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Abstract 

Exploiting organic lignocellulosic wastes via bio-refining processes has been widely 

accepted as one of the renewable, environmentally friendly solutions to producing 

platform chemicals and liquid fuels. Pre-treatment serves as an initial step to improve 

the accessibility of lignocellulosic polysaccharides to enzymes, and fermentation is a 

core step to obtain a range of products from the sugars. However, inhibitors of 

enzymatic saccharification and fermentation are unavoidably generated during 

hydrothermal pre-treatment. Therefore, the aim of this study has been to assess the 

associations and possibly correlations between severities of pre-treatment, yield of 

fermentable sugars and formation of inhibitors, and to evaluate the potential of 11 yeast 

diverse yeast strains for the potential to produce not only ethanol but also some highly-

sought-after platform chemicals. 

Air dried rice husk (RH) and rice straw (RS) from the same rice cultivar (Oryza sativa, 

cv. KhangDan18) were used as substrates. Carbohydrate compositions of each were 

similar whereas lignin contents differed significantly.  Using complementary analytical 

approaches including a new, rapid NMR screening method, 40 compounds including 

carbohydrates, organic acids, phenolics and furans were identified from the solids and 

liquors of pre-treated RH and RS. However, the quantities of compounds differed 

between the two substrates. Fermentation inhibitors included 5-HMF, 2-FA and 

phenolic acids such as para-couamric acid (pCA) and trans-ferulic acid (tFA). 

Differences in lignin, tFA, diferulic acids (DiFA) and pCA between RS and RH reflect 

differences in cell wall physiology and are probably responsible for the higher 

recalcitrance of RH. After pre-treatment at a severity of 3.65, ethanol was produced 

from RS with a yield double that from RH. Above a severity of 5, fermentation was 

completely inhibited in both RH and RS.  More careful control of pre-treatment may be 

sufficient to reduce the levels of fermentation inhibitors. Such inhibition was found to 

occur with a range of genetically diverse yeast strains which differed considerably in 

their metabolic capabilities and production of ethanol. A number could produce 

significant amounts of ethyl acetate, arabinitol, glycerol and acetate in addition to 

ethanol, including from hitherto unreported carbon sources. Moreover, a new catabolic 

property of Rhodotorula mucilaginosa (NCYC 65) was discovered in which sucrose is 

cleaved into glucose and fructose but they are not metabolised. Engineering some of 



properties discovered in this study and transferring such properties to conventional 

industrial yeast strains could greatly expand their biotechnological utility. 
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1.1 Opportunities and challenges of bio-refining 

Fossil derived fuels are a major resource consumed globally in abundance. With the 

rapid increase in energy demand, the depletion of fossil derived resources, and impact 

on climate, a search for a solution has been long debated, involving a range of topics 

from the “peak oil” to the improvements in green technologies. Unfortunately, over 

80% of our energy and 90% of the demand for organic chemicals are still supplied by 

the products derived from petroleum refining which accounted for 75% of the 

anthropogenic emission of the carbon dioxides (Binder & Raines, 2009; Bozell, 2001; 

Houghton et al., 2001). Since the concerns of environment are increasing, low-carbon 

electrical energy, wind power, solar energy, nuclear fission/fusion and biomass have 

been frequently pursued and developed (Barnham et al., 2006; Blair, 1976; Ellabban 

et al., 2014; FitzPatrick et al., 2010). Some categories of renewable energy are shown 

in Figure 1.1. It has been suggested that renewable energy could potentially provide 

over 3000 times the current global energy demands (Ellabban et al., 2014). 

Biomass energy is considered to be potentially renewable and sustainable because it 

may be sourced from many organic raw materials and wastes such as cereal crops, 

lumbering and food industry/chain wastes (Reddy & Srinivas, 2013; Srirangan et al., 

2012). However, energy obtained from animal fats and oil crops such as palm, and 

carbohydrate crops such as sugar beet, wheat, barley and maize are likely to create 

conflicts with the increasing global demand for food (Nigam & Singh, 2011; Singh et 

al., 2011). In this case, the challenge is to exploit non edible biomass by converting it 

into storable and transportable bio-fuels (including gas fuels and liquid bio-fuels) 

which are suitable for heating, power generation, transportation fuels and gas turbine 

via bio-refining processes (Ellabban et al., 2014; Gupta et al., 2010).  
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Figure 1.1. Categories of renewable energy (theoretical primary energy) and multiples of the 

current global energy demands (CGED) in quantities (Ellabban et al., 2014). 
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A range of bio-fuels have been commercialised including alcoholic bio-fuels, bio-

diesel, bio-crude and synthetic oils and categorised as 4 different generations on the 

basis of varying feedstocks and technologies introduced (Liew et al., 2014). The first 

generation of bio-fuels are mainly produced from plants or food containing high levels 

of sugars or oil such as soybean, rapeseeds, corn and sugarcane (Hayashida et al., 1982; 

Leung et al., 2010). For example, in the study of Leung et al. (2010), 20 different 

feedstocks including 12 food plants have been used for the production of bio-diesel 

leading to an competition between food and fuels in land use (Singh et al., 2011).  With 

the concerns of land use, the later generations of bio-fuels which require either non-

food biomass or no extra land use have been developed and intensively researched. 

The second generation of bio-fuels tend to use the wasted organic biomass such as 

cereal straws, sugar cane bagasse, forest residues and energy crops which are identified 

as lignocellulosic feedstocks (Sims et al., 2010). For the third and fourth generation of 

bio-fuels, hydrophytic microalgae is the considered the best candidate of the feedstock. 

The potential to  genetically modify algae for higher CO2 capture or lipid production 

is currently seen to be a priority for future fourth generation technology (Dutta et al., 

2014). However, those newer (2nd – 4th) generations of bio-fuels also present 

significant disadvantages and drawbacks. For example, complex and costly processes 

are required to hydrolyse lignocellulosic polysaccharides to fermentable sugars for 

producing the second generation of bio-fuels (Lattanzio et al., 2006; Liew et al., 2014; 

Lin et al., 2010); the main issue of the third and fourth generations is presently their 

undeveloped technologies requiring significant research to establish advanced 

processes  (Dutta et al., 2014; Liew et al., 2014). In addition, and common to many 

examples of “science-push” innovation, aspects such as the downstream logistics of 

biomass recovery and processing have been ignored in the race to create the new 

biotechnology.  

 

1.2 Chemical composition of lignocellulosic plant cell wall 

Second generation bio-fuels produced from lignocellulosic feedstocks, such as 

cellulosic bio-ethanol, are of predominant interest due to the recognition that 

lignocellulosic biomass is the most abundant resource available now, which contains 
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a large amount of plant cell wall derived polysaccharides such as cellulose and 

hemicellulose. The world annual production of lignocellulosic biomass has been 

reported to be over 2000 million tons from cereal crops, 160 million tons from pulse 

crops, 15 million tons from oil seed crops and 540 million tons from plantation crops 

(Kuhad & Singh, 1993; Rajaram & Varma, 1990). The multilayer lignocellulosic plant 

cell wall consists of two main phases: 1) the microfibrillar phase which is constructed 

from microfibrils formed from parallel chains of cellulose. 2) the matrix phase which 

is generally more complex and mainly formed of  pectin, hemicellulose, proteins, 

phenolic compounds and lignin (Brett & Waldron, 1996a). A schematic diagram of 

lignocellulose is shown in Figure 1.2. 

 

Figure 1.2. Main structure of lignocellulose from rice husk and straw. Phenolics and protein 

are not shown on this figure. 

Cellulose is the highly crystallised long chain polysaccharide in which the 

monosaccharides are linked together by O-glycosidic bonds, and large groups of 

individual cellulose polysaccharides (approximately 30-100 units) connected  to each 

other forming an extremely long and thin structures as known as the microfibrils (Brett 
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& Waldron, 1996a). Cellulose is also described as a β-1,4-glucan since carbon atoms 

1 and 4 within each β-D-glucose are linked to other glucose residues via O-glycosidic 

bonds. Hence cellulose is an important major potential source of fermentable glucose 

for bio-refining and can be found at up to 50% (w/w) in lignocellulosic biomass (Brett 

& Waldron, 1996a; Hendriks & Zeeman, 2009; Lee, 1997; McKendry, 2002; Yang et 

al., 2007). The chemical structure of cellulose is shown in Figure 1.3. 

Hemicellulose (Figure 1.3) is the second most abundant component in lignocellulosic 

biomass and is found at a ratio to cellulose generally of between 2:1 to 1:1 (Hoch, 

2007), and takes up approximately 20-35% (w/w) of the dry biomass (Pérez et al., 

2002; Saha, 2003).  Unlike the chemically homogeneous  cellulose, a range of 

polysaccharides are contained in hemicellulose such as xylans, glucomannan, mannan, 

galactomannan and arabinogalactan II (Brett & Waldron, 1996a). Moreover, the 

chemical compositions differ significantly in the cell walls of different plants. For 

example, all higher plants contain xyloglucans which are tightly bound to cellulose in 

primary cell walls, and xylans, which are the most abundant polysaccharides in the 

secondary cell wall of hardwoods and herbaceous plants (Puls, 1993; Saha, 2003). 

Xylans are polymers containing mainly xylose which commonly take up to 20-30% of 

the biomass and even up to 50% of biomass in some tissues of grasses and cereal plants 

(Ebringerová et al., 2005; Gírio et al., 2010). In the secondary cell walls of conifers 

and seeds of Leguminosae, the most abundant polysaccharides are mannan, 

glucomannan and galactomannan (Schädel et al., 2010). Hemicellulose can also be 

converted into substantial amounts of sugar monomers for potential bio-conversion. 

The pectic polysaccharides (Figure 1.3) are common components of primary cell walls, 

formed mainly from α-galacturonic acid with varying displays of methyl ester groups 

(Liu et al., 2006) in addition to several polysaccharides such as rhamnogalacturonan I, 

arabinan, galactan, arabinogalactan I and homogalacturonan (Brett & Waldron, 1996a). 

Pectic polysaccharides are found in abundance in many edible fruits such as citrus and 

apple. Indeed, the proportion of pectin can reach approximately 50% of the polymeric 

content of the cell wall (Brummell, 2006). Some industrial applications of pectin 

include their use as a thickener, texturiser, emulsifier, stabilizer or fat replacer in 

spreads and salad dressings (Hawthorne et al., 2000; Liu et al., 2006). Extracted pectins 

are generally water soluble and are also sensitive to thermodynamic degradation so 
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that their extraction might be affected by microwave pre-treatment (Brett & Waldron, 

1996a; Liu et al., 2006). Although rich in galacturonic acid, pectins might potentially 

contribute to the production of bio-ethanol and other bio-products from plant cell walls 

(Doran et al., 2000; Hutnan et al., 2000). 

 

Figure 1.3. Structures of cellulose, hemicellulose and pectin. Because hemicelluloses are 

heterogeneous, , arabinoxylan is shown as an example (Miguel et al., 2013).  
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A very significant component in plant cell wall is lignin, a polymer of phenolics 

making up to 10-25% (w/w) of the lignocellulose biomass and containing almost no 

carbohydrates and being very resistant to enzymatic degradation (Brett & Waldron, 

1996a; Kumar et al., 2008). Three precursors of lignin, p-coumaryl, guiacyl and 

sinapyl alcohols link to the final polymer by different bonds including several types of 

β-o-4, α-o-4, 4-o-5 linkages and carbon-carbon bonds (Brett & Waldron, 1996a; 

Mansouri & Salvadó, 2006). Lignin is closely bound to a variety of components of 

lignocellulose such as cellulose and hemicellulose. It therefore creates a barrier that 

reduces the accessibility of the carbohydrate-microfibrils to enzymatic 

saccharification necessary for accumulating microorganism-fermentable sugars 

(Avgerinos & Wang, 1983; Fu et al., 2011). In addition to lignin-derived phenolics, 

other phenolic compounds might also be present in the plant cell wall such as 

hydroxycinnamic acids (ferulic acids and p-coumaric acid), phenylacetic acids, 

hydroxybenzoic acids, flavonoids and tannins (Balasundram et al., 2006; Brett & 

Waldron, 1996a). Those phenolic compounds are produced in plants via the pentose, 

phosphate, shikimate and phenylpropanoid metabolic pathways (Randhir et al., 2004). 

Such phenolics have been found to have a number of physiological functions such as 

anti-allergenic, anti-atherogenic, anti-inflammatory and anti-oxidant (Balasundram et 

al., 2006; Benavente-Garcı́a et al., 2000; Manach et al., 2005; Middleton et al., 2000; 

Puupponen-Pimiä et al., 2001). Phenolic acids are regarded as one of  the most  

common dietary phenolic compounds comprising a wide variety of compounds, but 

being particularly rich in the hydroxybenzoic and hydroxycinnamic acids (King & 

Young, 1999) (Figure 1.4). The role of phenolic compounds in human health suggests 

that these plant cell wall phenolics might be potentially important as value-adding 

coproducts during the production of bio-ethanol or other bio-products from 

lignocellulosic biomass. 
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Figure 1.4. Main groups of phenolics (hydroxybenzoic acids and hydroxycinnamic acids) 

derived from lignocellulosic plant cell wall.  
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1.3 Processes of bio-refining 

Lignocellulosic biomass contains substantial quantities of polysaccharides. However, 

in contrast to the exploitation of starches and sucrose sources that can be readily 

converted to C6 monomeric sugars for fermentation, exploitation of sugars in 

lignocellulosic polysaccharides is more complicated due to the natural recalcitrance of 

lignocellulosic biomass. This reflects the important structural features of the cell wall 

which the plant needs to protect (Himmel et al., 2007). This concept underlies the so 

called substrate-related factors of enzymatic digestibility (Mansfield et al., 1999; 

Waldron, 2010; Zhang & Lynd, 2004) which include the biomass particle size, the 

porosity of plant cell wall, lignin type and cross-linking phenolics, degree of cellulosic 

crystallization and polymerization, and the side-chain branching of hemicelluloses 

(Besle et al., 1994; Chang & Holtzapple, 2000; Chundawat et al., 2007; Fan et al., 

1981; Ishizawa et al., 2007; Laureano-Perez et al., 2005; Liu et al., 2013; Ramos et al., 

1993; Stålbrand et al., 1998; Waldron, 2010; Zadrazil & Puniya, 1995). Similarly, the 

activities of enzyme, enzyme synergy, enzyme inactivation during hydrolysis and 

inhibitors produced during pre-treatment (Bhat & Hazlewood, 2000; Eriksson et al., 

2002a; Eriksson et al., 2002b; Percival Zhang et al., 2006; Rosgaard et al., 2007; Selig 

et al., 2007; Yang et al., 2006) are categorised as the enzyme-related factors (Mansfield 

et al., 1999; Waldron, 2010; Zhang & Lynd, 2004) that affect enzyme digestibility of 

lignocellulosic biomass. The complex progresses of converting lignocellulosic 

polysaccharides into fermentable sugars for producing bio-ethanol and other bio-

products can be simplified as four main steps (Figure 1.5): pre-treatment (increasing 

accessibility of enzyme to polysaccharides), saccharification (converting carbohydrate 

polymers into fermentable sugars), fermentation (accumulating target chemicals via 

microbial metabolism), purification (concentrating and isolating target compounds for 

final bio-products) (Balat et al., 2008; Hahn-Hägerdal et al., 2006). 
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Figure 1.5. Diagram of bio-refining process. The process has been divided into four main 

steps including pre-treatment, saccharification, fermentation and purification.  

 

1.3.1 Pre-treatments and pre-treatment related inhibitory compounds 

Lignin, cellulose and hemicellulose are naturally bound together to form a complex 

matrix making the structure of lignocellulosic plant cell walls highly recalcitrant to 

enzymatic degradation by microorganisms and disruption of cells (Brett & Waldron, 
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1996a; Waldron, 2010). Pre-treatments are required prior to further conversions to 

reduce the lignocellulose recalcitrance by separating lignin, cellulose and 

hemicellulose, reducing the degree of cellulose crystallization and the length of 

cellulose chain, and further increasing the surface areas of polysaccharides to relevant 

enzymes (such as cellulase) (Cheng & Stomp, 2009b; Donohoe et al., 2008; Kumar et 

al., 2009; Mosier et al., 2005). A very simple diagram of lignocellulose disruption after 

pre-treatment is shown as Figure 1.6.  

The ideal pre-treatment would be able to improve the saccharification yield, minimise 

the loss of carbohydrates and production of inhibitory compounds, and be economical 

(Balat et al., 2008). A range of pre-treatment methods have therefore been developed 

to reflect the properties of different feedstocks which can be categorised in several 

ways. They can be considered in relation to the pH of pre-treatment conditions: pre-

treatment methods can be considered as alkaline, acidic and neutral methods (Galbe & 

Zacchi, 2007; Kumar et al., 2009; Saha et al., 2005; Sun & Cheng, 2005). They can 

alternatively be classified as chemical, physical, biological and multiple pre-treatments 

(Agbor et al., 2011; Harmsen et al., 2010; Kumar et al., 2009; Octave & Thomas, 2009; 

Sindhu et al., 2016). 
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Figure 1.6. Pre-treatment related structure interruption of lignocellulose. 
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1.3.2 Physical pre-treatments 

Milling, grinding, shredding, chipping and irradiation are all categorised as physical 

pre-treatments which either can significantly increase the surface area available to 

enzymes and size of pores or reduce the degree of polymerization and cellulose 

crystallinity of lignocellulosic biomass (irradiation) (Palmowski & Müller, 2000; 

Taherzadeh & Karimi, 2008). For instance, milling or grinding process by using ball 

milling significantly reduces the size of materials (e.g. from 10-30 mm to 0.2-2 mm) 

increasing surface area. Many studies have suggested that the influence of particle size 

on cellulose digestibility is largely depending on the type of lignocellulosic biomass 

(Vidal et al., 2011). In the studies of carboard and newspaper, the digestibility of 

cellulose was not noticeable increased by reducing the particle size (Rivers & Emert, 

1988a; Rivers & Emert, 1988b; Rivers & Emert, 1987). Nevertheless, cellulose 

conversion to fermentable sugars was increased up to 50% by ball milling polar wood 

for 8 days (Chang & Holtzapple, 2000). In addition, irradiation processing using γ-rays 

can directly cleave the β-1,4-glycosidic bond and will result in reduced crystallinity of 

cellulose (Sun & Cheng, 2002; Takács et al., 2000). However, such physical pre-

treatments are not feasible at industrial scale since the energy input is higher than the 

energy content of most biomass and therefore too expensive to be used in a full-scale 

process (Cadoche & López, 1989; Galbe & Zacchi, 2007; Hendriks & Zeeman, 2009; 

Kumar et al., 2009). 

 

1.3.3 Chemical pre-treatments 

The aim of chemical pre-treatments is to break down the structure of plant cell walls 

and lignocellulose by adding chemicals such as alkalis, acids, organic solvents and 

ionic liquids, usually at high temperature and pressure. Alkalis such as NaOH (sodium 

hydroxide), KOH (potassium hydroxide), Ca(OH)2 (calcium hydroxide), hydrazine 

and anhydrous ammonia are commonly used in alkaline pre-treatment which can cause 

solvation and saphonication. These reactions are responsible for the swelling of pre-

treated substrates which increase the surface area making the substrates more 

accessible for enzymes (Hendriks & Zeeman, 2009). In alkaline condition, 

polysaccharides such as xylan and glucomannans can be degraded to low molecular 
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compounds by hydrolytic reactions which potentially benefit to further conversion 

(David & Shiraishi, 2001). Alkalis can also disrupt the both lignin structures and 

linkages between lignin and other compounds leading to the solubilization, 

redistribution and condensation of lignin (Fengel & Wegener, 1984; Hendriks & 

Zeeman, 2009). Moreover, alkaline pre-treatments can remove acetyl or uronic acid 

that potentially lower the activities of cell wall degrading enzymes and then further 

improve the efficiency of enzymatic hydrolysis of carbohydrate polymers (Chandra et 

al., 2007). Sulfuric acid is one of the most commonly-used acids for both concentrated 

acid pre-treatment and dilute acid pre-treatment (Agbor et al., 2011; Kumar et al., 

2009). Acid pre-treatment generally can be carried out with diluted acids or 

concentrated acids. Unlike the alkaline methods, xylan and glucomannan is relatively 

more stable in acidic conditions (Hendriks & Zeeman, 2009). Therefore, the main 

reaction that can improve the accessibility of cellulose to enzyme is the hydrolysis of 

hemicellulose which result in the formation of furfural, HMF and other monomers 

(Fengel & Wegener, 1984; Ramos, 2003). During acid pre-treatment, lignin can be 

firstly solubilised and later precipitated leading to removal and relocation of lignin 

which also benefit to further hydrolysis of polysaccharides (Liu & Wyman, 2003; 

Shevchenko et al., 1999; Xiao & Clarkson, 1997). The concentrated acid pre-treatment 

can significantly improve the yield of fermentable sugars but since the remaining acids 

after hydrolysis are still concentrated, toxic, corrosive and hazardous, extra steps for 

removing or collecting those acids are required which increase the overall costs (Sun 

& Cheng, 2002; von Sivers & Zacchi, 1995). Therefore, dilute acid pre-treatment has 

been developed and can be applied with other pre-treatment methods such as steam 

explosion for better performance. However, the cost of diluted acid pre-treatment is 

still higher than most of the physicochemical pre-treatments such as ammonia 

fibre/freeze explosion (AFEX) due to the required neutralisation prior to downstream 

fermentation which gives extra costs (Agbor et al., 2011; Kumar et al., 2009). More 

importantly, several fermentation inhibitors are unavoidable with this pre-treatment 

method, which makes the hydrolysates difficult to ferment (Palmqvist & Hahn-

Hägerdal, 2000a). The diluted acid pre-treatment has, instead, been suggested for 

industrial furfural production from lignocellulosic biomass (Zeitsch, 2000). There are 

also some other methods such as the ozone pre-treatment that can sufficiently increase 
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the yield and does not generate toxic compounds but is limited by cost (Vidal & 

Molinier, 1988). 

Pre-treatment can be also processed with organic solvent such as alcohols (ethanol, 

methanol, ethylene glycol and glycerol) and organic acids ( acetic acid and formic acid) 

(Zhang et al., 2016). Organic solvent breaks the internal bonds of lignin and 

hemicellulose to dissolve both into solvent, therefore lignin and hemicellulose are 

effectively separated from cellulose in consequence the surface area and pore volume 

of cellulose is increased and further lead to the increase of enzymatic accessibility 

(Holtzapple & Humphrey, 1984; Koo et al., 2011). Cellulose can be then separated by 

filtration for further fermentation to produce bio-ethanol and other chemicals. Such a 

separation allows the recovery of organic solvent (e.g. alcohols by distillation) and 

lignin by adding acids for precipitation (Zhang et al., 2016). However, the drawbacks 

of this pre-treatment method are obvious. For example, to improve pre-treatment result 

and precipitation of lignin, extra catalyst such as acids or alkalis are generally required 

which potentially increases the overall cost; solvents easy to recover such as ethanol 

and methanol require the pre-treatment process to be carried out at high temperature 

and lower process temperature demanded alcohols such as ethylene glycol and 

glycerol require more energy input to be recovered; organic acids such as acetic acid 

and formic acid are suggested as low cost for recovery but organic acids have been 

reported that can lead to corrosion and cellulose acetylation (Espinoza-Acosta et al., 

2014; Tian et al., 2018; Zhang et al., 2016). Therefore, more research required to 

optimise this method for industrial utilisation. 

Ionic liquid pre-treatment has been suggested as the replacement of organic solvent 

pre-treatment due to some features such as relatively low melt point (<100 oC), 

chemical and thermal stability, non-flammable and non-volatile (Cull et al., 2000; 

Mäki-Arvela et al., 2010; Mallakpour & Kolahdoozan, 2008; Zhu et al., 2006). Ionic 

liquid formed by organic cations and inorganic anions that can be used to dissolve 

lignin and cellulose, separate lignin and hemicellulose, disrupt structure of cellulose 

then enhance downstream saccharification and fermentation   (Anugwom et al., 2012; 

Liu et al., 2012; Zhu et al., 2013). This pre-treatment method is relatively new and 

interesting to academia and industry, therefore a number of research have been carried 

out to investigate ionic liquids for pre-treating lignocellulosic biomass (D'andola et al., 
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2011).  For example, 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) and 1-allyl-

3-methylimidazolium chloride ([AMIM]Cl) have been reported that disrupt the 

crystalline structure of cellulose and dissolved cellulose (Zhu et al., 2006). This due to 

the chloride ions (Cl-) can disrupt the hydrogen bonds of cellulose (Mäki-Arvela et al., 

2010).  The pre-treatment condition of ionic liquid 1-butyl-3-methylimidazolium 

acetate ([BMIM]Ac) for degrading wheat straw has been reported at a temperature 158 

oC with ionic liquid concentration of 49.5% for 3.6 hours. this study presented a 

compromise between fermentable sugar recovery and polysaccharides digestibility (Fu 

& Mazza, 2011). However, there are also some limitations of ionic liquid pre-treatment. 

Ionic liquids can be very expensive as they sometimes  need to be mixed with  water 

or other organic solvent to avoid getting viscous during pre-treatment and this lead to 

an energy-intensive  recovering process of ionic liquids (Espinoza-Acosta et al., 2014). 

More importantly, ionic liquids have been reported as potential risk for environment 

due to they are poorly biodegradable and might be toxic to some microorganisms and 

plants (Cvjetko Bubalo et al., 2014; Espinoza-Acosta et al., 2014; Liu et al., 2015). 

 

1.3.4 Biological pre-treatment 

Biological methods aim to remove lignin and hemicellulose from cellulose to 

overcome  cellulose resistance to enzymoloysis (Taherzadeh & Karimi, 2008). Some 

microorganisms such as the brown (Ray et al., 2010), white and soft rot fungi can 

produce specific enzymes to degrade lignin, hemicellulose (Chen et al., 2010; Octave 

& Thomas, 2009; Sun & Cheng, 2002). In the study of Suhara et al. (2012), 50% lignin 

of bamboo culms was removed by using Punctualaria sp. TUFC20056. For corn stalks, 

82% of hydrolysis yields was achieved after 28 hours biological pre-treatment (Du et 

al., 2011). Unlike the chemical pre-treatment, biological pre-treatment does not require 

neutralisation of pre-treated hydrolysates and recycling of chemicals, also it is free of 

toxic compounds and relatively more eco-friendly than other pre-treatment methods 

(Sindhu et al., 2016). However, the drawbacks of this method are also significant such 

as a long residence time and requiring highly controlled conditions for growing 

microorganisms (Agbor et al., 2011; Chaturvedi & Verma, 2013; Kumar et al., 2009; 

Octave & Thomas, 2009). Also, the cellulose may be degraded and utilised by the 

microorganisms. 
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1.3.5 Physicochemical pre-treatment 

Physicochemical pre-treatment covers the multi-pre-treatment methods that combine 

both physical and chemical methods, including steam explosion, liquid hot water pre-

treatment, ammonia fibre explosion (AFEX), ammonia recycle percolation (ARP), 

organosolv pre-treatment and wet oxidation pre-treatment (Agbor et al., 2011; 

Chandra et al., 2007; Kumar et al., 2009; Octave & Thomas, 2009). For example, 

steam explosion is the most common method which has been used to process a range 

of lignocellulosic biomass (McMillan, 1994). Raw materials are treated with high 

pressure saturated steam for a short period (from seconds to minutes) followed by a 

sudden pressure reduction thus “exploding” the plant material. This leads to the 

disruption of the lignin, hemicellulose and cellulose (Kumar et al., 2009). Steam 

explosion typically operates at temperatures from 160-260oC and pressures from 0.69-

4.83 MPa, Such severe conditions can increase the efficiency cellulose enzymatic 

hydrolysis and yields of fermentable sugars (Sun & Cheng, 2002; Wood et al., 2014) 

by increasing the cellulose fibre reactivity as lignin and hemicellulose are significantly 

removed from the cellulose (Laser et al., 2002). However, steam explosion of 

lignocellulosic biomass leads to the formation of some inhibitory compounds that can 

affect the downstream enzymatic hydrolysis and fermentation (Cantarella et al., 2004; 

García-Aparicio et al., 2006; Mackie et al., 1985). The mechanism of hot water pre-

treatment is very similar to steam explosion but instead of using steam, large quantities 

of water are required in this method. The formation of inhibitory compounds is 

relatively low compared with the steam explosion (Yang & Wyman, 2004; Yang & 

Wyman, 2008). AFEX is a dry to dry process which also requires high pressure with 

the addition of concentrated ammonia (0.3-2 kg ammonia per kg dry weight material) 

but is carried out at much lower temperatures (60-140oC) (Agbor et al., 2011; Jönsson 

& Martín, 2016; Kumar et al., 2009; Waldron, 2010). Due to the lack of water, the 

lignin and hemicellulose are not significantly solubilized and removed from the 

lignocellulose. However, approximately 90% hydrolysis of cellulose and 

hemicellulose was achieved after AFEX pre-treatment of bermudagrass (Holtzapple et 

al., 1991). The reasons for the impact of AFEX are due to the deacetylation and 

cleavage of the lignin-carbohydrate complexes, and degradation of hemicelluloses to 

oligomeric sugars in addition to deacetylation (Gollapalli et al., 2002; Laureano-Perez 
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et al., 2006). Therefore, in AFEX operation, it is the structure changes of lignin and 

hemicellulose that improve the digestibility of sugar polymers (Galbe & Zacchi, 2007). 

The drawback of AFEX is that this method could not sufficiently process some high 

lignin content biomass (above 25%) such as newspaper and aspen, and the cost of 

chemicals or the extra chemical recovery step is also an expensive limitation of this 

method (Jönsson & Martín, 2016; Kumar et al., 2009; McMillan, 1994). 

 

1.3.6 Inhibitory components generated during pre-treatment  

Several pre-treatment methods mentioned above have been shown to increase the 

digestibility of lignocellulosic carbohydrate polymers, such as the very promising 

steam explosion pre-treatment.  However, a range of inhibitors to either enzymatic or 

microbial are generated in significant quantities during hydrothermal pre-treatments, 

including furans (furfural and 5-hydroxymethylfurfural), organic acids (acetic acid, 

formic acid and levulinic acid) and phenolic compounds (lignin-derived phenolics and 

non-lignin-derived phenolics) (Jönsson et al., 2013; Jönsson & Martín, 2016; 

Palmqvist & Hahn-Hägerdal, 2000b). The formation of furans and organic acid is 

unavoidable due to the degradation of lignocellulosic carbohydrates during 

hydrothermal pre-treatment. For example (Figure 1.7), the 5-hydroxymethylfurfural 

(5-HMF) is produced by degradation of hexoses (cellulose and hemicellulose derived 

glucose, mannose and galactose) and furfural (2-FA) is produced by the degradation 

of pentose (hemicellulose derived xylose and arabinose), and acetic acid is primarily 

generated from the degradation of hemicellulose related acetyl groups whilst the furans 

are further degraded to formic acid and levulinic acid (Jönsson et al., 2013; Palmqvist 

& Hahn-Hägerdal, 2000b).  
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Figure 1.7. Formation of furans and organic acids from lignocellulosic biomass during 

hydrothermal pre-treatment. 

 

Inhibition to the growth of fermenting yeasts occurs when the concentration of those 

organic acids reach up to approximately 100 mmol/l in the extracellular environment 

(Larsson et al., 1999). Inhibitory activities of those organic acid are explained as being 

due to the change of intracellular pH. Organic acids can diffuse through the microbial 



21 

 

cell membrane and then dissociate in the natural cytosolic environment which then led 

to the decrease of intracellular pH, and this change of pH causes the death of 

microorganisms (Imai & Ohno, 1995; Pampulha & Loureiro-Dias, 1989). In contrast, 

organic acids might improve the ethanol production when the concentration of them is 

lower than 100 mmol/l (Horváth et al., 2005) because the low concentration of acids 

causes more protons to be expelled from the intracellular environment to maintain the 

consistent pH (Verduyn et al., 1992; Verduyn et al., 1990; Viegas & Sá-Correia, 1991). 

Similarly, furfural and 5-HMF have been reported to inhibit the growth of yeasts by 

increasing the lag phase (Chung & Lee, 1985; Jönsson et al., 2013; Liu et al., 2004). 

Some researchers reported that the anaerobic growth of S. cereviseae (a common yeast 

strain) was insignificantly affected by furfural and 5-HMF (Jönsson et al., 2013; 

Palmqvist et al., 1999) suggesting the toxicity of those compounds to yeasts 

fermentation was relatively low (Jönsson & Martín, 2016). However, furfural and 5-

HMF can be produced in very high concentrations in hydrolysates of specific biomass 

and eventually lead to the death of yeast cells (Jönsson & Martín, 2016; Palmqvist et 

al., 1999; Palmqvist & Hahn-Hägerdal, 2000b). Moreover, phenolic compounds can 

inhibit both growth of yeasts and ethanol production (Jönsson et al., 2013). For 

example, ferulic acid has been reported to be inhibitory to S. cerevisiase at a 

concentration of 1 mmol/l (Larsson et al., 2000). However, the mechanism of 

phenolics-related inhibition on yeasts growth has not been sufficiently researched and 

elucidated. Keweloh et al. (1990) suggested a possible mechanism is that phenolics 

might affect the function of cell membrane and change the ratio of protein to lipid. 

 

1.4 Enzymatic hydrolysis of lignocellulosic polysaccharides 

Pre-treated biomass hydrolysates can be converted into fermentable sugars by using 

suitable enzymes such as cellulase for cellulose (Chandel et al., 2012). Similarly, 

specific enzymes are required to hydrolyse other polysaccharides such as 

hemicellulose and pectin.  
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1.4.1 Enzymatic hydrolysis of cellulose 

Enzymes for industrial hydrolysis of cellulose are usually developed as enzyme 

cocktails essentially containing three different enzymes: endo-β-glucanases (EG), 

exoglycanases (cellobiohydrolases, CBH) and β-glucosidase (Hasunuma et al., 2013; 

Waldron, 2010).  The function of EG is to cleave interior β-1,4-glucan linkage of the 

cellulose chains and release smaller units with more accessible ‘ends’ which can be 

then hydrolysed by CBH to release cellobiose units. In the very last step of cellulase 

catalysis, β-glucosidases break those cellobiose units into glucose monomers (Chandel 

et al., 2012; Kumar et al., 2008; Waldron, 2010). The cellulase catalysis progresses as 

shown in Figure 1.8. 

 

Figure 1.8. hydrolysis of cellulose by using cellulase cocktail containing EG (endo-β-

glucanase), CBH (cellobiohydrolases) and β-glucosidase (Kumar et al., 2008). 

 

1.4.2 Enzymatic hydrolysis of hemicellulose 

As described above, there is a variation between plants in the component 

hemicelluloses. Therefore, enzyme cocktails necessary for the quantitative hydrolyse 

of hemicelluloses are more complicated than those for cellulose (Kumar et al., 2008). 

Enzyme cocktails for complete hydrolysis of hemicellulose generally contain endo-β-

xylanases (EX), β-xylosidase, α-arabinofuranosidase, α-glucuronidase, acetyl xylan 

esterases and phenolic acid esterases (Bhat & Hazlewood, 2000; Saha, 2003). Like 

cellulases, each of the enzyme used to hydrolyse hemicellulose has unique function. 
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For example, the endo-β-xylanases are used to cleave interior β-1,4-xylosidic linkages 

of the xylan back bone; β-xylosidase can disrupt xylobiose units and short chain 

xyloogomers to release xylose; α-arabinofuranosidase is responsible for the cleavage 

of non-reducing α-arabinofuranose from the side chain of arabinoxylan, α-

glucuronidase results in the release of glucuronic acid from the side chain of 

glucuronoxylan; acetyl xylan esterases and phenolic acid esterases can respectively 

hydrolyse the linkages of acetylated esters in the xylan backbone and feruloyl and p-

coumaroyl esters in lignin-hemicellulose complexes (Bhat & Hazlewood, 2000; 

Kumar et al., 2008; Saha, 2003; Waldron, 2010). The diagram of enzymatic hydrolysis 

of arabinoxylan hemicellulose is summarised (Figure 1.9). 

 

Figure 1.9. Enzymatic hydrolysis of arabinoxylan hemicellulose. The catalytic function of 

endo-β-xylanases, α-glucuronidase, α-Arabinofuranosidase and β-Xylosidase (Kumar et al., 

2008). 

 

1.4.3 Enzymatic hydrolysis of pectin 

The hydrolysis of pectin includes a range of enzymes performing different actions such 

as polymethylgalacturonase, endo-polygalacturonase pectin depolymerase, pectinase, 

exopolygalacturonase and exopolygalacturanosidate (Kumar et al., 2009). These 

enzymes can hydrolyse the polygalacturonic acid chain of the pectin polymers (Jayani 

et al., 2005). Polymethylgalacturonate lyase (pectin lyase), polygalacturonate lyase 

(pectate lyase) and exopolygalacturonate lyase (pectate disaccharide lyase) can cleave 
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the galacturonic acid polymers by β-elimination (Kumar et al., 2009). The hydrolysis 

of rhamnogalacturonan that in the pectic backbone is executed by α-L-rhamnosidases 

and the side-chains of L-arabinose is hydrolysed by α-arabinofuranosidases, and 

resulting in the release of L-arabinose (Valášková & Baldrian, 2006). A simplified 

schematic diagram of hydrolysis of pectin is shown in Figure 1.10. 

 

Figure 1.10. Enzymatic hydrolysis of pectin by pectin lyase, endo-polygalacturonase, α 

Arabinofuranosidases and α-galactosidase (Kumar et al., 2008). As this figure shows, pectin 

lyase: cleaves α-D-galacturonan methyl esters to release oligosaccharides by elimination. 

Endo-polygalacturonase: hydrolyses the α-1,4-glycosidic bonds between glacturonic acid 

units. 

 

1.5 Fermentation 

Fermentation is vital to the biological conversion of lignocellulose to bio-products. 

Pre-treated lignocellulosic biomass can be carried out by three different downstream 

fermentation methods: 1) separate hydrolysis and fermentation (SHF), 2) simultaneous 

saccharification and fermentation (SSF), 3) consolidated bioprocessing (CBP) 

(Waldron, 2010) (Figure 1.11).  
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When enzymatic hydrolysis is carried out separately followed by the fermentation for 

the SHF method, the optimised conditions such as temperatures for each step can be 

easily applied to enhance the performance of either enzymes (50oC) and fermenting 

microorganisms (32-35oC). Moreover, SHF makes the yeast recycling steps much 

easier (Dahnum et al., 2015; Öhgren et al., 2007a; Waldron, 2010).  

 

Figure 1.11. Three mainly fermentation methods in enzyme-based bio-products conversion 

from lignocellulosic biomass. 

 

Simultaneous saccharification and fermentation (SSF) combines the enzymatic 

hydrolysis step and fermentation step by processing these two steps at the same time 

and in the same bio-reactor (Dahnum et al., 2015; Öhgren et al., 2007a; Waldron, 

2010). This method had been extensively applied to the bioconversion of 
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lignocellulosic biomass since it was first reported in the research of Takagi et al. (1977). 

With the presence of both cellulolytic enzyme complex and fermenting yeasts, the 

accumulation of sugars within the reactor can be then reduced and this eventually 

increases the yield of fermentable sugars and the rate of enzymatic hydrolysis (Wyman 

& Hinman, 1990). Moreover, advantages described above can potentially reduce the 

numbers of bio-reactor required and enzyme loading-thereby further reducing the 

overall costs (Kádár et al., 2004; Waldron, 2010). However, the very significant 

drawback of SSF is that the difference in temperature required for hydrolysis and 

fermentation respectively. Cellulolytic enzymes generally operate optimally at 

approximately 50oC but many common yeast strains are unable to sufficiently grow at 

such high temperatures (Ballesteros et al., 2004). Developing novel thermotolerant 

strains might help to solve the problems (Ballesteros et al., 1991; Szczodrak & 

Targoński, 1988).   

Similar to SSF, CBP also known as direct microbial conversion (DMC) which ideally 

allows the cellulose degradation (saccharification) and fermentation to be carried out 

in the same step. Several studies claimed that CBP has the potential to significantly 

reduce the costs of bio-conversion process as the process for production of cellulase is 

not required. In this case, it only employs a microbial community for producing 

capable enzymes and for fermentation (Lynd et al., 2005; Waldron, 2010). For 

example, the natural fungal Aspergillus strains have been reported that either capable 

to produce β-glucosidase, xylanase and cellulase or to produce lipids (André et al., 

2010; te Biesebeke et al., 2002). In the study presented by Hui et al. (2010), the fungal 

strain Aspergillus oryzae successfully produced cellulase with a activity of 1.82 FPU 

and produced liquids with a yield of 62.87 mg per g substrates. However, more studies 

are still needed to face the challenges in achieving high selectivity and yields (Lynd et 

al., 2005; Yang & Wyman, 2007). 

 

1.6 Purification 

The step of purification was not considered in this study; therefore, only a brief 

introduction to common separation methods is presented. Distillation is the most 

commonly used method for liquid mixture separation, which can be categorised to 
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three main methods: ordinary distillation, azeotropic distillation and extractive 

distillation (Huang et al., 2008; Waldron, 2010). As Huang et al. (2008) reported, three 

methods above can be used for the separation of ethanol but ethanol cannot be 

separated by any single distillation method due to the formation of an azeotrope during 

the distillation process. Pure ethanol can be  extracted by combining different 

distillation methods: ordinary distillation can achieve the concentration to 92.4% (w/w) 

of ethanol, and the downstream separation methods can be azeotropic distillation, 

extractive distillation, liquid-liquid extraction or adsorption for further dehydration 

(Huang et al., 2008; Waldron, 2010). For separation of other bio-products, there are 

more methods that can be applied according to the target chemical. For example, steam 

distillation and molecular distillation (Huang & Ramaswamy, 2013). Modern methods 

of membrane separation are also becoming available. 

 

1.7 Overall aims and objectives. 

Considering the background study of lignocellulosic biomass, converting such 

biomass into bio-fuels and platform chemicals is vitally important for producing 

renewable energy and resources. However, the limits and challenges still outstanding 

include costly pre-treatments and the production of inhibitory compounds formed 

during pre-treatment (Wu et al., 2018b). Furthermore, there are opportunities such as 

the production of valuable by-products from bio-conversion processes and the 

potential to produce platform chemicals produced by a range of yeast strains (Wu et 

al., 2017). Therefore, the optimisation of pre-treatment, production of high value 

platform chemicals and value adding by-products might significantly improve the 

financial availability of the bio-conversion process.  

To explore these hypotheses, several main objectives have been proposed as follows: 

1) selection of raw lignocellulosic biomass: the importance of this is crucial in relation 

to the content of lignin and polysaccharides which can affect the final products. Ideal 

candidates should contain a low content of lignin that requires lower severity pre-

treatment, and a high content of polysaccharides for higher yields of fermentable 

sugars.  
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2) identification of inhibitory components produced during pre-treatment and 

investigation of the relationship/correlation between the formation of inhibitors and 

conditions of pre-treatment. This knowledge could potentially help to optimise 

conditions of pre-treatment to minimise the formation of inhibitors therefore reducing 

the cost of both energy input and detoxification of biomass hydrolysates.  

3) identification of (i) potential by-products generated or released during bio-

conversion process and (ii) yeast strains that have potential for high value containing 

chemicals.  

To achieve these aims, the most readily available and abundant sources of 

lignocellulose – rice husk and rice straw – have been used as raw materials in this 

study. The contents of lignin and sugars (using GC, gas chromatography) of both rice 

husk and rice straw had been analysed. The rice husk contained a significantly higher 

proportion of lignin compared with rice straw, but the contents and categories of sugars 

are very similar. Microwave hot water was applied as for a hydrothermal pre-treatment 

as this method involves an enclosed environment which prevents the loss of both 

materials and volatile components such as furfural thus enabling their quantification. 

This helped the investigations into the correlations between pre-treatment conditions 

and inhibitor formation. Moreover, by varying the parameter of “pre-treatment 

severity” (Chapter 3, Methodology), a series of pre-treatment conditions were tested 

on both rice husk and rice straw for a detailed understanding of the effects applied by 

pre-treatment on the results of both enzymatic hydrolysis (yields of fermentable sugars) 

and yeast fermentation (ethanol production). NMR (nuclear magnetic resonance) was 

used to identify and quantify components either released or produced during pre-

treatment of rice husk and rice straw. Examples of inhibitors identified included 2-FA, 

5-HMF, organic acids and other interesting compounds (for more details see Chapter 

3). According to the study in Chapter 3, optimised pre-treatment conditions specific 

for rice straw have been presented which allowed for high yields of fermentable sugars 

and low concentrations of inhibitors for both enzymes and yeasts at a mild condition 

of pre-treatment (lower energy input).  

Lignin related phenolics and their dimers have been reported that can cause significant 

inhibition activities on both enzymatic hydrolysis and yeast fermentation. The study 

presented in Chapter 4 had been carried out for investigating in depth of phenolics and 
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chemical compounds dissolved into liquor environment, and the correlation between 

those and pre-treatment severities. Chemical components of pre-treated rice husk and 

rice straw had been firstly investigated by using FTIR-ATR (Fourier transform 

infrared-attenuated total reflectance) and the removal of hemicellulose in pre-

treatment samples has been clearly presented. Changes in lignin and degradation of 

phenolics were demonstrated using fluorescence microscopy. These gave rough 

indications of the effects cause by different pre-treatment conditions on lignocellulosic 

biomass related lignin, hemicellulose and phenolic compounds. A detailed 

identification and quantification of phenolics was then carried out by using HPLC 

(high performance liquid chromatography). HPLC results exposed the variation of 

phenolic compounds formed/released under different pre-treatment conditions, and the 

difference between rice husk and rice straw in the formation/release of phenolics. 

Moreover, the saponification of both raw and pre-treated samples indicated the very 

mild pre-treatment can significantly improve the extraction of phenolics. 

Investigations of pre-treated liquors and solids showed significant quantities of 

phenolics remained in the solids after pre-treatment, suggesting the hydrolysed or 

fermentation residues might be collected for phenolic extraction by an addition 

extraction step.  

A set of genetically diverse yeast strains (10 non-S. cerevisiae strains plus one type 

strain of S. cerevisiae) was used to investigate the potential of diverse yeast strains for 

producing non-ethanol bio-products. An initial understanding of the growth and 

fermentation was achieved by incubating those selected yeast strains with 13 

commercially pure sugars (Chapter 5) under either aerobic or anaerobic condition. 

Different behaviours of yeasts were observed on different sugar substrates.  By using 

a new rapid NMR screening methodology, a range of metabolites were identified and 

quantified after the fermentation using 11 yeast strains on 13 sugars. Some compounds 

were produced by several strains in significant quantities in addition to ethanol, such 

as ethyl-acetate and arabinitol. These indicated the potential of diverse strains in 

producing novel platform chemicals. Lastly the 11 selected yeasts were further 

investigated for their proliferation and fermentation on pre-treated rice straw 

hydrolysates either containing fermentation inhibitors or inhibitors-free. Fermentation 

activities of those yeasts were significantly suppressed by high concentration of 
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inhibitors. Therefore, a theoretical optimised bio-conversion process can be presented 

as:   Pre-treating RS at optimised conditions generating low levels of inhibitors 

followed by enzymatic hydrolysis for accumulating high levels of fermentable sugars 

(mainly glucose and xylose). Then the capable yeasts strains are used to high value 

content chemicals in addition to ethanol or increasing total yields of ethanol from both 

glucose and xylose. Finally, fermented RS residual solids containing phenolics can be 

then used to extract phenolic acids as value adding by-products. 
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General Materials and Methodology 
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2.1 Raw lignocellulosic biomass 

The cultivar (Oryza sativa, cv. KhangDan18) of rice for provision of raw husk (RH) 

and rice straw (RS) was grown in a rice paddy field at the Ba Vi national park, Hanoi, 

Vietnam. After mature straws were harvested in spring 2012, the biomass was further 

fumigated and air-dried under ambient conditions (approximately 34oC, 84% RH) at 

the Agricultural Genetics Institute, Hanoi, Vietnam. Moisture contents of RH and RS 

have been previously reported to be 9.98% (RH) and 9.01% (RS) (w/w) (Wood et al., 

2016b). Air dried RH and RS have been well packaged with cardboard boxes and 

stored at room temperature (18 oC to 25 oC) in the Bio-refinery Centre (Norwich, 

Norfolk, UK).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 

 

2.2 Milling and freeze mill of air dried raw materials 

Raw materials (RH and RS, air dried) were milled by using a RETSCH cyclone mill 

with a 0.5 mm mesh. Rice straw was pre-chopped into about 2 cm lengths prior to 

milling. Some of the milled (≤ 0.5 mm) RH and RS samples were then placed into 

freeze mill tubes and pre-frozen for 10 minutes. using liquid nitrogen, followed by a 

freeze mill process carried out using a 6700EFM Freezer/Mill. Milled and freeze 

milled samples were separately collected into plastic samples pots and stored under 

laboratory conditions (approximately 25oC, on the dry bench) for less than 6 months. 

As mentioned in introduction, particle size influences the result of saccharification. In 

this study, the effect of particle size on saccharification and fermentation was not 

studied in details, and milling and freeze mill was aimed to reduce the size of samples 

for small-scale SSF. 

 

2.3 Sugar analysis by using Gas Chromatography (GC) 

Milled RH and RS triplicate samples (circa 5 mg) were weighed accurately and placed 

into Sovirel screw-cap glass reaction tubes. Sulfuric acid (72%, 200 µl) and 2 glass 

beads (to aid the mixing) were added into each tube for dissolution of plant cell walls. 

After mixing homogenization, the tubes were incubated at room temperature (25oC) 

for 3 hours during which they were remixed every 30 minutes. Distilled water (2.2 ml) 
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was then added into each tube to bring the concentration of H2SO4 down to 1 mol/l 

and then mixed prior to a second incubation at 100oC for 2.5 hours for further 

degradation of polysaccharides. After cooling, a pre-prepared internal standard (2-

deoxy glucose, 2-DOG, 1 mg/ml) was added into each sample and each sugar mixture 

(1 mg/ml) (Figure 2.1) for making sugar standards (STDs, Table 2.1). 1 ml of each 

sugar standard and sample was then transferred into fresh tubes after mixing and 

centrifuged. Ammonia (25% w/w, 300 µl) was added into each sample and STD (for 

creating alkaline conditions), then 100 µl 3 mol/l NH3 (Containing 150 mg/ml sodium 

borohydride-NaBH4) was added followed by incubation at 30oC for 1hour for further 

reduction of monosaccharides. Afterwards, tubes were all cooled on ice, 200 µl glacial 

acetic acid was then added to each tube to neutralise the pH of solution. Fresh tubes 

had been prepared into which 300 µl of each sample were transferred, the remaining 

samples were stored at -20oC for less than 2 weeks in case insufficient results occurred. 

After the addition of 1-methylimidazole (450 µl) and 3.0 ml acetic anhydride, samples 

were incubated at 30 oC for 30 minutes for acetylation. (described in the research of 

Blakeney et al. (1983)). Whilst cooling those tubes on ice, 3.5 ml distilled water and 

3.0 ml dichloromethane (DCM) were added for liquid-liquid extraction. After the 

processes of mixing and centrifugation (3000 rpm for 3 minutes), the upper layer was 

removed, and lower organic layer was transferred into new tubes. The same procedure 

was carried out two more times using 2.0 ml of DCM; all DCM extracts were 

combined into the same tube. The latter organic layers were washed again by adding 

3.0 ml distilled water, and upper aqueous layers were removed (the washing processes 

was carried out three times) followed by the evaporation of DCM at 40oC. Dried 

samples were re-dissolved in 1 ml acetone and then 200 µl of each sample was 

transferred into GC tubes and analysed using Gas Chromatography with an RTX-255 

column to examine the alditol acetates produced from the monosaccharides. All 

samples were prepared in triplicate, STDs curves were shown in Figure ATC3.1, 

Appendix 3. Standard operating procedure (SOP) shown in Appendix 6.1. 
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Figure 2.1. Diagram of making sugar standards. Mixture of sugars and 2-deoxy glucose (2-

DOG). Seven different sugars have been dissolved into distilled water for making 1mg/ml 

(each sugar) sugar mixture solution. The internal STD (1 mg/ml 2-DOG) has been made in 

the same way. Sugar Standards (STDs) have been then made by mix the sugar mixture 

solutions with internal STD (show as Table 2.1). 

 

Table 2.1. Compositions of sugar standards. 

 

Compositions (µl) 

Sugar STDs (mg/ml) 

STD 1 (0) STD 2 (0.04) STD 3 (0.08) STD 4 (0.12) STD 5 (0.16) 

Mixture sugars 0 100 200 300 400 

Distilled water 2200 2100 2000 1900 1800 

72% H2SO4 200 200 200 200 200 

2-DOG 200 200 200 200 200 

 

2.4 Hydrothermal pre-treatment of RH and RS 

Freeze milled RH and RS were pre-treated by using a BIOTAGE® Initiator+ reactor 

(Figure 2.2) which worked as a microwave generator (SOP shown in Appendix 6.2). 

Samples were heated by microwave due to the rotation of dipolar molecules and 

vibrations of ions in an electromagnetic field. The hydrothermal microwave method 

has been reported that could reduce residence times, increase reaction rate and allow 
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more accurate control of reaction conditions (Biller et al., 2013). Five percent (w/w) 

suspensions of substrate were created by loading 750 mg of RH and RS and 14.25 ml 

distilled water into BIOTAGE® tubes (20 ml) respectively. Those tubes were then 

capped and treated at a series of pre-designed pre-treatment severities (Table 2.2). Pre-

treatment severities were calculated from duration (time) and temperature, and the 

equation for calculation was adapted from the study of Overend et al. (1987): 

 Severity (𝑅𝑜) = 𝑙𝑜𝑔10( 𝑡. 𝑒𝑥𝑝
𝑇−100

14.75 )                (Equation 2.1) 

Ro is the severity parameter, “t” is time and “T” is temperature. Table 2.2 shows times 

and temperatures to give the 26 differently severities for hydrothermal pre-treatment. 

Those cells labelled as N/A were not assessed due to the coverage of their severities 

by other conditions within the table. Those cells marked in red are severities of pre-

treatments used in producing samples for further experiments such as fermentation and 

phenolic analysis in Chapters 4 and 5. Individual tubes containing 5% (w/w) 

suspensions of substrates were heated up to a required temperature for a required 

duration and then cooled with compressed air to room temperature. After pre-treatment, 

the tubes were then stored at -20oC for less than 6 months. 

 

 

Figure 2.2. The pictures of a BIOTAGE® Initiator+ reactor used to pre-treat rice husk and 

rice straw samples.  



36 

 

Table 2.2. Pre-designed 25 pre-treatment severities for thermodynamic pre-treatment of rice 

husk and rice straw. 

 

Pre-treatment severities 

 

 

Time (minutes) 

 

Temp (°C)
 

 

140 

 

150 

 

160 

 

170 

 

180 

 

190 

 

200 

 

210 

 

2.5 

 

1.57 

 

1.87 

 

2.16 

 

2.46 

 

2.75 

 

N/A 

 

N/A 

 

N/A 

 

10 

 

2.18 

 

2.47 

 

2.77 

 

3.06 

 

3.35 

 

3.65 

 

3.94 

 

4.24 

 

40 

 

2.78 

 

3.07 

 

3.37 

 

3.66 

 

3.96 

 

4.25 

 

4.55 

 

4.84 

 

160 

 

N/A 

 

N/A 

 

N/A 

 

4.27 

 

4.56 

 

4.85 

 

5.15 

 

5.44 

 

2.5 Klason lignin analysis of raw and PT (pre-treated) lignocellulosic 

biomass 

Supernatants of PT RH and RS were separated from residues and stored at -20oC for 

further investigations (less than 2 weeks). Residues and the Sintered glass funnels 

(porosity 4) were oven-dried at 60oC overnight, and the weight of the funnels were 

recorded. The raw milled samples and oven dried residues of PT RH and RS were 

transferred to Sovirel culture tubes (25 ml) respectively, followed by the addition of 

1.5 ml 72% H2SO4 after which hydrolysis was carried out by incubating the tubes at 

25oC for 3 hours. After the addition of 18 ml distilled water to dilute the 72% (w/w) 

H2SO4 to 1 mol/l H2SO4, the incubation was continued for a further 2.5 hours at 100 

oC. Acid digestion was applied to precipitate lignin and dissolve polysaccharides and 

water soluble components Afterwards, the tubes were cooled on ice and the hydrolysed 

slurries of RH and RS were filtered through the pre-weighed funnels and washed using 

distilled water to remove the acid. The funnels containing the washed hydrolysates 
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were oven-dried at 60oC until a constant weight was obtained (completely dried). 

Funnels containing dried hydrolysates were then incinerated using a Vulcan PD 

Furnace 3-550 with a programmed incineration process: Temperature was increased 

5oC per minute from room temperature to 200oC and 2oC per minute from 200oC to 

500oC, then the temperature was maintained at 500oC for up to 48 hours until residues 

were completely burned to ash (white dust). The funnels were then allowed to slowly 

cool (naturally) to room temperature after which the weight of funnels containing ash 

were recorded. Samples were prepared as triplicates for data collection (N=3). The 

weight of lignin (g) can be calculated following the equation showed as below (the 

final results of PT samples were calculated in basis of raw materials to be consistent 

with the calculation of raw samples, mg/g substrate): 

                                L (g) =W1 (g) – W2 (g)                       (Equation 2.2) 

L= Lignin 

W1= Weight of funnels containing hydrolysates (oven-dried) 

W2= Weight of funnels containing ash (incinerated) 

SOP shown in Appendix 6.3. 

 

2.6 Enzymatic hydrolysis of pre-treated RH and RS 

Cellic® CTec-2, the cellulase complex (containing hemicellulose and high level of β-

glucosidases) for degradation of cellulose to fermentable sugar was used for enzymatic 

hydrolysis in this study. Saccharification of all 26 pre-treated samples was carried out 

directly in the BIOTAGE® pre-treatment tubes (after they were completely defrosted). 

Prior to the additions of enzyme (Cellic® CTec-2, 187.5µL, 144 FPU), 5 ml of the 

acetate acetic acid buffer (0.4 mol/l, pH 5.0 and containing 0.04% v/v thimerosal to 

inhibit the growth of microbes) was loaded into each sample to buffer the pH of the 

solutions created by pre-treatment. The tubes were then re-capped and incubated at 

50oC in the orbital shaker (120 rpm) for 96 hours. After the deactivation of enzymes 

by heating the tubes in a water bath (100oC for 10 minutes), samples were then cooled 

on ice and frozen for further analysis of glucose (by using GOPOD Format method) 
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and reducing sugars (by using Dinitrosalicylic acid (DNS) method). Experiment had 

been repeated in full two times. 

 

2.7 Glucose analysis of PT RH and RS by using GOPOD Format (D-

Glucose Assay Kit) 

Defrosted samples were centrifuged at 3000 rpm for 3 minutes, and 5 μl liquor of each 

sample was transferred in to 96 well reader plates which contained a number of wells 

pre-loaded with D-glucose STDs (Table ATC2.1, Appendix 2). Then, 195 μl pre-made 

Glucose determination reagent (containing GOPOD Reagent enzymes and GOPOD 

Reagent buffer, following the instructions for the preparation of GOPOD 

DETERMINATION REAGENT on the website of Megazyme: 

https://secure.megazyme.com/files/Booklet/R-GLC4_DATA.pdf) was added into 

each sample well and D-glucose STD well. The GOPOD Reagent enzymes containing 

glucose oxidase, peroxidase and 4-aminoantipyrine that can be used for the 

measurement of D-glucose in hydrolysed samples. GOPOD reagent buffer is added to 

establish proper environment of solution for enzymatic hydrolysis.  The plates were 

then incubated at 50oC for 20 minutes (colour changing, principle is shown as Figure 

ATC2.1, Appendix 2) using an orbital shaker and the absorbance of each cell was 

recorded by using a microplate spectrophotometer at 510 nm. Experiments were 

repeated in full three times respectively and results were calculated against the D-

glucose STDs curve (Figure ATC2.2, Appendix 2). SOP shown as Appendix 6.4. 

 

2.8 Quantification of reducing sugars by using Dinitrosalicylic acid 

method (DNS) 

After defrosting and centrifuging samples (3000 rpm for 3 minutes), 9 μl liquor of each 

sample was transferred into 96 well PCR plates containing Sugar STDs (Table ATC2.2, 

Appendix 2). The pre-made DNS Reagent (171 μl, contains 1% w/v 3,5-

dinitrosalicylic acid and 30% w/v sodium potassium tartrate and 0.4 mol/l NaOH) was 

added into each cell of those plates which were then sealed with TPE PCR sealing 

mats. The 3,5-dinitrosalicylic acid contained in DNF Reagent and reducing sugars can 
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form 3-amino-5-nitrosalicylic acid which strongly absorbs light at 540 nm. In this case, 

the sealed plates were heated in a thermocycler at 100oC for 3 minutes and then 150 

μl of each sample was immediately transferred into 96 well reader plates by using 

multi-pipettes, then analysed using a microplate spectrophotometer at 540 nm. The 

method was adapted from the study of Wood et al. (2012). Samples were all made in 

triplicates and results were calculated against the Sugar STDs curves (Figure ATC2.3). 

 

2.9 Selection of genetically diverse yeast strains 

Ten genetically diverse yeast strains (Table ATC5.2, Appendix 5) were selected from 

a set of 96 diverse yeast strains supplied by the National Collection of Yeast Cultures 

(NCYC), and their genomes were paired-end sequenced at the Earlham Institute, 

Norwich (formerly the Genome Analysis Centre and carried out by Dr Jo Dicks) (Wu 

et al., 2017). A phylogenetic tree was kindly prepared by Dr Jo Dicks, (Figure 2.3) to 

enable selection of the 10 strains. Yeast strains were selected according to their 

distance to each other. For examples, the NCYC 16 has the longest distance from the 

root of phylogenetic tree, therefore it was first selected and the then the strain NCYC 

49 has the longest distance from NCYC 16 was selected. By that analogy, there were 

10 non-saccharomyces cerevisiae strains selected. In addition, a strain of 

Saccharomyces cerevisiae (NCYC 2728, Table ATC5.2, Appendix 5) was used as a 

cross-experiment standard. Yeast strains were originally stored in glycerol stocks (can 

be stored for 3 months to 6 months) so that a step of pre-growing those yeasts was 

required to remove glycerol. Before further use, yeast strains were transferred from 

glycerol stocks into agar plates and then grown in yeast nitrogen base (YNB) 

containing 1% glucose (YNB was pre-made and had been autoclaved) at 25oC for 72 

hours. Pre-grown yeast strains were then placed into fridge (-4oC) until required for 

further experiment. 
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Figure 2.3. Phylogenetic tree of 10 selected genetically most diverse yeast strains. Those 

strains were shown as NCYC numbers, name and raw information were shown in Table 

ATC5.2 (Wu et al., 2017).
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2.10 Growth and fermentation of 11 diverse yeast strains on 13 lab 

purified sugars 

The 13 sugars (purity ≥ 99.5%, Table ATC5.1, Appendix 5) were selected for the 

investigation of yeast growth and fermentation of all 11 diverse yeast strains on the 

basis that they were naturally available and/or are widespread in plants. The sugars 

were respectively dissolved into yeast nitrogen base (YNB) to establish a 

concentration of 10 mg/ml, then sterilized by autoclaving after which they were stored 

in sterile conditions at room temperature (less than 2 weeks) prior to use.  

 

2.10.1 Aerobic growth  

Aerobic growth of yeasts was carried out in 96 well reader plates containing 180 µl of 

each pre-made commercially pure sugar solution. After 20 µl of each pre-grown strain 

(number of cells was not counted) was added into each well containing different sugar 

solutions, the reader plates were capped loosely and incubated at 25oC for 72 hours in 

a VersaMax ELISA Microplate Reader. Turbidities of plates were recorded every 30 

minutes after shaking the plates (150 rpm) for 30 seconds during the incubation. Three 

parameters calculated based on turbidities were used to describe the growth of yeasts: 

The Lag phase (LP), Doubling time (DT) and Efficiency (ΔOD) (shown as the 

descriptive FigureATC5.7 adapted from Wu et al. (2017)). The software PRECOG was 

used for calculating the parameters and the method was adapted from Fernandez-

Ricaud et al. (2016). This experiment was repeated in full three times. 

 

2.10.2 Anaerobic fermentation 

Fermentation of selected yeast strains was also carried out on solutions (10 mg/ml) of 

each commercially pure sugar. Each sugar solution (980 µl) was transferred into a set 

of 11 wells in 96 deep well plates (1 ml well volumes) followed by the additions of 

each individual pre-grown yeast strain (20 µl). The plates were then sealed with clear 

polypropylene PCR seals and placed on an orbital shaker for incubation (25 oC, 135 

rpm, 72 hours). After incubation, deactivation of yeasts was conducted by placing the 

plates into boiling water (100oC, using water bath) for 10 minutes, after which they 



42 

 

were cooled on ice. Supernatants of fermented sugar solutions were filtered through 

0.2 µm filter plates (centrifuge at 3000 rpm for 5 minutes) and transferred into 96 well 

plates sealed with clear polypropylene PCR seals for ethanol analysis. Ethanol analysis 

and quantification was carried out by HPLC with a Series 200 LC equipped with a 

refractive index detector and photodiode array detector. Separations were performed 

on a BIO-RAD Aminex® HPX-87H organic acid analysis column (300 x 7.8mm; 

BIORAD Cat # 1250140), protected by a matching guard column, eluting with 0.004 

mol/l H2SO4 mobile phase at a flow rate of 0.6 ml/minutes, column temperature 65 °C. 

Injection volume was 25 µl. Standard curves of sugars and ethanol were shown in the 

Appendix 5, Figure ATC5.1 to Figure ATC5.5. This experiment had been repeated in 

full three times for data collection.  

 

2.10.3 Partial anaerobic fermentation 

According to the results presented by NCYC 16 of producing ethyl-acetate, three 

controlled growth experiments were carried out to briefly investigate the effects of air 

(oxygen) on the production of ethyl-acetate. For more details of the conditions used 

please see Methodology of Chapter 3. 

 

2.10.4 Small-scale simultaneous saccharification and fermentation 

(SSF) 

Pre-treated RH and RS samples (severities 1.57, 3.65, 5.15 and 5.45) prepared in 

previous experiments were investigated for SSF. After PT, samples were defrosted, 

suspensions of their slurries were stirred rapidly to enable quantitative transfer of 937 

µl in to Matrix tubes (1 ml tube). Then, to each tube, 12.5 µl Cellic® CTec-2 and 50 

µl each of one of 11 selected yeast strains was added. Capped Matrix tubes were then 

placed into Matrix plates and incubated at 25oC for 72 hours. Deactivation of both 

enzymes and yeasts involved heating the plates at 100oC (water bath) for 10 minutes. 

The plates were then cooled with ice and centrifuged at 3000 rpm for 10 minutes to 

avoid transferring solids into 0.2 µm filter plates. Filtered supernatants (400 µl of SSF 

samples were then further transferred into 96 wells plates sealed with clear 

polypropylene PCR seals and then ethanol produced by yeast fermentation was 
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analysed and quantified by HPLC using a Series 200 LC equipped with a refractive 

index detector and photodiode array detector. Separations were performed on a BIO-

RAD Aminex® HPX-87H organic acid analysis column (300 x 7.8mm; BIORAD Cat 

# 1250140), protected by a matching guard column, eluting with 0.004 mol/l H2SO4 

mobile phase at a flow rate of 0.6 ml/minutes, column temperature 65 °C. Injection 

volume was 25 µl. 

SSF was similarly carried out on washed PT samples for identifying the impacts 

resulting from soluble carbohydrates and fermentation / enzyme inhibitors produced 

during hydrothermal pre-treatments. Supernatants of PT samples were transferred into 

fresh tubes and stored at -20oC (less than 2 weeks) for further experiment, and residues 

were washed with distilled water 3 times to remove soluble inhibitors and then volume 

was brought up to 15 ml with distilled water (to be consistent with 5% suspension). 

The following steps were executed as same as SSF for unwashed samples. 

All experiments were repeated in full times and ethanol were calculated on basis of 

raw materials (w/w). Ethanol Standards and standard curve were applied for 

calculation (Ethanol STDs and STD curves were made for each individual experiment; 

see in the Methodology section of each Chapter). Differences in samples and yeast 

strains used for result Chapter are presented in the Methodology section of each 

Chapter.  

 

2.11 Chemical compounds and yeast metabolites analysis of liquid 

samples by using 1H NMR 

Chemical components in the liquors of PT samples (RH and RS) (Chapter 3) and 

metabolites produced by yeast fermentation on lab purified sugars (Chapter 5) were 

analysed and quantified by using 1H NMR. In general, supernatants of each sample 

(300 µl to 400 µl) were transferred into 96 well plates after centrifuging at 3000 rpm 

for 5 minutes, and then the same volume (v/v) of pre-made NMR buffer was added 

(buffer generated by mixing 8.4 g NaH2PO4.H2O (sodium dihydrogen phosphate), 3.3 

g K2HPO4 (potassium hydrogen phosphate), 17.2 mg of sodium 3-(Trimethylsilyl)-

propionate-d4 (TSP), 40 mg sodium azide (NaN3) and 200 ml deuterium oxide (D2O), 

pH 6.4) to establish 1:1 (v/v) mixture solutions. Then, 500 µl aliquots of each mixture 
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solution were transferred in to a 5-mm NMR tube for spectral acquisition. The 1H 

NMR spectra of samples were recorded at 600 MHz on a Bruker Avance spectrometer 

running Topspin 3.2 software and fitted with a cryoprobe and a 60-slot auto sampler. 

Each spectrum was scanned for 64 times with a spectral width of 12500 Hz and an 

acquisition time of 2.62 seconds. The “noesygppr1d” pre-saturation sequence was 

used to suppress the residual water signal with a low-power selective irradiation at the 

water frequency during the recycle delay and a mixing time of 10 milliseconds. Spectra 

were transformed with a 0.3-Hz line broadening, manually phased, baseline corrected, 

and referenced by setting the TSP methyl signal to 0 ppm. The chemical compounds 

and metabolites were identified using information found either in the literature on the 

web (Human Metabolome Database, http://www.hmdb.ca/) in the Chenomx standards 

library or by use of the 2D-NMR methods, COSY, HSQC, and HMBC. Some 

additional spectra of standards were run in-house to supplement those available in the 

Chenomx library. Those identified chemical compounds and metabolites were then 

quantified using the software Chenomx NMR suite 7.6™, with quantification 

calculated relative to TSP. Data for chemical analysis (Chapter 3) and metabolites 

analysis (Chapter 5) were presented differently in Chapters (see the Methodology of 

each chapter). Sample preparation SOP shown in Appendix 6.5. 

 

2.12 Fluorescence Microscopy of raw and PT lignocellulosic materials 

Small aliquots of supernatant containing proportionate quantities of particulate 

residues (wet) of PT samples and raw samples (freeze milled) were suspended in 

distilled water to establish a condition of pH 7. Similarly, another set of those samples 

were treated with 1% NaOH (w/v) to create an alkali condition (pH 10-11). The UV 

(ultraviolet radiation)-auto-fluorescence of those samples were then respectively 

assessed by using an Olympus BX 60 Light microscope with Progress C10plus camera 

and software. Then, the auto fluorescence of those samples was recorded 3 times with 

a UV filter cube U-MWU, exciter filter BP330-385, barrier filter BA420. 

 

 

 

http://www.hmdb.ca/
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2.13 Fourier transform infrared-attenuated total reflectance (FTIR-

ATR) of raw and PT lignocellulosic materials 

Cell wall components of dried residues (oven-dried at 65oC overnight) and raw 

samples of RH and RS were assessed using FTIR. Small aliquots of each sample were 

loaded in a Golden GateTM diamond attenuated total reflectance (ATR) accessory and 

scanned 100 times at a resolution of 2 cm-1 and recorded in the region of 800-4000 cm-

1 by using a BioRad FTS 175C Fourier transform infrared spectrometer. All samples 

were prepared as triplicates for data collection and spectra were averaged and 

referenced against a spectrum of the empty crystal and presented as area normalised 

figures.  

 

2.14 Analysis of phenolic compounds in liquors and residues (dry) of 

PT and raw lignocellulosic materials 

2.14.1 Phenolics analysis of raw and PT RH & RS solids (dry) 

Pre-treated samples were defrosted and centrifuged at 3000 rpm for 5min, then the 

supernatant was removed from each sample. Residues was then dried in the oven at 

65oC overnight. 5 mg of each sample (both of raw and PT) was placed into a sovirel 

tube and saponification was carried out with the addition of 4 ml 1 mol/l NaOH (pre-

deoxygenated by flushing nitrogen). Deoxygenation had also been done to all 

individual tubes by over-flushing nitrogen, then those tubes were then capped with 

screw-caps, wrapped with aluminium foil and placed in the dark on a mix wheel (30 

rpm) for 21 hours. The solution of each tube was acidified by adding 1.5 ml distilled 

water and 0.5 ml of concentrated HCl (37%, v/v). Pre-made internal standard (trans-

cinnamic acid, 0.2 mg/ml, dissolved in 1:1 v/v Methanol-water mixture) was added 

(50 µl) into each tube. Phenolic compounds were then extracted from the acidified 

solutions by partitioning into ethyl-acetate. The extraction was carried out 3 times and 

followed by the evaporation of ethyl-acetate (containing phenolics) by heating at 40oC 

and flushing with nitrogen. 1 ml Methanol-water mixture was added into each dried 

tube to re-dissolve phenolics. A more intense saponification (by using 4 mol/l NaOH) 

was done with dried solids of un-treated and samples pre-treated at severity 1.57. Steps 

were same as described above. Each of all re-dissolved samples (200 µl) was filtered 
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with 0.2 µm filter plates (centrifuge at 3000 rpm for 5 min) and transferred into GC 

vials. Then, phenolics were analysed and quantified by using HPLC with a Perkin-

Elmer series 200 LC Pump, Perkin-Elmer advanced LC Processor ISS200, 

Phenomenex Column Luna 5 µ C18 (2), 250*40 mm with pre-column and Perkin 

Elmer Diode Array UV Detector (Merali et al., 2013; Waldron et al., 1996). Phenolic 

compounds were identified against the chromatography spectrum of each phenolic and 

the relative retention time to the trans-cinnamic acid internal standard (see Appendix 

2, Figure ATC2.4 – 2.7). Experiment had been repeated in full three time. 

 

2.14.2 Phenolics analysis of liquors collected from PT RH and RS samples 

As the suspension of pre-treated samples was 5% (w/w) substrates, 95 µl liquors 

(prepared in previous experiment) of each pre-treated sample were used for 

quantification of phenolics. Lignin derived phenolics might dissolve considerably in 

the liquors after pre-treatment according to the results of florescence microscopy.  In 

order to investigate if dissolved phenolics were degraded to monomers or remained 

within polymers, three different methods (the direct method, the liquid-liquid 

extraction method and the saponification + liquid-liquid extraction method) had been 

tried to prepare the liquors (liquors of PT RS were used for method development).  

For the direct method (method A), 95 µl of each liquor sample was transferred into 

wells in 96 well plates, each well containing 855 µl of the Methanol-water mixture. 50 

µl of internal standard was added into each well to volume up to 1 ml which was 

consistent with the analysis of solids. 

The liquid-liquid extraction (method B) was done 3 times by using ethyl-acetate. 

Acidification of each sample was carried out prior to extraction. 95 µl liquors of each 

sample were volume up to 1 ml by adding 50 µl of internal standard and 855 µl of 

distilled water. Then, 15 µl of HCl (37%) was added into each of all sample to establish 

an acidic condition (pH 1) and followed by the extraction. Ethyl-acetate was dried out 

from each tube by heating at 40oC and flushing with nitrogen, then 1 ml Methanol-

water mixture was added into each dried tube to re-dissolve phenolics. 

The 3rd method (method C) included both saponification and liquid-liquid extraction. 

95 µl liquors of each sample were transferred into Sovirel tubes and steps followed the 
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method for analysing phenolics of pre-treated solids. The same HPLC and method 

were used to analyse and quantify the phenolics (Waldron et al., 1996). Experiment 

had been repeated in full three times. 

 

2.14.3 Phenolics analysis of liquors with additions of enzymes 

The results of phenolics analysis of liquors showed that phenolics released were in 

esterified form rather than free as phenolics. To assess if the carbohydrate-esterified 

phenolics could be converted to free phenolics, commercially available enzymes used 

for saccharification of lignocellulose (CTec-2 and HTec-2) were loaded into liquors of 

each pre-treated sample. The RS samples pre-treated at severity 5.15 was used for 

developing this method. Liquors were firstly centrifuged and filtered through 0.2 µm 

filter plates to remove potential residuals. Then, 470 µl of filtered liquors were 

transferred into 96 well plates and 15 µl of both CTec-2 and HTec-2 were loaded into 

each sample respectively. Plates were then sealed with polypropylene PCR seals and 

placed into shaker (125 rpm) at 50oC for 24 hours followed by deactivation of enzymes 

by placing the plates into 100oC water bath for 10 min. After cooling on ice, each 

sample was brought up to 2 ml by adding 1.5 ml distilled water. Acidification was 

carried out by adding 15 µl of HCl (37%) to establish an acidic condition of pH 1. The 

subsequent liquid-liquid extraction and other steps were performed according to 

previous methods for phenolic analysis of solids. Analysis by HPLC also used the 

same method used for analysis and quantification of phenolics. Three different controls 

(CTRLs) were made to account for any background interference from enzyme 

preparations, including water-enzyme CTRL containing equal concentration of 

enzymes and brought to volume with distilled water; Pure PTRS CTRL containing 

only liquor of pre-treated (severity 5.15) RS; Time zero enzyme CTRL containing pre-

treated liquors and enzyme (heating up liquors to over 80oC priory to additions of 

enzymes). Experiment had been repeated in full three times. 

SOP of phenolics extraction and HPLC analysis methods shown in Appendix 6.6. 
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2.15 Effects of enzymes on esterified phenolics in liquors from PT 

samples 

Phenolics in PT liquors were assumed to be present as carbohydrate esterified forms 

(see rationale in Chapter 4). Enzymes such as CTec-2 and HTec-2 might potentially 

hydrolyse the carbohydrate-esterified phenolics. To investigate this, CTec-2 and 

HTec-2 was added into liquors of PT samples (RS, severity 5.15), followed by an 

incubation at 50oC for 24 hours. Then, deactivation of enzymes was carried out by 

heating at 100oC in water bath for 10 minutes and the cooled (room temperature) 

solution was acidified with HCl (37%) and liquid-liquid extracted with ethyl-acetate. 

After the evaporation of ethyl-acetate, re-dissolved phenolic residues (using Methanol-

water mixture) were filtered through a 0.2 µm filter plates. 200 µl of each sample was 

then assessed for phenolics analysis and quantification using HPLC (More details of 

the experiment see the Methodology of Chapter 4). 

For all phenolic analysis mentioned above, the phenolic compounds were identified 

against both the chromatography spectrum of each phenolic (Appendix 2, Figure 

ATC2.3 to ATC2.6) and the relative retention time to the trans-cinnamic acid internal 

standard (RRT, Appendix 2, Figure ATC2.7). The identification methods were 

generally adapted from the study of Waldron (1996). 
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Chapter 3: 

Comparison of RH and RS as substrates for industrial bio-

technology 
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3.1 Introduction 

Technologies to produce renewable and low-carbon electrical energy have been 

rapidly developed including  nuclear, wind or photovoltaic (Barnham et al., 2006; Blair, 

1976). Nevertheless, liquid fuels are required in different fields such as road vehicles 

and aviation, and this has led to global interests and programmes for producing 

renewable second-generation bio-fuels such as cellulosic bio-ethanol that have the 

potential to be sustainable, and emit minimal levels of greenhouse gases  (Nigam & 

Singh, 2011; Sims et al., 2010). Cellulose is a natural polymer of glucose, and is 

abundant in lignocellulosic biomass including agricultural residues such as forestry 

residues, pulping wastes,  cereal straws, and threshing husks, as well as food 

processing by-products such as brewers spent grain  (Hasunuma et al., 2013; Singh et 

al., 2011).  

Rice is grown widely in over 100 countries and consumed by half of the world’s 

population (Muthayya et al., 2014). Approximately 712 million tons of paddy rice is 

produced worldwide annually which means at least 712 million tons of rice straw (RS) 

and 178 million tons of rice husk (RH) will be potentially produced through the process 

of harvest and rice milling (Abbas & Ansumali, 2010; Binod et al., 2010; Muthayya et 

al., 2014).  Since 90% of rice is harvested from Asian countries, in 2004, 667.59 

million tons of RS from agricultural wastes were produced in Asia that could be 

theoretically converted to 281.72 billion litres of ethanol (Kim & Dale, 2004). More 

importantly, RH and RS each exhibit a high content of cellulose and hemicellulose 

that can be potentially hydrolysed into fermentable sugars. The husks contain 

approximately 29%-36% of cellulose and 12%-25% of hemicellulose which is very 

similar to the contents of cellulose and hemicellulose in RS (approximately 32%-47% 

of cellulose and 19%-27% of hemicellulose) (Abbas & Ansumali, 2010; Binod et al., 

2010). These indicate that half of the weight of RH and RS can theoretically be 

hydrolysed into fermentable sugars for producing bio-ethanol or other bio-products 

(Figure 3.1). 
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Figure 3.1. Brief path of converting RH and RS into bio-products. 

 

However, it is highly challenging to convert cell wall sugars to bio-products due to the 

protective bio-chemicals (e.g. lignin, phenolics, silica) and the structural nature of the 

lignocellulosic biomass (Brett & Waldron, 1996b) which hinders the saccharification 

of the polysaccharides (Lattanzio et al., 2006; Lin et al., 2010). In general, the bio-

refining processes involve four main steps: hydrothermal pre-treatment, enzymatic or 

chemical saccharification, fermentation and purification. Each step has its own 

purpose, for example, pre-treatment is to remove the lignin from the cellulose, reduce 

the structural barriers created by hemicelluloses, reduce cellulosic crystallinity to 

increase the surface areas and improve the accessibility of cellulose to cellulases 

(Cheng & Stomp, 2009a; Kumar et al., 2009). The fermentable sugars released after 

the step of saccharification can be then converted to products by microbes such as 

bacteria and yeasts (Carlozzi et al., 2010; Nuwamanya et al., 2012). Then, the product 

of interest can be finally recovered from the fermentation liquor with purification 

technics such as distillation. Varying results can be achieved with the different 

combinations of those four steps since each of those steps has a range of options.  

RS and RH have been previously demonstrated to exhibit very different propensities 

for enzymatic saccharification and fermentation behaviour in response to steam 

explosion pre-treatment (Wood et al., 2016a). This Chapter describes investigation to 

evaluate the differences in the composition of these lignocellulosic materials, and the 

changes that occur in them during hydrothermal pre-treatments relevant to their bio-

refining potential, with special reference to the release of potential fermentation 

inhibitors and related chemicals. This has been executed by using enclosed 

hydrothermal pre-treatment conditions to retain volatile substances that might be 

created and lost during steam explosion. Moreover, a much higher range of pre-

treatment severities have been investigated by using different combinations of time 

and temperatures to assess effects of pre-treatment severities on formation of inhibitors, 

yields of fermentable sugars and production of ethanol for both rice husk and rice straw. 
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Conditions conducive to optimal simultaneous saccharification and fermentation (SSF) 

have also been explored.   

 

3.2 Methodology 

3.2.1 Small-scale simultaneous saccharification and fermentations (SSF) of pre-

treated RH and RS 

RH and RS pre-treated at 4 severities (pre-treatment conditions are in red-coloured 

fonts in Table 2.2 of General Materials and Methodology, those severities were 

selected as they were light pre-treatment, mild pre-treatment, strong and strongest pre-

treatment conditions) were assessed. SSF was carried out in 1 ml Matrix tubes by 

loading 937.7 µl of slurry of each all pre-treated samples (each sample were prepared 

in triplicates), 12.5 µl of Cellic® CTec-2 and 50 µl of pre-grown yeast strains S. 

cerevisiae (in this Chapter, only one strain had been used for fermentation, more 

details of pre-grown strains see Chapter 2, General Materials and Methodology). 

Capped Matrix tubes were loaded into Matrix plates and then placed on shaker (135 

rpm) at 25oC for 72 hours incubation. By the end of incubation, enzyme and yeasts 

were deactivated by placing those Matrix plates into 100oC water bath for 10 minutes. 

Supernatants of each sample were filtered using 0.2 µm filter plates. 200 µl of filtered 

supernatant of each sample were then transferred into a 96 well deep-well plate (1 ml 

round bottom) and analysed by using HPLC. Ethanol products from yeast fermentation 

were calculated against pre-made ethanol standards (see Figure ATC3.2, Appendix 3). 

Experiment had been repeated in full three times for data collection. 

 

3.2.2 Hydrothermal pre-treatment of RH and RS 

Hydrothermal pre-treatment was carried out by using a BIOTAGE® Initiator+ reactor. 

750 mg of milled RH and RS were loaded respectively into 25 ml microwave pressure 

tubes containing 14.25 ml distilled water to give a 5% (w/w) suspension. Severities of 

pre-treatment consisted of temperature and durations given in Chapter 2 (General 

Materials and Methodology). In this Chapter, 4 severities were further expanded to 25 

severities showing as Table 2.2 (see Chapter 2, General Materials and Methodology). 
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3.2.3 Principal components analysis (PCA) of chemical compounds from the 

liquors of PT RH and RS 

To present visualised associations of those chemical compounds with severities and 

with each other. The PCA figure was generated by using Multi Variate Statistical 

Package version 3.22. (Kovak Computing Services, Anglesey, UK). 

 

3.3 Results and discussion 

3.3.1 Sugar and Klason lignin analysis of raw RH and RS 

After milling, RH and RS samples were hydrolysed and saccharified by using H2SO4. 

Supernatants were used for sugar analysis and quantification executed by GC and data 

was calculated as a proportion of the weight of dry materials (~%DW). Hydrolysates 

were collected for lignin analysis. Uronic acid was not quantified. In both RH and RS, 

sugar compositions comprised arabinose, fucose, rhamnose, mannose, xylose, glucose 

and galactose (Figure 3.2). These are in keeping with previous studies of Abbas and 

Ansumali (2010),  Park et al. (2009),  Lim et al. (2012) and Ludueña et al. (2011). 

Glucose was the most abundant sugar in both RH and RS followed by hemicellulosic 

xylose with more in RS compared with RH. The content of Klason lignin was much 

higher in RH (35%, w/w) than in RS (21%, w/w). Content of lignin was reported as 

22.3% (w/w) in RS and 24.4% (w/w) in RH by Lim et al. (2012). Ludueña et al. (2011) 

mentioned that the contents of lignin in RH can range from 26% to 31% (w/w). This 

evaluating difference might due to the genetic variation in lignin between rice cultivars 

(Penning et al., 2014). The very high content of lignin in RH will  physically hamper 

the enzymatic saccharification (Öhgren et al., 2007b), and will also increase physical 

surface onto which cellulase may bind strongly to further reduce the availability of the 

dissociated enzyme (Wood et al., 2014).  
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Figure 3.2. Contents of sugars and Klason lignin in milled raw RH and RS. The contents of 

compounds have been calculated to the proportion of the weight of dry raw materials (DW). 

Error bars are standard deviation (SD). 

 

3.3.2 Saccharification of PT RH and RS with enzymes 

Saccharification of pre-treated RH and RS was carried out in 25 ml microwave 

pressure tubes at 50oC for 96 hours. Figure 3.3 shows the reducing sugar and free 

glucose yields as a function of pre-treatment severities. As it shows, the yields of both 

reducing sugar and glucose increased with increasing severity. Comparable results 

were reported by Wood et al. (2016a): enzymatic hydrolysis of steam exploded RS 

released much higher quantities of glucose (max 43.6%, severity 5.15) and reducing 

sugars (max 66.1%, severity 4.27) compared with RH (max 16.3% of glucose, severity 

5.44; max 35.3% reducing sugars, severity 4.55). In pre-treated RH samples, yield of 

reducing sugars increased steadily with increasing severity up to 4.5 then decreased 

whilst glucose yield continued to increase at above severity 4.5. In contrast to RH 

samples, the glucose yield from RS peaked at a severity of 4.8 then decreased at higher 

severities. Moreover, the yield of reducing sugars reached a peak at severity 4.3 and 

then dropped rapidly at higher pre-treatment severities in pre-treated samples of straw. 

These results indicated that significantly higher sugars yields were achieved from RS 

compared with RH via pre-treatment and enzymatic hydrolysis with similar conditions. 

The decreasing of reducing sugars and glucose at high severities may be ascribed to 
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the significant conversion of sugars into fermentation inhibitors such as furfural (2-

FA), 5-hydroxymethylfurfural (5-HMF), formic acid and levulinic acid. Furfural and 

5-HMF were generated from hexoses (mainly from glucose) and pentose (mainly from 

xylose) respectively and those were then further degraded into formic acid and 

levulinic acid (Pedersen & Meyer, 2010) 

RS samples pre-treated at between severities of 3.65 and 4.25 presented a high yield 

of both glucose and reducing sugars after enzymatic hydrolysis which is approximately 

10% lower than the maximum yield (Figure 3.3). However, further development of 

pre-treatment methods is required to address the challenge of economically and 

sufficiently converting RH into fermentable sugars. A wealth of studies have 

implicated that very harsh  chemicals could be possibly used to surmount the 

recalcitrance of husk by removing or extracting lignin and other structural barriers to 

enzymolysis (Wood et al., 2016a). For instance, a range of additions of chemicals had 

been compared in the study of Ang et al. (2013) who reported a yield of 22.3% (w/w) 

of total sugar was achieved after pre-treating RH with only HCl. Furthermore, alkaline 

peroxide was used in the study of Saha and Cotta (2007) and achieved a 

saccharification yield of 42.8% (w/w). However, large quantities of chemicals (often, 

the same order of magnitude as the biomass being treated) are generally required to 

carry out such treatments. This will be costly both financially and environmentally 

(Harmsen et al., 2010; Sun & Cheng, 2005). 

Another factor that is responsible for stronger recalcitrance of RH is possibly the very 

high content of silica which is present in both RH and RS at higher levels compared 

with other cereal-derived lignocellulosic biomass, and it is much higher in RH than in 

RS (Van Soest, 2006). However, this was not assessed in this study. In the study of 

Van Soest (2006), a severe impact of silica on ruminant digestibility of RH and straw 

was reported and it  might also be expected to have an impact on the enzymatic 

digestibility of pre-treated rice biomass during saccharification.  Khaleghian et al. 

(2017) recently considerably enhanced saccharification by chemically removing silica 

after previously removing lignin.  
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Figure 3.3. Yields of both glucose and reducing sugars of RH and RS (after pre-treatment over 

a range of severities) after saccharification using cellulase (CTec-2) for 96 h at 50oC. The 

orange curve represents the proportion of total reducing sugars in air dried biomass material 

and the blue curve represents the proportion of glucose in air dried biomass material. Data 

was processed using Genstart (Edition 18th) and error bars are SD (Wu et al., 2018b). 

 

3.3.3 Small-scale simultaneous saccharification and fermentation (SSF) of PT RH 

and RS 

RH and RS samples were pre-treated at four severities (1.57, 3.65, 5.15 and 5.45) 

spanning the range used earlier from low to very high. SSF was carried out at 25oC by 

adding CTec-2 (cellulase) and a pre-grown yeast strain (Saccharomyces cerevisiae 

NCYC 2826) to each of all pre-treated samples. Figure 3.4 illustrates that ethanol was 
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produced significantly more from RS (3.71 mg/ml at severity 1.57, 7.11 mg/ml at 

severity 3.65) than RH (1.79 mg/ml at severity 1.57, 3.77 mg/ml at severity 3.65) after 

pre-treatment at severities 1.57 and 3.65 reflecting that yeast behaviours differed on 

different hydrolysates. Very small quantities of ethanol were produced in both RH and 

RS samples pre-treated at severities 5.15 and 5.45 suggesting that fermentation activity 

of the yeast strains were supressed by inhibitors generated by high severity  pre-

treatment (Palmqvist & Hahn-Hägerdal, 2000b). The research reported in Chapter 5 

and by  Wu et al. (2017) showed that washing pre-treated RS prior to SSF significantly 

reduced the severity-related decline in SSF efficiency exposing the impact of 

fermentation inhibitors. 

 

Figure 3.4. Ethanol produced from RH and RS pre-treated at 4 different severities (5% w/w 

of substrates in 15 mL slurry). Pre-treated samples were hydrolysed by CTec-2 and fermented 

by Saccharomyces cerevisiae (NCYC 2826). Bars show the concentration of ethanol and error 

bars are SD. 

 

3.3.4 Characterisation and analysis of chemical compounds in the liquors from 

pre-treated RH and RS by using 1H Nuclear Magnetic Resonance (NMR) 

Rapid NMR (for more details see Chapter 2, General Materials and Methodology) was 

used to achieve more integrated understandings of the range of solubilised components 

generated from the RH and RS during hydrothermal pre-treatment. Figure 3.5 (part A 
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and part B) shows the diagnostic spectrum of the compounds detected from liquors of 

RH and RS pre-treated at severities 1.57, 3.65, 5.15 and 5.45. Different regions were 

scaled to visualise variation in concentration. The results showed that 25 different 

compounds (acetaldehyde and acetaldehyde hydrate were quantified as one compound) 

were detected in measurable quantities. Compounds changed in quantities whilst 

increasing pre-treatment severities. For example, 5-HMF and 2-FA increased 

noticeably in RH and RS samples pre-treated at severities 5.15 and 5.45 compared 

with those pre-treated at severities 1.57 and 3.65.   

 

Figure 3.5. The 1H NMR spectra of the liquors of RH and RS samples pre-treated at severity 

1.57, 3.65, 5.15 and 5.45. Part A (10 ppm to 3.9 ppm) and Part B (3.9 ppm to 0 ppm) Different 

regions were scaled differently to visualise compounds present in small quantities (Wu et al., 

2018b). 

 

Principal component analysis (PCA) is a very useful tool in chemometrics, which can 

extract the important information from data containing several inter-correlated 

variables and then visualise the information by presenting a set of new orthogonal 

variables named the principal components (Abdi & Williams, 2010; Bro & Smilde, 

2014). As Figure 3.6 shows, PCA was established to present the associations of those 

detected compounds (coloured dots) with pre-treatment severities (arrows). Those 

compounds were categorised as 9 previously unidentified compounds (green), 9 
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established fermentation inhibitors (red) and 7 sugars (Orange). Green dots are mostly 

located around low severities (the bottom left). In contrast, inhibitors (red dots) are 

generally positioned to the right region associated with the higher severities. Most of 

sugars (Orange dots) are positioned adjacent to moderate severity arrows. 

 

Figure 3.6. Principal component analysis (PCA) of all 25 compounds detected from 

the liquors of pre-treated RH and RS samples. The compounds were categorised and 

coloured differently. Red represents inhibitors, orange represents carbohydrates and 

green represents non-inhibitory compounds (Wu et al., 2018b). 

 

A more comprehensive change in quantities of these compounds, as affected by 

severity of pre-treatment are shown graphically in Figure 3.7, Figure 3.8 and Figure 

3.9. Chemical compounds mainly generated and (or) released from samples during low 

severity pre-treatment are shown in the Figure 3.7. Compounds of pyruvic, succinic, 

fumaric and 2-oxoglutaric acids are organic acids typically found in intermediary 

metabolism. Furthermore, acetoin, glycolic acid and glycerol were found additionally. 

Higher quantities of succinate, fumarate and pyruvate were detected in samples pre-

treated at higher severities, particularly in pre-treated samples of straw.  Consistent 
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increases of acetoin and glycolic acid from low severities to high severities were 

presented. However, glycerol, pyruvate and 2-oxoglutarate peaked at mid severities, 

then declined and this indicated that degradation occurred during high severity pre-

treatment. Moreover, ethanol was detected in small quantities from the liquors of both 

RH and RS samples pre-treated at higher severities. Interestingly, the levels of betaine 

were different between pre-treated RH and pre-treated RS. 
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Figure 3.7. The trends of non-inhibitory compounds released/formed from pre-treated RH and 

RS samples (Wu et al., 2018b). Trends lines are purely as a visual aid to improve clarity 

of data. 
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Figure 3.8 shows that sugars and oligosaccharides were released into liquors of 

samples pre-treated at moderate severities. All sugars showed very similar trends: after 

they reached their peaks at around a severity of 4.5 and then declined suggesting 

degradation. These results are consistent with the trends of sugars shown in Figure 3.3 

and concomitant with the increase in fermentation inhibitors shown in Figure 3.9. 

During pre-treatment RH released higher yields of sugars compared with RS. The 

presence of galactose presumably indicates that small quantities of pectic polymers 

were hydrolysed. The hydrolysis of hemicellulosic xylans and arabinoxylan may have 

led to the presence of xylose, xylo-oligomers and arabinose. Xylose and xylo-

oligomers were released more significantly in quantities from pre-treated husk 

compared with pre-treated straw, with a total concentration of over 1 mg/ml 

(concentration was calculated from Figure 3.8) which have been shown to severely 

inhibit enzyme activities (cellulase) (Qing et al., 2010). Such notable concentrations 

of cellulase-inhibitory compounds might also contribute to the poor saccharification 

results of pre-treated RH samples (Figure 3.3). 
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Figure 3.8. The trends of sugars released from pre-treated RH and RS (Wu et al., 2018b). 

Trends lines are purely as a visual aid to improve clarity of data. 

 

Known inhibitory compounds to both saccharification and fermentation were 

released/generated at higher severities (shown as Figure 3.9). 5-HMF 

(hydroxymethylfurfrual), 2-FA (Furfural) and acetic acid were the most abundant 

compounds generated from pre-treated RH and RS. These highly deleterious inhibitory 

compounds would significantly impact on fermentation (Palmqvist & Hahn-Hägerdal, 
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2000a) (Palmqvist & Hahn-Hägerdal, 2000b). Most of the inhibitors increased with 

increasing severities and this is consistent with the study of Wood et al. (2016a). 

Higher levels of all the inhibitors were produced from RH samples pre-treated at 

higher severities compared with RS. This in keeping with results shown in Figure 3.8 

which showed that higher levels of sugars were released and degraded from RH pre-

treated at high severities. In this study, the levels of 5-HMF, 2-FA and acetic acid were 

formed at the much higher severities and were very much higher than those reported 

in the research of Wood et al. (2016a). This was additionally confirmed by HPLC and 

examples of data are shown in the Appendix 3. This might be explained in two ways: 

1) the Maximum pre-treatment severity applied in Wood et al. (2016a) was a severity 

of 4.8 whilst in this study the pre-treatment went to much higher severity levels.  2) 

During the steam explosion process, it is very possible that considerable quantities of 

volatile compounds including 5-HMF, 2-FA and acetic acid were lost into vented 

steam. This would not occur during hydrothermal pre-treatment. Formic acid, acetol, 

acetaldehyde and methanol were also produced in significant quantities from the pre-

treated samples. Inhibitory compounds such as choline and levulinc acid were also 

detected but were produced in much lower quantities compared with other inhibitors. 

Interestingly, there were higher levels of choline and levulinic acid formed in pre-

treated RS compared with pre-treated RH.  



65 

 

 

Figure 3.9. The trends of inhibitory compounds produced from pre-treated RH and RS (Wu et 

al., 2018b). Trends lines are purely as a visual aid to improve clarity of data. 
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These results indicated that large amounts of commonly known inhibitory compounds 

were generated during hydrothermal pre-treatment (hot water treatment in this study). 

An extra washing step of pre-treated biomass could largely remove those inhibitors 

and minimise their impact on fermentation (Wood et al., 2016a). However, the 

drawback of this extra washing step is that it would mean removing much of the 

solubilised sugars (e.g. xylose) which may otherwise be exploited and processed into 

a range of bio-products by using natural or modified pentoses-fermenting organisms. 

Interestingly, varying functionality of compounds have been reported. For example, 

acetaldehyde behaves as promoter enhancing fermentation by reducing the lag phase 

of yeast growth at a concentration of 0.01 mg/ml (Barber et al., 2002). In contrast, 

acetaldehyde can inhibit yeast growth while the concentration is higher than 0.1 mg/ml 

(Stanley et al., 1993).  

RS has exhibited the potential to be one of the readily available candidates for bio-

conversion as it could be converted into fermentable sugars sufficiently after being 

pre-treated at mild conditions whilst released ignorable concentration of inhibitory 

compounds. However, RH could not be effectively converted into fermentable sugars 

by hydrothermal pre-treatment. Further exploitation of pre-treating RH is therefore 

required.  

 

3.4 Conclusion 

RH and RS are abundant sources of agricultural wasted biomass and important for bio-

refining. Compared with RS, RH was much more resistant to hydrothermal pre-

treatment due to the higher contents of lignin, silica and inhibitors (involving both 

saccharification and fermentation inhibitory compounds) produced during pre-

treatment. A wide range of chemical compounds were produced from rice biomass 

during hydrothermal pre-treatment with progressively higher severities and 

composition of those compounds changed throughout the severity range. Components 

such as organic acids are extracted from samples at low severities and broken down 

when pre-treatment severities went up to over 4. It is possible to ascribe the presence 

of sugars and oligosaccharides in samples pre-treated at mid-range severities to 

hydrolysis of cell wall polysaccharides. At the highest severities, many of those are 

lost and degraded into well-established fermentation inhibitors. Those volatile 
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inhibitory compounds might be reduced by steam explosion rather than additional 

washing steps. Silica known as a digestion inhibitor has not been investigated in details 

in this study. As many researchers presented, RH and RS contained relatively high 

content of silica than other cereal-derived lignocellulosic biomass. In this case, silica 

may have potential effects on the enzyme activity, fermentation result and chemical 

compounds in the PT liquors. Therefore, further research of silica is required. 
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Chapter 4： 

Investigation of esterified phenolics in RH and RS and their 

release during hydrothermal pre-treatment 
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4.1 Introduction 

Before conversion of lignocellulose to ethanol, the step of pre-treatment is essential as 

it serves to remove lignin and hemicellulose barriers from cellulose and interrupt the 

chain of crystallised cellulose thus increasing the surface for cellulases to act, which 

enhances the efficiency of saccharification (Arshadi et al., 2016; Merali et al., 2016).  

For example, the study of Auxenfans et al. (2017) summarises how the cell wall bonds 

and cell wall polymer network are disrupted by the hydrothermal, thermochemical and 

solvation pre-treatment processes. However, many researchers have demonstrated that 

solubilisation of chemical moieties released/generated from lignocellulosic biomass 

during pre-treatment can be inhibitory to either enzymatic hydrolysis or downstream 

organism fermentation (Palmqvist & Hahn-Hagerdal, 2000; Palmqvist & Hahn-

Hägerdal, 2000b). Pre-treating lignocellulosic materials at high temperature leads to 

the formation of sugar derived inhibitors containing furans such as 5-HMF 

(hydromethylfurfural) and 2-FA (furfural). Moreover, some of phenolic compounds 

which are inhibitory to cellulases and xylanases also have been released in significant 

quantities during severe pre-treatments, including lignin derived phenolics such as 

coumaric acid and hemicellulose derived phenolics such as cinnamic acid esters 

including ferulic acid  (González-Bautista et al., 2017; Hou et al., 2017; Kellock et al., 

2017).  

Lignin derived phenolics and furan-containing inhibitors have been investigated to a 

greater extent compared with other phenolic compounds such as relatively smaller 

contents of cinnamic acid related phenolics which have only been recently exposed as 

the effective microbial inhibitors. Some microorganisms (e.g. yeast strains and 

bacteria) have been developed in attempts to overcome the inhibitions caused by such 

phenolic compounds (Sato et al., 2014; Soares et al., 2016; Zhang et al., 2017). The 

study of Hou et al. (2017) demonstrated that ferulic acids were released at significant 

levels that were capable of  inhibiting microbial activity after alkali pre-treatment of 

lignocellulosic biomass. Furthermore, recent hydrothermal pre-treatment studies have 

exhibited the capability of improving the degradation and solubilisation of 

arabinoxylans and reducing the levels of cell wall phenolic esters which resulted in the 

loss of alkaline UV turquoise fluorescence of pre-treated residuals, suggesting that 

such simple phenolics were presumably released from biomass by the  pre-treatment  

(Merali et al., 2013; Merali et al., 2016). However, the yields of ferulic acids and their 
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derivatives from hydrothermally pre-treated rice husk and rice straw have not been 

systematically investigated. 

In this Chapter, RH and RS have been pre-treated hydrothermally at several different 

severities. The effects of hydrothermal pre-treatment on the release of phenolics esters 

such as ferulic esters, diferulic acids and related phenolic compounds from RH and RS, 

and on the accumulation of phenolics in the pre-treated liquors have been investigated 

by using HPLC with Diode Array Detection (DAD) (see Methodology). 

 

4.2 Methodology 

4.2.1 Pre-treatment of RH and RS 

Freeze milled RH and RS (750 mg air-dried weight of each sample respectively) were 

loaded into 25 ml microwave pressure tubes containing 14.25 ml distilled water to 

establish a 5% (w/w) suspension. Those tubes were then capped and placed into a 

BIOTAGE® Initiator+ reactor and pre-treated respectively at severities 1.57, 3.65, 

5.15 and 5.45 (selected from the experimental design of Chapter 3). After cooling the 

tubes with compressed air to room temperature, pre-treated samples were stored at -

20oC for less than 6 months. 

 

4.3 Results and discussion 

4.3.1 FTIR-ATR of raw and pre-treated RH and RS solids 

The gross cell wall composition of the dried solids (including raw materials) were 

evaluated by FTIR-ATR. The results are presented as spectra from wavelength 800 

cm-1 to 1800 cm-1 (Figure 4.1A and 4.1B). Significant changes of spectra between each 

sample caused by pre-treatments were highlighted with vertical dashed lines 

containing inserted numbers (wavelength cm-1). As both Figure 4.1A (RH) and Figure 

4.1B (RS) illustrate, the intensity of peaks at wavelength around 1740 cm-1, 1630 cm-

1 and 1235 cm-1 are decreased whilst the pre-treatment severities increased. This 

indicates the hemicellulosic polysaccharides are hydrolysed and released from the 

residues due to those bands relate to C-O stretching and O-H bending of hemicellulose. 

The results are consistent with results reported in previous studies on a range of 
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biomass types such as oilseed rape straw (Ryden et al., 2014), wheat straw (Auxenfans 

et al., 2017; Collins et al., 2014; Merali et al., 2013), and rice wastes (husk and straw) 

(Wood et al., 2016b). The loss of hemicellulose is also responsible for the increasing 

sharpness of peaks corresponding to the C-O/C-H bond stretching in cellulose, and C-

O-C stretching of β-(1-4) linkages at wavelengths around 1034 cm-1, 1100 cm-1 and 

1160 cm-1, indicating the proportion of cellulose was increased in pre-treated solids as 

pre-treatment severities increased (Schwanninger et al., 2004). Moreover, the ratio of 

bands at 895 cm-1 and 1420-1430 cm-1 indicated the residual cellulose was more 

crystalline in nature (Auxenfans et al., 2017) and this was presumably ascribed to the 

degrading non-crystalline cellulose (amorphous) during hydrothermal pre-treatment. 

The range between wavelength 1600 cm-1 to 1300 cm-1 were related to lignin, 

particularly the peaks at wavelengths 1420 cm-1, 1505 cm-1 and 1600 cm-1 

corresponding to the C=O and C=C bonds becoming more pronounced (Schwanninger 

et al., 2004). These results indicated relative increases in the amount of lignin in pre-

treated residues which is consistent with the results of following lignin analysis of PT 

RS and RH (Section 4.3.3, Chapter 4). 
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Figure 4.1. FTIR-ATR spectra of raw and pre-treated RH & RS solids (dried). Figure 4.1A is 

the spectra for RH and Figure 4.1B is for RS. 
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4.3.2 Fluorescence microscopy of raw and PT RH & RS 

The visual appearance of both lignin and phenolic acids in the raw and PT samples 

(RH and RS) was provided by UV-autofluorescence under neutral conditions (Figure 

4.2A). Under such conditions, lignin and cinnamic acid derivatives such as ferulic acid 

(tFA) fluoresce blue in colour. It is obvious that the lignin and phenolics lose 

fluorescence whilst increasing pre-treatment severities and this was for both RH and 

RS (Figure 4.2A (i) and (ii)). In order to distinguish lignin and esterified phenolics 

respectively, NaOH was added into samples to establish alkali conditions (shown as 

Figure 4.2B). In this case, lignin was shown in blue colour and tFA was green.  As 

Figure 4.2B shows, raw RH is predominantly blue where the raw RS is mostly green 

or turquoise indicating the ratio of lignin to tFA in RH is higher than in RS. This is a 

preliminary suggestion that the contents of lignin and/or phenolics may differ between 

RH and RS. Also, the decreased levels of fluorescence in both PT RH and PT RS 

indicated the removal of lignin and phenolic acids (Wu et al., 2018a). However, the 

result of FTIR (Figure 4.1) and Klason lignin (Table 4.1A) showed the proportion of 

lignin increased in the residuals of PT samples. This may be presumably explained as 

some of lignin would not be detected in pre-treated samples due to the structure of 

lignin was changed during pre-treatment and lost the fluorescent moieties 

(Holopainen-Mantila et al., 2013; Wu et al., 2018a). Therefore, the lignin detected by 

UV is not precisely related to Klason lignin and the loss of fluorescence in pre-treated 

samples is not emblematic of the changes of lignin contents. 
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Figure 4.2. UV-Fluorescence micrographs of RH and RS (materials including raw and pre-treated at several different severities) under both neutral (A) and 

alkaline (B) conditions. For the Figure 4.2A, blue colour reflects of either lignin or ferulates (mainly ferulic acids). For the Figure 4.2B, blue colour reflects 

lignin and turquoise/green reflects ferulates. The scale bar is 100 μm. 
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4.3.3 Klason lignin in raw and pre-treated RH & RS 

Quantification of Klason lignin in both raw and pre-treated samples had been carried 

out for both RH and RS. As Table 4.1 shows, significantly higher levels of lignin were 

found in the raw (UT) RH compared with raw RS sample, and this extended the results 

of the Fluorescence Microscopy (Figure 4.2) that lignin contents might differ between 

RH and RS (Figure 4.2B). Table 4.1A shows the significant increases the lignin 

proportion in both RH and RS pre-treated residues at progressively increased severities 

when the proportion of lignin were calculated on the basis of the weight of residuals 

after pre-treatment (w/w). Table 4.1B shows the levels of lignin in both RH and RS 

were negligibly changed in pre-treated samples after the proportion of lignin were 

calculated on the basis of the weight of raw materials (w/w) (biomass recover rate is 

shown as Appendix 4, Figure ATC4.1). This can be assumed to be due to the loss of 

water soluble and volatile compounds released during hydrothermal pre-treatment 

such as hemicellulosic polysaccharides and furfural as found in many other pre-

treatment studies (Jönsson et al., 2013; Kristensen et al., 2008; Wu et al., 2018a).  the 

negligible changes of lignin contents suggest the lignin was mainly separated from 

cellulose and relocated in solution instead of being chemically degraded. 
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Table 4.1. Contents of Klason lignin in raw and PT RH & RS. For Table 4.1A, data of raw 

materials was calculated on the basis of raw materials and data of PT residuals was calculated 

on the basis of the weight of PT residuals actually loaded. For Table 4.1B, data had been 

presented as mg/g raw materials according to the biomass recover rate (Appendix 4, Figure 

ATC 4.1). symbol “±” is adapted in the table to present SD. 

Table 4.1A: 

 
Lignin content (mg/g) 

Severity Rice husk Rice straw 

Raw 35.25 ± 1.23 22.01 ± 1.37 

1.57 36.18 ± 1.83 24.08 ± 0.82 

3.65 38.89 ± 1.90 26.48 ± 2.38 

5.15 45.57 ± 1.46 34.86 ± 2.92 

5.45 46.22 ± 0.85 36.73 ± 2.35 

 

Table 4.1B: 

 
Lignin content (mg/g) 

Severity Rice husk Rice straw 

Raw 35.25 ± 1.23 22.10 ± 1.37 

1.57 34.89 ± 1.77 21.95 ± 0.76 

3.65 31.44 ± 1.59 22.17 ± 2.05 

5.15 34.36 ± 1.17 24.89 ± 2.63 

5.45 32.80 ± 0.67 23.61 ± 0.69 
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4.3.4 Assessment of phenolics in the liquors of PT RH and RS 

Liquors derived from PT substrates (severity 5.15) were analysed by HPLC to assess 

and quantify tFA, diferulates (DiFA) and other related phenolic compounds potentially 

released during pre-treatment. This included direct analysis of the pre-treatment 

liquors by filtration and injection (Figure 4.3A), liquid-liquid extraction of the 

otherwise unmodified pre-treatment liquors (Figure 4.3B) and both of saponification 

and liquid-liquid extraction of the pre-treatment liquors (Figure 4.3C). As Figure 4.3A 

and B show, only pCald (protocatechuic aldehyde), p-OH-Bzald (p-OH-benzaldehyde) 

and vanillin were identified (on the basis of their retention times and diode-array 

recorded spectra) from the liquors prepared via the direct method (method A) and the 

liquid-liquid extraction method (method B). A very significant UV-absorbing peak C 

was found in the liquor prepared by method A only, compared with method B and C. 

One may speculate that the unknown peak C consisted of mainly carbohydrates with 

esterified phenolics that could not be extracted by ethyl acetate. Liquors extracted by 

method C involved saponification followed by acidification and liquid-liquid 

extraction, then analysis by HPLC. As Figure 4.3 C shows, the level of early-running 

unidentified moieties was reduced by saponification leading to a further range of 

phenolics identified in addition to three phenolics, such as p-OH-B (p-OH-benzoic 

acid), VA (vanillic acid), pCA (p-coumaric acid), tFA and 8-0-4’-DiFA. The results 

show, therefore, that no free phenolic acids such as tFA, DiFA were released during 

hydrothermal pre-treatment, indicating most of phenolics presented in the pre-treated 

liquors were possibly esterified to fragments of plant cell wall derived polysaccharides 

which had been released from pre-treated substrates. 
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Figure 4.3. HPLC chromatogram of phenolic compounds in RS liquor produced at a severity 

of 5.15. Figure 4.3 (A): direct injection of liquor showing no identifiable phenolics; Figure 

4.3 (B): HPLC of Liquid-liquid extracted moieties from liquor; Figure 4.3 (C): HPLC of 

moieties recovered by liquid-liquid extraction after saponification (showing identified 

phenolics). 

 

4.3.5 Total phenolics analysis of raw and PT RH & RS 

The saponification method was also used to extract and investigate the levels of 

phenolics esterified to the recalcitrant residues. Preliminary studies showed that for 

raw RH and RS residues, higher levels of phenolic compounds were extracted after 

saponification with 4 mol/l NaOH for 17 hours compared with 1 mol/l NaOH (Table 

4.2). However, 1 mol/l NaOH was as effective as 4 mol/l NaOH for extracting 

phenolics from pre-treated samples so that unnecessary alkaline-degradation was 

prevented by using 1 mol/l NaOH for following saponification rather than 4 mol/l 

NaOH.  
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Table 4.2. Total phenolic compounds extracted from raw and pre-treated solids (RH and RS, 

severity 1.57). Saponification was carried out with either 1 mol/l NaOH and 4 mol/l NaOH 

respectively to both raw and pre-treated solids. Results were presented as mg/g of raw 

materials. 

 
Total Phenolics (mg/g of raw materials) 

 
Rice Husk Rice Straw 

Severity 1 mol/l NaOH 4 mol/l NaOH 1 mol/l NaOH 4 mol/l NaOH 

Raw 14.57 ±0.57 15.82 ±1.41 14.37 ±0.45 17.20 ±1.57 

1.57 15.90 ±0.44 15.96 ±1.21 16.23 ±0.78 14.24 ±0.83 

 

4.3.6 Quantification of phenolics in the solids and liquors of raw and PT RH & 

RS 

Table 4.3. Total phenolics in the solids and liquors of either raw and PT RH & RS. Results 

were presented as mg/g of raw materials. 

 
Phenolic compounds (mg/g raw materials) 

 
RH RS 

Severity Solids Liquors Total Solids Liquors Total 

UT (4 mol/l) 15.82 (±1.27) N/A 15.82 17.20 (±1.57) N/A 17.20 

1.57 15.90 (±0.44) 2.59 (±0.60) 18.43  16.23 (±0.78) 1.56 (±0.20) 17.93  

3.65 13.13 (±0.28) 5.14 (±0.15) 18.28  13.73 (±0.65) 0.91 (±0.05) 14.93  

5.15 6.50 (±0.50) 4.02 (±0.11) 10.52  3.37 (±0.21) 2.46 (±0.44) 5.83  

5.45 5.07 (±0.43) 2.94 (±0.24) 8.01  2.27 (±0.20) 2.22 (±0.09) 4.49  
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Slightly higher levels of total phenolics were extracted from raw RS samples (17.20 

mg/g) compared with raw RH samples (15.82 mg/g). However, the contents of 

phenolic compounds remaining in RH was more than in RS after pre-treatment, and 

the levels of total phenolics decreased in both PT RH and RH as pre-treatment 

severities increased. This can be attributed to the degradation of some phenolics during 

severer pre-treatments. For example, the study of  Kucner et al. (2014) presented a 

23.1% degradation of total polyphenols by treating blueberry fruits at 115 oC for 20 

seconds. In this study, the decrease of total phenolics after pre-treatment mainly due 

to the degradation of p-coumaric acid and ferulic acid (Figure 4.4 and 4.5). Comparing 

the contents of total phenolics in raw and PT (1.57) samples, an initial increase was 

observed. This might due to enhancement of saponified by pre-treatment, enabling the 

release of phenolics that would otherwise be unextracted by either 1 mol/l or 4 mol/l 

NaOH. 

As Figure 4.4-4.6 shows, 15 different phenolic compounds (12 phenolic acids, 2 

aldehydes and vanillin) were identified and quantified in PT liquors and residues of 

RH and RS. In Figure 4.4, tFA, cFA (cis-ferulic acid) and diferulics were found in RH 

and RS. The level of tFA was considerately higher in untreated RS compared with 

untreated RH. However, less than 15% (w/w) of tFA remained in solids of RH and RS 

pre-treated at severities 5.15 and 5.45 whilst relatively low quantities of tFA were 

detected in the liquors. cFA was detected in much smaller quantities compared with 

tFA in all samples and showed a decrease in solids but an increase in liquors with 

increasing pre-treatment severity. In both RH and RS samples, 8,5’-DiFA, 8-O-4’-

DiFA and 5,5’-DiFA were detected for the first time. 8-O-4’-DiFA was detected in the 

highest levels among those 3 diferulic acid moieties, followed by 5,5’-DiFA then 8,5’-

DiFA. Higher levels of those diferulic acid moieties were found in the RS samples 

than in RH especially for those solids of samples. Like the cFA, quantities of those 

diferulic acids decreased in solids but increased in liquors as severity of pre-treatment 

increased. This indicated that cFA and diferulic acids moieties were more resisting to 

hydrothermal pre-treatment. 

As Figure 4.5 and Figure 4.6 show, larger quantities of 10 different phenolic 

compounds were detected in RH rather than RS samples for both solids and liquors, 

except for truxillic acid (FA-derived). Significantly higher levels of para-coumaric 

acids (pCA; Figure 4.5) compared with tFA were present in RH and RS, and the 
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hydrothermal pre-treatment also effectively decreased the levels of pCA in the pre-

treated residual biomass and liquors. P-OH-phenyl acetic acid (p-OH-PAA) showed a 

similar trend to cFA, a decrease was detected in pre-treated residues but an increase in 

pre-treated liquors. In contrast, the quantities of vanillic acid (VA) was increased in 

PT solids but decreased in PT liquors. The levels of p-OH-benzoic acid (p-OH-B) 

decreased in both PT solids and liquors. The other phenolic compounds comprised 

truxillates (FA and CA derived) (Figure 4.5), p-OH-benzaldehyde (p-OH-Bzald), 

protocatechuic aldehyde (PA) and vanillin. The levels of those phenolic compounds 

were interesting increased in both PT solids and liquors of RH and RS, and this might 

due to degradation of other lignin derived wall phenolics during hydrothermal pre-

treatment hence they were detected in higher levels in RH samples compared to RS 

samples.  

Interestingly, those phenolic compounds show different trends during pre-treatment 

and this mainly attributes to different thermal stabilities of phenolics. For instance, 

Cheng et al. (2014) treated ferulic acid with high temperature water (200 oC, 60 

minutes) which lead to 60% ferulic acid wad degraded, and a completely 

decomposition occurred after  increasing temperature to 250 oC. In the study of Volf 

et al. (2014), vanillic acid had been firstly dissolved in distilled water, then being 

treated at 80 oC by using water bath and observed a 25% degradation of vanilic acid. 

Phenolics such as diferulics, aldehydes and vanillin have been reported that exhibited 

much higher degree of thermal stability (Amen-Chen et al., 2001; Cheng et al., 2014; 

Parker et al., 2003b; Wu et al., 2018a). Therefore, increases of those phenolics might 

due to severer pre-treatment improved the release of them from lignin without being 

further degraded. Moreover, Rasmussen et al. (2017) suggested that hydrothermal pre-

treatments can create numbers of oligophenolic  compounds from wheat straw. This 

may be one of the reasons that causes increases of some phenolics from pre-treated 

rice husk and straw. 

A range of lignocellulosic plant wall derived compounds are inhibitory to either 

enzyme saccharification and yeast fermentation such as lignin, phenolic compounds 

and saccharide breakdown products (Cho et al., 2009; Taherzadeh & Karimi, 2008; 

Zeng et al., 2014). Many other researchers have focused on the free phenolic acids 

released after alkali pre-treatments but the role of phenolic esters such as tFA and pCA 

was only recently put onto focus, and the levels  of free tFA  and pCA at approximately 
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2.5 mmol/l could inhibit the growth of E.coli (Hou et al., 2017).  Moreover, pCA had 

been reported that could be inhibitory to microbial digesting activities of carbohydrates 

and implicated as a toxic barrier to digest materials during simulated rumen 

fermentation (Taboada et al., 2010; Theodorou et al., 1987). In this study, the results 

in Figure 4.3 illustrated that no free tFA and pCA was present in PT liquors but the 

esterified pCA and tFA could reach 1 mmol/l and 0.13 mmol/l in the liquors of PT RH 

respectively.  If these esterified phenolics were freed, they would be significantly 

inhibitory to microbial fermenting organisms  (Hou et al., 2017). However, there has 

not yet been any research to assess the inhibitory characteristics of such phenolic esters, 

and further studies are therefore required. 

Simple phenolics remained esterified at significant levels in residues pre-treated at 

lower severities as cross-linking cell wall polymers (Figure 4.2). Such polymers might 

not directly inhibit the microbial fermenting activities but might additionally inhibit 

alcohol production by cross-linking polysaccharides with lignin which can potentially 

attenuate hemicellulose disassembly and solubility such as the diferulates established 

interpolymeric cross-links between arabinoxylan hemicelluloses (Bunzel et al., 2004; 

Ralph et al., 1995). Moreover, the rate and extent of cell separation in residues during 

pre-treatment might be affected by some diferulates which have been implicated as 

responsible for cell adhesion (Merali et al., 2013; Parker et al., 2003a; Parker & 

Waldron, 1995; Waldron et al., 1997). This may potentially prevent the increase of 

surface-area created by pre-treatment-induced disruption of cereal residues.  
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Figure 4.4. Quantification of ferulic acids in solids and liquors of RH and RS samples (raw 

and PT). Results had been calculated in basis of raw materials. N=3. 
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Figure 4.5. Quantification of phenolic compounds in solids and liquors of RH and RS samples 

(raw and PT). Results had been calculated in basis of raw materials. N=3. 
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Figure 4.6. Quantification of phenolic compounds in solids and liquors of RH and RS samples 

(raw and PT). Results had been calculated in basis of raw materials. N=3. 
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Figure 4.7. HPLC chromatogram of phenolic compounds in RS liquor (severity 5.15) after 24 

hours’ incubation with CTec-2 and HTec-2. Top figure shows the actual sample and the others 

are all different controls (see Methodology). 

 

In the study of Lesage-Meessen et al. (2002), free ferulic acid was successfully 

released from autoclaved (thermodynamic treated) maize bran by using the 

filamentous fungi Aspergillus niger which could produce enzymes degrading  

polysaccharides and feruloyl esterases cleaving the ester linkages between 

hydroxycinnamic acids and carbohydrates.  Therefore, the pre-treatment solubilised 
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phenolic esters might be hydrolysed during saccharification by esterases in enzyme 

cocktails. Enzymatic hydrolysis was carried out by adding CTec-2 and HTec-2 into 

pre-treated (severity 5.15) liquors of RS. Different controls were made to minimise 

any background signals from enzyme cocktails (details see Methodology). As Figure 

4.7 shows, after 24 hours’ incubation with CTec-2 and HTec-2, no significant 

quantities of extra free phenolic compounds were released in addition to PA, p-OH-

Bzald and vanillin. This is consistent to the results shown in Figure 4.2, indicating 

most of phenolic compounds remained as esterified polymers after either hydrothermal 

pre-treatment or enzymatic hydrolysis. This might be assumed as the CTec-2 has no 

activities of esterases (Morrison et al., 2016; Watanabe et al., 2015) and there is lack 

of evidence that esterases contained in the HTec-2 could help releases of free phenolics 

from esterified forms. Even though, those free PA, p-OH-Bzald and vanillin may also 

play significant role of influencing total ethanol production from lignocellulosic 

biomass. For example, vanillin had been confirmed that can cause inhibitory effects 

on cellulase activities (Kim et al., 2011; Ximenes et al., 2011; Ximenes et al., 2010), 

and phenolic aldehydes can supress the growth of microbes (Figueiredo et al., 2008). 

 

4.4 Conclusion 

Hydrothermal pre-treatment effectively reduced the quantities of residual 

hemicelluloses in RH and RS and led to the loss of UV-fluorescence of both lignin and 

ferulic acids. The contents of lignin were then quantified and showed no significant 

decreases in RH and RS after pre-treatment, indicating that lignin remained in the 

lignocellulose, even though it was no longer inhibiting saccharification of the cellulose. 

Significant decreases of total phenolic compounds were detected in the PT solids. 

Simple phenolics such as tFA, diferulates and pCA were present in RH and RS. 

However, except for PA, p-OH-Bzald and vanillin, most of phenolics released into 

liquors were esterified rather than free phenolic compounds. These were not released 

to monomeric phenolics by additions of CTec-2 and HTec-2. Phenolics remained as 

cross-linking polymers in the solids after pre-treatment, and hydrothermal pre-

treatment removed large quantities of tFA and pCA. According to the results above, 

lignin, tFA, DiFAs and pCA differed significantly between RH and RS, indicating the 

different physiology between the plant cell walls of RH and RS. This presumably 
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resulted in the higher recalcitrance of RH to pre-treatment. Although the severe pre-

treatments could significantly reduce the total levels of phenolics (presumably by 

degradation), they also led to the increase in soluble levels of some phenolic such as 

DiFAs and vanillin. However, there is currently lack of information on the possible 

inhibitory nature of such soluble esterified phenolics to fermenting microbes. 

Therefore, further research is needed to clarify their effects. 
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Chapter 5:  

Growth and metabolite profiling of genetically diverse yeast 

strains 
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5.1 Introduction 

Bio-refining provides many potential advantages as a possible alternative technology 

to petroleum refining such as improving the quality of soil, water and air (Muller et al., 

2007). Bio-refining  technologies are ideally needed to convert different feedstocks 

consisting of organic biomass from plant residues, industrial wastes, municipal waste 

and agricultural waste to liquid fuels and/or platform chemicals (Ward et al., 2008). A 

range of platform chemicals that might be derived from biomass through microorganic 

fermentation, were listed by The US Department of Energy (DOE). Many of them are 

presently key renewable chemicals such as arabinitol, ethanol, succinic acid, lactic acid 

and levulinic acid (Bozell & Petersen, 2010; FitzPatrick et al., 2010). 

As one kind of facultative anaerobes, yeast strains exhibit the capability of growing 

aerobically and anaerobically. Under the aerobic condition, yeasts tend to make ATP 

(adenosine triphosphate) by aerobic respiration which lead to a fast growth of cells and 

less metabolisms (e.g. ethanol and carbon dioxide).  In contrast, without oxygen 

(anaerobic) yeasts obtain ATP by degrading organic substrates (e.g. carbohydrates) 

and efficiently convert substrates into metabolisms such as ethanol, but the replication 

of cells is not efficient comparing with the presence of oxygen. Therefore, yeasts are 

widely used in the food industry for the production of daily food products by 

fermentation such as  the production of bread and wine (Kurtzman & Fell, 2006; 

Legras et al., 2007; Octave & Thomas, 2009).  A range of metabolites can be created 

from sugars by yeasts, such a feature determines the category of products derivable 

from biomass. A very common species of yeast - Saccharomyces cerevisiae - can 

simply grow and ferment sugars such as glucose and sucrose and it has been generally 

considered as the preferred yeast for producing ethanol. Nevertheless, many of highly-

sought-after platform chemicals have been reported as being produced by a range of 

non-S. cerevisiae yeast species  (Lin & Tanaka, 2006). This indicates that fermentation 

of diverse yeast strains might have the potential to produce various valuable bio-

products from different substrates. 

In this Chapter, a number of genetically highly diverse yeast strains were investigated 

and compared to inform future yeast screening studies, and to explore the untapped 

potential of yeasts by comparing their natural abilities to ferment a range of carbon 

sources and to produce metabolites that could potentially benefit the renewable 
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chemicals industry. Furthermore, the ability of those selected yeasts to convert glucose 

from pre-treated rice straw under complex bio-refining conditions have been assessed 

to elucidate the potential of such yeast strains in industrial bio-refining.  

 

5.2 Methodology 

5.2.1 Diverse yeast strains and carbohydrates 

Eleven specially selected genetically diverse yeast strains were supplied by the 

National collection of Yeast Cultures (NCYC) (see Chapter 2).  All the yeasts were 

transferred from glycerol stocks into agar plates and then pre-grown in yeast nitrogen 

base (YNB) containing 1% glucose at 25oC for 72 hours, then stored at 4oC for less 

than 2 weeks. The diverse range of carbohydrates used in this Chapter consisted of 13 

laboratory-purified sugars. These were individually prepared as 10 mg/ml 

concentrations with addition of YNB. Solutions of sugars were then autoclaved for 

sterilisation (Appendix 5, Table ATC5.1 and Table ATC5.2). 

 

5.2.2 Fermentation of NCYC 16 on glucose with different oxygen availabilities 

Fermentation (3 sets of conditions) was carried out with the same method explained as 

above. Set A was carried out with 1 ml matrix tubes (filled up) capped with screw caps 

so as to create a highly anaerobic condition.  Set B was exactly following the same 

steps described above by using 96 deep well plates (2 ml well volumes) sealed with 

clear polypropylene PCR seals to establish a semi-anaerobic condition with limited air 

(liquid: air = 1: 1, v/v). For the Set C, 96 well plates were sealed with breathable seals 

to give unlimited oxygen and air. Data was calculated as mg/ml of fermented 

supernatants. Each sample had been prepared as nine replicates. 

 

5.2.3 Analysis of metabolites using 1H NMR 

Sample preparation see in Chapter 2. Concentrations of metabolites were calculated as 

mg/ml of fermented liquors and the calculated results were then processed by using R 

(https://www.r-project.org/) and presented as Heat-maps (package “pheat-map”) with 

https://www.r-project.org/
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colour coding from white (compounds yield from 0 mg/ml to 0.002 mg/ml which could 

not be confidently distinguished from baseline noise) through orange and red to Navy 

(5 mg/ml). To visualize some compounds produced in trace quantities, the colour scale 

was enhanced by setting BAIS to 5.65 and length to 17000 (2000 for 0 mg/ml to 1 

mg/ml; 15000 for 1 mg/ml to 5 mg/ml). Therefore, yellow and light orange represented 

compounds that were produced in trace quantities (Figure 5.3). Each sample had been 

prepared in triplicates. 

 

5.2.4 Pre-treatment of freeze milled RS 

Freeze milled rice straw samples were transferred into microwave tubes, (750 mg for 

each tube) distilled water (14.25 ml) was then added into each tube to give a 5% (w/w) 

suspension. The tubes were then capped and pre-treated at severities 1.57, 3.65, 5.15 

and 5.45 (selected from experiment design of Chapter 3) by using a BIOTAGE® 

Initiator+ reactor. Pre-treated samples were then cooled with compressed air to room 

temperature and stored at -20oC for less than 6 months. 

 

5.2.5 Simultaneous saccharification and fermentation (SSF) of 11 selected yeasts 

on RS 

Pre-treated samples were defrosted and transferred (937.5 µl) by pipetting into 1 ml 

Matrix tubes respectively whilst mixing with small magnetic stirrer bars. SSF was 

carried out after the additions of 12.5 µl (144 FPU) of Cellic® CTec-2 and 50 µl of 

pre-grown yeast strains. The tubes were capped with screw caps and set into Matrix 

plates and then placed on a shaker (135 rpm) in a 25oC incubation room for 72 hours. 

Fermentation was then terminated by heating at 100oC in water bath for 10 minutes. 

After plates were cooled on ice and centrifuged (3000 rpm for 10 minutes), 400 µl of 

supernatants of each sample were filtered using 0.2 µm filter plates and centrifugation, 

then transferred in to 96 wells plates for HPLC analysis. Experiment had been repeated 

in full for three times. 

SSF of pre-treated and washed rice straw was processed in the same way. The washing 

process included removal of supernatant by decanting followed by resuspension of the 

pellet in distilled water to volume up to 15 ml and then centrifuged to sediment the 
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residue. This was repeated 3 times. Ethanol standards were made for quantifying 

ethanol produced via fermentation (Appendix 5, Figure ATC5.6). The maximum 

theoretical yield of ethanol was calculated by the following equation:  

 

C6H12O6 (glucose) → 2C2H5OH (ethanol) + 2CO2. 

 

The initial substrate loading was 5% w/w (50 mg/ml). 50 mg/ml raw rice straw 

containing 38.66% glucose (results from Chapter 3) would give a maximum 

concentration of glucose of 19.33 mg/ml. Therefore, the maximum yield of ethanol 

that could be produced theoretically, should be 9.67 mg/ml. 

 

5.3 Results and discussion 

5.3.1 Growth of diverse yeasts on different carbon sources 

Aerobic growth at 25 oC of the 11 diverse yeast strains on 13 different lab-purified 

sugars (including pentoses (C5), hexoses (C6) and disaccharides (DIS) derived from 

plant tissues and microbial fermentation products) was monitored for 72 hours by 

recording the turbidity every 30 minutes and presented in Table 5.1 as three calculated 

parameters – the lag phase (LP), doubling time (DT) and efficiency (ΔOD) (see 

Methodology). The Colour coding of red-amber-green was introduced in Figure 5.1 to 

represent the extensive variation in LP, DT and ΔOD. The darker green represents the 

shorter times taken for LP and DT, and the more significant changes of turbidity for 

ΔOD indicating stronger growth of yeasts. The red colour indicates longer times taken 

for LP and DT, and weaker growth for ΔOD. 

The variation in colours in the Table 5.1 (Wu et al., 2017) reflects the different LP, DT 

and ΔODs  between strains. Among all 11 strains, there were only two strains - the 

NCYC 2577 and NCYC 10 could grow significantly on all 13 sugars. NCYC 49, 

NCYC 4 and NCYC 16 presented shorter DT or LP indicating faster growth, but on 

fewer sugars. Fucose was not an ideal carbon source for strains NCYC 2791, NCYC 

65 and NCYC 2826. Additionally, both NCYC 2791 and NCYC 65 failed to grow on 

either rhamnose or maltose. NCYC 65 and NCYC 2826 could not effectively grow on 
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cellobiose, xylose, lactose, and respectively on lactose and ribose. Similarly, NCYC 

568 and NCYC 31 could efficiently grow on glucose, fructose and mannose but 

insignificantly on sucrose. A short LP and DT of NCYC 2433 was detected on maltose, 

galactose and mannose but the growth (ΔOD) was jointly insignificant. According to 

the result shown above, both sugar utilization and growth were significantly varied 

between these genetic diverse yeast strains 

 

Figure 5.1. Aerobic growth of diverse yeast strains on 13 different sugars adapted from Wu et 

al. (2017).  

 

5.3.2 Fermentation of 11 yeasts on 13 sugars and the production of ethanol 

Anaerobic fermentation of 11 yeasts on 13 sugars was carried out at 25oC for 72 hours. 

The supernatants were then collected and analysed by using HPLC for the levels of 

unmetabolized sugars substrates (Figure 5.2A) and ethanol production (Figure 5.2B). 

Ribose, rhamnose, arabinose and fucose were barely consumed (less than 5%) by each 

of the strains but the other sugars were significantly or completely consumed by at 

least one strain. Hence, fermentation of 11 yeast strains on those 4 sugars were not 
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further assessed. The readily-fermented sugars such as glucose, fructose and mannose 

were utilised to produce good amounts of ethanol by most strains except NCYC 65, 

NCYC 10 and NCYC 49. Galactose and sucrose were similarly consumed for 

producing ethanol but by fewer strains. None of the strains could significantly convert 

xylose into substantial quantities of ethanol including the NCYC 49 which was the 

only strain which could consume xylose (over 50%) well. Since xylose is the second 

most abundant fermentable sugar in lignocellulosic materials, producing bio-fuels by 

converting xylose from lignocellulosic hemicelluloses is considerably interesting. A 

range of microorganisms including bacteria, fungi and certain yeast strains were 

implicated that could ferment pentose and lactose (Delgenes et al., 1996; Guimarães 

et al., 2010; Zhang et al., 2015). Pichia (Scheffersomyces) stipites; Candida shehatae 

were highlighted in studies Hughes et al. (2012), Urbina and Blackwell (2012) and 

Martiniano et al. (2013) as the naturally-occurring pentose-fermenting yeast strains. 

However, the pentose fermenters are much less common than hexose fermenters, 

especially fermenters for xylose and arabinose (Martiniano et al., 2013).  To address 

this, genetically modified yeasts have been developed to enhance the capability of converting 

pentose whilst also improving their tolerance to inhibitors from pre-treated lignocellulosic 

biomass (Senatham et al., 2016).  

Interestingly, stoichiometric levels of ethanol were not produced by NCYC 16 even 

though it consumed a number of sugars.  NCYC 31 completely consumed fructose and 

produced only 4 mg/ml of ethanol whilst NCYC 16 produced only 1 mg/ml of ethanol 

with a 100% consumption of the same sugar. Similarly, a small amount of ethanol was 

produced by NCYC 65 whilst sucrose was consumed completely. These varying 

fermentation behaviours of diverse yeast strains indicated that other metabolic 

products might be produced in addition to ethanol.  
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Figure 5.2. Utilisation of 13 sugars and ethanol production by 11 genetically diverse yeast 

strains. Figure 5.2A shows the utilisation of sugars by each strain and results have been 

calculated as the percentage of sugar substrates (~%w/w). Figure 5.2B shows the 

concentration ethanol in fermented sugar solutions. Each sugar was given as 10 mg/ml; 

therefore, the max theoretical yield of ethanol was up to 5.11 mg/ml. N=3. 
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5.3.3 Metabolic compounds Analysis by using 1H NMR 

A high throughput NMR method was used to analyse metabolites contained in 

fermented liquors which might potentially be utilised by bio-refining industries. Since 

ribose, rhamnose, arabinose and fucose had been eliminated from experiments, 

metabolites of 11 yeasts fermented on the remaining 9 sugars were investigated. Data 

was processed by using software “R” and presented as a group of heatmaps (Figure 

5.3) (see Methodology). As Figure 5.3 shows, a total of 16 metabolites were detected 

in either significant or noticeable quantities and each graph represents 16 metabolites 

produced by 11 strains from one of those assessed sugars. A variety of chemicals were 

produced by different strains. Similarly, the variation of metabolites was also affected 

by the sugar substrates. 

Some of the 16 chemicals were substantially produced from at least one sugar substrate 

such as 2,3-butanediol, acetic acid, arabinitol, citric acid, ethanol, glycerol, lactic acid, 

pyruvic acid, succinic acid, ethyl-acetate and malic acid. In contrast, the others were 

only produced in trace quantities. Acetic acid and ethanol were very commonly 

produced from all sugars but differed in quantities between the yeasts. Except lactose, 

arabinitol, glycerol, succinic acid and ethyl-acetate were detected in the liquors of 8 

other sugars after fermentation. Lactic acid was detected in the liquors of all sugar but 

at considerably lower levels. Similarly, 2,3-butanediol was detected in fermented 

liquors of glucose, fructose, mannose, maltose and galactose but in low quantities. 

Citric acid was produced in significant quantities from only galactose. However, it had 

been widely detected in the liquors of a range of sugar substrates. Pyruvic acid was 

produced in higher levels from glucose, fructose, mannose and sucrose compared to 

the other sugars. Interestingly, malic acid was exclusively produced by NCYC 16 from 

only fructose and sucrose. 
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Figure 5.3. Quantities of 16 chemicals produced by 11 yeast strains from 13 different sugars. 

Results are presented as heatmaps generated by using software “R”. Different concentrations 

are represented with the changes of colours from white (0 mg/ml) to dark purple (5 mg/ml). 

Figure is adapted from Wu et al. (2017). N=4. Supplementary data shown in Appendix 5, 

Table 5.3.  

 

The significance of ethyl-acetate for industrial utilisation has been highlighted as it is 

an important platform chemical that can be used in the manufacture of food, glues, 

inks and perfumes as a naturally degradable and environmental friendly solvent. As 

Löser et al. (2015) reported in 2015, ethyl acetate was annually produced in the 
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quantity of 1.7 million tons which would not be able to satisfy the world’s demand of 

2.5 million tons (Nielsen et al., 2012). In this Chapter, two strains (NCYC 568 

(Zygosaccharomyces rouxii) and NCYC 16 (Wickerhamomyces anomalus)) could 

produce ethyl acetate from a range of sugar substrates and the highest levels of ethyl 

acetate were produced by NCYC 16. These results extended the study of Walker (2011) 

which claimed P. anomala (recently renamed as Wickerhamomyces anomalus) was an 

outstanding producer for ethyl acetate production, and the studies of Kurita (2008) and 

Rojas et al. (2003) which investigated the fermentation of P. anomala on malt agar 

medium and glucose respectively.  

The levels of ethyl acetate produced by the same strain were noticeably different 

between different sugar substrates. For instance, a higher level of ethyl acetate was 

produced by NCYC 16 from fructose compared with production from glucose. The 

different metabolic pathway of fructose and glucose might be one of the main reasons 

(Appendix 5, Figure ATC5.8). As Figure ATC5.8 shows, glucose is primarily 

converted to glucose-6-phosphate (glucose-6-P) for growing cells or then converted to 

fructose-6-phosphate (fructose-6-P) (Fredlund et al., 2004; Passoth et al., 2006) whilst 

fructose has been directly converted to fructose-6-P and then further metabolised to 

fructose-1,6-bisphosphate (Rodicio & Heinisch, 2009). Nevertheless, the levels of 

oxygen might also affect the formation of ethyl acetate in either way of being promoter 

or inhibitor  (Davies, 1951; Fredlund et al., 2004; Tabachnick, 1953). The role of 

oxygen for the formation of ethyl acetate by fermentation of NCYC 16 on glucose was 

further analysed. Three sets of experiments were designed (Set A, anaerobic condition; 

Set B, semi-anaerobic condition; Set C, aerobic condition) and the results are shown 

in Figure 5.4.  The highest level of ethyl acetate was produced from Set B indicating 

that the formation of ethyl acetate might be significantly enhanced by semi-anaerobic 

fermentation with intermediate levels of air or oxygen. However, further research is 

required to uncover more details and optimise the conditions for enhancing ethyl 

acetate production using NCYC 568 and 16. 
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Figure 5.4. Concentration of acetate, ethanol and ethyl acetate produced by NCYC 16 

fermented on glucose in the conditions of different air controls. Set A, B and C represent the 

condition of anaerobic, semi-anaerobic and aerobic respectively. N=9. 

 

Arabinitol can be potentially used as a non-nutritive sweetener as well as xylitol and 

is an interesting platform chemical for producing ethylene glycol, propylene, 

enantiopure compounds, arabinoic and xylonic acids. However, it is currently 

synthesised via a chemical reaction requiring catalysis at high temperature 

(Kordowska-Wiater, 2015; Kumdam et al., 2013; Werpy et al., 2004b). In this Chapter, 

NCYC 568 (Zygosaccharomyces rouxii), NCYC 2577 (Kazachstania servazzii) and 

NCYC49 (Galactomyces candidus) have, for the first time, been shown to produce 

significant amounts of arabinitol from several sugar substrates (both hexoses and 

pentoses). In previous studies it was reported that the yeast strain Debaryomyces 

hansenii could accumulate arabinitol from a range of carbon sources (Koganti & Ju, 

2013; Nobre & Costa, 1985). These studies have been confirmed and extended this by 

showing that NCYC 10 (Debaryomyces hansenii) produced arabinitol in very high 

quantities from different sugars and even higher than the production of ethanol, 

especially from the glucose, fructose, mannose, sucrose, maltose and galactose. 

Interestingly, NCYC 568 and NCYC 2577 produced multiple metabolites from some 

of the selected sugars in addition to ethanol:  glycerol and ethyl acetate were 

additionally produced from several sugars by NCYC 568; NCYC 2577 produced 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Acetate Ethanol ethyl acetate

C
o

n
ce

n
tr

at
io

n
 o

f 
co

m
p

o
u
n
d

s 
(m

g
/m

l)

Set A (Anaerobic) Set B (Semi-Anaerobic) Set C (Aerobic)



101 

 

acetic acid from sucrose, and both acetic acid and glycerol from glucose, fructose, 

mannose, galactose in addition to ethanol production. Surprisingly, ethanol was 

produced significantly from cellobiose only by NCYC 31. This has been previously 

reported as due to its ability to produce β-glucosidase (Pavlova et al., 2002).  

Sucrose was almost completely consumed by NCYC 65 (Rhodotorula mucilaginosa). 

However, none of the 16 chemicals were produced in a reasonable quantity (Figure 

5.2 and Figure 5.3). Therefore, a closer investigation by using NMR was carried out 

and the NMR spectra are shown in Figure 5.5. The NCYC 65 (Figure 5.5A) fermented 

liquor showed a loss of peaks associated with sucrose (Figure 5.5B) whilst the peaks 

associated with glucose (Figure 5.5C) and fructose (Figure 5.5D) appeared. 

Quantification of glucose and fructose from fermented liquor also confirmed that 

sucrose was simply cleaved into glucose and fructose rather than utilised in 

fermentation. Nevertheless, neither glucose nor fructose were utilised as well as 

sucrose. This might due to the activity of invertase. Hence, NCYC 65 could be a 

potential enzyme producer and a direct biological route applying the function of 

invertase for industry. Interestingly, this strain could grow more rapidly on sucrose 

compared with on glucose. However, further investigation of this strain is required to 

explain questions such as how NCYC 65 obtains energy from sucrose without 

consuming significant amount of glucose and fructose. The present study indicated the 

strains of NCYC 65 could not ferment any of those sugars. Previous studies reported 

different activities of R. mucilaginosa. For example, a strain of R. mucilaginosa was 

identified as the producer of acetylxylan esterase (Lee et al., 1987) which could 

potentially enhance the activity of xylanases  (Biely, 1985; Biely et al., 1985; Lee et 

al., 1987). The research of Li et al. (2010) mentioned a strain of R. mucilaginosa 

accumulating fatty acids that could be used for producing bio-diesel. 
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Figure 5.5. Comparison of the NMR spectra of NCYC 65 fermented sucrose (a), sucrose 

control (b), glucose control (c) and fructose control (d). The graph on the top right shows the 

quantification of glucose, fructose and sucrose from the liquor of NCYC 65 fermented sucrose 

and sucrose control Wu et al. (2017). N=3. 

 

5.3.4 SSF of diverse yeasts on PT RS 

Hydrothermally pre-treated rice straw was used to evaluate the ability of 11 diverse 

yeasts to utilise an industrially relevant lignocellulosic biomass – derived sugar source 

presenting a much more complex bio-chemical and chemical environment compared 

with the purified sugars. Rice straw was pre-treated at severities 1.57, 3.65, 5.15 and 

5.45 and then used for SSF of 11 diverse yeast for 72 hours (see Methodology). Figure 

5.6A shows the results of fermenting 11 yeasts on slurries of pre-treated rice straw. 

Ethanol was substantially produced from samples pre-treated at severities 1.57 and 

3.65. However, none of 11 yeasts strains could produce ethanol in significant 

quantities from samples pre-treated at severities 5.15 and 5.45. This was thought to be 

due to sugar derived fermentation inhibitors previously described in the research of 

Wood et al. (2016a) such as furfural (2-FA), 5-hydroxymethylfurfural (5-HMF), 

formic acid and levulinic acid. Therefore, the strains were further evaluated by using 

pre-treated rice straw samples washed with distilled water 3 times prior to resuspension 

and SSF. As Figure 5.6B shows, the highest levels of ethanol were detected from 
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samples pre-treated at a severity of 5.15 and slightly lower levels were detected at a 

severity of 5.45. Except the strains of NCYC 65, NCYC 10, NCYC 49 and NCYC 

2577, of the remaining strains could produce ethanol in substantial quantities by 

converting the sugars enzymatically released from the cell walls of rice straw. 

Regarding the 3 strains of NCYC 65, NCYC 10, NCYC 49, they have been shown not 

to convert sugars into ethanol significantly (Figure 5.2). Surprisingly, NCYC 2577 

failed to produce ethanol in significant quantities from pre-treated samples but it was 

previously shown that it could produce ethanol (Figure 5.2 and Figure 5.3) effectively 

from a range of sugars. It is possible that NCYC 2577 is particularly sensitive to low 

levels of inhibitors remaining after washing. Different yeast strains can respond to 

those inhibitors differently (Field et al., 2015b). Fermentation inhibitors are 

unavoidably generated from lignocellulosic biomass during pre-treatment. A range of 

methods have been reported that could considerably impair the inhibition by 

developing and using inhibitor resistant strains  (Chandel et al., 2011; Field et al., 

2015b; Huang et al., 2009; Larsson et al., 2001), or introducing pre-treatment with 

either optimised condition (Chapter 3) or fine-tuning process (Pedersen & Meyer, 

2010). 
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Figure 5.6. Quantification of ethanol produced by 11 yeast strains from RS pre-treated with 4 

different severities. Figure 5.6A presents the concentration of ethanol in RS which contained 

the pre-treatment liquor (inhibitors included). Figure 5.6B presents the concentration of 

ethanol in washed (inhibitor free) RS (re-suspended in distilled water). The original 

Concentration of substrate in fermentation slurry was 5% which can be theoretically 

converted into a maxim ethanol yield of 9.89 mg/ml. result was calculated as mg per ml of 

fermented liquor (w/v). N=2. 
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5.4 Conclusion  

This Chapter presented information on yeast behaviors when grown on a range of pure 

carbon sources, identifying the chemicals produced by some of strains across the 

different sugar substrates. It showed the chosen phylogenetic diversity of the strain set 

was matched by phenotype diversity, highlighting the importance of screening widely 

across the vast yeast taxonomy for key bio-industrial traits. Furthermore, by evaluating 

the yeast strains to ferment rice straw hydrolysates and comparing those data with 

fermentation on purified sugars, this study highlighted the challenges that need to be 

addressed when attempting to exploit yeasts industrially. Some interesting gaps were 

identified in knowledge that would be worth investigating by further research, such as 

optimising the condition of enhancing formation of ethyl-acetate or D-arabinitol and 

even trying to produce those chemicals from raw materials. Utilization of carbon 

sources and the range of metabolites produce by 11 genetically most diverse yeast 

strains were studied. There was considerable variation in the degree of fermentation, 

yeast behaviour, and ethanol production. Several strains consumed certain sugars but 

produced very low yields of ethanol (NCYC 16, P. anomala; NCYC 65, R. 

musilaginosa; and NCYC 10. D. hansenii). NMR screening of their fermentation 

liquors demonstrated that some produced relatively large amounts of ethyl-acetate, 

arabinitol and acetate rather than ethanol alone and interesting strains (NCYC 568 and 

NCYC 2577) which could produce several chemicals (arabinitol, ethanol, glycerol, 

acetate or ethyl acetate) from a unique carbon source. These yeast strains were also 

evaluated for their ability to ferment sugars derived from pre-treated rice straw 

biomass and the impact of fermentation inhibitors created during high severity 

pretreatment. All the yeasts suffered from inhibition in fermentation after substrate 

pre-treatment at high severities. Except for strain NCYC 2577 (K. servazzii) the impact 

of severe pretreatment- derived inhibitors could be avoided by washing the pre-treated 

biomass which will remove such inhibitors. 
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6.1 Discussion 

Rice husk (RH) and rice straw (RS) were the raw materials. Key criteria relevant to 

their suitability as feedstocks for bio-conversion to ethanol were then compared. These 

included the cell wall sugar and lignin content, inhibitor formation during 

hydrothermal (hot water) pre-treatment, sugars yield during saccharification, and 

ethanol production during SSF. RH and RS contain large quantities of polysaccharides 

including cellulose (RS, 38.7% w/w; RH, 36.8% w/w) and hemicellulose (RS, 22.9%, 

w/w; RH, 19.7%, w/w) which have the potential to be enzymatically hydrolysed to 

fermentable sugars. However, the results of SSF in the presence of excess enzymes 

showed that ethanol production from RS was double that from RH after pre-treatment 

at severities 1.57 and 3.65. The reasons for these differences were considered to be:  

1) RH contains much higher levels of lignin (35.3%) than RS (22.1%). Lignin acts as 

a strong barrier to disruption of cell structure and enzymatic hydrolysis of 

polysaccharides and provides a large, hydrophobic physical surface onto which 

cellulases may bind strongly, leading to removal and/or deactivation, and reducing the  

rate of enzymatic hydrolysis (Öhgren et al., 2007b; Wood et al., 2014).  

2) higher levels of potential chemical inhibitors of enzymes and fermentation were 

generated from RH during pre-treatment. Some soluble carbohydrates which can 

inhibit enzymolysis such as xylose and xylo-oligomers were produced at over 1 mg/ml 

in liquors of pre-treatment RH samples which are known to significantly reduce 

cellulase activity (Qing et al., 2010). Similarly, lignin-derived phenolic compounds 

were detected that are known to significantly reduce the efficiency of producing 

cellulosic bio-ethanol by inhibiting the activity of cellulase and fermenting 

microorganisms (Hou et al., 2017; Jönsson & Martín, 2016; Kim et al., 2011; Ximenes 
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et al., 2010). For example, vanillin, syringaldehyde, trans-cinnamic acid and 

hydroxybenzoic acid (p-OH-benzoic acid) inhibit the hydrolysis activity of β-

glucosidase, and endo- and exo-cellulases. Vanillin, particularly, produces the most 

severe inhibition (Ximenes et al., 2010). The less-well known inhibitory function of 

tFA and pCA has also been highlighted in the study of Hou et al. (2017). pCA reduces 

the digestibility of cell wall carbohydrates and is a toxin to microorganisms (Taboada 

et al., 2010; Theodorou et al., 1987). In this study, phenolic compounds such as vanillin, 

pCA, p-OH-benzoic acid have been found at significantly higher levels in the liquors 

of PT RH compared with PT RS (Chapter 4, Figure 4.5-4.6). Augmenting the effects 

of lignin and other well-established pre-treatment generated inhibitors, these phenolics 

are also likely to have contributed to the much greater inhibition of the fermentable 

sugar accumulation and ethanol production from RH, leading to the poor results of 

both hydrolysis and fermentation compared with RS. However, the results have shown 

that most of phenolic compounds solubilised by pre-treatment remain in carbohydrate-

esterified forms. There is currently a lack of evidence regarding the efficacy of such 

esterified, but soluble phenolics and future work is required to investigate their 

inhibitory characteristics. Some researchers indicated that phenolics such as p-

coumaric acid and ferulic acid can be released from their esterified forms by using 

enzyme cocktails containing both carbohydrates degrading enzymes and esterases 

(Benoit et al., 2006; Lesage-Meessen et al., 2002). However, Chapter 3 has indicated 

that free phenolics could not be releases by adding CTec-2 and HTec-2. The reason 

might be the lack of esterases activities in CTec-2 (Morrison et al., 2016; Watanabe et 

al., 2015) and lack of evidences to clarify esterases in HTec-2 to release free phenolic 

acids. Therefore, significant research efforts are still required to undercover more 

details. Furthermore, well-established fermentation inhibitors produced from PT RH 
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and RS such as 5-HMF, 2-FA, acetic acid and formic acid were (except for formic acid) 

produced at higher levels from RH samples compared with RS (Chapter 3, Figure 3.9), 

thus contributing further to the severe inhibition of SSF of PT RH (Wu et al., 2018b).  

The results of SSF studies (Chapter 3, Figure 3.4) also showed that production of 

ethanol was almost completely inhibited from both RS and RH in samples pre-treated 

at severities 5.15 and 5.45. The explanation for this is the high concentration of soluble 

inhibitors including 5-HMF, 2-FA, acetic acid and formic (and all the others described 

above) which clearly supressed saccharification and/or yeast activities (Wu et al., 

2018b). SSF could be successfully achieved by washing out the inhibitors. However, 

careful evaluation of saccharification across all the severities tested have shown that 

RS pre-treated at severity 3.65 released 37.5% (w/w dry materials) glucose which was 

about 80-90% of total glucose content in RS. Furthermore, at this severity, inhibitors 

were not concentrated enough to cause any significant inhibition on producing bio-

ethanol. Therefore, pre-treating RS at severity 3.65 could benefit by decreasing the 

cost of detoxification and energy input whilst enabling a suitable yield of sugars for 

generating bio-products.  

Although phenolic compounds are inhibitory to cellulase, there are some physiological 

functions such as anti-allergenic, anti-atherogenic, anti-inflammatory and anti-oxidant 

characteristics which make phenolics especially interesting as value-adding by-

products of the bio-conversion process (Balasundram et al., 2006; Benavente-Garcı́a 

et al., 2000; King & Young, 1999; Manach et al., 2005; Middleton et al., 2000; 

Puupponen-Pimiä et al., 2001). In this study, the extraction of phenolics from RH and 

RS were significantly enhanced by hydrothermal pre-treatments under relatively mild 

condition (severity 1.57) (Figure 4.2). Nevertheless, most of phenolic acids would 
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remain largely in the pre-treated solids rather than in the liquors (Figure 4.4-4.5) after 

being pre-treated at mild condition such as severity 3.65, suggesting that an extra step 

might be considered to extract phenolic acids from saccharified or fermented residual 

solids for producing the value adding phenolic acids products.  

The studies above focused on understanding the differences in suitability of RH and 

RS as sources of lignocellulose for bio-ethanol production. Since a number of sugars 

may be created from biomass saccharification, and since yeasts have the potential to 

produce products in addition to or other than ethanol, eleven genetically diverse yeast 

strains were screened by growing and fermenting them on 13 commercially-purified 

sugars for identification of uncommonly used yeasts and potentially high value 

containing metabolites. The results showed (Chapter 5) that the yeasts differed 

considerably in their ability to consume a range of different sugars, and in their 

production of ethanol. However, pentoses such as xylose were barely fermented by 

any of the selected diverse yeasts. Although pentoses and lactose can be fermented by 

a range of microorganisms such as bacteria, fungi and yeasts, the naturally-occurring 

pentose-fermenting yeasts are very limited (Hughes et al., 2012; Martiniano et al., 

2013; Urbina & Blackwell, 2012). Several strains had consumed sugars but had 

produced a low yield of ethanol such as NCYC 16 (W. anomala), NCYC 65 (R. 

musilaginosa) and NCYC 10 (D. hansenii). This indicated that those strains might 

have produced other metabolic products. A number were found to produce significant 

amounts of ethyl-acetate, arabinitol, glycerol and acetate in addition to ethanol 

(NCYC16, W. anomala; NCYC 10, D. hansenii; NCYC 568, Z. rouxii; and NCYC 

2577, K. servazzii) from several different carbon sources.  

Ethyl acetate can be used as an environmentally friendly solvent in the manufacture of 

food, glues, inks and perfumes, and it is currently produced via chemical processes 
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(Löser et al., 2015; Nielsen et al., 2012). The yeast strain NCYC 16 (W. anomala) is 

capable to produced high levels of ethyl acetate from a range of sugars, extending the 

previous research of Walker (2011) which identified the yeast strain Pichia anomala 

(W. anomala) as a ethyl acetate producer. However, the levels of ethyl acetate vary 

significantly between different sugar substrates used for fermentation. This might due 

to the bifurcated metabolic pathways for different sugars (Fredlund et al., 2004; 

Passoth et al., 2006; Rodicio & Heinisch, 2009). Moreover, the yields of ethyl acetate 

may also be influenced by the levels of oxygen during fermentation (Davies, 1951; 

Fredlund et al., 2004; Tabachnick, 1953).  The present study (Chapter 5, Figure 5.4) 

achieved high level ethyl acetate yields by controlling the initial ratio of sugar solution 

and air as 1:1 (v/v). Further investigations are needed to give a better understanding of 

mechanisms and more accurate controlling of oxygen or air. 

Arabinitol is a potential non-nutritive sweetener and feedstock in producing ethylene 

glycol, propylene, enantiopure compounds; arabinoic and xylonic acid, which are 

currently produced via chemical reactions require high temperature for catalysis 

(Kordowska-Wiater, 2015; Kumdam et al., 2013; Werpy et al., 2004a). In this study, 

several strains have been firstly identified as potential arabinitol producers such as 

NCYC 568 (Z. rouxii), NCYC 2577 (K, servazzii) and NCYC 49 (G. candidus) 

(Chapter 3, Figure 5.4).  The previous studies of Nobre and Costa (1985) and Koganti 

and Ju (2013) have reported the yeast strain Debaryomyces hansenii can produce a 

significant quantities of arabinitol, and the present study reported NCYC 10 (a strain 

of D. hansenii) is capable of producing arabinitol from a number of sugars in large 

quantities even higher than ethanol. Those findings highlight the important potential 

of uncommonly used yeasts for producing high value platform chemicals from 

lignocellulosic biomass (Bozell & Petersen, 2010). 
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The present studies also assessed how the genetically diverse yeast reacted to the 

complex conditions created by lignocellulosic hydrolysate. They were then used to 

ferment pre-treated RS. The results showed that most strains behave as they did when 

used for the fermentation on pure glucose as none could ferment xylose. However, 

fermentation activities of all strains are largely inhibited on RS samples pre-treated at 

higher severities (severities 5.15 and 5.45). The reason was hypothesised to be due to 

the inhibitory compounds that reduced the ethanol production by suppressing yeast 

behaviours. This was confirmed by following the fermentation of the 11 yeast strains 

on washed RS hydrolysates. Therefore, detoxification of hydrolysates and the use of 

inhibitor-resistant yeast strains can be applied to minimise the effect of inhibition 

(Chandel et al., 2011; Huang et al., 2009; Larsson et al., 2001). Genetically modifying 

yeasts may significantly contribute to enhancing their capabilities for both fermenting 

pentoses and inhibitor tolerance (Field et al., 2015a; Senatham et al., 2016). Also, fine-

tuning of the pre-treatment (as discussed above) process may be a reasonable way of 

reducing the effects caused by inhibitors (Pedersen & Meyer, 2010). 

Therefore, an ideal process of bio-conversion especially for RS can be considered as: 

pre-treating RS at severity 3.65 by using hot water pre-treatment to establish the 

environment containing relatively low quantities of inhibitors, then addition of 

enzymes and selected yeasts to perform SSF to produce high value products in addition 

to ethanol such as arabinitol and ethyl acetate. Finally, the fermented residual solids 

could be used for phenolic acid extraction to produce by-products which further 

increases the economic value of the overall products. The whole process is shown 

diagrammatically in Figure 6.1. To achieve this, future investigation is required. 
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Figure 6.1. Diagram of theoretical advanced processes of bio-converting RS into bio-products 

and by-products.  
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6.2 Future work 

This study highlights that RS is suitable as a feedstock for bio-conversion to bio-

products, and optimised pre-treatment condition tailored for RS occurred at severity 

3.65. The advantages of pre-treating RS by hydrothermal methods at such mild 

severities are the reduction in energy input, high yields of fermentable sugars (the 

enclosed conditions allow the presence of both glucose and xylose) and very low yields 

of inhibitors of either enzymolysis or yeast fermentation. However, due to the 

significant amount of water required, the hot water pre-treatment method may not be 

very cost effective. Future research might explore the transfer of this idea to optimise 

the conditions for steam explosion which will have two additional advantages: less 

water required and lower volatile inhibitors retained in the pre-treated materials. The 

presence of xylose in addition to glucose increases the potential quantities of final bio-

products. Therefore, a combined fermentation of both glucose and xylose could be 

further assessed by using yeast cocktails containing glucose fermenting yeasts and 

xylose fermenting yeasts. Moreover, the ethyl acetate and arabinitol producers 

identified in this study can be further assessed with RS hydrolysates for metabolites in 

addition to ethanol. Investigation of the extraction method to separate phenolic acids 

from fermented RS residual solids is also important and interesting since the by-

products could add extra value to the final products and enhance the financial 

availability of the bio-refining processes. Silica had been previously reported that it is 

responsible for severely inhibiting ruminant digestion of RH and RS as it is contained 

in significantly quantities in RH and RS, especially in RH. Therefore, to investigate 

the content of silica and its potential inhibitory effects on the digestibility of pre-treated 

RH and RS will be able to fill the gap of left in this study. Furthermore, the effect of 

fermenting yeasts on the contents of phenolics in fermented residual solids is unknown, 
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and this would be an interesting area to explore. 

 

6.3 Conclusion 

In summary, this research has focused on contributing to bio-refining technology by 

analysing the suitability of rice residual feedstocks, optimising conditions of pre-

treatments and investigating the potential for producing novel products. Chapter 3 

uncovered the optimised pre-treatment conditions specific for pre-treatment RS. By 

careful control of pre-treatment, the optimised conditions (between severity 3.65 and 

4.25) may be sufficient to reduce the levels of fermentation inhibitors. Pre-treating RS 

with severity between 3.65 and 4.25 achieved a glucose yield of between 37.5% and 

40% (w/DW of raw materials) which close to the theoretical glucose yield of 44.1%. 

These results indicate that RS is a readily available candidate for bio-refining, but RH 

requires more research.  

Phenolic esters such as tFA and p-CA have been recently considered as serious 

inhibitors to fermenting microorganisms. The study of Chapter 4 extensively 

investigated the correlation between a range of hydrothermal severities and yields of 

phenolic esters by extracting those phenolic esters and quantifying their free form after 

saponification. This study provided new information on the fate of diferulic acids. The 

results indicated phenolic esters were also the major compounds released into liquor 

of lignocellulosic biomass during hydrothermal pre-treatment. Therefore, further 

research of their inhibition activities is crucial to bio-converting as there is currently 

lack of information about the inhibitory functionality of soluble phenolic esters.  

Phenolic compounds especially the phenolic acids are potential value adding by-

products. The quantification of total phenolics indicated that phenolic compounds 

mainly remained in the solids even after pre-treatment. This gives the possibility to 

extract phenolic acids from fermented RS residual solids. As reported in Chapter 5, 

yeast strains such as NCYC 10 (D. hansenii) and NCYC 16 (W. anomala) can produce 

high value bio-products such as arabinitol and ethyl acetate in a quantity higher than 

ethanol production. Those can be potentially used to convert glucose instead of typical 

S. cerevisiae. However, some further studies are required for reducing the water 
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demand, increasing ethanol yield by fermenting both glucose and xylose by using yeast 

cocktails, optimising the fermentation conditions for producing ethyl acetate and 

arabinitol with NCYC 16 and NCYC 10 and investigating the methods for extracting 

phenolic acids from fermented residues. 
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Appendices 

Appendix 1 

Suppliers of experimental equipment and chemicals: 

0.2 µm filter plates: Pall Corporation, World Headquarters, Washington, USA. 

96 well reader plates (1 ml): Thermo Fisher Scientific, Waltham, MA, USA. 

96 deep well plates (2 ml): Geriner Bio-One Ltd, Brunel Way, UK. 

96 well PCR plates: Fisherbrand®, UK. 

1-methylimidazole: Sigma-Aldrich, Gillingham, Dorset, UK. 

6700EFM Freezer/Mill: Spex Sample Prep, Stanmore, UK. 

Ammonia (NH3): Sigma-Aldrich, Gillingham, Dorset, UK. 

Acetic anhydride: Sigma-Aldrich, Gillingham, Dorset, UK. 

BIOTAGE® Initiator+ reactor: Biotage AB, Box 8, 751 03, Uppsala, Sweden. 

BioRad FTS 175C Fourier transform infrared spectrometer: BioRad, Cambridge, 

MA, USA. 

Bruker Avance spectrometer: Bruker BioSpin GmbH, Rheinstetten, Germany. 

Cellic® CTec-2 and HTec-2: Novozymes, Denmark.  

Clear polypropylene PCR seal: STARLAB international GmbH, 22143 Hamburg, 

Germany. 

Dichloromethane (DCM): Sigma-Aldrich, Gillingham, Dorset, UK. 

Deuterium oxide (D2O): Sigma-Aldrich, Gillingham, Dorset, UK. 

Gas Chromatography (GC): Perkin-Elmer Autosystem XL, Perkin Elmer, Seer 

Green, UK. 

GOPOD Format: D-Glucose Assay Kit, Megazyme, USA. 

Golden GateTM diamond attenuated total reflectance (ATR) accessory: Specac, 

Slough, UK. 
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High performance liquid chromatography (HPLC) - a Series 200 LC instrument: 

Perkin Elmer, Seer Green, UK. 

Hydrogen chloride (HCl): Sigma-Aldrich, Gillingham, Dorset, UK. 

Laboratory-purified 13 sugars: Sigma-Aldrich, Gillingham, Dorset, UK. 

Microplate spectrophotometer: Biometra® T-Gradient, Germany. 

Matrix Tubes and Matrix plates: Thermo Fisher Scientific, Waltham, MA, USA. 

Multi Variate Statistical Package version 3.22: Kovach Computing Services, 

Anglesey, UK. 

Olympus BX 60 Light microscope: Olympus, Tokyo, Japan. 

Polypropylene PCR seal: STARLAB international GmbH, 22143 Hamburg, 

Germany. 

Potassium hydrogen phosphate (K2HPO4): Sigma-Aldrich, Gillingham, Dorset, UK. 

Phenomenex Column Luna 5 µ C18 (2), 250*40 mm with pre-column and Perkin 

Elmer Diode Array UV Detector: Waltham, Massachusetts, USA. 

RTX-225 column: Restek, Bellefonte, USA, 

RETSCH cyclone mill: Retsch Limited, Hope Valley, UK. 

Sovirel culture tubes: The Science Company, 7625 W Hampden Ave, Unit 14, 

Lakewood, Colorado, USA. 

Sodium borohydride (NaBH4): Sigma-Aldrich, Gillingham, Dorset, UK. 

Sintered glass funnels: VWR International Ltd, 1151 Budapest, Szövőgyár utca 11-

13, Hungary. 

Sodium dihydrogen phosphate (NaH2PO4.H2O): Sigma-Aldrich, Gillingham, 

Dorset, UK. 

Sodium 3-(Trimethylsilyl)-propionate-d4 (TSP): Sigma-Aldrich, Gillingham, 

Dorset, UK. 

Sodium azide (NaN3): Sigma-Aldrich, Gillingham, Dorset, UK. 

Sodium hydroxide (NaOH):  
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Sulfuric acid (H2SO4): Sigma-Aldrich, Gillingham, Dorset, UK. 

Thimerosal Orbital shaker: Thermo Fisher Scientific, Waltham, MA, USA. 

TPE PCR sealing mats: BRAND, at Fisher, UK. 

Thermocycler: Biometra T-Gradient, Germany. 

Vulcan PD Furnace 3-550: Dentsply Sirona Global Headquarters, Susquehanna 

Commerce Center. 221 West Philadephia Street, Suite 60W, York PA, USA. 

VersaMax ELISA Microplate Reader: Molecular Devices, Sunnyvale, CA, USA. 

Yeast nitrogen base (YNB): Formedium, Hunstanton, Norfolk, UK. 
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Appendix 2 

2.1 Principle of GOPOD reactions and sugar STDs of glucose for 

GOPOD and DNS 

2.1.1 principle and glucose STD of GOPOD  

 

Figure ATC2.1. Diagram of GOPOD reactions. 

 

Table ATC2.1. The series of D-glucose STDs. 

 

 

Compositions (μl) 

D-glucose STDs (mg/ml) 

STD 1 (0) STD 2 (0.15) STD 3 (0.5) STD 4 (0.75) STD 5 

(1.00) 

Distilled water 1000 997 990 985 980 

D-glucose solution* 0 3 10 15 20 

*The concentration of D-glucose solution used to make up STDs was 50 mg/ml. 
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Figure ATC2.2. STDs curve of D-glucose for GOPOD. 

 

2.1.2 Glucose STDs for DNS 

Table ACT2.2. Sugar STDs for DNS method. 

 

 

Compositions (ml) 

Sugar STDs (mg/ml) 

STD 1 (10) STD 2 (20) STD 3 (30) STD 4 (40) STD 5 (50) 

Distilled water 0.8 0.6 0.4 0.2 0.0 

D-glucose solution* 0.2 0.4 0.6 0.8 1.0 

*The concentration of D-glucose solution used to make up STDs was 50 mg/ml. 
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Figure ATC2.3. STDs curves of D-glucose for DNS. 
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2.2 Chromatography spectra of phenolic compounds 

 

 

 

Figure ATC2.4. Spectra of phenolics (adapted from Waldron (1996)) 
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Figure ATC2.5. Spectra of phenolics (adapted from Waldron (1996)). 
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Figure ATC2.6. Spectra of phenolics (adapted from Waldron (1996)). 
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Figure ATC2.7. Retention time of phenolic compounds and explanation of Relative 

retention time. 
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Appendix 3 

3.1 Standard curves 

3.1.1 standard curves of GC 

 

Figure ATC3.1. Standard curves of sugar analysis established by GC. Each of all sugars is 

presented with different colours and shapes. The X axis is the weight of sugar divided by the 

weight of internal standard (2-DOG, 2-Dimethyl oxide glucose) and the Y axis is the area of 

sugars divided by the area of 2-DOG. 
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3.1.2 Standard curves of ethanol (HPLC) 

 

Figure ATC3.2. Standard curves of ethanol established by HPLC. The X axis is the 

concentration of pre-made ethanol and the Y axis is the area of ethanol. 
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3.3 Quantities of 5-HMF, 2-FA and acetic acid produced from pre-

treated samples of husk (quantified by using HPLC) 

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

P
ro

p
o

rt
io

n
 o

f 
ra

w
 m

at
er

ia
ls

 (
~

%
D

W
)

Pre-treatment severites (Ro)

RH 5-HMF

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5P
ro

p
o

ti
o

n
 o

f 
ra

w
 m

at
er

ia
ls

 (
~

%
D

W
)

Pre-treatment severities (Ro)

RH 2-FA

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

P
ro

p
o

ti
o

n
 o

f 
ra

w
 m

at
er

ia
ls

 (
~

%
D

W
)

Pre-treatment severity (Ro)

Acetic acid

Acetic acid Acetic acid NMR



158 

 

Figure ATC3.3. Comparison of quantities of 5-HMF, 2-FA and acetic acid produced from pre-

treated RH samples by using NMR and HPLC. Curves and circles in blue represents results 

collected by using HPLC. Those in orange colour are results collected by using NMR. 
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Appendix 4 

4.1 Biomass recover rate of PT RH and RS 

 

Figure ATC4.1. Biomass recover rate of PT RH and RS. Data has been calculated as the 

percentage of raw materials (w/w). N=3. 
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Appendix 5 

5.1 Suppliers of experimental equipment and chemicals. 

Yeast nitrogen base (YNB), Formedium, Hunstanton, Norfolk, United Kingdom; 

laboratory-purified sugars, Sigma-Aldrich, Gillingham, Dorset, United Kingdom; 96 

well reader plates, Thermo Fisher Scientific, Waltham, MA USA; VersaMax ELISA 

Microplate Reader, Molecular Devices, Sunnyvale, CA USA; 96 deep well plates (2 

ml), Geriner Bio-One Ltd, Brunel Way, UK; polypropylene PCR seal, STARLAB 

international GmbH, 22143 Hamburg, Germany; 0.2 µm filter plates, Pall Corporation, 

World Headquarters, Washington USA; BIOTAGE® Initiator+ reactor, Biotage AB, 

Uppsala, Sweden; Matrix tubes, Thermo Fisher Scientific, Waltham, MA USA. 

 

5.2 Table of 11 selected yeasts and 13 lab-purified sugars 

Table ATC5.1. Name and molecular formula of 13 lab-purified sugars 

NUMBER NAME MOLECULAR FORMULA 

1 Ribose C5H10O5 

2 Cellobiose C12H22O11 

3 Glucose C6H12O6 

4 Maltose C12H22O11 

5 Fructose C6H12O6 

6 Rhamnose C6H12O5 

7 Xylose C5H10O5 

8 Mannose C6H12O6 

9 Galactose C6H12O6 

10 Arabinose C5H10O5 

11 Sucrose C12H22O11 

12 Fucose C6H12O5 

13 Lactose C12H22O11 
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Table ATC5.2. Information of selected diverse yeast strains. 

 

NUMBER 
 

 

NCYC NUMBER 

 

NAME 

 

NCYC URL 

1 NCYC 2791 Kluyveromyces marxianus https://catalogue.ncyc.co.uk/kluyveromyces-marxianus-2791  

2 NCYC 65 Rhodotorula mucilaginosa https://catalogue.ncyc.co.uk/rhodotorulamucilaginosa-65  

3 NCYC 31 Hanseniaspora osmophila https://catalogue.ncyc.co.uk/hanseniaspora-osmophila-31 

4 NCYC 10 Debaryomyces hansenii https://catalogue.ncyc.co.uk/debaryomyces-hansenii-10 

5 NCYC 568 Zygosaccharomyces rouxii https://catalogue.ncyc.co.uk/zygosaccharomyces-rouxii-568 

6 NCYC 16 Wickerhamomyces anomalus https://catalogue.ncyc.co.uk/wickerhamomyces-anomalus-16 

7 NCYC 2433 Zygosaccharomyces thermotolerans https://catalogue.ncyc.co.uk/lachanceathermotolerans-2433  

8 NCYC 4 Candida tropicalis https://catalogue.ncyc.co.uk/candidatropicalis-4  

9 NCYC 2577 Kazachstania servazii https://catalogue.ncyc.co.uk/kazachstaniaservazzii-2577 

10 NCYC 49 Galactomycers candidus https://catalogue.ncyc.co.uk/galactomycescandidus-49 

11 NCYC 2826 Saccharomyces cerevisiae https://catalogue.ncyc.co.uk/saccharomyces-cerevisiae-2826  

https://catalogue.ncyc.co.uk/kluyveromyces-marxianus-2791
https://catalogue.ncyc.co.uk/rhodotorulamucilaginosa-65
https://catalogue.ncyc.co.uk/hanseniaspora-osmophila-31
https://catalogue.ncyc.co.uk/debaryomyces-hansenii-10
https://catalogue.ncyc.co.uk/zygosaccharomyces-rouxii-568
https://catalogue.ncyc.co.uk/wickerhamomyces-anomalus-16
https://catalogue.ncyc.co.uk/lachanceathermotolerans-2433
https://catalogue.ncyc.co.uk/candidatropicalis-4
https://catalogue.ncyc.co.uk/kazachstaniaservazzii-2577
https://catalogue.ncyc.co.uk/galactomycescandidus-49
https://catalogue.ncyc.co.uk/saccharomyces-cerevisiae-2826
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5.3 Standard curves of sugars and ethanol (HPLC) 

 

 

 

Figure ATC5.1. Standard curves of pentose (ribose, arabinose and xylose). 
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Figure ATC5.2. Standard curves of hexose (part 1: glucose, fructose and mannose). 
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Figure ATC5.3. Standard curves of hexose (part 2: galactose, rhamnose and fucose). 
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Figure ATC5.4. Standard curves of disaccharides (cellobiose, maltose, sucrose and lactose). 
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Figure ATC5.5. Standard curves of ethanol (Standard for 11 yeast fermentation on 13 

sugars). 

Figure ATC5.6. Standard curve of ethanol (Standard for 11 yeast fermentation on pre-

treated RS). 
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5.4 Explanation of LP, DT and efficiency 

 

Figure ATC5.7. Illustration of lag phase (LP), doubling time (DT) and efficiency (ΔOD) (Wu et al., 2017).  
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5.5 Pathway of yeasts for producing ethyl acetate 

 

Figure ATC5.8. Brief diagram of metabolic pathway of yeasts. 

 

5.6 Concentration of 16 chemicals (Standard deviations are not 

presented) 

Table ATC5.3. Supplementary data for Chapter 5. These 9 tables below show the 

concentration of 16 chemicals produced by 11 yeast strains from 13 sugars.  
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Appendix 6 

Standard operating procedure 

6.1 Sugar analysis by using GC 
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6.2 Biotage initiator  
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6.3 Klason lignin analysis 
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6.4 GOPOD assay for glucose 
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6.5 Sample preparation for NMR screening (yeasts) 
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6.6 Phenolics extraction from lignocellulosic biomass and analysis by HPLC 
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