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Abstract

This thesis is an exploration of some problems involving flexible boundaries subjected to

transmural pressure differences. During the thesis, we explore a few example problems with

the common theme of finding the shape profile of these flexible boundaries. We begin with the

problem of a cross section of an elastic tube that is subjected to a pressure difference between

the inside and outside pressures. This chapter is based on Flaherty et al. [10], but is essential

to the thesis as a whole as we use the structure here to define the governing equations for

the flexible boundary that we will refer to throughout the rest of the chapters. We then look

at these circular cross sections as a fluid annulus where we have fluid contained between two

of these flexible boundaries, and this fluid flow causes the pressure differences. The thesis

then takes the governing elastic equations (again with the transmural pressure differences)

but instead of an enclosed ring, we have a setup where the boundary is fixed at two points.

Interestingly here we discover the existence of non-symmetric solutions that have not been

found before. The setup of the elastic boundary that is fixed is then extended by passing

a flow across the elastic boundary to create the pressure differences, firstly as a weak flow

perturbation analysis and then via numerical computation.
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1

Introduction

The central theme of this thesis is about finding the shape profiles of elastic boundaries

that are deformed due to pressure difference either side of them. These pressure differences

can be simply because the elastic boundary is a closed loop that contains a certain pressure

and differing pressure outside, or these elastic boundaries can be deformed by pressure as

a result of fluid passing over or around it. The elastic boundaries throughout this thesis

will be assumed to be inextensible, and rather than elastic in the sense of changing length

they will be regarded as elastic in the sense that they are free to deform and change shape.

Korobkin et al. [14] provides an introduction to problems related to hydroelasticity. Their

paper outlines a number of different situations related to these elastic deformations. The

fluid flows in this thesis will be assumed to be inviscid, irrotational and incompressible and

so a velocity potential can be formed which satisfies Laplaces equation (see Bachelor [3] for

example). Additionally, we will solve focusing on two dimensional problems, for example

taking a cross-section of the three dimensional physical situation.

In 1972 Flaherty at al. [10] presented a paper on the buckling behaviour of elastic tubes. In

this paper they take a cross section of the elastic tube and consider it as a two dimensional

problem of an enclosed elastic ring with differing inside and outside pressures. This paper

is not only important due to the specific problem that we will be concerned with, but also

because it includes the main governing equations that dictate the elastic profile. Flaherty at

al. cover not only the shape as the pressure changes, but also have a discussion into contact

points, i.e. when two sides come into contact. They introduce a model that allows them to

carry on after contact has been made, and they analyse after this contact point as the contact

point then becomes a section of each elastic side that are then in contact. The authors allude

to a flow around this elastic membrane causing deformations, but this is extended significantly

in more detail by Blyth & Parau [4] where the authors consider examples of a uniform stream

for flow, and then circulatory flow with a point vortex in the centre of the elastic shell. As a

12
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slightly different take on this problem Blyth & Pozrikidis [6] and Pozrikidis [18] examine the

problem of these cells deforming into various different shapes when they are filled with the

fluid and resting on horizontal and then inclined planes.

One key way to analyse these free boundary problems where the shape of the boundary must

come as part of the solution is to follow a conformal mapping procedure to map the profile

into the complex plane, and then solve this system numerically in the fixed geometry. This

solution method is described in Keller & Vanden-Broeck [13] in the case of bubbles inside a

uniform flow. In this thesis we follow this procedure. It is possible to check that the numerical

procedure is being applied well by comparing to Ozugurlu & Vanden-Broeck [17], this time

looking at the distortion of a bubble that is in a corner flow.

In addition to enclosed elastic rings, this thesis also takes a look at situations where we have an

elastic boundary with a uniform flow over the top of it. The flow creates a pressure difference

along the boundary and it is this that causes it to deform. Blyth et al. [5] and Blyth &

Vanden-Broeck [7] investigated similar problems, and consider the wave-like solutions due to

fluid flow. Interestingly they present symmetric and antisymmetric solutions to the problems.

A large portion of the discussion goes to explaining how, given specific pressure (and flow

speed) ranges, solutions bifurcate and it is possible to have multiple solutions. The ideas of

these bifurcations are examined more closely in more detail by Pozrikidis & Blyth [19].

There are many other interesting papers that study the problems of elastic boundaries that

are not explicitly referenced in the coming research in this thesis but do provide excellent

additional background reading. An example is Crowdy [9] where the author presents solutions

on an annulus surrounded by an irrotational flow. During this thesis we are concerned with

the shape of the profiles possible in the situations, and also looking at the stability of the

solutions found. Toland [21] gives a good insight into a situation that is somewhat different

to the elastic problems presented in this thesis and very bespoke to a specific application.

The structure of the thesis that follows is such: firstly, we define the main set of equations

that define the shape profiles we seek. These governing equations come from the internal and

external forces for the elastic cell that are created by the various pressure situations. We

validate the work we do by comparing to Flaherty et al. [10] and recreating their results
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whilst explaining in detail how we got there; secondly, we continue in the enclosed elastic

loop theme, but consider a fluid annulus. This was studied by Blyth & Vanden-Broeck [7]

where forces on the boundaries were surface tension, rather than elastic; we then move on

the setup of the elastic arch problem. Here we effectively hold the elastic in two places to

fix these points, and then see how the elastic between these two points behaves. We discover

some antisymmetric solutions, which could be expected from previous work, but not presented

previously in this particular context. The elastic arch is then investigated for the rest of the

thesis, with the deformation due to the fluid flow over the top to the system.



2

Profiles for a Buckling Elastic Tube

under Pressure

To begin with we shall follow the work of Flaherty et al. [10]. This is concerned with finding

the effects of pressure differences on a closed but flexible boundary. This can be imagined

as an elastic ring with the surrounding pressure either being increased or decreased. The

problem formulation in [10] forms the basis of much of the work in the following chapters and

so we will provide its derivation in full.

2.1 Deriving The Governing Equations

We will look at deriving governing equations for a closed elastic tube that encloses some

pressure, pi, and is exposed to some pressure on the outside, po. To derive our equations

consider the elastic ring to be made of a continuous string of very small sections of length

ds, where ds << 1. This idea is pictured in Figure 2.1, notice also the defined unit vectors

we will look at to measure forces in the normal, n, and tangential, t, directions as we travel

along the elastic surface.

Figure 2.1: Enclosed elastic ring subjected to pressure differences. In practice the ring is a complete ring, the sections

in the figure is just for illustration only. We will measure forces in the tangential (t) and normal (n) directions.

We will define the internal forces of the elastic parts by f = qn + τt. q(s) is the force on the

tube wall acting in the outward normal direction, τ(s) is the force on the tube wall in the

15
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tangential direction and p is the difference in pressures between the inside and outside of the

elastic ring. If we choose the right end of the section in Figure 2.2 as point s, then we can

consider forces as shown by the arrows on each small section of the ring. Remember ds << 1

so that we can in effect think of the forces acting on a point rather than a line section.

Figure 2.2: Forces acting upon a small section of elastic. q and τ are internal forces in the n and t directions respectively.

Defining p = po − pi, then balancing the forces acting on our small element is given by,

f(s) = f(s+ ds)− ds(po − pi)n

⇒ f(s+ ds)− ds(po − pi)n− f(s) = 0. (2.1)

Note the negative sign in equation (2.1) for pressure. This is because pressure is acting in

towards the enclosed elastic ring, and in the opposite direction to n in Figure 2.1. If we

perform a Taylor expansion on f(s + ds) then divide through by ds and take take the limit

ds→ 0, then (2.1) becomes,
df

ds
− pn = 0. (2.2)

From f = qn + τt, we can obtain,

df

ds
=

d

ds
(qn + τt) = q′n + qn′ + τ ′t + τt′. (2.3)

Using some standard results (see Casey [8] for example) on the vectors n and t,

n′ = κt and t′ = κn,

where κ(s) is the curvature of the elastic tube at a given point s. (2.3) then becomes,

df

ds
= q′n + q(κt) + τ ′t− τ(κn),

and so (2.2) becomes, (
q′ − κτ

)
n +

(
τ ′ + κq

)
t− pn = 0.

Hence the governing equations defined by the forces on the elastic are,

q′ − κτ − p = 0, τ ′ + κq = 0.
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The bending moment (the internal stress when external forces are applied) is assumed to be

m = εBκ (as suggested by Blyth et al. [5]) where κ is the curvature of the elastic and εB is

the bending modulus which can be assumed constant as discussed in Blyth et al. [6]. From

Figure 2.2 we have a moment balance of q = m′. Hence, we have q = εBκ
′. There is more

explination of what bending moments are located in Appendix D.

2.2 Multiple Mode Solutions

Working from our governing equations for the elastic ring,

q′ − κτ − p = 0, τ ′ + κq = 0, εBκ
′ = q , (2.4)

we can substitute the last two equations of (2.4) to eliminate q and using integration by parts

we obtain,

τ = −εB
κ2

2
+ c, (2.5)

where c is a constant of integration. From (2.4) we note that q′ = εBκ
′′, so using this along

with (2.5) we can write (2.4a) in terms of κ as,

εBκ
′′ + εB

κ3

2
− cκ− p = 0. (2.6)

To make the mathematics simpler we can non-dimensionalise using s = Lŝ, where L is the

cell length. The definition of curvature gives κ = θ′(s) where θ is the angle between the

horizontal and the tangent of a curve at a point, and so κ = 1
L κ̂. We can also redefine the

constant c = εB
L2 ĉ so (2.6) becomes,

κ̂′′ +
κ̂3

2
− ĉκ̂− p̂ = 0, (2.7)

where we have completed our non-dimensionalising with p̂ = L3

εB
p. We can then work in a

non-dimensional form of the equation. It is important to note that the equation (2.7) is

equivalent to non-dimensional form of (2.4). It will be easier to look at the stability of the

problem using the non-dimensional formulation. If the curvature is constant in our problem

(say κ = 1) then we have a circular solution for our elastic ring, i.e. forces on the curve are

the same at all points. If this is the case then (2.7) reduces to,

1

2
− ĉ− p̂ = 0⇒ ĉ =

1

2
− p̂.
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To investigate the stability of our circular solution we shall assume the solution of the form,

κ̂ = 1 + εγ(ŝ),

where εγ(ŝ) is a small perturbation. If we substitute our perturbed solution into (2.7) and

perform a Taylor expansion on the κ̂3 term we obtain,

ε

[
γ′′ +

3

2
γ − ĉγ

]
+

(
1

2
− ĉ− p̂

)
+O

(
ε2
)

= 0.

Recall that we already have ĉ = 1
2 − p̂ for the circular solution and so to leading order we

have,

γ′′ + (p̂+ 1) γ = 0. (2.8)

A general solution to (2.8) is given by,

γ = A cos(µŝ) +B sin(µŝ),

where µ = (p̂+ 1)
1
2 and ŝ ∈ [0, 2π]. We require our solution to be periodic (since the elastic

loop is a closed loop) and since the elastic cell is inextensible we must have the same perimeter

as the circle and so µ ∈ [1, 2, 3, 4, ...]. This tells us that we have multiple solutions when the

condition (p̂+ 1)
1
2 = n, where n is a natural number, is satisfied. Alternatively, we could say

that additional solutions appear when,

p̂ = n2 − 1. (2.9)

For example, when n = 2 and then p̂ = 3 we expect to have a Mode 2 solution which has a

period that is half of our circular solution, i.e. 0 ≤ ŝ ≤ π. Then for a Mode 3 solution we

have a solution that has a third of the period of the circular solution and so 0 ≤ ŝ ≤ 2π
3 , and

so on. Up to a value of p̂ = 3 we have only our circular solution, then up to p̂ = 8 we have a

circular solution and also a Mode 2 solution, then up to p̂ = 15 we also then have a Mode 3

solution, and so on.

At the value n = 1, this gives p̂ = 0. This relates to the solution when there is no pressure

difference between the inside and and outside of the elastic ring and then we have a solution

τ = q = 0.
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2.3 Elastic Ring with Pressure Difference

In addition to the equations for an elastic ring in 2D space given by (2.4), we also have,

κ(s) = θ′(s), (2.10)

from the definition of curvature, where θ is the angle between the horizontal and the tangent

of the elastic tube at a point and (if s is a distance of measure around the elastic tube). If

the length of the elastic ring is given by L then we can solve the setup shown in Figure 2.3

(using an example of a buckled solution of Mode 2) as there will be a symmetric solution of

this type that Flaherty et al. [10] notes for p̂ < 5.247, where p̂ is a non-dimensional form of

p.

Figure 2.3: Final solution for Elastic Ring for p̂ < 5.247 See [10]. There will be two lines of symmetry, one vertically

bisecting AB and the other horizontally through AB. Here L is the length of the loop. s = 0 is at A and increases in

an anti-clockwise direction. In the dimensional form we have 0 ≤ s ≤ L, and in the non-dimensional form where s = Lŝ
2π

we have 0 ≤ ŝ ≤ 2π, for a complete loop.

The equations for the elastic ring (2.4), in their non-dimensional form (where s = Lŝ) and

(2.10) can be written as a first order system as,

d

dŝ


q̂

τ̂

κ̂

θ

 =


p̂+ κ̂τ̂

−κ̂q̂

q̂

κ̂

 . (2.11)

We solve numerically this system of equations, subject to the conditions that,

q̂(0) = 0, q̂(πn) = 0, τ̂(0) = τ̂(πn), |θ
(
π
n

)
− θ(0)| = π

n .
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These conditions arise as there are two lines of symmetry in the problem in the example in

Figure 2.3 (one vertical and one horizontal). There would be 3 lines of symmetry for n = 3

and then so on. Then we are no longer looking at the solution 0 ≤ ŝ ≤ 2π but instead

0 ≤ ŝ ≤ π
n . We can assume for our numerical scheme that our final value for q̂ is still zero

from symmetry, i.e. q̂(πn) = 0. However, we no longer have a similar condition for τ̂ . We do

have information about θ. By definition it should be equal to π
2 (in the example in Figure

2.3 at point A and at the end of our domain it should have turned through π
2 , i.e. θ(0) = π

2

and |θ(π2 )− θ(0)| = π
2 in the specific case of n = 2 and then θ(0) = π

n and |θ(πn)− θ(0)| = π
n

in general.

Setting q̂(0) = 0 and θ(0) = π
n we can solve the system (2.11) numerically 1 to find τ̂(0) and

κ̂(0) whilst enforcing q̂(πn) = 0 and |θ(πn)− θ(0)| − π
n = 0.

Note that we will also include in numerical computation x′ = cos(θ) and y′ = sin(θ) to draw

out the shape of the curve. The initial conditions of x, y, and θ are arbitrary as it does not

matter where we place the elastic ring in space. It may be worth noting in a bit more detail

where we have obtained x′ = cos(θ) and y′ = sin(θ) from. Figure 2.4 shows a sketch linking

θ and α, where α is the angle between the tangent to the curve at a point and the horizontal

axis on the inside of the curve. From the triangle we can see,

dx
ds = − cosα dy

ds = sinα,

but since α = π − θ we have,
dx

ds
= cos θ,

dy

ds
= sin θ.

From (2.9), the relation of p̂ and n, mode 2 (i.e n = 2) solutions exist when p̂ ≥ 3. The initial

conditions and forcing condition for the numerical scheme more explicitly become q̂(0) = 0,

θ(0) = π
2 , q̂(π2 ) = 0 and |θ(π2 )−θ(0)|− π

2 = 0 respectively. We solve this numerically to obtain

a solution as shown in Figure 2.5.

If we use subscripted notation to denote numerically computed values from 1 (as the initial

condition) over N numerical steps then our final x and y values will be given by xN+1 and

yN+1 respectively. It is easy to see that we can create the whole top half of the picture (such

1Appendix A includes a discussion to the general numerical scheme we will be deploying.
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Figure 2.4: Sketch to show the relations x′ = cos(θ) and y′ = sin(θ). Here α is the angle between the curve and a

tangent at a point, and the arrows are showing the direction of increasing s, traveling around the curve.

Figure 2.5: Numerically computed solution curve for n = 2 when p̂ = 4.75. Solution of (2.11), the equations an the

elastic profile subjected to pressure. Here we have a solution for 0 ≤ ŝ ≤ π
2

. This is a quarter solution for a loop of

length L = 2π.

as in Figure 2.3) by translating our coordinates by moving the whole image right by xN+1

units, and reflecting the image in the y − axis. We can then create the entire image by

rotating the upper solution 180◦. This process is shown in Figure 2.6.

2.4 Mode 3, and Higher Mode Solutions (i.e. n ≥ 3)

From (2.9) we achieve mode 3 solutions when p̂ ≥ 8. We can take a similar approach to find a

mode 3 solution as a mode 2 solution changing n = 2 to n = 3 and solving where 0 ≤ ŝ ≤ π
3 .

The more complicated aspect for a mode 3 solution compared to a mode 2 solution is consid-

ering our initial translation of our computed solution so that we are then able to reflect and
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Figure 2.6: Complete solutions for n = 2. The first when p̂ = 3.5 and the second when p̂ = 4.75. The quarter solution

shown in Figure 2.5 is transformed to create the whole ring for the length L = 2π.

rotated to complete the entire picture. If we define the matrix of our computed points as,x1 x2 · · · xN+1

y1 y2 · · · yN+1

 ,
we can then use matrix transformations to create our picture. In Figure 2.7 we can see the

lines of reflection (centered at the origin) showing the solid lines that cross over our solution

and dashed lines as lines of symmetry not over the shape. The curves line joining the lines

y = 1√
3
x and y = − 1√

3
x. Note that these are the lines of symmetry as these create a 30◦

angle between the lines and the x − axis which in turn creates 120◦ between the solid lines

of reflection in Figure 2.7.

As our computed solution has a start position at the origin, our translation vector will be

given by

c
d

 . We have computed the size of our initial curve and so a− c = xN+1 − x1 and

b− d = yN+1− y1, which implies a = xN+1− x1 + c and b = xN+1− x1 + d. As we also know

from our lines of symmetry b = a√
3
, and so,
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Figure 2.7: Lines of symmetry for the Mode 3 solution. The curve from (a, b) to (c, d) will be a translated solution

curve.

xN+1 − x1 + d =
xN+1 − x1 + c√

3
.

We can solve the equation above as a simultaneous equation using our 3rd line of symmetry,

d = − c√
3
.

This will need to be done numerically on the computer with the computed values of x and y.

Once we have then translated our original curve we then multiply our matrix of (translated)

points by a reflection matrix and then rotation matrices to complete the picture. Reflection

and rotation matrices are given respectively by,

cos(2λ) sin(2λ)

sin(2λ) − cos(2λ)

 ,
 cos(λ) sin(λ)

− sin(λ) cos(λ)

 ,

where λ can be either the angles between the line of symmetry in the case of reflection, or

the degrees of rotation in the case of rotation. Hence we reflect using the matrix,

 1
2

√
3

2

√
3

2 −1
2

 ,
and then rotating both of these images (original and reflected) 120◦ in anti-clockwise and

clockwise using the matrices,
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 cos(2π
3 ) sin(2π

3 )

− sin(2π
3 ) cos(2π

3 )

 ,
cos(2π

3 ) − sin(2π
3 )

sin(2π
3 ) cos(2π

3 )

 .

Figure 2.8 shows the result of these reflections and transformations to complete a full solution

for mode 3.

Once we understand the computation of mode 2 and the translation, reflection and rotation

nature of mode 3, as we increase n we continue in the same way adjusting only our initial

conditions and then our transformation matrices. Some results demonstrated in Figure 2.9.

Figure 2.8: Complete solutions for n = 3. The first when p̂ = 10 and the second when p̂ = 13.5. Plot obtained by

solving (2.11), the equations an the elastic profile subjected to pressure, with n = 3.

Figure 2.9: Complete solutions for n = 4 when p̂ = 24 and n = 5 when p̂ = 34.5. Plots obtained by solving (2.11),

the equations an the elastic profile subjected to pressure numerically. The solutions here are results from the plotting

procedure as described, but in Appendix G an alternative plotting method is briefly described.

2.5 Contact Pressure

It should be noted that there exists an upper bound for pressure in order to obtain valid

solutions. As the elastic ring buckles more and more under an increasing pressure difference
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there will come a point where the sides will come into contact. This we will term the ’point

of contact’. Once this condition is reached a different approach to a solution is required (and

discussed in Flaherty et al. [10]). Some points of contact are shown in Figure 2.10. These

contact points were calculated in [10], they can be found relativity easily by running the

numerical scheme to solve the problem and checking to see when we have overlapping (x, y)

coordinates for a given position in s.

Figure 2.10: Points of contact for n = 2, 3, 4 with corresponding pressures p = 5.247, p = 21.65 and p = 51.84.



3

Profiles of Boundaries for a Fluid

Annulus

In the coming section we are concerned with the problem of a cross section that creates an

annular fluid sheet contained between two boundaries as shown in Figure 3.1. In Figure 3.1

we have a natural resting state of circular boundaries and are interested to find the profiles of

these boundaries under certain conditions, namely the fluid between the boundaries moving

in a steady state as if rotating around a point vortex in the centre of the sheet. The problem

has been studied by Blyth and Vanden-Broeck [7] for the situation where surface tension

creates each boundary. We begin the section by following the work of [7], and then explain

how to extend this for the case where each boundary is elastic. The flow is assumed to be

inviscid, incompressible and irrotational.

Figure 3.1: The setup to the fluid annulus problem. We have fluid bound between two rings. There is an interior

pressure caused by the inner boundary that is free to be different to the exterior pressure.

3.1 Profiles of Boundaries held by Surface Tension

As discussed in the introduction for Chapter 3, we are considering the situation where a

fluid is contained between two surfaces that are held with surface tension. The setup of

26
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this configuration is shown in more detail in Figure 3.2, where we have also fixed standard

cartesian and polar axes as shown. We have also labelled the outer boundary as A and the

inner as B, and sub-scripting show which boundary is being discussed, for example we have

denoted the surface on A as SA, and on B as SB. The pressure inside the fluid is p, while the

constant internal and external pressures are pi and pe respectively.

We will make the assumptions that the fluid contained between SA and SB is inviscid and

Figure 3.2: Defining key parts of the fluid annulus. SA and SB are the outer and inner surfaces respectively. There are

three pressures: inside the inner cell; in the fluid; and exterior to the system, these are pi, p and pe respectively. The

coordinate axes are setup ut wit the origin i the centre of the circles.

incompressible. We will assume the flow to be moving as a result of a point vortex at the

origin in Figure 3.2, which would be the centre of the circles before any deformation due to

the flow. To model the flow we will introduce a complex potential, w, (see Acheson [1] for

example) in the form w(z) = φ + iψ, where φ and ψ are the potential and streamfunction

respectively for the fluid flow, and z = x + iy. Hence φ is the velocity potential, w is the

complex potential, and ψ is the streamfunction, all of which are functions of both x and y.

The basic anticlockwise flow for a fluid with circular boundaries is known and is be given by,

w = −i Γ

2π
log z, (3.1)

where Γ is a circulation constant, and so a measure the flow strength. More explanations of

the form of w can be found in [1]. Substituting w and z in to (3.1) we have,

φ+ iψ = −i Γ

2π
log(x+ iy),

⇒ x = e−
2π
Γ
ψ cos

(
2π
Γ φ
)

, y = e−
2π
Γ
ψ sin

(
2π
Γ φ
)
, (3.2)
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⇒ x2 + y2 = e−
4π
Γ
ψ,

and so plotting streamlines in the (x, y) plane would yield a series of circles with the radius

defined by the value of the stream function and the strength of the flow.

If we subscript the fluid pressure, p in Figure 3.2, to be pA and pB at the surfaces SA and

SB respectively then a simple force balance along the boundaries tell us that the pressure

difference across the boundary must be equal and opposite to the stress due to surface tension.

This gives us,

pB − pi = γBκB,

pA − pe = −γAκA,

where we have defined κ as the curvature of the surface. By definition we will have negative

curvature for a circle. γA and γB are the constants for surface tension along the boundaries.

Writing UA and UB as the magnitude for the velocities on the two boundaries, the Bernoulli’s

equations (see Acheson [1]) gives,

1

2
U2
A −

γAκA
ρ

= c1, (3.3)

1

2
U2
B +

γBκB
ρ

= c2, (3.4)

on each boundary, where ρ is the fluid density. Here c1 and c2 are generally different constants

due to the fact that the internal and external pressure may differ.

The solutions can be characterised by the dimensionless parameters,

α =
(

2π
Γ

)2 γArA
ρ , λ = rB

rA
, β = γB

γA
, (3.5)

where r is the radius of an unperturbed surface, S, which would be a circular solution. The

definitions of α, λ and β arise naturally from analysis presented in the next section. We

will later find a numerical solution to (3.3) and (3.4), but to get an understanding of the

characteristics of the solution we will first look at a linearised solution.

3.1.1 Linear Analysis

As previously stated, the equation (3.1) gives a solution for a circular flow. Given the setup

of the problem as set up in Figure 3.2 it makes sense to seek a linear solution to the Bernoulli
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equations (3.4) and (3.4) as a perturbation of a circular solution. We will work in plane polar

coordinates (r, θ) and have β = 1, and hence γ = γA = γB representing the same surface

tension on each surface SA and SB, and the radius of the circular solution is given by rA and

rB respectively. From (3.2) for circular flow and x = r cos θ and y = r sin θ we have,

y

x
= tan θ = tan

(
2π

Γ
φ

)
⇒ φ =

Γ

2π
θ.

Hence we seek a solution in the form of,

r = rA + εfA(θ) on SA,

r = rB + εfB(θ) on SB,

φ =
Γ

2π
θ + εfφ(r, θ),

where ε is a small dimensionless parameter and fA, fB and fφ are functions to be defined. We

could continue with the general fA, fB and fφ functions, but using Blyth and Vanden-Broeck

[7] we will continue with,

r = rA + εd cos kθ on SA, (3.6)

r = rB + ε cos kθ on SB, (3.7)

φ =
Γ

2π
θ + εF (r) sin kθ, (3.8)

where d and k are dimensionless constants. From the definition of the potential we have

∇φ = (u, v) =
(
dφ
dr ,

1
r
dφ
dθ

)
and U2 = |∇φ|2, and then using (3.8),

⇒ U2 = |∇φ|2 =
1

r2

(
Γ2

4π2
+
εkΓ

π
F cos kθ

)
+O

(
ε2
)
. (3.9)

Working from (3.6) on SA,

1

r2
=

1

r2
A

(
1− 2εd

rA
cos kθ +O(ε2)

)
,

and so from (3.9) on SA we have,

U2
A =

1

r2
A

(
Γ2

4π2
+
εkΓ

π
F cos kθ − εdΓ2

2π2rA
cos kθ

)
+O(ε2). (3.10)

In addition to UA we also need to find an expression for the curvature to solve (3.3). The

general expression for curvature in polar coordinates is given by (see Casey [8] for example),

κ(θ) =
|r2 + 2r′2 − rr′′|

(r2 + r′2)
3
2

.
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From (3.6) we can substitute into the curvature formula to give,

κA =
1

r3
A

|r2
A + 2rAεd cos kθ + εrAk

2d cos kθ|
(

1− 3εd

rA
cos kθ +O

(
ε2
))

.

From Figure 3.2 and the definition of curvature, κ = ∇ · n, we have negative curvature since

n is pointing towards the origin. The expression for curvature in our problem becomes,

κA = − 1

r2
A

(
rA − εd cos kθ + εk2d cos kθ

)
+O

(
ε2
)
. (3.11)

Using (3.10) and (3.11), to leading order the Bernoulli equation on SA (3.3) becomes,

Γ2

8r2
Aπ

2
+

γ

ρrA
= c1,

and to O (ε) we have, (
Γ

2π

)[
kF (rA)− Γd

2πrA

]
− dγ

ρ

(
1− k2

)
= 0. (3.12)

Following the same process through as above using (3.7) instead of (3.6), we find that the

Bernoulli equation on SB given by (3.4) yields,(
Γ

2π

)[
kF (rB)− Γ

2πrB

]
+
γ

ρ

(
1− k2

)
= 0. (3.13)

The fluid flow between the two surfaces SA and SB needs to satisfy the kinematic condition

(see Acheson [1]), which essentially states that fluid particles at the boundary will remain

at the boundary. Mathematically this means ∇φ · n = 0. Using standard coordinate geom-

etry results in polar coordinates (see MacIlwaine [15] for example) and (3.6), the normal is

calculated by,

n = ∇
(
r − (rA + εd cos kθ)

)
=

(
1,

1

r
εdk sin kθ

)
,

and so using (3.8) with ∇φ · n = 0 the kinematic condition becomes,(
εF ′ sin kθ,

1

r

(
Γ

2π
+ kεF cos kθ

))
·
(

1,
1

r
εdk sin kθ

)
= 0⇒ F ′ +

Γdk

2πr2
= 0,

where the prime denotes differentiation with respect to r, and evaluated at r = rA. To leading

order, the kinematic condition on the surface SA is given by,

F ′(rA) = − Γdk

2πr2
A

. (3.14)
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Following the same process by using (3.7) in place of (3.6), the kinematic condition on the

surface SB is given by,

F ′(rB) = − Γk

2πr2
B

. (3.15)

In the introduction we stated we were looking at an annulus where the fluid contained is

incompressible and irrotational. Therefore the fluid flow must satisfy Laplace’s equation (see

Acheson [1]) at all points throughout the fluid. This is given by,

∇2φ = φrr +
φr
r

+
φθθ
r2

= 0.

Seeking a solution to Laplace’s equation of the form φ = F (r) sin kθ as is suggested by (3.8)

gives,

F ′′ +
F ′

r
+ k

F

r2
= 0.

Therefore a general solution is given by F (r) = a1r
k + a2r

−k.

As a quick summary, we have six parameters that we can fix and will define the physical

setup of the situation. The physical parameters are: the circulation strength Γ; the natural

radius of the circular flow with no distortion, rA and rB; the wave number k; the fluid density

ρ; and, the surface tension on the surfaces γ. These physical parameters are combined in

the dimensionless parameters α, β and λ. We have three unknown constants for the linear

analysis that we need to find, these are a1, a2 and d. We have four equations we can use to

find these constants, these come from the two Bernoulli equations (3.12) and (3.13) and the

two kinematic conditions (3.14) and (3.15). This means we can use three of the equations to

find the three constants in terms of the parameters, and then the fourth will give us a set of

values for the parameters that will give us a solution for any specified wave number, k. As

an example1, and to find agreement with Blyth and Vanden-Broeck [7], below is the equation

that needs to be satisfied when k = 2,

3λ(λ− 1)(λ2 + 1)α2 + (λ4 + 2λ3 − 2λ2 + 2λ+ 1)α+ (λ− 1)(λ2 + 1) = 0, (3.16)

where α and λ are given by (3.5) with β = 1 .

We can now also sketch out an example solution. Given its definition in (3.5) we have λ ∈ R
1The procedure for finding the constants a1, a2 and d and then substituting into the fourth equation by

hand is a rather laborious task but can be easily achieved with a package such as Maple.
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and λ ≤ 1, we can take λ = 1
2 for example, and if we want k = 2, from (3.16) we have,

−15

16
α2 +

29

16
α− 5

8
= 0⇒ α =

29±
√

241

30
≈ 0.449, 1.484.

To achieve λ = 1
2 we simply need an appropriate ratio such as rA = 2 and rB = 1. Then all

that remains to be done is choose Γ, ρ and γ appropriately such that α satisfies one of the

values above from the definition in (3.5), e.g.

8π2γA
Γ2ρ

=
29−

√
241

30
.

An example, appropriate values for water would be, surface tension γ = 0.05 and density

ρ = 1, this then gives Γ ≈ 8.789. Substituting these values into our expression for d, we can

then use (3.6) and (3.7) with a small value for ε to produce an example sketch, as we have

done in Figure 3.3.

Figure 3.3: Example solution of the fluid annulus problem. Example values were rA = 2, rB = 1, γ = 0.05, ρ = 1,

Γ ≈ 8.789, ε = 0.1

3.1.2 Numerical Computations

If we introduce u and v to be horizontal and vertical velocity components respectively, then

we can introduce τ(φ, ψ) and θ(φ, ψ) such that,

u− iv = eτ−iθ = eτ (cos(θ)− i sin(θ)) . (3.17)

Then in general from (3.17) we have,

U2 = u2 + v2 = (u− iv)(u+ iv) = e2τ (cos(θ)− i sin(θ)) (cos(θ) + i sin(θ)) = e2τ . (3.18)
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and the curvature can be written as,

κ = −eτ ∂θ
∂φ
. (3.19)

Taking rA as the radius of the circular boundary for a non-perturbed profile as the charac-

teristic length, and Γ
2πrA

as the characteristic speed to non-dimensionalise (3.3) and (3.4) we

obtain,
1

2
Ũ2
A

[
Γ

2πrA

]2

−
[

1

rA

]
γAκ̃A
ρ

= c1 ⇒
1

2
Ũ2
A − ακ̃A = B1, (3.20)

1

2
Ũ2
B

[
Γ

2πrA

]2

+

[
1

rA

]
γBκ̃B
ρ

= c2 ⇒
1

2
Ũ2
B + αβκ̃B = B2, (3.21)

where˜denotes non-dimensional variables and,

α =
[

2π
Γ

]2 rAγA
ρ and β = γB

γA
.

From (3.18) we can replace Ũ2
A and Ũ2

B in (3.20) and (3.21) with e2τ noting that τ will be

different on each of the surfaces (also we make explicitly clear that τ is a measure of flow

velocity and will not be constant along the boundary). Also using (3.19) we find that (3.20)

and (3.21) become,
1

2
e2τ + αeτ

∂θ

∂φ
= B1, (3.22)

1

2
e2τ − αβeτ ∂θ

∂φ
= B2, (3.23)

on the surfaces A and B respectively, and B1 and B2 are generally different Bernoulli con-

stants. We seek solutions that are periodic in φ (since we physically require a closed loop),

then we can introduce,

t = e2iπf where f = φ+ iψ, (3.24)

and express the solution, ζ, as a series in the form,

ζ = τ − iθ = log

(
1

2π

)
− i
(

2πf +
π

2

)
+

∞∑
n=1

ant
n +

∞∑
n=1

bnt
−n. (3.25)

The first two terms on the right hand side of (3.25) are suggested by Blyth and Vanden-

Broeck [7] and come from the point vortex at the origin. The unknown constants an and bn

are calculated numerically as part of the solution. We can choose the value of the stream-

function along one surface, and so we will have ψ = 0 along SA, and for now we will denote

the value for the stream-function on SB as ψ = Q.
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In order to solve numerically we truncate (3.25) at N −1 terms and introduce 2N collocation

points for φAi and φBi along SA and SB respectively where,

φAi = φBi = 1
N (i− 1), i = 1, ... , N. (3.26)

We can fix the value of β, and so applying (3.26) with (3.25) on (3.22) and (3.23), we have

2N nonlinear equations, along with 2N + 1 unknowns (a1, ... , aN−1, b1, ... , bN−1, B1, B2, α)

and can solve this numerically. In this thesis we choose Newton’s method to solve this system

of equations. Once we have a solution we then need to find (x, y) coordinates in order to plot

the wave profiles. From (3.18) we have,

u+ iv =
U2

u− iv
,

but since we have non-dimesionalised such that U ≡ 1, when we also use (3.17) we have,

u+ iv =
1

u− iv
= e−τ+iθ.

The definition of the complex potential then gives us,

∂x
∂φ = e−τ cos θ and ∂y

∂φ = e−τ sin θ.

We can numerically compute our wave profiles with,

xi = xi−1 + e−τi (φi − φi−1) cos θi,

yi = yi−1 + e−τi (φi − φi−1) sin θi,

on each surface A and B, where i = 1, ... , N and we only need to specify x0 and y0. In a

sense these values are arbitrary so it is convenient to solve the system and the transpose such

that the surfaces have a common focal point.

As a numerical approach Blyth and Vanden-Broeck [7] suggest fixing the value of a1 to give

2N unknowns. Figure 3.4 is provided as an example numerical solution.

3.2 Profiles of Elastic Boundaries

Here we give a brief outline of an extension to Blyth and Vanden-Broeck [7] by looking at the

profiles of boundaries in Figure 3.1 when we have elastic boundaries at the surfaces A and B,



CHAPTER 3. PROFILES OF BOUNDARIES FOR A FLUID ANNULUS 35

Figure 3.4: Example numerical solution for the profiles of elastic boundaries for the fluid annulus.

rather than surface tension. In Section 2.1 we derived the elastic surface equations resulting

in (2.6) which was,

εBκ
′′ + εB

κ3

2
− cκ− p = 0,

where εB was the bending modulus of the elastic, κ was the curvature of the surface, and

p is the normal pressure difference across the surface, and c is a constant to be determined.

Hence, using,

p = εBκ
′′ + εB

κ3

2
− cκ,

we can replace the Bernoulli equations (3.3) and (3.4) with,

1

2
ρU2

A −
(
εAκ

′′
A + εA

κ3
A

2
− cAκA

)
= C1, (3.27)

1

2
ρU2

B +

(
εBκ

′′
B + εB

κ3
B

2
− cBκB

)
= C2, (3.28)

where we have sub-scripted A and B to denote which surface the equation applies to, ρ is the

fluid density, and C1 and C2 are Bernoulli constants. The numerical process is then essentially

the same as in the previous section, but we will also include numerical finite difference methods

to include κ′′.



4

Profiles of an Elastic Arch

Subjected to Pressure

In this chapter we are looking at a curved piece of elastic membrane that is fixed at two points

to a fixed surface. The membrane encloses a given pressure and the elastic is subjected to a

different pressure on the outside. We are looking to find solutions of the shape of the elastic

as the pressure difference changes. The physical setup of the problem is analogous to that as

presented in chapter 2 but holding in place two points on the non-stretchable elastic.

4.1 Problem Formulation

Our problem is shown in Figure 4.1. We have an elastic membrane that is attached at the

fixed points A and B. We will fix standard xy-plane such that (0, 0) is centered at A. The

surface we are attached to will be assumed to be solid and perfectly straight laying along the

x−axis. pi and po are the inside and outside pressure respectively. θ(s) is the angle between

the tangent to the elastic at point s which is a measure of how far along the elastic we are

such that s = 0 at A and s = L at B where L is the total length of the elastic material. If we

have two fixed points then we can define the coordinates at A as (0, 0) and at B as (X, 0),

where we are free to choose the distance of |X|. It is worth noting that using this setup X

will be a negative number.

Figure 4.1: Elastic membrane attached at the points A and B. There is a pressure difference across the boundary with

a fixed inside pressure, pi, and outside pressure, po.

We will assume the values of θ at both A and B, and define them as θA and θB. This would

36
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depend on how the elastic is fixed to our surface below. We have already derived the equation

of an elastic boundary subjected to pressure in chapter 2. These equations are again stated

in (4.1a) - (4.1f) for easy references. Here q, τ , κ, θ, x and y are all functions of s. The forces

of the elastic membrane are q and τ in the respective normal and tangential directions. κ is

a measure of the curvature, and p = po − pi

q′ = p+ κτ, (4.1a)

τ ′ = −κq, (4.1b)

κ′ = q, (4.1c)

θ′ = κ, (4.1d)

x′ = cos θ, (4.1e)

y′ = sin θ, (4.1f)

subject to the conditions that,

x(0) = 0, y(0) = 0, x(L) = X, y(L) = 0, θ(0) = θA, θ(L) = θB. (4.2)

We will solve this system numerically using the numerical scheme detailed in Appendix A by

setting θ(0) = θA, x(0) = 0 and y(0) = 0 and then finding q(0), τ(0) and k(0) subject to the

forcing conditions x(L)− x = 0, y(L) = 0 and θ(L)− θB = 0.

4.2 Symmetric Solutions

Working from our initial formulation equation (2.2), the force balance, we can integrate over

the length of the membrane,

[τt + qn]L0 − p
∫ L

0
n ds = 0. (4.3)

Note that when integrating around the whole enclosed shape, along the membrane and the

solid base we have, ∮
C

n ds =

∫ L

0
n ds−

∫ L−X

L
j ds, (4.4)

since along the horizontal wall the normal is always pointing downwards in Figure 4.1. Note

the upper limit of L−X. It is possibly not immediately obvious that the minus sign must be

included. This is because the total length of the membrane and the lower boundary wall have
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a total length of |L| + |X|, and whilst L is a positive constant in our setup X is a negative

constant, hence |L|+ |X| = L−X. We can apply the divergence theorem (see Schey [20] for

example) in the form, ∫
C
φn ds =

∫ ∫
A
∇φdA.

The Divergence theorem in general says that the outward flux of a vector field though a closed

surface is equal to the volume over the region inside the surface, i.e. all in and out flow is

equal to the internal volume. As long as there in no flow in and out then this holds for any

value of φ, and so (choosing a value of φ = 1 for example) we must have,∫
C

n ds = 0.

Using this along with (4.4) we find,∫ L

0
n ds =

∫ L−X

L
j ds = −Xj,

and then (4.3) becomes,

τ(L)t + q(L)n− τ(0)t− q(0)n + pXj = 0. (4.5)

Using the i and j direction vectors in the horizontal and vertical directions, from Figure 4.1 and

using trigonometric identities we can show that t = cos(θ)i+sin(θ)j and n = sin(θ)i−cos(θ)j.

Then after substituting t and n into (4.5) and taking the dot product with i and then j,

respectively, we obtain,

τ(L) cos(θB) + q(L) sin(θB)− τ(0) cos(θA)− q(0) sin(θA) = 0, (4.6)

τ(L) sin(θB)− q(L) cos(θB)− τ(0) sin(θA) + q(0) cos(θA) + pX = 0. (4.7)

The conditions (4.6) and (4.7) hold for any solution of our problem, symmetric or not. How-

ever, with a symmetric solution we have τ(0) = τ(L) and q(0) = −q(L) and so (4.6) and (4.7)

become,

τ(0) [cos(θB)− cos(θA)]− q(0) [sin(θB) + sin(θA)] = 0, (4.8)

τ(0) [sin(θB)− sin(θA)] + q(0) [cos(θB) + cos(θA)] + pX = 0. (4.9)

In addition, with a symmetric solution θB = 2π−θA and so sin(θB) = − sin(θA) and cos(θB) =

cos(θA). This means (4.8) is automatically satisfied but (4.9) becomes,

τ(0) sin(θA)− q(0) cos(θA) =
pX

2
. (4.10)
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In our problem θA, p and X are defined constants and so (4.10) gives us a relationship between

τ(0) and q(0). There are some interesting conditions that come about from (4.10), namely

when we have the membrane attached perpendicularly (θA = π/2) and tangentially (θA = π)

to the horizontal base. These cases give us conditions τ(0) = pX
2 and q(0) = pX

2 respectively.

4.3 Perturbed Solution

As we will see, a semi-circular solution is always possible if the elastic length and initial

angles for the geometry of the shape allow this. For here we are concerned with finding

bifurcations from the semi-circular solution. We will start from our original set of equations

taken from (4.1a) - (4.1f). For a setup where a semi-circular solution is possible we have

a clear link between X and L namely that |2L| = |πX|. With the benefit of hindsight we

will conveniently scale the problem such that the radius of the semi-circle is of length 1 and

so L = π. We will proceed using the hat notation to make it clear when working in this

particular scale.

For the semi-circular solution we have q̂ = 0, κ̂ = 1, and τ̂ = −p̂. We also have θ = π/2,

x = 0, y = 0 at ŝ = 0. Using (4.1d) we then have,

θ′ = κ̂⇒ θ = κ̂ŝ+ constant⇒ θ = ŝ+
π

2
, (4.11)

which we can then substitute into (4.1e) and (4.1f) to obtain,

x′ = cos
(
ŝ+

π

2

)
= − sin(ŝ)⇒ x = cos(ŝ)− 1 = x0(ŝ), (4.12)

y′ = sin
(
ŝ+

π

2

)
= cos(ŝ)⇒ y = sin(ŝ) = y0(ŝ). (4.13)

We can look to find bifurcation points for additional solutions by perturbing the semi-circular

solution and finding when solutions exist for the perturbation. We will seek solutions of the
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form,

q̂ = 0 + εq̄ (4.14a)

τ̂ = −p̂+ ετ̄ (4.14b)

κ̂ = 1 + εκ̄ (4.14c)

θ = ŝ+
π

2
+ εθ̄ (4.14d)

x = x0(ŝ) + εx̄ (4.14e)

y = y0(ŝ) + εȳ, (4.14f)

where ε << 1 and q̄, τ̄ , κ̄, θ̄, x̄ and ȳ are all functions of ŝ. Substituting (4.14a)-(4.14d) into

(4.1a)-(4.1d) and taking leading order terms in ε we obtain,

εq̄′ = p̂+ (1 + εκ̄)(−p̂+ ετ̄)⇒ q̄′ = τ̄ − p̂κ̄,

ετ̄ ′ = −εq̄(1 + εκ̄)⇒ τ̄ ′ = −q̄,

εκ̄′ = εq̄ ⇒ κ̄′ = q̄,

1 + εθ̄ = 1 + εκ̄⇒ θ̄ = κ̄.

Using (4.14e) and (4.11) together with (4.1e), and noting that x′0 = cos
(
ŝ+ π

2

)
from (4.12)

we obtain,

x̄′ = −θ̄ sin
(
ŝ+

π

2

)
= −θ̄ cos(ŝ).

Using (4.14f) and (4.11) together with (4.1f), and noting that y′0 = sin
(
ŝ+ π

2

)
from(4.13) we

obtain,

ȳ′ = θ̄ cos
(
ŝ+

π

2

)
= −θ̄ sin(ŝ).

From our boundary conditions, x̄(0) = ȳ(0) = θ̄(0) = 0, on a semi-circle and (4.14d)-(4.14f)

we require a solution that satisfies the system of equations,

q̄′ = τ̄ − p̂κ̄, (4.15a)

τ̄ ′ = −q̄, (4.15b)

κ̄′ = q̄, (4.15c)

θ̄′ = κ̄, (4.15d)

x̄′ = −θ̄ cos(ŝ), (4.15e)

ȳ′ = −θ̄ sin(ŝ). (4.15f)



CHAPTER 4. PROFILES OF AN ELASTIC ARCH SUBJECTED TO PRESSURE 41

Differentiating (4.15a) and substituting in (4.15b) and (4.15c) gives,

q̄′′ = −q̄ − p̂q̄ ⇒ q̄′′ + (1 + p̂)q̄ = 0, (4.16)

which has a general solution q̄ = Am2 cos(mŝ) + Bm2 sin(mŝ) where m2 = (1 + p̂), and A

and B are constants to be found. It then follows from (4.15c) and (4.15d) that,

κ̄ = Am sin(mŝ)−Bm cos(mŝ) + C,

θ̄ = −A cos(mŝ)−B sin(mŝ) + Cŝ+D,

where C and D are constants of integration. We can use one of the boundary conditions here,

namely θ̄(0) = 0 to yield A = D, and so,

θ̄ = −A cos(mŝ)−B sin(mŝ) + Cŝ+A. (4.17)

Substituting (4.17) into (4.15e) and (4.15f) we obtain,

x̄′ = A cos(mŝ) cos(ŝ) +B sin(mŝ) cos(ŝ)− Cŝ cos(ŝ)−A cos(ŝ), (4.18a)

ȳ′ = A cos(mŝ) sin(ŝ) +B sin(mŝ) sin(ŝ)− Cŝ sin(ŝ)−A sin(ŝ). (4.18b)

After using trigonometric identities and then integrating (4.17) and (4.18), we can evaluate

the new constants of integration using the conditions x̄(0) = ȳ(0) = 0. Then factorising for

A, B and C gives the system of equations,

θ̄ = A

(
1− cos(mŝ)

)
−B sin(mŝ) + Cŝ, (4.19)

x̄ = A

(
m sin(mŝ) cos(ŝ)− cos(mŝ) sin(ŝ)

m2 − 1
− sin(ŝ)

)
+B

(
m−m cos(mŝ) cos(ŝ)− sin(mŝ) sin(ŝ)

m2 − 1

)
+ C

(
1− ŝ sin(ŝ)− cos(ŝ)

)
. (4.20)

ȳ = A

(
m sin(mŝ) sin(ŝ) + cos(mŝ) cos(ŝ)− 1

m2 − 1
+ cos(ŝ)− 1

)
+B

(
sin(mŝ) cos(ŝ)−m cos(mŝ) sin(ŝ)

m2 − 1

)
+ C

(
ŝ cos(ŝ)− sin(ŝ)

)
. (4.21)
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If we then denote matrix elements Mij (and matrix M) where i = {θ̄, x̄, ȳ} and j = {A,B,C}

are the coefficient terms from the equations above then (since we have x̄(π) = ȳ(π) = θ̄(π) = 0

by symmetry when ŝ = π),
Mθ̄A Mθ̄B Mθ̄C

Mx̄A Mx̄B Mx̄C

MȳA MȳB MȳC



A

B

C

 =


0

0

0

 . (4.22)

From this matrix system, one possible way to locate multiple solutions to our problem (and

bifurcation points) would be to have 1,

det


Mθ̄A Mθ̄B Mθ̄C

Mx̄A Mx̄B Mx̄C

MȳA MȳB MȳC

,

 = 0

hence,

Mθ̄A (Mx̄BMȳC −Mx̄CMȳB)−Mθ̄B (Mx̄AMȳC −Mx̄CMȳA)

+Mθ̄C (Mx̄AMȳB −Mx̄BMȳA) = 0. (4.23)

Before we substitute in our values for the matrix elements we can simplify (4.19), (4.20) and

(4.21) since ŝ = π. This substitution gives,

θ̄ = A

(
1− cos(mπ)

)
−B sin(mπ) + Cπ (4.24a)

x̄ = −A
(
m sin(mπ)

m2 − 1

)
+B

(
m+m cos(mπ)

m2 − 1

)
+ 2C (4.24b)

ȳ = −A
(

cos(mπ) + 1

m2 − 1
+ 2

)
−B

(
sin(mπ)

m2 − 1

)
− Cπ. (4.24c)

Substituting (4.24) into (4.23) simplifies to the equation,

m2

(m2 − 1)2

(
2m2 sin(mπ) +mπ +mπ cos(mπ)− 2 sin(mπ)

)
= 0. (4.25)

Clearly 1
(m2−1)2 cannot equal zero, and also we have m 6= ±1, and so we have solutions at

m = 0 and when,

G(m) = 0,

1See Anton [2] for example.
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where,

G(m) = 2m2 sin(mπ) +mπ +mπ cos(mπ)− 2 sin(mπ). (4.26)

Note that G(m) = 0 is also satisfied when m = 0 and so it will be sufficient to look at roots

of the function (4.26) only to find bifurcation points. Also note that due to the properties of

sine and cosine all odd integers of m will also be roots of (4.26).

We can see from Figure 4.2 that there are other solutions for m when G(m) = 0, in addition

Figure 4.2: Graph of G(m) = 2m2 sin(mπ) +mπ +mπ cos(mπ)− 2 sin(mπ). All solutions of (4.26) appear where the

curve crosses the m-axis. G(m) = 0 relates to bifurcation points from when det(M) = 0 from the system (4.22).

to the odd integers of m. (It is also worth noting at this stage that G(m) has rotational

symmetry of 180◦ about the origin since G(−m) = −G(m), and so the negative roots of

(4.26) for m are of the same magnitude as the positive values). Using our graphical image it

is relatively straight forward to have reasonable estimates to solve (4.26) numerically using

Newton’s Method. Clearly there would be an infinite number of solutions but Table 4.1 lists

some of these, and also uses our earlier formula m2 = (1 + p̂).

Notice from Table 4.1 that m = 0 and m = 1 have been identified as points where we do

not have bifurcation even though they are roots of (4.26). To arrive at (4.26) from (4.25)

we have already seen that for our problem m 6= ±1 as the mathematics breaks down at this

point. To see about m = 0 we need to go back to (4.16) where we first define m. This leads

to q̄ = Aŝ + B, which gives κ̄ = A
2 ŝ

2 + Bŝ + C from(4.15c). Equations (4.15d), (4.15e) and

(4.15f) then give us,
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m p̂ Possible Bifurcation Point

0 -1 ×

1 0 ×

3 8 X

3.72873 12.90343 X

5 24 X

5.82754 32.96022 X

Table 4.1: Some solution values for G(m) = 0 in (4.26), given to 5 decimal places. Values for

m correspond to the axis intersections in Figure 4.2

θ̄ =
A

6
ŝ3 +

B

2
ŝ2 + Cŝ+D,

x̄ = −A
6

(
ŝ3 sin(ŝ) + 3ŝ2 cos(ŝ)− 6 cos(ŝ)− 6ŝ sin(ŝ)

)
− B

2

(
ŝ2 sin(ŝ)− 2 sin(ŝ) + 2ŝ cos(ŝ)

)
− C

(
cos(ŝ) + ŝ sin(ŝ)

)
−D sin(ŝ) + E,

ȳ = −A
6

(
− ŝ3 cos(ŝ) + 3ŝ2 sin(ŝ)− 6 sin(ŝ) + 6ŝ cos(ŝ)

)
− B

2

(
− ŝ2 cos(ŝ) + 2 cos(ŝ) + 2ŝ sin(ŝ)

)
− C

(
sin(ŝ)− ŝ cos(ŝ)

)
+D cos(ŝ) + F,

respectively, where A,B,C,D,E, F are all constants to be found. Recall that our initial

boundary conditions were x̄(0) = ȳ(0) = θ̄(0) = 0. This immediately gives us D = 0,

E = C − A, and F = B. If we then apply the conditions x̄(π) = ȳ(π) = θ̄(π) = 0, we then

also find that A = B = C = 0. This then gives us a zero solution for all of our perturbed

variables, hence there is no bifurcation at this point.

4.4 The Shape of Solutions

We will be looking at more detail in the matrix system (4.22). This is a system of equations

in the form,
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Mx = 0.

In order to have a non-trivial solution we must have that M has no inverse we are looking for

the condition det(M) = 0. If we then substitute in the values of m that we found in (4.26)

and solve the system of equations we will find we have a vector for [A B C]T but there will

be a linear dependence included in the vector. As long as we choose values of A, B and C in

this format we will obtain a solution of (4.22) which we can then use, along with equations

(4.19) - (4.21), to plot the shape of the perturbation from our semi-circular solution. Note

that this vector is an eigenvector of M (with the corresponding eigenvalue of zero).

If we substitutive in the value of m = 3 (or any odd integer) and ŝ = π into (4.22) then we

obtain M as,


2 0 π

0 0 2

2 0 −π

 , (4.27)

the corresponding and relevant eigenvector of (4.27) is,


0

t

0.

 . (4.28)

Using these values for A, B and C along with (4.20), (4.21), (4.12) and (4.13) substituted

into (4.14e) and (4.14f), the equations that give x and y, with a suitable value for t and ε on

the domain 0 ≤ ŝ ≤ π we can plot a basic shape we would expect for the curved elastic at

this bifurcation point. A point to note is that ”suitable” values for t and ε are the same as

having a single suitable value for εt since the linear dependence from our eigenvector, along

with our approximation of (4.14a) - (4.14f). This is shown in Figure 4.3.

For the non-odd integer solutions for m we can only substitute in the approximated values

into (4.22) to obtain M and find the corresponding eigenvector. For m = 3.72873 we obtain,
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
0.45392t

t

−0.28898t

 , (4.29)

which we can plot in the same way we did for m = 3. This is shown in Figure 4.4. The

eigenvector for m = 5.82754 is,


0.27773t

t

−0.17681t

 , (4.30)

and the corresponding shape is shown in Figure 4.5.

Figure 4.3: Shape of the curved elastic deviation from the semi-circular solution from bifrication point at m = 3 (p = 8).

The left using values εt = 1 and the right using εt = −1. This shape is a consequence of the vector (4.28). It is important

to note the shapes here are for illustrative purposes because in reality εt� 1.

Figure 4.4: Shape of the curved elastic deviation from the semi-circular solution from bifrication point at m = 3.72873

(p = 12.90343). The left using values εt = 1 and the right using εt = −1. This shape is a consequence of the vector

(4.29). It is important to note the shapes here are for illustrative purposes because in reality εt� 1.
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Figure 4.5: Shape of the curved elastic deviation from the semi-circular solution from bifrication point at m = 5.82754

(p̂ = 32.96022). The left using values εt = 1 and the right using εt = −1. This shape is a consequence of the vector

(4.30). It is important to note the shapes here are for illustrative purposes because in reality εt� 1.

4.5 Symmetric Solution Shapes

To simplify we shall define modd to be the set of all odd integer bifurcation points shown in

Table 4.1 calculated from (4.26), i.e. all odd integers except m = 1. Notice that as m becomes

large the dominating term of (4.26) reduces this equation to 2m2 sin(mπ) = 0, and so the

other solutions to (4.26) tend toward the even integers. Even though the other bifurcation

points are not exactly the even integers it will be simpler to define the set meven as the other

bifurcation points, i.e. {3.72873, 5.82754, ...}.

Looking at the shapes from Figure 4.4 and Figure 4.5 it appears as if they are symmetric

solutions. If this is indeed the case then we should have that x is an odd function and y

is an even function (as visually demonstrated in Figure 4.6) and so x̄(ŝ) = −x̄(π − ŝ) and

ȳ(ŝ) = ȳ(π − ŝ).

To look only at our bifurcation solutions we can enforce a condition on m from (4.26) such

Figure 4.6: Visual aid to show for symmetric solutions we have x as an odd function and y is an even function.
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that we substitute,

cos(mπ) =
2 sin(mπ)− 2m2 sin(mπ)−mπ

mπ
,

into (4.24) to solve (4.22). However this will include modd solutions as well as meven solutions,

but we can separate these solutions away looking at the vectors we found as (4.28), (4.29)

and (4.30). Whilst A = 0 for modd, this is not the case for meven. As we know we have

linear dependence in our system we could choose our constant term (in effect our t when we

calculated the eigenvectors) such that A 6= 0, e.g. A = 1.

4.6 Solution Curves

We are now in a position where we have an understanding of the shape of our solutions and

where they occur and bifurcate. We can now solve the system numerically for many values of

p̂ to plot solution curves. Figure 4.7 shows initial values for solutions of the problem of the

curved elastic as a function of pressure.

Not all the intersections show bifurcation points. The value E has been introduced as a

measure of the energy of the curve, as a deviation from the perfect semi circle. This has the

formula,

E =

∫ π

0
(κ̂− 1)2 dŝ.

All the lines that grow from the pressure-axis (when E = 0) are the bifurcation points from

the semi-circle solution. An interesting issue that arises is that the numerical solutions suggest

additional bifurcation points. These additional bifurcation points appear to come at the other

points where our solution curves cross over the line κ̂(0) = 1. For example, for the crossover

close to p̂ = 20 the solution that we can track from the blue curve becomes identical to that

for the red curve at a given point. We can look at out numerical output for approximations

for the location of these points. These are p̂ = 3.3, p̂ = 9.8, and p̂ = 19.9. These points did

not show themselves in our earlier analysis since we were looking for bifurcations from the

semi-circle solutions, and these are bifurcations from non-semi-circle solutions.

To see all of the bifurcation points a little more clearly we plotted τ̂(0), q̂(0) and κ̂(0) in 3D.

This is possible because of the properties linking τ̂ and p̂. In the plot all the intersections

are bifurcation points. The colours in Figure 4.8 are the same colours that correspond to the
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Figure 4.7: Initial values for the curved elastic at different pressures. The green curves comes from the bifurcation

point (from the semi-circle solution - shown in black) at p̂ = 8, orange at p̂ = 12.90, pink at p̂ = 24, red at p̂ = 32.96,

and blue at p̂ = 48. These are solutions of (4.1).

lines in Figure 4.7.

Since it is a little difficult to see the bifurcations that occur away from the black semi-circular

solution line I have enlarged one of these bifurcations. This is shown in Figure 4.9.

With a little numerical work we can find the solution shapes at the different bifurcation points.

The details of finding sensible initial estimates to use for the numerical scheme are not very

rigorous and have been moved to Appendix A. However the results of the different solutions

curves are shown in Figure 4.10.

The shapes that we have so far plotted have all been created using certain parameters that
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Figure 4.8: Views from a 3D plot of the initial conditions for τ̂(0), q̂(0) and κ̂(0) for solutions of the curved elastic

problem. All 3D intersections are bifurcation points. These curves are solutions of (4.1a) - (4.1f).
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Figure 4.9: Enlargement of one of the bifurcation points from Figure 4.8.

make it possible to achieve the conditions of a semi-circular solution. It is still achievable to

solve the system and find solution curves when conditions are forces so that a semi-circular

solution is not possible. Figure 4.11 and Figure 4.12 show situations where a perfect semi-

circular solution cannot exist due the changing of the length of the elastic (which would be

the same mathematically as changing the gap between where each end of the elastic was

fixed) and also when changing the angle at which the elastic is connected to the horizontal

wall. We can gain a greater insight into the bifurcation points if we adjust the length of the

elastic boundary slightly so that it is no longer possible to have a perfect semi-circle. These

bifurcation points then break as shown in Figure 4.13.
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Figure 4.10: The shapes of the elastic at the bifurcation points for meven. We start at p̂ = 12.90343, then p̂ = 32.96022,

and then obtain the further values of p̂ by numerically solving 4.26 and applying m2 (1 + p̂).

Figure 4.11: Solution curves shown for different lengths of the elastic boundary for the problem shown in Figure 4.1.

These were obtained by numerically solving (4.1) with L = 2.5, π, 4. A value of p = 5 was assigned for each solution.
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Figure 4.12: Solution curves when L = π and θA = θB = π for the problem shown in Figure 4.1. These were obtained

by numerically solving (4.1).
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Figure 4.13: The break-down of bifurcation points when the semi-circular solution is no longer possible. To create

these solutions we have adjusted the length of the elastic to be 3.14 instead of π. This can be compared to Figure 4.7 to

see where bifurcations were when we did have an elastic length of π. Note that we can still have solutions in a physical

sense where the solution previously bifurcated, but we would lose the smooth transition between one solution to the

next.



5

Profiles of an Elastic Arch Under

Weak Flow

In this section we are looking at the problem of a curved boundary attached to a horizontal

base with a neutral position of a semi-circle when pressure under and over the elastic boundary

are equal. We then pass a flow over the boundary, which affects the external pressure exerted

on the boundary, and look to see the resulting shape. This setup is shown in Figure 5.1.

The elastic boundary will still follow the same set of equations we had for a curved elastic

connected to a surface with no flow. The equations were from (4.1a) to (4.1f). We will also

assume no gravity to simplify the problem for this chapter, and then pick up the idea of

gravity later in the thesis.

Figure 5.1: Elastic membrane attached at the points at the end of the semi-circle with a flow at steady speed U traveling

across it. The three pressures are: inside the elastic (pi); on the surface (ps); and, at a distance a long way from the

elastic (p∞).

When we had no flow the pressure p is defined as the difference between pi and p∞ since

p∞ = ps and is assumed to be constant over the boundary. If we introduce a flow then the

pressure on the surface, ps, will vary over the elastic and not be constant. We need to know

the pressure on the surface due to the flow.

55



CHAPTER 5. PROFILES OF AN ELASTIC ARCH UNDER WEAK FLOW 56

5.1 Flow around the circle

We will take a brief digression to look at the flow around the circle shown in Figure 5.2.

Figure 5.2: Flow around a circle of radius length a, using polar coordinates. Here r is the distance from the origin and

ω is the polar angle. For the purpose of this analysis we will assume the flow is uniform and at a steady speed of U

parallel to the x-axis.

We will try to find an equation for the flow around the circle in the form u = ∇φ =
(
φr,

φω
r

)
.

We will look for a solution of Laplace’s equation, ∇2φ = 0, for an inviscid and irrotational

flow.

For one boundary condition we require no normal flow (in and out of the circle) so ur = 0 on

r = a. This is equivalent to φr = 0 on r = a.

In Cartesian coordinates the second boundary condition is ∇φ → U i as r → ∞. If we

integrate we obtain the condition, φ → Ux as r → ∞. But transforming between polar and

Cartesian coordinates we have x = r cosω and so the condition becomes φ → Ur cosω as

r →∞.

In polar coordinates Laplace’s equation is given by,

1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2

∂2φ

∂ω
= 0. (5.1)

Looking for a solution of the form φ = cosωf(r) and substituting this into (5.1) we obtain,

frr +
fr
r
− f

r2
= 0.

If we try to find a solution of the form f = rα and substitute this in we find α = ±1. Hence
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f = Ar + B
r , and so φ = cosω

(
Ar + B

r

)
. Applying the boundary conditions we obtain,

φ = U

(
r +

a2

r

)
cosω. (5.2)

Now, we want to find the pressure on the surface of the circle. Bernoulli’s equation (see

Acheson [1]) with a steady flow and no gravity is given by,

1

2
|u|2 +

p

ρ
= Constant, (5.3)

which will need to be satisfied through the fluid flow. At a point far from our circle we have

p = p∞ and |u| = U and so (5.3) becomes,

1

2
|u|2 +

p

ρ
=

1

2
U2 +

p∞
ρ
, (5.4)

throughout the fluid flow. From (5.2) and evaluating on r = a we then have φr = 0 and

φω
r = −2U sinω. This is useful to us since |u|2 = |∇φ|2 = (φr)

2 +
(
φω
r

)2
= 4U2 sin2 ω. Then

on the surface of the circle from (5.4)

ps(ω) = p∞ +
1

2
ρU2

(
1− 4 sin2 ω

)
. (5.5)

This gives us an expression for the pressure on the surface of the curved elastic boundary. An

issue arises in that this is a function of ω, and our problem is defined as a functions of s, the

distance along the arc. Figure 5.3 is an illustration of how we can link together the quantities

of ω and s.

Figure 5.3: Finding the link between ω and s using small increases in both ω and s denoted by dω and ds. As these

are small, the small segment can be approximated by a right-angled triangle and hence satisfy Pythagoras theorem.

Using a Taylor expansion on r(ω + dω) we have,

r(ω + dω) = r(ω) +
dr

dω
dω +O((dω(2)⇒ r(ω + dω)− r(ω) =

dr

dω
dω +O((dω)2).
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Using Pythagoras theorem on the triangle in Figure 5.3,

(ds)2 = r2(dω)2 +

(
dr

dω

)2

(dω)2 +O((dω)4)⇒ ds

dω
≈

√
r2 +

(
dr

dω

)2

.

Substituting in r = a (1 + δf(ω)), where δf(ω) represents a small deformation from a circular

shape, we have,

ds

dω
= a

(
1 + 2δf +O(δ2)

) 1
2 ≈ a

(
(1 + δf)2

) 1
2

= a(1 + δf) = r, (5.6)

since δ is small. Therefore,

s =

∫ ω

0
rdω = a

∫ ω

0

(
1 + δf(ω)

)
dω = aω + aδ

∫ ω

0

(
f(ω)

)
dω.

To make manipulation easier we shall temporarily denote ω = s
a − δA(s) which we can

substitute into the expression above and introduce the dummy variable x and simplify to

obtain,

0 = −aδA(s) + aδ

∫ s
a
−δA(s)

0

(
f(x)

)
dx.

Approximating by taking out O
(
δ2
)

terms,

A(s) =

∫ s
a

0

(
f(x)

)
dx,

··· ω =
s

a
− δ

∫ s
a

0

(
f(x)

)
dx. (5.7)

5.2 Introducing a Weak Flow and Seeking a Deformed Semi-

circular Solution

As we introduce a flow to our situation, the shape of the elastic boundary will deform and

will not be a perfect semi-circle. However, it would seem reasonable for a very small flow that

we could seek a solution as a perturbation of the solution for the flow around a semi-circle.

If we have a shape that is a very slightly deformed circle then we can model the boundary as

r = a + aδf(ω) where r is the radius of the circle and δ << 1 and will be a measure of the

flow speed that will be chosen explicitly and conveniently in due course. Note that we have

aδf(ω) as opposed to δf(ω) to be consistent with the dimensions for r because δ and f(ω)
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are dimensionless.The setup is again shown in the Figure 5.4 and the basic equations for the

elastic are given by (5.8a)-(5.8d).

q′ = p+ κτ, (5.8a)

τ ′ = −κq, (5.8b)

m′ = εBκ
′ = q, (5.8c)

m = εBκ, (5.8d)

where p = ps − pi in Figure 5.4. In sections 2 and 4 we had p = p∞ − pi since ps = p∞ and

was constant around the boundary when there was no flow. Also note that from (5.5) and

(5.7) we have that p = p(s).

Figure 5.4: Elastic membrane attached at the points at then end of the semi-circle with a flow at steady speed U

traveling across it. The three pressures are inside the elastic (pi), on the surface (ps) and at a distance a long way from

the elastic (p∞).

Substituting (5.8c) into (5.8b) we obtain,

τ ′ = −εBκκ′, (5.9)

⇒ τ = −εB
κ2

2
+ c,

where c is a constant of integration. From (5.8c) we have q′ = εBκ
′′ and so also using the

result above we can write (5.8a) as,

κ′′ +
κ3

2
− c κ

εB
=

p

εB
.

Equation (5.5) suggests it is sensible to write the pressure for our situation in the form

ps(s) = p∞ + 1
2ρU

2P (s) and we can set pi = 0 since p = ps − pi. Non-dimensionalizing by
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letting s = Lŝ, and so r = Lr̂, d
ds = 1

L
d
dŝ , and κ = dθ

ds = κ̂
L gives,

κ̂ŝŝ +
1

2
κ̂3 − ĉκ̂ =

p∞L
3

εB
+

1

2

ρU2L3

εB
P,

after also introducing ĉ = cL2

εB
. To simplify we will introduce E = p∞L3

εB
. Also, since we have

a small flow, U is a small value we will introduce the small parameter δ = 1
2
ρU2L3

εB
. When we

introduce small perturbations we will do these in terms of δ and so this will give a sense of

the effect of the flow compare to a semi-circle solution with no flow. When U = 0, we then

have δ = 0 and the problem is identical to the no-flow problem, but as we gradually increase

U we also increase δ and so δ is a measure of how strong the flow is. It is worth remembering

here that due to the series expansion in the analysis this model will only be valid for small

flow, and hence δ << 1. Hence we have,

κ̂ŝŝ +
1

2
κ̂3 − ĉκ̂ = E + δP (ŝ). (5.10)

It is worth noting here that when the flow is (in effect) turned off and we have δ = 0, (5.10) is

identical to (2.7), with the non-dimensional E in (5.10) being identical to the non-dimensional

p̂ in (2.7). The problem is then reduced to that of the tube and curved arch problems with

no-flow that we have already looked at.

On the semi-circle solution we have that the curvature is equal to 1 and so in our non-

dimensional form we have that κ̂ = 1
λ , we also have r = a where we introduce the non-

dimensional quantity λ = a
L = 1

π . We can seek perturbed (from the semi-circle solution)

solutions in the form,

κ̂ = 1
λ + δκ1(ŝ), P = P0(ŝ) + δP1(ŝ) + ..., r̂ = λ+ λδF (ŝ), ĉ = c0 + δc1, (5.11)

where the 1
λ , P0(ŝ), λ and c0 terms are solutions to the no-flow problem when we have a semi-

circular shape, and the terms multiplied by δ are as a direct result of the introduced flow.

Recall that δ is a measure of the strength of the flow. Also f and F are equivalent functions

such that f(ω) = F (ŝ), i.e. f defined by ω gives the same values at the same points as F

defined by the distance around the arc length. Matching up (5.5) with ps(s) = p∞+ 1
2ρU

2P (s)

, and using P (ŝ) = P0(ŝ) + δP1(ŝ) + ... we can see that,

P0(ŝ) = 1− 4 sin2

(
ŝ

λ

)
,
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gives an explicit formula for P0(ŝ). Note that ŝ
λ is a result of (5.7) and s = Lŝ

It may be an intuitive approach to perturb κ, P and r, but it may not be immediately obvious

why we are perturbing ĉ since this is essentially a constant of integration1. To see this is if we

look at Flaherty et. al.[10], the paper here is concerned with the shape of an elastic boundary

(with no flow) subject to changing the parameter p which is the pressure, p̂ as we have defined

it. They solve a similar equation to that of (5.10) that is,

κss +
1

2
κ3 − cκ = p, (5.12)

derived from the same set of equations we started with. Since c is a constant and (5.12) will

hold for all values of s and p, we can take the case of when p = 0 and s = 0 to obtain,

c =
κss(0)

κ(0)
+

1

2
κ2(0).

Using the non-dimensional forms of (5.8c) and then (5.8a) at s = 0 and p = 0 we have,

κss(0) = qs(0) = κ(0)τ(0)⇒ κss(0)

κ(0)
= τ(0),

and so,

c = τ(0) +
1

2
κ2(0).

The point here is that c depends on τ(0) and κ(0), which will be different for different shapes

of the elastic boundary, even after bifurcations where we can have different shapes at the

same pressure values.

From κ̂ = 1
λ + δκ1, we have κ̂3 = 1

λ3 + 3
λ2 δκ1 + O

(
δ2
)
. Substituting this and (5.11) into

(5.10) to leading order we obtain an explicit value for our integration constant c0. Since E is

a (non-dimensional) constant we have,

c0 =
1

2λ2
− λE.

To O(δ) we have,

κ′′1 +
3

2λ2
κ1 − c0κ1 −

c1

λ
= P0(s). (5.13)

1In Appendix C we are concerned with finding an expression for the perturbation of the pressure for semi-

circular elastic under weak flow, i.e. P1(ŝ). This is done and obtained at the end of Appendix C, but the

algebra has since shown that this is not a necessary function for the analysis. However, this may come in useful

when continuing work so it is included here.
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Using standard polar coordinates with ω as our polar angle and ω = s
λ + O(δ), then general

equation for curvature2 is given by,

κ̂(ω) =
r̂2 + 2r̂2

ω − r̂r̂ωω
(r̂2 + r̂2

ω)
3
2

Since r̂ = λ+ λδf(ω) we then have,

κ̂(ω) =
1

λ
(1− δ(f + fωω)) +O(δ2). (5.14)

Here we have an equation in terms of ω, however, (5.13) is defined in terms of ŝ, so we need

to find (5.14) defined in terms of ŝ. The non-dimensional version of (5.6) gives,

dŝ

dω
= λ(1 + δf) +O(δ2). (5.15)

We then have,
df

dω
=
df

dŝ

dŝ

dω
= λFŝ (1 + δF ) . (5.16)

Differentiating again this becomes,

d2f

dω2
=
df

dŝ
λδ
df

dω
+ (λ(1 + δf))2 d

2f

dŝ2
+O

(
δ2
)
,

⇒ d2f

dω2
= λ2δ (Fŝ)

2 + λ2 (1 + 2δF )Fŝŝ +O
(
δ2
)
. (5.17)

Substituting (5.17) into (5.14) we have,

κ(ŝ) =
1

λ
+ δ

(
−F
λ
− λFŝŝ

)
+O(δ2),

and so matching up with (5.11) we have,

κ1(ŝ) = −F
λ
− λFŝŝ.

Using this with (5.13) we have,

λFŝŝŝŝ +

(
5

2λ
− c0λ

)
Fŝŝ +

(
3

2λ3
− c0

λ

)
F = −P0(ŝ)− c1

λ
.

Substituting in P0 = 1− 4 sin2
(
ŝ
λ

)
and using standard trigonometric identities this becomes,

Fŝŝŝŝ +

(
5

2λ2
− c0

)
Fŝŝ +

(
3

2λ4
− c0

λ2

)
F =

1

λ
− 2

λ
cos

(
2ŝ

λ

)
− c1

λ2
. (5.18)

2See Casey [8] for example.
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Since this is a fourth order equation we require four boundary conditions to find a solution.

The elastic membrane is fixed at the two ends and so this length has got to be equal to the

radius of the semi-circle. Since r̂ = λ+ δF (ŝ), we must have F (0) = F (1) = 0.

We have boundary conditions arising from the angle at which the elastic is attached to the

horizontal wall, i.e. at right angles. The gradient of the curve at that point is given by,

dy

dx
=

dr̂
dω sinω + r̂ cosω
dr̂
dω cosω − r̂ sinω

,

where ω is the polar angle. This expression will be infinite at ω = 0, π (which is ŝ = 0, 1). At

these points we have sin(ω) = 0 and cos(ω) = ±1. The condition then becomes,

dr̂

dω
cos(ω)− r̂ sin(ω) = 0⇒ dr̂

dω
= 0.

This immediately gives the boundary condition in terms of ω, i.e. fω(0) = fω(π) = 0. We

require these in terms of F (ŝ).

dr̂

dω
=

d

dω
(λ+ λδf) = λδ

df

dω
,

which we can substitute in (5.16) to give,

dr̂

dω
= δλ2Fŝ (1 + δF ) = δλ2Fŝ +O

(
δ2
)
,

and so our condition becomes,

δλ2Fŝ = 0⇒ Fŝ(0) = Fŝ(1) = 0.

The curvature, κ̂ is the change of the tangential angle as the parameter ŝ changes, i.e.

κ̂ =
dθ

dŝ
.

From Figure 5.4 we can see that as we travel across the elastic surface from each end where

it is connected to the horizontal, we turn through an angle of π and so,∫ ŝ=1

ŝ=0
κ̂ dŝ = π.

We should be able to check this algebraically. So using (5.14) and (5.15) we have,∫ 1

0
κ̂ dŝ =

∫ π

0
κ̂
dŝ

dω
dω =

∫ π

0
1− δfωω dω +O(δ2)
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= π − δ [fω]π0 +O(δ2). (5.19)

But given our boundary conditions, fω(0) = fω(π) = 0, (5.19) becomes π to leading order (of

δ) as required.

As well as the four boundary conditions to solve our fourth order equation, (5.18) also include

the constant c1. This means that we will require a fifth condition to evaluate this. This

condition comes from the non-dimensional form of (5.7), the relation between the arc length

and the polar angle,

ω =
ŝ

λ
− δ

λ

∫ ŝ

0
Fdŝ.

But 1
λ = π and so,

ω = πŝ− πδ
∫ ŝ

0
Fdŝ.

We require ω to travel from 0 to π whilst ŝ travels from 0 to 1. So when ω = π we have ŝ = 1

and so it follows,

π = π − πδ
∫ 1

0
Fdŝ,

⇒
∫ 1

0
Fdŝ = 0.

5.3 Checking the Equations

We can check that our work is correct so far by comparing it to when we have a flow of U = 0.

This means (5.18) reduces to,

Fŝŝŝŝ +

(
5

2λ2
− c0

)
Fŝŝ +

(
3

2λ4
− c0

λ2

)
F = − c1

λ2
. (5.20)

To find the particular solution we can substitute in an expression of the form,

F (ŝ) = α.

Substituting this in we find,

α =
2c1λ

2

2c0λ2 − 3
.

This gives us a solution that solves the right hand side of (5.20), and so to solve the left hand

side we can find our complementary function by making the right hand side of (5.20) equal
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to zero and substitute in F (ŝ) = emŝ. The resulting quartic equation has roots,

1
λ i , − 1

λ i ,

√
6−4c0λ2

2λ i , −
√

6−4c0λ2

2λ i .

We previously defined E = p∞L3

εB
. Taking εB = 1 and a = 1 with λ = a

L , this gives E = p∞
λ3 .

This means we can simplify our expressions above since c0 = 1
2λ2 − λE to obtain,

πi , −πi , (π
√

1 + p∞)i , −(π
√

1 + p∞)i .

Also,

α = − c1

π(1 + p∞)
.

Putting the particular and complementary functions together we have a solution,

F (ŝ) = A cos
(

(π
√

1 + p∞)ŝ
)

+B sin
(

(π
√

1 + p∞)ŝ
)

+C cos (πŝ) +D sin (πŝ)− c1

π(1 + p∞)
.

Notice that when p∞ = 0 we have a repeated solution and hence we will have to consider this

as a special case. For now we will continue and remember that the following few pages are

only valid when p∞ 6= 0. Substituting in for the conditions,

F (0) = F (1) = Fŝ(0) = Fŝ(1) = 0,
∫ 1

0 F (ŝ)dŝ = 0 ,

we can create the matrix system for finding A,B,C,D and c1.

M



A

B

C

D

c1


=



0

0

0

0

0


. (5.21)

Where,

M =



1 0 1 0 − 1
π2(1+p∞)

cos
(
π
√

1 + p∞
)

sin
(
π
√

1 + p∞
)

−1 0 − 1
π2(1+p∞)

0 π
√

1 + p∞ 0 π 0

−π
√

1 + p∞ sin
(
π
√

1 + p∞
)

π
√

1 + p∞ cos
(
π
√

1 + p∞
)

0 −π 0

1
π
√

1+p∞
sin
(
π
√

1 + p∞
)

1
π
√

1+p∞

(
1− cos

(
π
√

1 + p∞
))

0 2
π − 1

π2(1+p∞)


.
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There will be (multiple) non-trivial solutions to the system if det(M) = 0. We should find

the same values of det(M) = 0 at the same values of p∞ with (4.26), which are shown in

Figure 4.2 and Table 4.1. Performing the calculation to find det(M) and substituting in

m2 = (1 + p∞) does yield the same expressions as (4.26).

5.4 Solving With Flow

When solving (5.18) in its full state (i.e. with flow), the complementary function is identical

to when solving (5.20) and is so given by,

FC(ŝ) = A cos
(
π
√

1 + p∞ ŝ
)

+B sin
(
π
√

1 + p∞ ŝ
)

+ C cos (πŝ) +D sin (πŝ) ,

where the solution to (5.18) is given by F (ŝ) = FC(ŝ) + FP (ŝ). This time our particular

solution will be of the form,

FP (ŝ) = Ω cos

(
2ŝ

λ

)
+ β sin

(
2ŝ

λ

)
+ α.

Substituting this into (5.18) and equating cos, sin and constant terms on both the left hand

side and the right hand side of the equations we find,

α =
2(λ− c1)λ2

3− 2c0λ2
,

β = 0,

Ω = − 4λ3

3 (5 + 2c0λ2)
.

After simplifying by substituting in c0 = 1
2λ2 − λE, E = p∞

λ3 and λ = 1
π as before, and then

putting the particular and complementary functions together we have a solution,

F (ŝ) = A cos
(
π
√

1 + p∞ ŝ
)

+B sin
(
π
√

1 + p∞ ŝ
)

+ C cos (πŝ) +D sin (πŝ)

− 2

3π3(3− p∞)
cos (2πŝ) +

1− πc1

π3(1 + p∞)
, (5.22)

when p∞ 6= 0. Substituting in for the conditions,

F (0) = F (1) = Fŝ(0) = Fŝ(1) = 0,
∫ 1

0 F (ŝ)dŝ = 0 , (5.23)
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we can create the matrix system for finding A,B,C,D and c1.

1 0 1 0 − 1
π2(1+p∞)

cos
(
π
√

1 + p∞
)

sin
(
π
√

1 + p∞
)

−1 0 − 1
π2(1+p∞)

0 π
√

1 + p∞ 0 π 0

−π
√

1 + p∞ sin
(
π
√

1 + p∞
)

π
√

1 + p∞ cos
(
π
√

1 + p∞
)

0 −π 0

1
π
√

1+p∞
sin
(
π
√

1 + p∞
)

1
π
√

1+p∞

(
1− cos

(
π
√

1 + p∞
))

0 2
π − 1

π2(1+p∞)





A

B

C

D

c1



=



5p∞−7
3π3(3−p∞)(1+p∞)

5p∞−7
3π3(3−p∞)(1+p∞)

0

0

− 1
π3(1+p∞)


,

when p∞ 6= 0. The solution of this system is given by,

A

B

C

D

c1


=



− 2(cos(πm)+p∞ cos(πm)+m2)
3π2(πp∞ cos(πm)+πp∞+2mp∞ sin(πm)+π+π cos(πm))(p∞−3)

− 2m2 sin(πm)
3π2(πp∞ cos(πm)+πp∞+2mp∞ sin(πm)+π+π cos(πm))(p∞−3)

0

2m
3
2 sin(πm)

3π2(πp∞ cos(πm)+πp∞+2mp∞ sin(πm)+π+π cos(πm))(p∞−3)

10mp2
∞ sin(πm)−14mp∞ sin(πm)−9π−6πp∞+3πp2

∞−9π cos(πm)−6πp∞ cos(πm)+3πp2
∞ cos(πm)

3π2(πp∞ cos(πm)+πp∞+2mp∞ sin(πm)+π+π cos(πm))(p∞−3)


,

(5.24)

where m2 = 1 + p∞. These values can then be substituted into (5.22) to give us a solution

for F (ŝ). As well as looking at the special case of when p∞ = 0, it appears from (5.24) that

we also have to take special consideration when p∞ = 3.

After a little careful manipulation we can express (5.24) equivalently as,

A

B

C

D

c1


=



− 2m(1+cos(πm))
3π2G(m)(p∞−3)

− 2m sin(πm)
3π2G(m)(p∞−3)

0

2m2 sin(πm)
3π2G(m)(p∞−3)

10m4 sin(πm)+3πm3(1+cos(πm))−34m2 sin(πm)−12πm(1+cos(πm))+24 sin(πm)
3πG(m)(p∞−3)


,

where G(m) was defined by (4.26) in the situation with no flow. Now that we have an explicit

function, F (ŝ) we should be able to to make use of this to find the shape of the curved elastic
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boundary as a flow is passed over the top, as shown in Figure 5.1. We shall consider the

general solution to the problem when p∞ 6= 0 and p∞ 6= 3, and then these two special cases

independently. We also need to look in more detail at the bifurcation points given when

(4.26) is equal to zero. Also, we have our original perturbation as r̂ = λ + δλf(ω), where

the functions f(ω) and F (ŝ) were equivalent functions, but with a different parameter. We

therefore need to be consistent with ω and ŝ.

5.4.1 General Solution

We will convert all of our equations so that we can evaluate points numerically as (x, y)

coordinates which can then be plotted onto Cartesian axes. Firstly, using standard polar

results in our problem,

x = 1
π (1 + δF (ŝ)) cosω and y = 1

π (1 + δF (ŝ)) sinω .

From (5.6) we have,

dŝ

dω
= λ (1 + δf(ω)) = λ (1 + δF (ŝ))⇒ dω

dŝ
=

1

λ (1 + δF (ŝ))
=

π

1 + δF (ŝ)
,

which we can integrate with respect to ŝ to obtain,

ω = π

∫ ŝ

0

1

1 + δF (u)
du,

where 0 ≤ ŝ ≤ 1, and u is the dummy variable of ŝ to avoid confusion.

The plotting procedure is then as follows:

• Divide the domain 0 ≤ ŝ ≤ 1 in to N sections and let i = 1, 2, 3, ..., N for the 1st,

2nd, 3rd etc numerically calculated points where N ∈ Z. And so, for example, x1 is

the first numerically calculated x-value. We can also define a step-length h such that

h = sN
N = 1

N ;

• Fix δ (to be a small value) and set a p∞ value;

• Set the initial values with x0 = 1, y0 = 0, s0 = 0, ω0 = 0;

• Calculate each step for i = 1, then i = 2 etc with,

– ŝi = ŝi−1 + h
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– ωi = π
∫ ŝi

0
1

1+δF (u)du

– xi = 1
π (1 + δF (ŝi)) cosωi

– yi = 1
π (1 + δF (ŝi)) sinωi;

where F (ŝ) can be directly calculated from (5.22) and (5.24), and the integral can be calculated

numerical using the trapezium rule. An example result of this procedure is presented in Figure

5.5.

Figure 5.5: Example result of the plotting procedure for (5.22) and (5.24). Here we have p∞ = 10, and δ = 0.1. On

the left we have the actual shape of the elastic boundary and on the right we have the perturbation of the shape of the

elastic boundary from that of a semi-circular solution.

5.4.2 Special Case Solution: p∞ = 0

From the fourth order equation (5.18), when p∞ = 0 we have,

F IV +

(
5

2λ2
− c0

)
F II +

(
3

2λ4
− c0

λ2

)
F = −c1

λ
.

But since

c0 = π2

(
1

2
− p∞

)
=

1

2
π2,

and 1
λ = π we have

F IV + 2π2F II + π4F = −πc1,

and so

F (ŝ) = A cos(πŝ) +B sin(πŝ) + Cŝ cos(πŝ) +Dŝ sin(πŝ)− c1π.
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After substitution of the first four boundary conditions (5.23) we find A = c1π, B = 2c1,

C = −2c1π, and D = 0, and so,

F (ŝ) = c1π cos(πŝ) + 2c1 sin(πŝ)− 2c1πŝ cos(πŝ)− c1π.

When applying the integral condition from (5.23) we have,

c1

∫ 1

0
π cos(πŝ) + 2 sin(πŝ)− 2πŝ cos(πŝ)− π ds = 0⇒ c1(−π) = 0⇒ c1 = 0.

The fact we do not find any special solution at p∞ = 0 is not hugely unexpected and somewhat

consistent with the earlier work and Table 4.1. Physically speaking this interprets as the only

solution possible for a very weak flow with no pressure difference across the elastic cell is a

semi-circular solution.

5.4.3 Special Case Solution: p∞ = 3

To solve the system for the special case when p∞ = 3 we need to go back to (5.18), using that

1
λ = π and c0 = π2

(
1
2 − p∞

)
= −5

2π
2. This gives,

Fŝŝŝŝ + 5π2Fŝŝ + 4π4F = −2π cos(2πŝ) + π − c1π
2, (5.25)

subject to the same initial conditions,

F (0) = F (1) = Fŝ(0) = Fŝ(1) =

∫ 1

0
F (ŝ)dŝ = 0.

Substituting F (ŝ) = emŝ into the left hand side of (5.25) equal to zero and solving the

corresponding quartic equation gives, m = ±2πi, πi and so the complementary function for

(5.25) as,

FC(ŝ) = A cos(πŝ) +B sin(πŝ) + C cos(2πŝ) +D sin(2πŝ).

We can see here how mathematically we would have an issue with the previous solutions.

At p∞ = 3 we have a resonance between the complimentary function and what will be the

particular solution due to the cos(2πŝ) terms having the same frequency. A more appropriate

particular solution will be sought of the form,

FP (ŝ) = Ωŝ cos(2πŝ) + βŝ sin(2πŝ) + α.

Substituting FP (ŝ) into (5.25) and equating terms gives,

α = 1−πc1
4π3 β = 1

6π2 Ω = 0 .
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And so F (ŝ) = FC(ŝ) + FP (ŝ) which gives, after substituting in the boundary conditions,

F (ŝ) =
1

6π2
sin(πŝ) +

1

4π3
cos(2πŝ) +− 1

12π2
sin(2πŝ) +

ŝ

6π2
sin(2πŝ) +

1

4π3
− 2c1

4π3
. (5.26)

In the real world application of the problem it would be possible to increase or decrease the

flow in a smooth fashion and so it would not seem unreasonable to assume that the function

we have above for the case when p∞ = 3 yields the same solution as when (5.22) is taken

towards the limit of p∞ → 3 from above and below. This does happen with these equations.

Figure 5.6 shows the general shapes of the solution for F (ŝ) for when p∞ = 3 using (5.26)

and a value above and below this using (5.22). The values of p∞ above and below have been

taken for illustrative purposes, as these get closer to p∞ the lines appear on top of each other.

When the values are p∞ = 2.999 and p∞ = 3.001 we have agreement up to an error of order

10−8 for all values of ŝ when 0 ≤ ŝ ≤ 1.

Figure 5.6: The function F (ŝ) as a solution of the fourth order differential equation (5.18). The green line is using

(5.22) with p∞ = 3.4 and the blue line using p∞ = 2.6. These lines converge onto the red curve as p∞ → 3. The red

line is from (5.26) at the particular value of p∞ = 3.

5.4.4 Solutions at bifurcation values of p∞

During the earlier work in Section 3, we could classify the bifurcation values of p∞ (shown

in Table 4.1) into two groups. Those that were odd integers for m (where m2 = 1 + p∞),

and those that were non-integer values of m. We shall first take the case of the odd integer
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values for m. (5.24), the expression for the constants in the solution for given values of m,

gives us an indication as to the when the solution breaks down. If we take the expression for

the constant A we can see that substituting one of the odd integer values for m, for example

m = 3, we obtain A = 0
0 . However we can still find a value for this constant. We can calculate

a Taylor expansion for both the numerator and denominator for each constant in (5.24), then

taking the limit of these fractions as we approach the specific odd integer gives a numerical

value for the constant. As an example the values we obtain for (5.24) when m = 3 (which is

when p∞ = 8) are,

A = 0 B = − 1
40π2 C = 0 D = 3

40π2 c1 = 11
5π

We can then use (5.22) to plot out the perturbation of the shape of the elastic boundary from

the semi-circular solution, Figure 5.7 is an example.

Figure 5.7: The perturbation of the shape of an elastic boundary from the semi-circular solution for the problem shown

in Figure 5.4 The function F (ŝ) is a solution of the fourth order differential equation (5.18). We have p∞ = 8 and the

constants from (5.24) were calculated using Taylor expansions centred at p∞ = 8.

Unfortunately the process of expanding the coefficients from (5.24) fails at the non-odd-integer

bifurcation values shown in Table 4.1. The constants A, B, D and c1 all grow rapidly as p∞
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approaches the bifurcation values and all tend to infinity. The problem as presented in Figure

5.1 will have a real solution and in a sense it would be possible to adjust the pressure in a real

world example to pass over these bifurcation values. Therefore we can assume that rather

than there not being a solution to the problem presented, we have a mathematical model

that is breaking down at these particular values, and so we require a different approach to

solving the problem from Figure 5.1. In Chapter 6 we look at a more general approach to

solving this problem. Also, up until now we have restricted ourselves to a weak flow, which

is a restriction we would like to remove. However the work contained in Chapter 5 will form

an appropriate comparison for future work so we can validate future models.



6

Profiles for an Elastic Arch Under a

General Flow

The shape of a bubble emerging from a corner and exposed to flow has been studied by

Ozugurlu and Vanden-Broeck [17]. The motivation for looking at this work is that a numeri-

cal technique is used which we can adapt to the problem for this thesis. We will recreate some

of the work from [17] as a check that our numerical coding is correct and explain the tech-

nique. The numerical procedure makes use of a conformal mapping procedure using complex

variables. The general theory behind conformal mapping is provided by Gross [11] and we will

present the application in the following pages. Once we have established a working numerical

scheme we take a look at the work of Blyth and Parau [4], which modifies the bubble theory

to that of a curved elastic cell, before proceeding on with the problem this thesis is concerned

with.

6.1 The Profile of a Bubble in Corner Flow

We begin by setting up the problem in a similar fashion to Ozugurlu and Vanden-Broeck [17].

Figure 6.1 is a sketch of the physical problem we are representing. The picture represents two

infinitely long walls, OE and OD, centered at the origin with the lower wall running along

the x-axis. The two walls create a fixed angle α. There is a bubble created between the walls

at A and B which creates an angle with the lower wall of β. There is a pressure difference

between the area contained within the bubble and the fluid on the outside which is subject to

flow. B is the middle point of the bubble profile. The pressure inside the bubble is assumed

to be constant.

The potential function, φ, and the stream function, ψ, (see [3] for example) are defined within

the outside flow such that ψ = 0 along the walls and the bubble, and φ = 0 at B. Due to

the fact we are more interested in the solving procedure, rather than the derivation of the

74
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Figure 6.1: Sketch of the corner bubble flow.

problem, we can spare the details which can be readily found in [17] (note we will do the

details relating to our specific problem in due course) and begin by quoting the equation to

be solved,
1

2

(
u2 + v2

)
−K = ξ, (6.1)

on the bubble profile. This comes from Bernoulli’s equation (see [1] for example), where u

and v are the velocity components of fluid flow in the x and y directions, K dimensionless

curvature of the profile of the bubble and ξ is a dimensionaless parameter that is essentially

the pressure difference across the bubble boundary. Equation (6.1) is subject to the conditions

that v = 0 on CD and v
u = tanα on AE. We also specify that at C we have φ = ±1, i.e.

v = u tanβ at φ = 1

v = −u tan(β − α) at φ = −1.

The system is then solved by introducing the complex velocity ζ = u− iv by then seeking a

solution of the form f = φ+ iψ. The flow is then mapped into the complex t-plane (see [11])

using the transformation,

f = −1 + t2

2t
.

The result of this transformation is shown in Figure 6.2. The purpose of this transformation is

that now we have a problem that has been transformed onto a semi-circle and as we have fixed

geometry we can then discretise and create a numerical scheme. Ozugurlu and Vanden-Broeck
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[17] suggest writing the complex potential in the form of,

ζ =
(
1− t2

)2− 2β
π

(
−1

t

)1−α
π
∞∑
n=1

ant
n−1, (6.2)

where an are real coefficients to be found numerically. Note the first bracketed terms on the

right-hand side are to do with singularities specific to the corner problem, and again to go

into these details detracts from the purpose of this section.We will have similar singularities

when we come to the problem of this thesis.

Figure 6.2: Sketch of complex t-plane. Includes an illustrative example of points for N = 1, 2, 3 etc

The idea behind the numerical procedure is to discretise the semi-circle in Figure 6.2 as

shown, and on a finite number of points. We can then substitute into (6.1) at each point on

the semi-circle. Each point defines t, but the an coefficients will be unknown, so we take an

initial estimate, substitute in at each point to create a system of equations which can then

be solved numerically using Newton’s method. From a programming perspective it is more

convenient to use the notation t = |t|eiω, where ω is the parameter to define the specific

point on the semi-circle (i.e. the polar angle). It is worth also noting that ξ is also to be

determined during the numerical process. Some results of this process are shown in Figure

6.3. Whilst it is pleasing to be able to recreate the pictures from [17], we can be a little more

qualitative and compare the numerical scheme developed to that as used in a similar paper

[13]. In this paper the authors are concerned with the deformation of a bubble subject to

flow but importantly numerical values are quoted. After running the scheme we are able to

achieve the same numerical values.
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Figure 6.3: Recreation of bubble profiles from Ozugurlu and Vanden-Broeck [17]. For each of the profiles above we

have α = π
2

, β = π
2

.

6.2 Deformation of Elastic Cell in Uniform Flow

After the successful recreation of the work in Section 6.1 we move on to creating a similar

numerical procedure for the curved elastic cell in this thesis. In Section 5 we discussed the

situation of the flow across a curved elastic boundary when fixed at each end to a horizontal

base. Figure 5.1 was a diagrammatic representation of this. The setup of the problem is also

shown in Figure 6.4, where we additionally labelled extra points and have colour coded the

boundaries to make the coming explanation easier.

We will firstly consider the fluid flow above the boundaries in Figure 6.4. Using the standard

Figure 6.4: Setup of the flow over an elastic cell. The colours are for easy figure recognisation shortly. The green and

the red lines are fixed solid walls and the blue line is the elastic membrane connect over the gap. There is a flow across

the system with a steady speed of U∞. Using Cartesian geometry we will have x and y as distances measured in the

horizontal and vertical directions respectively.

definitions (see [1] for example) of velocity potential, φ, and stream functions, ψ, inside the

flow we have,

u = ∇φ =

(
∂φ

∂x
,
∂φ

∂y

)
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u =

(
∂ψ

∂y
,−∂ψ

∂x

)
and we can define the complex velocity potential as w = φ + iψ where φ and ψ are both

functions of x and y. If we also have z = x+ iy then, we have that w is a function of z. We

can choose to have ψ = 0 along the fixed walls and the elastic boundary. The w-plane is then

shown in Figure 6.5

Figure 6.5: w-plane.

Where we come to solve our problem of finding the shape created in the (blue) elastic cell in

Figure 6.4, we are concerned with only the streamline where ψ = 0. Using the transformation,

w = −1 + t2

2t
, (6.3)

we can transform this into the complex t-plane onto a unit semi-circle. This is useful because

we then, in a sense, fix the geometry of the problem and solve the problem on a shape which

is predetermined. After a little manipulation (6.3) becomes,

t = −w ±
√
w2 − 1,

and so when ψ = 0 we have,

t = −φ±
√
φ2 − 1. (6.4)

If when we come to non-dimensionalise we do this with φ = bφ̃ where b = |OC| = |OB| in

Figure 6.5 then at B and C we will have φ̃ = −1 and φ̃ = 1 respectively. So from (6.4) we

find B at t = 1 and C at t = −1. At the point where φ̃ = 0 we have t = i. When φ̃ → ±∞

we have (6.4) giving us that t→ 0. The result of this transformation is represented in Figure

6.6

Recall that the elastic boundary equations are derived from the set of equations from (5.8).

These were,

q′ = p+ κτ , τ ′ = −κq , m′ = εBκ
′ = q , m = εBκ,
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Figure 6.6: t-plane.

and combined to give,

εBκ
′′ +

εB
2
κ3 − cκ = p. (6.5)

Working from Bernoulli’s equation (see Acheson [1] for example) with (6.5) we have,

1

2
|u|2 +

p

ρ
= B ⇒ 1

2
ρ|u|2 + εB

(
κ′′ +

1

2
κ3 − c

εB
κ

)
= Bρ

on the elastic boundary where B is a Bernoulli constant. Also using the Bernoulli equation

in the fluid at an infinite distance from the elastic arch where |u| → U∞ and p→ p∞ we find,

1

2
ρ|u|2 + εB

(
κ′′ +

1

2
κ3 − c

εB
κ

)
=

1

2
ρU2
∞ + p∞.

We will non-dimensionalise using l as a length scale that we will discuss and define shortly.

For now we will define s = ls̃ and so κ = 1
l κ̃. We will also define u = U∞ũ =

 u

v

 =

U∞

 ũ

ṽ
,

 then,

1

2

ρl3U2
∞

εB
|ũ|2 +

(
κ̃′′ +

1

2
κ̃3 − l2c

εB
κ̃

)
=

1

2

ρl3U2
∞

εB
+
l3p∞
εB

.

Introducing simplifying substitutions,

α̃ = l3ρU2
∞

εB
and σ̃ = l2c

εB
and p̃ = l3p∞

εB
, (6.6)

we arrive at,
1

2
α̃|ũ|2 +

(
κ̃′′ +

1

2
κ̃3 − σ̃κ̃

)
=

1

2
α̃+ p̃. (6.7)
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To set the appropriate length scale, l, we need to consider that we have stated we would like

to have φ = bφ̃. Since ∇φ =
(
∂φ
∂x ,

∂φ
∂y

)
= u has units of speed, this implies that φ has units

of speed × distance, therefore the value of b has units of speed × distance. Since we wish to

include U∞ as part of the non-dimensionalising process, we can then say, b
U∞

has the units of

distance and is an appropriate length scale for the non-dimensionaling process, hence l = b
U∞

.

Equation 6.7 holds on the (blue) elastic boundary shown in Figure 6.6. Since along this line

we are a fixed radius (of length 1) from the origin it is convenient to use the form t = eiω,

where ω is the polar angle with 0 < ω < π. We will solve the problem numerically using a

complex velocity ζ = ũ − iṽ. From Figure 6.6 we have ζ ∼ O
(
t2 − 1

)
as t → ±1. We will

then seek a solution in the form,

ζ =
(
1− t2

) ∞∑
n=1

cnt
n−1, (6.8)

where cn are real coefficients to be found. We will expand on the detail of the above paragraph

in the next few pages.

Since we have ζ = ũ − iṽ the (non-dimensional) far field velocity potential gives ζ → 1 as

t → 0. This in turn leads to c1 = 1 from (6.8). In order to numerically solve the problem

we will truncate (6.8) after n = N terms. We can then use this to find ũ and ṽ, which can

be substituted into (6.7) at N equally spaced points from B to C along the blue curve in

Figure 6.6, whilst fixing α and p̃. We will have N − 1, cn coefficients (since c1 = 1) and

σ will be another unknown ensuring we have N unknowns for N equations. We will solve

this numerically using Newton iteration. For our numerical procedure we will use N equally

spaced points for ω with 0 < ω < π. Since we exclude ω = 0 and ω = π, we can create N + 1

equally spaced points for 0 ≤ ω ≤ π (we shall call these our ”master grid”) and then the N

collocation points can be at the mid-points between these N + 1 master grid points. This will

give us the formula for ω at our N collocation points as,

ω = π
n− 1

2

N
, (6.9)

where 1 ≤ n ≤ N . In order to proceed with the numerical calculations, (6.7) shows us we

need to find κ̃ in terms of ũ and ṽ.
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Working from the definition of the non-dimensional potential flow with,

xφ = ũ
ũ2+ṽ2 and yφ = ṽ

ũ2+ṽ2
, (6.10)

and the definition of curvature in cartesian coordinates given by,

κ =
xφyφφ − yφxφφ
(x2
φ + y2

φ)3/2
,

and apply the chain rule with φ = − cosω (which we will justify later), we can show that the

curvature is given by

κ̃ =
1

sinω

ũṽω − ṽũω
(ũ2 + ṽ2)1/2

. (6.11)

When substituting into (6.7) we also need to differentiate (6.11) with respect to the arc length,

s̃. Working from the same geometrical property from Figure 2.4 which was,

ds2 = dx2 + dy2,

we can show1

ds̃

dφ̃
=
(
x2
φ̃

+ y2
φ̃

)1/2
. (6.12)

Also, note that from (6.3)

φ̃+ iψ̃ = −1 + t2

2t
,

where ω = bω̃ and ψ = bψ̃ to be consistent with the earlier definition of φ = bφ̃. Since along

the boundary we have t = eiω, see Figure 6.6, we then find,

φ̃+ iψ̃ = −1 + e2iω

2eiω
= −1

2

(
e−iω + eiω

)
= − cosω. (6.13)

We know ψ̃ = 0 from the setup of the problem shown in Figure 6.5, but we now have

φ̃ = − cosω along the boundary. This can then be used along with (6.12),

ds̃

dφ̃
=
ds̃

dω

dω

dφ̃
=
ds̃

dω

(
1

sinω

)
=
(
x2
φ̃

+ y2
φ̃

)1/2
, (6.14)

⇒ ds̃

dω
= sinω

(
x2
φ̃

+ y2
φ̃

)1/2
. (6.15)

And since from (6.10),

x2
φ + y2

φ =
1

ũ2 + ṽ2
, (6.16)

1The details of this manipulation are geometrical and do not add/gain anything to the current text here

and so are shown only in Appendix F.
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we then have,

ds̃

dω
= sinω

(
1

ũ2 + ṽ2

)1/2

⇒ dω

ds
=

(
ũ2 + ṽ2

)1/2
sinω

, (6.17)

⇒ d

dω

(
dω

ds̃

)
=

(
(ũũω + ṽṽω) sinω

(ũ2 + ṽ2)1/2
−
(
ũ2 + ṽ2

)1/2
cosω

)
÷ sin2 ω,

⇒ d2ω

ds̃2
=
dω

ds̃

d

dω

(
dω

ds̃

)
=

(
ũ2 + ṽ2

)1/2
sinω

(
(ũũω + ṽṽω) sinω

(ũ2 + ṽ2)1/2 sin2 ω
−
(
ũ2 + ṽ2

)1/2
cosω

sin2 ω

)
,

⇒ d2ω

ds̃2
=

(ũũω + ṽṽω) sinω −
(
ũ2 + ṽ2

)
cosω

sin3 ω
. (6.18)

Using the chain rule, we can then substitute (6.11) along with (6.17) and (6.18) into (6.7)

since,

κ̃′′ =
d2κ̃

ds̃2
=
d2κ̃

dω2

(
dω

ds̃

)2

+
dκ̃

dω

d2ω

ds̃2
,

to obtain an equation to be solved where ω is the independent variable, remembering ũ and

ṽ are functions of ω from (6.8), and d2κ̃
dω2 can be directly obtained from (6.11)2.

To evaluate (6.11) we need to know ũω and ṽω. Therefore we need to differentiate (6.8) with

respect to ω so we can then take real and imaginary parts. Since we have t = eiω we then

have,

ζω = ieiω
dζ

dt
= it

dζ

dt
, (6.19)

and from (6.8) we have,

dζ

dt
=
(
1− t2

) ∞∑
n=1

(n− 1)cnt
n−2 − 2t

∞∑
n=1

cnt
n−1. (6.20)

From (6.8) and (6.19) we can then evaluate everything we need at each of the N collocation

points for (6.11) and (6.18), which means (6.7) can be calculated at each of these N collocation

points since,

ũ = Re(ζ) ṽ = −Im(ζ)

ũω = Re(ζω) ṽω = −Im(ζω)
.

After numerically satisfying the boundary equations, we then need to consider how to find

(x, y) coordinates to be able to plot the shape of the elastic cell. Recall, we have N equally

2In practice this is very lengthy to do by hand due to the composite function nature of (6.11), and so could

either done numerically as part of the numerical procedure, or more explicitly using algebraic manipulation

software such as Maple.
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spaced collocation points along the curved semi-circle betweenB and C in Figure 6.6 excluding

the end points, and so if we include the end points we have N + 1 equally spaced master grid

points. This is shown in Figure 6.7. If we let ω̄ be a slightly adjusted value for ω so that ω̄n

gives the polar angle at (xn, yn) (and so ωn would be the mid-point of ω̄n+1 and ω̄n), we can

then use a mid-point finite difference (see [16] for example) to numerically calculate values

for (xn, yn) as we move around the semi-circle, where 1 ≤ n ≤ N + 1. It is worth making

explicitly clear here that (xn, yn) are not points on the semi-circle in Figure 6.7, more that it

is at these points where we are able to compute values for (xn, yn).

Figure 6.7: The location of numerically calculated variables around the unit-semi-circle from the complex t-plane as

shown in Figure 6.6. The circular points correspond to the N collocation points that satisfy the boundary conditions.

The cross points correspond to where we will calculate the shape of the elastic cell using a mid-point finite difference

method. At each circular point we will have numerically calculated ũ and ṽ whilst ω was predefined. At each cross point

we have defined ω̄ and can computer the physical (x, y) coordinates of the deformed elastic cell.

From (6.10) with φ = − cosω we have,

dx

dω
=
dx

dφ̃

dφ̃

dω
=

ũ

ũ2 + ṽ2
sinω,

and so our mid-point finite difference becomes,

xn+1 = xn + (ω̄n+1 − ω̄n)
ũn

ũ2
n + ṽ2

n

sinωn, (6.21)

where here we have 1 ≤ n ≤ N . Similarly we also have,

yn+1 = yn + (ω̄n+1 − ω̄n)
ṽn

ũ2
n + ṽ2

n

sinωn, (6.22)

and we are free to choose (x1, y1) to be any initial point in physical space.

The length scale we have chosen to use, l = b
U∞

, is convenient for solving the problem, but

not so convenient for presenting results since the length of the elastic arch changes with the

solution due to the fact it is dependent on the velocity potential in b and the flow speed in



CHAPTER 6. PROFILES FOR AN ELASTIC ARCH UNDER A GENERAL FLOW 84

U∞ for each situation. Therefore it is helpful to rescale. We can evaluate the dimensionless

cell perimeter, λl = λ b
U∞

, of the elastic from B to C in Figure 6.4 using,

λ =

∫ b

−b

(
ũ2 + ṽ2

)− 1
2 dφ,

which comes from integrating (6.14) along the boundary and using (6.16). For numerical

calculation purposes it is useful to note that φ̃ = − cosω along the elastic cell from (6.13),

and use the relation (6.15) to calculate λ with,

λ =
1

b

∫ 1

−1
sin(ω)

(
ũ2 + ṽ2

)− 1
2 dω.

We then have 0 ≤ s̃ ≤ λ around the cell perimeter and so 0 ≤ L
λ s̃ ≤ L where L is the physical

length of the cell perimeter (in Figure 5.1 for example). Because s = ls̃, this gives l = L
λ and

s = L
λ s̃ since 0 ≤ s ≤ L, and then also κ = λ

L κ̃. If we substitute the re-scaling for s̃ (and κ̃)

back into (6.7) and multiply by
(
λ
L

)3
then we have,

1

2

(
λ

L

)3

α̃|ũ|2 +

(
κ′′ +

1

2
κ3 −

(
λ

L

)2

σ̃κ

)
=

1

2

(
λ

L

)3

α̃+

(
λ

L

)3

p̃,

which we can simplify with the substitutions,

α =
(
λ
L

)3
α̃ and σ =

(
λ
L

)2
σ̃ and P =

(
λ
L

)3
p̃,

to have,
1

2
α|ũ|2 +

(
κ′′ +

1

2
κ3 − σκ

)
=

1

2
α+ P, (6.23)

as an equivalent equation to (6.7) but where we more practically define the length scale within

the problem shown in Figure 6.4, i.e. fix L which is the length of the elastic arch.

We still need to impose a condition to fix the gap between B and C in Figure 6.4, i.e. attach

the elastic at the end points, but if we relax that condition temporarily then at this point

we can look at the work of Blyth and Parau [4] and try to validate the work in this section

so far by recreating some results from this paper. The work presented in [4] is actually more

concerned with an elastic ring in no fixed space similar to Figure 2.3, and the solution is

created in the first quadrant of Cartesian axes and then presented after reflections to create

an enclosed loop. Additionally, in order to present results the cell needs to be rescaled so

that the cell itself has the correct perimeter with L = π. The reason for only computing in
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the first quadrant is an assumption of both horizontal and vertical symmetry in the solution.

Due to the nature of the imposed symmetry the solutions presented in [4] are obtained by

solving numerically over only the quarter circle shown in the first quadrant of Figure 6.6.

Since 0 < ω < π
2 , (6.9) is replaced with,

ω =
(π

2

) n− 1
2

N
,

at each of the n collocation points for 1 ≤ n ≤ N . Additionally, the assumption of symmetry

allows a change in power3 to 2n−2 instead of n−1 in the summation parts of the ζ functions.

And so (6.8) and (6.20) are replaced with,

ζ =
(
1− t2

) N∑
n=1

cnt
2n−2,

dζ

dt
=
(
1− t2

) N∑
n=1

(2n− 2)cnt
2n−3 − 2t

N∑
n=1

cnt
2n−2.

The rest of the procedure is then the same for solving the system described in Figure 6.4, we

simply need to reflect the solution vertically. The main equation to solve in [4] is similar to

(6.7), however there is a sign difference that comes from the fact when deriving the equations

in this thesis we defined p = ps−pi where as the authors in [4] define p = pi−ps, however this

is still the same equation since the authors have also defined κ to be the negative version as

we have defined κ. Comparison between the results obtained from the numerical procedure

above and [4] proved successful and Figure 6.8 is an example of a recreation of some of the

solutions found in [4]. Also, in line with [4] we will define a measure of the bending energy

as,

E =
1

L

∫ L

0
κ2ds.

6.3 Compare to Weak Flow Perturbation Method

We can compare the fully non-linear solution from this section of the report to the solution

found in Section 5 where we were concerned with a linear method solution of weak flow. In

Section 5 we looked at the the situation where the elastic’s natural shape, when not subjected

3The proof of the different power is in Appendix E.
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Figure 6.8: Solution to the problem of an elastic cell subjected to a uniform external flow. Here we have a the

background pressure of P = 0. The left graph is a solution branch showing the energy, E, as the flow speed around the

cell, α, is increased. The right picture shows the cell profiles starting from a circle when there is no flow at α = 0, up

to when we have ”pinching” at α = 29.3.

to a pressure difference or flow over the boundary, was a perfect semi-circle with an elastic

length L and radius a (see Figure 5.4 for example). Keeping in the symmetry of the problem

we can first fix the gap between B and C in Figure 6.4. We can do this by fixing,

L

λ
(x1 − xN+1) = a,

if we are still solving the problem on the first quarter-circle. In the particular case where we

have a = 1, and hence L = π and the condition becomes,

x1 − xN+1 =
λ

π
.

In order to make sure we have the right number of unknowns for the right number of equations

we can sacrifice one of the collocation points in the numerical scheme, where we evaluate the

elastic boundary condition (6.7) , and replace it with the new condition.We can introduce a

weak flow and then compare the result of this to the work from Section 5.

From (6.21) and (6.22) we have numerically computed (x, y) coordinates for the curved elastic

at each of the numerical computed collocations points as we move around the elastic. In the

work in Section 5 we looked at a weak flow as a perturbation from a perfect semi-circle. This

gave us the function F (ŝ) where F was the perturbation and ŝ was the distance traveled

around the elastic. This gives us a good opportunity to compare with our numerical solution.

To do this we will need to be able to work out the shape of our elastic boundary after our
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numerical streamline solution and subtract a semi-circle, this should then be comparable to

F (ŝ). With a formulation where the origin is at the centre of the base of the semi-circular

solutuon, since we have non-dimensionalised such that the semi-circular solution would yield

a unit radius, we can work out F at each numerical (xi, yi) point by using Pythagoras with,

F (s̃i) =
√
x2
i + y2

i − 1,

where s̃i is the distance traveled around the boundary.

Figure 6.9: Finding the link between s̃, the distance traveled around the elastic cell, and the coordinates at each

collocation point (xi, yi). Here δs̃ is the change in s̃ from s̃i and s̃i−1.

In Figure 6.9 we have δs̃ as the change in distance between s̃i and s̃i−1, where these are

computed at (xi, yi) and (xi−1, yi−1) respectively. Hence,

δs̃ =

√
(xi − xi−1)2 + (yi − yi−1)2,

and so,

s̃1 =
√

(x1 − x0)2 + (y1 − y0)2

s̃2 =
√

(x2 − x1)2 + (y2 − y1)2 + s̃1

s̃3 =
√

(x3 − x2)2 + (y3 − y2)2 + s̃2

etc.

,

and then in general we have,

s̃i =

N+1∑
i=1

√
(xi − xi−1)2 + (yi − yi−1)2 + s̃i−1.

Then we have s̃0 = 0, and after taking into account the length of the cell in the streamline

solution (i.e. π) since the work to create Figure 5.5 had 0 ≤ s̃ ≤ 1,

1

π

(
N+1∑
i=1

√
(xi − xi−1)2 + (yi − yi−1)2 + s̃i−1,

√
x2
i + y2

i − 1

)
,
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plots F (s̃) at each of the collocation points (xi, yi).

In order to make sure we compare the fully non-linear problem in the section to the weak

flow linear problem in the earlier work, it will be useful to express the equations from each

method in similar ways so we can match up each of the parameters of the problem. The weak

flow linear problem was defined by (5.10) which was given by,

κ̂ŝŝ +
1

2
κ̂3 − ĉκ̂ = E + δP (ŝ)

where,

E = p∞L3

εB
, δ = 1

2
ρU2L3

εB
, P (ŝ) = 1− 4 sin2 (πŝ) + δP1(ŝ) + ... ,

and so, looking up to terms involving δ only since δ << 0, we have,

κ̂ŝŝ +
1

2
κ̂3 − ĉκ̂− δ

(
1− 4 sin2 (πŝ)

)
=
p∞L

3

εB
.

In the case of L = π and taking εB = 1 the equation above becomes,

4δ

π3
sin2 (πŝ) +

1

π3

(
κ̂ŝŝ +

1

2
κ̂3 − ĉκ̂

)
=

δ

π3
+ p∞.

We can also reverse the non-dimensionlising process where,

s = Lŝ = πŝ , κ = 1
L κ̂ = 1

π κ̂ , ĉ = L2c
εB

= π2c ,

to obtain,
4δ

π3
sin2(s) +

(
κss +

1

2
κ3 − cκ

)
=

δ

π3
+ p∞, (6.24)

for the weak flow problem using linear theory.

The full non-linear problem was given by (6.23) which was,

1

2
α|ũ|2 +

(
κ′′ +

1

2
κ3 − σκ

)
=

1

2
α+ P, (6.25)

and from how we arrived at this equation we have, in the case when L = π,

α =
(
λ
π

)3
α̃ and P =

(
λ
π

)3
p̃ .

Solving the fully non-linear problem has α̃ and p̃ as predefined parameters to set the flow

speed and background pressure, and weak flow linear theory has δ and p∞ as predefined

parameters to set the flow speed and background. Comparing (6.24) and (6.25) we can see,

δ = π3

2 α = λ3

2 α̃ and p∞ = P =
(
λ
π

)3
p̃ .
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Figure 6.10 shows the streamline numerical procedures deviation from the semi-circle on the

right and the corresponding linear analysis solution from Chapter 5. Whilst the numerical

procedure is converging and gives us a similar profile in shape, there seems to be a slight

discrepancy. Upon closer inspection it appears that the integral condition from Chapter 5

is not being satisfied in the numerical process. This appears to be related to the numerical

calculation of the length of the cell (and therefore λ) in the later scheme. This will be referred

to the chapter for future investigation.

Figure 6.10: Comparing the general numerical solution to the pertubabtion analysis.



7

Future Work

We will briefly outline some ideas for extending and continuing the research presented in each

of the previous chapters of this thesis. In chapter 2 we discussed the profiles of an elastic

ring under pressure. In particular, during section 2.5 we discussed the contact points where

sides of the elastic are deformed to the point where they come into constant with other sides.

In Flaherty et al.[10] the problem formulation continues after these contact points using a

different method to analyse the profiles where sides become squashed other and the contact

point becomes a section of the elastic rather than only point. This type of analysis could be

extended into the rest of the problems in this thesis, for example in the fluid annulus situation

from chapter 3. For the elastic arch problem presented in chapter 4, Figure 4.1 shows how

the elastic arch is fixed at each end, it would be interesting to look at the contact if the area

under the arch in Figure 4.1 was a solid base.

The development of the general numerical procedure that was presented in chapter 6 does

not have as many restrictions as the analysis methods used in the preceding chapters. For

example, in chapter 4 and chapter 5 the analyses are based on perturbing a semi-circle shape

and having a weak flow solution respectively. The general numerical procedure does not have

small parameter expansions as used in the other two methods and so we can seek a greater

range of solutions.

There are three main areas to focus on for continuing work from this thesis. Firstly, from

chapter 3 where we look at the fluid annulus problem. This chapter explained and demon-

strated the solution for an anulus held by surface tension, and so the next stage was to develop

the method when we have elastic boundaries instead of surface tension. The solution would be

to continue with the same numerical process from section 3.1, except our Bernoulli equation

would become,
1

2
ρU2

A −
(
εAκ

′′
A + εA

κ3
A

2
− cAκA

)
= C1,
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1

2
ρU2

B +

(
εBκ

′′
B + εB

κ3
B

2
− cBκB

)
= C2,

where A and B subscripts relate to the outer and inner rings respectively (and where U , κ,

ρ and ε are the flow speed, curvature, fluid density and bending modulus respectively, and

consisted with the notation in the previous chapter, and the other letter are constants to be

found).

In chapters 4 and 5 we looked at the elastic arch problem. In both of these situations we

neglected other forces, such as gravity, which would have an impact on the solutions available

to find. The force of gravity would not have to act in the downward direction in all the setup

diagrams, but could be at different angles. The effect of changing the direction of gravity

would be the same problem as studying the arches on slopes. Also, considering the weak flow

situation in chapter 5, if gravity was directed upward in Figure 5.4 then it would be the same

as turning the problem upside down and having an object with an elastic cushion bottom

floating on a water surface. Then we could be looking at the stability of waves on this system,

which has obvious applications to floating structures in the real world.

In chapter 6, there is still more work to do. When comparing the fully numerical solution

developed in the early part of the chapter to that the perturbation solutions form the earlier

chapters it appeared there was a slight discrepancy. It appears that the integral condition

from chapter 4 was not being adhered to in the fully numerical procedure. Upon further

exploration it appears that the length of the elastic cell was not being maintained correctly

in the numerical procedure, and this is where the issue was. Unfortunately this did not prove

to be an easy issue to resolve, and due to the ending of research time, this will have to be left

as a point to pick up on at a later date. The length of the cell perimeter was the equation,

λ =
1

b

∫ 1

−1
sin(ω)

(
ũ2 + ṽ2

)− 1
2 dω.

Preserving the length of the elastic is the last issue to resolve to then have solved this as a

general problem.



A

A General Numerical Scheme

We will develop a numerical scheme to solve the equations of an elastic loop that we will

use in this report. We will find that we will know some initial conditions and have some

additional boundary conditions. We develop a scheme whereby we assume sensible estimates

for unknown initial conditions and compare results to the other known boundary conditions to

refine our estimate. Assuming that we do not know our initial conditions such that τ(0) = α

and k(0) = β (where τ and k are functions related to whatever problem we attempt to solve,

and α and β are constants). The idea being to then run the system to include Newton’s

method (see Jacques and Judd [12] for example) and deduce actual values for α and β, and

then using these values create a plot showing y against x (assuming that x and y are position

coordinates).

We will start by expressing the system as a first order system. We then run the Runge Kutta

loop on the computer and define some function,

F(α, β) =

 F1

F2

 (A.1)

defining the function so that F = 0 if we had somehow guessed the correct values for α and

β. We will run through solving the system with a suitable guess for α and β. We can then

perturb our values of α and β by a small value h.

If we look at a Taylor expansion of F(x0 + h), where x0 = (α, β) we find,

F(x0 + h) = F(x0) + J

∣∣∣
x0

· h + ... (A.2)

where,

Jij =
∂Fi
∂xj

∣∣∣∣
x0
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From the way we have defined F we require F = 0 and so when we know α and β we then

have F(xo + h) = 0, i.e. our guess without slight adjustment of h is closer to zero than when

we include the adjustment, and hence (A.2) approximately becomes,

0 = F(x0) + J · h

h = −J−1 · F(x0) (A.3)

and with this value of h we can then have a closer approximation to x = (α, β) as x1 = x0+h.

Now, we know our function F, initial values, and we can choose our perturbation so it is

suitably small (e.g. 10−1 ). The question is how do we find Jij . Writing J out as a matrix

we see,

J =


∂F1

∂α

∂F1

∂β

∂F2

∂α

∂F2

∂β

 (A.4)

If we allow our perturbation ε = (εα, εβ) then,

∂F1

∂α
' F1(α+ εα, β)− F1(α, β)

εα

∂F1

∂β
'
F1(α, β + εβ)− F1(α, β)

εβ

∂F2

∂α
' F2(α+ εα, β)− F2(α, β)

εα

∂F2

∂β
'
F2(α, β + εβ)− F2(α, β)

εβ

using finite difference approximations.

So, to summarize how we shall numerically solve this problem on the computer.

• Estimate values for α and β

• Run the Runge Kutta scheme for solving our first order system

• Evaluate F

• Adjust our values of α and β by εα and εβ respectively

• Run the Runge Kutta scheme again
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• Evaluate F again

• Calculate the matrix (A.4) and then use this to calculate (A.3)

This will then give use a closer approximation for α and β as x1 = x0 + h. We can then run

the whole thing until a suitable degree of accuracy is obtained.



B

Approximating the Location of

Solutions

To help find the location of the additional bifurcation points, I begin looking at the first graph

in Figure 4.7. These bifurcations occur at the tip of the ’peaks’ for q̂(0). These appear to be

linear so using only those three I tried to fit a linear regression line to see if was good fit to

fist find a link between q̂ and p̂. (Note also if we have p̂ than we also have τ̂(0) = −p̂, and

k̂(0) = 1 from the other graph on Figure 4.7). The linear regression equation for these first

three bifurcations came out to be,

q̂(0) = 2.8436p̂+ 0.1073

with an R2 = 1 (not exactly but when rounded to 4 significant figures. If I then number the

bifurcations such that n = 1 for the first one (smallest p̂-value), n = 2 for the second, n = 3

for the third and so on... I can then attempt to fit a regression model with p̂(n). This came

out to be,

p̂ = 1.6172n2 + 1.621n+ 0.0876

again with a R2 = 1.

Using these equations I attempted to predict the point for n = 4, which gave p̂ = 32.4468 and

q̂(0) = 92.3730. Using these as initial estimations for the numerical scheme I then found the

solutions to be, p̂ = 32.45 and q̂ = 92.41 correct to two decimal places. Using the additional

values I was then able to fit an even more accurate line. Using this process I created Table

B.1, with the assumption that the greater the values of n included would give a more accurate

prediction equation. Table B.1 is a representation of the fitted prediction lines.

Due to the way we have been working we do have to appreciate rounding errors in numerical

and statistical work, however Table B.1 does seem to suggest our equations correct to 2

decimal places are,

p̂ = 1.62n2 + 1.64n+ 0.06
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n’s Included p̂ q̂(0)

1,2,3,4 1.6174n2 + 1.6203n+ 0.0882 2.8437p̂+ 0.1067

1,2,3,4,5 1.6181n2 + 1.6171n+ 0.0911 2.8441p̂+ 0.1019

1,2,3,4,5,6 1.6281n2 + 1.5630n+ 0.1473 2.8467p̂+ 0.0566

1,2,3,4,5,6,7 1.6155n2 + 1.6411n+ 0.0566 2.8458p̂+ 0.0780

1,2,3,4,5,6,7,8 1.6152n2 + 1.6432n+ 0.0538 2.8447p̂+ 0.1072

1,2,3,4,5,6,7,8,9 1.6156n2 + 1.6398n+ 0.0585 2.8444p̂+ 0.1192

Table B.1: Prediction lines for bifurcation points. These are fitted regression lines with R2 = 1

for each line to 4 decimal places.

q̂(0) = 2.8p̂+ 0.12
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Figure B.1: Regression models to predict bifurcation points. n refers to n-th bifurcation along the line of increasing

pressure. Here we have a graphical illustration of Table B.1.

Unlike previous bifurcation points, which were all semi-circular solutions, these bifurcations

all look somewhat different. These are shown in Figure 4.10.



C

General Shape Solution - Fourier

series

As we introduce a flow to our situation the shape to the elastic will deform and so not be a

perfect (semi) circle. However, it would seem reasonable for a very small flow that we could

seek a solution as a perturbation of the flow around a the semi-circle.If we have a shape that

is a very slightly deformed circle (as shown in Figure C.1) then we can model the boundary

as r = a + aδf(ω) where δ << 1. Note that we have aδf(ω) as opposed to δf(ω) to be

consistent with the dimensions for r because δ and f(ω) are dimensionless. We can also

define φ = φ0 + δφ1 where φ0 is given by (5.2) and φ1 is from the perturbed flow.

Figure C.1: Flow around a circle. The radius of the circle is a, and ω is the polar angle. The flow around the outside

of the circle satisfies Laplace’s equation. n is the vector normal to the surface, and there is now flow through this.

From Laplace’s equation, since we already have φ0 as a satisfying solution, we have,

∇2φ = ∇2φ0 +∇2φ1 = ∇2φ1 = 0

For our infinity solution we have ∇φ1 = 0 as r → ∞ because we require ∇φ → U i and we

already have ∇φ0 → U i. The condition of no normal flow (n · u) through the boundary is a

little harder when we do not have a perfect circle. We require,

n · ∇φ = 0 (C.1)
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The normal to a curve can be found (see [20] page 16) from,

n =
∇ (r − (a+ aδf))

|∇ (r − (a+ aδf)) |

and so in polar coordinates where ∇ =
(
∂
∂r ,

1
r
∂
∂ω

)
we have,

n =

(
1, 1

r (−aδf ′)
)

1 +O (δ2)
=

(
1,−aδ f

′

r

)
since δ << 1. Then (C.1) becomes,(

1,−aδ f
′

r

)
·
(
∂

∂r
,
1

r

∂

∂ω

)
φ =

∂φ

∂r
− aδf ′

r2

∂φ

∂ω
= 0

Substituting in r = a+ aδf we then have,

∂φ

∂r
− aδf ′ ∂φ

∂ω
(a+ aδf)−2 = 0 (C.2)

Now,

(a+ aδf)−2 = a−2 (1 + 1δf)−2 = a−2
(
1− 2δf +O(δ2)

)
and so (C.2) becomes,

∂φ

∂r
− δf ′

a

∂φ

∂ω

(
1− 2δf +O(δ2)

)
= 0

∂φ

∂r
− δf ′

a

∂φ

∂ω
+O(δ2) = 0 (C.3)

On the curved boundary we have,

φr(a+ aδf) = φr(a) + aδfφrr(a) + ...

φω(a+ aδf) = φω(a) + aδfφωr(a) + ...

and so (C.3) becomes,

φr(a) + δ

(
afφrr(a)− f ′

a
φω(a)

)
+O(δ2) = 0

into which we can substitute φ = φ0 + δφ1 to obtain,

∂φ0

∂r

∣∣∣∣
r=a

+ δ

(
∂φ1

∂r

∣∣∣∣
r=a

+ af
∂2φ0

∂r2

∣∣∣∣
r=a

− f ′

a

∂φ0

∂ω

∣∣∣∣
r=a

)
+O(δ2) = 0

But we already have that the first term is zero from our circle solution. Also taking δ << 1

we then end up with a condition on r = a of,

∂φ1

∂r
+ af

∂2φ0

∂r2
− f ′

a

∂φ0

∂ω
= 0
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∂φ1

∂r
= −af ∂

2φ0

∂r2
+
f ′

a

∂φ0

∂ω
(C.4)

Recall that φ0 is given by (5.2) and so,

∂φ0

∂ω
= −U

(
r +

a2

r

)
sinω

∂2φ0

∂r2
=

2Ua2

r3
cosω

and so when r = a we obtain,
∂φ0

∂ω
= −2Ua sinω

∂2φ0

∂r2
=

2U

a
cosω

and so (C.4) becomes,
∂φ1

∂r
= −2Uf cosω − 2Uf ′ sinω (C.5)

In summary, we are seeking a solution for ∇2φ1 = 0 subject to the conditions that ∇φ1 → 0

as r → ∞, and (C.5) holds when r = a. If we seek a solution in the form of r = a + ag(ω)

where g(ω) can be written as a Fourier series,

g(ω) =
∞∑
−∞

gne
inω

then we could then define any shape of our perturbed circle simply by increasing the number

of terms in the Fourier series. I.e. we can choose f(ω) = bm cos(mω) (where m ∈ Z) as one of

our Fourier terms where we are free to choose m to define our shape, and we can include any

number of terms for the general solution. Here, bm is a Fourier coefficient. Understanding

the values for these will be the ultimate problem to solve for our fluid flow problem as it is

the shape we are looking to find.

An interesting question to pose at this stage is what are the shapes of the deformations as

we change values of m. There are some example sketches shown in Figure C.2. It is worth

noting that these shapes are explored in more detail in [10] and in Section 3 of this report.

The case where m = 0 is an enlargement to the size of the circle. We can see this as

r = a+aδb0 cos(0) becomes r = a(1 + δb0). Whilst it is interesting in a general sense this will

not be relevant for our elastic problem as we are fixing the length of the surface. However,
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Figure C.2: Example shapes of the elastic curve as we choose various values of m. The pictures show m = 2, m = 3,

m = 4, and m = 5. Purely to construct the pictures we have a unit circle (i.e. a = 1) and the deformation (i.e. δbm)

has been exaggerated.

it does tell us that for that case we must have b0 = 0. The situation for m = 1 refers to

a translation of the circle along the x-axis. Again, whilst interesting in the general sense,

for our particular flow problem when the elastic membrane is fixed we will have no m = 1

solutions.

Substituting f(ω) = bm cos(mω) into (C.5) we obtain,

∂φ1

∂r

∣∣∣∣
r=a

= −2Ubm cos(mω) cosω + 2Ubmm sin(mω) sinω

⇔ ∂φ1

∂r

∣∣∣∣
r=a

= −2Ubm

(
cos(mω) cosω −m sin(mω) sinω

)
(C.6)

This boundary condition now presents us with an opportunity to seek a solution in stages.

If we are able to find two solutions, one that solves the problem for the right hand side of

(C.6) equal to −2Ubm cos(mω) cosω and the other that solves for the right hand side equal

to 2Ubmm sin(mω) sinω, we should be able to find an overall solution by summing them

together.

The problem we now turn to is ∇2φ1 = 0 subject to the conditions that ∇φ1 → 0 as r →∞,

and ∂φ1

∂r

∣∣∣
r=a

= −2Ubm cos(mω) cosω .

It is worth noting the identity 2 cos(mω) cosω = cos(m − 1)ω + cos(m + 1)ω at this stage.

We can then transform the problem again into two separate problems to be solves and then

summed together in the form of,
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∇2φ1 = 0 subject to the conditions that ∇φ1 → 0 as r →∞, and ∂φ1

∂r

∣∣∣
r=a

= −Ubm cosnω,

where n = m− 1 for one part of the solution, and n = m+ 1 for the other part.

We begin by seking a solution of the form φ1 = h(r) cosnω. Substituting this into ∇2φ1 = 0

we have,

∇2φ1 = φ1rr +
φ1r

r
+
φ1ωω

r2

= h′′ cosnω + cosnω
h′

r
− cosnω

n2h

r2

= h′′ +
h′

r
− n2h

r2
= 0

This form seems to suggest that we could seek a solution of the form h = rβ. Substituting

this into the above gives,

β(β − 1)rβ−2 + β
rβ−1

r
− n2 r

β

r2
= 0

⇔ β(β − 1)rβ−2 + βrβ−2 − n2rβ−2 = 0

⇒ β(β − 1) + β − n2 = 0

⇒ β2 = n2 ⇒ β = ±n

Hence h = Arn+Br−n and therefore φ1 =
(
Arn+Br−n

)
cosnω. From this solution we find,

∇φ1 =
((
nArn−1 − nBr−n−1

)
cosnω,−n

(
Arn−1 +Br−n−1

)
sinnω

)
As r →∞ we have,

∇φ1 →
(
nArn−1 cosnω,−nArn−1 sinnω

)
Because we require ∇φ1 → 0 we must have A = 0. So φ1 = Br−n cosnω. This then gives

φ1r = −Bnr−n−1 cosnω. When r = a we require φ1r = −Ubm cosnω and so,

−Bn
an+1

cosnω = −Ubm cosnω

⇒ −Bn
an+1

= −Ubm ⇒ B =
Ubma

n+1

n

Therefore,

φ1 =
Ubma

n+1

nrn
cosnω
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Recall that this was half a solution, we must have a two part solution (that when n = m− 1

and when n = m+ 1) and so,

φ1 =
Ubma

m

(m− 1)rm−1
cos(m− 1)ω +

Ubma
m+2

(m+ 1)rm+1
cos(m+ 1)ω (C.7)

Turing ourselves back to how we solved the problem by splitting (C.6) into two parts we now

solve the similar problem of... ∇2φ1 = 0 subject to the conditions that ∇φ1 → 0 as r → ∞,

and ∂φ1

∂r

∣∣∣
r=a

= 2Ubmm sin(mω) sinω .

Again it is worth noting an identity 2m sin(mω) sinω = m cos(m−1)ω−m cos(m+1)ω at this

stage. Then again we can solve in two parts the problem ∇2φ1 = 0 subject to the conditions

that ∇φ1 → 0 as r →∞, and ∂φ1

∂r

∣∣∣
r=a

= Ubmm cosnω,

where n = m− 1 for one part of the solution, and n = m+ 1 for the other part.

We begin by seeking a solution of the form φ1 = h(r)m cosnω. Substituting this into∇2φ1 = 0

as before and applying the infinity condition we have,

φ1 =
Bm

rn
cosnω

which gives,

φ1r = −Bnm
rn+1

cosnω

And so, applying the condition when r = a we have,

φ1r = −Bnm
an+1

cosnω = Ubmm cosnω

⇒ − Bn

an+1
= Ubm

⇒ B = −Ubma
n+1

n

And so we have,

φ1 = −Ubma
n+1m

nrn
cosnω

Substituting in the two values for n and summing we obtain the solution,

φ1 = − Ubma
mm

(m− 1)rm−1
cos(m− 1)ω +

Ubma
m+2m

(m+ 1)rm+1
cos(m+ 1)ω

This can then be put together with (C.7) to give an overall solution,
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φ1 =
Ubma

m

(m− 1)rm−1
cos(m− 1)ω +

Ubma
m+2

(m+ 1)rm+1
cos(m+ 1)ω

− Ubma
mm

(m− 1)rm−1
cos(m− 1)ω +

Ubma
m+2m

(m+ 1)rm+1
cos(m+ 1)ω (C.8)

⇒ φ1 =
Ubma

m(1−m)

(m− 1)rm−1
cos(m− 1)ω +

Ubma
m+2(1 +m)

(m+ 1)rm+1
cos(m+ 1)ω

⇒ φ1 = −Ubma
m

rm−1
cos(m− 1)ω +

Ubma
m+2

rm+1
cos(m+ 1)ω

⇒ φ1 = Ubm

(
− am

rm−1
cos(m− 1)ω +

am+2

rm+1
cos(m+ 1)ω

)
(C.9)

Taking (5.2) as φ0 and (C.9) as φ1 with φ = φ0 + δφ1. We are looking to substitute this into

(5.4) to find an equation for the pressure on the boundary. However, φ is a function of r and

ω. Our perturbation still has the quantity of ω, but now r = a + aδf(ω), where δ << 1. A

Taylor expansion is useful here to enable us to calculate the derivatives,

φ(a+ aδf) = φ(a) + aδfφr(a) + ...

and so the derivatives become,

φr(a+ aδf) = φr(a) + aδfφrr(a) + ...

φω(a+ aδf) = φω(a) + aδfφωr(a) + ...

Using all of this information and substituting and evaluating when r = a+ aδf , we can find

pressure in ascending powers of δ. As we are looking at small values of δ for a weak flow we

can approximate this. The δ0 coefficient is,

1

2
U2ρ+ p∞ − 2ρU2 sin2 ω (C.10)

which is consistent with when we did not have a flow (i.e. δ = 0). The δ1 coefficient is,

2ρU2bm sinω

a

am(m− 1) sin
(

(m− 1)ω
)

am−1
−
am+2(m+ 1) sin

(
(m+ 1)ω

)
am+1


which simplifies to,

2ρU2bm sinω
(

(m− 1) sin
(

(m− 1)ω
)
− (m+ 1) sin

(
(m+ 1)ω

))
(C.11)
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We will define p = p0(ω) + δp1(ω), where p0 is equivalent to (C.10) and p1 is equivalent to

(C.11).



D

Bending Moments

Bending moments are produced by forces acing on a beam/rod/elastic section. The moment

is given by the product of the force and the distance from the section, and has SI units

Newton metres. Within a section this is balanced by an internal moment that comes from

the internal stresses. This is given by the summation of all the internal forces acting on each

element within the section. So, from Figure 2.2, we can define the moment by,

m =

∫
qds⇒ q =

dm

ds
.

Forces from τ are not included since the force acts along the line through s and so the moment

is τ multiplied by a distance of zero.

To calculate bending moments, we can total up all the internal stresses over a cross section

to give the total force of σdA, (where σ is the stress and dA is a small section of area), the

moment of this small area is then given by the distance from a neutral axis within the elastic

section (say y) multiplied by σdA. The total moment, m, will then be given by summing up

all of these small area moments, hence,

m = −
∫
A
yσdA.

The negative sign is included by convention so that a sagging beam has a positive moment.

For elastic equations Hooke’s Law gives,

σ = −Ey
R

where R is the radius of curvature and E is the modulus of elasticity. This gives the sum of

moments as,

m =

∫
A

Ey2

R
dA⇒ m =

E

R

∫
A
y2dA

But
∫
A y

2dA is the moment of inertia (I) and so,

m =
E

R
I
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The radius of curvature is the inverse of curvature (k) and EI is combined to become εB in

the derivation used in this report and in [6], and so,

m = εBk ⇔ q = εB
dk

ds



E

Symmetry effecting the power in

series expansion

The solution we seek to Figure 6.6 is of the form

ζ =
(
1− t2

) ∞∑
n=1

cnt
n−1 (E.1)

Taking t = eiω and letting m = n− 1 then (E.1) becomes,

ζ(eiω) =
(
1− e2iω

) ∞∑
m=0

cne
miω (E.2)

If we were taking a symmetric solution to Figure 6.6 then we would have ζ(eiω) = ζ(ei(π−ω))

and so we also have,

ζ(ei(π−ω)) =
(

1− e−2i(π−ω)
) ∞∑
m=0

cne
−mi(π−ω)

=
(
1− e2iω

) ∞∑
m=0

cne
−miπemiω

=
(
1− e2iω

) ∞∑
m=0

cn(−1)memiω (E.3)

Performing series expansions on both (E.2) and (E.3) we obtain,(
1− e2iω

) (
c0 + c1e

iω + c2e
2iω + c3e

3iω + c4e
4iω + ...

)
(
1− e2iω

) (
c0 − c1e

iω + c2e
2iω − c3e

3iω + c4e
4iω + ...

)
respectively. For a symmetric solution we must have both of these series expansions to be

equal and so cm = 0 for all odd values of m. We could write 2m instead of m and not lose any

generality using integers for m as opposed to using purely even numbers. Hence, we could

also use 2n− 2 instead of n− 1, and so (E.1) becomes,

ζ =
(
1− t2

) ∞∑
n=1

cnt
2n−2

for symmetric solutions.
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F

Show ds
dφ =

(
x2φ + y2φ

)1/2
from

ds2 = dx2 + dy2

ds2 = dx2 + dy2 (F.1)

If we take a general parameterized coordinate on in the xy-plane where φ is our parameter

then we have,

x = (x(φ), y(φ)) (F.2)

and so the tangent, t, to x can be found by,

t =
dx

dφ
= (xφ, yφ) (F.3)

From the chain rule we have,
dx

ds
=
dx

dφ

dφ

ds

⇒
∣∣∣∣dxds

∣∣∣∣ =

∣∣∣∣dxdφ
∣∣∣∣ dφds

Using (F.2) and (F.3), we then have,(
dx2 + dy2

ds2

)1/2

=
(
x2
φ + y2

φ

)1/2 dφ
ds

and so from (F.1), (
ds2

ds2

)1/2

= 1 =
(
x2
φ + y2

φ

)1/2 dφ
ds

⇒ ds

dφ
=
(
x2
φ + y2

φ

)1/2
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G

Alternative Plotting Method

Instead of thinking about the matrix transformations as describedin chapter 2, there is an

easier way to plot the entire shape. Once the numerical scheme has found values for α and β,

the program can be run again with the calculated values but this time run the whole numerical

scheme for 0 ≤ ŝ ≤ 2π. Figure G.1 is a demonstration of this alternative calculation for the

central picture of Figure 2.10. Notice it looks the same apart from the whole image has been

shifted as we have excluded not only the reflection and rotation transformations but also the

initial translation.
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Figure G.1: Alternative plotting method at contact pressure point for Mode 3. Plot obtained by solving (4.1) numeri-

cally with n = 3 and p̂ = 21.65.
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