces 

no magenta in its flowers, and the downstream sequence containing ROS2, ROS3 and 

EL of A. m. pseudomajus. This suggests that differences within the promoter or coding 
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region of ROS1 can change magenta intensity without eliminating it. It would be 

interesting to explore whether A. graniticum shows differences at ROS1 compared to A. 

m. pseudomajus, and whether there are genetic differences at ROS1 or downstream in 

A. graniticum plants with different magenta intensities in their flowers. The intensity of 

flower colour can also be affected by the shape of the petal cells where the pigments 

accumulate. Cell shape can change the amount of light that can penetrate the petal 

cells, thus changing the proportion of light absorbed by pigments (Noda et al 1994). It 

is not known whether A. graniticum differs in the shape of its petal cells compared to 

A. m. pseudomajus. 

Other species, such as A. siculum, show differences in yellow pigment intensity in 

different parts of the corolla lobes. In A. siculum, the face of the flower is a much 

brighter yellow than the rest of the petals (Figure 5.7). Previous variation in yellow 

colour has mapped either to chromosome 2 or to SULFUREA. Variation between A. 

siculum and other yellow-flowered species may be regulated by one of these genes or it 

may involve a separate locus not yet described. 

 

Figure 5.7 Antirrhinum siculum flowers. Photograph by Enrico Coen. 

One of the phenotypes I studied in this thesis was a yellow pigmentation in the tube 

of A. charidemi flowers. A. charidemi is the only species where this phenotype has been 
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described, although a similar phenotype has been observed in F2 populations between 

plants from the A. m. striatum and A. m. pseudomajus hybrid zone and JI7. However, 

many descriptions of flower colour in Antirrhinum species refer only to the petal lobes, 

making no reference to the colour of the flower tube (Mather 1947, Tastard et al 2012). 

Subtle differences in yellow are also difficult to score, with the observed intensity 

varying in different light conditions. Much phenotyping work on yellow variation 

included in this thesis has relied on visualising different hues separately in photographs 

because of this. An analysis of the flower colours of different Antirrhinum species using 

this technique may reveal addition variation in flower colour not previously described, 

including in tube colour. 

5.8 Bulked segregant analysis is a useful tool for mapping genetic 
variation from wild plant populations but it has its limitations 

For this thesis, I used whole genome sequencing-based bulked segregant analysis to 

map species-derived variation in segregating plant populations to the Antirrhinum 

reference genome. This proved to be a very useful tool that allowed me to genotype 

millions of sites across the genome concurrently without having to develop markers in 

advance. Using this technique, I was able to map six different flower colour 

phenotypes from four species and suggest possible mechanisms by which flower colour 

is regulated in those species. 

However, in most of my analyses, I saw more than one peak in allele frequency 

difference between species, even where phenotypic segregation ratios suggested that 

only one was linked to the phenotypes differing between the pools. One likely reason 

for this is the low number of individuals used in some of the bulks, with one bulk 

containing as few as 13 individuals. The sizes of the bulks used in comparable studies 

ranges from 20 to 100 individuals (Takagi et al 2013, Yuan et al 2013, Friedman et al 

2015, Song et al 2017), and it is generally acknowledged that increasing the size of the 

bulks minimises the variation that affects allele frequency difference estimates 

(Magwene et al 2011). 

Another issue with some of my bulked segregant analyses was that some individuals 

had been placed into the wrong bulk. In my analyses of L124 in chapter 3, for example, 

one sample was found to contain several individuals that had been misgenotyped for 

the ROS-EL locus. Because of the nature of bulked segregant analysis pooling, where 

several individuals are combined according to phenotype, the ability to discriminate 
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between individuals in the sequenced data is lost. One alternative to bulked segregant 

analysis that avoids this problem is multiplexed shotgun genotyping (Andolfatto et al 

2011). This technique differs from bulked segregant analysis at the preparation of 

sequencing libraries stage. Instead of preparing one DNA library for all individuals 

together, a library is prepared for each individual separately and a unique barcoded 

adapter is used for each sample. This allows bioinformatic identification of individuals 

after sequencing (Andolfatto et al 2011). 

The method I used to get around the problem of not being able to identify individuals 

in my bulked segregant analysis results was to follow these analyses with genotyping 

of individual plants, each of which was scored for the flower colour trait segregating 

in that population. This meant that bulked segregant analysis was used to identify 

regions of interest and fine mapping techniques – KASP genotyping in this case – used 

to look closer at each of these regions and resolve issues at ambiguous loci. 

Unfortunately, I faced several issues with this technique too, such as several of the 

markers designed not being polymorphic between samples with different flower 

colour. I also saw overrepresentation of heterozygotes in some of my samples, which 

likely led to an overestimation of the recombination rates between the markers used at 

ROS and EL. This could be avoided in the future by using a greater number of markers 

at each locus and confirming results using an alternative genotyping method such as 

amplicon sequencing. 

5.9 Future experiments that could expand on these results 

One surprising result shown in this work is the apparently different genetic basis of the 

two phenotypically similar white face traits, one from A. m. pseudomajus and the other 

from (but not seen in) A. molle. While the white face phenotype of A. m. pseudomajus 

mapped to the ROS-EL locus on chromosome 6, the phenotype seen in an F2 from a 

cross between A. molle and A. majus mapped to chromosome 2. Thus, it appears that 

magenta can be regulated in two ways that produce similar results. 

But A. m. pseudomajus is far from the only Antirrhinum species where a white face 

phenotype can be found. As discussed in chapter 3, most Antirrhinum species with 

magenta flowers show localised lack of magenta colour around the face region. An 

important future experiment will be to determine which – if any – of the two loci 

described in this thesis underlie the white face phenotype seen in these other species. 

This could be tested by crossing these additional species to A. majus to generate more 
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F2 populations segregating for the phenotype, and then to perform bulked segregant 

analysis using phenotypic extremes from this F2. Another way would be to genotype 

the F2s using markers developed at the ROS-EL locus at sites on chromosome 2. These 

markers could be developed using the whole genome sequencing data already 

available for many of these species and looking for SNPs that discriminate between A. 

majus and the species being analysed. 

Another unexpected result was the identification of a previously unseen SULF allele 

in the family segregating for the yellow arc phenotype. The male parent of this family 

came from the hybrid zone between A. m. striatum and A. m. pseudomajus, suggesting 

that the allele came from one of these subspecies. However, SULF had already been 

characterised in both A. m. striatum and A. m. pseudomajus, with the A. m. pseudomajus 

allele restricting yellow pigmentation to the flower foci and the A. m. striatum allele 

being non-functional, allowing yellow pigmentation to spread. The discovery of the 

phenotypically intermediate yellow arc SULF allele suggests that more variation exists 

in these subspecies than has previously been described. An interesting next step will 

be to determine how prevalent this yellow arc SULF allele is in and around the hybrid 

zone. Leaves have been collected from thousands of hybrid zone plants every year 

since 2009 as part of a separate project. This means it would be possible to sample 

plants from many different geographic locations near the hybrid zone and determine 

their SULF haplotypes without a new collection effort. 

One consistent issue in all my bulked segregant analyses was that all analyses showing 

a peak on chromosome 2 also showed narrow peaks on chromosomes 3, 4 and 5. The 

loci contained on these three peaks appear to be genetically linked to chromosome 2 

and are therefore likely to be misassembled. However, their exact correct positions on 

chromosome 2 are unknown, and more work on this assembly will be required to 

determine this. The misassembly of these regions also raises questions about the rest 

of the genome, and there may be other regions that are misassembled. 
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6 Conclusions 

 

In this thesis, I tested two alternate hypotheses to explain the genetic basis of variation 

in flower colour in Antirrhinum: 

1 Each flower colour trait is regulated centrally at one locus. Different alleles at 

these loci result in different phenotypes. If this hypothesis is correct, variation 

in each trait will map to one locus. 

2 Flower colour regulation is dispersed across many unlinked loci. All 

differences in flower colour are regulated independently. If this hypothesis is 

correct, variation in each trait will map to a different locus. 

My results fit neither of these hypotheses perfectly. The ROS-EL locus appears to be 

the major regulator of magenta pigmentation in A. m. striatum, A. m. pseudomajus and 

the A. majus lab cultivar JI7. Activation of magenta pigmentation (Schwinn et al 2006), 

restriction of magenta pigmentation to centre of the flower (Tavares et al in review) 

and suppression of magenta pigmentation in the face region (this thesis) all map to the 

same locus on chromosome 6. However, variation in magenta pigmentation in other 

Antirrhinum species may be regulated separately – the white face phenotype seen in an 

F2 population from a cross between A. molle and JI7 did not map to chromosome 6. 

Likewise, variation in yellow pigmentation from several Antirrhinum species mapped 
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to chromosome 2, which appears to behave as one locus with little recombination 

happening on this chromosome in crosses between species or subspecies. However, 

the unlinked SULF locus also regulates magenta variation between the same species. 

My results suggest a form of flower colour regulation intermediate to the two 

hypotheses I proposed is seen in the Antirrhinum species I studied. Restriction/spread 

of magenta appears to be regulated at one locus in A. majus and its subspecies, but 

other Antirrhinum species may have different mechanisms for regulating anthocyanin 

pigmentation. Restriction/spread of yellow is regulated at two loci: SULF and 

chromosome 2. 

Yellow and magenta pigmentation are also regulated in very different ways from each 

other. Anthocyanin pigmentation is regulated by transcription factors, which activate 

and suppress the anthocyanin structural genes in different parts of the corolla. Yellow 

pigmentation, however, does not appear to be regulated by transcription factors. 

Instead, yellow variation is regulated at aurone structural gene loci (either in coding 

regions or in cis-regulatory regions) and at loci that are transcribed as regulatory small 

RNAs. This may be because the anthocyanin structural genes are pleiotropic – 

mutations in these genes could affect anthocyanin production throughout the plant, 

which may impact plant defence and other biological functions. This difference in 

regulation may also be because evolution of aurone biosynthesis appears to be more 

recent than that of anthocyanins – aurones are only found in some flowering plant 

taxa, whereas anthocyanins are found across most land plants. 
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8.1 Appendix 1 Primers used for genotyping ROSEA and ELUTA 

Set 
number 

Primer 
number Description Orientation 

Focal 
SNP Sequence 

1 
1 ROS1 promoter (pseudomajus VIC) F GAAGGTCGGAGTCAACGGATTGGGCATAGTACGTATTAAACGC
2 ROS1 promoter (JI7 FAM) F 541737 GAAGGTGACCAAGTTCATGCTGGGCATAGTACGTATTAAACGA
3 ROS1 promoter (common reverse) R GGTCCAAGTACCTTTTCTCACT

2
4 ROS2 exon 3 (pseudomajus VIC) F GAAGGTCGGAGTCAACGGATTAAATAGTAAAGAAACTAATATC
5 ROS2 exon 3 majus FAM F 566868 GAAGGTGACCAAGTTCATGCTAAATAGTAAAGAAACTAATATT
6 ROS2 exon 3 (common reverse) R CGTGCAATCCATTGAAGGTCCG

3
7 ROS3 exon 1 (pseudomajus VIC) F GAAGGTCGGAGTCAACGGATTTGACGCAATGCGTGGAGAAGTT
8 ROS3 exon 1 (JI7 FAM) F 573874 GAAGGTGACCAAGTTCATGCTTGACGCAATGCGTGGAGAAGTA
9 ROS3 exon 1 (common reverse) R CCTGCTCTGAGCGGGACTTGAT

4
10 ROS3 exon 3 (pseudomajus VIC) F GAAGGTCGGAGTCAACGGATTCTTGTCCAAATTGCATGAAACA
11 ROS3 exon 3 (JI7 FAM) F 576036 GAAGGTGACCAAGTTCATGCTCTTGTCCAAATTGCATGAAACT
12 ROS3 exon 3 (common reverse) R GTTCGCTTCTCTCACTTCATTT

5
13 ROS3 exon 3 (pseudomajus VIC) F GAAGGTCGGAGTCAACGGATTTCATCGTGTTTTCTCCATCGAT
14 ROS3 exon 3 (JI7 FAM) F 576237 GAAGGTGACCAAGTTCATGCTTCATCGTGTTTTCTCCATCGAC
15 ROS3 exon 3 (common reverse) R GATCGTCCATGTCTACCACGTC

6
16 EL exon 3 (pseudomajus VIC) F GAAGGTCGGAGTCAACGGATTGAAGCCGTTAAGTCGCAGGTGC
17 EL exon 3 (JI7 FAM) F 714767 GAAGGTGACCAAGTTCATGCTGAAGCCGTTAAGTCGCAGGTGT
18 EL exon 3 (common reverse) R GTTCCCCTGTTGATCCTGAAGA

7
19 Downstream ROS3 (pseudomajus VIC) F GAAGGTCGGAGTCAACGGATTAAATGCGTACAATTCTAATATG
20 Downstream ROS3 (JI7 FAM) F 578688 GAAGGTGACCAAGTTCATGCTAAATGCGTACAATTCTAATATC
21 Downstream ROS3 (common reverse) R CCAATATAACAACTTGATGGCC

8 22 ROS2 exon 3 (pseudomajus VIC) F GAAGGTCGGAGTCAACGGATTGCACAATTTGTTGTTTTCTAAC
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23 ROS2 exon 3 (JI7 FAM) F 566671 GAAGGTGACCAAGTTCATGCTGCACAATTTGTTGTTTTCTAAT
24 ROS2 exon 3 (common reverse) R CCACGCCTAAATTCTTCCCCA

9
25 ROS2 exon 3 (pseudomajus VIC) F GAAGGTCGGAGTCAACGGATTGTTTTTACCGTTAATGATTGAC
26 ROS2 exon 3 (JI7 FAM) F 566713 GAAGGTGACCAAGTTCATGCTGTTTTTACCGTTAATGATTGAT
27 ROS2 exon 3 (common reverse) R CGTTCTCCATCCACGCCTAA

10
28 ROS1 intron (pseudomajus VIC) F GAAGGTCGGAGTCAACGGATTCAGTTGACACTTTATCTTGGAC
29 ROS1 intron (JI7 FAM) F 543354 GAAGGTGACCAAGTTCATGCTCAGTTGACACTTTATCTTGGAT
30 ROS1 intron (common reverse) R GAGTTTCAACAAGACGGGAGC

11
31 ROS1 promoter (pseudomajus VIC) F GAAGGTCGGAGTCAACGGATTTCCTGGCTCCACCCTATGATGG
32 ROS1 promoter (JI7 FAM) F 541203 GAAGGTGACCAAGTTCATGCTTCCTGGCTCCACCCTATGATGT
33 ROS1 promoter (common reverse) R TCCTTAATCATCTGTCCTTTCATTTCA

12
34 Downstream ROS3 (pseudomajus VIC) F GAAGGTCGGAGTCAACGGATTTATAATTTTGATAATGATATAA
35 Downstream ROS3 (JI7 FAM) F 578296 GAAGGTGACCAAGTTCATGCTTATAATTTTGATAATGATATAG
36 Downstream ROS3 (common reverse) R AAAGTTGGCAACCAGTTAGCT

13
37 Downstream ROS3 (pseudomajus VIC) F GAAGGTCGGAGTCAACGGATTTATTCACATTAGTTGTTATTTT
38 Downstream ROS3 (JI7 FAM) F 578680 GAAGGTGACCAAGTTCATGCTTATTCACATTAGTTGTTATTTG
39 Downstream ROS3 (common reverse) R ACGTCTAACTTGACTTCAAAAATAGT

14
40 Downstream ROS3 (pseudomajus VIC) F GAAGGTCGGAGTCAACGGATTCAGCTATAGTTATGGATTTTCG
41 Downstream ROS3 (JI7 FAM) F 597501 GAAGGTGACCAAGTTCATGCTCAGCTATAGTTATGGATTTTCC
42 Downstream ROS3 (common reverse) R CTGCAAAAGAGTTGACTGAGGC

15
43 Downstream of EL (pseudomajus VIC) F GAAGGTCGGAGTCAACGGATTAATTAATTCCTATAATTTCAAA
44 Downstream of EL (JI7 FAM) F 711121 GAAGGTGACCAAGTTCATGCTAATTAATTCCTATAATTTCAAC
45 Downstream of EL (common reverse) R AGCGAAGGTCTAGTCCACTT

16
46 Downstream of EL (pseudomajus VIC) F GAAGGTCGGAGTCAACGGATTCTCTTTTCCTTTTGATAAGATC
47 Downstream of EL (JI7 FAM) F 714357 GAAGGTGACCAAGTTCATGCTCTCTTTTCCTTTTGATAAGATT



Mabon Rhun Elis 

208 

48 Downstream of EL (common reverse) R TCCTTGTGGTCTCTCTTTTCGT

17
49 EL exon 3 (pseudomajus VIC) F GAAGGTCGGAGTCAACGGATTGAAGCCGTTAAGTCGCAGGTGC
50 EL exon 3 (JI7 FAM) F 714767 GAAGGTGACCAAGTTCATGCTGAAGCCGTTAAGTCGCAGGTGT
51 EL exon 3 (common reverse) R TTCGGACAATCATTCCTCGGA

18
52 EL exon 3 (pseudomajus VIC) F GAAGGTCGGAGTCAACGGATTGATCGACGCCCATGTTTATCAA
53 EL exon 3 (JI7 FAM) F 714954 GAAGGTGACCAAGTTCATGCTGATCGACGCCCATGTTTATCAG
54 EL exon 3 (common reverse) R CGGGGCGAATGGATGATGAA

19
55 EL intron 1 (pseudomajus VIC) F GAAGGTCGGAGTCAACGGATTAGAAGAAATCAGGCTTGCATGT
56 EL intron 1 (JI7 FAM) F 716191 GAAGGTGACCAAGTTCATGCTAGAAGAAATCAGGCTTGCATGA
57 EL intron 1 (common reverse) R ATGGTGAAGGATGTTGGCGT

20
58 Upstream of ROS1 (pseudomajus VIC) F GAAGGTCGGAGTCAACGGATTCGGTCATCTACCAAGGAACTGG
59 Upstream of ROS1 (JI7 FAM) F 156123 GAAGGTGACCAAGTTCATGCTCGGTCATCTACCAAGGAACTGA
60 Upstream of ROS1 (common reverse) R GTTGCCACTAAACCACTGGCCTG

21
61 Upstream of ROS1 (pseudomajus VIC) F GAAGGTCGGAGTCAACGGATTTGGTGGTTTTATTTGGTTATAA
62 Upstream of ROS1 (JI7 FAM) F 312030 GAAGGTGACCAAGTTCATGCTTGGTGGTTTTATTTGGTTATAC
63 Upstream of ROS1 (common reverse) R GAATATCATGCCATTTGCATCC

22
64 Upstream of ROS1 (pseudomajus VIC) F GAAGGTCGGAGTCAACGGATTTTCAATTATTTGATAAGAGATA
65 Upstream of ROS1 (JI7 FAM) F 313548 GAAGGTGACCAAGTTCATGCTTTCAATTATTTGATAAGAGATG
66 Upstream of ROS1 (common reverse) R GTTTGGCGTAACAATTGTTTGG

23
67 Upstream of ROS1 (pseudomajus VIC) F GAAGGTCGGAGTCAACGGATTTGAATAAAAACCTGCTGGCCTA
68 Upstream of ROS1 (JI7 FAM) F 394415 GAAGGTGACCAAGTTCATGCTTGAATAAAAACCTGCTGGCCTG
69 Upstream of ROS1 (common reverse) R GAACATATCCTGCATTAATCAA

24
70 Upstream of ROS1 (pseudomajus VIC) F GAAGGTCGGAGTCAACGGATTATCGTTGACACAGTAAAACTGT
71 Upstream of ROS1 (JI7 FAM) F 476066 GAAGGTGACCAAGTTCATGCTATCGTTGACACAGTAAAACTGA
72 Upstream of ROS1 (common reverse) R GTTTGTTATTAACAGAACCATT
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25
73 ELUTA (pseudomajus VIC) R GAAGGTCGGAGTCAACGGATTGGCGTCGATCCAAATAACCACC
74 ELUTA (JI7 FAM) R 714921 GAAGGTGACCAAGTTCATGCTGGCGTCGATCCAAATAACCACT
75 ELUTA (common forward) F AGACAGACAATGTTGTAATATC
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